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1. INTRODUCTON

This report documents a derivation of the nonlinear platform orientation error equations for
a local level inertial navigation system (INS). These differential equations govern the Euler angles
that relate the actual orientation of the INS platform axes to the ideal orientation of these axes.
Pinson (Reference 1) discusses the causes of the orientation error and derives the linear differential
equations for the error angles.

The need to document this derivation, and the resulting equations, arises because the platform
orientation error equations form an important part of the formulation of NAVSHIP, a nonlinear,
deterministic computer simulation of a local level INS. This simulation, which is currently being
used at the Naval Surface Weapons Center (NSWC), will be fully documented in another report.

A second reason for writing this report is tutorial in nature. Most introductory courses in
classical mechanics cover the kinematics of rotating coordinate frames by deriving the vector
differential operator, *

(at )ixed ) otating

as quickly as possible, and then use this formalism to solve various fairly simple problems. The
required angular velocity vector, wa, is often easy to determine by inspection in typical exercises.
The beauty and utility of vector formalism, in general, derive from the ability to formulate a
physical theory in terms of vector equations that are independent of any particular coordinate
frame. We are forced to relinquish this generality and return to coordinate representations,
however, whenever we need to do calculations involving these equations.

An alternate approach to the treatment of rotating coordinate frames is often useful. This
approach deals with specific coordinate representations from the outset, by explicitly including
the time-dependent transformations that relate the particular coordinate frames involved in the
problem. Since these transformations are considered when any differentiation is performed, the
resulting equations contain the transformations needed to ensure computational consistency.
Moreover, the elements of the angular velocity vectors are available in a very natural way. These
properties of the alternate approach are very useful when formulating a complicated problem for
computer solution. In texts on classical mechanics, this approach is usually treated only in the
sections dealing with rigid body motion. A particularly concise and well-motivated presentation
may be found in Reference 2.

Thus, the author intends to outline carefully the alternate approach and to provide a non-
trivial example of its application. It should be stressed that neither the approach nor the error
equations to be derived are original. I have not, however, seen them in combination before.

Throughout this report, the following assumptions are made, often without comment:

(a) All vectors used are elements of a three-dimensional Euclidean vector space.
(b) All coordinate frames are right-hand Cartesian systems.
(c) All transformations represent rigid rotations and, hence, are linear and orthogonal.

*Vector quantities will be denoted either by bold face type or by an underbar.



II. ROTATING COORDINATE FRAMES

Suppose Las 1b, and 1, are three coordinate frames and let v denote an arbitrary vector. In
this section, we will treat Za as fixed and assume that Xb and 1, are rotating with respect to (wrt)
la" Now, v may be represented in terms of la, Ib, or 1, by appropriate 3-tuples composed of the
components of v along the axes of Ea, I'b, Or E€V These 3-tuples will be distinguished by the follow-
ing notation: "va' will denote the 3-tuple whose elements are the components of v along the axes
of Za. That is,

Va

In general, superscripts on quantities (e.g., vectors or operators) will denote an element representa-
tion wrt a particular coordinate frame (e.g., 1a, Xb)"

To handle vector differentiation, we must carry this notation a little further. The symbol
"4a" is defined by

/dva /dt

ia = dva/dt = dva/dt

\d3/dt V)

Suppose that W is the matrix representation of the transformation from Za to Ib. Then for an
arbitrary vector v,

wb = Wva.

It is important to keep in mind that in terms of the notation defined above,

(Wa)b Wi,

and that in general,

(ia)b ib

Specifically, ( !a)= ib iff. the transformation from E. to Zb is time independent (i.e., iff. W = 0).

Now that our notation has been defined, let's derive the angular velocity operator associated
with the rotation of 2;b wrt 2;a. Suppose that u is fixed in 1b (i.e., that the components of u along
the axes of lb are constant). Then (from our definition of W given above),

ub = Wua. (1)
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Differentiating Equation (1) wrt time (remembering that u is assumed fixed in Eb ), we find

fb = 0-=- Wua + Wd a , (2)

where, of course, W E dW/dt. Solving Equation (2) for 6a yields

6a = -W-lWua =--WTUa, (3)

where the superscript T denotes the transpose of a matrix. The last equality in Equation (3) follows
from the fact that W is an orthogonal matrix.

