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Abstract

We determine the phase separation and the spinodal of binary liquids with

anisotropic interaction between the molecules. The results show the influence of the

anisotropy parameters on the position of the spinodal curve. The model is

interpreted as a decorated lattice transformation of the Be'he-Peierls solution.
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Since supercooling is most easily obtained in glasses and organic liquids
such as alcohols, we try to establish the influence of anisotropic interaction
between molecules. One of the simplest ways to introduce anisotropy is to
assume that molecules have a finite number of contact points, some of these are
strongly adhering to similar points on other molecules and other points are not
strongly adhering. The last points may even have a repulsive interaction. In
order to give meaning to the model we assume that special adherence is
associated with li-bonding , non-special adherence with van der Waals forces and

repulsion may be due to protruding parts of the molecule.

This model was proposed some time ago by Barker and Fock to explain the

lower critical point that occurs in the phase separation in binary liquids.

In this note we point out that about the same solution of the problem as
was obtained by Barker and Fock, can be found by a different method. The

method enables us to map the solution on a standard Bethe-Peierls solution.

On the basis of this we compute the spinodal and find that anisotropy
seems to 'retract' this curve closer to the center. If the number of repulsive
contact points dominates the spinodal will behave similar to a isotropic binary
phase separation. Barker and Fock1 assume that a molecule has two kinds of
contact points. For the time being we will assume that there is one contact

poiﬁt of one kind (hereafter called the '"special' contact point) and all the

other contact points of the other type (the "normal" ones).

The interaction energies between two different types of molecules will

depend on which of the contact points is involved in forming the 'bond'".
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Let us denote the two types of molecules by A and B each of which can be
oriented in n directions (absolute directions in space). This can conveniently be

described by an arrow, where the tip of the arrow denotes the special contact point.

Thus for A molecules: T / - etc.

B molecules: ¥ / —— etc.

Barker and Fock took for n the coordination number (X) of the underlying

lattice. However n could also be larger than X (See: Andersen and Wheeler3). In
both cases the coordination number was six (simple cubic lattice). We will restrict

ourselves also to the simple cubic lattice.

Now one can imagine two kinds of possible solutions:
a) The concentrations of the A molecules in the n different (absolute")
directions are all equal and similarly for the B molecules or
b) The concentrations of the A molecules in the different absolute
orientations are not equal (similarly for the B molecules), i.e. there is a net

orientation of the molecules ( liquid crystals).

For the time being we will only consider the first case (isotropic solutions) in

the pair approximation.

Basic equations

-

The point probabilities (i=1, . . . , n) are all equal since we are dealing

with the isotropic solution.

Thus:
A

)(-::.)f&
* n

where X\ is the concentration of the A mol:cules. A similar expression holds for the




B molecules, with the normalization:

m(’(ﬂ/,L ¢ x%\)__: l

The pair probabilities are given by ( in the isotropic solution):
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Variable (yi) Bond Weight factor (gi) Energy (Ei)

41 T T any pair of A n2 0
molecules

y2 T No arrows pointing 2(n-1)2 Uy
towards the other
molecules

v3 &4 A not pointing towards 2(n-1) Ug
the B molecule

Y4 —_— B not pointing 2(n-1) U3
towards the A
molecule

Y5 —_— 2 Ug

v6 A any pair of B n2 0

? 1' molecules
Normalization:

Energies can be represented by the matrix

.
ggi Yo =

2],

3y

different from U2 = Uz = Ug.

for example

N~
NN

Relations between point and pair probabilities are:

Xg = Ry, +(0-Y, +(-Dyy + -1y, * Vs

Xg = 0=V, +@-Dy, v -0V +¥5 Y

B R e TYeny

) 4
——————— w—-mﬁ

means that U1 is
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It is clear that here all different xiA are equal to each other. However the
ratio of the special contact point to the sum of special and normal contact points
for each type of molecule (which should be less or equal to 1/5 depending on the

value of n) might not be conserved. This will be discussed later on.

§ (= ﬁf ; Wwhere f is the free energy per molecule and [3 = 1/KT ) is then

given by 2,

F=L> progon --0{n b« xe o+

[vmY

2 6
Pz gk By pA(- 5 gon )

where >\ the Lagrange multiplier for the normalization of the probabilities.

