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I. Introduction and summary of previous works

Phase separation occurs when a two component system is quenched

below a certain critical temperature Tc . Depending on the depth of

quenching and the initial composition, this process of unmixing can

either take place in a thermodynamic metastable region i.e.,

nucleation or in a thermodynamic unstable region i.e., spinodal

decompostion (See Fig. 1), and this latter one will be the theme of

our investigation.

The thermodynamics of phase separation is assumed to be

governed completely by the existence of a coarse-grained free energy

density functional Fini which is given

by

e = -(1.1)

and is to be identified with the Wilson-fixed point hamiltonian
2 .

We give here a brief summary of the work by Cahn 3. The

gradient of this free energy functional w.r.t. the density is

postulated to represent a kind of generalized thermodynamic chemical

potential

SF (1.2)

-..- AW
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which then drives a current i.e. By_ __
Di Isr r,

Avn

-- 5 ~ID~st ",' '

- ~~ v D (1.3)

Since there is no source or a sink possible in the process of

quenching one can also write down the conservation law which governs

the time-dependence of the

current

---A + 'Vo
?7t (1.4)

Expressions (2) to (4) therefore constitute a theory for the

kinetics of phase separation once the functional form of FCH] is

either derived from (1) or postulated by some physical arguments.

The final equation of interested is the usual Cahn-Hilliard eqn.

(CH),

-r yV~ (1.5)At S

where one has also assumed that the mobility M, is spatially

independent.

F is usually an arbitrary power series expansion in n and

Eqn (5) therefore is a nonlinear differential eqn for n(r,t). We

will only be interested in the linear regime when n(r,t) deviates

very little from the homogeneous phase no, so that we only examine
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the linear approximation to eqn (5). For the long time non- linear
4

evolution, Langer and coworkers have given a detail study.

Even in this linear regime or early stage of spinodal

decomposition, five groups of workers deserve a brief mention.

(I) Cahn-Hilliard have assumed the following specific form of the

FE] PY H2K (yVn) 4-fEi (1.6)

which when substituted into (1.5) and after linearization, leads to

M - ± (1.7)

- tk
This has a solution of the form - with W, given by

0

and since is negative in the unstable region, so for

the nk(t) grows exponentially. But only the kth component near km
- kc 14 will dominate the others as a result of two competing

processes:
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(1)The clustering forces, 4K - -e! ,which favour

decomposition at small k, i.e. the smaller the k-value the larger

wk and

(2)The diffusion limitation, the k 2  factor in front of

Kk2  + which slows the decomposition rate at small k.

By plotting -Wk/k 2 vs k 2 , eqn (1.8) predicts a linear curve

shown in Fig. 2. Experimentally the decomposition rate rises much

more slowly than exponentially, i.e. the measured -Wk/k 2 versus k 2

exhibit marked upward curvature. Also observed is the fact that the

value of km decreases with time, which is identified with the

process of coarsening in the early stages of the decomposition.

(II) Evans and Telo da Gama 6 propose a functional Taylor

series expansion of

F i.e.

] F [%4.1 4-C
) V, ('y4 + T y 4(1.9)

instead of (1.6). Their main contribution is that they are able to

provide a theory for spinodal decomposition without additional

parameter such as K and in (1.7) by identifying

(4f) with the direct correlation function c(r)

0
i.e.

"- -6-
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which is to be calculated from the Percus-Yevick approximation 7 . In

particular, if one expands the Fourier transform of c(r) i.e. c(k)

2in powers of k , one obtains for the long wavelength composition

fluctuation the original Cahn-Hillard result. Indeed a curvature is

predicted from such a microscopic theory which also agrees with the

following treatment of Abraham and coworkers. 
8

8

(III) In this generalised van der Waals theory the free

energy is related to the variation in density through the product of

the interparticle potential u(r) and the uniform pair correlation

function g0 (r): in the case of 1-dimension, one has

With the same argument, one is led to

where Q. (wJ) is determined by u(r) and g0 (r). One can

evaluate _20 (W) by numerical method as done by Evans et. al6 for

a L-J potential, and obtain a similar upward curvature in the

following suggested procedureS: the time-dependent structure factor

is computed by MD 8 one then relates the wk through

(IV) Cook's 9 intensity equation

S'C, = sko) e-1.
F 2Wk tvll

-- --.
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which takes into account the interaction between the system and the

surrounding reservoir by adding a Langevin10 noise term F(t) to

equation (1.5) and F(t) is assumed to have a zero means

<= (1. 13a)

and a white noise spectrum

- 1
K~'~) 0(', *,)) m ~ V(- S( *) (1.13b)

It is to be remarked that the curvature which follows from Abraham's
8

generalised van der Waals theory has a dynamical origin whereas the
9

curvature which follows from Cook's fluctuation theory has a

statistical origin but they are acting cooperatively and are of the

same sign so it is a problem to observe these two effects separately

experimentally.

