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ABSTRACT

This report summarizes progress on projects carried

out at the Electronics Research Center at The University of

Texas at Austin and which were supported by the Joint Services

Electronics Program. In the area of Information Electronics

progress is reported for projects involving (1) nonlinear

filtering and estimation, (2) electronic multi-dimensional

signal processing, (3) electronic computer system design and

analysis and (4) electronic computer software systems.

In the Solid State Electronics area recent findings

in (1) basic solid state materials research and (2) research

on instabilities and transport near surfaces and interfaces

of solids are described.

In the area of Quantum Electronics progress is pre-

sented for the following projects: (1) nonlinear wave phe-

nomena, (2) atomic and molecular electronic processes and

(3) high power laser systems.

In the Electromagnetics area progress in (1)

electromagnetic signal analysis and identification, and (2)

Guided-Wave Devices for the far infrared-mm wave spectrum is

summarized.
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Research Unit IE9-1. NONLINEAR FILTERING AND ESTIMATION

Principal Investigators: Professor S.I. Marcus (471-3265)
Professor T.J. Wagner (471-3183)
Professor G.L. Wise (471-3356)

Research Engineer/Scientists: L. Devroye, H.V. Poor

Graduate Students: E. Abaya, D. Halverson, K. Hsu,
N. Khazenie, F. Kuhlmann, C.H. Liu,
D. Michalsky, H.Y. Wang

A. OBJECTIVES AND PROGRESS: This research unit is concerned with
analytical investigations of the statistical aspects of nonlin-
ear systems. Specifically, the design of nonlinear systems for
signal detection, the analysis and design of nonlinear estima-
tors, the nonparametric estimation of regression functions, the
stability of stochastic systems, and the performance of adap-
tive delta modulators have been investigated.

Nonlinear Systems for Signal Detection: The objective of
this research effort was the analysis and design of nonlinear
systems for the discrete time detection of signals in corrupt-
ing noise. We were concerned with the situation where the
sampled data were not mutually independent, thus taking the
problem away from the usual statistical framework and putting
it into a more realistic engineering framework. In practical
signal processing situations, data is often sampled at a rate
high enough to rule out the assumption of mutually independent
samples.

Some recent work addressed this situation by study-
ing the design of memoryless detectors for a constant signal
in m-dependent noise. By memoryless detection, we refer to
a zero memory nonlinearity followed by an accumulator whose
output is fed into a threshold comparator which announces
the detection decision. In [1] we extended this technique to
the case where the corrupting noise was assumed to be @-mixing.
Modeling the noise as a '-mixing process allows a great deal
of flexibility in the dependency structure of the noise and,
loosely speaking, only requires a "decrease" in the dependency
as samples are more widely separated in time. In this work,
a detailed analysis of the detector was made and various con-
sequences of approximating the optimum zero memory nonlinear-
ity were investigated. In [2) the work done in [1] was extended
to the case where the signal was random and not constant. In
this extension, the signal was required to be a %-mixing
random process, an extremely weak restriction.
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The situation considered in [3] ahd [4] was also
concerned with memoryless detection of a constant signal in
additive 0-mixinq noise. However, in this work we constrained
the zero memory nonlinearity in the memoryless detector to
be a polynomial. With this constraint, the design of the
detector was considerably simplified. For example, the method
given in [1] involved the solution of an integral equation of
nonstandard form. However, when the nonlinearity was con-
strained to be a polynomial, the technique simplified and
involved only a system of linear algebraic equations, which
can be solved in a straightforward manner with the use of a
digital computer. Also, it was shown that in many situations,
the performance of a polynomial memoryless detector approached
the performance of the optimal memoryless detector as the
degree of the polynomial became sufficiently large.

In [5] we considered the design of nonlinear systems
for the nonparametric detection of constant signals in addi-
tive m-dependent noise. Nonparametric detectors are appeal-
ing because they offer a fixed structure which will maintain
a constant false alarm probability over a wide class of noise
distributions. Both the small sample and large sample situ-
ations were considered, and discrepancies between these two
situations were discussed.

The investigation of nonlinear systems for signal
detection is continuing. The research in this area was
complemented by the Grant AFOSR-76-3062 from the Air Force
Office of Scientific Research.

Nonlinear Estimation: This research is concerned with a
number of basic questions in the area of state estimation for
nonlinear dynamic stochastic systems. The estimation problem
involves the extraction of information about the state of the
system from nonlinear noisy measurements. The eventual object-
ive is the design and analysis of high-performance optimal
and suboptimal estimators which operate recursively in real
time.

Aside from the linear (Kalman) filter, there are
few known cases in which the conditional mean (the minimum
variance estimate) of the system state given the past observa-
tions can be computed recursively in real time with a filter
of fixed finite dimension. However, in [6] we have proved
that for certain classes of discrete-time systems, described
either by a finite Volterra series or by certain types of
state-affine realizations, the minimum variance estimator is
recursive and of fixed finite dimension. Furthermore, these
optimal estimators possess the interesting property of being
driven by polynomials in the innovations. This phenomenon
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does not occur in continuous time, and it may have signifi-
cance in the design of suboptimal estimators.

In [7] we have investigated nonlinear discrete time
estimation and stochastic control problems in which the obser-
vations take a finite or countable number of values. The
approach involves the application of recent developments in
martingale theory, resulting in a generalization of the work
of Segall, Bremaud, and Van Schuppen. General methods for
constructing system models and deriving optimal estimators
are presented, and the previously obtained estimation equa-
tions of the researchers mentioned above are exhibited as
special cases. The key concept is the use of modern martin-
gale theory and the judicious choice of certain sigma-algebras
and martingales. Real time finite-dimensional recursive

estimators are derived and constructed for systems in which
the state is a finite state Markov process. In addition,
these methods are also applied to stochastic control problems
involving finite state Markov processes.

In [8] and [9], by employing the finite dimensional
estimators which we derived previously [10], we have for the
first time been able to analyze the performance of suboptimal
estimators and the tightness of estimation lower bounds for
a nonlinear system by comparison with the optimal estimator.
A system for which we can construct the optimal estimator was
studied; the optimal estimator, extended Kalman filter (EKF),
constant gain extended Kalman filter (CGEKF), best linear
estimator (BLE), and Bobrovsky-Zakai lower bound were com-
pared both analytically and via Monte Carlo simulations. The
results indicated that the performance of the EKF is virtually
as good as that of the optimal estimator, and the Bobrovsky-
Zakai lower bound is tight for very high signal-to-noise ratio
but is less effective for large values of state and observa-
tion noises. As far as suboptimal filter design is concerned,
the CGEKF is probably preferable, in most of the cases studied,
to the optimal estimator and the EKF, due to its simple com-
putational requirements.

In a study related to the robustness of nonlinear
filters, we have also considered some questions of convergence
of the inputs and outputs of nonlinear stochastic systems.
Consider a nonlinear system with a given input and the cor-
responding output. If a sequence of inputs converged to that
particular input, it would often be of interest to know when
the corresponding sequence of outputs converged to the parti-
cular output. In one sense, we might estimate the desired
output of the system by the output due to an estimate of the
desired input. In [11] we considered this problem in a
stochastic framework. We considered the output convergence
properties of Borel measurable (but not necessarily continuous)
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mappings defined on separable metric spaces. General
results were presented pertaining to the Lp convergence of
the outputs of systems when subjected to sequences of input
random quantities converging in various modes.

The research in this is continuing and has been
complemented by Grant AFOSR-79-0025 from the Air Force Office
of Scientific Research and Grant ENG76-11106 from the National
Science Foundation.

Nonparametric Estimation of Regression Functions: It is
reasonable to expect that with a large amount of empirical
data we could achieve a good estimate of a regression func-
tion. However, with a large amount of data, we may be faced
with computational burdens in processing them. Therefore,
a recursive method of estimation may seem attractive. In
this research effort we investigated distribution-free con-
sistency results for the recursive nonparametric regression
function estimation problem.

Assume that (X,Y), (XI,YI), --- , (XNYN) are in-
dependent identically distributed ]Rd xR - valued random
vectors with E{JYJ} < . Consider estimating the regression
function

m(x) E YIX = x

from the data, (X1 ,Y1 ), -'-, (XNYN). We proposed the fol-

lowing estimate. Break the data up into disjoint blocks of
lengths bl,b2 , -. , bn, and among all X i in the j-th block,

find the one that is closest to x using the kq norm 11-11

on ]Rd (in case of a tie, pick the Xi with the lowest index i).
Call the corresponding ]R x R - valued random vector
(XI, Yt). The dependency on x is suppressed for the sake of

brevity.
If '{wni,***, wnn}, n 1 i is a triangular array of

positive weights, then we estimated m(x) by

n .
Sw n]y.j

m (x) = j=l (1)
n n

SWnj

j=l

when N = b + + bn observations (XiYi) were available.

6



INFORMATION ELECTRONICS

Notice that when Wni = v i for all n, i, then the computation

in (1) can be performed recursively. That is, there is no
need to store all the observations (Xi,Yi), and if we are

not satisfied with mn we can collect more observations and
update our estimate. Also, (1) retains the flavor of the
nearest neighbor estimates, but the processing burden aris-
ing from the ranking procedure is less. The conditions which
we put upon bn and wni were weak:

b - +n

sup wni W 0
l~i~nj=l

In [12] we investigated which consistency properties of mn
hold without additional restrictions on the joint distribution
of (X,Y). Also in [12] the discrimination problem was con-
sidered and the first distribution-free strong Bayes risk
consistency result in the literature was given.

In addition, some previous research on nonparametric
estimation and discrimination performed under this unit was
published during the past year [15,161.

The research in this area was complemented by the
Grant AFOSR 76-3062 from the Air Force Office of Scientific
Research.

Stochastic Stability: The objective of the work in stochas-
tic stability was a tractable method to determine the sto-
chastic stability of linear systems with multiplicative noise,
that is, systems described by equations of the form

X(t) = A + Bifi(t) X(t)

where the fi(t) are random processes. Notice that the noise
is multiplicative instead of additive, accounting for the
nonlinear structure of the system. Such systems are popular
models for many practical problems, such as circuits with
random parameters and the effect of switching jitter on sam-
pled data system performance. In the case that the noise pro-
cesses are jump processes, such models find application in
modeling faulty systems, or systems subject to abrupt random
changes. A major concern is the stability of such systems.
The objective of this work was the establishment of useful
methods for determining when the statistical moments of the
state components tend to zero.

I 1
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A new method for investigating the stochastic sta-
bility of the above form of system was introduced. It is
based upon the use of the characteristic functional of a ran-
dom process. That is, if X(t) is a random process, its char-
acteristic functional is given by

(1) = E lexp [if X (t) p (dt)]

where W is a suitably restricted generalized measure. It was
shown that for certain types of bilinear systems, the charac-
teristic functional afforded a convenient method for investi-
gation of stochastic stability. In particular, this method
was particularly appropriate for situations where the noise
processes were filtered Poisson processes. This form of
noise provides a good model for a wide variety of phenomena
such as shot noise, ELF and VLF atmospheric noises, and otherrandom sporadic events such as the noise generated by a faulty

component. The results of this research are given in [13],
where several examples are presented.

The research in this area was complemented by the
Grant ENG 76-11106 from the National Science Foundation.

Adaptive Delta Modulation: This investigation is concerned
with how the adaptive delta modulator (ADM) of Figure 1
performs with a stationary Gaussian input X(t). The measure
of performance is the limiting average squared error between
the input X(t) and its digital approximation Y(t), namely,

T

lim 1f (Y(t)-X(t))2 dt (2)

Assuming that X(t) is Gauss-Markov and making an assumption
about the time averages of [X(t),Y(t)}, it was shown that
(2) is the same as

1 N )2lim (X .n)-Y( (3)

N- n=l

The impact of this result is that in simulating the adaptive
delta modulator, the points X(0),X(T),X(2T),-" are the only
ones that need to be generated in order to estimate (2). A
simulation study revealed that the ADM achieves its best per-
formance for PQ=l and 1.002 < P < 1.1. While this performance
is essentially equal to that of the ordinary delta modulator

8
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(P=Q=l) with an optimally chosen A (which depends on T o and
X(t)), the ADM achieves its performance regardless of the
initial A used, the sampling time To, and the distribution
of the underlying Gauss-Markov-process X(t) ([14]).

X( I) 1 To Sampler = ±1

Y ~~ <)' x Q if bn =b n-1 el

Ideal Gain Unit Impulse
integrator

Figure 1. Adaptive Delta Modulator
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Research Unit IE9-2 ELECTRONIC MULTI-DIMENSIONAL SIGNAL
PROCESSING

Principal Investigator: Professor J.K. Aggarwal (471-1369)

Graduate Students: N.C. Huang and S. Park

A. PROGRESS: The broad objective of this research unit is
to develop new and efficient techniques for the processing of
two-dimensional (2D) images and shift-variant signals. Sig-
nificant progress has been made in the synthesis and
implementation of 2D recursive digital filters. In addition,
we have made some progress in the analysis and synthesis of
linear shift-variant digital filters.

