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FOREWORD

The 5th U.S. Air Force/Federal Republic of Germany Data Exchange
Agreement Meeting entitled "Viscous and Interacting Flow Fields" numbered
MWDDEA AF-75-G-7440 was sponsored by the Air Force Flight Dynamics Labora-
tory and hosted by the U.S. Navy with Dr Joseph Gillerlain of the U.S.
Naval Academy as organizer. It was held on 15/18 April 1980 at the
U.S. Naval Academy in Annapolis Maryland. This report contains the detailed
proceedings of that meeting. It contains both theoretical and experimental
results covering a great variety of topics in the area of boundary layer
research. The speed range is from subsonic to hypersonic Mach numbers.

The types of boundary layers were laminar, transitional, and turbulent;
both fully attached and separated. Similar problems in the area of hydro-

dynamics are also included.

The Air Force wishes to thank Dr Joseph Gillerlain of the U.S. Naval
Academy for his efforts in preparing the meeting. Thanks is also extended
to the Superintendent of the Naval Academy for the use of his facilities.
In addition the Air Force wishes to thank the following Naval personnel for
their efforts: Mr William C. Volz of the Naval System Command, Drs W.J.
Glowacki and W. Yanta along with Mr R.L.P. Voisnet of the Naval Surface
Weapons Center. Finally the Air Force wishes to thank all the participants
from the Federal Republic of Germany for their scientific contributions and

for coming such a long distance for this meeting.
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The contribution from the United States was res;arch performed within
the Air Force Flight Dynamics Laboratory, the U.S. Navy, the U.S. Army,

N.A.S.A., and various American Aircraft Companies and Universities.

The contributions from the Federal Republic of Germany were from such
organizations as the DFVLR-AVA-G8ttingen, DFVLR-Linden H8ke, the Universities
of Berlin, Karlsruke, and Hamberg and such aircraft corporations as VFW-

Fokker and Dornier.

The research reported was conducted in the period April 1979 to April

1980.

iv

PomvS—— PR




|

NO.

1.

10.

TABLE OF CONTENTS

TITLE PAGE NO.

The Modelling of Airfoil Separatiom In Subsonic
and Transonic Flow. Frank A. Dvorak and Brian
Maskew. Analytical Methods Inc. Bellevue Washington 1

Theoretical Determination of Three-Dimensional

Flow Separation. Tsze C. Tai. David W. Taylor

Naval Ship Research and Development Center.

Bethesda Maryland 23

Analysis of Self-Excited Oscillations in Fluid
Flows. W.L. Hankey and J.S. Shang. Air Force
Flight Dynamics Laboratory. Dayton Ohio 33

Forced Vortices Near a Wall. Herman Viets, Michael
Piatt, and Mont Ball. Wright State University.
Dayton Ohio 43

Three-Dimensional Measurements Near The Stern of
a Double Model of a Ship. J. Kux and K. Wieghardt
Institut fdr Schiffban der Universitdt Hamberg 76

Survey of Integral Methods for Turbulent Boundary
Layers with Prehistory Phenomena. Alfred Walz.
Technical Universities of Berlin and Karlsruke 97

A Theoretical Treatment of the Free Stream Turbu-

lence Effects on the Turbulent Boundary Layer.

J.C. Rotta. Institut fir Experimentelle Strdmungs-
mechanik. DFVLR~AVA Gottingen 118

Theoretical Study of Viscous Damping of Turbulence

In the Law of the Wall Region. G.R. Inger. Virginia
Polytechnic Institute and State University.

Blacksburg Virginia 141

Further Studies of a Low-Reynolds-Number Turbulence
Model. Kuei-Yuan Chien. Naval Surface Weapons
Center. Silver Springs Maryland 151

Experimental Study of Boundary Layer Velocity Profiles

on a Prolate Spheriod at Low Incidence in the Cross
Section XO/L = 0.64. H.U. Meier and H.P. Kreplin.
DFVLR-AVA G6ttingen 169




NO.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

TABLE OF CONTENTS, CONT.

TITLE PAGE NO.

Measurements of Surface Roughness Effects

on the Heat Transfer to Slender Cones at

M = 10. J.A.F. Hill and R.L.P. Voisinet.

Naval Surface Weapons Center. Silver Springs

Maryland 190

Nymerical Simulation of Steady Supersonic Flow
Over an Ogive-Cylinder-Boattail Body. W.B. Sturek
and L.B, Schiff. U.S. Army 205

A Theoretical and Experimental Investigatiom of
A Transonic Projectile Flow Field. C.J. Nietubicz,
J.E. Danberg, and G.R. Inger. U.S. Army 213

Three-Dimensional Boundary Layer Calculations for
Fuselages. J.D. McLean and J.L. Randall. Boeing
Commercial Airplane Company. Seattle Washington 223

Supercritical Airfoil Flow Control by Slot Suction
in the Shock Region. P. Thiede. Vereinigte
Flugtechnische Werke GmbH. Bremen 251

