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ABSTRACT

The dissertation focuses on the steady-state solution to the linear

estimation and control problems. Following a pertinent review of linear

algebra and computation fundamentals, various approaches to solving the

matrix Riccati equation are examined. After rcviewing eigenvector

decomposition and various iterative algorithms, square root doubling

algorithms are motivated. Scattering theory is used to initiate an

algebraic derivation of these algorithms, and is then extended to provide

a pure derivation of several square root algorithms.

A set of criteria for choosing among these algorithms is presented

and examined with empirical evaluations. Differentiating criteria

include sensitivity to repeated closed-loop eigenvalues, the impact of

singular model parameters, computational accuracy, and rate of

convergence.

Sensitivity to parameter uncertainty in discrete-time systems is

considered using a quadratic minimization of a generalized cost func-

tion. This same algorithm is used to design arbitrary-order compensa-

tion using complete system information..

Algorithm implementation is then considered in terms of both present

and future hardware.

In conclusion, fI iscrete-time systems, the square root doubling

algorithms are found to be comparable to the eigenvector decomposition

algorithms in terms of memory requirements, elapsed computation time,

and performance. The doubling algorithms are also found to solve a

wider class of problems.
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Chapter I

INTRODUCTION

Consideration of how to interpret measurements and of how to make

predictions based on these measurements has a long, colored, and oft

obscure history ("Hamlet's Mill," Santillana [1969]). It has been a

primary concern of orderly enquiry since at least the earliest mega-

lithic cultures. But only much later, with the dawning of modern science

in the late middle ages, did measurement and considered prediction

become a central paradigm in rational enquiry ("The Waning of the Middle

Ages," Huizinga [1924]), ("The Civilization of the Renaissance in Italy,"

Burckhardt [1860]).

Refinements have often come about in unexpected ways, many of them

fascinating. Sir Isaac Newton considered the verification of the law

of universal gravitation fundamental to his theory of motion-- so funda-

mental he strove for unparalleled precision. Beginning with data accurate

to five percent, Newton proceeded to derive a correlation between the accel-

eration of gravity and the earth's attraction for the moon accurate to one

part in 3000 [Newton, 1726] -- a persuasive correlation! Unfortunately,

his editor (Professor Roger Cotes) found a grievous inconsistency in

the calculation, and replied [Edleston, 1850]

I have considered how to make [it] appear to the
best advantage as to ye numbers, and I propose
to alter it thus.

With unbridled faith in his mentor's theory, Cotes proceeded to alter

the latitude of Paris. Sir Isaac declined the offer (choosing instead

to alter the orbit of the moon).

- 1i~



2

Measurement and estimation continued to advance in the early

eighteenth century, but in 1795 Gauss introduced linear least-squares

estimation, and progress began in earnest. The past forty years has

seen a burgeoning of the field, beginning with work by Kolmogorov,

Krein, and Wiener. For .a comprehensive history, see Kailath [1974].

Estimation theory, in its modern context, addresses the issue of

making predictions from observations. We begin by assuming a stochastic

process, x(') , and then try to prognosticate inferences about x

based upon measurements of a related process y(-) . In linear esti-

mation theory, these inferences are linear functionals of the measure-

ments. If the objective is to estimate x , and if the performance

criterion is to minimize the mean square error between x and its

estimate, x , then the solution simplifies. The theory becomes quite

tractable, depending solely on the first and second moments of the

original and of the observed process.

In the discrete-time case, the solution follows immediately with

the inversion of the observation process covariance matrix. However,

since n observations require on the order of n3 operations for

the inversion, this can become a Herculean task for even the largest

computer.

An alternate approach uses recursive filters, which update state

information as new observations become available. There are several

formulations, but Kalman filters are the best known of these formulae.

Using the state space model, Kalman [1960] [1963] formulated the process

as a linear dynamical system driven by white noise. The observation

process, y, is a function of the state process, x, and is similarly

corrupted by white noise.

k Now=
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Arising in the solution of this recursive problem is a nonlinear,

matrix difference equation, an example of the Riccati type equations.

The solution to this equation is of primary interest in the sequel.

This dissertation will focus on discrete-time problems; the signal

importance digital computers have attained in our current technology

often obviates continuous alternatives. Further, the benefits of digital

implementations are persuasive. Costs can be reduced, flexibility is

increased, greatly increased accuracy is possible, and model complexity

can often be incorporated readily. There are also considerable

disadvantages, arising because of the interface with a continuous

world.

Two primary factors in determining costs, in both the design and

the implementation phase, are speed and complexity; if a system is slow

and simple, then it is usually less expensive. In the implementation

context, reducing cost implies reducing the order of the compensation, the

accuracy of the computation, and reducing the sample rate (usually at the

expense of the system bandwidth and sensitivity). In the design context,

reducing cost implies faster, simpler algorithms and synergetic hardware.

In the sequel, various design algorithms are considered from several

different analytical perspectives. Both theoretical and empirical

comparisons are made. Sensitivity and compensation complexity are also

considered. The relationship between algorithms and hardware is presented

as the denouement.
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Dissertation Outline

Chapter 2 is a brief and fast-paced review of linear algebra,

numerical analysis,and fundamental algorithms. Definitions are

presented, concepts are outlined, and references are given for additional

background, if required.

Chapter 3 provides the gist of the dissertation. Half of the

chapter is a review of earlier work. It begins by developing initial

criteria for gauging the algorithms of the sequel; standard iteration

of the matrix Riccati equation is prescribed as a benchmark. Next, a

standard algorithm for solving the steady-state Riccati equation is

reviewed (eigenvector decomposition).

Before presenting another class of algorithms, orthogonal trans-

formations are considered in pertinent detail; these mappings are then

used in an algebraic derivation of square root algorithms. Several

questions arise, and are deferred.

Scattering theory is then introduced and applied to the iteration

of the Riccati equation and to the eigenvector decomposition developed

earlier. Scattering theory provides the impetus for developing the next

set of algorithms, the square root doubling algorithms. They are found to

be fast, widely applicable, and numerically well behaved, but their deri-

vation again raises questions that are deferred.

To answer these questions, and to gain insight into the underlying

structure of square root algorithms, the concept of the square root of

a scattering medium is developed. The ensuing physical insight clarifies

many of the unresolved issues, and provides for rapid derivation of

several of the square root algorithms.

- -7 - -~ - - ...



The chapter ends after proposing possible remedies for several of

the algorithm's weaknesses.

Chapter 4 briefly examines the connection between the continuous

and the discrete solution to the matrix Riccati equation. Various

doubling formulae are examined, with varying degrees of disfavor.

In Chapter 5 the problem of a singular state transition matrix is

examined from several perspectives. Gever's [1972] work on order reduc-

tion is reviewed, as are Katz's [1974] and Powell's [1978] conjectures.

Pure prediction, singular covariance matrices, and repeated closed-loop

eigenvalues are also considered.

Chapter 6 presents empirical results comparing the algorithms of

Chapters three and four. Memory requirements, elapsed execution time,

speed of convergence, and accuracy are the primary criteria for evalua-

tion of the results.

Chapter 7 considers a procedure for reducing the sensitivity of

compensation to the effects of uncertainties in the parameters of the

model of the system. This procedure is compared to an ad hoc approach.

Limitations are delineated.

Chapter 8 uses the algorithm of the previous chapter to design

compensation of arbitrary order. The results are compared to frequency

domain design, and are applied to a practical problem.

Chapter 9 discusses the problems associated with algorithm imple-

mentation. The focus is on the weaknesses and false promises of present

hardware, the need for considerable research into algorithm-hardware

interaction, and for the development of new, specialized computers.
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Chapter II

MATRIX FUNDAMENTALS

A Focused Review

Fundamental matrix properties and the problems inherent in

actually computing with arrays lies at the heart of this treatise. For

that reason a brief discussion of matrices, computation, and algorithms

will follow.

The need for specific algorithms to solve specific problems

dictated the contents of this chapter. We assume a working knowledge

of matrices, review our definitions, and then concentrate on the details

and their implications for computation. The objective is to review the

quintessential algorithms, examining why they are relevant, and what

we can expect from them. Lesser algorithms-- for example, Gram-

Schmidt orthogonalization and Gaussian Elimination-- will be mentioned

along the way, often in a quite familiar fashion. If these references--

to pivoting, poorly bounded errors, etc.--are not well understood,

these secondary references are not crucial to an understanding of the

remainder of this treatise.

This is a field rich with fine work and excellent texts. Many

must be consulted, however, to garner the full flavor of the field.

James Hardy Wilkinson LWilkinson, 1965] is preeminent in the field, as

is Gene Golub [1965]. Also consider Forsythe [1967], Moler [1974],

Acton [1970], Lawson [1974], and Strang [1976].

...... .--- " T '- ~ON. .. 
-' : ' ,
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11.2 Fundamentals

Computation-- the Theory and the Practice

The primary constraint computers place on purely theoretical

algorithms is the unavailability of real real numbers. Instead, there

are integers and there are ersatz real numbers, termed floating point

numbers. A variety of ersatz schemes exist, but conceptually the real

number is represented in scientific notation, with a truncated frac-

tional part and a bounded exponent.

Thus, for example, we might require the fractional part to be

greater than one-half, but less than one, and limited to seven digits

of precision. The exponent part might be limited to three digits of

precision. Thus, we might have

±'flf2 - f7 x e (2.1)

where B is the base (2,8,10, or 16 are common), f is the fractional

part, and e the exponent.

First, we note that we have specified a finite set on the real

line of far from equidistant points; small numbers are densely

represented; large numbers are comparatively sparsely represented.

Second, most real numbers must be represented only approximately,

especially if the number lies outside the range of the exponent.

The fundamental theorem in floating-point rounding-error analysis

defines the relative error; following Moler (1967)

if we replace a real number x by the closest floating point

approximation, xf , then

xf = x(1+6)
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where

1-t
< l - , t: the number of digits of precision.

(2.2)

This result can be extended to bound various floating point operations,

such as addition or multiplication, and therefore motivates our later

introduction of matrix conditioning.

Mappings

The square matrix A represents a linear mapping, or transforma-

tion, of each vector x of one n-dimensional space X into the vector

y = Ax of a second n-dimensional space Y . Mappings-- especially

orthogonal mappings-- are very important in what follows.

Singular values, Eigenvalues, and Eigenvectors

The fundamental algebraic eigenvalue problem is the determination

of those scalars X for which the equation

Ax = Xx (2.3)

has a non-trivial solution. The general theory of simultaneous linear

'algebraic equations shows that there is a non-trivial solution if, and

only if, the matrix (XI-A) is singular. This may be restated as

requiring that

det (XI-A) = 0 (2.4)

This determinant may be expanded into the polynomial

+ a
1 X

n -l + + a = 0 (2.5)xn + +.. + n



9

where n is the order of A. This equation always has n roots,

called the eigenvalues of the matrix A.

Corresponding to any eigenvalue X , the set of equations (2.3)

has at least one non-trivial solution x ; this solution is called an

eigenvector corresponding to that eigenvalue. If the rank of (XI-A)

is less than (n-l), then there will be more than one independent vector

satisfying (2.3). Also, if x is a solution to (2.3), then cx is

also a solution, where c is a scalar.

Not all systems have a complete set of eigenvectors. For example,

the matrix A , where

A fr r 1 ] (2.6)

r I

0 r

has the repeated root r times, but has only one eigenvector

x [1 0 ... 0 T  
(2.7)

We will return to this issue later.

A matrix is positive definite, A > 0 , if all eigenvalues are

greater than zero; positive semidefinite or non-negative definite,

A > 0 , if none of the eigenvalues are negative.

Singular values are the non-negative square roots of the eigenvalues

of the symmetric matrix AAT , and are denoted p i" Practically all of

the important properties concerning the solution of a system of equations

with the matrix A are determined by the nature of the matrix's singular

values (Forsythe [67]); convergence and accuracy are often two major pro-

perties.
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For non-negative definite, symmetric matrices, the eigenvalues

and singular values correspond.

Matrix Transformations-- the Definitions

Practical strategies for computing eigenvalues break the problem

into two parts: reducing the original matrix to a specialized matrix

having many zero elements but the same eigenvalues, followed by the

finding of the eigenvalues for the specialized matrix. The square root

algorithms presented in the sequel also begin by reducing the system

to specialized forms as an initial step.

Reductions of general matrices may be phrased in terms of

similarity transformations. The matrix A is said to "suffer" a similarity

transformation if it is pre- and post- multiplied by any other matrix

and its inverse; the only restriction is that the inverse must exist:

B = TAT-I

C = T- AT

Similarity transformations have the property that they preserve eigen-

values.

An important class of similarity transformations are orthogonal

transformations. The transforming matrix T is orthogonal if its

transpose is also its inverse

T = T 
-I

This property is enough to preserve symmetry through the similarity

transformation. More importantly, orthogonal transformations are

extremely stable (see below).
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Orthogonal transformations consist of a possible reflection in some

hyperplane, followed by a rigid rotation of n-dimensional space onto it-

self. The key facts to remember concerning orthogonal transformations are:

1) They are simple to generate,

2) They are useful for creating blocks of zeroes,

3) They are useful for creating triangular forms,

4) They preserve eigenvalues and symmetry,

5) Their errors are bounded and well-behaved.

They also generally require more computation than their competition.

Norms

Norms are measures of length and distortion. A common norm is

Euclidean distance, denoted by lxi , which we define as
('2X+ ...2Ix

Ilxil - + i + ... Xn 2  = . (2.8)

This norm obeys our common sense feeling for determining distance, but

it is often difficult to compute; computers are notoriously slow at

performing square roots.

The Euclidean norm obeys the following properties in two and three

dimensions:

iicxII : Ic" ixIl V real c and all vectors x (2.9)

ff011 0 and JIxil > 0 iff x E 0 , where 0 is the null

vector (2.10)

iix+yIi < Ixii + f[YlI for all vectors x and y . (2.11)

If we take these properties as our definition of a norm, we can generate

several measures which are more readily computable. For example
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n] xl1l = z xi , the L1 norm (2.12)

llxl! = max ixil , the L norm (2.13)
1<i<n

Both of these norms satisfy our formal requirements for a measure, although

they don't allow us to use our geometric (Euclidean) intuition. More

importantly, they are both readily computable, and in the appropriate

context each can be used to answer the question, "which is smaller."

We now define the norm of a square matrix A in the obvious fashion--

as a direct extension of the vector definition:

JAl= max f = max IIAxl1 (2.14)
XIO lx 11l=l

As a direct consequence

IcAll Icl - IAII V real c and all A (2.15)

ell = 0 and jIAII > 0 if A#O , where 0 is
the null matrix (2.16)

IiA+Bil < 1[AIl + [iBhl V matrices A and B (2.17)

Further, it follows immediately that

iAxl < IhAII • Ilxil V A,x (2.18)

iIABIi < IIAII • IIBIJ V A,B (2.19)

It is these last two properties that make norms so useful in analyzing

linear mappings and linear systems of equations.

As with the case of vectors, we can propose more readily computable

norms, such as



13

n

UJAfll = max Z Iaij (2.20)

1<j<n i=l

n
JJAil = max E la ij (2.21)

1<i<n j=l

Distortion

Combining many of the notions we have defined above, we can

consider the norm of a matrix A, for example

IJAIl = max 1IAxl (2.22)

lxll=l

to be a measure of the distortion under the transformation x - Ax

For I All is the length of the longest vector in the image set

{Ax} of the unit sphere {x:llxll=l} under the linear transformation.

Quoting results to be found in any treatment of singular values,

if we have a non-singular square matrix A with singular values arranged

such that

I > -2 > ... > n > 0

then there is one vector, x 1 , in X such that A stretches xI by ulP

as x is mapped into Ax of Y. There is a second vcctor, Xn) that
11

stretches by i " xI and x are orthogonal (assuming jl 1Wn), as are
n

AxI and Axn in Y . A unit circle in the plane of x1 and xn

is mapped into an ellipse with semiaxes jI  and p n This is the

greatest distortion which can occur to any circle in X

Further, the singular values give the Euclidean norm directly,

for
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IIAII = 1 (2.23)

n

Orthogonal matrices are useful because

hITxl = lxii (2.24)

for all orthogonal matrices T ; orthogonal matrices preserve length

and do not distort.

Conditioning of Matrices

An especially important problem to consider when programming an

algorithm is the impact of numeric truncation on the behavior of the

computation. Two questions need to be asked:

1) Will the algorithm remain stable?

2) Will the final answer be correct?

Again we consider the square, nxn , nonsingular matrix A, this

time in the context of solving the linear equation Ax=b for the

vector x . We begin by assuming A is known exactly, but we assume

b is perturbed from the correct value by an amount Ab . How large,

then, can Ax be? We have

IIAI * IlIxl > I>lbl (2.25)

Ax = A- Ab (2.26)

liAxIl < IIA- 1 lAbII (2.27)
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We begin by noting that for the proper choice of Ab , the equality

holds in (2.27). Then, reversing (2.25), multiplying by (2.27), and

assuming b is nonzero, we have:

llAxll " llbll < 11AI "llJJ A-l "  llxl " ilAbli (2.28)

IA I 11A- l l  • (2.29)

We next define the spectral condition number, K(A), to be the quantity

IhAil - IA-1 i . For the Euclidean norm, we have

K(A) = pl /Vn > 1 (2.30)

Therefore, the condition number is a measure of the maximum distortion

the transformation A makes on the unit sphere. Expression (2.29)

is an expression of the relative uncertainty in the solution vector x

due to relative uncertainty in the data vector b . It can never be

less than 1

Similarly, if there is uncertainty in A, we have

4 A (A) * L (2.31)

Caveats:

The bound is precise in that for proper choice of b and Ab

Since K(A) is never less than unity, uncertainty can never decrease.
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K(A) is a good measure of the quality of the mapping. Conditioning

is far more important to determining performance than the determinant

or the order of the system [Moler, 1967]. Again, we see that orthogonal

mappings are likely to be well behaved, because their condition number

is unity.

It is important to note that even small systems can be extremely

ill conditioned. For example, the condition number of the matrix

[99 1001

A = (2.33)98 99J

is nearly 40,000; this matrix will introduce serious distortion.

Orthogonal Reductions

A popular reduction, and one that we shall consider often in the

sequel, takes a general matrix into a triangular form, with all zeroes

either above or below the diagonal, for example

x ... X x .. x

One of the better behaved triangularizations-- the Givens approach--

proceeds by making an orderly series of plane rotations. For example,

in the kth step, we would pre-multiply by rotations in the

(k,k+l), (k,k+2), ... , (k,n) planes. Zeroes in the kth column are

then produced one at a time, with each rotation; zeroes in preceding

columns are unaffected.
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The Givens transformations are easy to construct. To rotate an

angle 0 , we have

TF cos 0 sin 0l
L-sin 0 cos 0

If we embed this rotation in a higher dimension space, we can rotate

in the plane (k,£) through pre-multiplying by

k
1 0

1
k cosO sinO

T= 0 1. 0 , for k < k < n

k -sin 1 cosa
1

0
1 ®=cos-  akk

L (a 2 +a2
akk ak

Compared with triangularization by Gaussian elimination, plane

rotations are expensive: Gauss, with complete pivoting, requires

1 3 43 1 2n multiplications, compared to i n multiplications and - n
3 32

square roots for Givens. However, with Gaussian elimination the

n-1perturbation error bound always contains a factor of 2 , whereas

the Givens reduction never displays such unwarranted growth.

We next consider the prima reductions, by A.S. Householder: his

famous Householder reflection. These transformations seem to have the

essential advantages: they are orthogonal, they have better error properties

than even plane rotations, they are fast-- though they still require
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2 3
- n multiplications and n square roots-- and they are easy to

compute. As a consequence, they are often recommended sans reservation.

With the Householder reflection, we map the chosen vector, "a

onto the first coordinate of the orthogonal space, but reflected from

its initial orientation in that space. Schematically (see Figure 2.1)

we could look upon this reduction as a series of Givens rotations, termin-

ated with a reflection, lumped into a single mapping. A better interpre-

tation can be seen from Figure 2.2, a second order example. We begin

itby constructing the vector "t" with the same coordinates as a

except for the first coordinate of "t" , which is a1 + 11all . We then

construct the plane, Pt . perpendicular to "t" and passing through

the origin. The mapping we desire will reflect Pli vectors through

this plane. Amoment's reflection shows that, by construction, Ta

produces the mirror image of "a" lying along Iieil" , the first

coordinate of the space.

Construction of T is especially simple. We choose T to be

I - . Then, we have that

t'a

T tt' tt'aTa = (I - -- )a = a - t'a

= a-t

as desired. Furthermore, T is orthogonal:

T' (I tt' tt' since t'a is a scalar
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Se3

a3

u1

a 2

e2

Figure 2.1

A HOUSEHOLDER REFLECTION IN THREE DIMENSIONS

e
2

te

Ta -~fe

t
Figure 2.2

A HOUSEHOLDER REFLECTION IN TWO DIMENSIONS
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tt'.2

1 2ttl tttttt -2t (t~ata ,t

a (t'a t t tt= - t'at'a ('

= I , since t't = 2t'a

As may already be clear, to reduce a column of A, we need not

multiply A explicitly by the matrix T . Rather (see Figure 2.3), we

calculate Ilall

1) a = sign(al) lall

Then we calculate "t" by augmenting Ila" by a

2) t = a + e1

which only requires one addition. Next, we need the scale factor

t'a , which is again a single operation

3) $ = t'a = (a+te1) Ta = a-tI

Then, for any vector, "b" , we must calculate an inner product

4) t b

normalize

5) y t Tb/6

and reflect the vector "V"
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AH

AN U

II C ... C,

Cd CC

-4

to

Cd Cd
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6) Th= b -yt

Finally, we can replace "a" (which in this explication was temporarily

replaced by t)

7) a= 0, i I

a, = -a

The last point to note is that once we have dealt with blocks of

the matrix A, these blocks will remain unchanged by future reflections;

further, they need not be considered in calculating the norm of the

"pivot" vector. The order of the problem effectively reduces by one 4
after each reflection.

Orthogonal transformations can be applied to non-square matrices.

Triangularization, for example, has the effect of compressing a

rectangular matrix into a triangular partition of maximal rank and a

partition of zeroes.

Matrix Square Roots

Any positive-definite, symmetric matrix A has a unique decomposition

A = BBT

where B is a lower triangular matrix with positive diagonal elements.

We write the square root of A as Aa, where

A = A AT/
2

-1
similarly, for A we have

A-I -T/2 -A =A A

. - ,r -
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If A is symmetric, but not positive definite, then there will

be no real non-singular B . If there is a triangular decomposition,

then B will consist of either pure real or pure imaginary columns.

Thus, we may write B as

T 2
LS , where A = LT , Z = S

where L is a pure real lower triangular matrix and Z , the signature

matrix, is a diagonal matrix whose diagonal elements are either 1 or -I.