(V) The last approach is due to Nonnenmacher 1 1 who starts out

with a Boltzmann equation which is solved in the relaxation time

approximation. Crucial to this approach in addition to the nonzero

value of the relax time is the introduction of a time and

spatial dependence of the local equilibrium distribution through a

local chemical potential (Y,) which as expected is to be related

to the free energy density functional. By applying a perturbation

expansion he obtains

W- 
.- - . .
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2 [ _ \7 A ll( 1 . 1 4 )

in the lowest order. This equation reduces to the Cahn-Ililliard

equation when 't- 0  , otherwise it gives rise to

SI + K (1.5a)

or

WAk + 1

The km and kc are the same as given by Cahn-Ililliard equation. But

there is one additional branch of wk whose physical meaning has not

been explored. The plot of-wk/k 2 vs. k2 for all theories are shown

in Fig. 3 for comparison:

(VI) We now introduce a unified description of phase
12

separation due to Metiu, Kitahara and Ross. Their starting point

is a Markoffian master equation for the probability that the density

n(r,t) has certain values at time t i.e.

')c T1, 4
A(1.16)

where t defines a characteristic time scale and the

time-independent transition rate is postulated to be given by

-i I
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W (',) zL(- (1.17)

The first factor accounts for the fact that deviation in density in

different space points are correlated through the correlation matrix

-- and A also serves as a cut off to prohibit those unlikely

large deviations. The second factor tends to account for the fact

that changes in density which cause an increase in the free energy

density functional is less probable thermodynamically. It can be

shown that r

L(tuA)/ -tK~A "L

which can be split into two parts i.e.

L. (J 0(1.19)

where 0 for i j and 4 1. is the

correlation of changes in density in two spatial points i and j.

13
By applying Feynman's path integral method MKR are able to

derive a Langevin equation for ni(t), the density of the it h cell at

time t

wit te c(1.0)

with the choice of

. , m m
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"(1.21)

and taking the continuum limit, they arrive at

- i1

(1.22)

Immediately they show that in a linear theory (i) if 2 2/ 2

- . is small (1.22) reduces to the C-H equation and (ii) if 2

is large, -2),-0 and one obtains

(1.23)

which is the Landau-Ginsburg equation for nucleation. That is the

reason why equation (1.22) offers a unifying discription of phase

separation in the early stage or linear regime.

Our investigation will take (1.22) as the point of departure.

We will clarify the meaning of and hence of in both

(1.21) and in (1.22). This simple procedure will give rise to an

additional curvature for the -w k/k2 versus k 2  plotk/k erss k lotdue to the

finiteness of ? . Next we will generalise (1.20) to take care of a

much shorter time behaviour of n(r,t). Unfortunately the complete

dynamics is too complicated so we have to be satisfied making some

plausible assumptions and postulations. These allow one to give

several new predictions. One of them coincides with the Boltzmann

equation approach of Nonnenmacher1 I . Others seem to predict a new

dependence of wk at small k and also possibly a new time dependence

of wk which is in qualitative agreement with the work by Kawasaki
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14
and coworker.

II. Existence of Additional curvature

Rewriting (1.22) here for convenience

S41(2.1)

and if one defines M _ , then (2.1) has a solution of the

form e-Wkt where

Mk = bi-

2(2.2)

It is trivial to show from (2.2) that if 12- is very Rm 1l

WMKR > w old, whereas if ??i/Z is not too small, the bracket on

the RHS of (2.2) will be the correction term whose zeroth order is

just 1 etc. as shown in Fig. 4

Next we want to discuss 15 the physical meaning of A . Since it

occurs in the correlation matrix 4j for distinct cells as a cut

off we argue that ; is the linear dimension or a characteristic

length scale which will connect two points in the space such that

any changes of density in one point is due to changes in other

points within the dimension so expresses the range where
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conservation law in number of particles has to be held and this

conservation law thus gives rise to correlation which affects the

kinetics of phase separation.

