

AD A089263

REPORT INVERSION NO. INCLUSENT INTERCONCENTS OF ALLOS NUMBER SNC/TR-60-104 A.DADV1 6.3 TITLE (met Ammunication of THE BONLINEAR PLATFORM ORIENTATION I. TVE OF REPORT & PERIOD COVERED DERIVATION OF THE BONLINEAR PLATFORM ORIENTATION FERFORMING ORG. REPORT & PERIOD COVERED DERIVATION OF THE BONLINEAR PLATFORM ORIENTATION FERFORMING ORG. REPORT & PERIOD COVERED DERIVATION FOR THE BONLINEAR PLATFORM ORIENTATION FERFORMING ORG. REPORT & PERIOD COVERED DERIVATION FOR THE BONLINEAR PLATFORM ORIENTATION FERFORMING ORG. REPORT & PERIOD COVERED DATOMNO ORDETING CORDINATE FRAMES I. TVE OF REPORT & PERIOD COVERED Autroany CONTACT OF GRANT HUMBER I. TVE OF REPORT & PERIOD COVERED PREFORMING ORGANIZATION NAME AND ADDRESS I. TVE OF REPORT OF OFF I. TREPORT OFF avail Surface Weapons Center I. AND ADDRESS I. TREPORT OFF I. NUMBER OF PACE DISTRIBUTION STATEMENT OF MAR ADDRESS I. MUNEAR OF PACE I. NUMBER OF PACE I. NUMBER OF PACE DISTRIBUTION STATEMENT OF MAR ADDRESS I. MUNEAR OF PACE I. NUMBER OF PACE I. NUMBER OF PACE DISTRIBUTION STATEMENT OF MAR ADDRESS I. MUNEAR ADDRESS I. NUMBER OF PACE I. NUMBER OF PACE DISTRIBUTION STATEMENT OF MAR ADDRESS	REFURI DUCUMENTATION FAGE BEFORE COMPLETING FC	
SMC/TR-80-104 AD-ADY1443 TTLE Gene channes In the constant of the DOULINEAR PLATFORM OFTERTATION OF THE DOULING CONDINATE PROMES AUTHORYS In DERIVATION HAME AND ADDRESS AUTHORYS In CONTACT OR GRANT HUMBER(S) Audition of ALE AND ADDRESS In PROGRAM ELEMENT HUMBER(S) Audition of ALE AND ADDRESS In PROGRAM ELEMENT HUMBER(S) Audition of ALE AND ADDRESS In HUMBER OF PAGES Avail Surface Weapons Center In HUMBER OF PAGES Auligren, VA 22448 INF. MONTORING AGENCY HAME & ADDRESS(H different from CommetHing Office) Is SECURITY CLASS. (of this report) DT_AA H I C 1) I H = fts Inclassified DT_AA H I C 1) I H = fts SECURITY CLASS. (of this report) Distribution STATEMENT (of the Report) In EXCLUSION (CATION / DOWNGRADING Distribution STATEMENT (of the Advited Inflored in Block 20, H different langer(H) SUPP		R
TTEL INSTANTION OF THE NONLINEAR PLATFORM ORDENTATION DERIVATION OF THE NONLINEAR PLATFORM ORDENTATION O ROTATING COORDINATE FRAMES IF THE OF REPORT A PERIOD COVERED PERFORMING ORGANIZATION NAME AND ADDRESS AUTION/O AUTION/O Image: Contract of GRANT NUMBERS AUTION/O Image: Contract of GRANT NUMBERS AUTION/O PERFORMING ORGANIZATION NAME AND ADDRESS AVAI SUFface Weapons Centex/(KI3) ahlgren, VA 22448 Image: Contract of GRANT NUMBERS AUTION/O CONTROLING OFFICE NAME AND ADDRESS AVAI SUFface Weapons Centex Allgren, VA 22448 CONTROLING OFFICE NAME AND ADDRESS AVAI SUFface Weapons Center Allgren, VA 22448 Image: Control GRANT NUMBERS ADDRESS(I different free Connotified Office) Distribution of for Mark and ADDRESS(I different free Connotified Office) Image: Control Grant NUMBERS ADDRESS(I different free Connotified Office) Distribution statement (of Mr. Reserv) Image: Control Grant Control free Reserv) Distribution Statement (of Mr. Reserv) Image: Control Grant Control free Reserv) Supple EMENTARY NOTES Supple EMENTARY NOTES KEY WORDS (Continue on reverse of the If necessary and identify by Mech number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- rition of the INS platform aves to the ideal orientation of these axes. The grinciting including the time-dependent transformations that relate the parts (Inclassified transe involved in the problem. Thus, the elements (Cont Id. 1.0000 Jubit 50146401 <td>A = A D Y 9 3 / 3</td> <td></td>	A = A D Y 9 3 / 3	
DEFINATION OF THE NORLINEAR PLATFORM ORTEMPATION REAR EQUATIONS FOR AN US: WITH AN INTRODUCTION DEVALUES DEVALUES CONDUNATE FRAMES AUTHORNU I PERFORMING ORGANIZATION NAME AND ADDRESS AUTHORNU HILLIP L. /Young FEFORMING ORGANIZATION NAME AND ADDRESS aval Surface Weapons Center. (KL3) ahlgren, VA 22448 CONTROLING ORGANIZATION NAME AND ADDRESS aval Surface Weapons Center. Authorny Number and ADDRESS aval Surface Weapons Center ahlgren, VA 22448 CONTROLING ORGANIZATION NAME AND ADDRESS aval Surface Weapons Center ahlgren, VA 22448 NONTORING AGENCY NAME A ADDRESS II. HUMBER OF FACE DISTRIBUTION STATEMENT (of Mr. Report) DT.c.h.H.f.S.n.J.H.f.f.s. DISTRIBUTION STATEMENT (of Mr. Report) DISTRIBUTION STATEMENT (of Mr. Report) SUPPLEMENTARY NOTES NO PLANE OF A DOLESS (I different free Report) SUPPLEMENTARY NOTES NO PLANE ADDRESS (I different free Report) SUPPLEMENTARY NOTES NO PLANE OF A DOLESS (I different free Report) SUPPLEMENTARY NOTES NO PLANE OF A DOLESS (I different free Report) SUPPLEMENTARY NOTES NO PLANE OF A DOLESS (I different free Report) SUPPLEMENTARY NOTES NO PLANE OF A DOLESS (I different free Report) SUPPLEMENTARY NOTES NO PLANE OF A DOLESS (I different free Report) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The right origination frames involved in the problem. Thus, the elements (Cont () NO THE DISTRIBUTION OF THE PLANE OF ADDRESS (CONTACT) TOTION OF INCOMENT ADDRESS (CONTACT) TOTION OF INCOMENT ADDRESS (CONTACT) SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY PLANE CONTACT (CONTACT) SUPPLEMENTARY NOTES SUPPLEMENTARY ADDRESS (CONTACT) SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES	TITLE (and Subtrite) 5. TYPE OF REPORT & PERIOD CO	VERED
RECK EQUATIONS FOR AN INS: WITH AN INTRODUCTION RECKEDUATION COORDINATE TRAMES AUTHOR() AUTHOR() AUTHOR() CONTACTOR ORANIZATION NAME AND ADDRESS AUTHOR() PERFORMING ORGANIZATION NAME AND ADDRESS AUTION () PERFORMING OFFICE NAME AND ADDRESS AUTION () AUTION OF 22448 AUTION () DTCCL MIE & ADDRESS() AUTION STATEMENT () MONTONIC AGENCY NAME & ADDRESS() AUTION STATEMENT () DTCCL MIE & ADDRESS() AUTION STATEMENT () MONTONIC AGENCY NAME & ADDRESS() AUTION STATEMENT () DTCCL MIE & ADDRESS() AUTION STATEMENT () MONTONIC AGENCY NAME & ADDRESS() ADDRESS() ADDRESS() AUTION STATEMENT () MONTONIC AGENCY NAME & ADDRESS() ADDRES	DERIVATION OF THE NONLINEAR PLATFORM ORIENTATION	
D BOTÀTING COORDINATE FRÂMES I. PERFORMING GAG. REPORT NUMBER AUTHORIC I. CONTRACT OR GRANT NUMBER(S) hillip L. Young I. CONTRACT OR GRANT NUMBER(S) PERFORMING DRGĂNIZATION NAME AND ADDRESS I. CONTRACT OR GRANT NUMBER(S) aval Surface Weapons Center/(K13) II. AUMSER OF PADES ahlgren, VA 22448 IR/IED CONTROLING OFFICE NAME AND ADDRESS II. AUMSER OF PADES ANDITORING AGENCY NAME & ADDRESS(I different from Connolling Office) II. AUMSER OF PADES JOSTRIBUTION STATEMENT (of this Report) III. AUMSER OF PADES DISTRIBUTION STATEMENT (of this Report) III. AUMSER OF PADES pproved for public release, distribution unlimited. III. AUMSER OF PADES SUPPLEMENTARY NOTES III. DECLASSIFICATION/DOWNGRADING SUPPLEMENTARY NOTES III. AUMSER OF PADES NEXTRONUTION STATEMENT (of the extract entered in Block 20, If different from Report) IIII. DECLASSIFICATION/DOWNGRADING SUPPLEMENTARY NOTES IIII. DECLASSIFICATION OF THE EXAMPLE ADDRESS and identify by block number) nertial navigation systems (INS) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	REOR EQUATIONS FOR AN INS: WITH AN INTRODUCTION	
AUTHORICU hillip L. Young FERFORMING ORGANIZATION NAME AND ADDRESS aval Surface Weapons Center, (K13) ahlgren, VA 22448 Controlling OFFICE NAME AND ADDRESS aval Surface Weapons Center ahlgren, VA 22448 IN - MERCH OFFICE NAME AND ADDRESS aval Surface Weapons Center ahlgren, VA 22448 IN - MERCH OFFICE NAME AND ADDRESS NONTORING AGENCY NAME & ADDRESS DISTRIBUTION STATEMENT (of the ADDRESS () different free Centrolling Office) DT - A. H / A. D / H - H + J. DISTRIBUTION STATEMENT (of the ADDRESS () different free Centrolling Office) DISTRIBUTION STATEMENT (of the ADDRESS () different free Centrolling Office) DISTRIBUTION STATEMENT (of the ADDRESS () different free Report) DISTRIBUTION STATEMENT (of the ADDRESS () different free Report) SUPPLEMENTARY NOTES XEY WORDS (Confinue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames WTRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientations from the outset, by pylicitly including the time-dependent transformations that relate the par- tioular coordinate frames involved in the problem. Thus, the elements (Cont'd) 1 '	TO ROTATING COORDINATE FRAMES	MBER
hillip L. Young Image: Control of Addition o	AUTHOR(s) B. CONTRACT OR GRANT NUMBER	(*)
hillip L./Young ////////////////////////////////////		
PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK aval Surface Weapons Center 11. PROVE AND ADDRESS aval Surface Weapons Center 11. Prove Add State And ADDRESS aval Surface Weapons Center 11. Prove Add State And ADDRESS aval Surface Weapons Center 11. Prove Add State	Phillip L./Young	
aval Surface Weapons Center,/(K13) ahlgren, VA 22448 AREA & WORK UNIT NUMBERS CONTROLLING OFFICE NAME AND ADDRESS aval Surface Weapons Center ahlgren, VA 22448 IR/IED CONTROLLING OFFICE NAME AND ADDRESS aval Surface Weapons Center ahlgren, VA 22448 In. NUMBER OF PAGES CONTROLLING AGENCY NAME & ADDRESS(// different from Controlling Office) In. NUMBER OF PAGES DT	PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT	TASK
Aligren, VA 22448 IR/IED CONTROLLING OFFICE NAME AND ADDRESS avail Surface Weapons Center ahlgren, VA 22448 H: REPORT-0ATE April 1990 MONITORING AGENCY NAME & ADDRESS(H different from Controlling Office) H: REPORT-0ATE April 1990 DT A DIA ADDRESS(H different from Controlling Office) H: SECURITY CLASS. (cf this report) DT A DIA ADDRESS(H different from Controlling Office) H: SECURITY CLASS. (cf this report) DISTRIBUTION STATEMENT (cf this Report) Unclassified H: Sector of the Sector of the Report) DISTRIBUTION STATEMENT (cf the abstract entered in Block 20, if different from Report) Supplementation statement (cf the abstract entered in Block 20, if different from Report) SUPPLEMENTARY NOTES Supplementation error equations otating coordinate frames MITACT (Continue on reverse of the If necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation ror equations govern the Euler angles that relate the actual orientation of these saves. The effect and and specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd. J. Supplementation of these saves. The elivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd. J. Supplem	Javal Surface Weapons Center ((K13)	
CONTROLLING OFFICE NAME AND ADDRESS aval Surface Weapons Center ahlgren, VA 22448 MONTORING AGENCY NAME & ADDRESS(// different from Controlling Office) DTCANTCASS (of this report) DTCANTCASS (of this report) DTCANTCASS (of this report) DTCASS (of this report) SUPPLEMENTARY NOTES REY WORDS (Continue on reverse side (Incessery and Identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames MTTACT (Continue on reverse side (Incessery and Identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by plicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (cont'd) INCLASSIFIED SUM 0102-LF-0144601 SECURITY CLASSIFIED SUM 0102-LF-0146001 DESTIMENT (CASSIFIED SUM 0102-LF-0146001 DESTIMENT (CASSIFIED SUM 0102-LF-0146001 DESTIMENT (CASSIFIED) DESTIMENT (CASSIFIED) DE	Dablgren, VA 22448	
CONTROLLING OFFICE NAME AND ADDRESS aval Surface Weapons Center ahlgren, VA 22443 NONITORING AGENCY NAME & ADDRESS(I different from Controlling Office) DTCAHICS, DTCAHESS(I different from Controlling Office) DTCAHICS, Of the report) DTCAHICS, Of the Report) DISTRIBUTION STATEMENT (of the Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) SUPPLEMENTARY NOTES NS platform orientation error equations otating coordinate frames DTACT (Continue on reverse side if necessary and identify by block number) mertial navigation systems (INS) NS platform orientation error equations otating coordinate frames DTACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the partial I are 1 how of 1 NOV 58 IS OSDULTE SUM 73 EDITION OF 1 NOV 58 IS OSDULTE SUM 73 EDITION OF 1 NOV 58 IS OSDULTE SUM 73 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1473 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1473 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1473 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV 58 IS OSDULTE SUM 75 1475 EDITION OF 1 NOV		
aval Surface Weapons Center ahlgren, VA 22448 WONTORING AGENCY NAME & ADDRESS(II different from Controlling Office) DT_hhical H=fts DT_hhical H=fts Distribution statement (of the Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) Ns platform orientation error equations otating coordinate frames MTRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the parts. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the parts. SUM TATE MENT 1473 EDITION OF THIS PLATEMENT (JAM TATEMENT) Supplements (INS) Supplements	CONTROLLING OFFICE NAME AND ADDRESS	
ADJECT AND A 22443 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) DTCALMICAL ADDRESS(II different from Controlling Office) DTCALMICAL ADDRESS(II different from Controlling Office) DISTRIBUTION STATEMENT (of this Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, II different from Report) SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side II necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames MITRACT (Continue on reverse side II necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform oxientation of the ideal orientations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd 1 <u>INCLASSIFIED</u> MITRACT (CASSIFIED SYN 0102-LF-0146601 MITS DISTRIBUTION OF INOV SIN SOBOLETE SYN 0102-LF-0146601 MITRACT (CASSIFIED) MITRACT IN THE ADDRESS (INCLASSIFIED) MITRACT INFORMATION OF INOV SIN SOBOLETE SYN 0102-LF-0146601	Naval Surface Weapons Center	
WONTORING AGENCY NAME & ADDRESS(If different from Controlling Office) DTCCAR HICADI HEFTS DISTRIBUTION STATEMENT (of the Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) supplementary NOTES REY WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames MTRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientations from the outset, by xplicitly including the time-dependent transformations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd J 1 1AN 73 LOTION OF 1NOV 81 18 OBOLETE SUPPLEMENTARY NOVES IS OBOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THE SECURITY CLASSIFICATION OF THE AGE (Fram Date Frames DISTRIBUTION OF 1NOV 81 18 OBOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THE AGE (Fram Date Frames SUPPLEMENTARY NOVES IS OBOLETE SUPPLEMENTARY NOVES IS OBOLETE SUPPLEMENTARY NOVES IS OBOLETE SUPPLEMENTARY NOVES IS OBOLETE SUPPLEMENTARY NOVES IS OBOLETE SUPPLEMENTY CLASSIFIED SUPPLEMENTARY NOVES IS OBOLETE SUPPLEMENTY CLASSIFICATION OF THE AGE (Fram Date Frames Interest Intere	Janigren, VA 22448	
DTack night repts DTack night repts Distribution statement (of the Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) SUPPLEMENTARY NOTES KEV WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames MTRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd 1 <u>FORM</u> , 1473 CDITION OF 1 HOVES 15 OBSOLETE <u>SUPPLEMENTARY NOTES</u> <u>UNCLASSIFIED</u> <u>UNCLASSIFIED</u> <u>UNCLASSIFIED</u>	MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report	9
DISTRIBUTION STATEMENT (of the Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, if different from Report) DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, if different from Report) SUPPLEMENTARY NOTES REV WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames Distribution of the INS platform axes to the ideal orientation system (INS). These ifferential equations govern the Euler angles that relate the actual orientation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations that relate the par- icular coordinate frames Districtly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd, I JAN 72 TOTION OF HOV &S IS DESOLETE UNCLASSIFIED U	(1) τ (malagraphical)	
DISTRIBUTION STATEMENT (of the Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, if different from Report) SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES NS platform orientation error equations otating coordinate frames PATACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orienation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the particular coordinate frames involved in the problem. Thus, the elements (Cont'd) PORM 1473 CDITION OF I NOV & IS DEGLETE Strong 1473 CDITION OF I NOV & IS DEGLETE Strong 14	() I (A MIGA) I PEPIO (ISA DECLASSIFICATION/DOWNGRI	DING
DISTRIBUTION STATEMENT (of the Report) pproved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) SUPPLEMENTARY NOTES REY WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames METRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd, PORM, 1473 EDITION OF 1NOV 45 IS OBSOLETE S/N 0102-LF-014-601 SECURITY CLASSIFIED LUNC	SCHEDULE	
SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames WITRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation ror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV 45 IS OBSOLETE UNCLASSIFIED S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Then Dete Entered)		
KEY WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames Instruct (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601		
nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601	B. SUPPLEMENTARY NOTES	
NS platform orientation error equations otating coordinate frames	B. SUPPLEMENTARY NOTES	
Otating coordinate frames Instruct (Continue on reverse elde II necessary and identify by block number) This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orienation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par-icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV \$5 IS OBSOLETE S/N 0102-LF-014-6601 UNCLASSIFIED Water frames	B. SUPPLEMENTARY NOTES D. KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS)	
This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered	KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations	
This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd, FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Then Dete Entered	KEY WORDS (Continue on reverse elde if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations rotating coordinate frames	
This report documents a derivation of the nonlinear platform orientation rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV \$5 IS OBSOLETE S/N 0102-LF-014-6601 DIVICLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Then Dete Entered	KEY WORDS (Continue on reverse elde if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations cotating coordinate frames	
rror equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Them Dete Entered	KEY WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames	
ifferential equations govern the Euler angles that relate the actual orien- ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd, FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 UNCLASSIFIED UNCLASSIFIED	KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations cotating coordinate frames This report documents a derivation of the poplinear platform orients	
ation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Then Dete Entered	KEY WORDS (Continue on reverse elde II necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations cotating coordinate frames 	ation
erivation deals with specific coordinate representations from the outset, by xplicitly including the time-dependent transformations that relate the par- icular coordinate frames involved in the problem. Thus, the elements (Cont'd.) FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-LF-014-6601 UNCLASSIFIED UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Then Dete Entered	 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations rotating coordinate frames BETRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientaterror equations for a local level inertial navigation system (INS). These differential equations govern the Euler angles that relate the actual origonal platform. 	ation e en-
FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 EDURITY CLASSIFICATION OF THIS PAGE (Mon Date Entered	 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations rotating coordinate frames WETRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orientater error equations for a local level inertial navigation system (INS). These differential equations govern the Euler angles that relate the actual orientation of the INS platform axes to the ideal orientation of these axes. The second seco	ation e en- The
FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Mon Date Entered	 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations rotating coordinate frames This report documents a derivation of the nonlinear platform orienta error equations for a local level inertial navigation system (INS). These differential equations govern the Euler angles that relate the actual orientation of the INS platform axes to the ideal orientations from the outset, derivation deals with specific coordinate representations from the outset, 	ation e en- The , by
FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered	KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations cotating coordinate frames This report documents a derivation of the nonlinear platform orientation error equations for a local level inertial navigation system (INS). These lifterential equations govern the Euler angles that relate the actual orientation of the INS platform axes to the ideal orientation of these axes. Therivation deals with specific coordinate representations that relate the provide the problem. Thus, the elements (Continue on the time-dependent transformations that relate the provide the problem. The elements (Continue on the time-dependent transformations that relate the provide the problem. The elements (Continue on	ation e en- The , by ar- ont'd
S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (Then Dete Entered	SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block number) nertial navigation systems (INS) NS platform orientation error equations otating coordinate frames If TRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orienta ifferential equations for a local level inertial navigation system (INS). These ifferential equations govern the Euler angles that relate the actual orientation of the INS platform axes to the ideal orientation of these axes. The erivation deals with specific coordinate representations from the outset, xplicitly including the time-dependent transformations that relate the particular coordinate frames involved in the problem. Thus, the elements (Compare the problem)	ation ean- The , by ar- ont'd J
	KEY WORDS (Continue on reverse side if necessary and identify by block number) inertial navigation systems (INS) INS platform orientation error equations rotating coordinate frames HETTRACT (Continue on reverse side if necessary and identify by block number) This report documents a derivation of the nonlinear platform orienta error equations for a local level inertial navigation system (INS). These lifferential equations govern the Euler angles that relate the actual origi ation of the INS platform axes to the ideal orientation of these axes. Therivation deals with specific coordinate representations from the outset, explicitly including the time-dependent transformations that relate the period ticular coordinate frames involved in the problem. Thus, the elements (Contended to the INS) is obsolved.	ation en- The , by ar- ont'd J
	KEY WORDS (Continue on reverse side if necessary and identify by block number) Inertial navigation systems (INS) INS platform orientation error equations rotating coordinate frames Intertial equations for a local level inertial navigation system (INS). These Infferential equations govern the Euler angles that relate the actual orientation of the INS platform axes to the ideal orientation of these axes. Therivation deals with specific coordinate representations from the outset, explicitly including the time-dependent transformations that relate the patients (Continue coordinate frames involved in the problem. Thus, the elements (Continue coordinate frames involved in the problem. Thus, the elements (Continue coordinate frames involved in the problem. Thus, the elements (Continue coordinate frames involved in the problem. Thus, the elements (Continue coordinate frames involved in the problem. Thus, the elements (Continue coordinate frames involved in the problem. Thus, the elements (Continue coordinate frames involved in the problem. Thus, the elements (Continue coordinate frames involved in the problem. Thus, the elements (Continue continue frames involved in the problem. Thus, the elements (Continue continue frames involved in the problem. Thus, the elements (Continue continue frames involved in the problem. Thus, the elements (Continue continue frames involved in the problem. Thus, the elements (Continue continue frames involved in the problem. Thus, the elements (Continue continue frames) FORM 1473 Continue of the vest is obsolver S/N 0102-LF-014-6601 SECURITY CLASSIFIED	ation en- The , by ar- ont'd J