For the symmetric, positive definite case, the best approach to

calculating the square-root is normally Cholesky decomposition, a

simple and well behaved algorithm. We define the vector Vi. to be

the elements of row i up to, but not including, element j . Cholesky

decomposition (in place) begins by first zeroing all entries above the

diagonal.

Next, we step down the diagonal, performing each of two operations

at each stage. First, the diagonal element, ajj , is replaced by

T
aj <= (a. VJJ V) 2

Second, we step down the jth column, beginning with row i=j+l Each

element a , is replaced by

k ' ,; ... " ..... ... 'S.-
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-T- -T a
a 1. <= JJ jJ jja..- "

V.. j a.
tj i[ Ii

The Cholesky is extremely stable, never needs pivoting, and is
3

n
quick-- requiring only -- multiplications and n square roots. But

yield positive definiteness, and you lose the numerical stability of

symmetric decomposition.

Kaminski [1971] claims Cholesky decomposition can be applied to

the singular case; the algorithm he presents in Appendix A, however,

fails for some singular matrices. In contrast, Wilkinson [1965]

states "it cannot be emphasized too strongly that the symmetric decomposi-

tion of a matrix which is not positive definite enjoys none of the

numerical stability of the positive definite case" [p. 231].

For the singular case, we use Singular Value Decomposition.

Singular Value Decomposition (SVD)

Singular value decomposition uses the QR algorithm to decompose

a matrix A into

ix [nxnl T
ASnx n ]IR T  , m n (w.o.l.g.)1

mxn xQm [ 0  nxn

where Q and R are orthogonal and S is diagonal and non-negative.

Assuming A is square, symmetric, and non-negative, then Q = R.

Then the square root of A is

A = Q S

i I
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Singular value decomposition is accurate; its deficiency is its

complexity. According to Lawson [19741 Cholesky decomposition is more

than twenty-five times faster than SVD. Unless A may be singular,

Cholesky decomposition is to be preferred.

Finding Eigenvalues and Eigenvectors

The currently best accepted algorithm for finding eigenvalues is

generally a two step procedure: reduce the matrix to a standard form,

using orthogonal transformations (for example, Householder reflections),

and then apply an iterative eigenvalue decomposition routine such as

the QR algorithm to generate the eigenvalues.

For a general matrix, we begin by reducing the matrix to Hessenberg

form -- all zeroes below the subdiagonal -- while still preserving eigen-

5 3values; this requires y n multiplications. Then we begin iterating,

using an algorithm that steadily reduces the magnitude of the off-

diagonal elements. This requires 4n2 multiplications per iteration.

Convergence on each iteration is very fast; for the case of symmetric

matrices, it is at least cubic! Total calculations, including all

iterations, is normally about 4n3  (Lawson [1974]).

Multiple eigenvalues do not pose any special problems. Their

associated eigenvectors, however, introduce a perversity we cannot avoid.

For example, with symmetric matrices, multiple eigenvalues correspond to

a circular cross section in the corresponding subspace, and therefore

any direction is intrinsically an axis. Concommitantly, almost equal

L
eigenvalues correspond to almost circular subspaces. The computational

problem remains difficult [Acton, 1970].
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Chapter III

THE STEADY-STATE SOLUTION TO THE DISCRETE RICCATI EQUATION

As we briefly outlined in Chapter 1, the solution to the linear

recursive state estimation problem and to the quadratic control problem

are strongly connected to the solution of certain Riccati differential

and difference equations. In this chapter we will examine a variety of

algorithms for solving the appropriate discrete Riccati equation. Part

of this analysis will build upon the connection between estimation

theory and scattering theory elucidated by Ljung, Kailath, and

Friedlander [1976]. The introduction of a physical paradigm leads to

new insights into the strengths, weaknesses, and intrinsic structure of

several algorithms.

Before considering the solutions, we more precisely define the

problem. Two applications of linear least-squares theory are central

to the development of this chapter:

PROBLEM I-- State Estimation

Let xi be an n-dimensional discrete vector process generated by white

noise driving a linear dynamical system:

x i+l = i xi + riwi (1.1)

and let yi be a linear function of x. , observed through white noise:

Yi= H. x. + vi (1.2)

L . ,. ~1 ... -• ..1..1. .1
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w. and v. are referred to as process noise and measurement noise,1 1

respectively. We further assume

x w.= ev. =0
0 1 1

xxT = 0 e . T o
0 1 3
T T

W w. = Qi6iS g v. V' = R6 ij  , Ri > 01 j 1 13j i

F, = T 0 6. 1 0 ixj
0 I i=j

x T j= 0

Objective:

To find a linear estimate of x. given measurements y. up to,2 3

but not including, measurement i . This estimate, xi-i , is chosen

to minimize the expected error covariance,

Mili_1  ii_ 1  xi)(xiji_ 1 - xiT (1.4)

Solution:

Assuming R. > 0, then the optimal linear estimate, xiji-1 in

the sense of minimizing equation (1.4), is given by

i+ll i = (I-KiHi)ixii_1  + KiY i

where

K. = P. H
T R.

1

1 1 1 1
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and the error covariance in (1.4), Mi[ , given by the

following pairs of equations:

Measurement Update

T T -1
Pi I = M [R- H, Mijil 11] H. M (1.7)

= & {(x ili-xi) ( i -x ---

Time Update

MP T FT
.i+lli 1 ii 1 i Qi

T1
f {(x i+lli- xi ) (X i+lli-xi)T

Equations (1.5) through (1.7) comprise the Kalman filter for discrete

processes.

PROBLEM II-- Closed Loop Control

Let xi be an n-dimensional discrete vector process, driven by an

external input ui , where the governing linear dynamical system is

again

Xi+l = i x.1 + Fi u . , Vi , 0 < i < N (1.8)

x given
0

where ui  is a deterministic input sequence.

. #.
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Objective:

To find the input sequence u. which minimizes a specified scalar

cost function of the form

N T T
J E [x Aixi+ui Biu.]

i=O

where A, and B. are symmetric matrices; A. is non-negative definite' 11

and Bi is positive definite.

Solution:

Assuming B . > 0, then the optimal input u. in the sense of

minimizing equation (1.9) is given by

u= -C.x. (1.10)
1 11

where

C. =B. r.. (S.-A.)(.1 1 1 1 1 1

and where S. can be found by solving1

Si = i (Sil+lii - 1 +A, S (1.12)

Caveats:

Both problems are discrete-time applications, often informally

referred to subsequently as discrete systems. Amplitude will always be

treated as a continuous dimension in the domain of the model. Actual

computations will never involve real-valued quantities, but will be "good"

discrete approximations, depending upon the precision available for the

calculation.
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Most problems will involve the steady-state solution to time

invariant problems. In this eventuality, the subscripts will be dropped

from the model parameters to simplify the notation.

Another simplification accrues from recognizing the similarity

between the two applications. With the introduction of an appropriate

mapping between variables, known as duality, a solution to one problem

can be claimed as the solution to its dual problem. This duality is

contained in the following substitutions:

CONTROL <=> ESTIMATION

F T  H

B R

A rQrT

SN P0

N T

In the sequel, most algorithms will be developed for the estimation problem.

For some algorithms, however, the derivation is clearer in the control

context. Duality, ensures that a solution for one application can always

be adapted to the other application using the above mapping; the choice

of problem will be based primarily on considerations of physical in-

sight.

The previous chapter reviewed matrix fundamentals and basic

algorithms. In this chapter these fundamentals will be used to develop

algorithms for solving the two fundamental applications. Section 2

defines criteria for analysis, briefly touching on numnrical problems.

!i
!.4 .
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Section 3 describes an algorithm, Eigenvector Decomposition (EVD), which

exploits modal decomposition along eigenvectors to solve the Hamiltonian

(the model of the system and its adjoints). Section 4 elaborates properties

of orthogonal transformations, which are then used in Section 5 to

develop a class of iterative algorithms; these algorithms are valuable

because of their numerical properties. Section 6 introduces another

perspective on estimation and control Riccati equations that evolved from

scattering theory.

In Section 7 scattering theory is then used to motivate another

class of algorithms, the square-root doubling (SQD) algorithms. In

Section 8 square-root algorithms are developed purely within the

scattering theory framework. In the last substantive section, Section

9, various weaknesses of these algorithms are reviewed, and proposed

revisions are considered.

111.2 Iteration

The benchmark, by which all methods should be compared, is

straight iteration of the Riccati error covariance equations:

M = i P. Ti + FiQP , where P0 = 0 (2.1)

P. M M H(R + H.M.HT) H.M. (2.2)1 1 1 1 111 1

and where the filter gain is calculated as a function of this covariance

T -1
K. = P. H. R. (2.3)1 1 1 1

i'. ... '... "'" .. . . . .., . . .;. .. ,: ... : a, .- . ... '"
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Several problems can arise while trying to iterate equations (2.1) and

(2.2) to steady-state. These equations may converge inordinately slowly,

making the calculation expensive. The calculation may also be inaccurate.

The error covariances may become indefinite due to truncation errors;

this has an unfortunate effect on the feedback gains, K. * In a1

related problem, ill-conditioning can lead to inaccurate convergence,

or even divergence.

We will address these latter questions when we discuss the square-

root algorithms in Section 111.5. The first issue, cost of computation,

we will discuss only in relative terms. In Table III.1 we present

operations counts for several of the algorithms. The first major row

accumulates initialization overhead, the second major row accumulates

iteration overhead, and the third row, termination overhead. After a

relative accounting of the number of iterations required to terminate,

a final column presents cost in cycles assuming computations for a

single-input/single output system, and for a system with as many inputs

and outputs as states.

For costs we have assumed the following

additions take two cycles

multiplies take three cycles

divisions take five cycles

square roots take forty cycles.

These ratios should be fairly typical for modern computers-- from small

to large. We have assumed square roots will be done in software, using

hardware addition, multiplication, and division.

u
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We note immediately that the computation time for square roots has

a negligible impact on the cycle cost precisely because the algorithms

always require 0(n) square-root computations; for all algorithms

considered, at most 4n square-roots need to be computed.

Table 111.2 presents the computation costs for the fundamental

operations we assumed (matrix multiply, Cholesky decomposition, etc.)

111.3 Eigenvector Decomposition

We begin by solving the dual to the optimal filter problem--

the optimal quadratic regulator problem. Following the approach of

Bryson [1975], the minimal cost function is determined from a two-point

boundary value problem. From the previous section, given the model

x i+l = x. + u. (3.1)

and a quadratic cost function

N T T
i Z A x + (B u 3.2)i i

where A and B are symmetric; A is positive definite and B is

positive semi-definite. We wish to find a linear feedback specification

u. = -C. x. (3.3)

such that J is minimized. Then N is allowed to goto infinity; if

a steady-state is reached then C N will be a constant, C

The derivation begins by noting that uN will affect only states

outside the range of interest. We can therefore rewrite (3.2) as
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N
J x A X + N + UT B U. (3.4)

NN i=O1 I (4

We then minimize J via the calculus of variations, by augmenting J

with an undetermined multiplier, X. Then1

T . T N-1IxN -A xN NXN + N -Hi T xi] + H'

i=1

where Hi  is given by

H- = XT A x + uT B u. + T  ( xi+r u.) Vi, O<i<N
i+l i

(3.6)

We now consider differential changes in J due to differential changes

in u. The appropriate choice for X. is then
1 1

Hi - xT = 0 Vi , 0<i<N (3.7)

1

T T
xNA - XN = 0

This gives

N-1 aH.
di Z I du(i) + XT dx (3.8)

i=O Du 1 0

For an extremum, dJ must be zero for arbitrary du. Therefore,1

0 Vi , O<i<N (3.9)
1

Installing (3.6) in (3.9), we have
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uTB + X = 0 (3.10)1 j+l

-I  T
i B i+l

Using (3.10) in (3.1), and rewriting (3.7), gives

x i + 1  x i  F -1 T=
= x - I B T i+ x(0) (3.11)

T T T T
i i+l + x. A A N  xN A

the Euler-Lagrange difference equations. Formulated in state space

notation, we have

x T Fx [x]
= H (3.12)

4- -T A -T X X
i- i i

assuming 4 is invertible. The square matrix, called the Hamiltonian

of the system, is symplectic. That is, for each eigenvalue v. there

exists an eigenvalue v. with the same multiplicity, where v. equalsJ J

1/v.
1

The vector X. can also be expressed as a linear combination of1

the x. Calling this mapping Pi ) (3.12) becomes

p. = T(PiI+FB- ITI + A (3.13)

where

X. = Pi xi

1.1.1
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Vaughn [1970] used equation (3.13) and the fact that H is

simplectic to extend Potter's original solution for the equivalent

continuous system [1966]. He considered the array of column vectors

[Ts Tu] which are the eigenvectors of (3.12) associated respectively

with the stable and unstable eigenvalues. Then, defining

X
Tu = (3.14)

to be a partition of T based on the equations for xi and Xi

the steady-state solution for Pi can be written as:

P = AU (3.15)

The algorithm for calculating the steady-state controller gains,

C , is therefore straightforward. After computing the matrix (3.12),

the matrix of eigenvectors is determined, using, for example, the QR

algorithm. Given TU , (assuming a complete set of eigenvectors exist),

then (3.15) follows directly.

We note in passing that the closed loop system is stable if

1) The system is stabilizable (i.e., if the unstable modes
are controllable) through the control gain r , and

2) The system is detectable (i.e., if the unstable modes are
observable) in the cost function J.

Similarly, for the Kalman filter, the closed loop system will be

stable if

1) The system is detectable (i.e., if the unstable modes are
observable), and

2) The system is stabilizable (i.e., if the unstable modes
are controllable).
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Comments on the Strengths and Weaknesses of Eigenvector Decompositidn

The implementation of this algorithm is predicated upon a numer-

ically well-conditioned eigenvalue decomposition procedure. As outlined

in Chapter II, by choosing the QR algorithm we would expect excellent

performance. This has been our experience (see Chapter VI).

On the negative side, several assumptions made during the deriva-

tion of this method preclude the solution of interesting and important

problems. For examj e, the state transition matrix, 0 , was assumed

invertible. In systems incorporating pure delay, invertibility may not

obtain. In addition, the control weighting matrix, B (or the measure-

ment noise covariance matrix, R), was assumed non-singular; some

observations, however, may be uncontaminated by noise leading to a

singular weighting matrix (see Chapter V).

At another level, the existence of a complete set of eigenvectors

was assumed. This may not be true if the system has repeated closed-

loop eigenvalues.

In each of these cases the Riccati equation may still have a unique,

positive, steady-state solution. These issues will be reconsidered in

.Section 111.9 (which proposes algorithm revisions) and again in Chapter

Five, under differentiating applications.

111.4 Square Roots and Orthogonal Transformations

Several facts about orthogonal transformations will clarify the

results of the subsequent sections. These deal with the implicit nature
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of the orthogonal mapping and with an indirect mechanism for calculating

inverse square roots via triangularization.

The previous chapter extolled the many virtues of these mappings.

They provide an additional benefit when working with the square roots

of matrices. If two arrays are equal, for example, if

A= B

A AT/2 = B BT/2

then any orthogonal transform can be inserted between A and AT!2

A T T/2 - BT/ 2

AOb, A B BT/ ee,

1- /
The matrix square root, A or BT/2 , is only unique to within an

orthogonal transformation.

If A2 and B2 have different structures, then there is an

orthogonal transformation such that

A 2  = B

Specifically, if B2 is lower triangular, then any orthogonal triangular-

'ization algorithm can be used to map A2 We will always use Householder

reflections, for the reasons outlined earlier.

To calculate [I + AA T]-  or [I + A TA] we consider applying

an orthogonal triangularization to the array

T '0 B (4)[I.A Or [B , (4.1)

-- L' L
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where

Then, if

Cr [T, T 121  (4.2)

LT 2  T2J

we will demonstrate that

B = T1T (4.3)

A =T *T- (4.4)
21 1

[I +A A]- = T, 0 T (4.5)
1 1

(I + AAIk 3 = T *T2 (4.6)

2 T

To see this, multiply (4.1) on the right by OT. Then we have

[IsA T] [B:O] - {T T T 1  (4.7)

T T-

I AA = B * T (4.T8)1

AT = -T (.9).
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Similarly, using (4.9)

T-1 -T T
[I AA [I T T -T T T ]

21 1 1 21

T2T[TI T 2 + TT T Tll TIT T T]T 1

Examining

T1 2 T1 T2T 2 1  T2 1 2 2+T2T j

T.
We have, from element C of 0  ,

I+AA T  - [TTT 2 T 1 --T + T-1 -T TT T -
2 2 2 111 1 11

-T [T T T12]T1
T2 [TT 2 +T 1 2 T1 2]T2- T -

- (T2T2T)
-  

, from element D of JT0-

(For an alternate proof of these results, see Bierman [1976].)

We can generalize these results further. For the case of

[R + AAT] 1 and [R + ATA]- 1 , we have

[R 2!A]O= = [B!.O] B = tS.

(note: we have constructed the left array with A , not AT

RTB R R!TIT

- TTT T ATR-T/2T1
A = R2T1  21 21 1

[R + AAT] = R-T/2TITTR-.

[R + ATA]- 1  - T TTR-T/2
L~ 2

+ = R T2Tm"
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We typically need to work with the elements of T , although we do

not want to calculate the elements of the matrix explicitly. This is

easily done. For example, to calculate T2 = [I + AAT]-T/2

construct

[ I ATj Te f 1 T 210 1T 21 T 21

The calculation of the inverse square root is therefore straightforward,

and implicit.

We will also need to concatenate orthogonal transformations. For

this, if

AAT = I and BBT = I

then

T
(AB) • (AB) = I

and defining C and D such that

C =[A I1 and D =[1 0]

then

cc = DD = (CD) (CD) = I
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111.5 Square Root Algorithms

The earliest class of square-root algorithms recursively computed

the square root of the Riccati difference equation. Many have dealt

with this subject, including recently Golub [1965], Schmidt [1970],

Kaminski and Bryson [1971,1972], Morf and Kailath [1975], and Bierman

[1977].

The properties of orthogonal transformations presented in the last

section can be used to derive these algorithms in a purely algebraic

fashion. In so doing, interesting questions arise, and the stage will

be set for the scattering derivation to follow.

Beginning again with the Riccati equation for the estimation

problem

T T
M. PiQ + riQ.i (5.1)
i +l1 1 11

P. = M - M.HT(R'+H'M.H.)_ 1 H M (5.2)

(S.2) can be rewritten to eliminate the subtraction

Pi + MiHT(R'+HMiHT)- H.M. i = M. (5.3)

The quantities of interest are still Mi+ 1  and P.i We also note

that (5.1), (5.2), and (5.3) are all symmetric equations, in the sense

that each term can be written 
as AAT

It is clear how to separate (5.1):

[ .PFiQi]l= [Mi+I 1O] , M.l P (5.4)

Taking transposes, and squaring both sides produces equation (5.1).
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To calculate (5.3) as a square root, we need

M on the left

and MHT(R+HT -T/2  on the right.

We begin by computing the inverse, (R+HMHT)-l From the previous

section, we have

-TT-T

[R M12 ]- = [B:O] B R = T- T (5.5)

where @2 implicitly computes the inverse of R + H MH . Examining

the elements of C2

T RT/2[R + H M HT -T/21T

T = M H(R+HMH )-T/2

T = R [R + HTMH] -T/2 (5.6)

We note that T2 1 is precisely the quantity we need, for

R -H -1 0 [ B 0 ( .7
0 M j 2 MHT(R+4HT) -T/2 (5.7)

1-

and C must be P , as desired.

We now have two update equations, which we would like to combine

into one (with a single orthogonal mapping).

In the next section we will show how to concatenate mappings. In

this section we will, instead, quickly rederive the formulas; but this

time for a single update. Beginning by combining equations (5.1) and

(5.2):
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Mi+ I = iT + rQrT - ¢MHT (R+HMiT)-IHM.iT (5.8)

remove the minus sign

Ti+ + Mi HT(R+ HT-I = MiT rQr (5.9)

construct the inverse transformation

1 -[R '- 'HI ]ff [B:0 ]  (5.10)

and note the result of this mapping

T T -T/2T2 =M'H1 (R+I-M. HT

21 1

R HMi C( B 0(5.11)

L PMtJ LMiHT (R+HMHT) -T/2

The two sides are nearly complete. Adding the final term, we have

0 M - r[ 4 HiHT (R+HM.HT)-T/2 C (

where again, C must equal M (which f 'lows immediately from
1+1

squaring both sides).

It may seem surprising that the three step procedure outlined

initially coalesces so neatly into a uniform, single step procedure.

This interrelationship of the individual component equations is a product
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of the intrinsic structure of the problem. We shall examine this

structure, in terms of scattering layers, shortly.

Comments on the Strengths and Weaknesses of Standard Square Root Algorithms

As a positive note, the square root algorithms provide improved

accuracy in the final result. This improvement arises for two reasons.

First, since the iterated variable is the square root of the error

covariance, this variable, when squared, must be positive semidefinite;

the calculated error covariance can never evolve negative eigenvalues.

In contrast, no such assurances can be made for normal iteration.

The conditioning can be examined analytically by introducing the

spectral condition number, K , derived in the previous chapter.

Given the condition number for a matrix P , it follows directly that

the condition number for the square root of P is the square root

of the condition number for P

P = LLT (5.13)

K(L) = ic(P) , since the singular values of L are
the square root of the singular values
of P

Recall that spectral conditioning was defined from the expression

4 AXI< Ab(5.14)

If the computer calculates in floating point with 2n bits of

accuracy, then

4 < 2 1-2n (5.15)Pb4
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Thus, for square root algorithms, approximately half the word length

(n bits of accuracy), should be sufficient to provide the same error,

A.

As Kaminski [1971] points out, this analysis applies to the linear

case, but the Riccati equation is non-linear. For example, in the case

of two equations updated separately (e.g., (5.4) and (S.7)),Kaminski

found that the appropriate error equations were

< i(L) r[ + + K K(L) - 4 .J

As long as the residual is small compared to the update, the term

associated with the squared spectral condition number can be ignored;

this is usually the case when the number of measurements are much

fewer than the order of the system. However, even if this is not the

2
case and the K term dominates, the square root filter is never

more ill-conditioned than the normal iterative method (Kaminski

[1971]).

For a final note, we turn to Table 3.1 to point out that the square-

root implementation typically requires more computation. Variation within

the classes of algorithms is large, depending upon the particular problem

being solved and the strategy adopted (for example, choosing Givens,

Householder, or square root free implementations; see, for example,

Bierman [1977]). The square root algorithms, however, often requires

up to 40% more computation than the normal iterative algorithms (see

Table 3.1).

"'a 1 L
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Faster Algorithms

If the model parameters are time invariant, Morf et al. [1975]

have shown that a considerable computational savings can be realized by

working with the square roots of AP. , instead of P. Assuming1 1

known initial conditions, or if we assume they are zero (if the steady-

state error covariance is the objective) then,

AP =P - P1 Pil i

is non-negative definite, and of non-increasing rank. Therefore, as

explained earlier, we can factor A P. as
1

AP. = L LT1 1 1

where L. is of size nxa , where a is the rank of A P. Since1 1

A P0 = P1 - T0 = rQ T

ct must be at most the number of inputs to the system.