The matrix operator, WTW, that appears on the right-hand side of Equation (3) is skew-

symmetric. To see this, consider the equation,

WTW = I, (4)

where I denotes the identity matrix. Differentiating Equation (4) wrt time yields

WiTW + WTw = 0,

so

WTw = -T w = -(WTw)T,

as claimed. Since WTW is skew-symmetric, it may be written in the form,

WTw = - 3  0 ). (5)

(2 -91~ 0)

At this point, we may make the connection between the operator, WTw, and the angular
velocity vector, q, that is associated with the rotation of Ib wrt Ia in the vector operator
formalism. Since u is, by assumption, fixed in Eb, the usual vector operator formalism tells
us that

01 3- e3Ua2

6a = eX U,= & a -7u ),l 1 (6)

e -ul oau /

where the superscript "a" on a indicates that it is given in terms of components along the axes of
2:. But from Equations (3) and (5) we see that

3'



(2 3U3 - 0
U -~W ~ 0 33u 1 j3 (7)

Equating the right-hand sides of Equations (6) and (7), we have 0I = ,2 = 2, and 3 = 3. It
follows that

/0 ,aci\

AasWT = -3 0 (8)

e2 -&1 0)

is the angular velocity operator associated with the rotation of Ib wrt Za, in terms of elements
given wrt the 1a axes, or, A' = [a, b; a]. (The new notation, rjx, y; z], denotes the angular
velocity operator associated with the rotation of MY wrt I, in terms of elements given wrt the
1z axes.) It is clear from Equation (8) that when W is known, C_ may be determined from

011 = W1 2 13 
+ W22*23 + W32 * 3 3 ,

L-2 = W1 3 11 + W2 3W2 1 + W3 3W3 1 , (9)

a 3 = W1 1* 12 + W2 1 * 2 2 + W31W32.

We may transform Aa from Za to any other coordinate frame, say Z., so long as a nonsingular
matrix is associated with the transformation from Za to the new frame. Letting U denote this
matrix, then for an arbitrary vector v,

Vn = Uva,

so

(Ua)n = _UAaUa = _UAaU-lUn. (10)

If U is an orthogonal matrix, Equation (10) becomes

(ja) n = -UAaUTun,

or

(u') n = -Anu" n '

where

An = UAMUT. (I)
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We claim that A = [a, b; n]. The first step in showing this is to demonstrate that An is skew-
symmetric. Remembering that Aa = -AaT, we have

A n = UAaUT = -UAaTUT - -(UAaUT)T = -AnT, (12)

so AP is skew-symmetric. Proceeding just as we did before, it is easy to show that if

_,= (4 (15)

is the angular velocity vector associated with the rotation of Zb wrt Za in terms of elements given
wrt the Zn axes, then

(uAa) u = -Anun =n X u, (16)

and

/0 ~-Vi~

A7 = 0 (17)

( 2 -er 0

A little more manipulation shows that

C._ = Uo_. (18)

Before we consider the specific problem of deriving the platform orientation error equations,
let's carry the general development a little further. As mentioned earlier, we assume that Ea is
fixed, and 2-b and Z, are rotating wrt Za. These three frames are related by transformations, whose
representative matrices are shown in Figure 1. In other words, for an arbitrary vector, v, the
3-tuples representing it in these three frames are related by the following equations:

Vb = WV a ,

vc = Gva, (19)

Vc = FVb. J
W L

In the preceding paragraphs, we determined that the F
operator 01a, b; a] is A' of Equation (8). Using the tech-
nique illustrated by that development, it follows from the G
second of Equation (19) that (I[a, c; a] is just Figure I c
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Ba = GT(G, (20)

and the associated angular velocity vector may be written as

1 G1G13+ G22 G23 + G32 G33 \

ba = (2) G161 + G2XG21 + G33631 ).(21)

b'3= G6110 12 + G 216 22 + G 31 632/

Similarly, /[b, c; b] is given by

Cb = FTF. (22)

The objective at this point is to show that these angular velocity operators may be treated
additively. Specifically, we will show that

(,[a, c; k] = r([a, b; k] + ,[b, c; k] , (23)

with Zk denoting an arbitrary frame related to La, Zb, and 1, by rigid rotations.