Linear shift-variant (LSV) digital filters are a
generalization of linear shift-invariant (LSI) digital filters
and are important in processing seismic trace and speech sig-
nals whose frequency content changes significantly with time.
By using LSV digital filters, we can change filter character-
istics at each time instant as desired. In [1) we have inves-
tigated some fundamental properties of recursive LSV digital
filters in both the time and frequency domains. We present
the notion of a generalized transfer function and discuss the
frequency characteristics of shift-variant digital filters
in terms of the generalized transfer function. In the time
domain, the necessary and sufficient conditions for a filter
to be realizable as an LSV difference equation have been ex-
amined in terms of its impulse response. Furthermore, sev-
eral techniques to obtain difference equations from realizable
impulse responses are also proposed. From the properties of
the impulse response, we derive the relationship between the
class of systems characterized by LSV difference equations
and the class of systems characterized by rational general-
ized transfer junctions. In doing so, we have established some
basic notions regarding LSV digital filters.

The synthesis of 2D recursive digital filters is
primarily concerned with the problem of approximating the
specified frequency characteristics in magnitude and/or phase
by 2D stable rational polynomials. In the past, the diffi-
culties with spectral factorization and stability in two-
dimensions has led to synthesis techniques in which these
difficulties could be alleviated by synthesizing a filter in
separable form. In 1978, Hirano and Aggarwal developed a
synthesis technique for approximating nonseparable frequency
characteristics by sums and products of separable transfer
functions. We have generalized this technique to synthesize
2D separable fan filters. In general, an ideal fan filter
has triangular pass or stop regions, and its frequency

13
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characteristic is nonseparable. We have developed an approach
to decompose the triangular pass or stop regions into several
rectangular sections. With this approach, the nonseparable
frequency characteristics can be approximated by the combi-
nation of several separable transfer functions. The results
of this effort are documented in [2]. One major advantage
of the present technique is that the difficulties associated
with 2D nonseparable fan filters can be avoided by using such
an approximation.

Another approach to the synthesis of 2D recursive
digital filters, which in a certain sense mimics the synthe-
sis philosophy of one-dimensional (1D) recursive filters,
involves the spectral factorization of 2D magnitude-squared
functions. However, synthesis techniques for 1D filters do
not generalize easily to 2D filters. In one-dimension the
stabilization of unstable filters can be carried out by using
least square inverse polynomials. In two dimensions, however,
there are two forms of least square inverse polynomials:
planar least square inverse (PLSI) polynomials of causal form,
and PLSI polynomials of semicausal form. It is now known
that PLSI polynomials of causal form do not lead to the sta-
bilization of 2D unstable filters. The reason for this is
that 2D causal recursive filters are inadequate for the syn-
thesis of filters with arbitrary magnitude functions. There-
fore, we have developed a new procedure [3) for synthesizing
2D semicausal recursive filters by taking advantage of PLSI
polynomials of semicausal form which can be spectrally fac-
tored in an approximate way. The new procedure requires only
the single operation of finding the PLSI polynomials of semi-
causal form; this procedure is much simpler and more accurate
than the previous methods. In addition, we present a new
stabilization procedure [41 which offers an effective means
for stabilizing 2D unstable filters when incorporated with
any stability checking algorithm in the literature. Further-
more, we propose a new measure of the amplitude distortion
due to stabilization to help judge the acceptability of the
amplitude response of the resulting filter.

In general, semicausal recursive digital filters
require much more storage than causal recursive filters. The
problem of implementing semicausal recursive filters has been
investigated and reported in [5]. We first generalize the
state-space implementation scheme for causal transfer func-
tions to semicausal transfer functions. We then present a
method for simplifying the exact implementation, since it
requires an output frame much larger than the input frame.
Finally, we give an example which compares the output signal
from the simplified implementation with the output signal
from the exact implementation.
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The paper [6] published in the book edited by J.K.

Aggarwal reviews recent developments of 2D recursive digital

filters in terms of semicausality and spectral factorization,

thus establishing a fundamental theory of 2D recursive fil-

ters. In addition to the work documented above, the paper

[71 has been accepted for publication.
This has been a brief summary of the principal

results we have achieved in the past year. Several aspects

of the problems are still under investigation. Specifically,

the research concerning the analysis and synthesis of LSV

digital filters will be continued. The applications of LSV

digital filters for the processing of LSV digital signals

will be considered. Furthermore, the results on the one-

dimensional LSV digital filters will be generalized to two-

dimensional LSV digital filters which have potential applica-

tions to space-variant images.
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Research Unit IE9-3 ELECTRONIC COMPUTER SYSTEM DESIGN
AND ANALYSIS

Principal Investigators: Professor S.A. Szygenda (471-7365)
Professor E.W. Thompson

Graduate Students: Rodney Barto, Rafael Lemus, Don Ross
and Richard Von Blucher

A. OBJECTIVES AND PROGRESS: Logic simulators can perform
several useful functions for the design engineer [1]. By

simulating his circuit he can verify the correctness of his
design and determine whether it possesses any undesirable be-
havior due to device delays, without having to build any hard-
ware. He can also examine its performance under fault condi-
tions and devise tests to locate devices that have failed.
The increasing proliferation of digital devices in common ma-
chines makes their correct operation in both normal and fault
conditions much more important. The rising cost of manpower
makes any device that can hold down development costs look
very attractive. Logic simulators can fill these needs and
are a potentially useful tool for the design engineer [23.

In order for a logic simulator to be useful it must
possess two attributes. First, it must accurately predict
the operation of the logic circuit being simulated. Second,
it must do this in a cost effective manner. These require-
ments are interrelated, as will be shown.

A logic simulator performs its functions by con-
structing a working model of the network under consideration
[3,4]. The devices, Boolean and sequential gates, that the
network is constructed from must be modeled as must the top-
ology of the network, that is, the interconnections of the
devices. The network topology is stored in a set of tables
that the simulator creates. The most difficult job of the
simulator is to model the devices in the network and the elec-
trical activity that they produce.

Even though logic devices are considered to be bi-
nary valued, that is, producing outputs that are either logic
0 or logic 1, in reality they are all analog in nature. As
such, they are capable of a considerable amount of non-binary
behav'or. Signals propagate through them in finite delay
times, and this produces undersirable logic level behavior,
such as hazards. The effects of output loading and improperly
terminated connecting lines will produce poorly defined rising

17

NPAU$ BIAMGP40 7lJ6D



INFORMATION ELECTRONICS

and falling edges. All this activity should be modeled by
the simulator.

There are two basic types of logic simulators in
use today. The most common is the logic level simulator.
This type models logic signals as being either logic 0, logic
1, or unknown, and some will have representations of rising
and falling signals and hazards. The most accurate of these
will have a number of possible signal representations. Delay
modeling capabilities range from simulators that assume each
gate has one time unit of delay, to those allowing each gate
to have an unique ambiguous delay.

The second type of simulator models the electrical
activity of the network. Each gate is modeled by consider-
ing the transistor circuit that it is made from. The MOTIS
simulator [5], which is of this type, has capability of rep-
resenting 64 signal levels and is thus more accurate than the
logic level type mentioned above.

The more accurate a simulator is the slower it per-
forms its simulations. The most common measure for simula-
tor speed is the number of gate evaluations per second (GES).
This is the number of gate output values the simulator can
calculate in one second. Logic level simulators can perform
from 400 to 4,000 GES, while the MOTIS simulator can perform
400 GES. Since only 10% to 20% of a network is active at any
time, most simulators are event driven. Such a simulator will
evaluate a gate only if it is active; this saves considerable
amounts of simulation time.

The limitation on simulator speed stems mostly from
the fact that all simulators in use today are computer pro-
grams run on general purpose computers. The common computer
architecture does not provide a natural framework for the com-
plex data structures a logic simulator requires. The purpose
of this work was to design and validate a computer architec-
ture for logic simulation. This architecture incorporated
into its hardware the building blocks of a software simulator.
Thus the tables and flows of data required by a simulator are
natural to the computer, rather than defined and maintained
by a computer program. The simulator would run with the aid
of a host computer, that would load the simulator and handle
its output.

There were three objectives in this design. First,
the computer resulting from this design should be faster at
simulation than a software simulator. The "hardware" simula-
tor should be at least one and possibly two orders of magni-
tude faster than a software simulator. Second, the hardware
simulator should be more accurate than a software simulator.
The computer should support, yet not be limited to, the MOTIS
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type of simulation. Third, the initial cost of the hardware
simulator should be comparable to the initial cost of a soft-
ware simulator.

The constraints on this design fall into two cat-
egories. The first category limits the components which can
be used in the design and the second limits the extent of the
design itself.

1. Constraints on Hardware Used

The decision was made at the beginning of the
design to limit the components used to those that are readily
commercially available. There would, therefore, be no design-
ing of custom made integrated circuits or other devices. The
logic family chosen for the control circuitry is the TTL fam-
ily. There are two reasons for this. First, the initial cost
of TTL logic is much less than that of the faster ECL logic.
Second, it is much less expensive to construct a circuit with
TTL than with ECL. This is because the higher speeds provided
by ECL make the design of interconnections in the circuit much
more critical than they are with TTL.

The major memories are constrained to operate at
speeds obtainable with standard MOS memory ICs. It would be
possible to build the memories with TTL or ECL ICs, but the
cost of this would be prohibitive.

The processors of the computer, the units that
do the actual work, may be made of either TTL or ECL. The
former would be preferable, for reasons mentioned above.
None of the processors, however, will be physically large,
and thus, would not be either expensive or difficult to build
with faster logic.

These hardware limitations placed a heavy demand
on the design. Any increase in speed will be obtained by vir-
tue of an improved architecture, not from the use of faster
logic. The larger of the computers a software simulator may
run on rely more heavily on the use of the faster logic fami-
lies for their speed increases.

2. Constraints on the Design

There are a number of items of the design that
were not dealt with in this study. All of them result from
the fact that the purpose here is to present only the basic
architecture of the computer, not a design for a f~nished
product.

B. SIMULATOR DESIGN OVERVIEW AND RESULTS: The major func-
tional blocks of the simulator are shown in Figure 1. Each
table that a simulator requires is confined in a separate
memory. These are the Fan-in Memory (FIM), Fan-out Memory
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(FOM), Status and Data Memory (SDM), Activity Flag Memory
(AFM), and Event Queue Memory (EQM). The FIM contains a
list of the inputs to each gate, and the SDM contains its
static and dynamic data such as value, type, and number of
inputs. The FOM and AFM are used to allow the simulator to
be event driven. The EQM is used to schedule events.

The simulator operates in two phases, Evaluation
and Update. Each of these involves a separate processor, the
EVAL and UPDATE processors, respectively. The Event Queue
processor has only minimal dities to perform in its handling
of the EQM.

During the Evaluation phase, gates that require e-
valuation have their input values sent from the SDM to the
EVAL processor. This phase makes use of the interleaved na-
ture of the FIM and SDM. The FIM can provide the addresses
of the inputs to a gate to the SDM at a high rate since they
are accessed 16 at a time and sent in a word serial, bit par-
allel manner over a high speed data path. The SDM is inter-
leaved 8 ways and can thus provide the input values to the
EVAL processor in a relatively short amount of time. The
EVAL processor itself can be optimized for the type of gate
modeling desired.

During the Update phase, events scheduled during
the Evaluation phase occur. The information for these events
is stored partly in the SDM and partly in the EQM. The UP-
DATE processor is a 7 stage pipeline capable of handling gates
at the rate of four gates in each cycle time of a SDM block.
During this phase, the fanouts of active gates are followed
by sending the contents of the FOM to the AFM. During the
Evaluation phase, the AFM is searched for active gates, and
their addresses sent to the FIM. Further details of the de-
sign are provided in Reference 6.

A possible implementation of the simulator, in
which all of the memories were constructed from NMOS inte-
grated memory circuits was presented. The speeds at which
the various components operated were compatible with TTL con-
trol circuitry. The simulator was shown to be capable of per-
forming from 10,000 to 200,000 gate evaluations per second
depending on complexity of the devices modeled. This is
from one to two orders of magnitude faster than software sim-
ulators.

Because the simulator has not been designed to gate
level, only a cost estimate of the major memories can be
made. This estimate is still meaningful, since these units
form the bulk of the machine.

Prices for the ICs for the major5 memories were ob-
tained in March of 1980. NMOS dynamic RAM- made by the Nip-
pon Electric Company were selected for the FIM, FOM, AFM, and
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SDM. The total cost of these components was $17,750. The
EQM could be constructed from memory made by the Electronic
Memory and Magnetics Corporation at a cost of $1,536. This
brings the total memory components cost to $19,286. A reas-
onable estimate for the total system cost would be two to
three times the memory cost, roughly $60,000 to $90,000.
This compares favorably with software simulators which cost
from $40,000 to $170,000.