For a specific system \ is fixed. If the mechanism which

gives rise to phase separation has a longer characteristic length

i.e. X >> X then the change in density can be effected without

local conservation law; mathematically this is represented by the

fact that -->0 as Q0 and one has a GL equation.

On the other hand if 2>) X for a rather different kind of

mechaniom which initiates the phase separation then Cahn-Hilliard

equation should be used to describe the situation.

12

An alternate criterion is to examine the size of the cluster

JAM compared with the correlation length A Since

then if 2 is small the C-H equation applies and if

is large the GL equation applies and finally when

Vv , one should use the MKR equation. For phase separation

IOA , as said in MKR; in the case of condensation in a gas

, 10 to 103 hence one uses the GL equation whereas in the case

of a fluid, I lA hence the CH equation applies.

III. Formal generalization of (1.20)

Let n(r,t) be the deviation of density at point r and at time

t. (1.2) can be generalised to:
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- (3.1)

since we conclude from Section II that A = <n n.> is a spatial
th th

correlation between changes in density between i and j cell.

The above takes into account additional time correlation in this

change in density. Observe that (3.1) relates n(r,t) to a higher

order correlation <n(rt)n(r't')> and therefore it is essentially the

first member of a hierarchy of transport equation which is a unique

feature of a many-body coupled system. The exact solution (if it

exists) amounts to solving the Liouville equation.
7

The above generalization is made also plausible when one gains

some experience in converting a purely dissipative equation for the

velocity field of a fluid

* (3.2a)

into the following non-local equation of motion for v(t)

(3.3b)

in the Langevin equation approach to Brownian motion 1 0 where +(t),

the relaxation function, which represents a better description for

the process in a shorter time regime. This is proved trivially by

letting + (t) = 21 S(t) in (3.3b) and one obtains (3.2a)

immediately. 1/1 here can be identified as the relaxation time for

the velocity of the Brownian particle.



Page 14

We will now make two crucial assumptions which cannot be

verified so far and which are the spatial and time translational

invariances of the system, i.e.

which is true only for equilibrium state. Next we approximate the

RHS of (3.4) by products of spatial and time correlation function

i.e.

(3.5)

In the limiting case when +(t) = 2g(t),(3.1), (3.4) and (3.5)

together imply the MKR equation. We will study various possible

forms of 4(r) and 4(t). It is to be noted that +'(r) and 41(t) are

distribution in step length and waiting time for the change of the

density variable n(T, t) and not for P(n, t) in (1.16). We will

first consider \4'(t) in section IV and (r) in section V and

discussion will constitute the final section.

(IV) Generalization of MKR equation in the time domain

In this section we keep 4 ij 12 equal to e-and(-v7[ \) n

let (t) assume different forms. In general:

S(t- ) -; }(4.1)

After linearization, one Fourier transforms (4.1) to obtain

" "i I I
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;a-= O & r*- t,) NJ 1k* (4.2)

where wk is the rate of decomposition of the kth  component

fluctuation as given by previous approaches. Taking Laplace

transform of (4.2) one obtains in the Laplace variable

fl 41k(" ';

± t '(~ (4.3)

where 4(6 )dt e- 't (t) is the Laplace transform of

(t). Various forms of 4(t) are studied below:

(1) when +j(t) is of the form (t) *() = 1 and one

recovers C-H equation from (4.3).

(2) When *(t) is given by

\(t) e -t (4.4)

then one notices that in the limit o->co , jjt) -- (t). In

general for finite o( , 4'(E)= and (4.3) becomes

+ 04

4- 4-a

where
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........1

- - - 4~L~k(4.6)

-- - (4.7)T dO - 4 (j

which is identical with the two possible solutions given by

Nonnenmacher if one can identify oC withl/-r .