Using the matrices associated with the angular velocity operators, Equation (23) may be
derived as follows. First,

Ba = GT6 (by Equation (20))
= WTFT(IW + F*) (since G = FW)

= WTFTtW + WTW (since FTF = I) (24)

= WTCbW + Aa (by Equations (8) and (22))

= Ca + Aa. (using Equation (11))

Thus,

M[a, c; a] = r[a, b; a] + (e[b, c; a]. (25)

To complete the deviation, we simply transform both sides of Equation (24) from Za to Lt.

The outline given in the preceding pages of this section covers the material needed in the
derivation of the nonlinear differential equations that govern the INS's platform orientation error.
It should be pointed out, however, that the outlined approach may be carried further to determine
the matrix operators needed to write the equations of motion for a particle in terms of rotating
coordinates. This extension of the present section will be the subject of another applications
report.
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III. PLATFORM ORIENTATION ERROR EQUATIONS

The technique outlined in Section II will be used in this section to derive the nonlinear differ-
ential equations governing the Euler angles that relate the actual platform orientation to the ideal
platform orientation of a local level INS. The particular local level configuration assumed is an
"up," "east," "north" system. Thus, the ideal platform axes are defined by unit vectors uh, u),
and uo in the direction of increasing height, increasing longitude, and increasing latitude, respec-
tively, at the system's true position.

Five coordinate frames will be used in the derivation. They are defined as follows:

Ze Earth Fixed Frame - Z-axis through the North Pole, x-axis in the equatorial plane and
passing through the Greenwich meridian, y-axis such that 1e is a right-hand system

11 = Inertial Frame-Coincident with Ze at t = 0 and fixed wrt the fixed stars

;p -=Ideal Platform Frame-X-axis along the normal to the reference ellipsoid at the true
position of the INS, y-axis level, and east pointing at the true position, z-axis level, and
north at the true position

Xc = Computer Frame -Analog of Zp, except that the (erroneous) position indicated by the
INS, rather than the true position, defines its orientation

1 -E Actual Platform Frame-Frame actually defined by the platform hardware

The five coordinate frames are related by transformations whose representative matrices are
shown in Figure 2. In defining these transformations, I will use the following notation: for any
axis, t, and any angle, ', R+t(') will denote
a positive rotation about the -axis, through E F
the angle t. If a rotation is negative, it will ZI - -

be denoted by Rt('). Finally, " 42K will H
denote the transformation from I;j to 7K" G

From the definitions of the frames, it ;C Q
follows that the transformations shown in
Figure 2 are completely defined by Figure 2

'-112e R+z(92.t), with associated matrix = E,

-. 2P R-Y()R+z(X), with associated matrix F,

e2C R-y,(,0)R. z(X), with associated matrix =M G,

"Yp2M R.z'03)R-y'(02)Rkx(0), with associated matrix H,

7



where

t M time.

Re = magnitude of the Earth's angular velocity,

- geodetic latitude of the true position,

X M geodetic longitude of the true position,
s = geodetic latitude of the indicated* position,

s geodetic longitude of the indicated position,

011 02. 03 Euler angles relating Yp to IM

The claim that these four transformations completely define the matrices shown in Figure 2
follows from the fact that Q may be derived from F, G, and H.

Given the transformations in terms of the rotation operators, the associated matrix representa-
tions may be written explicitly. Using the notation, C cos " and S" sin T, the matrices are

E C(net) CS(nzt) 0 (E= (S(fnet) C(n2et) 0 ) 
(0 0 1/

F= ( -SX CX 0 (26)

\-sOCx -sosx cO

/COCX s  COSS So)

G = SVs CXs 0 (27)
\-s scxs -SOSSXS Cs /

/ C02C03  SOIS02CO3 + COIS03  -COIS0 2C63 + SO1S03\
H = (-C02S0 3  -SOS0 2S03 + COIC0 3  C01S02SO3 + SO1C03) (28)

\ S02 -S0 1 C0 2  C01C02

It should be noted that, while ./e, .e2P , and. Je2c are completely determined by the definitions of
11, Zp, and 1C, the particular form chosen for.,P 2M ( and its associated matrix, H) is somewhat
arbitrary. That is, a different set of rotations and associated Euler angles could have been chosen.

*The "indicated" value of a quantity is the value available from the INS. It will usually differ from the true value.