The estimates given here must be viewed in light
of the following considerations. First, the performance of
the machine is largely dependent on the efficiency of the
EVAL processor. Its performance was given here assuming it
would perform evaluations much as a software simulator would,
using stored programs. It is quite likely that special hard-
ware could be designed to speed up the EVAL phase considerably.

Second, the cost estimates given here are for one
machine. In a production effort, where several simulators
were to be built, the cost of components would decrease. Cur-
rent demand for software simulators and the growth of the dig-
ital electronics industry could justify such a product effort.
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Research Unit IE9-4 ELECTRONIC COMPUTER SOFTWARE SYSTEMS

Principal Investigator: Professor Raymond T. Yeh

Graduate Student: T. William Mao

A. PROGRESS: This work is concerned with an approach to dis-
tributed programming and involves the design and validation
of a programming language for a distributed environment where
many processors cooperate to complete a single task. The pro-
cessors share no common memory and communicate with each other
through hardware busses. This environment can be seen as an
abstract model of many networks and microprocessor networks.

We considered the design of a distributed language,
DLCP, which draws most of its features from Algol-descendent
languages such as Pascal. The basic components in the lang-
uage are processes, which are assumed to be executed in par-
allel. Strong emphasis is placed on communication facilities
for processes. Since no shared variables exist, communication
is by message passing. To simplify the implementation of the
language, we further assume that the distributed environment
does not support automatic buffering of messages. Informa-
tion exchange therefore must be totally synchronized. Com-
munication Ports (CP), [1,2] influenced by Hoare's communica-
tion sequential processes [3], were proposed as a generalized
mechanism for both information exchange and synchronization
among processes. During communication, the processes behave
as if they merge into a single process. To provide greater
concurrency, another feature was introduced to allow early
disconnection of communication. CP also provides compiler-
time message type checking and a run-time mechanism to sched-
ule call acceptances. Many examples have been given showing
the equivalence of CP and the communication and synchronization
features of other proposed languages.

In order to formally define the semantics of DLCP,
Hoare's deductive system of axioms and assertions was extended
to include distributed programs. Semantic rules were devel-
oped to define the semantics of CP. We also developed proof
rules which, when combined with semantic rules, can be used
to prove functional correctness of distributed programs writ-
ten in DLCP. In proving functional correctness, the invari-
ant property, which is essential to the verification of mul-
ti-process programs, was identified. The invariant property
is generally considered to be a property global to the whole
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program, and requires all assertions in the program to meet
a condition, called speed independence. We show that invari-
ance may be proven only if a subset of the program assertions
are speed independent. The effort to discover proper asser-
tions and invent auxiliary variables for proving a program
was thus reduced. Further, the deductive system was proved
to be consistent with a state machine model of program execu-
tion, which assumes machine states instead of logical asser-
tions as elements.

Finally, the feasibility of implementing DLCP on a
processor network was assessed. An algorithm, using message
send and receive as primitives, was developed to enable a
process in DLCP to communicate with other processes efficient-
ly. The runtime support system needed to interface a process
with the processor it resides and other processes was consid-
ered. A prototype of such a system, embedding the algorithm,
is designed, illustrated, and coded in Concurrent Pascal.
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Research Unit SS9-I. BASIC SOLID STATE MATERIALS RESEARCH

Principal Investigators: Professor R.W. Ben4 (471-1225)
Professor R.M. Walser (471-5733)
Professor A.B. Buckman (471-1095)

Graduate Students: S. Chao, K.C. Chen, L. Lancaster,
G.S. Lee, H.Y. Yang

A. OBJECTIVES: Our main objectives are to develop an under-
standing of the kinetically selected reaction paths and
phases at low temperatures and to increase our understanding
of the relationships between atomic rearrangements and elec-
tronic, magnetic and optical properties of the interface
region in thin film reaction couples. In previous studies
we have hypothesized the existence of a glassy membrane layer
which forms initially upon metal deposition on a Si or Ge
surface [1,2,31, and which acts as the controlling element
in compound nucleation. We have observed the formation of
a disordered layer for ultrathin deposits of metals on Si
[4,5] and have shown that the possible existence of a modi-
fied disordered region (behaving as a negative U glass),
even after compound nucleation, is consistent with Schottky
barrier results[6].

Some of our present objectives are to check and
extend these hypotheses by correlating surface resistance,
magnetic moments (EPR), noise and dielectric response mea-
surements with transmission electron diffraction indications
of thin film structure. Also, ellipsometric studies are
being used to obtain the depth resolved optical constants
(and optical spectra over limited wavelength ranges) to cor-
relate with the preceding measurements.

B. PROGRESS: We have found that nucleation of the first
compound phase out of the initially formed disordered phase
at low temperatures (room T) is quite possibly due to an
electronic instability in the interfacial glassy region. We
have made measurements on the Co-Si system, where we find
that the onset of Co2Si nucleation occurs after a deposition
of a critical effective thickness of Co which depends on
substrate preparation. (In general, the cleaner the sub-
strate, the smaller the critical thickness.) This same crit-
ical thickness is just the thickness at which the surface
disordered region attains metallicity (defined by dRs a 0aT
over two dimensions or less, indicated by the value of R s
where this occurs (104 Q)

0
Since the first stages of Co 2 Si nucleation appear
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to occur in separate islands, the compound formation does
not produce the metallicity-- rather, metallicity apparently
stimulates compound nucleation. As a further check on this
interpretation we have deposited thin Co films on Si sub-
strates which had been doped into degeneracy, i.e., which
were metallic to start with. We find compound (Co 2 Si) nu-
cleation down to the thinnest Co which we can experimentally
sputter. Thus the critical thickness, which typically
occurs at about 70 sec. deposition for 4-10 Qcm Si, has been
suppressed below 5-10 sec deposition for degenerately doped
Si. It should be noted that we have used both n and p type
Si (doped with four different impurities) and both (100)
and (111) faces with substantially the same results.

The implication of the above experiments is that
in the Co-Si system, first phase nucleation (compound) is
triggered when the interfacial atoms are in contact with a
metallic region (of two dimensions or less in the case of
deposition on high resistance Si). In other words, first
nucleation is an electronically induced instability [7].
If this interpretation is true in general or just for the
near noble metals, interacting with Si (Ge), is very impor-

tant for a microscopic understanding of the reaction path
being followed in these systems leading to first nucleation.
As an example, this may have a bearing on the differences

observed in the metal-metal nucleation rule(s) where the
eutectic is still important as in metal-Si or metal-Ge systems,
but the first phase is not generally a congruent one (unlike
metal-Si or metal-Ge systems). An objective then is to extend
these measurements to other systems to determine the general-

ity of the results.
We have followed, by means of multiple angle-of-

incidence ellipsometry, the formation and subsequent evolu-
tion of the glassy layer at the Co/Si interface. The measure-
ments are consistent with an optical model made up of a bulk
Si substrate, a glassy, Co-rich Si surface layer, and a sur-

face layer containing oxygen, Si and Co. The glassy layer
was found in all samples onto which Co was sputtered down to
< 20 sec. sputtering time. This r.f. sputtering potential
was 2 kV. For sputtering times up to -70 sec., the optical
constants of the glassy layer at 6328A, measured by mul-
tiple angle-of-incidence ellipsometry show values in the
range characteristic of amorphous Si. For greater sputter-
ing times the optical constants are more characteristic of
a metallic glass [8]. The transition from semiconducting
glass to metallic glass appears to be very abrupt, and in
work presently under way we are making ellipsometer measure-
ments at different locations on a substrate with spatially
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varying thicknesses of sputtered Co, in order to determine
how rapidly the optical constants vary in the immediate
vicinity of the transition. The observed change in optical
constants occurs at close to the same amount of deposited
Co where sheet resistivity measurements indicate a change
from semiconducting to metallic behavior[5].

We are also interested in extending the measure-
ments to shorter sputtering times. Using the data now avail-
able, the ellipsometrically determined glassy layer thickness
does not extrapolate to zero for very small sputtering times,
and the optical constants do not extrapolate back to the
values of the Si substrate. Immediate future work will con-
centrate on very low sputtering times, and on times corre-
sponding to the semiconducting glass-metallic-glass transi-
tion.

Out of our multiple angle-of-incidence ellipsometry
measurements has also come a useful criterion for matching
the complexity of the optical model (number of layers with
unknown thicknesses and optical constants) to the available
experimental precision in measuring the ellipsometer azimuth
angles. If f is the minimum sum-of-squares after completion
of a least-squares fit between model and experiment at N
angles of incidence and E is the mean measurement error, the
value of x = f/(2NE2 ) can be used to determine model adequacy.
If x >- 1, the model chosen does not have enough variable
parameters to explain all the measurements. If x << 1, the
model is so complex that it is being forced to fit random
fluctuations in the measurements. A value x - 1 suggests
that model complexity and experimental precision are about
optimally matched.

This work is being continued and extended as indi-
cated in our objectives and is being combined with work in
SS9-2 on Instabilities and Transport Near Surfaces and Inter-
faces of Solids. Although the initial objectives of these
two studies were loosely connected, they have grown in the
direction of very strong coupling and we feel at this time
it makes sense to combine them so that we may more easily
express our overall objectives and the relationship of indi-
vidual studies to these objectives. The new combined study
is entitled "Solid State Reactions, Instabilities and Trans-
port Associated with Surfaces and Interfaces of Solids."
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Research Unit SS9-2. RESEARCH ON INSTABILITIES AND TRANSPORT

NEAR SURFACES AND INTERFACES OF SOLIDS

Principal Investigators: Professor R.M. Walser (471-5733)
Professor R.W. Ben6 (471-1225)
Professor M.F. Becker (471-3628)
Professor J.P. Stark (471-1504)
Professor J.S. Turner (471-7253)

Graduate Students: E.M. Aly, J. Ambrose, S. Park, D. Sheng

A. OBJECTIVES: The broad objective of this work is to under-
stand the relationship between atomic rearrangements and
electronic instabilities at surfaces and interfaces of solids.
These atomic rearrangements of interest are solid phase sur-
face chemical modifications that alter the interfacial behav-
ior of electronic devices of, for example, ohmic contacts and
Schottky barriers. These surface instabilities may be relieved
by mass transport and surface diffusion as in electromigration,
or via surface phase transitions including crystallization and
compound formation.

At present the research in this unit is being con-
centrated on: (1) understanding the fundamental origin of
these electronic surface instabilities in model systems, and
(2) exploring the effect of various experimental parameters
on the relaxation of the instability. Ultimately both activ-
ities should lead to an increased understanding of how im-
proved or alternative electronic device structures can be
synthesized.

In the last year, three model interface systems--
mercury-silicon (Hg/Si), amorphous silicon-crystalline silicon
(a-Si/c-Si), and platinum-silicon (Pt/Si) have been studied.
The rationale for these studies and the results obtained are
discussed in the next section.

B. PROGRESS: Our previous research [1-7] has led to the
general hypothesis that solid phase surface transitions are
electronically initiated by the critical fluctuations of
redistributed, or delocalized, bond charge. Much of the
present work is directed toward developing support for this
hypothesis. The questions being addressed in each model
interfacial system, and the results obtained on each are dis-
cussed separately.

1. Mercury-Silicon. The fundamental electronic properties
of Hg1Si interfaces are being studied by measuring their
capacitance-voltage and current-voltage terminal character-
istics as a function of several parameters. We believe the
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Hg/Si system will allow us to study the fundamental nature
of an electronically driven surface instability without im-
portant competing effects.

First, because Hg/Si is a completely immiscible
system, the relaxation of the surface instability should be
unaffected by binary chemical association at other than the
interface itself. Secondly, controlled variations in the
properties of the solid phase Hg/Si interface should be more

readily achieved by "quenching" through the convenient bulk
Hg freezing point at -38'C. In more highly soluble, e.g.,
eutectic forming binary metal-silicon systems, controlled
quenching is difficult to achieve because of the "low-
dimensional" or interfacial critical point behavior.

In our experiments we are searching for evidence
of dynamically stable "organized" interface states
at the liquid phase Hg/Si interface. These "organized" or
collective interface states should bear a close relationship
to the laterally inhomogeneous "Guoy layer" at the electrical
double layer of electrodes in electrochemical cells.

We have completed initial measurements on the DC
I-V measurements of liquid Hg/Si at 300'K for n and p type
silicon substrates with bulk resistivities varying from
0.008 Q-cm to 35 S2-cm. The data show that a transition from
very low resistance ohmic interfaces (.008 Q-cm) to extremely
high resistance blocking interfaces occurs with a transition
in behavior occuring for substrate resistivity of o. IQ - cm
at a bias voltage of % 100 - 500 mV. The bias voltage at
which the transition from ohmic to blocking occurs decreases
with increasing substrate resistivity.

Using electronic techniques, we have examined the
first and second derivatives of DC I-V curves for possible
evidence of the organization of collective interface states
in the vicinity of the transition bias. Such peaks have been
found but insufficient data are available for discussion at
present.