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. (Continued)

of the required angular velocity vectors are obtained in a very natural fashion, and the resulting equations incorporate the transformations needed to ensure computational consistency. A tutorial description of this approach to problems involving rotating coordinate frames is included in this report.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

FOREWORD

The work reported herein was conducted in the Space and Surface Systems Division of the Naval Surface Weapons Center. Appreciation is expressed to O. T. Schultz and S. L. Lipscomb for reviewing a draft copy of this report and providing many helpful suggestions.

The final version of this report has been reviewed and approved by D. R. Brown, Jr., Head, Space and Surface Systems Division.

Released by:

R. T. RYLAND, JR., Head STRATEGIC SYSTEMS DEPARTMENT

.. . or 12. e **.** . . 14 . . . - 2 ÷., $\Box = \pi/cr$ t ordal

I. INTRODUCTION

This report documents a derivation of the *nonlinear* platform orientation error equations for a local level inertial navigation system (INS). These differential equations govern the Euler angles that relate the actual orientation of the INS platform axes to the ideal orientation of these axes. Pinson (Reference 1) discusses the causes of the orientation error and derives the *linear* differential equations for the error angles.

The need to document this derivation, and the resulting equations, arises because the platform orientation error equations form an important part of the formulation of NAVSHIP, a nonlinear, deterministic computer simulation of a local level INS. This simulation, which is currently being used at the Naval Surface Weapons Center (NSWC), will be fully documented in another report.

A second reason for writing this report is tutorial in nature. Most introductory courses in classical mechanics cover the kinematics of rotating coordinate frames by deriving the vector differential operator,*

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)_{\mathrm{fixed}} = \left(\frac{\mathrm{d}}{\mathrm{d}t}\right)_{\mathrm{rotating}} + \omega x$$
,

as quickly as possible, and then use this formalism to solve various fairly simple problems. The required angular velocity vector, ω , is often easy to determine by inspection in typical exercises. The beauty and utility of vector formalism, in general, derive from the ability to formulate a physical theory in terms of vector equations that are independent of any particular coordinate frame. We are forced to relinquish this generality and return to coordinate representations, however, whenever we need to do calculations involving these equations.

An alternate approach to the treatment of rotating coordinate frames is often useful. This approach deals with specific coordinate representations from the outset, by explicitly including the time-dependent transformations that relate the particular coordinate frames involved in the problem. Since these transformations are considered when any differentiation is performed, the resulting equations contain the transformations needed to ensure computational consistency. Moreover, the elements of the angular velocity vectors are available in a very natural way. These properties of the alternate approach are very useful when formulating a complicated problem for computer solution. In texts on classical mechanics, this approach is usually treated only in the sections dealing with rigid body motion. A particularly concise and well-motivated presentation may be found in Reference 2.

Thus, the author intends to outline carefully the alternate approach and to provide a nontrivial example of its application. It should be stressed that neither the approach nor the error equations to be derived are original. I have not, however, seen them in combination before.

Throughout this report, the following assumptions are made, often without comment:

- (a) All vectors used are elements of a three-dimensional Euclidean vector space.
- (b) All coordinate frames are right-hand Cartesian systems.
- (c) All transformations represent rigid rotations and, hence, are linear and orthogonal.

^{*}Vector quantities will be denoted either by bold face type or by an underbar.

II. ROTATING COORDINATE FRAMES

Suppose Σ_a , Σ_b , and Σ_c are three coordinate frames and let \mathbf{v} denote an arbitrary vector. In this section, we will treat Σ_a as fixed and assume that Σ_b and Σ_c are rotating with respect to (wrt) Σ_a . Now, \mathbf{v} may be represented in terms of Σ_a , Σ_b , or Σ_c by appropriate 3-tuples composed of the components of \mathbf{v} along the axes of Σ_a , Σ_b , or Σ_c . These 3-tuples will be distinguished by the following notation: " \mathbf{v}^a " will denote the 3-tuple whose elements are the components of \mathbf{v} along the axes of Σ_a . That is,

In general, superscripts on quantities (e.g., vectors or operators) will denote an element representation wrt a particular coordinate frame (e.g., Σ_a , Σ_b).

To handle vector differentiation, we must carry this notation a little further. The symbol " \dot{v}^{a} " is defined by

$$\dot{\mathbf{v}}^{\mathbf{a}} \equiv d\mathbf{v}^{\mathbf{a}}/dt = \begin{pmatrix} d\mathbf{v}_{1}^{\mathbf{a}}/dt \\ d\mathbf{v}_{2}^{\mathbf{a}}/dt \\ d\mathbf{v}_{3}^{\mathbf{a}}/dt \end{pmatrix} \equiv \begin{pmatrix} \dot{\mathbf{v}}_{1}^{\mathbf{a}} \\ \dot{\mathbf{v}}_{2}^{\mathbf{a}} \\ \dot{\mathbf{v}}_{3}^{\mathbf{a}} \end{pmatrix}.$$

Suppose that W is the matrix representation of the transformation from Σ_a to Σ_b . Then for an arbitrary vector v,

$$\mathbf{v}^{\mathbf{b}} = \mathbf{W}\mathbf{v}^{\mathbf{a}}$$
.

It is important to keep in mind that in terms of the notation defined above,

and that in general,

Specifically, $(\dot{\mathbf{v}}^a)^b = \dot{\mathbf{v}}^b$ iff. the transformation from Σ_a to Σ_b is time independent (i.e., iff. $\dot{\mathbf{W}} = 0$).

Now that our notation has been defined, let's derive the angular velocity operator associated with the rotation of Σ_b wrt Σ_a . Suppose that u is fixed in Σ_b (i.e., that the components of u along the axes of Σ_b are constant). Then (from our definition of W given above),

$$\mathbf{u}^{\mathbf{b}} = \mathbf{W}\mathbf{u}^{\mathbf{a}} \,. \tag{1}$$

Differentiating Equation (1) wrt time (remembering that u is assumed fixed in Σ_{b}), we find

$$\dot{\mathbf{u}}^{\mathbf{b}} = \mathbf{0} = \dot{\mathbf{W}}\mathbf{u}^{\mathbf{a}} + \mathbf{W}\dot{\mathbf{u}}^{\mathbf{a}}, \qquad (2)$$

where, of course, $\dot{W} \equiv dW/dt$. Solving Equation (2) for \dot{u}^a yields

$$\dot{\mathbf{u}}^a = -\mathbf{W}^{-1}\dot{\mathbf{W}}\mathbf{u}^a = -\mathbf{W}^T\dot{\mathbf{W}}\mathbf{u}^a, \qquad (3)$$

where the superscript T denotes the transpose of a matrix. The last equality in Equation (3) follows from the fact that W is an orthogonal matrix.

The matrix operator, $W^T \dot{W}$, that appears on the right-hand side of Equation (3) is skew-symmetric. To see this, consider the equation,

$$\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}, \tag{4}$$

where I denotes the identity matrix. Differentiating Equation (4) wrt time yields

$$\dot{\mathbf{W}}^{\mathrm{T}}\mathbf{W} + \mathbf{W}^{\mathrm{T}}\dot{\mathbf{W}} = \mathbf{0},$$

so

$$W^T \dot{W} = -\dot{W}^T W = -(W^T \dot{W})^T$$

as claimed. Since $W^T \dot{W}$ is skew-symmetric, it may be written in the form,

$$\mathbf{W}^{\mathsf{T}}\dot{\mathbf{W}} = \begin{pmatrix} \mathbf{0} & \beta_3 & -\beta_2 \\ -\beta_3 & \mathbf{0} & \beta_1 \\ \beta_2 & -\beta_1 & \mathbf{0} \end{pmatrix}.$$
 (5)

At this point, we may make the connection between the operator, $W^T \dot{W}$, and the angular velocity vector, $\underline{\alpha}$, that is associated with the rotation of Σ_b wrt Σ_a in the vector operator formalism. Since **u** is, by assumption, fixed in Σ_b , the usual vector operator formalism tells us that

$$\dot{\mathbf{u}}^{a} = \underline{\alpha}^{a} \times \mathbf{u}^{a} = \begin{pmatrix} \alpha_{2}^{a} u_{3}^{a} - \alpha_{3}^{a} u_{2}^{a} \\ \alpha_{3}^{a} u_{1}^{a} - \alpha_{1}^{a} u_{3}^{a} \\ \alpha_{1}^{a} u_{2}^{a} - \alpha_{2}^{a} u_{1}^{a} \end{pmatrix}, \qquad (6)$$

where the superscript "a" on $\underline{\alpha}$ indicates that it is given in terms of components along the axes of Σ_a . But from Equations (3) and (5) we see that

3

$$\dot{\mathbf{u}}^{a} = -\mathbf{W}^{T} \dot{\mathbf{W}} \mathbf{u}^{a} = \begin{pmatrix} \beta_{2} \mathbf{u}_{3}^{a} - \beta_{3} \mathbf{u}_{2}^{a} \\ \beta_{3} \mathbf{u}_{1}^{a} - \beta_{1} \mathbf{u}_{3}^{a} \\ \beta_{1} \mathbf{u}_{2}^{a} - \beta_{2} \mathbf{u}_{1}^{a} \end{pmatrix}$$
(7)