Recent Research on Viscous and Interacting Flow

Field Effects at the University of Bochum. K. Gersten,

S. Kiske, V. Vasanta Ram, and P. Wauschkuhn. University
of Bochum. West Germany 265

Calculation of Three-~Dimensional Boundary Layers on
Bodies of Revolution at Incidence. Gert R. Schneider.
DFVLR-AVA. Gottingen 287

Experimental Determination of Wall Shear Stress Vectors
on an Inclined Prolate Spheroid. H.P, Kreplin,
H. Vollmers, and H.U. Meier. DFVLR-AVA. Gdttingen 315

Calculation.of Viscous, Sonic Flow over Hemisphere-
Cylinder at 19 Degrees Incidence. The Capturing of

Nose Vortices. T, Hsieh. Naval Surface Weapons Center.
Silver Springs Maryland 334

A Non-Orthogonal Coordinate System for Calculating
Boundary Layers Along Lines of Symmetry. Roger Grundmann.
DFVLR-AVA. Gdttingen

Mean Velocities and Reynolds Stresses Measured in a

Three-Dimensional Boundary Layer. Udo Mueller. Aero-
dynamisches Institut, RWIH Aachen. Aachen Germany 359

vi




23.

24,

TABLE OF CONTENTS, CONCLUDED

TITLE PAGE NO.

Separation and Vortex Pattern On a Spheroid
at Incidence. W. Haase. Dornier, GmbH.
Friedrichshafen West Germany 371

Experiments on Vortex Impingement on Control
Fins. J.D. Gillerlain, U.S. Naval Academy and
W.J. Yanta, Naval Surface Weapons Center 393

Computation of the Boundary Layer and Separation

Lines on Inclined Ellipsoids and of Separated

Flows on Infinite Swept Wings. H.W. Stock.

Dornier GmbH. Friedrichshafen, FRG 401

viil

R PO PR




5th U. S. - German DEA Meeting
16-18 April 1980
U. S. Naval Academy
Annapolis, Maryland 21402

List of Participants

Name Organization
Bartels, F. Dr, David M. Taylor Naval Ship Research

and Development Center
Bethesda, Maryland 20084
USA

Cebeci, T., Dr. Douglas Aircraft Company
Code 36-81
3855 Lakewood Blvd.
Long Beach, California 90840
USA

Chien, K.-Y., Dr. Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910
USA

Danberg, J. E., Prof. Dept. Mechanical & Aerospace Engineering
University of Delaware
107 Evans Hall
Newark, Delaware 19711
USA

Dolting, D., Dr. Princeton University
Dept. of Mechanical & Aerospace Engineering
James Farrestal Campus
Princeton, New Jersey 08540

USA
Dvorak, F. A., Dr. Analytical Methods, Inc.
100-116th Avenue S.E.
- Bellevue, Washington 98004

USA
viii

too

= s

—— = =




ame

re, A. W., Dr.

Gersten, K., Prof. Dr.

Gillerlain, J., Prof.

Glowacki, W. J., Dr.

Granville, P., Dr.

Granger, R., Prof.

Hankey, W., Dr,

Organization

Air Force Flight Dynamics Laboratory
AFWAL/FIMG

Wright-Patterson Air Force Base
Dayton, Ohio 45433

USA

Ruhr-Universitat sochum
Inst.f.Thermo- u. Fluiddynamik
Universitdtsstr. 150 IB

D 4630 Bochum University
Federal Republic of Germany

Mechanical Engineering Department
U. S. Naval Academy

Annapolis, Maryland 21402

USA

Naval Surface Weapons Center
White Cak Laboratory

Silver Spring, Maryland 20910
USA

David W. Taylor Naval Ship Research
and Development Center

Bethesda, Maryland 20084

USA

Mechanical Engineering Department
U. S. Naval Academy

Annapolis, Maryland 21402

USA

Air Force Flight Dynamics Laboratory
AFWAL/FIM

Wright-Patterson Air Force Base
Daxton, Ohio 45433

us

ix




Name

Hill, J., Dr.

Hsieh, T., Dr.

Inger, G., Prof.

Johnson, B,, Prof.

Kreplin, H.-P., Dr.

Lea, G., Dr.

Lemmerman, L., Dr.

Lugt, H., Dr.

Organization

Naval Surface Weapons Center
White Oak Laboratory

Silver Spring, Maryland 20910
USA

Naval Surface Weapons Center
White Qak Laboratory

Silver Spring, Maryland 20910
USA

Virginia Polytechnic Institute
and State University

Aerospace and Ocean Engineering
Blacksburg, Virginia 24061

USA

Naval Systems Engineering Department
U. S. Naval Academy

AnRapolis, Maryland 21402

us

DFVLR-AVA

Inst.f.Experimentelle Strdmungsmechn.
Bunsenstr. 10

D 3400 Gottingen

Federal Republic of Germany

Program Director

Fluid Mechanics Program
National Science Foundation
Washington, D.C. 20550

USA

Lockheed-Georgia
Marietta, Georgia 30060
USA

David W. Taylor Naval Ship Research
and Development Center

Bethesda, Maryland 20084

USA




Name

McLean, J., Dr.