Using the fact that

TP. =P. +L.L.
i+l i 1 i

we can derive the square root forms as

p a p a

P (R -I) HLi_ (R') 0

n Ki-i L K. L.
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where

R1 : R

K=0

LO rQ

Comments on Strengths and Weaknesses

The fast algorithms are expected to have error properties similar

to those outlined for the original square root algorithms; this

conjecture has yet to be demonstrated. They are, however, several times

faster than other straight iteration algorithms, as can be seen from

Table 3.1.

111.6 Scattering Theory

Scattering theory describes the reflection and transmission

characteristics of a layered medium as particles, waves, etc., pass

through that medium. Linear least squares estimation and control

describes the propagation of states and error covariances, etc., as

they pass through time. Both give rise to Riccati and related equations.

As with the estimation-control duality introduced in Section III1., a

correspondence can be made between Riccati equations arising from

different contexts. Identifying similar terms found in different

equations provides a mathematical isomorphism that can then lead to

new insights.

In this dissertation we will be working with a particular theory

of scattering originally developed by Redheffer in 1950 ([1950], ...

[1962]). Redheffer set out the solution to the scattering problem in
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equations directly related to the Riccati-type formulae. When Ljung,

Kailath, and Friedlander [Ljung, 1976], [Friedlander, 1976] explored

the connection with linear estimation, several key concepts were introduced.

Redheffer's work could be interpreted as associating time with layers in

the estimation context, and it therefore included time-varying parameter

models.

Another approach is taken in the study of geophysics, which considers

the scattering of waves in layered media. This scattering corresponds

to constant parameter, time invariant models, and leads to models where

layers correspond to different system orders or state components. Early

published work was done by Wiggins and Robinson [1965]. See also

Claerbout [1976].

The scattering of waves provides a conceptual structure for

visualizing updates of estimates, states, adjoint variables, or

covariances via the Riccati equation. Updates in the scattering context

are effectively generalized to include the combination of any two

adjacent layers into an equivalent single layer. In the estimation

context, these layers can correspond to two arbitrary, adjacent blocks

of time. Alternatively, they can correspond to different components of

a state-vector, or to operations arising from [feedback] loop removal.

The operator which describes this union, the star-product, leads

to a powerful set of matrix manipulations. These manipulations are

often more convenient to use because of their immediate connection with

the estimation or control problem being considered.
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BASIC OPERATIONS

We define a canonical scattering layer as in Figure 6.1. A signal

from the left will be transmitted (with amplitude T L) and reflected

(with amplitude RL). Similarly, for the signal entering from the

right. The signal exiting from the left is composed of a weighted sum

of both entering signals. Schematically, we represent this layer as

a matrix, with the transmission coefficients on the diagonal:

R L  TR _

Looking at Figure 6.2, it is clear how to concatenate two layers;

the oncatenation would be straightforward, except for the loop, A .

Using a simple application of Mason's Rule for networks, the result of

a star-product can be easily "read out" by following the arrows along

each path. This procedure gives

a1I p 1  [ a 2  p2] [a 2(I-plr 2) 1a 1  p2 +a 2p1 (I-r 2P1 )- a 2

r1  a1  r 2  a2  r[r1 +a I r2 (I-pr 2 ) -l aI a1 (I-r2pl)- 
1a 2

(6.1)

as the definition of the star-product. Note that the terms (I-pIr 2 )
1

and (I-r2P1 )1 arise because of the loop A.

In Figure 6.3, we examine the relationship between the scattering

layer and the state transition matrix. Schematically, to convert from

one to the other, we need to reverse the flow along one of the transmission
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paths. As with the definition of star-product, the relationship is

algebraic:

1+ = x] 1 where A and D are transmission

(2)|C" x 2)J coefficients, and
Xi+ C B and C are reflection coefficients

(6.2)

Then, assuming the determinant of D does not equal zero, we have

x (Il [A-BD 1 C BD 1 1xl) (6 3)i+1/  =1(6 3

x(2) [ - D - I C D- (2)

where D is denoted as the pivot element. We could also pivot about

A, assuming A is non-singular, so that

r~l) -l -l1 (1)
Ix.I~ A A B x-i| (6.4)

A2) D-CA
1  x()

This mapping, called an exchange step, converts a transition matrix to

a scattering layer. The same mapping converts a scattering layer back

to the appropriate transition matrix.

A simpler interpretation obtains by pictorially examining the

exchange step (see Verghese [1978]). Beginning with a network of the

form
x * y y =kx+z

z

4fJ *t
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the transmission flow can be reversed by inverting the gain, and by

changing the sign of flows into the path (see, for example, Mason and

Zimmerman [1960]),

x y x = -(y-z)
1

Applying this procedure to the scattering layer converts

C B

into the transition matrix

C B

from which we can "read out" the entries directly as

ABDIc D I J]-D C"D
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PROPERTIES OF SCATTERING LAYERS

It will be useful in the sequel to choose a notation that

differentiates the scattering layers and transition matrices more

explicitly. We define A to be a scattering layer, A (unadorned)

to be a transition matrix, and AE to be the mapped equivalent of

? *E
A , i.e., A = A . This matrix identity, I , remains the same in

both domains:

PI) I = 1*

We will also have need for a modified identity, the J matrix,

which we define as

P2) JL [-1 01 J* J*A =J * AJ-I

J can be considered as a particular choice of signature matrix (see

Chapter II).

From Figure 6.3, we can see an additional implication of the

exchange step mapping, for

P3) A .B = C then A *B = C ,assuming

we can pivot each of the arrays.

Similarly

P4) If A *B =C then AB =C
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Inverse transition matrices have a particularly useful property (see

Friedlander [August, 1976]).

PS) If A-A- = I then A * A- l= I

From these properties, we can also derive many of the important

orthogonal properties

P6) If 01-0 = I then 8eT* I (from P3)

TT
P7) If O(.@T = I then O = I (from PS)

A slightly more elaborate definition of orthogonality is required in

the scattering domain (for example, see Vieira [1977]). Because the

exchange step complements one of the coupling terms during the mapping,

we find that eY is J-orthogonal

which we can generalize by repeated application of property (P2):

P9) If = I then * *

By application of property (P6), we also have

=@_T* = .*Tj
PlO) If Or.er I then = *T

Triangular Layers

We define a lower triangular layer to be a layer of the form

L*= '0:
A 0]

----, ------
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where A and D are lower triangular, and C is full. We define an

upper triangular layer similarly:

- f A B

L 0 10'

Property Pll)

The exchanged version of a triangular layer is a triangular matrix.

This follows from an exchange step (pivoting about A) applied to L*

or U*

L 0- -U A 1

0 0 -A 1 B

A. !D '

L and U are triangular because the inverse of an upper (lower)

triangular matrix is upper (lower) triangular, and because D remains

unchanged.

Property P12)

There exists a J-orthogonal layer, 0'-, that maps any layer into an

upper or lower triangular layer (i.e., removes reflections from one side).

To show the existence of an iY*, such that

A *e' = T

we choose 6 such that
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A C(= T

then 0" = U

Property P13)

If we lower triangularize a layer in the scattering domain

A* * = L*

then the equivalent transformation, 0 E, applied in the transition

matrix domain also yields a lower triangular matrix.

Eigenlayers - Property P14)

From Wilkinson [1965], if the eigenvalues of A are distinct,

then there exists a similarity transform such that

A = X.diag(i).X-1  (6.5)

where the X.i are the eigenvalues of A, and the matrix X consists

i th
of the right eigenvectors of A; the i column of X corresponds

thto the i eigenvalue.

It then follows that in the scattering domain, any layer can be

decomposed into an eigenlayer, a diagonal layer, and an inverse eigen-

layer

A =X * ] x~

which has the important effect of introducing a layer without any

reflection coefficients. (Note that zero eigenvalues can be interpreted

as "transmission zeroes."
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In the case of repeated eigenvalues property (P14) can be gener-

alized using Jordan (block) form, thus

1 0

A = X. 2 where J

0 0 .

K.Jm

and, in the scattering domain (assuming appropriate partitioning)

A* X * X
I0  1 "j/

L I ml
where the reflection coefficients of the eigenvalue layer are zero.

Summary of Scattering Operation Properties

P1) I = I*

P2) J = J*

J-j- =J

J'A= J* A

P3) AB = C => A *B= C

P4) A**B* = C* => A.B = C

PS) AA - I = I => A*A - = I
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If O = I ,then

T T*I
P6) 0*(@) I

P 7) T = I

P8) erJ. = J

P9) cr*J*O' =Ji

P1O) JT* = jor*Tj

Triangular Layers

P11 If T is an upper (lower) triangular layer, then T is

an upper (lower) triangular matrix.

P12) 3O'j*-A *( T* A full, T triangular, upper or lower.

P13) A * ' =T => A*- = T, T triangular.

Ei gen layers

P14) If A =X diag(A.)X ,where X are the right eigenvectors
1

of A, then

A* X **[ ] *Xl
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EXAMPLES

To illustrate the utility of the scattering context, several

examples will be developed in scattering terms. The first example,

the Hamiltonian system, was presented in Section 111.3. The basic

equations (3.1) and (3.7) (already in the scattering domain)

x+1 Ti i+l x0 gie

A. = TA + A x , A = x TA (6.5)
1 pi 1 n n

are presented in Figure 6.4 as a scattering layer. (Since this is a

control problem, time through the layer is reversed.) We can now

convert from the scattering domain back to the transition domain, pivot-

ing about T producing Figure 6.5, and yielding equations (3.12)."II
*E -I T _T-T B T-T

M* = [ rBllT1 *E=[+FB- r 0 A -r 1TT

A T J [_TA T (6.6)

This is the matrix we needed to decompose along eigenvector coordinates.

Again we note that if is singular, we will not be able to pivot as

required.

Next, invoke property (P14) to reformulate M to include an

eigenlayer. Recalling the definitions from Section 111.3 for the eigen-

vectors of M

M = E.D'E I  (property P14)

= X X] [ ] Xs u [] (6.7)

u A s Au  As

where Xu, Au , and Xu are the unstable eigen-elements. Applying an

exchange step gives M
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A E Ti+1

X (O) XN

Figure 6.4 Hamiltonian Scattering Matrix

x.x
1 i+1

-0.T

1 i+1

T rB 1 r T *-T[

Figure 6.5 Hamniltonian Transition Matrix
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. u 1  _x-lx X-1 0(EI.

M* = [js . u 1  

(6.8)UUSS

The sequence of layers Mo*MI *N2 *... *M appearing in Figure 6.6a can01 n

therefore be reconfigured as in Figure 6.6b, i.e., (E 1*D 1*E 1 * * *

E-1* . **D**E- *
2 )' n n n

Two simplifications immediately obtain. First, since the Hamil-
tonian is symplectic, X- X . Second, since E**E * = I from

u s

property (P4), many adjacent layers cancel. This leads to the very

simple structure of Figure 6.6c, i.e., E *D *n*E

Since X are the stable roots of the system and are therefore5

n -nless than unity in magnitude, as n goes to infinity (X = (X U)

goes to zero; if we consider an infinite number of layers, there is

no transmission through the network (i.e., the two boundary eigenlayers

are decoupled). The reflection coefficient relating the state x. to the1

adjoint variable A. is therefore
1

X A X- x = pXi*l u u 1+1 Xil

as expected.

This approach introduces an interesting alternate solution to

the normal eigenvector approach. Note that constructing the Hamiltonian

in the scattering domain does not require inverting the state transition

matrix. Therefore, if an eigenvalue decomposition routine could be

written to calculate the scattering domain eigenvectors directly, the

pivot step (6.6) could be avoided. This has not yet been fully pursued.
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Another estimation example, which is important in the sequel, intro-

duces the propagation of error covariance matrices in the scattering

framework. From Friedlander [1976], we note that we can update the

forward error covariance, and the inverse smoothed error covariance, by

constructing a layer as shown in Figure 6.7 and cascading it with the

layer shown in Figure 6.8. The relationship between the scattering

matrices-- the accumulated covariance of Figure 6.7 and the update of

Figure 6.8 -- and the transition matrix domain can be darified by

examining the normal update equations for the requisite quantities.

For example, for the estimate error covariance, we have:

P(t+ljt) = P(tjt-1)0'+rQFT- p(tlt-1)HT(R+HP(t']t-1)HT)IHP(tjt-1) 
T

(6.9)

From the star product definition, Equation (6.1), we see this must be

converted to the form

pp = P2 + a2 Pl [I-r 2Pl1]Ia2  
(6.10)

which follows immediately, after applying the matrix inversion lemma

(A+BCD) - 1 = A - A- 1B(DA- B+C )- DA -I  (6.11)

to give

P(t+ljt) = r Qr T + P(tjt-1)[I + ITTR-1lp(tIt-1)]-10T (6.12)

Similarly for @o , the closed loop Kalman-filter transition matrix,

we can write

00(t+l,O) = 0[I + P(tlt-l)HT R -H]4o(tO) (6.13)

wp i
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which is exactly a..alogous to the star product quantity of (6.1)

a0 = a2 [I-p 1r2 -1 a1  (6.14)

And finally, we can also present the equation for W. We shall be

discussing the significance of W in the next section. W is basically

the smoothed error covariance Pjj1 which we can write as
T l-j,k]' -e

W(t+l1t) = W(tjt-1) + Po(t,0)HT R H[I+P(tlt-1)HT R 1H]-0 o(t,0)

(6.15)

again, analogous to the star product quantity

r 0 = r 1 + a 1 r 2(I-Pl r2)-al1(.6r =r +(6.16)

The connection between the equations (6.9) through (6.16) and the

scattering diagrams, Figures 6.7 and 6.8, follow immediately.

We shall return to examine this example in close detail because

of one striking observation. As Friedlander et al., noted [1976], if

we combine two "accumulation" layers, instead of an "accumulation" and

an "update" layer, we generate a very interesting sequence. Beginning

with covariances at time t=O we generate the covariances for t=l,

t=2, t=4, t=8, ...; at each iteration, i , we generate

P(2i) , W(2i
) , and 0(2 )

Given a constant parameter system and the objective of calculating the

steady-state error covariances, this approach would then converge

exponentially compared to the previous iterative algorithms. This is

the subject of our next few sections.
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111.7 Square Root Doubling

We return again to another class of algorithms for solving the

steady state Riccati equation. In this case, we partition an interval

of data into subintervals. We then make estimates of the states within

each interval based only on data from the subinterval. Then, global

calculations are used to combine information from subintervals to

obtain optimal estimates at the subinterval endpoints; in this fashion

subintervals can be "recombined" to yield the answer over the entire

interval.

Besides the work by Morf, Dobbins, Friedlander, and Kailath

[1978], various others have expanded on this idea. Following Womble

and Potter [1975] and Lainiotis [1976], Bierman and Sidhu [1977] focused

on doubling formulas for the continuous case. We shall give an

algebraic derivation for the discrete case, using the scattering theory

of the last section, and then develop a pure scattering framework for

rapid derivation of equations.

Schematically, we can picture the interval of data in Fig. 7.1

being partitioned as in Fig. 7.2. Focusing on the interval from j to

k, Morf et. al. [1978] noted that the Markov property of the {x}

process implies that for the purpose of state estimation outside the

observation interval, the interval can be summarized in terms of four

quantities (two "boundary" state estimates and their covariances):
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i IC
t=O t=N

Figure 3.7.1 ORIGINAL INTERVAL

Beginning with the complete interval,

I I I I I I I i I I I

Solve over each interval for the endpoint state information describing
that interval,

Combine state information at every other adjacent endpoint to form
doubled intervals twice as long,

Continue combining intervals, until

the salient characteristics for the entire interval, from t = 0 to
t = N , are determined

Figure 3.7.2 INTERVAL SEGMENTATION
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1) XkI[j,k-l the predicted estimate*

2) Pkj~jklJ , the predicted error covariance

3) xj1[jk-l] the smoothed estimate

4) Pjj[j,k-l] the smoothed error covariance

and one relation, describing the closed-loop state transition matrix

o(j,k-l); this interval transition matrix relates the state information
0

at one endpoint to the state information at the other endpoint (see

Figure 7.3).

The scattering domain will be used to quickly derive the algorithm,

but considerable insight can be gained by examining the theoretical

basis for the algorithm. If we begin by assuming the value of the

state at the initial endpoint, x. , is known, then we have

xk)xj,[j,k-1] = o ( j ' k - l ) x xj k x. = 0,[j,k-1] (7.1)
(7.1

where o is the closed-loon state transition matrix for the Kalman

filter, assuming the initial error covariance is zero. That is, the

best estimate of x at the endpoint is the sum of the best estimate

assuming zero initial conditions plus the known initial condition,

propagated (via 0) over the interval.

Assuming we don't know x. , the best we can do is to use the bestJ

estimate of X j [j,k-I] , to give

Xkj~j,k1 ] = Oo(j,k-l)xjj [j,k-1] + Xklxj=O,[j,k-l] (7.2)

* Recall that by Xkl[j,k-1] we mean the estimate x at time k given

observations at times j through k-1.
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Similarly, we can write the associated error covariance as

PI kl[j,k-1] = o(Jk-l)Pk! [j ,k-l]O ( j ,k-i) + PkI xj, [iJ,k-l]

(7.3)

If we write the other interval equations-- for x. and
j [j,k-i]

Pjj[j,k-l]-- then we would be ready to consider combining kfljk-l]

with xjl[k,9_l] to produce xZ[kl1]  Morf, et al., develops

this formulation.

.Another approach is to recognize that these equations and quantities

are precisely those terms we were treating in the last example of the

previous section. Making the association with Figure 6.8, we can

construct Figure 7.4 and write down the equations immediately. Assuming

time invariant coefficients, we have:

(F 1~i W ~)[~7-l P PIFP-10T

L (i) P o(i) . (i) P(i) +T [i pW] - TI T[lp I]- 1T

(7.4)

Making a change of variables, of W = -W , we get

(a) P(2i) = P(i) + o(i)P(i)[I+W(i)P(i)]- l T(i) (7.5)

T 0
(b) W(2i) = W(i) + T (i)W(i)[I+P(i)W(i)]- I o(i)

(c) 0 o(2 i) =o(i) [I + Pi) IV(i)]1-1 0o(i)

Recall that the objective is to derive a square root algorithm for

propagating these equations. Initially, we will guess that (7.5c) can-

not be reduced to a square-root form unless 0 0 is symmetric. [In

IN ,................................,.. ........................Bm ,.I ' li k 4 &l...... -
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the next section we will gain some insight into why this is the

case.]

The other two equations, (7.5a) and (7.5b) are close to the form

we could readily recognize and exploit; we need

A(2i) A(i) +- BT T B, (7.7)

where A '2 is lower triangular, and r is am orthogonal matrix,

constructed so as to triangularize the matrix [A-! !BT]

In the derivation that follows, if the subscript is missing on a

tine-varying quantity, "ill is assumed. Beginning with the equation for

P(2i) from (7.5),

P(2i) = P + P[I + WP]-i (7.8)

= o P '2p [I + WT/P 1T/P_ /2PT/ where 1-PT2P

P + P -2[1 + XX TY 1p T/2 ()T ,where X=P T/ 2 0

and similarly, for 11(2i)

W(2i) = Wv + 0 T W 21T/ 2 [I + pw 2W T/2  1It (7.9)
0

- w + TIV,[I+ W T/2 p -.pT/2W '2] lWT/2q

= W + O4T W '- [1 + X TXi1W T/2 0

From Section 111.4, we compute PI + XX T ] by choosing "Ii so that

e'is orthogonal,



74

TT T
1, 11

Ti=[ 1 T2]

and so that it triangularizes [I!T

[I NT ]W [R-'0] R

Theni

[I + xx] =T1  [I +~ xx T T= T 2(7.10)

R -T X=T T
R= 1  21 1

Rewriting (7.8), we have

P(2i) = P + (p Pl2T T TP'T1(p (7.11)

We now choose a second orthogonal transform, &2 so that

0 2.2 0.2= pO1

As long as P2 has at most n columns, any orthogonal mapping, fY

'will suffice. (Triangularizing mappings, however, reduce later

computations.)

Recalling the properties of orthogonal transformations we outlined

in Section 111.4, we can now write

,, ,..;t-** 14
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T 0 0 1I  07P'/2 T P% P 2][

[o iT21 2i _

Since I  and "2 were arbitrary, except for their orthogonal nature,

we note that we can replace them with any orthogonal mapping that yields

(7.14)

rTT 0 010
M i <= X - (7.15)

121 21 X
-T

We will soon see that these quantities, T and 0 P i 2 1 , are important

for calculating W(2i) and 4 (2i) ; in the next section we shall
0

examine why this might be anticipated.

To calculate W(2i) of equation (7.9), we already have most of

the quantities we need:

AMINI
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W(2i) = w + Tw- [I + XTx] 1WT/ 2  (7.16)

W iwT/2 w wT/2 + 0Tw [I + xTx]I-wT/2o
2i-2i o

T/2 T T/2

- W~ W + oW TO TWT2
°0 1 1 0

To calculate P2i ' we needed WT/2 (for calculating WT/2p ) We

Thave 0 and T1  available, so consider calculating the right

square root of W , WT/2 instead of W . Selecting our third

orthogonal transformation, OY , we have

0 T 2 
4 o = <=> 0 (7.17)I i
T/2 /2i \ X

which is the solution we required.

To calculate (2i) we begin by noting the lack of symmetry in

equation (7.5c) and the need for calculating [I + PWJ 1  which isn't

available from previous calculations. Instead, we have only the two

quantities T1  and P! 'T
1 0 21

T T[I + xx]-

[I + wT/2 N -

and

oP T = oP xx-1 T oP pT/ 2WTI
0 21 0 21 01

0= P[I + wT/2pw J-T/2

...... ....... .....
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We need an expression for 4 0(2i) that requires [I + xTx]-1

o(2i) 0 [I + PW]- 1 o

W-T/2[I + W T/ 2 pw 1 -WT/2o

which requires computing W However,

W -T/2 = w- + pW - PW

= w-T/2[I + wT/ 2 pw!] pw

so

4o (2i) = (V-T/2[1 + W T/ 2 PW _ pW2)([1 + IV T/ 2 pw-2] WT1 2  )

0 0oo - oPW 1I + W/2pw2] 1wT/2o

=-o~ - 4 )oP TTTwT/ 2 o

as we desired.

For initial conditions, we look to the initial layer for the

scattering problem. From Friedlander [1976] we have:

0

WT/2 R-T/2H
0

00

Comments on the Strengths and Weaknesses of Square-Root Doubling

Notice that this derivation leads to updating equations which

require no explicit inverses. If we now introduce the convention used
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~*=

by Morf [1978], whereby R T and K 0 P T21 we have

I W P 0 R*  0 01
L0 oP  p2 • -2=.
iK P 2

•T/K *)[wT/2)

¢o(2i) = (I -K (R W/
00 0

The first equation provides (R*) 2 the second and third equations

require (R )2

As a second observation, note that repeated eigenvalues pose no

problems, and that state transition matrices can be singular. However,

the measurement covariance matrix, R , must be inverted to determine

the initial conditions.