To facilitate this identification we have to make contact with

the Continuous Time Random Walk (CTRW) model of stochastic processes

16of Montroll and Weiss 1 . According to their modelling of a

stochastic process in transport theory there are two important

probability distributions: one for the step length p(l - 1') and

one for the waiting time distribution *(t - t'). This latter one

determines how long the walker will remain in a site before it jumps

to another site. The usual form taken is the above exponential

distributed time function. But it is also obvious that a

probability distribution that changes with a constant rate oC in a

-'
short duration is of an exponential form e

Now if we represent a state by the occupancy of the site by the

walker, then the state disappears or relaxes in a rate o(, if the

walker has a o6e waiting time distribution.

,ur ,m,,~i,,m i " ' m m
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To proceed further on with other possible form of we want

to recall the relation between CTRW and the Generalised Master

Equation (GME) for the probability distribution for V(IJ) in the
T1

theory of exciton transport. 1 7 In the latter theory one has

(4.8)

where is the memory function for any transition between the

mth and nth sites. It can be shown that 17 when I(f)ff= Fmn 4 ()

and Fmm = F , ,(4.8) becomes the ordinary

diffusion equation if O --) it becomes the wave equation if

(*) = c(t) and it becomes the telegraph equation if

q (k) -
. It is pointed out that 1 6  signal propagation

in extremely short time can be described by the wave equation

whereas for long time, the signal propagates diffusively and-in the

intermediate regime its propagation is governed by the telegraph

equation.

It is further demonstrated 17 that for a time and spatial

invariant system, the waiting time distribution +(t) in a CTRW is

related to the memory function e(t) of the GME by

(4.9a)

or conversely

U.q
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- ( )(4.9b)

It is therefore natural to let \P(t) have the form:1 6 '1 7

L - 1 (4.10)

where > 40, since this +(t) will correspond to (t) =

Me-t which gives rise to a telegraph equation which is capable of

describing both wave and diffusive motion. Here the former type of

motion represents a better description in the short time regime not

probed by the latter type of description. Preliminary calculations

give three possible roots to nk(t):

---- _-- -r+ ' 6 + 4. - 4- A
(64to C63-oc)( CO (4.11)

where cr1' 62 and 63 are the cubic roots of

e-+A 6± + k  0 (4.12)

From the theory of equations, there will be 1 real and 2 complex

robts or 3 real (with two equal) roots or 3 real roots depends on

whether

2: 7 L ' -7 + &, __ ',--(,. )

larger or equal or smaller than zero respectively. The existence of

one more additional root may offer a better comparison with MD

experimental data.8
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All the above cases have the distinct character that the nth

moment of the r(t) exists for all n 16 i.e.

A very interesting investigation by Scher and Montrol118 to explain

the anomolous transport in disordered amorphous system by using a

1+(t) of the form

(4.14)

seems to demonstrate that the following physical behavior implied by

a 4(t) which has a long time tail 1 8  At earlier time, the

particles with such a (t) move by means of the relatively more

probable short hopping time but as time increases, all particles

eventually encounter at least one long hopping time and become

temporarily stationary or trapped in a location.

Alley and Alder19 propose to modify the Fick's Law of diffusion

in fluids where persistence of the velocity-velocity correlation

function has been shown to be due to slowly decaying hydrodynamic

field 9. These fields are due to coupling between 11(r, t) at two

different space and time points mediated by a velocity field. It is

shown that the frequency dependence diffusion coefficient .(E ) is

U w
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given in terms of both the (t) and correlation function as

-
4 2 ~e)(4.15)

- (4.16)
(AX'tJ.r

Suppose < V(t)V'> given by (for all t)

< V(t)v > a 2--2 (a(

which has the right long time tail i.e.

t -1Ta 3/2 (4.17)

or

which gives

W> (4.18)

which when put into the expression (4.3) gives

) _ _(4.19)

/ilAC- _1 r/
---. E 1/2
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A short time analysis results in

(4.20)

which explicitly shows a time-dependent rate. Kawasaki et. a1 1 4

give, by starting with the Navier-Stokes equations which also

couples the density and velocity field, however a different time

dependence

413- C Wk {!

'Y (O) (4.21)

which has been shown to occur in too early a time to be observed in

a real experiment. 20 We have shown here that by postulating a

waiting time distribution which has a correct corresponding long

time tail of the velocity auto-correlation function due to

hydrodynamic interaction, one indeed obtains a time-dependent rate

in the short time regime of spinodal decomposition.