Equating the right-hand sides of Equations (6) and (7), we have $\beta_1 = \alpha_1^a$, $\beta_2 = \alpha_2^a$, and $\beta_3 = \alpha_3^a$. It follows that

$$\mathbf{A}^{\mathbf{a}} \equiv \mathbf{W}^{\mathrm{T}} \dot{\mathbf{W}} = \begin{pmatrix} 0 & \alpha_{3}^{\mathbf{a}} & -\alpha_{2}^{\mathbf{a}} \\ -\alpha_{3}^{\mathbf{a}} & 0 & \alpha_{1}^{\mathbf{a}} \\ \alpha_{2}^{\mathbf{a}} & -\alpha_{1}^{\mathbf{a}} & 0 \end{pmatrix}$$
(8)

is the angular velocity operator associated with the rotation of Σ_b wrt Σ_a , in terms of elements given wrt the Σ_a axes, or, $A^a = \mathcal{O}[a, b; a]$. (The new notation, $\mathcal{O}[x, y; z]$, denotes the angular velocity operator associated with the rotation of Σ_y wrt Σ_x , in terms of elements given wrt the Σ_z axes.) It is clear from Equation (8) that when W is known, $\underline{\alpha}^a$ may be determined from

$$\alpha_{1}^{a} = W_{12}\dot{W}_{13} + W_{22}\dot{W}_{23} + W_{32}\dot{W}_{33} ,$$

$$\alpha_{2}^{a} = W_{13}\dot{W}_{11} + W_{23}\dot{W}_{21} + W_{33}\dot{W}_{31} ,$$

$$\alpha_{3}^{a} = W_{11}\dot{W}_{12} + W_{21}\dot{W}_{22} + W_{31}\dot{W}_{32} .$$
(9)

We may transform A^a from Σ_a to any other coordinate frame, say Σ_n , so long as a nonsingular matrix is associated with the transformation from Σ_a to the new frame. Letting U denote this matrix, then for an arbitrary vector \mathbf{v} ,

$$\mathbf{v}^n = \mathbf{U}\mathbf{v}^a$$
,

so

$$\left(\dot{\mathbf{u}}^{a}\right)^{n} = -\mathbf{U}\mathbf{A}^{a}\mathbf{u}^{a} = -\mathbf{U}\mathbf{A}^{a}\mathbf{U}^{-1}\mathbf{u}^{n}. \tag{10}$$

If U is an orthogonal matrix, Equation (10) becomes

$$(\dot{\mathbf{u}}^{\mathbf{a}})^{\mathbf{n}} = -\mathbf{U}\mathbf{A}^{\mathbf{a}}\mathbf{U}^{\mathbf{T}}\mathbf{u}^{\mathbf{n}},$$

$$(\dot{\mathbf{u}}^{\mathbf{a}})^{\mathbf{n}} = -\mathbf{A}^{\mathbf{n}}\mathbf{u}^{\mathbf{n}},$$

where

$$\mathbf{A}^{\mathbf{n}} = \mathbf{U}\mathbf{A}^{\mathbf{a}}\mathbf{U}^{\mathrm{T}} \,. \tag{11}$$

We claim that $A^n = \ell^n[a, b; n]$. The first step in showing this is to demonstrate that A^n is skew-symmetric. Remembering that $A^a = -A^{aT}$, we have

$$A^{n} = UA^{a}U^{T} = -UA^{aT}U^{T} = -(UA^{a}U^{T})^{T} = -A^{nT}, \qquad (12)$$

so Aⁿ is skew-symmetric. Proceeding just as we did before, it is easy to show that if

$$\underline{\alpha}^{\mathbf{n}} = \begin{pmatrix} \alpha_1^{\mathbf{n}} \\ \alpha_2^{\mathbf{n}} \\ \alpha_3^{\mathbf{n}} \end{pmatrix}$$
(15)

is the angular velocity vector associated with the rotation of Σ_b wrt Σ_a in terms of elements given wrt the Σ_n axes, then

$$\left(\dot{\mathbf{u}}^{a}\right)^{n} = -\mathbf{A}^{n}\mathbf{u}^{n} = \underline{\alpha}^{n} \times \mathbf{u}^{n}, \qquad (16)$$

and

$$\mathbf{A}^{\mathbf{n}} = \begin{pmatrix} 0 & \alpha_3^{\mathbf{n}} & -\alpha_2^{\mathbf{n}} \\ -\alpha_3^{\mathbf{n}} & 0 & \alpha_1^{\mathbf{n}} \\ \alpha_2^{\mathbf{n}} & -\alpha_1^{\mathbf{n}} & 0 \end{pmatrix}$$
(17)

A little more manipulation shows that

$$\underline{\alpha}^{n} = \underline{U}\underline{\alpha}^{a} . \tag{18}$$

Before we consider the specific problem of deriving the platform orientation error equations, let's carry the general development a little further. As mentioned earlier, we assume that Σ_a is fixed, and Σ_b and Σ_c are rotating wrt Σ_a . These three frames are related by transformations, whose representative matrices are shown in Figure 1. In other words, for an arbitrary vector, \mathbf{v} , the 3-tuples representing it in these three frames are related by the following equations:

$$\begin{array}{c} \mathbf{v}^{b} = \mathbf{W}\mathbf{v}^{a} , \\ \mathbf{v}^{c} = \mathbf{G}\mathbf{v}^{a} , \\ \mathbf{v}^{c} = \mathbf{F}\mathbf{v}^{b} . \end{array} \right\}$$
(19)

In the preceding paragraphs, we determined that the operator $\mathcal{O}[a, b; a]$ is A^a of Equation (8). Using the technique illustrated by that development, it follows from the second of Equation (19) that $\mathcal{O}[a, c; a]$ is just

$$\mathbf{B}^{\mathbf{a}} = \mathbf{G}^{\mathrm{T}} \dot{\mathbf{G}} , \qquad (20)$$

and the associated angular velocity vector may be written as

$$\mathbf{b}^{a} = \begin{pmatrix} b_{1}^{a} \\ b_{2}^{a} \\ b_{3}^{a} \end{pmatrix} = \begin{pmatrix} G_{12}\dot{G}_{13} + G_{22}\dot{G}_{23} + G_{32}\dot{G}_{33} \\ G_{13}\dot{G}_{11} + G_{23}\dot{G}_{21} + G_{33}\dot{G}_{31} \\ G_{11}\dot{G}_{12} + G_{21}\dot{G}_{22} + G_{31}\dot{G}_{32} \end{pmatrix}.$$
 (21)

Similarly, $\ell'[b, c; b]$ is given by

$$\mathbf{C}^{\mathbf{b}} = \mathbf{F}^{\mathbf{T}} \dot{\mathbf{F}} \,. \tag{22}$$

The objective at this point is to show that these angular velocity operators may be treated additively. Specifically, we will show that

$$\ell[\mathbf{a}, \mathbf{c}; \mathbf{k}] = \ell[\mathbf{a}, \mathbf{b}; \mathbf{k}] + \ell[\mathbf{b}, \mathbf{c}; \mathbf{k}], \qquad (23)$$

with Σ_k denoting an arbitrary frame related to Σ_a , Σ_b , and Σ_c by rigid rotations.

Using the matrices associated with the angular velocity operators, Equation (23) may be derived as follows. First,

$$B^{a} = G^{T}\dot{G} \qquad (by \text{ Equation (20)})$$

$$= W^{T}F^{T}(\dot{F}W + F\dot{W}) \qquad (since G = FW)$$

$$= W^{T}F^{T}\dot{F}W + W^{T}\dot{W} \qquad (since F^{T}F = I)$$

$$= W^{T}C^{b}W + A^{a} \qquad (by \text{ Equations (8) and (22)})$$

$$= C^{a} + A^{a} \qquad (using \text{ Equation (11)})$$

$$(24)$$

Thus,

$$\mathcal{O}[\mathbf{a},\mathbf{c};\mathbf{a}] = \mathcal{O}[\mathbf{a},\mathbf{b};\mathbf{a}] + \mathcal{O}[\mathbf{b},\mathbf{c};\mathbf{a}]. \tag{25}$$

To complete the deviation, we simply transform both sides of Equation (24) from Σ_a to Σ_k .

The outline given in the preceding pages of this section covers the material needed in the derivation of the nonlinear differential equations that govern the INS's platform orientation error. It should be pointed out, however, that the outlined approach may be carried further to determine the matrix operators needed to write the equations of motion for a particle in terms of rotating coordinates. This extension of the present section will be the subject of another applications report.