We interpret the results obtained thus far to
indicate the possible detection of dynamically stable col-
lective interface states generated by field-dependent electro-
hydrodynamic interface modes. In our model the variation of
the substrate resistivity is used to dynamically adjust the
overall charge transfer so that the average interface charge
approaches a critical concentration for supporting the col-
lective interface state.

At the present we are making additional measurements
of this type at various temperatures above the Hg freezing
point to characterize the sensitivities of the interface mode
selectivity at various proximities to the critical point.
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We then plan to attempt to freeze these states in by "quench-
ing" and characterize their behavior relative to the para-
meters of the quench.

2. Amorphous Silicon - Crystalline Silicon (a-Si/c-Si). We

are presently using picosecond 1.06i laser pulses to study
the c-Si - a-Si phase transition. Initially we have concen-
trated on studying the correlation between the energy deposi-
tion parameters and the structure as determined by TEM and
SEM. We have recently reported the first observation of a
picosecond induced c - a phase transition in silicon with

near band gap photons [8].
Recent reports of laser-induced amorphous phases in

crystalline silicon due to picosecond .532p and .266p radiation

[9] and nanosecond .26 6P radiation [10] raise questions regard-
ing the dynamics of such a transition. These results may not

be adequately described by equilibrium heat-flow analysis
for several reasons.

These unanswered questions led us to an investiga-
tion of the laser interaction with thin (1.5p and <300 nm)
silicon films. The transparency of such films facilitates
the study of optical absorption and transient effects as well
as TEM without intermediate thinning. In the experiments we
report here, transient effective absorption coefficients
greater than 100 times the small signal value were observed.
In addition, we have made the first observation of the laser-

induced amorphous phase with picosecond radiation at 1.06
microns. Previous models based on heat-flow and fast quench
rates have not predicted this behavior. We suggest that
localization of the excitation and the free carriers is
required to explain our results.

The thin silicon samples were prepared from low
resistivity (111) Si wafers which had 1.5 micron epitaxial
layers of intrinsic Si. The wafers were then masked to

expose an area of approximately 0.5 cm 2 to be electrochemi-
cally etched. The selective etch left the 1.5 micron epilayer
intact. Further thinning of selected areas to thicknesses
less than 300 nm was done by ion beam milling. •

The laser pulses were supplied by a passively mode-
locked Nd:YAG laser. Single pulses were selected, and they
had an average FWHM duration of 38 psec. At the sample, the
pulses were focused to intensities from less than 0.3 GW/cm2

more than 10 GW/cm 2 . The Si substrates were free standing in
air and at room temperature. In addition to intensity, other
experimental parameters were the number of laser pulses inci-

dent on a single location (from one to '-1000) and sample thick-
ness. Transient optical absorption, optical microscopy, and
SEM were used with the 1.5 micron thick samples while the <300 nm
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samples were prepared specifically for the TEM.
The results of various irradiations are best de-

scribed as a function of laser intensity. Below the thresh-
hold for ny permanent chanoe for large numbers of pulses,
0.5 GW/cm , the transient absorption coefficient was measured
to be more than 100 times the small signal value. This figure
is based on Beer's law absorption over the entire 1.5 micron
film thickne s. If the absorbing region was localized near
the film surface, the local absorption coefficient would be
even greater. Typically about 50% of the incident laser
energy was absorbed. The small signal absorption correlated
well with the sample thickness and known absorption at 633 nm.

Just above the threshold for permanent change, small
areas within the laser beam profile changed from orange and
transparent to black, opaque and grainy. These regions were
located at the beam entrance face of the sample. The thresh-
old for single shot effects was 1 GW/cm 2 compared to 0.5
GW/cm 2 for multiple pulses. TEM diffraction shows the char-
acteristic a-Si rings (not polycrystalline). The actual
amorphous region overlays a region which is still single
crystal.

For higher intensities the size of the amorphous

area increased until it filled the entire laser beam profile.
This behavior was essentially the same for multiple pulse or
single pulse experiments, more pulses at lower intensity being
equivalent to fewer higher intensity pulses. Another effect
observed at higher intensities was a similar amorphous layer
on the exit face of the sample. In the 1.5 micron thick
samples, a region of single crystal silicon could be clearly
observed by optical microscopy between the two amorphous sur-
face layers.

At the highest intensities used (% 10 (;W/cm 2 ), the
films repeatedly punctured and cracked. There is no evidence
of any liquid or melt morphology present at the laser
irradiated site for this case. The question of whether a
liquid phase existed in our experiments is doubttul but not
conclusively eliminated.

V Our most important conclusion is that spatial
energy concentration is required to achieve sufficient exci-
tation to amorphize the surface silicon layer. The observed
absorption coefficient of greater than 1000 cm -1 is not
readily explained by free carrier absorption. For an inter-
band absorption coefficient of 10 cm -1 , carrier densities
will be in the range of 1018-1019 cm - 3 fo] the laser inten-
sities in these experiments. Such carrier densities are
insufficient to account for a >1000 cm -1 free carrier absorp-
tion coefficient. We suggest that higher carrier densities
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may be present but are spatially localized at the surface of
the sample. The observed surface amorphous layers tend to
confirm such a surface localization hypothesis. Further ex-
periments are planned to elucidate the dynamics of this local-
ization process.

Finally, we speculate that these laser-induced
amorphous phases in silicon are an example of the classical
nucleation and growth process. Evidence of the irregular
amorphous reaions at low intensities growing larger for high-
er intensities or more pulses is very suggestive of nucleation
and growth from heterogeneous sites.

3. Platinum-Silicon (Pt/Si). There are two main objectives
of this research. The first is to investigate the first phase
nucleation which occurs between thin films of platinum and
single crystal silicon substrates at room temperature.

The second is to study the possible effects that
an applied D.C. electric field to the sample during sputter-
ing would have on the reaction path leading to solid phase
silicide nucleation at the interface between the deposited
platinum and silicon substrate. Thin platinum films are rf
sputtered onto a clean, cold, n-type, 4-10 ohm-cm, and (100)
oriented single crystal silicon substrates. Films with
deposited platinum corresponding to thicknesses between lO
and 404 were prepared by sputtering at 2kV rf at 20 m Torr
argon pressure (80R/min). The range was covered in about 5A
steps.

The as-deposited Pt-Si couples were chemically
thinned and then structurally characterized using Transmission
Electron Diffraction (TED). In addition Auger electron spectro-
scopy was employed for depth profiling and Auger peak shape
studies. Also, sheet resistance measurements for different
sample thicknesses were monitored in the temperature range
of 300 0 K down to 15 0 K.

All measurements suggest that the transition from
semiconducting to metallic behavior occurs at about 40A for
the ultrathin platinum films on silicon crystal.

Thin platinum films in the equivalent thickness
range lOX . t e 35A produce amorphous surface regions as
indicated by transmission electron diffraction (TED). The
present experiments indicate that the stability of the glass
(amorphous layer) is dependent on the thickness of the de-
posited platinum layer. The glass is stable for thicknesses
less than 35A and unstable with respect to the nucleation of
a-Pt 2Si for greater thicknesses at room temperature with
no applied field. a-Pt 2Si polycrystalline rings are found
by TED at a minimum deposited metal thickness of 40A.
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For the same metal thickness (40A) and never below
this thickness, Auger electron spectroscopy measurements with
depth profiling show a splitting in the (92-ev) silicon peak
and shifting of this peak to a slightly lower energy value
[111. The splitting and the shifting are most likely due to
the formation of platinum silicide. At the same time, the
platinum depth profile has shown a nearly constant concentra-
tion of Pt over the range where that splitting and shifting
of the silicon peak occurs. Sheet resistance measurements
are also consistent.

Since Pt 2 Si is the most stable congruently melting
silicide in the Pt-Si binary phase diagram, our results here
are in agreement with the first phase nucleation rule for the
transition metal silicides [1,4].

We have also studied the reaction path in the Pt-Si
system when a D.C. field of about 10 volts is applied across
the sample during sputtering of the platinum. The same three
types of measurements have been used to analyze the results,
TED, Auger and sheet resistance. The applied field stimulates
the transition from the amorphous glassy layer of Pt-Si to
the crystalline Pt2Si. Namely, we find that the Pt2Si is
formed consistently at platinum layer thicknesses of about

25K as compared to 40A with no D.C. field.
Ahilea and Hirch [12] have discussed the applica-

tion of an electric field on an evaporated thin metal film
during its preparation. They contend that the electric field
induces electric dipoles which stabilize the growing compound.
The measurements we have made are in agreement with their
predictions. Ben4 [13] reports that during the deposition
of Co on Si, the silicide transformation is stabilized when
doped degenerate silicon is the substrate. The latter
suggests that the electric dipole model is incomplete and
that the transition metal-silicon thin film follows a more
complicated nucleation path.
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Research Unit QE9-1 NONLINEAR WAVE PHENOMENA

Principal Investigators: Professor M.F. Becker (471-3628)
Professor E.J. Powers (471-1430)
Dr. Y. C. Kim (471-4507)

Graduate Students: J. Beall, S. R. Gautam, J. Hong, L.
Khadra, J.G. Mauger, Y. Twu

A. PROGRESS: This research unit is concerned with analytical
and experimental studies of nonlinear wave interactions in
physical systems. The work may be subdivided into two areas:
(1) the development of digital time series analysis techniques
useful in analyzing and interpreting fluctuation data generated
by nonlinear wave interactions in various media, and (2) non-
linear optics in the infrared spectral region in molecular
gases.

1. Nonlinear Wave Interactions. The objective of this work is
to develop digital time series analysis techniques that may be
used to analyze and interpret experimental fluctuation data
associated with nonlinear wave phenomena. During the past year,
our research has focused on the following topics: (a) the
relationship between the experimentally measured bispectrum and
coupling coefficients which are determined by the physics of
the nonlinear interaction, (b) understanding simultaneous
amplitude and phase modulation of a (carrier) wave propagating
in a nonlinear dispersive medium in terms of nonlinear wave-wave
interactions between the sidebands and a low frequency wave,
(c) investigating the effects of dispersion on three wave inter-
actions with particular emphasis on the implications in non-
linear optics, and (d) initiation of work concerned with
developing suitable digital analysis techniques to handle
statistically nonstationary fluctuation data. The major thrust
of the first two topics involves the development of theoretical
models which describe various facets of nonlinear wave modula-
tion in a general sense and which also provide a means by which
to interpret digital time series analysis results in terms of
the physics of nonlinear wave phenomena.

a. The Bispectrum and Nonlinear Wave Coupling. As waves pro-
pagate through a nonlinear dispersive medium, a temporal
and/or spatial variation (i.e., modulation) of the wave's
(complex) amplitude may result from competition between the
dispersiveness and the nonlinearity of the medium. By consi-
dering a spatial variation of the wave's amplitude in terms of
three wave coupling, we found [1] that the biphase, the phase
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of the bispectrum, is determined by the characteristic scale
length of amplitude variation due to nonlinear coupling and
the phase of the coupling coefficient. Furthermore, when the
coupling coefficient is real and positive, the sign of the
skewness coefficient [1], which is determined by the biphase,
can be explained in terms of nonlinear wave characteristics.
That is, if the wave's amplitude is growing in the direction
of propagation, a negative skewness results and if the ampli-
tude is decaying, a positive skewness results. In addition,
we have considered [1] the power variation of a wave in terms
of the bispectral power transfer function, which involves the
coupling coefficient and the bispectrum. When the coupling
coefficient is known a priori, one can experimentally deter-
mine the direction and the amount of power transfer over a
spectrum due to nonlinear wave coupling by utilizing bispec-
tral techniques. We have confirmed 11, using digital bispec-
tral techniques 121, the above theoretical results using dens-
ity fluctuation data from an rf-excited glow discharge.

b. Wave Modulation in a Nonlinear Dispersive Medium: A model
describing simultaneous amplitude and phase modulation of a
carrier wave propagating in a nonlinear medium has been
developed [31 in terms of nonlinear wave-wave interactions
between the sidebands and a low frequency wave. We solved
the wave coupling equation by transforming it into a recur-
rence form and obtained a solution for the amplitude of the
sidebands in terms of the coupling coefficient. When the
coupling coefficient has a slow dependence on the wavenumber,
we found that the carrier wave undergoes amplitude and phase
modulation with modulation indices determined by the coupling
coefficient and the amplitude of the low frequency wave.
However, the ratio of the AM index to PM index was found to be
independent of the amplitude of the low frequency wave and is
solely determined by the coupling coefficient. Also, we found
that an asymmetric distribution of sidebands results from wave-
number dependence of the coupling coefficient. That is, when
the coupling coefficient is an increasing function of wave-
number, the lower sidebands are dominant over the corresponding
upper sidebands. Furthermore, the amplitude modulation and the
frequency deviation with respect to the carrier frequency are
out of phase by w when the lower sidebands are larger than the
upper sidebands, and the amplitude modulation and the frequency
deviation are in phase when the upper sidebands are larger than
the lower sidebands.