8
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At this point, a precise statement of the problem addressed in this section can be given and its
solution outlined. The problem is: Given the form chosen for./P 2M, determine the differential
equations that, together with suitable initial conditions, specify the values of 0,, 02, and 03 at any
time t > 0. The solution may be broken down into five steps. They are:

Step (1)-Determine the angular velocity operator r' =--to [P, M; PI. The three independent
elements of re (i.e., yP, yP, and yp) will be functions of 01, 02, 03, 01, 02, and 03.

Step (2)-Given the system of equations,

7pi = fl(O, 02, 03, 01,02, 03),

7.P = f2(01, 02, 03, 01, 02, 03),

73 = f3(01, 02, 03, 01, 02, 03),

determined in Step (I), solve this system for 01, 02, and 03. This yields the expressions,

01 = g, (0l, 02 , 03, 71 2 3

02 = g2 (01 , 02, 03, If, P, 2 3),

03 = g3(01, 02, 03, -tp, 72, 'y3)

Step (3)-Determine the angular velocity operators, A' - ('[I, M; I] and I1 =_ ('[I, P; I].

Step (4)-Transform A and 'I's to Ip to obtain A v = ('[I, M; P1 and P = ('[I, P; PI, and,
on the basis of Equation (24), determine yr[ v,, and 'y

P from the equation

pP = A v - *P.

Step (5)-Substitute the expressions found for yP, -yP, and 'yp in Step (4) into the equations
found for 0,, 02, and 03 in Step (2). This yields the desired nonlinear differential equations
governing 01, 02, and 03.

Since the transformation,.4 2 M, is represented by the matrix, H, it follows that

rp = H TH, (29)

where H is given by Equation (28).

Using Equation (28) to determine HT and Hi, we find upon substitution of these matrices in
Equation (29) that
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P1 = 61 +63 sin 2 ,

= 62 cos0 1 - 03 sin 01 cos 02 , (30)

P3 = 62 sin 01 + 03 cos 01 cos 02 .

Solving Equation (30) for 01, 02, and 03 yields

01 = IYP + 'yP tan 02 sin01 - yP tan 02 cos 01

02 = 12 cos0 1 + yP sin 01 (31)

03 y ycos 01 sec 02 - -yP sin 01 sec 02

This completes Steps (1) and (2) of the solution outline.

To accomplish Step (3), the matrices associated with the transfornations, 1 2p and.9i 2 M must
first be determined. By inspection of Figure 2, we see that for an arbitrary vector, v,

V = FEVy, (32)

and

vM = QGEv 1 . (33)

Thus, the matrices associated with "2p and ,"2M are FE and QGE, respectively, which implies that

411 = ETFT [IE + FE]

= ETFTE + ETE, (34)

and

A' = ETGTQT [OGE + QGE + QGtI

= ETGTQTOGE + ETGTGE + ETE. (35)

The matrices E, F, and G are defined explicitly by Equations (25), (26), and (27), respectively,
so the only matrices appearing in Equations (34) and (35) that are not either available or easily
determined are QT and 0. It will be shown in the next step that we do not need to define Q
explicitly; thus Step (3) is finished.

The transformation of *1' to Ep is straightforward. It yields

* = FE*IETFT '  (36)

10



or, using Equation (34) in Equation (36),

*P = FFT + FtETFT. (37)

Since '1, e is skew-symmetric, it may be written in the form,

3 0 (38)
OP -4,p

Performing the matrix multiplication indicated in Equation (37) and equating the result with the
right-hand side of Equation (38) we see that

44 = (X,+ l e ) sin@,

2 ' t (39)

3O = (, + a') cos .

The transformation of A to 2E is not so straightforward since the strictly mechanical approach
would lead to an erroneous result. Instead, we must think carefully about how a local level INS
works and modify our approach accordingly. Before discussing the INS, however, it is helpful to
transform A' to MC* This yields

Ac = GEAIETGT, (40)

or, using Equation (35) in Equation (40),

AC = QTQ + 6GT + GtETGT. (41)

Now, at this point the mechanical application of the techniques developed in Section I! would
lead us to transform A to 1m by the equation,

Am = QACQT (j)

which, by use of Equation (41 ), becomes

Am  ()QT + Q(((GT + GIETGTIQT (ii)

and then transforms Am to Xp by usi of the equation,

= HTAmH. (42)