Minimizing § with respect to ' leads to:

) _ D
V=GR T ) Y=o N b exp(-aUs)
Yo= Up(FECE) T exp(-pl) s = p(FpN *axz) T 2xp(-3U)
Y= GpR ka%) T eplets) , Yo = (% @A) (%a%e) ¥

Now replacing:
Q)Y+ @-1)ys +@-Dyy + Y5 = R Y
and putting: .
, 2 FH
» Yz = eXp(§ PN (aXs) O =p (- K)
where K represents the effective interaction energy between A and B molecules times

p. It follows immediately that K has to satisfy:
-K 2 -fAU - -3 -RU
ne :@—t) e& '+ n-1je S 1+@—)>€, & ¢ ?.F 1
It can be shown that this system is now entirely analogous to a mgnetic spin- 1/2

system with K/2 replacing ﬁe. Phase separation is determined by the following
2
equation (for © 4 0) “:

e,k _ sinh (£9)
sunh | {'-‘)9
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where 9 is given by:

Xa _ .\19
Xo

The critical points are determined by:

Ke = z@,m(&ﬁ_:l

Phase separation occurs when K > Kc. Figures 1 to 4 give the phase diagrams for
certain specific cases. Since the phase diagrams are symmetric around xA=.5 only one
half of the diagrams is plotted. Also plotted in these figures are the spinodal
lines (denoted by s).

Discussion

Consider the original Barker and Fock solution. They put constraints on the
different pair probabilities such that ratio of special to all contact points is

conserved.

In our case this ratio is not necessarily conserved. To see whether this ratio
deviates much from the exact ratio, a plot is made (fig. 5) of this ratio (R divided
by the exact ratio, R*=1/6) vs temperature for two cases (corresponding to fig. 1
and> fig.2). The mximum deviation is seen to be approximtely 20%, which is,

considering that only the pair approximation is used, not so bad.

However our solution does not give 'unphysical' phase diagrams 1like in their

case:for which a phase diagram is given in fig. 6.

Furthermore, the isotropic solution also has closed loop phase diagrams for the fcc
lattice 1.e.X=12, whereas in Barker and Fock the closed loop phase diagrams are only

obtained for y given by:

y-VT<y<yralz

K.
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in the case of

2
2

l
-
A

In comparing the isotropic model with Andersen and Wheeler's model three min
differences can be observed.

I. In their decorated lattice model the decorated (or secondary) lattice

points are also occupied by molecules.

II. In their model only the orientation of the molecules on the decorated

lattice is of importance (i.e. no orientation of molecules on the
primary lattice.)

III. Because of these two features of their model they are able to mp
their model on the spin-1/2 Ising model, for which the '"exact" solution is known. It
can be shown that in the cluster variation method an increase in cluster of the phase
diagrams. This is illustrated in figure 7, where the phase diagrams of Ising systems
with only repulsive energies between unlike spins are plotted versus the reduced

temperature in the first three approximations.

It is highly probable that in the decorated model, this widening has also
occured because the model is mapped on the Ising model for which they use the exact

solution (and not a lower order approximation).




Figure Captions
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[
Fig. 1 Phase diagram with n=6 and energies given by 2.§ ,U1=1, Uz=-.25 and U3=0

Fig. 2 Phase diagram with n=6 and energies given by ;%_,Ul=1 and U,=-.25

Fig. 3 Phase diagram with n=5001 and energies given by

Fig. 4 Phase diagram with n=5001 and energies given by

,U,=1, Ug=-1 and U,=-10

,» U

2
3
2

L

PR I

1=1 and U2=—1

In the above figures s denotes the spinodal.

Fig. 5a Ratio of special contact point to all contact points of A molecules

normalized by the exact value (R*= 1/6) corresponding to fig. 1.

Fig. 5b Idem, but corresponding to fig.

Fig. 6 Phase diagram with n=6 and energies given by

(Barker and Fock solution)

2.

Ul=1’ U2=.0 and U3=-.25

-
W

Fig. 7 Pnase diagrams in different approximations

1. Mean field (Tc=3)

2. pair approximation (Tc=2.4663)

3. 4 - cluster approximation (Tc=2.3049)




Figure Captions

Fig. 1 Phase diagram with n=6 and energies given by

Fig. 2 Phase diagram with n=6 and energies given by

Fig. 3 Phase diagram with n=5001 and energies given by

Fig. 4 Phase diagram with n=5001 and energies given by

In the above figures s denotes the spinodal.
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23| V=1, U,==.25 and U;=0
2% U;=1 and U,=-.25
;’?; ,U,=1, U,=-1 and Us=-10
*31, Uy=1 and Uy=-1

Fig. 5a Ratio of special contact point to all contact points of A molecules

normlized by the exact value (R*= 1/6) corresponding to fig. 1.

Fig. 5b Idem, but corresponding to fig. 2.

Fig. 6 Phase diagram with n=6 and energies given by

(Barker and Fock solution)

Fig. 7 Phase diagrams in different approximations
1. Mean field (TC=3)

2. pair approximation (Tc=2.4663)

3. 4 - cluster approximation (Tc=2.3049)

2

»

U1=1, U2=.0 and U3=-.25
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