Using digital complex demodulation techniques, we
investigated [3] wave modulation of a self-excited wave in an
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rf-excited glow discharge and found the following agreements
with the theoretical model: first, the amplitude modulation
and the frequency deviation are out of phase by approximately
7, which is consistent with the power spectra displaying
dominant lower sidebands. Next, the amplitude and phase modu-
lation indices are increased as the amplitude of the low
frequency wave increases, but the ratio of AM index to PM
index is insensitive to the -ins value of the low frequency
wave in agreement with the theoretical model. Finally, the
frequency deviation is proportional to the square of the modu-
lation amplitude, which supports the fact that the amplitude
and phase modulation are interrelated to each other through a
nonlinear (i.e., amplitude dependent) dispersion relation.

c. Three Wave Interactions in Dispersive Media. During the
investigation of a theoretical model to describe wave modula-
tion in a nonlinear dispersive medium, we found that the
effects of the dispersion may be important in certain cases.
Thus, we numerically investigated [4] the effects of disper-
sion on the nonlinear interaction of three waves. Solution of
this problem may be very important for understanding optical
parametric amplification of ultra short pulses, and plasma
heating by the lower hybrid wave. Specifically, three wave
optical interactions in homogeneous nonlinear dispersive media
were studied with a complementary use of analytic and numeri-
cal methods [4]. The main emphasis of the study was to inves-
tigate the effects of dispersion in the picosecond substructure
generation in optical parametric processes. In a 3-wave inter-
action at optical frequencies wl, &w2, ('3 satisfying the
resonance condition (i.e., w 3 = wl+ 2 ), we found that the
presence of dispersion in the medium leads to the generation
of picosecond multipulsed substructure in the pulse profiles.
Both the degenerate (wl=W2=)3 /2) as well as the nondegenerate
(WI # u)2

) parametric amplification processes are studied. For
all the cases, a specific and realistic situation involving a
LiNbO3 crystal illuminated by a pulsed laser of intensity
101 4W/m 2 is considered. The time envelopes of the initial
pulses are chosen to be Gaussian with a full width at the half f
maximum of 30 psecs. The existence of the picosecond substruc-
ture in the pulse profiles, predicted by the present study, is
in good agreement with the experimental observations of Kryukov
et al. (11].

d. Analysis of Nonstationary Fluctuations. Wave modulation is
intrinsically a nonstationary process. Thus, we have initiated
an effort to understand the statistical characteristics of non-
stationary fluctuation date. In our preliminary attempts to
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get a handle on this problem, we utilize a two frequency
coherence function F2 (,1,6 2) , i.e.,

2I < ) *( 2
2( l' 2) - 12>

u I > < }  2 >

where () is the Fourier transform of the fluctuation data
and < > denotes an expected value. The two frequency coherence
function measures the degree of mutual coherence between two
spectral component, and is bounded by zero and unity.
If a random fluctuation is regarded as t superposition of
random oscillations, stationarity requires each oscillation
to be uncorrelated to each other when (,w 2 151. Therefore,
any deviation from stationarity will relult in a nonzero
value of two frequency coherence functions at w 7 w 2 . We are
presently utilizing digital techniques to compute the two-
frequency coherence function for a variety of fluctuation data
from different physical systems. In addition, we found [6]
that the complex energy density function may provide a system-
atic framework with which to describe nonstationary fluctuation
data. The complex energy density function, which is defined in
terms of the analytic signal and its Fourier transform, cor-
responds to the signal energy density at a given instant and
frequency. Much work remains to be done, concerning the prac-
tical digital implementation of this concept and how it may be
exploited in the analysis and interpretation of nonstationary
fluctuation data.

2. IR Nonlinear Optics. The objective of the continuing
research in infrared nonlinear optics is to study new types of
molecular optical nonlinearities at infrared wavelengths.
Optical third harmonic generation is used to probe the non-
linear susceptibility and multiphoton absorption of molecular
gases. A current problem in this field is to obtain a more
wide ranging and fundamental understanding of why some mole-

cules and which molecules have large nonlinear susceptibilities,
particularly at cryogenic temperatures. At high laser intensi-
ties various competing or limiting processes, primarily multi-
photon absorption, occur which reduce the efficiency of the
third harmonic process. The study of these limiting processes
is another facet of the overall objective.

We have recently concluded a several year study of
the high energy resonant excitation of SF 6 gas using third

harmonic generation techniques. The saturation of the linear
and nonlinear properties of SF 6 has now been observed at 193K
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and 293K over wide range of laser intensities (from 10 to
over 200 MW/cm ). The entire study was carried out at a
pressure of 0.2 torr which, during the laser pulse, is a
collisionless regime. Since the nonlinear susceptibility of
SF6 is strongly affected by multiphoton resonances [7) and by
population depletion and redistribution, third harmonic
generation was selected as a means to study these two effects.
Experiments were conducted in which the third harmonic genera-
tion spectrum for SF6 was measured at intensities above and
below the molecular dissociation threshold [8,9]. Evaluation
of the data indicated that the discrete state population, which
contributes most strongly to the third harmonic nonlinearity,
was being depleted by one- and two-photon processes depending
on the excitation frequency. Based on these experimental
results, we hypothesize the existence of one- and two-photon
transitions from the discrete vibrational states below 3000
cm-1 to the quasi-continuum (Q.C.) of states of higher ener-
gies. It is therefore likely that three-photon resonances from
the ground state are damped by one-photon transition to the
Q.C. The subsequent measurements at 193K were made to confirm
this hypothesis [10]. At 193K the hot band population is
significantly reduced and the ground state population corres-
pondingly increased. Evaluation of the results is much
simpler for this reason. Some resonances were observed to
shift slightly with temperature, but the low temperature
results fit the same model as we proposed earlier.

Study has begun on the two-photon resonant gas
deuterated methane, CD4 . This molecule was selected because
of an unusually strong and narrow two-photon resonance
accessible to the 9.611 and of the CO2 laser. The resonance is
Raman active and obeys the selection rule of AJ = 0. This in
turn generates only a single narrow Q-branch for two-photon
resonant absorption. Calculations indicate that a large third
harmonic susceptibility should result. Currently this effort
is just entering the experimental phase. A new dewar has been
constructed to facilitate these measurements over a wide range
of temperatures.

This work is also supported by a grant from AFOSR
(AFOSR 78-3712). The work will continue in the coming year
with emphasis being placed on molecules with narrow strong
resonances, molecules with discrete fundamental resonances,
and cryogenic temperature effects.
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Research Unit QE9-2. ATOMIC AND MOLECULAR ELECTRONIC
PROCESSES

Principal Investigators: Professor L. Frommhold (471-5100)
Professor M. Fink (471-5747)

Research Associate: M.H. Proffitt

Graduate Students: W. Burns, M. Kelley, R. Mawhorter,
B. Miller

A. INTRODUCTION: Atomic and molecular processes a) form the
basis for the understanding of gaseous matter, and b) have
important applications to high-priority technologies like
lasers, energy conversion, high-altitude reactions, combus-
tion, and electronic devices. In principle, complete theo-
retical answers to relevant questions lie in Schr6dinger's
equation and its solutions. However, rigorous solutions are
known only for H. Every heavier system involving more than
two particles has to be approached through approximations.
Obviously, the coarseness of the approximations increases with
the number of particles involved. If a very large number of
particles interact simultaneously, then collective phenomena
become predominant, and the solutions lie in the thermodynamic
domain. Our research efforts here have been concentrated on
dilute systems so that only two-body interactions are impor-
tant. In this research area many approximate solutions are
known, but their validity and range of convergence can be
judged only by comparison with experimental results. There-
fore, this group is fundamentally concerned with precision
measurements, although the interpretation of data repeatedly
requires detailed theoretical and computational studies.

Our research unit has concentrated its efforts to-
ward a threefold approach--high energy electron scattering,
electron impact spectroscopy and collision induced light
scattering. The first two topics are supervised by Dr. Fink,
and the latter by Drs. Frommhold and Proffitt. The high
energy electron scattering experiment led to investigations
of the molecular structures of several compounds, of intra-
molecular potential functions and of electron charge densi-
ties. These studies were sponsored by JSEP for many years.
The results were presented to the NSF and they are presently
supporting this work. The papers referenced [1-6] are all
based on high energy electron scattering, and due recognition
for the previous support of the JSEP is given. At present,
electron impact spectroscopy is being developed here, with
particular emphasis on electronic excited states. The exci-
tation will occur optically and the probing will be carried
out by low energy electron scattering. Collision-induced
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light scattering was used to measure the invariants (trace
and anisotropy) of the diatom polarizability tensor of the
rare gases, often for the first time. In this way, particu-
larly for the lighter gases, rigorous comparisons with ab
initio calculations of the diatom polarizabilities were pos-
sible. New data concerning the virial expansion of light
scattering by real gases are thus obtained [21].

Since the research efforts of the group have evolved along
these parallel lines, the objectives and progress are report-
ed consecutively. Section 1 is devoted to electron scatter-
ing, Section 2 to collision-induced light scattering.

B. OBJECTIVES AND PROGRESS

1. Electron Scattering. Low energy elastic electron scatter-
ing in the energy range of 10 eV-1000 eV is a research tool
used to study the dynamic response of an atom or molecule to
an incoming electron. If the electon is very slow, then the
induced distortion in the charge density is adiabatic [7].
The consequence for the cross sections is a strong enhance-
ment at small angis, due to the long range dipole field,
which the targets produce to shield themselves from the per-

turbing field generated by the incoming electron. When the
electron energy is increased the overall angle cross sections
decrease, inuicating a nonadiabatic dynamic response of the
molecule [8]. At very high incident energy the electron cloud
is too slow to adjust to the incoming perturbation, and the
cross sections reflect the static potential. It is the lat-
ter process we have utilized heavily and were able to exploit
to such an extent that we could determine the static distri-
bution of the electrons involved in the molecular bond form-
ing process [9]. (This research is now supported by NSF.)
We are now extending our research to the medium and low energy
range.

Electrons which interact with atoms and molecules
in the 10 - 1000 eV range have a very high probability of
exchanging energy with the target [10]. If the molecules are in
the ground state, then the electron can only lose energy and
excite the target. Inelastic electron scattering, when mea-
sured in the smallest scattering angles, follows the optical
selection rules, and therefore the cross sections lead to
oscillator strengths and obey sum rules [11]. The angular
dependence of the various spectral lines is characterized by
the vibrational progression to which this transition belongs
[12]. Therefore, the identification of overlapping series
is rather straightforward and a valuable supplement to the
highly resolved but very confusing optical spectra. If the
molecule is in an excited state then, the scattering electron
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can deexcite the target and carry off the excess energy
(super elastic scattering) [13,14]. The spectrum of the

scattered electrons on the high energy side will reflect the
distribution of the excited states while the electron was
passing through. Since the experiment is carried out on a
gas jet, the collisional deexcitation processes are avoided
and only the intramolecular energy transfer pathways will
be exhibited. There are two interesting features on which
we plan to focus our attention. First, due to the anharmoni-
city of the molecular potential in the excited state, there
always occur mode couplings which greatly influence the
chemical reactivity of the excited species. Furthermore, at
a Fermi-resonance, due to the L-S coupling mechanism, the
molecules can transfer energy from one multiplet to another,
often coupled with a change of the geometrical configuration
[15,16]. With the availability of powerful lasers the excited

states can be produced abundantly, and this will open the
door to many possibilities in studying fundamental problems
like relaxation processes and applied issues like laser
chemistry or laser isotope separation.

Developing the field of superelastic electron

scattering is equivalent to a new field of spectroscopy in
which the high resolving power of optical spectroscopy is
utilized in the excitation of a specific molecular state by
resonance absorption. At the same time the deexcitation via
electron scattering opens the opportunity to study singlet-
triplet conversions, vibrational mode coupling, and potential
curve crossings due to the selection rules as they apply to
scattering processes. This technology has been successfully
tested on Na and Ba vapors and therefore looks very promis-
ing for the extension to molecular gases [13,14).

Our study on the electron gun facility has been
concluded. Our telefocus gun is working at the space charge
and Boersch-effect limit [17,18]. We could show that the
theory by Zimmerman describes accurately the thermodynamical
relaxation process in the electron beam [19]. The 1270 elec-
tron analyser works very well; however, a new concept in
designing hemispherical analysers looks so promising that we
are presently building two prototypes in our machine shop
[20]. We hope to gain significantly on the transmitted elec-
tron beam intensity without loss of resolution. In order to
keep all the electron optics to be used at the optimal set-
ting, we are adapting various ray tracing programs to our CDC-
computer facilities. These results will be a constant guide
for the composition of the electron optical arrangements.

In order to pump the molecules into the electronic
excited state, we are building an Ar+ pumped mode-locked dye
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laser. This system will produce 5-7 psec pulses with a
repetition rate of 80 MHz. The peak power will be several

hundred watts; therefore, frequ(;ncy doubling can be achieved
relatively efficiently. The laser system is equipped with a

cavity dumper which allows us to vary the repetition rate
while integrating the pulse intensity. This laser system

provides us with photons from 8000 - 2000 A, tunable and
quasistationary (since the lifetime of many molecular electro-

nic states is on the order of lsecs). During the last year we
have developed a new correlator which allows us to measure di-

rectly the pulse width. The results are presently summarized
in a manuscript to be published in Rev. Sci. Inst.