Morf et al. also note the ready adaptability of this algorithm to

parallel processing. Each processor can independently compute estimates

for a distinct interval. Later, the intervals can be joined, again in

parallel (see Chapter IX). This procedure can be generalized to the

time-varying problem.

111.8 Scattering Revisited

In the previous section we showed how to begin with results

from the scattering domain, and develop them algebraically into a square-

root algorithm. In this section we will consider deriving algorithms

_6L!
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solely in the scattering domain, developing the concept of the "square-

root" of a medium, orthogonal scattering layers, and the triangulariza-

tion of a network. The results are salutary; we can derive the square-

root algorithms quickly, and with new insight into the intrinsic

constitution of this class of solutions.

We switch now from the controller application, presenting the

Hamiltonian for the estimation problem in the scattering format:

I t t

Figure 8.1 Scattering Hamiltonian for the Estimation Problem

In this diagram, a node of the form

A C

B

indicates a passive branch, where A = B C . A node of the form

A C A

B B

indicates summation. We read this block schematic exactly as we would

read a transmission matrix block diagram, e.g., for

t ' ... A
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Figure 8.2

we would lift the equation y = A • N • D- u , preserving the order

of the matrix calculations. Expanding on this concept, we note that if

we take the square-root of a matrix A

A= A T/2  (8.1)

this translates into the schematic

Figure 8.3

With this background we are able to exploit the strong symmetry of

Figure 8.1.

We begin by defining the transpose of a network to be the network

reflected about the defined line of symmetry, where all quantities (path

gains) are transposed, and all arrows are reversed; this last condition

exchanges all branch and summation nodes.

We then define the square root of a network to be a network which

has a line of symmetry such that when divided along the line of symmetry,

one partition is the transpose of the other. Looking at Figure 8.1, we

note that one square root of the scattering network will be as shown in

Figure 8.4
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i+1

Li+1
j.%r I JRA !Q! H

I I

Figure 8.4 Square Root Scattering Hamiltonian

The square-root operation introduces complex arithmetic, which appears to

be an added complication compared to the algebraic approach presented

earlier. The complication is ephemeral, however, arising because of

the minus sign injected by the exchange step (see Section 111.6).

Examining the connections at the line of symmetry, S-00 ... Soo

notice that any orthogonal mapping could be attached without altering

the terminal characteristics of the network. For example, if we

contemplate a simple orthogonal network such as a permutation layer,

Si
n

P -1
TP

out

Figure 8.5
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it is clear that S. and S are identical-- the signals are
in out

"crossed" at the border, and then uncrossed. Any mapping with this

characteristic would suffice. Recalling from Section (111.6), property

(P7),

* =1> - - 1

any orthogonal mapping is a candidate. However, we are interested in

orthogonal mappings which correspond via an exchange step to transmission

domain mappings. From property (P9), these were

eT* (*)TG_- =T I => O *J * T =J

The J-unitary property, in this case, is an imposed boundary condition.

It also has the welcome effect of eliminating the complex arithmetic.

Thus, Figure 8.4 becomes

SS

II

Figure 8.6 J-Unitary Mapping

with the border we require. Henceforth, the J-layer boundary will be

maintained as a boundary condition.
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When using the star-product, we combine two layers into a single

layer. We have a similar objective when working with scattering square-

roots: to transform a two-layer network

Figure 8.7 Square-root Star-product Definition

into an equivalent single layer

Figure 8.8 Square-root Star-product Definition

If we consider only terminal behavior (in the network theory sense),

then by introducing a J-orthogonal layer f to Figure 8.7 we get

Figure 8.9

r '. r.-,
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Figure 8.9 Detail of Combined Layer

At the terminals, the mapping T has the desired effect of producing

a single layer.

To understand the structure of 6 , we consider decomposing it

into two concatenated mappings

a, =e'* (8.2)
1 2

6. will be used to compress two unidirectional paths (for example,

two downward paths) into a single path; O' will be used to uncross

the paths we find crossed in 0' of Figure 8.9

The first step is to demonstrate that unidirectional scattering

layers (where one direction neither transmits nor reflects) can be

mapped into a triangular layer. We begin by considering a structure of

the form:
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Figure 9.10 Simplified Boundary Mapping

Reorganizing and rotating this schematic into canonical form (as a

standard scattering diagram), we have

I I

AAAI

Out 0

L -- - - - I

Figure 8.11 Combined Layer in Canonical Form

The zero transmission and reflection gains of MS make this an especially

simple scattering layer to work with.

Conceptually, we can say that the rank of the signal at C is, at most

equal to the rank of the signal at In We saw earlier that orthogonal

~rnmw-~-
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matrices can be used to consolidate rank by triangularizing and pro-

ducing columns (or rows) of zeroes; any orthogonal triangularization,

S,can be used to reduce MS to consolidated (triangular) form.

Aggregating the non-zero transmission gains produces

E" 0 rB1  1
B 1 [ 0
S2 1 (8.3)
B AA 0 0
4 32 (8.3

0 0 A3A2A 1  0 A3A2A1 0

*1 M*

The need for 1Y. of (8.2) arises when we notice that the scattering
2

problem would segment into two unidirectional layers (flowing in opposite

directions) with the elimination of the loop, A , in Figure 8.9

This gives rise to the second application of orthogonal triangularization,

the application discussed in Section 111.7 . We need to unwind the

following loop:

In E - Out

B CT

Figure 8.12 Definition of Loop Unwinding

(Note that the lower square-root layer was introduced for clarity.)
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If we consider In and Out to be one side of a layer, this layer

can be transformed into canonical form by re-ordering the summation

computation and determining the transfer functions between the terminals:

I I

In C T -

Out

Figure 8.13 Transformation to Canonical Form

The next step is to eliminate the feedback term C TB from this structure

by arranging for all of the cross-terms to flow in one direction only.

Mapping Figure 8.14a into Figure 8.14b would have the desired result.

TT '

0

4 Figure 8.14a
I

0

B *-Fgure8.14
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Finding this mapping is equivalent to asking whether an orthogonal

transformation can always be applied to an upper triangular matrix U

to map it into a lower triangular matrix L . The mapping exists, as

was demonstrated in Section 111.6

* * * * *

P12) 3 e A * e = T , T triangular, upper or lower.

In the first application of the orthogonal layer 0I (Figure 8.10),

the structure of the layer was unimportant. The side-effect of producing

a desired terminal behavior made the layer useful. In the present context,

the structure of the mapping and the values resulting are important; it

is necessary to determine the parameters a, a and y of Figure 8.14b

These parameters can be determined in terms of 02 and U ,but

it is easier to work in the transition domain. The parameters could then

be determined from the results of Section III.4, or from a comparison of

L and L as derived in Section 111.6, where:

U * =L
2

0 1 T 2 T ] T [ 1 J 2
Therefore, applying an exchange step gives the parameters in the

desired format:

L* 01 2T11 0L*= = -T1  2

Y T TT T2
-21T 1  2

The result of applying the orthogonal transformation @r to Figure

8.12 to obtain Figure 8.14b can be drawn as in Figure 8.15

2.1' ..
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C B

B C T T TT E
21 1 where

-1=

Figure 8.15

We have now characterized T and 02 of (8.2), and thus, we
1 2

have characterized T . We will now examine the application of these

transformations to scattering layers which we can then use to "read out"

square-root formulae.

Application I -- Square Riot Doubling

We want to convert the scattering layers given by Friedlander

[1976]

Figure 8.16 Application to Square Root Doubling

into a single layer, which is advanced in time by a factor of two.
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Figure 8.17 Applitation to Square Root Doubling

We begin with the square root of Figure 8.16

Figure 8.18 Appliction to Square Root Doubling

proceed first by unwinding the loop at A

where we chosee

WT/2  -T 21 TT/ 1T

Figure 8.19 Application to Square Root Doubling
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and finally collapse the boundary connections using orthogonal transforms

,T/2 P

IT2T

Figure 8.20 Application to Square Root Doubling

We can now read out the requisite equations required to calculate the

entries of Figure 8.17. These equations follow directly from our

previous rules:

W T/[w(2i)1 (Y2- T//] (8.6)

T W'/ 4 o T 20

PZ-(2i): [P24-: P1T] ;02~] (8.7)

*(2i): c(2i) p [ 2-PT T T WT/2] (8.8)
00 21 1 0
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Comment:

This approach clarifies several issues. The calculation of P

and W , which cut across lines of symmetry, is fundamentally different

from the calculation of 0o , which lies along a transmission path.

The transmission path variables are not subject to calculation via

orthogonal transformations, although terms arising from the loop removal

at A are useful.

There are two distinct applications of orthogonal transformations:

an explicit application for loop removal, and an implicit application

to compress the structure. The latter application will involve trans-

formations both from the left (for an output border junction), and the

right (for an input border junction).

Application II-- Normal Square Root

We begin with another of Friedlander's [1976] layer ensembles,

this one specified for propagating the Riccati equation by one time

step. (See Figures 5.7 and 5.8.) We have

PA) iH.i)l

E i00 ) O (il

Figure 8.21 Application to Normal Square Root

We take the square root of the network, and apply the appropriate loop

removal
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where [I R IIIPj

3 0 2 a n 03 r n

TI T

Figure 8.22 Application to Normal Square Root

Again, we can read the equations fron Figure 8.22 directly:

- - L- qP (i+l): [ip~PTr F.Q0 (8.9)

T/2 1T/ (8.10)W 0il) '2 1

T -H <1
1 0

3- T-p(i~l 1:r IT 21 (8.11)~i+1 PjI 0 1 1 ~ pi

As we found earlier (Section 111.5), PI2  can be computed indepen-

T/2
dently of W and p;the first equation can be propagated, and

0

the second two ignored.
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111.9 Algorithm Revisions

Eigenvector Decomposition 4

Several problems were noted with eigenvector decomposition:

1) The Hamiltonian must have a full set of eigenvectors, which does

not always occur when there are repeated closed loop eigenvalues,

2) The measurement noise matrix cannot be singular; R (or, in the

controller case, B) must be invertible,

* 3) The state transition matrix cannot be singular.

Several extensions have been suggested to solve the first problem.

Paul Van Dooren [1978] has suggested using Stewart's [1973] results

on repeated eigenvalues. Stewart notes that the subspace spanned by

the eigenvectors corresponding to a cluster of eigenvalues of a

Hermitian matrix is relatively insensitive to perturbations in the

matrix. Using these results, Van Dooren suggested looking for a basis

of the subspace directly, without computing eigenvectors (see, for

example, Laub [19793).

The second problem, arising because of a singular measurement

covariance matrix, can be solved using the technique of Bryson and

Henrikson [1968] and Gevers and Kailath [1973]. A singular matrix

implies that after a finite time, several of the states can be deter-

mined precisely. We can therefore remove these states from the estima-

tion process, reduce the order of the system, and derive a system with

a non-singular R . In Chapter V we will discuss Gever and Kailath's

work which gives conditions for determining when this reduction is

possible.
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Square Root and Square Root Doubling

These algorithms do not suffer from the repeated eigenvalue problem

or the transition matrix singularity problem. They do, however, require

an invertible measurement covariance matrix, R , or control weighting

matrix, B . This can be seen quite clearly from the scattering picture

or from the square root equations; both approaches require inverting

this quantity. As with eigenvector decomposition, the predictable

directions need to be removed from the system.
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Table 3.2 BASIC ALGORITHM OVERHEAD

OPERATIONIlOperators + - x--
n n(m-1)p nmp

m m

n °  (Mn (r-1) 2m(m+l)

nA T[] n (n+l)(m-1) nm(m.1)

B =A

n (n+l)(n-i) (n+2)(n+l)

n' n

nF1i+ZR (n+l)
symmetric

1 + L- (n+l)

n -
1(Gaussian n(n-i) 2  

n3 - 1

L ] Elimination)

n -1 2 2
n (Triangular E- (n-i) I (n +3n-2) 2n-1 n

syAme Tic Decomposition) 
2

n
n 6 (n-2) (n-1) 6 n 4)n1n

m=> -m 2_- (22 (n
(m -3nm+2) (2m -3(2n+i)m+i: E-l

m n

m<n _______ ______

n n n

(n +4) (19n +6n+) n(2n-) 2n
n-> n319

n I (Cholesky) 6 (n+l) (n-i) 6 (n+4)(n-i) n-i n

symmetric , > 0



98

Chapter IV

THE STEADY-STATE SOLUTION TO THE CONTINUOUS RICCATI EQUATION

In the previous chapter we examined several diverse approaches

to solving the discrete-time Riccati equation; in this chapter we will

consider the continuous equivalent. The focus of this dissertation is

on discrete solutions. This chapter will therefore be brief, principally

discussing iterative solutions to the continuous problem.

We again consider two applications: estimation and control. In

exactly analogous fashion with the discrete-time case, the solution of

these two problems requires the solution of one of two related differen-

tial equations. The continuous problem begins with the definition of

the equivalent state-space model:

x(t) = F(t)x(t) + G(t) u(t)

y(t) = H(t)x(t) + v(t) (11

For the estimation problem, we assume u(t) and v(t) are white noise

disturbances

I
Sfu(t)] 1 Tu(s) vT(s)] = Q 0] 6(t-s) (1.2)

[v(t) J10 RJ

Then, l(t) , the linear least squares estimate of x(t) given

observations up to time t, can be obtained via the Kalman filter

equation:

i(t) -- [F(t) -P(t)HT(t)(t) + P(t)HT ty(t) R(0) 0 (1.3)

' .. .... ... • ' a 2, . , -
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where P(t) is the covariance of the state error estimate

P(t) = F(t)P(t) + P(t)F T(t) + G(t)Q(t)G T(t) (1.4)

- p (t) T(t)R- 1 (t)H(t)p(t)

F X T= (^(t)-x(t)) ((t)-x(t)) T

P(0) = 0

This is the estimation Riccati equation.

The control problem begins with the same state space model, except

that perfect knowledge of the states, x , are assumed (the output,

y , is ignored) and the input, u , is assumed deterministic and

available for control.

The problem solution begins by defining a performance index, J

to be minimized:

j f f [xT(t)A(t)x(t) + u(t)B(t)u(t)]dt (1.5)

t
0

where A(t) is non-negative definite and B(t) is positive definite.

The optimal solution, in the sense of a control input, u(t) , which

minimizes J , is given by

u(t) = -B(t) GT(t) S(t) (1.6)

where S(t) is the solution of the second Riccati equation:

S(t) = S(t)F(t) + F T(t)S(t) + A(t) - S(t)G(t)B-I(t)G T(t)S(t)

(1.7)

ji , ,:,€ ....................... ....... . , .; ,'':.k .:,..-
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Whereas in the discrete case an exact solution to the matrix

Riccati equation was readily computable, in the continuous case this

is often more difficult. For the continuous solution, it is often

insufficient to rely upon matrix fundamentals and linear least squares

theory; a detailed understanding of numeric integration is required.

This takes us beyond the purview of this thesis; perforce, we shall

focus on those issues directly related to the presentation of the

previous chapter.

However, we will be interested in steady state solutions which

means we are interested in solutions where the derivatives P and

are identically zero. This constraint converts differential equations

into algebraic matrix equations. Therefore, in the sequel, when an

algorithm requires integration, we should suspect that excessive

complication is being introduced.

This chapter begins by briefly noting the similarities between

the discrete and the continuous eigenvector decomposition routines.

Treatment of continuot4 square roots is deferred to the paper by Morf,

Levy, and Kailath [1978], and is not discussed. Square root doubling

is treated in terms of sundry proposed solutions, with emphasis given

to their strengths and weaknesses. One approach, the bilinear transform,

is discussed more deeply.

IV.2 Eigenvector Decomposition

As in the discrete case, eigenvector decomposition can be used to

solve for the steady-state error covariance. The solution was described

by Potter [1966], and later implemented by Bryson and Hall [1971]

using the QR algorithm.
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Unlike the discrete-time algorithm, the continuous version of the

algorithm does not require the inversion of the dynamics matrix.

Repeated closed loop eigenvalues, implying possibly non-existent

eigenvectors, and singular measurement covariance matrices still cause

problems. An extension of the algorithm is required, as outlined in

Section Nine of the previous Chapter.

IV.3 Square Root Doubling

Implementing doubling in the continuous domain is conceptually

identical to the discrete problem. The difference is found in the

determination of the initial interval. In the discrete case, we begin

with solutions for one time step, assuming zero initial conditions -- a

straightforward procedure. In the continuous case, we again need to

solve for that initial interval. In the latter case, the obvious

approach proves more difficult.

A typical solution to this problem, as outlined by Bierman and

Sidhu [1976], and reviewed by B.D.O. Anderson [1978] involves a two-

stage procedure: the first stage requires translating the continuous

problem into an analogous discrete-time problem, and the second stage is

the solution of this analogous problem. One approach would be to expli-

citly solve the Riccati equation over the initial interval. The question

arises as to how short to make the interval; as Anderson notes, if the

interval is too short, the recursive part of the algorithm may not

converge propertly. There is also the added burden of computing the

transition matrix for the interval, independent of whether integration

or power series approximation is used for the computation.

........................... AAA
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As an alternative, which avoids the computational burden, Anderson

suggests an algorithm by Roberts [1971] and Denman [1976]. They begin

with the continuous Hamiltonian

H = [ GR1GT]

which they iterate by computing

H. = (Hi+Hi )

This leads both to the steady-state error covariance and to a doubling

algorithm. This approach was not very promising because the

doubling algorithms we derived required the inversion of the dynamics

matrix, F; in the continuous case, singular F matrices are quite

common. Possibly by using pseudo-inverses, a more complex square-root

expansion, or a scattering- domain derivation, this problem could be

circumvented.

Another approach is to recognize that a bilinear mapping exists

which yields a discrete equivalent to the continuous Riccati equation;

it is equivalent in the sense that both equations have the same steady

state solution.

Hitz and Anderson [1972] present a mapping from the continuous to

the discrete-time domain. They prove that the steady-state solutions

to both the differential and the difference equation are identical , and

that as long as a positive definite solution exists and is unique, then

the discrete-time equivalent converges for any nonnegative definite

initial condition.

[; _ . " *
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Noting that the bilinear transform, S <= , considered with
z+ct

the Laplace transform and the inverse Z transformation, establishes

an explicit isomorphism between the spaces of square integrable func-

tions and square summable sequences, Hitz et al develops the mapping

for the control form of the Riccati equation. We will briefly present

the estimator equivalent.

Given an algebraic matrix equation for the steady-state estimator

error covariance of the form

FP + PFT + GQGT - PHTR-IHP = 0 (3.1)

we want to transform this equation into the discrete equivalent

@T QDT T T-l1 T
+ - MHD(RD+HDMHD) HDMT = M (3.2)

where M and P are exactly equal. 'The coefficients of these two equa-

tions can be related by either full or square root formulas:

Full Square Root

HD = r a H(aI-F)- 1  HD = r a H(aI-F)-1  (3.3)

Q, = 2c(aI-F)- GQGT (I-F)-T Q' = v7  (a -F)- GQ

B = Q HQI
21 2Q

RD = otR + HQIHT R - = [cR 1B]

T l T1 .1. n~ 1  T2
rQDT = - BTRDIB rQD = Q[I, BTRD

-I T -1 -1 1T-T2-I(aI+F) (al-F)- B R DIH = (aI+F) (cl-F)- Q BTRDT/ 2 RD HD

where a is real, greater than zero, and not equal to any eigenvalue

of F

IAl
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The proof that equations (3.3) do in fact transform (3.1) into

(3.2) follow from a direct substitution and simplification. For

details of such a proof, see Hitz [1972]. They also show that any

solution for an equation similar to (3.1) is also a solution for an

equation similar to equation (3.2).

We chose to implement this version of the doubling because it could

easily and quickly be incorporated into existing discrete doubling

algorithms. The overall algorithm is still a two step procedure, but

the initial step is relatively fast compared to the doubling stage.

There are also fewer constraints on the class of problems which can be

solved. "a" can always be chosen so that (aI-F) is invertible. We

may have problems if RD is not invertible, but in the bilinear

algorithm RD is comprised of a combination of all noise covariances.

It will usually be invertible.

The three main problems with the bilinear mapping are other

aspects of accuracy,speed, and convergence. We have introduced another

level of computation, including an inversion; in some cases this will

exacerbate ill-conditioning . For speed, we already noted the

handicap of added overhead. Rate of convergence is also

determined by the choice of alpha. These factors will be

explored in Chapter VI.

Finally, we note that intermediate values in this scheme have no

significance; only the final value has a continuous analog. (In the

purely discrete case, the error covariance at the "ith" iteration corres-

ponded to P(2i).) In some contexts, this abstraction might be a dis-

advantage compared to doubling techniques that iterated continuous-time

variables.
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IV.4 Conclusions

For solving the continuous, steady-state Riccati equation, eigen-

vector decomposition is the favored approach. It is numerically well

behaved, fast, and it does not suffer from some of the limitations that

make eigenvector techniques the secondary choice for the discrete

problem; repeated eigenvalues and singular R matrix can still be a

problem, however.

The square-root doubling algorithms were all limited by one of

three weaknesses. The first set of algorithms required an initial

solution to the Riccati differential equation over a fixed interval.

The second set of algorithms was limited in the classes of practical

problems they could solve. The third set of algorithms was subject

to burdensome computational overhead, incurred while converting a

continuous problem into an equivalent discrete-time problem; the result

was to sacrifice speed and accuracy. The importance of this overhead

will be considered later.

In the next chapter we will consider the class of problems which

differentiate among these algorithms, focusing on discrete-time systems.

In Chapter VI, we return to these algorithms, presenting an empirical

comparison.
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Chapter V

DIFFERENTIATING APPLICATIONS

Most algorithms handle most practical problems most of the time.

For this set of problems, important questions involve criteria such

as speed of computation, storage space requirements, and computational

precision required. These issues are examined in the next chapter.

Another class of problems have salient characteristics which

preclude the use of certain algorithms. In this chapter we will focus

on two such classes: problems having singular state transition matrices,

and problems having repeated closed-loop eigenvalues.

An interesting and important class of problems arises when we

consider modelling discrete systems with pure delays. These delays

arise for a variety of reasons-- sampling delays, computation overhead,

transport lag-- and often lead to models with singular dynamics

matrices. As we mentioned in Chapter III, singular dynamics matrices

exacerbate weaknesses in several algorithms, so we shall examine this

issue in detail.