III. PLATFORM ORIENTATION ERROR EQUATIONS

The technique outlined in Section II will be used in this section to derive the nonlinear differential equations governing the Euler angles that relate the actual platform orientation to the ideal platform orientation of a local level INS. The particular local level configuration assumed is an "up," "east," "north" system. Thus, the ideal platform axes are defined by unit vectors \mathbf{u}_h , \mathbf{u}_λ , and \mathbf{u}_ϕ in the direction of increasing height, increasing longitude, and increasing latitude, respectively, at the system's true position.

Five coordinate frames will be used in the derivation. They are defined as follows:

- $\Sigma_e \equiv$ Earth Fixed Frame Z-axis through the North Pole, x-axis in the equatorial plane and passing through the Greenwich meridian, y-axis such that Σ_e is a right-hand system
- $\Sigma_{I} \equiv$ Inertial Frame-Coincident with Σ_{e} at t = 0 and fixed wrt the fixed stars
- $\Sigma_p \equiv$ Ideal Platform Frame-X-axis along the normal to the reference ellipsoid at the true position of the INS, y-axis level, and east pointing at the true position, z-axis level, and north at the true position
- $\Sigma_{\rm C} \equiv {\rm Computer \ Frame-Analog \ of \ } \Sigma_{\rm P}$, except that the (erroneous) position indicated by the INS, rather than the true position, defines its orientation
- $\Sigma_{M} \equiv$ Actual Platform Frame Frame actually defined by the platform hardware

The five coordinate frames are related by transformations whose representative matrices are shown in Figure 2. In defining these transformations, I will use the following notation: for any axis, ξ , and any angle, ζ , $R_{+\xi}(\zeta)$ will denote

a positive rotation about the ξ -axis, through the angle ζ . If a rotation is negative, it will be denoted by $R_{-\xi}(\zeta)$. Finally, \mathcal{I}_{J2K} will denote the transformation from Σ_J to Σ_K .

From the definitions of the frames, it follows that the transformations shown in Figure 2 are completely defined by

 $\mathcal{I}_{12e} \equiv R_{+Z}(\Omega_e t)$, with associated matrix $\cong E$,

 $\mathcal{I}_{e2P} \equiv R_{-y'}(\phi) R_{+Z}(\lambda)$, with associated matrix $\equiv F$,

 $\mathcal{I}_{e2C} \equiv R_{-v'}(\phi^s) R_{+Z}(\lambda^s)$, with associated matrix $\equiv G$,

 $\mathcal{I}_{P2M} \equiv R_{+Z''}(\theta_3) R_{+y'}(\theta_2) R_{+x}(\theta_1)$, with associated matrix $\equiv H$,

where

$$t \equiv time.$$

 $\Omega_e \equiv$ magnitude of the Earth's angular velocity,

 $\phi \equiv$ geodetic latitude of the true position,

 $\lambda \equiv$ geodetic longitude of the true position.

 $\phi^{s} \equiv$ geodetic latitude of the indicated^{*} position,

 $\lambda^{s} \equiv$ geodetic longitude of the indicated position,

 $\theta_1, \theta_2, \theta_3 \equiv$ Euler angles relating Σ_P to Σ_M .

The claim that these four transformations completely define the matrices shown in Figure 2 follows from the fact that Q may be derived from F, G, and H.

Given the transformations in terms of the rotation operators, the associated matrix representations may be written explicitly. Using the notation, $C\zeta \equiv \cos \zeta$ and $S\zeta \equiv \sin \zeta$, the matrices are

$$E = \begin{pmatrix} C(\Omega_e t) & S(\Omega_e t) & 0\\ -S(\Omega_e t) & C(\Omega_e t) & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(25)

$$F = \begin{pmatrix} C\phi C\lambda & C\phi S\lambda & S\phi \\ -S\lambda & C\lambda & 0 \\ -S\phi C\lambda & -S\phi S\lambda & C\phi \end{pmatrix}$$
(26)

$$G = \begin{pmatrix} C\phi^{s}C\lambda^{s} & C\phi^{s}S\lambda^{s} & S\phi^{s} \\ -S\lambda^{s} & C\lambda^{s} & 0 \\ -S\phi^{s}C\lambda^{s} & -S\phi^{s}S\lambda^{s} & C\phi^{s} \end{pmatrix}$$
(27)

$$H = \begin{pmatrix} C\theta_2 C\theta_3 & S\theta_1 S\theta_2 C\theta_3 + C\theta_1 S\theta_3 & -C\theta_1 S\theta_2 C\theta_3 + S\theta_1 S\theta_3 \\ -C\theta_2 S\theta_3 & -S\theta_1 S\theta_2 S\theta_3 + C\theta_1 C\theta_3 & C\theta_1 S\theta_2 S\theta_3 + S\theta_1 C\theta_3 \\ S\theta_2 & -S\theta_1 C\theta_2 & C\theta_1 C\theta_2 \end{pmatrix}.$$
(28)

It should be noted that, while \mathcal{I}_{12e} , \mathcal{I}_{e2P} , and \mathcal{I}_{e2C} are completely determined by the definitions of Σ_{I} , Σ_{P} , and Σ_{C} , the particular form chosen for \mathcal{I}_{P2M} (and its associated matrix, H) is somewhat arbitrary. That is, a different set of rotations and associated Euler angles could have been chosen.

[&]quot;The "indicated" value of a quantity is the value available from the INS. It will usually differ from the true value.

At this point, a precise statement of the problem addressed in this section can be given and its solution outlined. The problem is: Given the form chosen for \mathscr{I}_{P2M} , determine the differential equations that, together with suitable initial conditions, specify the values of θ_1 , θ_2 , and θ_3 at any time $t \ge 0$. The solution may be broken down into five steps. They are:

Step (1)-Determine the angular velocity operator $\Gamma^{\mathbf{P}} \equiv \mathcal{O}[\mathbf{P}, \mathbf{M}; \mathbf{P}]$. The three independent elements of $\Gamma^{\mathbf{P}}$ (i.e., $\gamma_1^{\mathbf{P}}, \gamma_2^{\mathbf{P}}$, and $\gamma_3^{\mathbf{P}}$) will be functions of θ_1 , θ_2 , θ_3 , $\dot{\theta}_1$, $\dot{\theta}_2$, and $\dot{\theta}_3$.

Step (2)-Given the system of equations,

$$\begin{split} \gamma_1^{\rm P} &= f_1(\theta_1, \, \theta_2, \, \theta_3, \, \dot{\theta}_1, \, \dot{\theta}_2, \, \dot{\theta}_3) \,, \\ \gamma_2^{\rm P} &= f_2(\theta_1, \, \theta_2, \, \theta_3, \, \dot{\theta}_1, \, \dot{\theta}_2, \, \dot{\theta}_3) \,, \\ \gamma_3^{\rm P} &= f_3(\theta_1, \, \theta_2, \, \theta_3, \, \dot{\theta}_1, \, \dot{\theta}_2, \, \dot{\theta}_3) \,, \end{split}$$

determined in Step (1), solve this system for $\dot{\theta}_1$, $\dot{\theta}_2$, and $\dot{\theta}_3$. This yields the expressions,

$$\begin{split} \dot{\theta}_1 &= g_1(\theta_1, \theta_2, \theta_3, \gamma_1^{\mathsf{P}}, \gamma_2^{\mathsf{P}}, \gamma_3^{\mathsf{P}}) , \\ \dot{\theta}_2 &= g_2(\theta_1, \theta_2, \theta_3, \gamma_1^{\mathsf{P}}, \gamma_2^{\mathsf{P}}, \gamma_3^{\mathsf{P}}) , \\ \dot{\theta}_3 &= g_3(\theta_1, \theta_2, \theta_3, \gamma_1^{\mathsf{P}}, \gamma_2^{\mathsf{P}}, \gamma_3^{\mathsf{P}}) . \end{split}$$

Step (3)-Determine the angular velocity operators, $\Delta^{I} \equiv \ell'[I, M; I]$ and $\Psi^{I} \equiv \ell'[I, P; I]$.

Step (4) – Transform Δ^{I} and Ψ^{I} to Σ_{P} to obtain $\Delta^{P} \equiv \ell'[I, M; P]$ and $\Psi^{P} \equiv \ell'[I, P; P]$, and, on the basis of Equation (24), determine $\gamma_{1}^{P}, \gamma_{2}^{P}$, and γ_{3}^{P} from the equation

$$\Gamma^{\mathbf{P}} = \Delta^{\mathbf{P}} - \Psi^{\mathbf{P}}.$$

Step (5)-Substitute the expressions found for γ_1^P , γ_2^P , and γ_3^P in Step (4) into the equations found for $\dot{\theta}_1$, $\dot{\theta}_2$, and $\dot{\theta}_3$ in Step (2). This yields the desired nonlinear differential equations governing θ_1 , θ_2 , and θ_3 .