This work will be continued in 1980-81. In the

next report we intend to show the first inelastic electron
spectra and absolute measurement of the number of excited
states which can be reached under the various pumping condi-
tions in NO 2 and 12.

2. Collision-Induced Laser Light Scattering. The goal of

our collision-induced laser light scattering work is the con-
solidation of a large body of often conflicting experimental,
semi-empirical and computational data concerning diatom polar-
izabilities. The term "diatom" is meant to emphasize the
collision-induced nature of the incremental polarizability
due to exactly two interacting atoms or molecules (monomers)
of a gas, which is typically near atmospheric density. Con-

sequently, the various second virial coefficients of the dielec-
tricClausius-Mosotti relation, the refractive Lorentz-Lorenz
relation, and the field-induced birefringence (Kerr effect)

of gaseous matter are intimately related research topics of
great interest to us [21]. In the past, much effort was
devoted to the basic understanding of collision-induced
dielectric properties of gases, and to the measurement of
certain moments of the depolarized collision-induced light
scattering of the heavier rare gases, which are relatively
easy to measure (by our new standards). The emphasis of our
work, on the other hand, has been the investigation of such

properties of the diatoms of the light gases (as 3 He, 4 He, Ne,
etc.), for which sometimes very accurate ab initio computations

of collision-induced polarizabilities exist, which are, how-
ever, largely untested by real experiments [21]. At the same

time, we were also aiming to measure new properties, such as

polarized collision-induced scattering, which were generally
believed to exist but thought hard to obtain. We mention
here that diatom polarizabilities are tensors. The invariants,
trace and anisotropy, are responsible for polarized and de-
polarized scattering of light, respectively. The diatom
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tensor is determined if both invariants are known. The goal
of our work then is to measure these invariants, particularly
for the light gases, and compare the results with the ab
initio calculations of the same quantities where these exist.
For gases heavier than neon, various approximate computational
schemes were previously employed to estimate the diatom polar-
izabilities. The numerical results are often of an uncertain
accuracy, and different semi-classical methods do not always
give consistent results. Therefore, our aim is to also obtain
accurate diatom polarizabilities for these gases and to pro-
vide new experimental tests for these important computations.
Other empirical data based on the various second virial
coefficients of the dielectric, refractive and field-induced
birefringent properties of rare gases will also be critically
compared with our new data [21].

The experimental approach of our work differs in
some ways from all other work in the field. 1) The generally
adopted "method of moments" was abandoned in preference to
procedures based directly on the intensity and shape of the
observed continua. The rigorous evaluation of the spectral
distributions is supported by our wavemechanical computations
of the spectra, which make use of accurate interatomic poten-
tials and "models" of trace and anisotropy. In this way, the
very serious problem of interference by the intense Rayleigh
line is completely avoided. 2) The sensitivity of our re-
search apparatus is the highest reported as yet in the litera-
ture. As a consequence, our measurements are done at the
smallest gas densities, and hence are affected the least by
three-body or higher interference. In some important cases,
this particular fact gives rise to different spectra, and
therefore to new results specific for diatom interactions
and free to the highest degree from three-body contributions.
3) Finally, we make use of polarization optics to also obtain
the polarized collision-induced components, thereby providing
for the first time, complete data for the determination of
the diatom polarizability tensor invariants. We mention that
as a routine, absolute intensity calibrations are obtained
for all spectra taken, typically now at an accuracy of 5%
or better.

In our collision-induced scattering work, most
recently we were able to obtain the diatom spectrum of the
rare isotope of helium, 3 He [22]. Both a polarized and a
depolarized spectrum are obtained, similar to (but signifi-
cantly different from) the 4 He diatom spectra reported ear-
lier [23-25]. We mention that these two isotopes make very
different gases, not only on account of their different masses.
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The diatom spectra appear to be very different too, on account
of the symetries related to the nuclear spin. The common
isotope ( He) is a boson. Consequently, collisional pairs
of only even angular momentum quantum states are allowed,
whereas for the 3 He diatom the odd states completely dominate
the situation (much like in normal hydrogen, ortho-H 2 is three
times more abundant than para-H 2 ). And yet, their electronic
structure, and hence their diatom polarizabilities, are the
same! The resultant, very different spectra must therefore,
be fitted with the same polarizability invariants, which in
fact we were able to demonstrate [22]. This new work in 3 He
is most of all an impressive consistency check of the general
approach and methods of our work, and emphatically demonstrates
the soundness of it. Furthermore, since at the same time the
precision of our calibrations could be improved, a superior
overall precision of the inferred diatom polarizabilities of
helium was obtained. Elsewhere, this work has already
stimulated new and very accurate ab initio calculations of
the dynamic diatom polarizability of helium, which for the
first time will account rigorously for the frequency depen-
dencies.

The first polarized collision-induced diatom spectra
of the neon [26,271 and the argon [28] diatoms could also be
obtained, and from them, accurate empirical models of trace
and anisotropy for these gases. An interesting frequency
dependence of the argon diatom polarizability was observed
by comparing (on an absolute intensity scale) the diatom
spectra excited by three different laser frequencies (5145A,
4880A, and 4579X). It is known that the anisotropy of a pair
is given by a leading term, pl s a correction term. The
leading term is of the form 6al/r3 (with a = atomic polariz-
ability; r = internuclear separation), which in essence de-
scribes the distortion of the local fields by the collisional
perturber. The frequency dependence of this leading term is
that of a 2 ,and as is well known, it is quite weak. At close range,
the need of an added correction term has long been known.

Usually a form like A-exp(-r/ro) is found useful; this in
essence accounts for electronic overlap at close range. Al-
most nothing is known about the frequency dependence of this

correction term. If we are interpreting our recent observa-
tions correctly, the frequency dependence of the correction
term must be rather substantial, and certainly much stronger
than hitherto assumed. Furthermore, for the first time this
relatively small correction, which must be calculated on the
basis of wavemechanics, can be studied with little interfer-
ence from the leading term. A few more months of work are
required to arrive at the correct interpretation of this
observation, but we mention that extensive tests have already
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indicated the validity of this surprising result.

C. FOLLOW-UP STATEMENT: Unexpectedly, in collision-induced
light scattering an interesting frequency dependence was
recently observed [28]. This effect is intriguing because
it is almost certainly associated with the wave mechanics of
the atomic interaction, but not with classical electrodynamics
and the (trivi.l) local field distortions. In recent years
for the case of the argon diatom, theory showed that the elec-
tronic overlap contributions are rather small, at least at
zero frequencies of the field. Experiments at 5145A seemed
to be supporting this conclusion. However, our new experi-
ments at 4880A and 4579A indicate the need for a significant
overlap correction at these frequencies, much larger than
hitherto thought. The older results at 5145R thus appear to
be only coincidentally in support of the theory at zero fre-
quencies. This situation, we think, warrants some more activ-
ities in this field before moving on to the nonlinear collision-
induced diatom polarizabilities (susceptibilities).
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Research Unit QE9-3. HIGH POWER LASER SYSTEMS

Principal Investigators: Professor J. Keto (471-4151)
Professor M.F. Becker (471-3628)

Graduate Student: C.Y. Kuo

A. PROGRESS: This research unit is concerned with the physics
of energy transfer in gaseous, high power laser systems and
with optical components for high power laser beam analysis.

1. Energy Transfer in Laser Systems. One objective of this

unit is the use of time dependent spectroscopic techniques
to identify the primary energy transfer processes in high-
energy laser systems. Initial research has concentrated on
studies of electron beam pumped mixtures of oxides and rare
gases. This work is now concluded. New experiments have
been directed at studies of recombination rates in high-
density rare gas discharges. This information is pertinent
to nearly all types of high-power excimer lasers which use
rare gases as a buffer in the energy absorption process. We
have now obtained very exciting data on recombination pro-
cesses at high densities.

Electron Beam Excited Mixtures of Oxygen and Argon.
We have now completed both experimental studies and theoreti-
cal modeling for electron beam excited mixtures of argon and
oxygen. Previously we showed from qualitative models of our
data that the primary mechanism for populating the O(IS0)
state in the discharge is charge transfer from the molecular
argon ion to 02.

Important to any direct measurements of the energy
transfer rates to oxygen is a knowledge of energy transfer
to "impurities" which result from electron dissociation of
oxygen molecules. In single shot experiments starting with
a mixture of pure argon and oxygen, a significant amount
(2% at 10 atm total gas pressure when using a Febetron 706)
of dissociation occurs during the pulse. When using very
small and continuous electron beam currents (less than
100 pA/cm 2 ) as in our experiments, we found that significant
amounts of O( 3 p) and 03 were produced under particular experi-
mental conditions; hence we felt it necessary to model accu-
rately the amounts of O( 3 p) and 0 produced. We have also
measured the concentrations of OJ3P) and 03 by determining
their quench rates of O(IS 0 ) from measurements of the fluo-
rescence decay time at 557.7 nm. We find that our model cal-
culations are in good agreement with these measured quench
rates, and they also explain the observed dependence of the
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O(1S) fluorescent intensity on argon and oxygen pressures
and beam current. This work has been submitted for publica-
tion [1].

In our model calculation, we used our measured
energy transfer rates but as well had to assume a significant
electron dissociation of O2 to obtain agreement between model
calculations and our experiments. We have now completed cal-
culations of the electron energy distribution function, exci-
tation rates, dissociation rates, and electron impact vibra-
tional heating that result from the stopping of the electron
beam in the gas [2). These calculations show that dissocia-
tive excitation of ground vibrational 02 is insufficient to
explain the experimental rates for dissociation. Also, we
find that the calculated electron vibrational excitation rates
are significantly greater than the known rate of cooling by
V-T relaxation to argon atoms.

With an accurate model of the electron beam excited
argon and oxygen discharge, we can find conditions enabling
the study of energy transfer from argon ions and excimers to
both 02 and 03. These are determined by measuring the loss
rate of ions and excimers as a function of time after termina-
tion of the electron beam as a function of 02, 03, and argon
pressure. The measured bimolecular and termolecular rates,
which are submitted for publication [31, are summarized in
Table I.

Table I

Energy transfer rates. The error bars for ozone aje relative
and do not include errors in the quencn rate of O( S0)
measured in Ref. 4.

This Work Ref. 5 Ref. 6 Ref. 7
(10- ocm 3/sec) (10- 10cm3/sec) (10-10cm 3/sec) (10-10 cm3/sec)

Ar*+02  0.46±0.26 2.6

Ar*+O 46±6

o.H+.6 1.2±1.2 1.2

I) cmh)/sec)
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Dissociative Recombination in Argon at High Pressures.
In a recent progress report [8] we summarized preliminary re-
sults and the experimental approach for studying dissociative
recombination rates in argon at pressures from 10 Torr to 1000
Torr. We have now extended these results to pressures up to
20,000 Torr by monitoring the repopulation of the Arw(3,1Y+)
excimer which radiates at 125 nm. For pressures above one
atmosphere, each excited atomic state resulting from dissocia-
tive recombination results in the production of one ex'imer
state, which for small excited state densities produces a
photon at 125 nm. At higher pressures then, we can monitor
the rate of recombination as a function of time in the late
afterglow by observing the production of photons at 125 nm.
We find that the effective rate of recombination for electrons
increases monotonically with pressure. Our measured rates
are in agreement with other workers at low pressures [9],
while at the highest pressure of 10,000 Torr we observe a
factor of 17 increase in the recombination rate coefficient
over that measured at 10 Torr.

Werner et al. [101 first suggested the possibility
for the increase in the rate of dissociative recombination
at higher pressures in order to explain the experimental
dependence of the rare gas excimer laser gain as a function
of pressure. They suggested the increased rates of recombi-
nation could be explained by the formation of trimer ions,
e.g., Ar+, at higher pressures. Werner et al. 110] measured
the electron density as a function of increased gas pressure

at fixed electron beam current. Measured electron densities
in our experiments are in good agreement with these results.

In contrast to the model proposed by Werner et al.
for the increased recombination rates, our data suggest that
dissociative recombination is enhanced by collisions in a
termolecular reaction. For illustration we show in Fig. 1
a comparison of our data with a model which assumes that the

formation of trimer ions is in equilibrium with the dimer
ions with an equilibrium coefficient measured by Turner and
Conway [11]. As observed in Fig. 1 this model is inconsistent
with the data. This does not imply that cluster ions are not
formed; rather it suggests that their formation alone will
not explain the increased rate of recombination.