The singular transition matrix collection of examples is related to

the problem of designing reduced-order observers because of a conjecture

that there always exists a reduced order system equivalent to the original

singular system [Katz, 1972]. We therefore begin by considering Bryson and

Henrikson's work [Bryson, 1968] on reduced order estimators. We then consider

Gevers' extension [Gevers, 1972]. After examining Brammer [Brammer,

1968], and Tse and Athan's [Tse, 1970] work on singular systems, we

consider a practical example, and then evaluate Katz's conjecture and
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Powell and Parson's [Powell, 1978] result in light of our results.

In the second section we consider the case of repeated closed-

loop eigenvalue problems as they arise in satellite design and perfect

measurement examples.

l |
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V.2 Reduced-Order Observers

The Discrete Case

System order, 'n' , is a significant criterion in both filtel"

design and filter implementation. Computation time is typically popor-

3
tional to n , at best (except for the fast square root algorithms);

2
data storage requirements are often proportional to n . Order reduction,

when cost effective and while preserving other performance properties,

is therefore desirable.

In continuous time systems, if the output of the system, y(t)

is sufficiently smooth, then a uniquely identifiable number, a , of

different projections of the state are calculable without error as

some linear combination of the output and its first a-l derivatives.

This achieves a maximal reduction in the order of the Kalman filter

Riccati equation [Bryson, 19651 [Geesey, 1973] [Gevers, 19721.

Bryson, et al., noted similar computation-reducing effects from

differencing observations in the discrete-time case [Bryson, 1968].

Bucy, Rappaport, and Silverman, noted that in certain discrete-time

cases, differencing did not have the same computation-reducing conse-

quences noted in the analogous continuous time case [Bucy, 1970],

[Rappaport, 1970]. Gevers and Kailath went on to elucidate and explain

this difference in terms of properties of the associated covariance

matrices [Gevers, 1972].

Two differences between continuous and discrete systems lead to

these disparate results. First, that differencing operations introduce

a time-delay between y(i) and y(i-l) , whereas the signal y(t) and

its derivative y(t) have the same time argument. Secondly, any

transfer function of the form
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H(z) = z- k H (z) , 1 < k < o-1 , cz > 2

produces the same power spectral density and can be realized by a

causal system. In contrast, in the continuous case, the difference

between the degree of the numerator and denominator is unique for all

rational factorizations.

Gevers went on to consider a special form of the discrete-time,

one-step prediction filter

x(i+l) = q x(i) + r w(i+l) [w(i)w(j) T ] = Q 6(i-j)

y(i) = H x(i) T(i) = F(X(i)x(i) T

This model often arises in systems that have correlated noise terms

in their output [Bryson, 1968]; the measurement noise term is eliminated

by state-augmentation.

As Bryson points out, the associated Riccati equation may then be

ill-conditioned, because its dynamic rank is lower than its order.

This can be alleviated by proper partitioning of the augmented state

equations, but is a potential hazard for blind application with all

strategies, including the square root schemes.

The direct approach to the conditioning problem, however, is to

reduce the order of the Riccati equation. Gevers showed that this

could be done maximally only when

H(i-k)O(i-k,i)r(i) = 0 k 1..... -I

H(i-k)O(i-k,i)x(i) = y(i-k) k = 0,.. .,-l

H(i-k)O(i-k,i)T(i) =' T(i-k)OT(i,i-k) k = 0...
k<i<N
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where

f(i+l) = 4(i+li)fl(i)T(i+l,i) + r(i+)QrT (i+l) , 1(i) = fl(i)H T(i)

Here, a is the difference between the order of the numerator and

denominator polynomials of the spectral density function:

b zn - a + n-a-i +.+b -n+a

S y(z) = H(z)H(z n + Zn- + + a 2n--n
z + az + . .. + a2n z

17

For the time invariant, steady-state case, we have

H i-k F = 0 , k = 1..

H pi-kx(i) = y(i-k) , k = 0,... ,a-i

H i-k H= H RT[¢ki]r , k = ,. ..,a-1

]= ]T+ r QrT

It is therefore necessary to identify the definite relative order of

the system, a , determine if the above constraints are matched, and if

not, transform the model to a suitably constrained model. Gevers

demonstrated this could be done for the single-input, single-output

case.

Another important result, derived for the case of no measurement

noise and single output, shows that for singular with completely

observable states, the system has no predictable directions. The

system order can, however, be reduced by one; for the system with white

measurement noise, this reduces the system to the normal, unaugmented

realization (that is still singular).
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Design with Delays I

Singular 4 Matrix

A system with a pure delay -- where the output of at least one

state is not fed back into that state-- modelled in state space format,

yields a system with a singular matrix. Assume { ,H} is observable.

Then, as we saw from Gevers' results, we would not expect to be able

to reduce the order of the estimator by taking differences of the

system outputs.

An interesting alternative structure for the filter arises if we

consider a special case. If each state suffers the same pure delay

before output, then the P matrix of the filter can be simplified

by removing states corresponding to pure delays (see Figure 5.1).

Prediction

The best estimate of a state x at time i+m , R(i+m) , given

data up to time i is simply (see, for example, Sage [1971])

^ M
^

x(i+mli) = m (iIi)

.ihere x (i) is the filtered estimate of x (i) Further, the state

error covariance is

P(i+m Ii )  [R [(i+m l i ) R( i + m Ii)
T ]

M)p(iIi)(m)T + E R m-ir Q T(Rm-iT
i=1

where

A (x-i)
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The estimator for Figure 5.1 can therefore be constructed without the

m-order delay incorporated in the state transition matrix. Outside the

feedback loop, the states can be predicted from the past back to the

present, for the estimator will now be running m cycles behind the

modelled system (see Figure 5.2).

This reorganization may provide a significant computational savings,

especially if delayed estimates are satisfactory. It may, however,

introduce an increase in complexity, especially if state estimation will

be used for closed-loop control. The additional complexity arises

because now delayed versions of the predicted states must be fed

back into the system (see Figure 5.3).

If all states must be predicted, and later delayed, the augmented

approach may be more computationally efficient. In most cases, however,

the computational tradeoff is between increased multiplications (for the aug-

mented realization) versus storage (for the predicted realization), with

storage being comparatively inexpensive.

These issues only arise because we have imposed a structure on our

estimator. The output, x , is identical in both cases. The computa-

tions, in contrast, are performed in different coordinate systems.

One realization can be derived from the other, and the minimal realiza-

tion (in operation count) may be neither of those proposed.

An Example

As an example, we consider the problem detailed in Appendix C2.

As presented, this is a second order system with a pure, second-order

delay:
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x(i+l) = 1 Ti x(i) + [T 2/2] w(i)

y(i) = [i Ojx(i-2) + v(i)

E(w(i)w(j) T ) = q 5(i-j)

E(v(i)v(j) T ) = r 6(i-j)

E(w(i)v(j) T ) = 0

(For numerical results, r is assumed to be unity and T to be

i Hertz. )

We begin by considering the augmented system incorporating the delay:

This problem is in the standard state-space format; in addition,

4 is singular. As detailed in the last section, we can approach this

problem in two ways.

Working with the full-order augmented system, we cannot solve the

Riccati equation using the proposed eigenvector decomposition algorithm.

Square Root Doubling, in contrast, is perfectly satisfactory.

Working with the segmented system-- a second order filter and a

second order predictor-- we can use any of the algorithms presented in

Chapter III to solve the Riccati equation.

The root locus of estimator roots plotted as a function of distur-

bance covariance appears in Figure 5.4. As expected, the loci for both

designs coincide, except for the presence of an additional pair ofjpoles corresponding to the two delays in the augmented system.
t S ........................................
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STAR-TRACKING TELESCOPE OPTIMAL ESTIMATOR

Process noiseEigenvalues vs. Measurement noise

Assumes m cycles of delay, m > 0

Imaginary

z-plane

0Q/R = 1

Q/R =

-00

-0.5.5 Real

Figure 5.4 LOCUS OF ESTIMATOR ROOTS VERSUS DISTURBANCE COVARIANCE

MOMS..................... ..-
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In Figure 5.5 we present a plot of the error covariance of the first

state (the measured state) as a function of the disturbance covariance.

Again, the two plots coincide, as do the other covariance terms (Figure

5.6).

Also presented in Figure 5.5 is the first-state error covariance

assuming the delay in the estimator is ignored (m z 0) . In addition,

we have plotted the covariance assuming m=0 in both the system and

the estimator. We will comment on these results after examining another

approach to solving this problem.

Comments on Previous Work

Katz, in his treatment of the eigenvector decomposition problem

with singular matrix (Katz, 1972] conjectured, in effect, that an

equivalent reduced-order estimator with non-singular transition matrix

could always be found. An estimator for this non-singular equivalent

could then be developed by direct application of the eigenvector decom-

position algorithm. This conjecture, however, was not formulated as

an algorithm; it was simply stated as an existence hypothesis. No

counter examples have yet been found, and without a mathematical

formulation, the conjecture cannot be proved correct.

We consider an example proffered by Powell and Parsons [Powell,

1978]. The example is again the star-tracker estimator presented in

Appendix C2. using linear transformations, Powell, et al, reduced

the fourth-order system to a system of second order. Their results,

compared to those derived above, are presented in Figures 5.7 and 5.8

We note that for the case where measurement noise dominates process

disturbances (small Q/R ratio), the design is insensitive to the
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estimator pole placements considered; all solutions have comparable

performance, measured in terms of first-state error covariance.

We would suspect from our earlier work that this design only approxi-

mates the best linear estimator for this case. This question is examined

in Appendix Bl, where we show that the proffered "equivalent" second-order

system has sequentially correlated noise, both disturbance and measurement.

For small Q/R ratios, this correlation can' be neglected, as shown.

Engineering Judgment

It is clearly important to identify whether the problem under

consideration is sensitive to variations in the parameters, as is the

case in Figure 5.3 when Q/R > 1, or insensitive and computationally

robust. In the latter case, the increased complexity often isn't

justified in terms of the expected improvement.
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V.3 Repeated Closed-Loop Eigenvalues

System designs which lead to repeated closed loop poles also

serve to differentiate algorithms. As we noted earlier, repeated

eigenvalues lead to difficulties in computing eigenvectors.

These problems arise, for example, in satellite control contexts

[Bryson, Feb. 1978]. A conservative system experiencing rotation can

lead to a zero configuration of the form:

I

0 o

> Re

0 0

When we consider the design of a controller for this system, using

a quadratic performance index, we recognize that the non-minimum phase

zeroes will effectively be mapped onto their real-conjugate counter-

parts.

If we now weight the states in the quadratic performance index

1 N TTJ E x xAx +u.Bu
i=l

much more heavily than the control, we find we have repeated eigenvalues

(for a sample root-locus, see Figure 5.9). This would happen if, for

example, the control, u , was unbounded (B=O) but we desired little

variation in the states.
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We note that for the example of Figure 5.9, a ratio of A/B of

greater than 10 yields nearly repeated eigenvalues. For a ratio

11
of A/B of greater than 10 , the version of eigenvalue decomposition

we have implemented fails.

Square root doubling also fails in approximately the same region.

This happens because B going to zero in the control context is

equivalent to the measurement noise covariance, R , going to zero in

the estimation context. To handle the case of B or R equal to zero,

both algorithms must be reformulated.

The repeated-root example also arises in less extreme examples.

In the case of repeated roots undisturbed by process noise, the roots

are not moved by the Kalman gains; they remain repeated. Also, the

roots of the closed-loop system may be moved so that they happen to

coincide.

In these cases, with non-zero measurement noise covariance, the

square root algorithms work; the eigenvalue decomposition algorithm

would have to be reformulated. Both cases seem to be pathological.

In the case of repeated roots undisturbed by process noise, the states

are not controllable through r , and the Kalman gains are zero. In

the latter case, the conjunction of closed-loop roots resulting in a

Hamiltonian without a full set of eigenvectors seems rare. Although

we can conjecture possible problems which would have these character-

istics, we have yet to find an actual industrial example.

-- - - ... ~-..,t -- ± ~h% *. - --
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EMPIRICAL RESULTS

In the last chapter we discussed sets of problems which could be

solved by some algorithms, but not by others. In this chapter, we shall

examine problems that can be solved by all algorithms, but at varying

cost and with varying performance.

Cost is determined primarily by two factors: the computer resources

allocated to the task, and the amount of time these resources are

required. For the algorithms presented in Chapter III, the primary

computer resource will be main processor data memory. For processors

with separated instruction and data space, but with very expensive

instruction memory (e.g., Floating Points Systems AP-120B), program

size will be an issue. For processors with combined memories (e.g.,

Digital Equipment Corporation PDP-lI/34), program size will also be important

for small problems (when the program's overhead is relatively large).

For solving large problems, those which will not fit in central

memory, auxiliary memory becomes an important resource. Also resource

demands on the central processor could theoretically be a primary

resource. However, no current computer has a significant capacity for

allocating part of its processing unit to one problem, while simul-

taneously applying other computational resources to other problems.

The questions of large problems and special processors will be relegated

to Chapter IX.

Cost, for the purposes of this study, will be measured in terms

of memory required and elapsed execution time.

Performance will be measured in terms of solution accuracy. For

a given problem and algorithm, how much accuracy is attained given a

maximum machine precision.
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VI.2 Memory Requirements

Table 6.1 gives the memory requirements for the algorithms

considered. The full input data set, consisting of {$,r,H,Q,R}

is assumed to be external andnot available to the algorithm. Similarly,

the output arrays consisting of the error covariance matrix, P , and

the filter gains, K , are considered to be separate from the algorithm

work space.

For the work space estimates, the table presents both theoretical

minima and requirements for algorithms as currently implemented. The

minima are not necessarily practically attainable. Issues such as data

shuffling overhead and addressing complexity were ignored. These

considerations may make this limit unreachable.

The minima for eigenvector decomposition assume the QR algorithm

operates on the Hamiltonian in place. The square root doubling minima

assumes four triangular matrices need to be stored (WT,p ,TI and

T2 ), two full matrices are required (for T and for ) and that one
21 o

full-order temporary matrix is required, to hold partial results.

Most of the algorithms were implemented optimized for speed. The

square-root doubling algorithms were written to minimize data access

time. The eigenvector decomposition routine, in contrast, was originally

coded for an IBM 370. Presumably, memory was not considered a valuable

resource.

All algorithms were coded using double-precision arithmetic (six-

teen decimal digits of precision). If the square root algorithms perform

adequately with reduced precision, then the doubling algorithms would
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Table 6.1

MAIN MEMORY STORAGE REQUIREMENTS

ASSUMING

m,p<<n m,p2n Implemented

Input and Output Storage 2n2+O(n) 7n2  7n2

Full iteration 
3n 2+O(n) 8n 2

Square root iteration 
n 2+0(n) 6n

2

Eigenvector Decomposition
2  4n2+O(n) 4n2+O(n) 56n 2

Square Root Doubling 1n
2  5n2  17n2

Bilinear Square Root Doubling
1  5n2  Li5 2 17n 2

Notes:

1: All data assumed stored at full precision

2: Assuming the standard, IMSL QR algorithm

n = number of states

m = number of input disturbances

p = number of measurements
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only require half the storage. Similarly, if double precision computa-

tions are overly conservative for eigenvector decomposition, the memory

requirement could be lowered for them also (see performance, Section

VI.4).

For problems with many inputs and many outputs, all algorithms

require approximately the same data memory. For the single-input single-

output problems, square root iteration is preferrable. An important

observation is that these results are strongly effected by the storage

required for the input and the output of data. In many practical cases,

the variations among algorithms would be unimportant. Also, if the

input data can be overwritten, then the square root and eigenvector

decomposition algorithms may require no additional storage.

VI.3 Computation Time

The two fastest algorithms, eigenvector decomposition (EVD) and

square-root doubling (SQD), were compared to determine relative speed.

The eigenvector decomposition routine was taken from a standard package

designed to handle many facets of the design problem-- designing discrete

controllers and estimators for a continuous plant, determining observ-

ability, etc. For the purposes of this comparison, this EVD program

was liberally ravaged to minimize excess computations. However, it was

inexpertly coded (see the previous section) and mere pruning failed to

optimize the code. The fundamental algorithms-- the Householder and

QR algorithms-- were part of an industry standard package. Performance

is therefore assumed to be near optimum.



131

In contrast, square root doubling was implemented for

optimal performance on a small machine. Separate facets of the design

problem are solved by distinct programs (see Appendix Al). Each

implementation is within a factor of two of optimal performance for

the algorithm as specified, not including data entry.

The target machine was a PDP-11 minicomputer with a thirty-two

thousand word address space. Since the EVD algorithm was originally

targeted for an IBM 370, with a relatively unlimited address space,

the transplant severely limited the size of problem that could be solved.

For this study, the SQD program was limited to twelfth order problems,

and the EVD program was limited to sixth order problems.

Figure 6.1 presents preliminary time trials. System order is

plotted against relative elapsed execution time, given by

(SQD time) - (EVD time)
(EVD time)

Thus, positive increments result when eigenvector decomposition is the

faster algorithm. The EVD algorithm appears faster in these results.

This data was collected on a PDP-11/34 using a relatively fast

hardware floating point processor and a threaded-code Fortran compiler.

(The compiler is basically interpretive.) This minicomputer is medium

speed, and uses a memory well matched to the speed of the central

processor.

Figure 6.2 presents the next time trials. It consists of twenty-

two problems, and includes the results from the data presented in

Figure 6.1. These results were collected on a PDP-11/70 using a Fortran

compiler that generated pure executable code. Notice the different

trend.
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In this second trial the square-root doubling algorithm is

consistently faster. Although the algorithms are identical in both

cases, the environments have changed, albeit subtly. The change in

Fortran compilers has altered the relative execution times of the

program steps. In the central processor, the computation-time mix

between data addressing and floating point instructions has changed.

Also, the second computer uses a buffered (cached) memory system that

can significantly alter memory dynamics.

Figures 6.3, 6.4, and 6.5 present the final results for time

trials, run on an IBM 370/168 using the Fortran H optimizing compiler;

both programs were extended to handle problems of up to twentieth order.

The square root doubling algorithm was also rewritten in pure Fortran,

increasing its execution time by approximately 80%.

Both algorithms give results qualitatively comparable to the PDPll

for systems of order less than six, with the square root doubling

algorithm typically slightly better. Above tenth-order, however,

the Eigenvector decomposition algorithm is markedly superior, out-

performing the square root algorithm by a factor of two to six.

It is interesting to include a curve of O(n ) on Figures 6.3 and

6.4, normalized to the same value on each graph for n = 5. We note

that the square root doubling trials are predominantly above the O(n )

curve; this result is plausible since the doubling algorithm requires

O(n 3) computations per iteration, with the total number of iterations

typically increasing with system order. In contrast, the time trials

3
for the EVD algorithm are below the O(n ) curve, as we anticipated in

Chapter II.

An interesting anomaly can be found in the one eigth-order system

where the square root doubling algorithm was faster than the EVD trial.

77777777
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This was the only data point for which the closed-locp poles of the

system were all of magnitude less than or equal to 0.1 in the Z-plane.

Figure 6.6 shows examples of the convergence behavior for the

doubling algorithm, which behave as expected; convergence occurred

when the difference between the trace of the covariance matrix on two

successive iterations was less than the machine's epsilon. The error

is fairly constant for most of the computation, and then drops off

very rapidly.

These results are partially conclusive. For small problems,

the difference between algorithms is slight, and for large problems

the EVD algorithm is consistently faster for almost all problems.

Alternate formulations of the SQD need to be considered (for example,

calculating T1 explicitly instead of inverting TT ), although these

are not likely to change the overall conclusion.

Another valuable lesson has been learned: that two very

similar computers can give qualitively different results. The inter-

action between algorithms and their host computers, especially the

memory dynamics, has not been properly appreciated.
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VI.4 Performance

For all of the test problems considered in the previous section,

square-root doubling and eigenvector decomposition gave identical results

6
to at least one part in 10 . All computations were in double precision

(sixteen decimal digits of accuracy).

A question still to be answered concerns the precision required

to accurately and stabily determine the steady-state Riccati solution.

As demonstrated in Chapter III, square root algorithms often require

only half the precision required for full iteration, but these SQD

algorithms may require full precision in some cases. Do these

full-precision problems occur in practice, or is this upper bound

irrelevant and overly loose?

Second, how does the required minimum floating-point precision

compare for various algorithms? This question is especially important

because all algorithms are implemented using double-precision computations.

Double-precision arithmetic requires twice as much storage and up to four

times more execution time than single-precision calculations. A

reduction in precision is significant both in time and in memory.

The efficient answer to these problems required modifying the

Fortran compiler. This has not yet been completed.

VI.5 Convergence Sensitivity

Chapter Four considered solving the continuous steady-state

Riccati equation using square-root doubling. One approach required

converting the continuous problem to a discrete-time problem by an

application of the bilinear transform to the original Riccati equation.

The important quantity in the mapping was the approximation to the exact

discrete transition matrix, given by:
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(cI+F) (c-F) (5.1)

where F was the continuous state dynamics matrix. We noted that

alpha should not coincide with an eigenvalue of F and should be

positive. No other criterion was specified.

Figures 6.7 and 6.8 show the dependence of elapsed time on the

choice of alpha for a representative sample of problems. Figure 6.7

plots elapsed time versus alpha; Figure 6.7 plots relative elapsed

time versus alpha (centered about the smallest alpha giving minimum elapsed

time). These results for square root doubling are consistent with the

results found by Hitz [1972] for iteration of the mapped, discrete-time

Riccati equation.

The computation converges quickest for choices of alpha near unity.

If alpha becomes too large or too small, the mapping (5.1) tends to

the identity matrix, modulo the sign. When this happens, the difference

between the discrete-time quantity 4DP T and P becomes very small.

Similar problems arise for other mapped terms in the equation (see

Chapter IV, equations (3.1) through (3.3)).

This problem can be severe. In example (5) of Figure 6.8, any

choice of alpha less than 0.014 caused a divergent solution.

Another complication arises if F has a positive eigenvalue near

alpha. For example, result (3) has an eigenvalue at .004 and a complex

pair at .025 ± 0.64j. If alpha is near an eigenvalue, then some entries

of (aI-F) - will be very large. The iteration calculation leads to

taking the difference of two very large and almost equal numbers, with

concommitant failures in convergence.
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In Chapter IV we noted that the bilinear approach was basically

a two step procedure; first the transform was taken, then the iterations

were performed. A question was raised concerning the significance of the

added overhead of this initial step. However, for systems above fifth-

order, the time required to perform the bilinear transform does not

appear to be a significant part of the elapsed time for the computation.

VI.6 Conclusions

Eigenvector decomposition and square root doubling require

comparable elapsed computation time for problems smaller than sixth-

order. For larger systems, the QR algorithm was faster.

At least for the smaller problems, speed is not an important

decision criterion. This is true both because the two algorithms

are comparable in speed, and because the total elapsed time was

negligible for these applications; the sixth-order problems always

required less than two seconds to solve. Memory requirements are also

of little importance, judging from conjectured minimum memory specifica-

tions; this is certainly true if the input data can be overwritten.