* * *

Since the transformation, \mathcal{I}_{P2M} , is represented by the matrix, H, it follows that

$$\Gamma^{\mathsf{P}} = \mathsf{H}^{\mathsf{T}} \dot{\mathsf{H}} \,, \tag{29}$$

where H is given by Equation (28).

Using Equation (28) to determine H^T and \dot{H} , we find upon substitution of these matrices in Equation (29) that

$$\gamma_{1}^{\mathbf{P}} = \dot{\theta}_{1} + \dot{\theta}_{3} \sin \theta_{2} ,$$

$$\gamma_{2}^{\mathbf{P}} = \dot{\theta}_{2} \cos \theta_{1} - \dot{\theta}_{3} \sin \theta_{1} \cos \theta_{2} ,$$

$$\gamma_{3}^{\mathbf{P}} = \dot{\theta}_{2} \sin \theta_{1} + \dot{\theta}_{3} \cos \theta_{1} \cos \theta_{2} .$$
(30)

Solving Equation (30) for $\dot{\theta}_1$, $\dot{\theta}_2$, and $\dot{\theta}_3$ yields

$$\hat{\theta}_{1} = \gamma_{1}^{P} + \gamma_{2}^{P} \tan \theta_{2} \sin \theta_{1} - \gamma_{3}^{P} \tan \theta_{2} \cos \theta_{1}$$

$$\hat{\theta}_{2} = \gamma_{2}^{P} \cos \theta_{1} + \gamma_{3}^{P} \sin \theta_{1}$$

$$\hat{\theta}_{3} = \gamma_{3}^{P} \cos \theta_{1} \sec \theta_{2} - \gamma_{2}^{P} \sin \theta_{1} \sec \theta_{2}$$

$$(31)$$

This completes Steps (1) and (2) of the solution outline.

To accomplish Step (3), the matrices associated with the transformations $\bar{\mathcal{I}}_{12P}$ and $\bar{\mathcal{I}}_{12M}$ must first be determined. By inspection of Figure 2, we see that for an arbitrary vector, **v**,

$$\mathbf{v}^{\mathbf{P}} = \mathbf{F} \mathbf{E} \mathbf{v}^{\mathbf{I}}, \qquad (32)$$

and

$$\mathbf{v}^{\mathsf{M}} = \mathsf{Q}\mathsf{G}\mathsf{E}\mathbf{v}^{\mathsf{I}} \,. \tag{33}$$

Thus, the matrices associated with \mathcal{I}_{12P} and \mathcal{I}_{12M} are FE and QGE, respectively, which implies that

$$\Psi^{I} = E^{T}F^{T}[\dot{F}E + FE]$$

= $E^{T}F^{T}\dot{F}E + E^{T}\dot{E},$ (34)

and

- 1

$$\Delta^{I} = E^{T}G^{T}Q^{T} [\dot{Q}GE + Q\dot{G}E + Q\dot{G}\dot{E}]$$

= $E^{T}G^{T}Q^{T}\dot{Q}GE + E^{T}G^{T}\dot{G}E + E^{T}\dot{E}.$ (35)

The matrices E, F, and G are defined explicitly by Equations (25), (26), and (27), respectively, so the only matrices appearing in Equations (34) and (35) that are not either available or easily determined are Q^{T} and \dot{Q} . It will be shown in the next step that we do not need to define Q explicitly; thus Step (3) is finished.

The transformation of Ψ^1 to Σ_P is straightforward. It yields

$$\Psi^{\mathbf{P}} = \mathbf{F} \mathbf{E} \Psi^{\mathbf{I}} \mathbf{E}^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} , \qquad (36)$$

or, using Equation (34) in Equation (36),

$$\Psi^{\mathbf{P}} = \dot{\mathbf{F}}\mathbf{F}^{\mathrm{T}} + \mathbf{F}\dot{\mathbf{E}}\mathbf{E}^{\mathrm{T}}\mathbf{F}^{\mathrm{T}} . \tag{37}$$

Since $\Psi^{\mathbf{P}}$ is skew-symmetric, it may be written in the form,

$$\Psi^{\mathbf{P}} = \begin{pmatrix} 0 & \psi_3^{\mathbf{P}} & -\psi_2^{\mathbf{P}} \\ -\psi_3^{\mathbf{P}} & 0 & \psi_1^{\mathbf{P}} \\ \psi_2^{\mathbf{P}} & -\psi_1^{\mathbf{P}} & 0 \end{pmatrix}.$$
 (38)

Performing the matrix multiplication indicated in Equation (37) and equating the result with the right-hand side of Equation (38) we see that

$$\begin{array}{l}
\psi_{1}^{\mathbf{P}} = (\dot{\lambda} + \Omega_{e}) \sin \phi , \\
\psi_{2}^{\mathbf{P}} = -\dot{\phi} , \\
\psi_{3}^{\mathbf{P}} = (\dot{\lambda} + \Omega_{e}) \cos \phi .
\end{array}$$
(39)

The transformation of Δ^{I} to Σ_{p} is not so straightforward since the strictly mechanical approach would lead to an erroneous result. Instead, we must think carefully about how a local level INS works and modify our approach accordingly. Before discussing the INS, however, it is helpful to transform Δ^{I} to Σ_{c} . This yields

$$\Delta^{c} = GE\Delta^{I}E^{T}G^{T}, \qquad (40)$$

or, using Equation (35) in Equation (40),

$$\Delta^{c} = Q^{T}\dot{Q} + \dot{G}G^{T} + G\dot{E}E^{T}G^{T}.$$
(41)

Now, at this point the mechanical application of the techniques developed in Section II would lead us to transform Δ^c to Σ_m by the equation,

$$\Delta^{m} = Q \Delta^{c} Q^{T} , \qquad (i)$$

which, by use of Equation (41), becomes

$$\Delta^{m} = \dot{Q}Q^{T} + Q[\dot{G}G^{T} + G\dot{E}E^{T}G^{T}]Q^{T}$$
(*ii*)

and then transforms Δ^m to Σ_P by use of the equation,

$$\Delta^{\mathbf{P}} = \mathbf{H}^{\mathrm{T}} \Delta^{\mathrm{m}} \mathbf{H} \,. \tag{42}$$

Although Equation (ii) is mathematically correct, it does not represent the behavior of the actual local level INS. The expression contained in brackets in Equation (ii), i.e., $[\dot{G}G^T + \dot{G}E^TG^T]$, is the matrix associated with the angular velocity operator, $\ell'[I, c; c]$. The INS computer tries to maintain the actual platform axes in the same orientation as Σ_c by computing torquing commands that are sent to the platform hardware. These torquing commands are just the components of the angular velocity vector associated with the operator given above in brackets. Thus, they represent rates about the axes of Σ_c .

Since the INS computer has no knowledge of the misorientation between Σ_c and Σ_m , it must assume that the two frames are coincident. It follows that the commanded rates are computed for one set of axes, Σ_c , and applied to a different set of axes, Σ_m . This, of course, is not correct and is one source of the total platform orientation error.

The INS behavior just described is equivalent, in terms of the notation used in this report, to assuming that Q equals the identity matrix when transforming the bracketed expression from Σ_c to Σ_m . Thus, the correct form for Δ^m is

$$\Delta^{m} = \dot{Q}Q^{T} + [\dot{G}G^{T} + G\dot{E}E^{T}G^{T}].$$
(43)

Notice that the first term on the right-hand side of Equation (41) has been transformed under the assumption that Q does not equal the identity. This yields the first term on the right-hand side of Equation (43) since $Q[Q^T\dot{Q}]Q^T = \dot{Q}Q^T$.