Bardsley [12] has suggested dissociative recombination
can proceed directly through dissociative molecular states or
indirectly through vibrationally or rotationally excited
rydberg molecular levels. In experiments on shorter time
scales we believe we observe a delay in production of disso-
ciative atomic states characteristic of intermediate states.
We also observe dependences upon electron density which are
explainable by a variation in the ratio of direct to indirect
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recombination. The research is now directed to the identi-
fication of these intermediate states using state-selective
photo excitation. In building apparatus for these experiments
we have developed improvements in blumlein-driven lasers [131
and an optical autocorrelator [141 to be used in adjustment
of a mode-locked laser for kinetic studies. Two papers
related to our studies of dissociative recombination are in
preparation [15,161.

Our research on electron beam excited mixtures of
argon and oxygen and on dissociative recombination in argon
at high densities is completed. New efforts directed toward
the identification of intermediate states in dissociative re-
combination using state-selective photoexcitation will be
carried out under the JSEP Research Unit QE80-2, "Structure
and Kinetics of Excited State Molecules."

2. Laser System Components. A second objective of this re-
search unit is the characterization and optimization of beam
sampling techniques for high energy lasers. The use of the
grating rhomb (parallel grating pair) to obtain amplitude
and phase distributions in laser beams has been studied. The
objective was to determine analytically the inherent aberrations
in rhomb systems and develop an optimum configuration. In
addition, a deconvolution algorithm should be devised which can
correct data already taken using an arbitrary rhomb system con-
taining aberrations.

Final work on this problem was completed and pub-
lished (17] during the past year. The inherent aberrations
were analyzed for the case of a two-grating rhomb laser beam
sampler used in high energy laser systems. Although plane
wave fronts are sampled without aberration, spherical or more
complex wave fronts suffer I-D phase and displacement devia-
tions. An inverse filter description that employs the angular
spectrum concept for the incident and sampled beams has been
developed. An inverse filter is easily synthesized and may
be used to deconvolve the aberrations from a sampled data set.
In addition, an optimiza.ion was performed in order to mini-
mize phase errors in the sampled beam and to develop design
criteria. Some practical examples show that, in an optimized
system, the aberrations are often negligible, and deconvolu-
tion is seldom necessary.

Work on this problem is now complete and it does
not appear in our currently proposed research.
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Research Unit EM9-1 ELECTROMAGNETIC SIGNAL ANALYSIS AND
IDENTIFICATION

Principal Investigators: Professor E. J. Powers (471-1430)

Dr. Y. C. Kim (471-4507)

Graduate Student: J. Y. Hong

A. OBJECTIVE AND PROGRESS: Many targets to be detected by
radar have inherent metal-to-metal contacts which are observed
to exhibit nonlinear junction effects which, in turn, may re-
sult in new frequency components (such as harmonics and cross-
products) appearing in the backscattered field [1]. The ob-
jective of this work is to investigate the possibility of gain-
ing additional signature information characterizing a nonlin-
ear target by appropriately analyzing and interpreting the in-
cident and backscattered radiation. Clearly classical linear
spectral analysis techniques are of limited value in analyz-
ing signals scattered by a nonlinear target. Our approach to
this problem is to build upon our own experience in applying
higher spectral concepts to nonlinear wave phenomena [2,3] and
to utilize various aspects of work done by others in nonlinear
systems [4]. The concept of impulse response (or equivalently,
its Fourier transform known as the transfer function) has been
utilized to characterize the features of linear targets [5].
To quantitatively characterize the higher order nonlinear scat-
tering features of a target, we have utilized the nonlinear
systems concept of higher order impulse responses and their
Fourier transforms, higher order transfer functions. In this
case we may consider the incident radiation as the "input" to
to a nonlinear system and the scattered radiation as the "out-
put." In contrast to much of the nonlinear systems work involv-
ing the time domain [4], we have focused on the frequency do-
main [6] where the "input"-"output" relation is modelled with
aid of a hierarchy of linear, quadratic, cubic, etc., transfer
functions. We have also shown how the concept of higher order
transfer functions may be utilized to characterize the linear
and nonlinear features of a target with the aid of linear, quad-
ratic, cubic, etc., scattering cross sections. As an example
of how the concept of higher order scattering cross sections
may be applied, we have utilized these concepts to extend the
radar equation to nonlinear targets [7]. Specific details
follow.

Nonlinear Transfer Functions: Our starting point is
based on the work of Barrett [8] who showed that, if the input
x(t) is a zero-mean stationary Gaussian process, the output
y(t) may be expressed by the following orthogonal representation:
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y(t) = jh )(t-tx (t )dt 1 + h2(t-t{t x (tJx (t 2 )

Y*/j(h h2(-t1  - 2 )2

-00 -00

- < x(t 1 )x(t 2 > I dt 1 dt 2

+fff h3 (t-t1l t-t 2 , t-t 3) x(t )X(t 2) xt 3 ) - (t 1) < (t2)(t3 ) >

- x(t 2 ) < x(t 3 )x(t 1 ) > - x(t 3 ) < x(tI)x(t 2) > dt 1 dt 2 dt 3 + . .()

where the pointed brackets denote statistical averaging and

the nth kernel h may be regarded as the nth order impulsen
response characterizing the nonlinear features of the system.
Fourier transforming Eq. (1), we obtain:

00

Y(f) = f Hl(f 1 )X(fl)6(f-fl)dfl

-00

0]f H2 (f ,f 2 )X(f) 2 ) - < X(f 1 )X(f 2 ) > 6(fI+f 2-f)df 1 df 2

-00

- X(f 1 ) < X(f 2 )X(f 3 ) > - X(f 2 ) < X(f 3 )X(f 1 ) >

X(f3) < X(f1)X(f2) > 6(fI+f2+f3f)df df2df3 + (2)
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where H , the n-dimensional Fourier transform of h , is the
nth order transfer function, and X(f) and Y(f) are the Fourier
transforms of the input and output, respectively. The presence
of the terms in pointed brackets insures that Eq. (2) is an
orthogonal representation. Note also that <X(fl)X(f2)> =
P x(f 6(f1 +f2 ) for a stationary random fluctuation, and where
p (f) is the power spectral density of x(t) [9]. Thus, the

x
terms in the pointed brackets correspond to degenerate type
situations where f1=-f2, f2=-f3, or fl=-f 3, etc.

Since each term in Eq. (2) is orthogonal to the other
terms, the output power spectral density P y(f) is given, up

to third order, by the relatively simple expression:

Py(f) = IHI(f)I 2 P (f) +ff IH2(flf2) 12P X(f )P x(f 2(f +f 2-f)df df2

000

+fffj H3 (f, 2 f 3)12P f)P (f )P Cf (f +f2+f3-df df df3 (3)

Of particular interest is the fact that
Hn (f 1f2f3...fn) may be determined by multiplying Eq. (2)

by X*(fl)X*(f 2 )...X*(fn) and carrying out a statistical aver-

age. The asterisk denotes a complex conjugate. For example,
the first three transfer functions are jiven by:

H (f) = -Pu)-
P (f)

x

P (f f4.a
1 yxx 1'f2 (4.a)H 2(flf 2 2! Px(f )Px(f2

21 x 2

= 1 J J ____(f__ 2 _f_3(4.b)
H3(f1 'f2 f3) 3 X(fl)Px(f2)Px(f3)

(H( (f) + (ff H(f3+f,) ±
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Note that all the transfer functions are expressed in terms
of nth order cross spectra, P Yx.x(fl'f 2'.'f n6(f +f2 +.f n- f)=
<Y(f)X*(f).X*(f)>. Of special interest is the fact that

such spectra can be computed directly from the Fourier trans-
forms X(f) and Y(f) of the raw time series data [2].

Eq. (2) models, in the frequency domain, the linear,
quadratic, and cubic relationship between two fluctuating
quantities x and y. Of particular importance is the fact that
Eq. (2) is an orthogonal representation, which in turn indi-
cates that to third (i.e. cubic) order Eq. (2) is the best
model in a least mean-square-error sense. The overall "good-
ness of fit" of the model caq be obtained by computing a
suared coherence2 function y (f), which can be expresseI as
y (f) = yl(f) + y2 (f) + y3 (f), where yl(f), y2 (f) and y3 (f)
are quantitative measures of the degree of linearity, 2uad-
raticity, and "cubicity" of the model. The quantity y (f)
represents the fraction of power present in the ac ual output
which is accounted for by the model. Similarly, y (f), y2 (f),
and y,(f) represent the fraction of power present in the out-
put w ich is associated with the linear, quadratic, and cubic
nature of the model. Expressions for the linear, quadratic,
and cubic coherency spectra are given below:

12P PYX (f)12

20 I= (5a2r1 (f) (f)
~2

2 f 2) 6(f +f -f)df df
Y2 (f) p (f)Px(fl)P (f 2 ) 1 2 1 2 (5.b)

JJ( Y 
X 1 x 2

2 fC)(f) = f P f f ( (f)Jy(f)Px(flPx(f2)Px(f3) Pyxxxfl2, 3

P ~ ~ ) (f )P(f)%f

- / (fI)Px(f2)Mf2+f3 + P yx (f2 )Px (f3 f3+f )

+ Pyx (f )P(f(f+f2 6(f4-f2+f 3-f)dfldf 2 df 3
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Nonlinear Radar Cross Sections: We now procede to
build upon the conceptual framework of nonlinear transfer
functions to generalize the idea of radar cross section so
that it might quantitatively describe both the linear and non-
linear features of a target. The general concept of a non-
linear radar cross section should possess the following fea-
tures: (1) It should, in the linear limit, reduce to the
familiar linear radar cross section, (2) It should indicate
that due to the nonlinear aspects of the target various fre-
quencies in the incident signal "mix" to yield a variety of
new frequencies (including harmonics and intermodulation cross-
products) in the scattered signal, (3) It should be capable
of separately quantifying the degree of nonlinearity associ-
ated with the quadratic, cubic, etc., features of the target,
(4) It should reduce, in the appropriate limit, to the con-
cept of harmonic radar cross sections [10] where it is known
that the amount of power scattered from a nonlinear target is
a nonlinear function of -he-ncident power.

Let S.M (f) [wm Hz ] denote the power fluf spectral
density incident upon a target, and let P (f) [wHz I denote
the power spectral density of the scatterad signal (measured
at the target), which is assumed to be reradiated isotropic-
ally. Recalling that, in general, radar cross sections re-
late the incident flux density to the power scattered iso-
tropically, and utilizing Eq. (3) where S. (f) is the "input"1
and P (f) the "output" of our nonlinear system, we arrive at
the f~llowing expression relating Si (f) and Ps(f).

P (f) = Si (f) F(f)

+ffsi (f1 )Si ( f22 , 6 (f1+f2 -f)df 1df2

+fffsif(f1 )Si(f2 )Si(f 3 )a3 (flf 2 ,f3 )6(fl+f2+f3-f)dfldf 2df3

+ .(6)

The quantities a1 (f), a2 (fl,f 2 ) and a3 (f1lf 2,f 3 ) are the radar

cross sections representing the linear, quadratic, and cubic
features of the2 targt Note that 01, 02 03 have the physical
dimensions of m , w m, w m , respectively. In general,
the dimensions of the nth order cross section a n(f 1 ,f2 ,f3 ,..f n
are w -nm 2n. The fact that the dimensions of the "nonlinear"
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cross section involves w (watts) is a manisfestation of the
fact that the amount of power (at the "mixing" frequencies)
scattered by a nonlinear target is a function of the incident
power level. For example, the second term on the RHS of EQ.
(6) indicates that the amount of power scattered at the sum
frequency f = f1 + f2' is dependent on the product of the

power flux density of both f1 and f 2 The quadratic cross

section o 2 (fl1 f2 ) is a quantitative measure of the strength

of this quadratic interaction. Analogous statements may be
made concerning the third term on the RHS which models the
cubic features of the target.

To demonstrate the utility of the nonlinear cross
section a (fff f f ) we now procede to develop the so-

n 12 3'.. n
called "nonlinear" radar equation which relates the power spec-
tral density Pr (f) of the received signal to the power spec-

tral density of the transmitted signal P (f). To do this, we
t

make use of the fact that

Si(f) = Gt(f), (7.a)
1~f 4iR 2  t

P (f) X(7.b)

pr(f )  s Gr (f)7
4rrR 47T

where Gt (f) and Gr (f) are the gains (at frequency f) of the

transmitting and receiving antennas, respectively. Combining
Eqs. (6) and (7) we obtain the nonlinear radar equation,

G (f) X2 ptP (f) = r 2 4 4 R7 - G t(f) Gf)

G(f) A2 ffPt(f l ) Pt(f 2
+ 4 _ Gt(fl)Gt(f2 ) -

4rR2  471 4R 2  4rR2

02 (flf 2) (f 1 +f 2 -f)dfIdf 2

GrM X 2 /_t(f I ) P t(f 2 P t(f3 )C (f)
r 4 J 4 22 Gt(fl)Gt(f 2 )Gt(f 3 )
-- fR2 47 7R 2 4irR 2 47rR2 1t2t3

o3(f,f,f3)6(f1f+f3-f)df df 2df3 + ... (8)
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The first term on the RHS, which models the linear scattering

features of the target, is the usual (linear) radar equation.
The next two terms indicate how the radar equation is modified

by the quadratic and cubic nature of the 4 target. Note the
linear term possesses the well known 1/R range d~pendencW,

whereas the quadratic and cubic terms vary as /R and l/R-,

respectively. We further note that when f 1 =f 2=f 3 =.. fn, Eq.