Other criteria emerge as being more important, including

1) Accuracy,

2) General applicability,

3) Adaptability to and synergy with the

computing hardware.

The bilinear transform was quite sensitive to the mapping constant,

alpha. Minimum iterations occurred for alpha near unity. No direct

- q - !
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relationship between alpha and the dynamics matrix, F , was established.

Hitz [1972] suggested that alpha should equal the average of the moduli

of the eigenvalues of F . We have insufficient examples to substantiate

this conjecture. However, departing from the optimal choice for alpha

by several orders of magnitude commonly leads to the divergence of the

doubling solution.

The computational overhead of the bilinear transform was negligible

for the sixth-order systems examined.

In the next chapter the topic changes. The discussion turns to

considering the design of optimal compensation given qualified uncertainty

in the parameters of the system model.

... .. ... .f - . . - .y",
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Chapter VII

PARAMETER SENSITIVITY IN DISCRETE SYSTEMS

In many optimal control applications, whore state-estimators

rather than directly measured states are used for feedback, the closed

loop system is excessively sensitive to variations in parameters

[Berger, 1973]. Early work focused on dynamic desensitization;

Bar-Shalom and Sivan [Bar-Shalom, 1969] augmented the estimator state

to include the unknown parameters, and developed a suboptimal scheme

for solving this problem. Berger [Berger, 1973] assumed constant but un-

known plant parameters, with a known parameter probability distribution;

he solved the continuous controller problem, assuming rectangular

probability distributions. ( His solution was optimal.)

Palsson and Whittacker [Palsson, 1972] solved the continuous single

input-single output case assuming a Gaussian distribution for the system

parameters. Hadass [Hadass, 1974] solved the same problem for multi-

input, multi-output systems.

In this chapter we present the optimal solution for the discrete

multi-input, multi-output system assuming uncertain constant parameters

whose uncertainty can be described by a Gaussian distribution. We will

also comment upon the efficacy of this approach in terms of Bryson's

"oblivious" filter [Bryson, 1977].
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VI1.2 Chapter Outline

We begin by considering the uncertain parameters of the system

as random variables. A performance index will then be defined as the

weighted sum of the steady-state control and state covariances, which

in turn are a function of random system disturbances and the variances

of the uncertain parameters. This performance-index will then be

minimized by adjusting a set of free-parameters. These gains are

normally the Kalman estimator gains and the controller feedback gains.

The appropriate equations for desensitizing discrete systems are then

developed.

With the theory established, an algorithm was developed and im-

plemented. Several practical examples were studied, including the

problem of desensitizing a marginally stable high performance aircraft.
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VII.3 Sensitivity Equations for Discrete Systems

We begin by assuming we can describe the physical system as a set

of states, xk, governed by linear vector difference equations:

Xk+l = I xk + FIluk + P2 1wk
(7.1)

Yk 1Xk +v k

These equations have two sets of inputs-- a deterministic input, uk

and stochastic inputs, wk and vk These stochastic inputs are

assumed to be Gaussian random variables, determined completely by their

mean and variance. We shall assume:

T T

Fi= ( (w) & (x) = (x v) = F(x wi) = 0 (7.2)

"(x T) = P
0 0 0

Bryson [Bryson, 1975] has shown that an interesting class of solutions

arises from minimizing the quadratic performance index:

N- 1u :
I T T

J = lim E (xi A x. +u Bu. ) (7.3)
N i=o

where u. = -C x.1 1

x. = x. + K(yi-H xi) (7.4)

x =4x i + u i
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and we choose C and K to minimize J . (We note in passing that

if we select p = H = H1 , and r = Fl1 then x i  is the maximum

likelihood estimate of x. as originally outlined by Kalman.) The1

design procedure, then, is to choose K to give the maximum likelihood

estimate, xi, and to choose C to minimize J. The closed loop

performance of the system can then be varied parametrically through

the weighting ma-rices A and B.

To facilitate handling this system, we begin by writing

the augmented state equations:

xk -I [ I -'1C 1 kl +
[~k~lJ KHl l (I-KH)f(0-P 11C) -KM 1 P r jLk

(7.5)

+ F21 w k

KttlI21 vk+

N-1

I1 T Tli N- .ECx (A-C BC)x.]
N- i=O

which we shall henceforth write as

=X k vklj (7.6)

-1+c BC)N1]

N- = i=O

A- C = o -cj
0I 0

k~~ ~ ~~~ Ila.... . ... . . .
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Introduction of Uncertain Parameters

We assume 4 and r are constant coefficients, but that they

are derived from physical parameters of uncertain value. We propose

to model these physical parameters as Gaussian random variables of

known mean and variance.

We usually assume that all physical constants are known exactly --

the frequency, w, is precisely 25 radians/sec.

I Probability of w 4

- w (rad/sec)
25

An alternate assumption would arise if we expect the frequency, W,

to be about 25 rad/sec, but we are 95% certain w lies within + 5

radians of the expected value. Modelling w as a Gaussian distri-

bution, then 95% certainty encompasses about 2 standard deviations,

so the variance of w would be about 6, and we would have

T_ _ __ _&(w) _25 rad/sec

F'(W-W)(W-w) = 6(rad/sec)

w(rad/sec)

Note again that we assume w remains constant over time, but that we

are uncertain as to its exact value.

We shall henceforth describe these uncertain parameters, , with

a prescribed and constant normal distribution: .4

I
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Xk+l =(Xk + r( )N(k) (7.7)

SN- (AC TBC)Xi)
= lim - "[XT].

N-x°  i=O

We now will be taking the expected value of Xi over the random

processes w. and v i+l' and over the random vector

Since, for any vector v, w, and matrix A we can write:

T wT

v w = trace (wv )

v T(Aw) = trace [(Aw)v
T

we have

+ CT 1N-1

J = trace {[A + BC lim (XiX) (7.8)
N- i=O

If we can find an expression for &(XiXT) , then we can minimize J

by appropriate choice of C, K, , H, and r

The uncertain parameter vector, i , entered in a non-linear

fashion, so we begin by linearizing the equation for Xk , (7.6),about

the nominal value for ip

X(n,i) = X , ') + 6X(n,'6)

where n is the random process composed of w and v, Xn om  is the

state vector obtained when the parameters have their nominal values,

and SX is the perturbation in the state vector due to a perturbation,

6ik , in the uncertain parameters. Our goal is to write state equations

in terms of Xn om and 6X . Assuming small perturbations in , so



that a first order expansion is satisfactory, we have

nom~- - non
Xk+l(TlIv ' + u6k+l T1, 04) = (fl + i[) k X~l~I)

Linearizing (P by taking a Taylor Series expans ion, we get

+ - (4)+6p-4) + R5 )

Neglecting the higher order terms, i.e., assuming R 0, we have
2

D(Tp+w (DO) + 6'(6p) 60(6p) E _ 6

+ ~p 6P(6,p)

Xnom +6X =(D6D nom + 6-k + (F+6,-Nk (7.9)
Xk+l k+1 (~~-M(k ~ k

= ((-nom + FN + (,(,nom + (DX + r +(0
(~k Vk) '~k k k k

The last term, to first order, is again neglected. Separating by

independent variables, we get

-nom (nT no = 0 (o7.10ano

k6 l (ri'iP 6'o xo + (t'6 )N r6l)Nx = 0

xk+ 1(f~* k~6)X (r' I + (DOP)6Xk(t,6 ) + P6 Ok Px

(7.10b)

With X nom and 6X expressed at linear functions of q1 and '

we now consider evaluating &X X T

T T

T nom nom +Xnom T+ 46 non
& x X+~ 6x 6X +6X 6XT
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Examining the second term, we find

ri11

5X EOX = (6 Xoni + 6xk + 6rNk

F( xM C 6 + k)

(6) C6p) = O = 0 ,since -n and are independent.

nom- Tmo
Thus, J,6 pJ 0 , [X OX ]=0 = [6XX Nm Further

since

nom nn+=

rip 'l =~ k Fk.

We have that eXxT = e{LXi-X±]3 [ix.- T so we can define two

covariance matrices--

Sx T non nomT T= +6X

where X.is the state covariance due to random disturbances, and

6 X. is the additional state covariance arising from the uncertainty

in the parameters.

If we assume a stable system, then the state covariance converges

to a steady-state value, and we cam re-write the performance index as

J=trace [(A+CT BC)L+~J
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where X and TX- are the appropriate steady state covariance

matrices.

X follows directly from multiplying the governing equation for

xnom by its transpose and taking the expected value; the result is

the well-known Lyupunov Equation:

DT r FT

-0 RJ

Similarly, we have

T T6 T T T T
6 Xk+1 6 Xk+l =(6pX + d6X + 6FNi(xT6PT+-TxT +N 6'F)

= 64X T6c
T + c6x6xT T + 6FNNT 6

T

+ 6 4X6X T
T + 6 xNT6F

T

+ OXXT6c
T + 6XN T6F

T

+ 6rNx T6
T + 6F'6xT (T

Taking expected values of both sides, many terms are zero

yielding

EY +1 (Dk T + [ 6kk 6 W

+ 6 &Dx 6X'I' T + ~6 'T]T
k k (Xk~k

to solve this equation, we introduce the intermediate variable

Yk; Xnom T

TI



154

so that

) -X T - =_. 6K-6qT +6F6F'T +6d yp T +OY T60T

To solve for Y , we again write the equations for X and 6X and

take expected values of both sides w.r.t. i to get

DyPT y _ -6PT F06F T

Assuming 1 = & ('-')('-i) is a diagonal matrix, we can now write

the solution as:

Choose K, C, , F, and H to minimize J, where

qbX_--0 - X- = F()r T

TT 
TT T

FT -6 +T F @

(3-i)Y T + Y ()T 1--i

J = trace[(A+C BC)(X+oX)]

These three equations can now be solved sequentially to yield J. We can

then iterate, using a gradient search procedure, to find the minimal

value of J

The program implementing these equations will be described in a

separate technical report.

I-
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VII.4 Augmented Observability and Controllability

Choice of A, BP and F2 1

Claims appear in the literature [Katz, 1974] to the effect that

the result of optimizing a quadratic performance index, for example

N-I T T

J =Z x. Ax. + uTBu. (7.11)
i=O 1 1 1 1

always yields a stable closed-loop system. That this is not true for

a large class of systems will be shown in the examples which follow.

If A of equation 7.11 is a symmetric, non-negative definite matrix,

then we can decompose A into an mxn vector d satisfying

A = d'd (7.12)

where m is the rank of A. If we have a system of the form

x Ax + bu

A sufficient condition for ensuring stability of the closed loop

system is for the related system

x = Fx + bu
(7.13)

y = dx

to be detectable. This is directly related to a further result--

that the performance index will be finite as long as the unstable modes

of (7.13) are not observable-so a finite performance index does not

ensure a stable optimal solution.

The dual result is that the Kalman filter will be stable if the

system

-AI
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{2 1 21

is detectable.]
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VII.5 Application to Parameter Desensitization

Using exactly analogous arguments, we can see immediately that

failing to meet the augmented observability and controllability condi-

tions will have a profound effect on the performance of the desensiti-

zation algorithms. Given

J = E x T Ax + u TBu

We redefine xT A x = x TdTd x

z = dx

If a state, x, is not observable through the observations z,

then the uncertainty of that state will not be observed in J.

So, the effect of varying parameters-- such as the gains K and C--

will not be seen in the performance index, J . We must also consider

the effect of uncertain states on the estimator. It can be shown that

minimizing the aforementioned performance index, without introducing

sensitivity considerations, will yield the expected Kalman filter as an

estimator. We therefore expect the efficacy of the desensitization to

be effected by the controllability of the system {F,(FQFT )2}.

For example, consider a simple, first-order system with no process

noise T
X. = aX + U + W. .W = 0
i+i i i i i j

T
Yi = h x + v v.v. = r 6(i-j)

IN-1 +CT

J = lim Z x[ (A TBc)x.
N-No i=o

Clearly, this system is not controllable (via w) in the augmented

sense. If we now synthesize the optimal estimator



158

i+1 = ( 1-kh) i+kyi+l

We can write the augmented state equations

i + l I = -cl + 01 w i

[i+ khOL (l-kh)(a-c)-khc [xi 1 i+

Xi+l = D X i + rNi

Consider the sensitivity equations,

DY DT r TT= _ForT

0 YT _ -y 6T _ ro6FT

6OT - T -z

J = trace[ (A+CBC) (X+6X)]

T
If we assume k equals zero, then rFr is zero. It follows that

as long as $ and A are positive definite, X = 0 solves the first

Lyapunov equation. Similarly, T = 0 solves the second Lyapunov equation,

and 6X = 0 solves the third! The conclusion, of course, is that

J=O , for all choices of c yielding a stable system matrix F . And,

since J must be non-negative, we have found an optimal choice for k

Clearly, the limited control over the closed loop poles (via choosing

the feedback gain c) is intolerable. The important point for the

moment, however, is that our uncertainty in the value of the system para-

meter a has no effect on our choice of feedback gains-- k or c --

as long as the system is not controllable in the broad sense.
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Turning once again to the original dynamic equations, after

linearizing, we had (7.10)

nom nom

xi+l xi

6xi+l 0 6x, + 6x i + 6FN

Assuming k=O , we have

nom ~nom
i+l i

6 xi+ 1 = 
6xi + Ox i

With stable dynamics matrices, xnom  is undriven, and will decay to

zero. Therefore, 6x will be undriven, and will also decay to zero.

nomAs long as x = x + 6x is undriven by stochastic disturbances, the

state will decay to zero in steady state, and be unaffected by (small)

errors in the dynamics matrix (assuming a stable dynamics matrix).

This is the same type of result we see with "oblivious" filters

[Bryson, 1978]. With oblivious filters, if a mode is unexcited by

disturbance noise, then the Kalman gain associated with that mode decays

to zero. In our case,we find that if a mode is undisturbed, then it is

ignored in the desensitization procedure!

Further, in the steady state, the impact of parameter uncertainty

is determined both by the uncertainty and by the strength of the noise

driving the mode. Lightly driven modes are lightly weighted in the

performance index.

This explains the necessity for the scale factor Hadass introduced

to boost the impact of the parameter uncertainty, and the necessity for

using unrealistically large variances for parameters in some practical
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examples.

We can gain additional insight into the nature of this problem by

examining equation (7.1Ob)

Xk+ = o + k X k + 6rN + 6 ,6Xk $ 6× 0 = 0

We assumed in the derivation that the last term, to first order, can

be neglected. This term provides the direct coupling from parameter

uncertainties (in 6 ) into state uncertainty (in Xk ) , and hence

into the performance index, J. Therefore, neglecting this term has

an unfortunate consequence, especially if the state is undisturbed as

outlined above.

Unfortunately, with the elaboration of equation (7.10b), the ex-

pected value of 6X with respect to

&6Xk

is no longer zero. The formulation no longer follows directly as

outlined, and an alternative formulation must be sought.
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VII.6 Applications

A computer program was written to solve the Lyapunov equations for

minimizing sensitivity to parameter uncertainties. This program can

handle both continuous and discrete systems.

Program Verification:

We would expect discrete systems with relatively fast sample rates

to display parameter sensitivities analogous to the corresponding

continuous system. We therefore chose a continuous system originally

investigated by Hadass [Hadass, 1974]. This choice allows us to verify

both the continuous solution and the discrete solution generated by the

computer program.

A description of the model can be found in Appendix C4. It was

basically a fourth order system, with the governing equations:

I1 kO + w1

I2( +O) =-k + i- w I + w2

where the state vector is x = the input is u, and 1  and

w2 are process noise sources. The output of the system is y = 0 + v

where v is the measurement noise source. We use the data presented

by Hadass on pages 55 and 56, except we need to use different noise power

spectral densities (to match his results). Specifically:

d2 -3
Qw= [6.6 x I0-2 0 J[rad sec

0 2.0 x10

r =3.4 x 10=6 rad2sec
V
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We assume all of the model parameters are known exactly, except for the

spring stiffness, k . If we assume k has a nominal value of 25.0

and a covariance of 49,we would expect the program would give the results

presented by Hadass on pages 99 through 105. This was the case.

Next,we derived the discrete equivalents of the continuous system,

using the transformation:

= Fx + Gu + Iw (continuous)

X+ 1 = n xn + F u + 2w (discrete)

y =Hx +v

where we assumed

FT
- e T is the sample interval

r1 - f0 ')(T)GdT , where P(T) = e FP

r 2  r

The fastest roots of the physical system lie at 5 radians, so if we

choose a sample interval of 25 milliseconds, or 40 samples per second,

we expect the behavior of the continuous and discrete systems to be

nearly identical.

The results of an optimization run are presented in Table 7.1 and

Figure 7.1. The results can be compared along several dimensions.

First, over what range can we vary the spring stiffness and still

retain stability? This is given by the terms AK+ and AK , where

A.A& I
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Table 7.1

RESULTS OF PROGRAM VERIFICATION

iteration PARAM CONTINUOUS DISCRETE

0 AK - 0.344 0.344
+ 0.297 0.297

J n 1.02 x 104  1.02 x 10 4

A 1.19 x 10 4  1.19 x 104
T 2.22 x 10 4  2.22 x 10

w 25.0 25.0

3 AK - 0.625
+ 4 0.828

J n 1.12 x 10 1.15 x 103

A S.85 x 1034 4.07 x 10 4
T 1.71 x 10 1.55 x 10

w 30.2 25.0

15 AK - * 0.539
+ 1.132 ,4 4

J n 1.21 x 10 3 1.16 x 103
A 3.19 x l0 3.42 x 10 4

T 1.53 x 10 4  1.51 x 10
w 26.4 26.7

AK - relative change of spring stiffness causing instability

- relative decrease

+ relative increase

J - performance index

n - nominal, no uncertainty

A - addition due to uncertainty

T - sum of nominal and A

w - nominal spring stiffness coefficient used in estimator

• - values of AK quoted for 44 iterations

----
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Closed-Loop Pole Gravitation

Imaginary

.Root convergence path

3 0,40 nominal
3041 after 15 iterations
3242 after 16 iterations

3343 after 20 iterations

3444 after 44 iterations

z -plane

X nominal value

.5 continuous after iter.

+ discrete after 15 iter.

3 1

0.25 33/
/

3 40

I I .0 R e a l
0.
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Figure 7.1 DESENSITIZATION LOCUS
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Ak + kl k kn kn - k2+k k- Ak - k
n n

where k and k2 are the coefficients yielding marginal stability

if we increase or decrease k, respectively. From Figure 7.1 the

results are comparable.

Second, we would expect the performance index to closely match--

this is an excellent check of the two sets of Lyapunov equations. We

have a nominal performance index, Jn , which is generated without

considering parameter uncertainty; next, we have the added cost

due to uncertainty, J.; and finally,we have the total uncertainty, JT

We note a good correspondence initially, before iteration began; there

is also a good correspondence between the continuous and discrete results

after fifteen iterations-- when improvement in the index had effectively

stopped.

The final analytic criterion for comparison involves the coefficient

w; since k was an uncertain parameter, we chose to optimize the

estimator by varying the Kalman gains and by varying the assumed value

of the spring stiffness in the estimator. The result of the freedom

was an increase in the assumed stiffness-- from 25.0 to over 26. The

correspondence is again good between the two cases.

Next we look at the pole map in Figure 7.1o This diagram plots the

relevant closed loop pole locations as a function of program iterations.

The plane we plotted is the discrete or z-plane; stable roots have a

magnitude of less than 1, lying within the unit circle. We have plotted

the result of the discrete solution directly, and the results of the

continuous solution using the mapping
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z .esT

where z is the discrete pole location, s is the continuous pole

location, and T is the sample interval.

We begin by noting that even when the performance index has converged

to its terminal value-- which occurs at approximately fifteen iterations--

the pole locations for this value of the index are only loosely fixed.

In other words, there are a wide choice of filter gains and closed loop

pole locations which will yield the same value for the total performance

index. This behavior is expected when using a gradient search procedure;

the final value depends upon the starting conditions and the number of

iterations performed. The results, however, are all qualitatively

identical.

We note that the discrete solution is bracketed by the continuous

solutions. We therefore conclude that all tests comparing the discrete

and continuous cases have yielded the expected results.

An Example

As a practical example of ceducing sensitivity, we investigated

the test case presented in Appendix Cl. This example is a hypothetical

high-performance aircraft, henceforth termed the FH, modelling the

longitudinal short period mode and the first bending mode. In addition,

wind ('ists were modelled as a first order Gauss Markov process. A

,r,.te compensator was then derived.

., ,'. ,pccifications are that we have a fifth order

c. r;i r4inalIy stable modes (the bending modes)

". 'hrt poriod modes. The details of
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the model derivation are somewhat involved; they are given in the appendix.

The short period poles are located at -2.5 ± 13.6j; the bending mode

poles are located at -0.5 ± 25.0j.

Katz [1974], investigated the sensitivity of an optimal

discrete compensator for this example, and offered ad hoc design

modifications for reducing sensitivity. We intended to begin with his

initial design, and to then use the desensitization procedures to

systematically reduce the sensitivity. Presumably we could improve his

results, and gain insight into his ad hoc desensitization.

The latter objective-- of gaining insight-- proved to be our most

valuable contribution, and partially obviated our other goals. Specifically,

Katz's initial design is intrinsically an invalid design for achieving

reasonable parameter sensitivity.

Katz initially chose to work with a physical model where the

bending modes were uncoupled from the short period modes, and he further

chose a cost function weighting matrix which ignored these higher

frequency modes. Further, these bending modes were only lightly driven

by the process noise. As a result, we were synthesizing compensation

for a system which was unobservable and only marginally controllable

(in the augmented sense defined above).

Since we started with a highly sensitive system (bending mode poles

at -0.5 ± 25j, with a locus quickly crossing the axis), we would not

expect good compensation to result from ignoring these modes-- as Katz

found. His solution was to weight the bending mode states in his cost

function and to inject process noise into the dynamics for these states

(pages 103-109). This apparently ad hoc approach, however, can be
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clearly understood as soon as it is interpreted in terms of augmented

controllability and observability.

The added process noise introduces a significant covariance,

deriving from the bending mude states, and since they are weighted,

they significantly affect the performance index. The resulting design

is significantIV less sensitive, as Katz demonstrated and as theory

predicts.

From our earlier theoretical work, it is now clear why Katz's

initial design is inadequate for our program-- our algorithms will not

affect unobservable or uncontrollable modes (exactly those modes which

in this case introduce the sensitivity problem). Therefore, we abandoned

our goal of beginning with Katz's original design. Instead, we set a

lesser goal. Beginning with the final results for the FH aircraft, we

attempted to improve upon them.

The example we chose was the FH aircraft flying at Mach 1.2 at

ground level. In the model we assumed light coupling from the bending

mode back to the short period mode, a heavy injection of process noise

into the bending mode states, and a light weighting of the bending mode

states. Selecting a sampling rate of 10 Hertz, we began from Katz's

least sensitive design.