Before Equation (43) can be evaluated, something must be done about the term " $\dot{Q}Q^{T}$." This term is just the matrix associated with the angular velocity operator, $\ell'[c, m; m]$. This angular velocity arises because of the gyro drift rates, which must be determined emperically. Since $\dot{Q}Q^{T}$ is skew-symmetric, we may write

$$\mathbf{N} \equiv \dot{\mathbf{Q}}\mathbf{Q}^{\mathrm{T}} = \begin{pmatrix} 0 & \epsilon_{3} & -\epsilon_{2} \\ -\epsilon_{3} & 0 & \epsilon_{1} \\ \epsilon_{2} & -\epsilon_{1} & 0 \end{pmatrix}.$$
(44)

It may be assumed that the gyro drift rates ϵ_1 , ϵ_2 , and ϵ_3 are given, and so N may be assumed to be known. Using this notation, Equation (43) becomes

$$\Delta^{\rm m} = N + [\dot{G}G^{\rm T} + G\dot{E}E^{\rm T}G^{\rm T}].$$
(45)

Letting

$$\Delta^{m} = \begin{pmatrix} 0 & \delta_{3}^{m} & -\delta_{2}^{m} \\ -\delta_{3}^{m} & 0 & \delta_{1}^{m} \\ \delta_{2}^{m} & -\delta_{1}^{m} & 0 \end{pmatrix},$$
(46)

12

we have, after equating the right-hand sides of Equations (45) and (46),

$$\delta_{1}^{M} = (\dot{\lambda}^{s} + \Omega_{e}) \sin \dot{\phi}^{s} + \epsilon_{1} ,$$

$$\delta_{2}^{M} = -\dot{\phi}^{s} + \epsilon_{2} ,$$

$$\delta_{3}^{M} = (\dot{\lambda}^{s} + \Omega_{e}) \cos \phi^{s} + \epsilon_{3} .$$
(47)

Substituting the expression for Δ^{M} given by Equations (46) and (47) into Equation (42) yields Δ^{P} . Since Ψ^{P} is already available from Equations (38) and (39), Γ^{P} may now be determined from the equation,

$$\Gamma^{\mathbf{P}} = \Delta^{\mathbf{P}} - \Psi^{\mathbf{P}} = \mathbf{H}^{\mathrm{T}} \Delta^{\mathrm{M}} \mathbf{H} - \Psi^{\mathbf{P}} \,. \tag{48}$$

Letting

$$\Gamma^{\mathbf{P}} = \begin{pmatrix} 0 & \gamma_3^{\mathbf{P}} & -\gamma_2^{\mathbf{P}} \\ -\gamma_3^{\mathbf{P}} & 0 & \gamma_1^{\mathbf{P}} \\ \gamma_2^{\mathbf{P}} & -\gamma_1^{\mathbf{P}} & 0 \end{pmatrix}$$
(49)

and equating the right-hand sides of Equations (48) and (49) yield

$$\gamma_{1}^{P} = \cos \theta_{2} \cos \theta_{3} [(\dot{\lambda}^{s} + \Omega_{e}) \sin \phi^{s} + \epsilon_{1}]$$

$$-\cos \theta_{2} \sin \theta_{3} [-\dot{\phi}^{s} + \epsilon_{2}]$$

$$+\sin \theta_{2} [(\dot{\lambda}^{s} + \Omega_{e}) \cos \phi^{s} + \epsilon_{3}]$$

$$-(\dot{\lambda} + \Omega_{e}) \sin \phi, \qquad (50a)$$

$$\gamma_{2}^{P} = (\sin \theta_{1} \sin \theta_{2} \cos \theta_{3} + \cos \theta_{1} \sin \theta_{3}) [(\dot{\lambda}^{s} + \Omega_{e}) \sin \phi^{s} + \epsilon_{1}]$$

$$-(\sin \theta_{1} \sin \theta_{2} \sin \theta_{3} - \cos \theta_{1} \cos \theta_{3}) [-\dot{\phi}^{s} + \epsilon_{2}]$$

$$-\sin \theta_{1} \cos \theta_{2} [(\dot{\lambda}^{s} + \Omega_{e}) \cos \phi^{s} + \epsilon_{3}]$$

$$+\dot{\phi}, \qquad (50b)$$

$$\gamma_{3}^{P} = (\sin \theta_{1} \sin \theta_{3} - \cos \theta_{1} \sin \theta_{2} \cos \theta_{3}) [(\dot{\lambda}^{s} + \Omega_{e}) \sin \phi^{s} + \epsilon_{1}]$$

$$+(\cos \theta_{1} \sin \theta_{2} \sin \theta_{3} + \sin \theta_{1} \cos \theta_{3}) [-\dot{\phi}^{s} + \epsilon_{2}]$$

$$+\cos \theta_{1} \cos \theta_{2} [(\dot{\lambda}^{s} + \Omega_{e}) \cos \phi^{s} + \epsilon_{3}]$$

$$-(\dot{\lambda} + \Omega_{e}) \cos \phi. \qquad (50c)$$

This completes Step (4) of the solution outline. (It should be noted that these equations involve both indicated and true values of latitude and longitude.)

The fifth and final step is accomplished by substituting the expressions for γ_1^P , γ_2^P , and γ_3^P , given in Equations (50a), (50b), and (50c), into Equation (31) to obtain

$$\dot{\theta}_{1} = [(\dot{\lambda}^{s} + \Omega_{e}) \sin \phi^{s} + \epsilon_{1}] \sec \theta_{2} \cos \theta_{3}$$

$$-[-\dot{\phi}^{s} + \epsilon_{2}] \sec \theta_{2} \sin \theta_{3}$$

$$+\dot{\phi} \tan \theta_{2} \sin \theta_{1}$$

$$+(\dot{\lambda} + \dot{\Omega}_{e}) [\cos \phi \tan \theta_{2} \cos \theta_{1} - \sin \phi], \qquad (51a)$$

$$\dot{\theta}_{2} = [(\dot{\lambda}^{s} + \Omega_{e}) \sin \phi^{s} + \epsilon_{1}] \sin \theta_{3}$$

$$+[-\dot{\phi}^{s} + \epsilon_{2}] \cos \theta_{3}$$

$$+\phi \cos \theta_{1}$$

$$-(\dot{\lambda} + \Omega_{e}) \cos \phi \sin \theta_{1}, \qquad (51b)$$

$$\dot{\theta}_{3} = -[(\dot{\lambda}^{s} + \Omega_{e}) \sin \phi^{s} + \epsilon_{1}] \tan \theta_{2} \cos \theta_{3}$$

$$+[-\dot{\phi}^{s} + \epsilon_{2}] \tan \theta_{2} \sin \theta_{3}$$

$$+[(\dot{\lambda}^{s} + \Omega_{e}) \cos \phi^{s} + \epsilon_{3}]$$

$$-(\dot{\lambda} + \Omega_{e}) \cos \phi \cos \theta_{1} \sec \theta_{2}$$

$$-\dot{\phi} \sin \theta_{1} \sec \theta_{2}. \qquad (51c)$$

These are the desired nonlinear differential equations for the Euler angles that relate the ideal platform axes to the actual platform axes. This completes the derivation.

REFERENCES

- 1. Pinson, J.C., "Inertial Guidance for Cruise Vehicles," Guidance and Control of Aerospace Vehicles, Ed. by C.T. Leondes, (New York, McGraw-Hill, 1963).
- 2. Corben, H.C. and Stehle, P., Classical Mechanics, 2nd edition, (New York, John Wiley and Sons, 1960).

-

DISTRIBUTION

Defense Tec	hnical Information Center		
Cameron Sta	ation .		
Alexandria,	(12)		
Library of C	ongress		
Washington,	DC 20540	· ·	
ATTN:	Gift and Exchange Divis	ion	(4)
U. S. Naval A	Academy		
Annapolis, M	ID 21402		
ATTN:	Technical Library		
Naval Air De	velopment Center		
Warminster,	PA 18974		
ATTN:	Technical Library		
Charles Stark	Draper Laboratory		
555 Technol	ogy Square		
Cambridge, M	IA 02139		
ATTN:	T. Petranic		
	W. Robertson		
Applied Phys	ics Laboratory		
The Johns Ho	pkins University		
11100 Johns	Hopkins Road		
Laurel, MD 2	20810		
ATTN:	L. Levy		
Local:			
E31 (GIDEP)			
E41			
K10	(25)		
K13 (P. Youn	g) (25)		
K20	()		
K4 0	(2)		
(See back page	?)		

Ì

1

ł

)

i

....

.

DISTRIBUTION (Continued)

K404 (O. Schultz)	
K404 (T. Alexander)	
K41 (M. Harkins)	
K41 (M. Hall)	
K41 (W. Davis)	
K42 (S. Lipscomb)	(2)
K42 (B. Durrer)	
K43 (G. Sitzman)	
K43 (R. Gates)	
K44	(5)
F106 (B. Clark)	
X210	(6)

F