V.-. Generalization of MKR equation in the spatial domain

If one examines the intermediate equation
12

) (5.1)

which connects (1.20) and (1.22), the integral in T--space is just

nm .-. -f, .b
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the Fourier transform of the 41(r) i.e. .After the

procedure of linearization the rate wkMKR is related to the old rate

W k old by

'k (5.2)

if [ .( , the curly bracket is given

by - ) )/ (X
so one recovers the results in section II. If *2(

k) = a 2 then 6= 7/(-+ k-) i

if +3 '40 -

Wk/k
2 

*'2 ,

and = -e / +

Finally if 44(C =k , kO. 2 ~

For 4'(r) which has finite moments, the rate wk/k 2 is finite at k -

0 whereas for +(r) which possesses a longer tail, the rate

is divergent at long wavelength limit. In Fig. 3, the MD result8

seems to indicate a faster rate as k -- o. This approach, taking

into account of a long range correlation between densities at two

different points seems to be able to predict such a behaviour for

the wk/k 2 for small value of k.

V. Discussion
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Of the two objectives of a theory of spinodal decomposition, we

have generalised a new approach which stems from a unified

description of MKR and we are able to give some new predictions of

the spectrum of the early-stage of the unstable fluctuation. We

have not touched on the description of coarsening as a function of

time thus the crossover behavior21  of () is beyond our

reach. At present we feel that the method of multiple time scale

analysis, which has been successfully applied to problems in kinetic

theory,2 2 may be helpful in providing another way to study this

latter problem.

Though it is believed I that the distinction between nucleation

and spinodal decomposition is not a sharp one, the existence of the

spinodal however is firmly established in view of the MD data8 in

the linear or early time regime. However Kawasaki and Onuki 23 still

hold the view that there is no single data (actual or computer

experimental) which establishes the existence of such a regime.

It is also clear from section I that all the theories have the

same origin and differ only in the choice of Fltn] . The theoretical

basis put forward by Evans et. a16 seems to us the most satisfying

one because of the fact that the role played by the direct

correlation function becomes more and more important in present

status of dense fluid state.

More work is expected to be done on the physical interpretation

of the existence of more than one branch of the frequency spectrum

both arising from NonnenmacherI I and our present study.

' _ 71.
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It is also to be pointed out that the upward curvature

9 8 6predicted by Cook 9 , Abraham and Evans et. al. are above the

linear curve of C-H 5 whereas the Nonnenmacher 1 1 and the MD8 results

seem to indicate the opposite i.e. the curvature should be below

the linear curve so that the rate Wk is less than exponential as
1

remarked by Langer .

The unified approach of MKR 1 2 seems to indicate that unless

there exists a system in which the correlation length associated

with the variation of densities at two different points, is of the

order of the size of cluster observed, otherwise nucleation and

spinodal decomposition will occur as two separate events. However,

if such a type of system can be found and investigated, then both

the nucleation and the spinodal decomposition will contribute to the

time evolution simultaneously.

Attempt to generalise (1.16) rather than (1.20) to a nonlocal

Master equation generates some difficulty in applying the path

integral method to obtain an equation corresponding to (1.2). The

formal generalization of (1.20) to (3.1) does not bother us in view

of the discussions following (3.1).

Experimental data seems to indicate the true presence of the

non-Markoffian and nonGaussian nature of the spinodal decomposition

but we believe that by allowing 4(r) and +(t) to have longer

correlation range, one has at least partially take these two natures

into account even though it is still a phenomenological approach.

This leads us to discuss the question of how good can the modeling

of the kinetics of phase separation by a CTRW be? We do not claim

-J .
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we have a sound basis for this approach but since any stochastic

process 1 6 can be described by Y(I', tk' ) , a distribution

function of jump length and waiting time, irrespective of its

specific form we believe that this approach is a powerful and

flexible one. The remaining efforts will lie in the determination

of the parameters in +(I'' t ) from thermodynamics and their

identifications with the experimental observables.

New predictions arise solely from a willingness to let the

'(Y 'Y ') to develop a long range either in space or in time.

The spatial long range correlation is generally expected when phase

transition2 4 occurs e.g. from e to a power law dependence.

The long tme arises from the existence of additional collective

19modes in a dense system . So our generalizations do find an analog

in other physical phenomena. However much work is still needed to

be done to establish the validity of the CTRW approach to explain

and predict what is, or will be, observed in either nucleation or

spinodal decomposition.

\-.
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