Figure 7.2 shows a root locus of the closed loop bending mode poles

versus the uncertain parameter-- the bending mode frequency. Before

optimization, the stability range as a function of w is limited

to a 16% decrease. After optimization, the permissible change in wB

is a 24% decrease. Optimization has increased the stability range by

50%.

., .. a :- - a. - " .... ' - '' ' : j
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FH Aircraft-- Mach 1.2 at Altitude 0

Locus of Bending Mode Poles versus WB Given

Compensation Designed for WB = 25 radians

Imaginary

Locus before desensitizing Locus after desensitizing

+ B =x B = 25
A WB = 23 0 B = 23

A 1> B =1 NB = 21 I
~z -plane

1 0.5j- I
-0.5 0.5 Real

-0.5j"

Figure 7.2 AIRCRAFT PARAMETER UNCERTAINTY DESENSITIZATION ,



170

Cost

This program is slow, complex, large, and therefore expensive.

Each "run" on a tenth order problem (fifth order model and fifth order

compensator) cost ten to twenty dollars on an IBM 370. The program

runs in 0(n4 ) time.

Conclusions and Comments

An algorithm for desensitizing discrete closed loop systems given

parameter uncertainly was presented. The importance of augmented

controllability and observability in this procedure was noted. The

algorithm's sensitivity to changes in magnitude of disturbance noise was

noted and several other anomalies were explained; in particular, we

demonstrated that neglecting second-order terms is not always possible.

The observations on augmented controllability were extended to

explain other ad hoc desensitization procedures.

Stability margin improvement was demonstrated for a practical

problem.

The procedure is comparatively expensive.
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Chapter VIII

REDUCED-ORDER COMPENSATORS

In many applications-- including the design of compensators

intended for implementation in digital processors-- the complexity of the

compensator is a significant issue. Typical state-space design algorithms

yield compensators whose complexity is comparable to the complexity of

the original model for the physical system. If a reduced-order compensator

is desired, the designer usually begins by trying to simplify the

physical model.

We will consider an alternate approach, suggested by J.D. Powell

[1976], which does not require simplifying the original model. Using

the program mentioned in Chapter VII, we will consider designing

compensators of arbitrary order. The design criterion will again be

to minimize the expected variance of the states of the physical system.

First, we will gain insight into the problem by working with a

simple two-body problem. Then we will consider the result of designing

reduced-order compensation for a seventh-order star-tracking telescope.
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1111.2 Design of Reduced-Order Compensation

We wish to consider techniques for designing reduced-order feedback

using modern control procedures. We begin with a simple two-body

problem, and use frequency-domain analysis to evaluate performance.

Three design techniques will be compared.

1) Classical Technique

A classical design of comparable order provides insight and can

be used to qualitatively evaluate the modern design technique.

2) Engineering Judgment Technique

The system being modelled is simplified to the desired complexity

using engineering judgment. A compensating network is designed

for this simplified system, and then the compensator is analyzed

for performance in the original system. The technique is

iterated until satisfactory performance is obtained.

3) Optimal Technique

The compensating network is designed to optimize the performalice

of the original system, within the constraints imposedby

limiting the order. As in Chapter VII, the original system will

be augmented with a compensating network, and then a gradient

search procedure will be used to choose the parameters of the

compensator to optimize performance.

For the example considered, the three procedures are equivalent for low

bandwidth systems. For high bandwidth systems, the third method yields

designs which are stable, with maximal bandwidth ind margin. The second
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method, in general, yields unstable results, and the selection of some

design parameters (e.g., weighting functions) becomes counter intuitive.

Problem:

The example system considered was the fourth-order two-body

problem:

Y(t)

Xl(t) x2(t)

which we write as

X = Fx + Gu + Fw

y = Hx

x 0 1 0 0 x 1 0
id * =_2 K2•

t -K 2 -b K b x 1 u + F w
dt 1 1

x 2  0 0 0 1 x2  +0

L2 K b -K -b x2  0

y = 10 0 1 OIx + v

choosing M1 = 2 = 1

K= 5

b = .01

we have the transfer function
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(s) = 0.01(s+2500)

s-(s+.0l*7.07j)

a system with two poles at the origin, two lightly damped poles at

7 radian/sec, and a zero near infinity.

Figure 8.1 presents the open loop Bode plot for the full fourth

order system. We note that for appropriately slow systems we can

approximate the system transfer function as:

GI() 0.51
0SI

G'(s) = -- -

Our objective will be to design a second order compensator for

G(s) which maximizes the system bandwidth while maintaining satis-

factory phase and gain margins.

Classical Design-- pole placement

Assuming a second order system, G'(s) , an optimal design using

any of the algorithms mentioned in Chapter IV will yield a second-order

compensator with a single zero:

H(s) K(s+T)
(s+*)(s+y)

Since the objective in executing a classical design is to gain insight

into the problem, we simplify the design by limiting ourselves to

real poles; we must therefore determine four real numbers-- K, a, a, Y --

to yield H(s).

Considering the Bode plot for G(s) (Figure 8.13 note that the

phase of G is always less than -1 80
° Therefore H(s) must provide
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phase lead. H(s) should also provide adequate margins and a maximum

bandwidth. Using the open and closed-loop Bode plots and the Nyquist

plot for G(s).H(s) [Figure 8.2] we can determine reasonable bounds

on these margins and on the bandwidth.

Stability

Either the crossover through -1800 degrees must occur before "C"

or after the magnitude peak at 7 radians. Since there is a phase change

of -180 ° at 7.07 radians, only the first alternative is viable; the

phase must be less than -1800 at approximately6 radians/second.

Phase Margin

The phase margin will be the minimum of the phase angles at "A"

and "C" radians. Thus, we want to maximize the height of the phase

peak aid roll off the phase curve as quickly as possible beyond "B"

radians/second. The minimum of "A" and "C" is approximately 300

Bandwidth

The bandwidth is the frequency range over which the output of the

closed loop system follows the input with less than a 3db magnitude

deviation. Looking at the closed loop bode plot, this deviation can

occur at either "a," "b," or "c" radians. If the magnitude of G.H

is greater than -7 db at point "B," then "c" determines the

bandwidth. If the magnitude of G.H is less than -7 db , then the

magnitude at "b" radians will be less than -3db . This gives two

bandwidth ranges:

1) in the range of 5 to 7 radians (point "c")

2) i'n the range of less than 4 radians (point "b")
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Gain Margin

The gain margin is the reciprocal of the magnitude at point "B"

decreasing the magnitude at "B" increases the gain margin. Thus,

<ain margin and bandwidth must be traded against one another. For a

bandwidth less than 1 radian any gain margin can be obtained. For a

bandwidth of more than 5 radians, the gain margin must be less than

2.3.

Conclusion

Our objective is to design a high-bandwidth system. We therefore

expcct to attain a bandwidth of about 6 radians, a gain margin of about

2, and a phase margin of about 300

Examples

Choosing H(S) i00(s+.2) 2

Phase margin 180 (determined by "C")

Gain margin = 2.2

Band width = 6.3 radians (determined by "c")

Trying to improve the phase margin, we can increase the phase rolloff,

but we lose bandwidth

H2 (s) 50 (s+.l1)
(s+4) 2

Phase margin = 300 (Phase at "A" = Phase at "C")

Gain margin - 3.2

Band width = 3 radians (Determined by "b")

- - t. . ~~~~'A - .s - " 
"

A"'
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Optimal Design-- with System Simplification

If we ignore the higher order dynamics of the original system, we

can design a full-order compensator for G'(s) = 0.5/s 2 using optimal

methods. We can then insert this compensator into the full fourth-order

system and examine the results.

The resulting second-order compensators arc characteristically

similar to the previous optimal designs; the closcd-lcm second-order

system and second-order compensator have a similar root locus:

When this compensator is then introduced into the full-order system,

we get a ieasonable design providing the system bandwidth is less than

10% of the resonant frequency. For larger bandwidths, however, the

high frequency poles move into the right half plane, and the system is

unstable. (Similar results can be seen by evaluating the appropriate

Nyquist diagram; the magnitude of G°H is greater than 1 db when the

phase passes through -180O .)

Clearly, this approach fails because relevant information is not

retained in the design synthesis. This information can be included if

we begin our system simplification by assuming we have perfect measure-

ments, which in our example means we can measure state x 3 directly, so

a full state optimal compensator would have a third order numerator and

denominator. Again, it is unclear in 6eneral how to then go beyond

the first-order reduction unless:
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and we can use expression (3) to solve iteratively for K and C

Similarly, x is assumed to be of order m less than n . This

yields the augmented system of order (n+m)

K2[ fgC-Kh]2 + [ 0 : [:]
Again, the quadratic performance index (3) and a gradient search

procedure are used to choose optimal K and C for the given X2

Range of Results

Note first that all four states of the original system can be

independently weighted (using the A matrix) and that noise can be

injected into each state. Therefore, there are many more independent

design parameters (weighting functions, etc.) than dependent parameters;

in this example, there are only four degrees of freedom in H(s) , but

none of the entries in K, C, f, g or h have been specified.

By proper selection of f, K, and C, we can realize any transfer

function l(s). Specifically, the choice of f determines the zeroes

of H(s) ; the choice of K and C determine the poles of H(s).

Therefore, the gradient search technique can explore the entire range

of desired transfer functions.

A .mum"-
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Rate of Convergence

The technique converges to a solution in twenty to thirty itera-

tions. The entire run, for this example, required approximately four

times as much computer time as one run of an Eigenvector Decomposition

routine for the same example.

Convergence is always faster if the search has more parameters than

degrees of freedom. For example, convergence is faster when K, C, and

f are allowed to vary. The same transfer function for H(s) results.

Examples

The results shown in Table 8.1 represent a large range of possible

designs, with bandwidths ranging from 1.5 radians/sec. to 5.9 radians/sec.

All systems are stable, with a phase margin of 220 and a gain margin of

about 2. The resulting compensator is approximately--

100 (s + .5)
(s 4+4j) (s+4-4j)

The root locus for this system is then:

Pole locations

-- Low bandwidth

-4-Hi bandwidth

The optimal design is conceptually a refinement of the classical design,

and reasonably attains the performance limits for bandwidth and margin.
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Table 8.1

SUMMARY OF DESIGN TRIALS

Explanatory Notes

PARAMS--

G(a,b) - Steady-state Design

a = Q2 /R1 , noise ratio (QI 0)

b = A/B , weighting ratio, (AI = A2 )

P(a,b) = Gradient Search Design

T -- Run Time (fraction of a minute)

(XX) - number of degrees of freedom equals number
of parameters

XX - excess number of free parameters

BW -- Band width (radians)

PM -- Phase Margin

GM -- Gain Margin

H(s) - Compensator
41
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VIII.3 Comparison -- Gradient Search and "Simplification" Design

Choice of Independent Design Parameters

A reasonable question to ask is whether an appropriate choice of

weighting functions for the "Simplification" design would have yielded

the transfer functions found using the gradient search. The answer is

no (see Table 8.2). Depending upon the compensator being matched, we

would need to specify either a negative weighting matrix, A , or a

negative covariance. Thus, using simplified models and steady-state

Riccati analysis, we cannot realize all possible compensators. However,

if we use this same model, G'(s) , as the basis for the estimator in

the gradient search procedure:

G'(s) <=> x = f x + gu + K(y-hx)

then all reduced-order transfer functions are realizable.

Evaluation in terms of Frequency Domain Criteria

Comparing the two 'optimal' procedures in the frequency domain

(Figure 8.3 through Figure 8.5) we see that without introducing the added

information about the resonant peak at 7 radians, the phase of the

compensator is inadequately constrained to guarantee stability. The

"Simplification" design is inadequate.

Conclusions

1) Both techniques are comparable for low bandwidth systems.

2) The gradient search procedure insures stable systems.

3) The gradient search procedure requires more computer time.

We are comparing a sixth order calculation (a fourth order
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Table 8.2

SIMPLIFICATION EQUIVALENCE

A compensator equivalent to the gradient design, P(a,b), could

be realized using simplification if the design parameters are chosen

correctly. For the parameters shown, 0(a,b) ,the appropriate design

parameters are given.

PARAAS Q1 /R Q2 /R A I/B A2I/B

0lO , 10) 0 1O0 10 10

~(~)2.5 0.42 3.5 -3.6

5((O3, 1) -13.7 140 6 20.1

3, 32.3.

0(10j 10) -71216 14 3.
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(D Phase margin: -100

Gain margin: 0.193

f = 10.

D (10 3,10) Steady-State Design

() Phase margin: 220

Gain margin: 2

103

P(10 3 ,10) Gradient-Search Design

Figure 8.5 'OPTIMAL' DESIGN COMPARISON, TRIAL II NYQUIST PLOTS
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VIII.4 An. Example

Having demonstrated the efficacy of the gradient search procedure

when applied to a hypothetical problem, we shall now consider an

engineering application.

The problem is to design a minimum-order compensator for a

star-tracking telescope (see Appendix C2). Using engineering judgment,

the model for the telescope was reduced from twelfth order to fifth order.

With much effort, a third order compensator was then derived. The loss

of response, however, was significant.

Figure 8.6 shows the results of optimizing the third order

compensator using the gradient procedure; the important criterion in

this application-- the speed of response-- is approximately proportional

to the radial distance from the origin. Therefore, optimization has

improved the speed of response by 30%.
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COMPENSATED STAR-TRACKING TELESCOPE

Physical System - 5th order

Compensation - 3rd order

Imaginary

Z-p lane

o.5j

< oles before optimization

A poles after optimization

Spoles unchanged

Figure 8.6

LOCUS OF COMPENSATION OPTIMIZATION
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Chapter IX

I:IPLEENTATION ISSUES

Implementation of the algorithns presented in earlier chapters is

generally straightforward, but some interesting computational issues do

arise. These issues will be the focus of this chapter; specific

details, such as program descriptions and source code, will follow in

a separate technical report.

The algorithms described in chapters [II and 11' were implemented

in a hybrid mixture of Fortran and C. Since many nunerical analysis

programs -- the QR algorithm, Singular Value Decomposition, etc. --

already exist in Fortran, we chose to use these programs as written.

New programs, were written in C , a language often better

suited to this type of procedural programming. (In addition, our

system provides much better support for developi.,!g C programs.)

In retrospect, the concommitant advantages intrinsic in using

two languages may not have outweighed the disadvantages of increased

complexity and of pioneering the interface between the resulting

bifurcated program. Two Fortran compilers and two language interfaces

later (and after a tremendous amount of work) the language processors

were ultimately debugged, and a powerful signal-processing library

evolved. The diversion of effort required, however, was considerable.

The decision to develop a hybrid implementation was made too

lightly. In research, as in industry, decisions which invole signif.-

cant commitments if programming effort must. be made after carefully

considering the consequences. The requisite pioneering required was

uniformly underestimated.

C is a language similar to Algol supplied by Bell Laboratories with

their Unix operating system.
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IX.2 Algorithm Implemntat-on

By exploiting the structure of the arrays, many speed advantages

can be accrued. For example, to multiply two general matrices requires

n multiplications (using traditional sequential algorithms). To

multiply two lower triangular requires n.(n+l)(n+2)/6 multiplies;

for a sixteenth order system, this is an 80% reduction.

In square root algorithms, we can exploit this characteristic

quite often. If the square root of a quantity C is L , where

C = LLT  and we normally compute with L , then constrain L to be

T
lower left triangular. If we normally compute with L , then constrain

T T
L to be lower left triangular. In both cases, C = LL

Gaussian Elimination can also be used to simplify multiplication.

If we have four block matrices-- A, B, C, D-- and need to calculate

D - CA- 1B , this is equivalent to arranging the blocks in an array

EA :j
and performing Gaussian Elimination onB and D to bring this array to

the form

FA 0]

IC El

E then equals D - CA- B

"," * . ......................... . . .. . . . r ' . ..
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!X.3 Parallel Implementation

Several papers have been written on using special hardware

configurations to assist in computing these algorithms. Sameh and

Kuck [Sameh, 1977] present a QR algorithm requiring O(n) processors

which results in a speedup of 0(n/log 2n)

Morf, Dobbins, Friedlander, and Kailath [Morf, 1978] made a similar

observation in noting the applicability of parallel processing to square

root algorithms. Recalling Section 111.7, they proposed partitioning an

interval of data into subintervals within which state estimates are cal-

culated based only on data within the subinterval; a separate processor

then calculates the estimate for each subinterval. Only then do the

processors need to communicate, to "connect" the subinterval -ndpoints.

These algorithms look extremely promising, but other alternatives

are also attractive. For example, in the doubling algorithms, we

could perform Householder reflections in parallel, with each proces'or

operating on a different column or a different row. As we found in

Chapter VI after looking at results, it is not necessarily obvious

which solution is preferable. Memory dynamics and intra-processor

interactions can profoundly effect the efficacy of an algorithm.

The interaction between algorithims -.nd their hosts, and the ensuing

sypergy, is a largely unexplored area, espccially for parallel proccssing.

More research is needed to ideatify the underlying structure of linear

system theory, to understand the communication of information required

during tle processing, and to bound the error propagation as parallelism

is exploited.

-!*,-~ '~ *;
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IX.4 Special Hardware

The parameter optimization program of Chapter VII, in solving a

fifth order problem, cost tventy dollars to run on thie IM 370. The

4
algorithm is order n . For a sixteenth order problem, the cost soars

to $2,000 per design cycle. The question is whether to focus on [mprovng

the algorithm or minirizilig the hardware costs.

The IBM 370 rents for approximately $1300 per hour. Recently, very

fast, sequential processors have been introduced which are approximately

one hundred times faster, and rent for $75 per hour. If one could be

adapted to the task, the 16th order system could be solved for $1.15

instead of $2,000.00.

The transition, and consequent savings, is not straight forward

because the fast sequential processor (henceforth referred to as an Array

Processor, or AP) could not be programmed in FORTRAN. Programming them

in their language is so primitive, by current standards, that it can only

be justified for processing very large volume problems. (For example, a

Fast Fourier Transform program was estimated to take 200 hours of program-

ming effort.) Industry experience indicates we could program and debug one

machine language instruction per hour; the parameter optimization

algorithm is over 2,000 FORTRAN statements in length.

As an alternative, the AP manufacturer supplied FORTRAN callable

subroutines for nearly all vector operations, and for such standardized

computations as matrix inversion and Fourier transforms. Performance

data for our system using this software appear in Figure 9.1; execution

times are shown for vector multiplication (VMIJL), vector initialization
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Figure 9.1 ARRAY PROCESSOR PERFORNANCE
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(VCLZ), Fast Lo0 riL.' tlransorms (FFT), and data transfer (DATA) as

Function of vector length .X. Note that the crossover between host

and AP vector multipl' occurs near N = 60 Our AP can hold a 90x90

matrix. Thus, manipt .ting colLuinns of a matrix in the AP is only

marginally faster than in our host (and additional AP memory would

provide little improvement).

Conventional wisdom has held that array processors tend to be

input-output limited; the array processor, as a peripheral device

attached to the host, must transfer all of its data to and from the

host memory. For most matrix problems and many vector problems, however,

the real limitation lies in the time required for the host to initiate

the next AP program. This limit makes few tasks besides Fourier

transforms look attractive. As a consequence, despite diligent efforts

at applying this system to projects in our laboratory, we have yet to

exceed ninety seconds of AP useage per day (as cf March, 1978).

These results are consistent with measurements made at other

installations. Therefore, if the research potential of array processors

is to be realized either the host computer must be dedicated to serving

the AP, or the AP's software and interface hardware must be improved

beyond what is currently available.

The array processor, although capable of resolving the speed-cost

problem, could not be used because of these weaknesses.



Chapter X

CONCLUSIONS

The important conclusion from the first chapters is that square-

root doubling is an attractive alternative for solving the discrete-

time Riccati equations arising in estimation and control. Numerically,

the algorithm compares favorably with the alternatives: the speed is

comparable up to tenth order, the memory requirements are comparable, and

the accuracy is comparable. The primary advantage of square root doubling

is the broad class of problems it will solve. This expanded class

includes systems with singular dynamics matrices (not handled by

eigenvector decomposition), and the SQD algorithm handles problems with

repeated closed-loop eigenvalues sans difficulty. As noted, eigenvector

decomposition can presumably be extended to also handle these cases.

From a theoretical perspective, a direct, algebraic derivation of

the square root doubling algorithm was presented. The role of orthogonal

transformations was elucidated; this included rank compression and the

implicit calculation of matrix inverses. In the process, several

questions concerning the structure of the algorithm were raised.

A pure scattering theory derivation was given. Defining the square-

root of a scattering matrix-- actually one "rail" of a symmetric network--

these questions were readily solved. The J-orthooonal transformations

appeared both to unwind loops and to "compress" data paths. The matrix

update arising in the scattering framework was now clearly different from

the error covariances being updated .!ith the square root algorithm. Trans-

mission path variables were not amenable to square roots, whereas vari-

ables cutting the line of symmetry were.
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In the continuous case, eigenvector decomposition still appears

to be the preferred choice for solving the Riccati equation. This

result ol lo,, S Oecause other alternat ives either require

choosing a discretionary constant or inordinately constrain the class

of solvable problems. This conclusion may change either from the

introduction of new algorithms or b,, specifying a procedure for

selecting the discretionary constant.

In examining systems with singular transition matrices, a published

example was considered, and shown to be a suboptimal solution which

performed well, within the problem's context.

A discrete-time parameter-uncertainty algorithm was evolved from

previous continuous algorithms. Limitations on the algorithm were

found:

1) uncertain modes had to be observable through the cost

function, and

2) uncertain modes had to be excited by external disturbances.

This latter constraint arises, at least in part, from simplifying assump-

tions made during the derivation; these assumptions led to the introduction

of an unphysical scale factor introduced in an earlier study [Hadass, 1974].

In applications, this approach elucidated the ad hoc desensitization

of an earlier work [Katz, 1974]. When applied to a realistic example,

it improved the sensitivity range by 50%. The procedure was straight-

forward, but required 0(n 4 ) computer time.

This algorithm was applied to the design of arbitrary-order compensa-

tion using full-system information. Excellent results were obtained,

both for created problems in the frequency domain and for an actual

telescope example. Again, the computation required was high, but the

A"
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total man hours required was significantly reduced compared to a

classical design.

The adaptability of system theory algorithms to specialized hard-

ware was examined and found very promising. The adaptability of present

hardware to present algorithms was found lacking. Software research,

including new languages and fundamental numerical algorithms, is

required. The area promising the most return for invested research,

however, is probably in hardware, including special processors, innova-

tive memory systems, and external interfaces.
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APPENDIX Al

SOFTWARE FOR SOLVING THE STEADY-STATE RICCATI EQUATION
Implemented in 1978 on a DEC PDPll

Part of this software implements many of the algorithmz developed in

Chapters III and IV. Other programs provide the support required to

properly interpret the computations. These routines cannot be considered

design tools; they were written with research as the prime objective.

.,e feel, however, their design philosophy will lead to effectiv'e design

tools as our repertore of software expands.