II



Although Equation (ii) is mathematically correct, it does not represent the behavior of the
actual local level INS. The expression contained in brackets in Equation (ii), i.e., [CGGT + GtETGT],
is the matrix associated with the angular velocity operator, ( 11, c; c]. The INS computer tries to
maintain the actual platform axes in the same orientation as Ec by computing torquing commands
that are sent to the platform hardware. These torquing commands are just the components of the
angular velocity vector associated with the operator given above in brackets. Thus, they represent
rates about the axes of IV

Since the INS computer has no knowledge of the misorientation between 2c and EM' it must
assume that the two frames are coincident. It follows that the commanded rates are computed for
one set of axes, Y.c, and applied to a different set of axes, Zm" This, of course, is not correct and is
one source of the total platform orientation error.

The INS behavior just described is equivalent, in terms of the notation used in this report, to
assuming that Q equals the identity matrix when transforming the bracketed expression from
Ze to YM". Thus, the correct form for A is

Atm = QQT + [ GGT + GETGTI. (43)

Notice that the first term on the right-hand side of Eqiation (41) has been transformed under the
assumption that Q does not equal the identity. This yields the first term on the right-hand side of
Equation (43) since Q[QTqJl QT = 4)QT.

Before Equation (43) can be evaluated, something must be done about the term "QQT."

This term is just the matrix associated with the angular velocity operator, 'i[c, m; mi. This angular
velocity arises because of the gyro drift rates, which must be determined emperically. Since QQT is

skew-symmetric, we may write

N = QQT  C 0 61 (44)

C2  -el

It may be assumed that the gyro drift rates e1 , C2, and C3 are given, and so N may be assumed to

be known. Using this notation, Equation (43) becomes

Am = N + [(GT + GtETGTI• (45)

Letting

/0 3 2

A'(~-6, 0 (46)

2 0

12



we have, after equating the right-hand sides of Equations (45) and (46),

8 = (k. + nd) sin + el,

42= + e

3= (XS+*e) COSOs + e3 • (47)

Substituting the expression for A4 given by Equations (46) and (47) into Equation (42) yields As.
Since *'P is already available from Equations (38) and (39), rp may now be determined from the
equation,

P = AP - *P = HT~eH - *P. (48)

Letting

pP~ P ~
r P -- -14 0 I (49)

and equating the right-hand sides of Equations (48) and (49) yield

71 = cos0 2 cos0 3 [(s +Se)sinOs + ell

-cos 02 sin 03 [_qS + e2]

+ sin 02 k + "2e) coS 0s + 631

-(X + ne) sin 0, (50a)

? P = (sin 01 sin 02 cos 03 + COS 01 sin 03)[(s + Sle) sin 01 + el]

0-(sin1 sin 02 sin 03 - cos 01 cos 03 )[- + 21

- sin 01 cos 02 [(s + fe) cos 0s + C31

+,,, (SOb)

3 = (sin 01 sin 03 - COS 0, sin 02 cos 03)(' + 1e) sin 0s + eI]

+(cos 01 sin 02 sin 03 + sin 01 cos 0 3 )1-0 + e2 1

+ cos 01 cos 02 [(6! + l)cos 0' + e3

-(6 + fl) cos . (50c)

This completes Step (4) of the solution outline. (It should be noted that these equations involve

both indicated and true values of latitude and longitude.)
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The fifth and final step is accomplished by substituting the expressions for -1, -r, and 3P,
given in Equations (50a), (50b), and (50c), into Equation (31) to obtain

01 = f(s""e) sin s + eII SeC02 COS03

_[_¢s + e2 ] sec 02 sin 03

+. tan 02 sin 01

+( + 11,) [cos 0 tan 02 cos 01 - sin J , (51a)

02 = [s+ 12e) sin 0' + el I sin 03

+ [- + e21 COS03

+$ cos 01

-(i, + n e ) cos 0 sin 01 , (Sib)

03 " [(Xs+fne)sin0s+el Itan0 2 cos0 3

+ ["s + e21 tan 02 sin 03

+[(y, + nd) cos O + e 3 ]

-(, + a) cos 0 cos 01 sec 02

- sin 01 sec 02 (51c)

These are the desired nonlinear differential equations for the Euler angles that relate the ideal
platform axes to the actual platform axes. This completes the derivation.
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