(8) reduces to the harmonic radar equation. In this case,

Eq. (8) indicates that the scattered 2nd and 3rd harmonic
power are proportional to the square and cube of the incident
fundamental frequency power, respectively.

Comparing Eqs. (3) and (8), we arrive at the fol-
lowing relationships between the linear and nonlinear scatter-
ing cross sections and linear and nonlinear transfer functions,

2 X 2  G r(f) Gt (f) ( (9.a)
IH (f)- 2

147r 4TrR 4rrR

2 G(G(f) G (f2)
= X f1 f2  12_(f I f2 (9.b)

2 24 4R 2 4R2 47R2 (9b

IH3(fl'f 2f  H 
2  G r(f1+f 2+f3 ) Gt(f1) Gt(f 2) (9.c)

4 4TrR 2  4rR2  4R R2

Gt (f3

4 TR2  a(fl f 2 f 3)

and so on.

B. SUMMARY: To describe the nonlinear features of a scat-
tering object we have utilized the concept of nonlinear trans-
fer functions. This in turn allowed us to generalize the con-
cept of radar cross section, in that the linear, quadratic,
and cubic scattering characteristics of the object may be
quantitatively described by the linear, quadratic, and cubic
cross sections. Furthermore, it was demonstrated that by in-
troducing the concept of nonlinear cross sections, one could
modify the radar equation to include the nonlinear features
of a target.

It was shown that when an "input" is Gaussian, but
nonwhite, the nonlinear transfer function and hence the non-
linear cross sections can be determined by computing the
power spectrum of the input, and higher order cross spectra
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between the input and output. Some of the practical aspects
of implementing these ideas in order to determine the linear
and nonlinear scattering cross sections from measurements of
the incident and scattered signals are currently being inves-
tigated.

In closing, we reiterate that the (possible) measure-
ment of higher order nonlinear scattering cross sections ap-
pears to provide a very systematic and quantitative way with
which to describe the scattering characteristics of nonlinear
targets. Knowledge of such higher order cross sections should
provide additional information which may be utilized in the
classification and identification of a target. Secondly,
knowledge of linear and nonlinear scattering cross sections
will enable one to predict the power spectrum of the scattered
signal in terms of the power spectrum of the incident signal.
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Research Unit EM9-2 GUIDED-WAVE DEVICES FOR THE FAR
INFRARED-mm WAVE SPECTRUM

Principal Investigators: Professor T. Itoh (471-1072)
Professor A.B. Buckman (471-1095)

Postdoctoral Research Associates: K. Araki and L.P. Schmidt

Graduate Student: B.S. Song

A. RESEARCH OBJECTIVES

This work has as its overall objective the identi-
fication, analysis, and finally, the prototype demonstration
of useful semiconductor waveguide devices for production and
control of radiation in the frequency range from ten to a few
hundred gigahertz. This part of the spectrum is uniquely
suited to a number of DoD needs, but its exploitation will
require a mix of designs, some using concepts first developed
in integrated optics, and others adapting microwave techniques.
This research focuses on use of the Gunn and IMPATT mechanisms
for radiation sources, and on use of carrier injection and
the field effect for electronic active guided wave devices
such as modulators, active filters and beam deflectors. For
the most part, the device concepts being studied are compat-
ible with planar waveguide integrated circuit technology.

B. PROGRESS

In the first year of research under this unit, our
investigations have proceeded in a number of directions, which
are detailed in the following.

1. Distributed Gain Mechanism. In conventional two or three
terminal active devis:es such as Gunn, IMPATT or FET, micro-
wave amplification takes place in the direction of the dc
bias. For instance, in a Gunn device a gain is expected in
the direction from one electrode to another due to negative
mobility [11 around the transit time frequency without dipole
formation [2] (n0L < 101

2cm-2), or even with dipole formation

[3] (n L > 1012 cm-2 ); here no is the carrier concentration
and L he device dimension.

As opposed to these conventional approaches, we
envisage the situation in which growing waves propagate in
the axial (z) direction in Figure 1, perpendicular to the dc
bias, if the device has sufficient length. In fact, it was
reported that one can have gain in the axial (z) direction
when the transverse carrier transit angle is around 27 or
its multiples in IMPATT or n-GaAs type Gunn structures [4,5].
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Some experimental work on a n-GaAs device with coplanar
electrodes has been reported in (6].

Strictly, these types of problems are time-
dependent and three-dimensional, but there has been no ex-
planation of transverse transit angle dispersion even in the
simplified time-independent one-dimensional case. This trans-
verse transit angle dispersion has a critical effect on the
gain and propagation characteristics of planar structures.

In the previous work on distributed gain devices
[4,5] it was assumed that the device is uniform in one trans-
verse dimension. Hence, no guided wave effect has been
investigated. On the other hand, the work of coplanar type
describes only a special case, and no general treatment of
this class of devices is reported (6].

a

Figure 1. Parallel strip waveguide with
active medium.

These new structures are expected to have several
unique features that make them potentially advantageous in
millimeter-wave applications. They are:

(a) The device structures conform to planar fabri-
cation technology, and hence, may be useful in
monolithic IC development.

(b) Since the gain mechanism is distributed along
the axis, the device is considered to be an
active waveguide. This may lead to flexible
design possibilities. Depending on how the
gain device is terminated, it may work either
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as an amplifier or as an oscillator.

(c) Wide-band performance, such as wide band elec-
tronic tuning, may be attained. This is
because the propagation characteristics (the
phase constant and the gain) are controlled
by the dc bias, and small changes in these
characteristics result in cumulative phase
shift or gain in the axial direction.

(d) Since at least one of the device dimensions
is large compared to the wavelength, the fabri-
cation may be more cost effective at higher
frequencies.

Basic Mechanism for Distributed Gain. We have con-

centrated mainly on the Gunn-type devices. For basic under-
standing of the gain phenomena, we reviewed the one-dimensional
analysis used by Yokoo and Ono [5]. In Figure 1 we apply the
dc bias along the x direction in such a way that no domain
is formed (n0L < 101

2cm-2). If we assume that the fringing
effect is negligible, all the field lines are parallel along
the x axis and are inside the active medium. Then the field
becomes uniform in y and the problem is reduced to one dimen-
sion. The dispersion relation in this case becomes a2 =
-jwp 0 Y(w), where Z is the path length and Y(w) is the driv-
ing point admittance per unit area.

The real part of a is the phase constant, whereas
the imaginary part gives either loss or gain. It was found
that gain is exhibited when the total transit angle is around
2w or its multiples.

Simplified Analysis for Planar Distributed Gain
Structures. Up to now, we have reviewed the simplest structure
which is assumed to have uniform transverse carrier transit
angle, and hence, no dispersion. In many more practical
structures, however, transverse carrier transit angles are
non-uniform. These structures include microstrip, slot-line
and coplanar transmission line arrangements. These structures
can be easily implemented by planar technology and are use-
ful for high microwave and millimeter-wave applications. In
these devices, the contour of the region in which an n-GaAs
medium exhibits gain depends on the bias voltage. It is,
therefore, expected that the dc bias strongly affects the
propagation and gain characteristic, due to transit angle
dispersion caused by different carrier transit paths in the
transverse direction.

To investigate this two-dimensional effect, we

79



ELECTROMAGNETICS

divided the cross sectional structure into infinitely many

dc current elements (constant flux) as shown in Figure 2(a).
Within the small tubes labelled 1, 2, --- , the flux is con-
stant and uniform. Therefore, we can model the structure
(coplanar type here) with a parallel combination of time
independent one-dimensional structures denoted by 1, 2,
as described in Figure 2(b). The propagation constant of
the composite structure is obtained by combining those of
the individual one-dimensional structures.

Our initial investigation indicates that the
results based on the simplified model qualitatively agree well
with those obtained experimentally [6]. In addition, this
analysis lends itself to clear understanding of the gain
mechanism in planar structures. We find that the gain is
created only in a portion of the cross sectional region while
the rest of the region causes loss. Therefore, this analysis
may be useful for optimum design of the device.

Maximum Possibte Frequency of Operation. During

the early stages of space-charge build-up in two-valley semi-
conductors exhibiting negative conductance, the time rate
of the space charge growth is given by [7,8]

Q(x,t) = Q(x-vt,O) exp T -

where

S

D qno DIPD

is the dielectri reiaxation time. Typically in n-GaAs with
density nO - 10 1 cm - , mobility D 1-2400 cm/v-sec, and
relative dielectric constant c. = 12.5, TD is about 2.88 psec
[9]. That is, it takes about 2.88 psec for space charge to
grow up to the el level.

On the other hand, the negative differential mobil-
ity is due to the intervalley carrier transport caused by
optical-phonon scattering. The carrier transport is the trans-
fer of conduction electrons from a high-mobility low-energy
valley to a low-mobility high-energy valley. This scattering
time is on the order of psec [7]. In other words, negative
differential mobility does not exist until intervalley scat-

tering is completed.
Therefore, if the sum of this scattering time and
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the dielectric relaxation time is larger than the half-cycle
period, the amplification due to negative differential mobil-
ity is unlikely to occur. When we operate around 10 GHz, this
limitation is negligible, but 100 GHz lies nearly at the edge
of the maximum operating frequencies. As an example, for the
amplification to occur at 100 GHz, the sample length L must be
1 pm or so. But in order to satisfy the accumulation layer
limitation (n0L < 10

1 2cm-2 ), no must be smaller than i0
1 6cm-3.

When no = 1015, T. is on the order of a few psecs [9].
Hence, if the medium is uniform and space charge

nucleates exactly at the cathode interface, the operation at
100 GHZ is considered feasible. Space charge nucleation at
the cathode interface is also believed to be possible when
we make the anode larger than the cathode as in microstrip or
coplanar structures.

Besides this time limitation, another limitation
we have to consider is the power limitation. If we reduce
sample length in order to increase operating frequencies, the
capacitance increases. Hence, we also have to reduce sample
area to avoid breakdown [10].

Comparative Study. Based on the simplified analysis
presented above, we calculated qualitative performances of both
microstrip and coplanar type distributed Gunn devices. It is
found that the microstrip type electrode arrangement generally
provides higher gain per unit axial length, whereas the sta-
bility for the bias fluctuation is better in the coplanar
arrangement [11]. This is because more fluxes contribute to
the generation of gain at the same time in a microstrip
arrangement, while relatively fewer fluxes contribute to the
gain over a wider bias range in the coplanar structures.

Prototype Design. We obtained a GaAs material with
the epi-la yer of 5 pm thickness with doping density of n0 =
2.7 x 10- 1 cm- 3. By using a computer program, we obtained
design data for the electrode pattern. A mask based on the
design has just been delivered. Currently we are working on
the adapter which provides both RF and bias connections to the
device.

2. Control Devices. We have continued our investigation of
adaption to millimeter-wavelengths of the multilayer dielec-
tric waveguide phase-shifter concept originally studied for
use at higher frequencies [12,13]. In the millimeter-wave
region of interest, carrier injection is expected to produce
refractive index changes on the order of 0.1 or more, but
accompanied by significant losses introduced by scattering
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of the injected carriers. The frequency regime of interest,
therefore, lies between the short wavelength region where
free carrier dispersion is dominant, and the microwave region
where injected carriers drive a section of the semiconductor
into metal-like optical behavior [141.

Some recently completed preliminary calculations
indicate that a multilayer dielectric waveguide structure can
be specified which utilizes a very thin (much less than a
wavelength) active layer to minimize free carrier scattering
loss, while still retaining sensitivity of effective index
to active layer refractive index of near unity. These cal-
culations will be carried forward to yield a design of a
loss-minimized carrier-injection-controlled phase shifter
with a GaAs active layer, with estimates of phase shift/unit
length, insertion loss,- and required drive power.

3. MO-CVD Facility. Since much of the analytical work has
pointed toward devices based on layered semiconductor struc-
tures particularly GaAs (and perhaps GaxAk1 _xAs), we have
begun construction of a system to deposit epitaxial layers
of those materials with controlled composition and doping, by
metal organic chemical vapor deposition [15]. This method,
while incapable of the ultra precise thickness control pro-
vided by molecular beam epitaxy, gives layers of high
crystalline quality. Since the waveguide theory scales as
d/X where d is film thickness and X is the wavelength, the
precise thickness control necessary .for optical waveguide struc-
tures should not present a problem in the millimeter-wave reginie.
When the system is constructed, the compositional profiles and
optical properties of layers made with it will be characterized
by means of Auger electron spectroscopy and ellipsometry. Once
characterized, the system will be employed to fabricate layered
semiconductor waveguide structures such as those described here.

C. FOLLOW-UP STATEMENT

This research is being continued under the 1980-83
JSEP Contract.
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