We chose to implement each separable portion of each algorithm as

an individual program, thereby minimizing memory requirements and

cleanly modularizing the software. For example, there are separate

programs for calculating the requisite controller gains, the desired

filter gains, the loop eigenvalues, for generating data, and for

plotting the results.

Our operating system, UNIX, provides facilities for easily con-

necting the output of one program to the input of another. For example,

to generate the Kalman gains for a given model ( stored in file "model")--

where we wish to vary the noise parameter, q-- we would feed the input

data into a generator program ("gen"), which feeds into the square root

doubling algorithm ("dbl. dk"), then into the eigenvalue routine ("eigen"),

and then into an editing routine which extracts the Kalman gains ("strip").

On our system, this is entered as the conrand:

gen model iq qjdbl.blkleigenjstrip K

Ten seconds later the results appear at the terminal-- and only the

results requested (the gains K.
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The currently available software is listed in Table A.l.1.

Program Modules

Mainline

The mainline code is written in FORTRAN, and does little more than

call subroutines.

Numerical Analysis

The numerical analysis routines closely follow the TMSL package,

and are written in FORTRAN. The routines used include the QR algorithm,

Householder transforms, Cholesky decomposition (for taking square roots

of positive definite matrices), and a singular-value-decomposition

routine, also for taking matrix square roots.

Input-output

A centralized module provideq input and output capabilities.

Matrix support

A final module provides all requisite matrix operations-- such as

matrix multiply and Gaussian elimination-- on block matrices. Matrices

are deFined at compile time to have a prescribed structure, e.g.,

to be of tie form:

P m n

P 1 3 S

n 2 4 6 matrix 3

IM'SL - International 'lathematics and Statistical Libraries.

L , . . , V.,. .. "-
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The programmer could then multiply block 2 of matrix 3 by block 5,

leaving the result in block 6 [an (n by p) times (p by n) calculation]

by writing

call mul(3,2, 3,5, 3,6)

Arguments come in pairs; the first element specifies the matrix, the

second specifies the block. To facilitate the programming process,

this code was originally written in C (an ALGOL-like language), and

was later translated into FORTRAN.

Input Format

The input format is nearly completely unrestricted. The user

merely specifies an array name, followed by data values. The input

routine checks for consistent dimensions, and for a complete input

set.

A nearly self-explanatory input file appears in Figure A.1.1.

Note that comments are any string of characters appearing between

/*' and '*/'; comments are completely ignored by all programs. a
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[mplemented Sofh:. i ,'.

Table A.l.I

NAMkIE FUNCTION

gen Take an existing model and modify it repeatedly,
according to specifications supplied frum a table

eigen Find all appropriate eigenvalues (given , K,

and II); cioen finds both the onen and closedi loc. values

strip Delete unwanted output

dbl.dk square root doubling, discrete, Kalman gains

sqr.dk square root, discrete, Kalman gains

ric.dk Riccati iteration, discrete, Kalman gains

dbl.blk bilinear square root doubling, Kalman gains

dbl.dc square root doubling, discrete, controller gains

disc Eigenvector decomposition, discrete

optsys Eigenvector decomposition:, continuous

All additional software descriptions, listings, etc., will appear in

a separate technical report.

I
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SOLUTION OF THE STEADY STATE RICATTI EQUATION
Tue May 23 11:00:45 1978

Square-Root Doubling
Revision I

star. 1

Number of
states-- 4
disturbances-- 1
measurements-- 1

/*
* Test of star tracking telescope model

* Two-fold problem:
* 1) Has repeated roots, marginally stable
* 2) Incorporates two delays.

*/

printflag = 50
iterationcount = 30

timing cycles = 10

phi
1.0 1.0 0.0 0.0
0.0 1.0 0.0 0.0
1.0 0.0 0.0 0.0
0.0 0.0 ].0 0.0

gamma 0.5
1.0
0.0
0.0

q
100.0

h
0.0 0.0 0.0 1.0

r
1.0

Note:

First comment supplied by pre-processor

Figure A.1.1 SAMPLE PROGRAM INPUT FILE
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APPENDIX B1

DESIGN OF A DISCRETE ESTIMATOR FOR THE
SPACE LAB INFRARED TELESCOPE

From the paper by J. David Powell and Eric Parsons, [Powell, 1978] we

have the following model for the gyro star tracker (see also Appendix

C2):

0D rl -/T2 1
f DN} n1 + n + F nn_ (1)

n D 0 1 [.-l TJ nl nl

n O]xn1 + wn - Vn = H + Wn - Vn (2)

We now follow their development, elaborating vwhere necessary to clarify

issues.

We assume the following disturbance characteristics:

ni = N 6.. 8(n = 0 (3)1 3 13

8(vi V) T R 6.. (Vi= (4)

T
-(v i ) = R . F(v 0 (4)

T&¢(nwj)=Q . (w.) 0(7)T (6)

wT 0(7)

V.w T 0 (8)

Replacement by Equivalent System with no Delays

Applying (1) to (2) recursively, we get

n =  
n-i + 7I n-l

= X -2 + n2+Fn
n - n-2 + n-i
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Assuming is invertible, this gives

= -2 -2 -1F~
X n 2  x n  - F r n _ - F n n -2

-2 -2 -1
Yn= H(P xn r n-l n_2 - vn + wn

Defining H = 2

v= w -v - HFTqn1 - H- FT-n-2n n n-i -T

Yn = RXn + vn  (9)

However, it is no longer true that

F (niv) = 0

C (viv j) = C 5ij , for some constant C.

We begin uncorrelating the noises by modifying the state equation.

Since

Yn -Hqxn-1 - HRFrn-I - v = 0

we can introduce a weighting matrix, L , such that

Xn = (I-LH)PXn-1 + Ly + (I-LH)Fn - L vn (10)

Since Lyn  is a deterministic input, we are free to choose L so that

the new process noise is "uncorrelated" with the measurement noise v

thus:

1.
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T-T T-T

,{(I -Lfl)Frn 1  - L Vn).V T} =  C'{nn-l.V T v1 )

(I - Lf) rtjn_1- L (w D- V(n-wfr-n-- vI rn n - 2) -rin- I TRT-n-2 r T TT)

= -(I-LH)FNTH 
T - LQ - LR - LPNFT 

T

-1 TNrT -THT

T-T -1I T -T -T)
= -t'NF T1 - L(Q+R+1- FNFT H

or, defining R such that

- -T- TT -i T T

(vi T = Q + R + IFN THr + IIi- 1N TT IiT

11 (12)

= Q + R + H(CNFT +FNF T T AT

Substituting (12) into (11), and setting (11) to zero yields

0 = (I-LH)FNFTHF - LR

F- PNTA T (HFNpT F T_R )-

S FNrT T (Q+R+Ilqb-IFNr -T -T -I (13)

Next, we examine the resulting measurement and process noise correlation

functions:

=~~~ )w ni TT T-T T
Cn(n-1 e (w -vn- InF. Fr -lo ~ ( v _n9 I' H ti P H)
n n n n n- 1n- n-1 1 n-2 n-3

-1 T-T -
= 4 ['NIfNFE = R (from (Sj)

Ro if i=j
F (viv )" 1 if li-il =

0 else

IAI- Setki
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- -T n I T~~2 )(nn in2) = n 1 L(wnv _ - 2))( T
IT

- LIhp-IFNFT = N1

; INo if i=j

T ( )=if 
li-jl

0 else

-T
C(Vnn 0 , by construction

n n-1
r rVn) = {(w -Vn-Hi -H- ri ) ((I-LH) Fr-L(w -v -Hrn-nn n( n n-i n-2 n n~i n-i- n

-- TTHT 1r Tn )) }

= -HFNIT-THTLT = C0O1

8 (vn T 2 ) = -Hc-I NET =CF

Co , if i-j 0

( (i 1 = CI O if i-j = 2

0 else

Numerical Results

= 1 -T] =- [1 -2TJ H 2~ ( 1 -2T]

5 3 TT4 4N 1R0 ;Q + R + T4 N L -N T ] (Q+R+ -

- 34 2T

4N 0 = (ILf)[ T/3 T3/2] N

IT 21T2J T
T4  T3

I= L=T T 
A-]

-- 3 T4  LT
Col = T L- N

- T T3
CI 10 4 N T- NJ
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T 4N
Assuming T >> (Q+R)

L = [3]

6/T]

5 4 404 '10 0

- r54 3 - -34 33 - 3 3
N =I-T ST N NT= T  T N N 1  -0 No

0 T 2 0T 2~ 1 fT3 3T 2 j1 1

- -9 4
C0 1 = T [T 2T 3 ]N

C = T ET4  2T 3 ]N

Note that

II (vil+0)3I 'x 0.3 x{{&(iv T) (14)

11&(niri+ )1 0.13 x F( i T ) 11

for many cases.

In conclusion, for this example, when process noise dorinates

measurement noise, the assumption that these disturbances are white

and uncorrelated breaks down significantly. We saw in Chapter V that

this leads to suboptimal results.

" F. . a: i , "' -
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Appendix C

EXAMPLE PROBLEM FORMULATIONS

The following appendices detail the problem. formulations

used as examples in the body of the text. They are included to

facilitate replication of the results presented earlier.

4i'2



213

APPENDIX Cl

DERIVATION OF F-H AIRCRAFT EQUATIONS
A Synthesis of Paul Katz's Example Problem [Katz, 1974]

Admonitions:

The references used to synthesize the F11 example have several

significant typographic errors; in some figures terms are unquestionably

missing, the derivative terms are of the wrong order, or the subscripts

are incorrect. There is insufficient background information presented

in the cited references to reconstruct these equations; corrections were

normally made by appealing to consistency in those cases where the

correction was unclear.

Der ivati oa:

If the objective is to accurately model the FH example aircraft,

then the best set of equations and coefficients appear on pages 256-259

of reference 6. These equations incorporate three bending modes, a set

of flight conditions which don't match those of Katz, and no wind gust

model. The wind gust can easily be introduced by using Katz's first

order Gaussian model, and the substitution

CE T + -- g
0

The sequel assumes the objective is to match Katz's results, using

his proffered equations, reference 1, pages 45-50. This is difficult,

since the equations and coefficients are inconsistence even within the

section just cited; these equations were actually drawn from several

diverse sections of references 2 through 6, they were not copied

accurately, and the equations which were chosen as an original basis had

l .... . . . , .,
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ambiguities which were not resolved satisfactorily. These problems

will be pointed out in the sequel, but no attempt will be made to

analyze the impact.

We begin by reproducing Katz's initial equations (pp. 45-S0, Ref. 1)

ZI

[1] (Mq + (M)T+ (M) 6ee + ( k b \6 e ) x3
[]q UT+ ee b

Z2 q+ a iZ 6e F~

[2] cT = q + (aT +( ) Wg + - e  g

[3] w g = T_ w + r gg g j

3 =Wb 4 +4 'g

[5] 4 = (-Wb)x 3 - fb b)4+ (w k1 Z )e + (k 2 wb Zca)
e

output

[61 q = q + ( ) x4 + Vq

[7] nT = U0 (q-) + (Z + + V

where

1 -1

a 0 W q - pitch rate, sec

- angle of attack, rad

w - gust velocity, ft/sec

_77 x4 - bending mode velocity, rad/sec

T '

&x~k1&6Lw Zi-"
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From notations in referenc:e 2, Katz apr~a -antly began with the FH

simulation appearing in Appendix Mi, pgs. 382-383. This is a 7th order

simulation, incorporating two bending modes, presented with no explanation.

The higher order bending mode is simply dropped in the derivation of the

fifth order model.

We have, removing obvious typographic errors--

£81 q = (M q)q + (M d)a + (M%)ai + (M6 ) + (M1 )6s

q a a1e 5

£9] - q + (aUT + U0 e 6e + 6

4= (w 1 )x

e5 =-x 4 - (2f)x5 + (4Z, )6e+ (0.6 Z)J i
e

gw w Tg + cYrw

1
a T = a. - -w Z = 070T i U0  g la

"'= -0.u00

101 q T = iZg e. + Z' eb + qIg

n cg= U0 (q-a i ) f = 0.01

at cg

naT =nar + (fla)e5 + (22ae6

e6 = -6  2nd bending mode

dropping the 2nd bending mode and spoiler input, and making the following

change of notation,

......-.
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x4 3 Z Y

w la 1

x5  x4 1 1 W - b

Tw T w Zig z 1

The remaining question involves determining whether a , in equations

[8-9], should be a. or aT We shall investigate this point in a

moment.

[11] q = (Mq)q + (M)a ? + (M;)a + (M6 )6 e

a e0 Z 0
U 0  T e

w

g 9 g nw

x3 W x4

=4 Gb(- x3-2f 1  + 4Z 6  e + 0.6 aa
e
1 4

[12] qT Z1 e5 + q =q+ + K {we assume K=0}

7

r= U0 (q-a ) + (Za)q + x4

We begin by noting an apparent discrepancy between equations [1) and

[11]. Working now from the equations given on page 257 of Ref. 6 and

pages 18-22 of Ref. 4, we get

7 -, zZ Z Z6

[13 = q + (_2+ w - 00ga + )
TU0 W 0 g -O 9 Ul 0 U0 T U

[14 q + (Ma) + (M + e W,

T M )e U 9 U
0I

..... . ..
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Z
but TU therefore equation [13] 1 [2]UwU

[14] 1 Ll)

This derivation questions the veridicality of the equations Katz worked

with. Equation [1] does not match either equation (11) or (14).

The additional bending mode coupling term, found in equation [1], could

not be found explicitly in any of the references. Making a very rough

estimate of the parameter

y = kb
e

using the data presented on page 258 of Ref. 6, we would expect y to

be in the range

10 2 < y < 10 1

Katz never explicitly cites the value of y , but to match his results,

he apparently used the value of 10

Coefficients: the coefficients Katz presents on page 48, Ref. 1, cannot

be directly applied to equations [1-71. The translation, however, is

straightforward;we again have the choice of using Katz's data, or the

data appearing in the references-- which differ occasionally. (See

Table C.I.I.)

Bal
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Table C.1.1

COEFFICIENT REFERENCES

Coefficients:
Used in From Ref. 2 Ref. 2 Ref. 2

Found in Katz Eq. [2-7] pp. 190-191 p. 382 192

U 0x x x

0qx

M x xx

M. x xw

x x

T6 x x X

T x x
w

f x

6 x

6emax

zy x x

kI x x x

kx x 0

0 ©
a

k b x x

MO x

fl x x

q

Vn X x

(con 't)
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Table C.1.1 (con't)

Katz used 14 feet, which is the value given for 0.
Calculated, however, the value would be

9 - i/12 = 320.4-77.0 = 20.3 feet
cg 12

The simulation gives a value of 0.6 for k2  Katz

used 0.06.

0 z = z * U M = M • u = . • U

By empirical induction on Katz's data, Z' = -7.23 x 10
- 2

e
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Design parameters:

Weighting matrices--

Katz originally used A = 0.12

{Ref. 1, page 7S} 1 0

0

0 00

L01

B= I

This choice .yield.s a non-observable cost function; to produce

adequate sensitivity margins he later adopted [Ref. 1, p. 105]

f [0.1 1
ii

0

B= I

Noise statistics--

Katz originally assumed a zero mean normal distribution for the

wind gust noise (unit variance). This choice yields an oblivious

filter, and forced the introduction of F4 , whose value appears

on page 109, Ref. I.

Measurement noise statistics are given on page 85 , Ref. 1.

Results:

Pole locations are given on pages 50, 58, 78, 96, 105, 109, 132,

and 144 , Ref. 1.

In interpreting these results, carefully determine

Orr
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1) kb

2) T , the sample rate

3) A

4) r 4

With the proper choice of these parameters, equations [1-7]

and Katz's coefficients yield his results to within a few percent.

Addendum:

Reference 7 became available after this writeup was completed.

Longitudinal equations for the FH example occur in two places, pages

2-4 to 2-5, and page 2-61. Two points need to be made:

1) Katz assumed Z = U Z , etc. I have not studied this

derivation, but it should be noted that the authors of the

basis equations-- Sutton, et al.-- apparently used the

transformation

Z = U Zw/57.3
a

2) The conjectures concerning the inconsistency between equation

[1], 111], and 114] is reinforced if we look at equation (1)

on page 2-61, where

q1 = N q + N" + 9(-ag) + e 6eq g e

S= (+Z )q + Za0-.a ) + NI 6 -
e q

where a is the angle of attack due to still air. Katz used,
g

instead,

q = NI q + NI(c-ag) + I(a-ag) + NI6 etc.

but a $ 0g

.... ... . ... , . 2i .. . S
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APPENDIX C2

STAR TRACKING TELESCOPE

(Original Source: reference [Powell, 1978])

The Spacelab Infrhred Telescope facility [Ref. 1] is designed

to allow astronomers to see more than a factor of ten deeper into the

universe than is currently possible with ground based telescopes. The

video-inertial pointing technology for this system has been under

development at Ames Research Center for several years [2,3,4]. The

design combines gyro and video information to arrive at an attitude

estimate which possesses the best characteristics of each sensor [5].

The example in this appendix focuses on the estimation of the

gyro drift using delayed measurements from a video star-tracker. We

will assume the video sensor and the processor implementing the filter

are synchronous in operation, and have comparable delays. The analysis

is for steady-state, single-axis fine pointing of the telescope; slew

and other induced disturbances are not considered.

Although the gyro noise is not actually white in practice, after

sampling the disturbance noise is apparently uncorrelated [5].

The filtering problem and gyro noise model appear in Figure C2.1,

and can be modeled as a two state system:

[ D = [1 ] ] + T2/ wn

Yn [1 0] [GD] vn +

n-2
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where

T = the star tracker integration time and sample time in seconds;

8Dn = the random walk drift error of the rate integrating gyro
output at time nT seconds;

D = the random walk drift rate at nT seconds;n

wn = a discrete white random sequence driving the random walk
drift rate (units are arcseconds/second,;

z = the delayed drift error measurement in arcseconds;~n

v = the discrete random noise in the star tracker measurement
n in arcseconds;

Tin = the discrete random noise in the RIG measurement resulting
from high frequency rate noise (units are arcseconds).

The covariances of the discrete random sequences are defined as:

N = <wn 2> related to the rms gyro drift

2
R = <v > , mean square star tracker errorn

2
Q > , mean square high frequency RIG (Rate Integrating

Gyro) output noise.

where <> denotes an ensemble average. We further assume that all

noise sources are uncorrellated, that is

<w v > 0
n n

<w n > 0

<vn > = 0

and we further assume the variables are zero mean.

For the example used in Chapter V, the following coefficients

were used:

T = 1 second

N = 0.5 arcsccond/,;co , or varied

(R+Q) = 1.0 arci co ds

I.. -
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Appendix C3

PAPER MACHINE MODEL

Control of a pressurized flow-box for a paper machine.

This example was originally presented by MacFarlane [MacFarlane, 1972],

and subsequently was written up by A.E. Bryson [personal notes, 11/72].

Later, J.D. Powell modified the parameters, as an academic exercise, to

couple the states.

Bryson's Version

a ir - p + p L

Ua+U 
a

stock -- ph + h Stock is deposited
+u on endless belt

H = h + P--= total head at slice (perturbation in),Psg

h = perturbation in stock level,

u a = perturbation in air valve opening,

u = perturbation in stock valve opening,

(") denotes mean values

Plant Model

a 2  + b 2 [ua] ai's and b 's constants

-a3 [ , b 3  us

.---7.- - .-- - -- - - - --



I's

Control Objectives

(a) To keep H and h near zero in presence of disturbances using a

small range of available u , u

(b) To be able to command small changes in H and h separately with

quick response and good steady-state accuracy.

Numerical Example

-i -1 -l
For a, = .395 sec , a2  .0115 sec , a= .011 sec

bI = 1.038 inches of H220 per sec per unit of ua

b2 = .0336 inches of H20 per sec per unit of us

b 3 = .000966 inches of H20 per sec per unit of us

and the choice that we are willing to commit 100 units of u a for

H = 1 inch H20 and 1000 units of us  for h = 1 inch H.0

and the choice that we want the system to "settle" for an Hc

within 2 sec. and for an h command in 5 sec., and the choicec

that levels of H and h be about the same, a good choice

of weighting parameters for the quadratic performance is:

2 1 2 12
A h = 1, ACH =  sec A e = -5 sec , Ba 100 s 2

H n (1000)

Powell's modified version:

air p + p L

auaU

stock--V, + h Stock is deposited

U s on endless belt
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Pg 0.30. 1 H +0 H U ]h -0.05 0 0 h + 0 O. 7 u sos
0 0 -1 ua  1

where H = h +-P-- = total head perturbation, in meters
s

h = stock level perturbation, in meters

ua = perturbation in air valve opening

u = command value to air valve, in /secc

u = perturbation in stock valve opening, in kg/sec

() = denotes mean valuey =: °l 0 0]
This system was discretized using a sample rate of five Hertz to

produce the following model (from Abbas Emami):

ST

x = 4x + Flu i + P2 wi  &'v iwT) = Q
*~ i1 1J i.

Yi =Hx +v. S(v vT) = R

T T
J = E(xiAxi + uiBui )

where ui is the deterministic input. The parameters are
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0.96069 0.019605 0.17757

L -.0098023 0.9999 -.00092396

0 0.81873

F.018479 .19743- F' 0 01

=LI6.2 x 10-5 .139 F2L 0

H [1 0 01

- - -3
A ~1 0 0 xl R0B[10 ]x0

10 0 1

References

MacFarlane, A.G.J. "Notes on the Vector Frequency Response Approach
to Analysis and Design of Multivariable Feedback Systems,"
August, 1972.
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Appendix C4

STANFORD RELATIVITY SATELLITE [Hadass, 1974]

The plant used in this example was originally investigated by

Bull [Ref. 1]. The governing equations for an approximate model are:

I = + w

12(¢+0) = -kp + U - wI + "2

and a pictorial representation can be found in Figure C.4.1.

From Hadass, we get the following state space description:

x [ 0] ~

O 1 02 0 F0 0 0
O 0 bc/i 2  0

0 w]

0 0 0 1 0 0
0 0 o 2 ba/I ~ L1 2 0 10

y =[ 0 0 O]w + v

where w2=k/13 , a = k/I1 , and 13 = (1112)/(I1+12). Values chosen

included
2 -2 102

ct} = 19.375 sec b/l, = 1.3175 x 10

2 25 sec
2  -ba/I = -1.7 x 102

o
212 = 250 kg m
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b

Figure C.4.1 SIMPLIFIED MODI V. OF THE STANFORD RELATIVITY SATELLITE



2 SS

ra Q [6.6 011-

6(vv) = R = 3.- x 10 .6 rad 2 sec

The cost function weighting matrices were

A = '1. 2 x 10 4  0 0 0

0 5 0 0
0 0 6.5 x 105  0

0 0 0 6.5 x 103

Note that this data was chosen to match Hadass's results, and differ

in details from the inodels he describes.
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