Meier, H. U., Dr.

Melnik, W., Prof

Miller, U., Dr.

Nietubicz, C., Mr.

Rotta, J. C., Dr.

Schindel, L., Dr.

Schlie, R., Dr.

Organization

Boeing Commercial Airplane Company
P.0. Box 3707

Seattle, Washington 98124

USA

DFVLR-AVA

Inst.f.Experimentelle Stromungsmechn,
Bunsenstr. 10

D 3400 Gottingen

Federal Republic of Germany

Aerospace Engineering Department
University of Maryland

College Park, Maryland 20742

USA

NASA-Ames Research Center
Moffett Field, California 94035
USA

U. S. Army Ballistics Research Laboratory
Aberdeen Proving Ground, Maryland 21005
USA

DFVLR-AVA

Inst.f.Experimentelle Stromungsmechn.
Zeppelinstr. 3

D 3400 Gottingen

Federal Republic of Germany

Naval Surface Weapons Center
White Oak Laboratory

Silver Spring, Maryland 20910
USA

Naval Surface Weapons Center
White Oak Laboratory

Silver Spring, Maryland 20910
USA

x1i




Schneider, G., Dr.

Schot, J., Dr.

Shoaff, R., LCDR

Stock, H., Dr.

Sturek, W., Dr.

Tai, T. C., Dr.

Thiede, P., Prof. Dr.

Thrasher, F., Dr.

DFVLR-AVA

Inst.f.Theoretische Stromungsmechn.
Bunsenstr. 10

D 3400 Gottingen

Federal Republic of Germany

David W. Taylor Naval Ship Research
and Development Center

Head, Numerical Mechanics Division
Bethesda, Maryland 20084

USA

David W. Taylor Naval Ship Research
and Development Center

Bethesda, Maryland 20084

USA

Dornier GmbH

Postfach 14 20

D 7990 Friedrichshafen
Federal -Republic of Germany

U. S. Army Ballistics Research Laboratory
Chief, Aerodynamics Research Branch
Aberdeen Proving Ground, Maryland 21005
USA

David W. Taylor Naval Ship Research
and Development Center

Bethesda, Maryland 20084

USA

VFW-Fokker GmbH
Hunefeldstr. 1-5

D 2800 Bremen

Federal Republic of Germany

David W. Taylor Naval Ship Research
and Development Center

Bethesda, Maryland 20084

USA

xii

e . A e e 1 Tt s AR et R e ATt i ot T AR



Name

Van Tuyl, A., Dr.

Viets, H., Prof.

Voisinet, R., Mr.

Volz, W., Mr.

Walz, A., Prof. Dr.

Wieghardt, K., Prof. Dr.

Yanta, W., Dr.

Zien, T. F., Dr.

Organization

Naval Surface Weapons Center
White Oak Laboratory

Silver Spring, Maryland 20910
USA

Wright State University
Dayton, Chio 45409
USA

Naval Surface Weapons Center
Head, Project Engineering Section
White Oak Laboratory

Silver Spring, Maryland 20910

USA

Naval Air Systems Command
AIR-320C

Washington, D.C. 20361
USA

Am Kurzarm 7
D 7830 Emmendingen
Federal Republic of Germany

Universitat Hamburg
Institut fur Schiffbau
Lammersieth 90

D 2000 Hamburg 60

Federal Republic of Germany

Naval Surface Weapons Center
White Oak Laboratory

Silver Spring, Maryland 20910
USA

Naval Surface Weapons Center
Head, Applied Mathematics Branch
White Oak Laboratory

Silver Spring, Maryland 20910
USA

xiidi




THE MODELLING OF AIRFOIL SEPARATION
IN SUBSONIC AND TRANSONIC FLOW

by

Frank A. Dvorak and Brian Maskew
Analytical Methods, Inc.
Bellevue, Washington 98004

Abstract

A free shear layer model for separation has been developed which enables
one to calculate the flow about airfoils up to and beyond the stall. The
calculation procedure involves ijteration between viscous and inviscid flows.
The separation region is modelled in the inviscid flow analysis using free
vortex sheets whose shapes are determined by iteration. The outer iteration
employs boundary layer calculations to determine the location of separation.
In subsonic flow the inviscid flow field is calculated using a panel method
based on Tinearly varying vortex and source singularities. Viscous effects
are introduced via the surface transpiration approach. In transonic flow a
finite-difference procedure employing the velocity potential is used to de-
termine the airfoil flow field. In the transonic case, the separation region
is modelled by sheets of discontinuous velocity potential gradient. A direct
analogy exists between the free vortex sheet model for separation in the sub-
sonic case, and the discontinuity sheet model in the transonic case. The
subsonic method has been compared with experiment for a wide range of airfoil
types. The stall behavior for airfoils with trailing-edge or leading-edge
separation is predicted quite well, while thin airfoil or long bubble stall
is poorly predicted. The method has been applied at angles of attack through
ninety degrees with excellent results. The transonic method is in a much
earlier stange of development, but results to data are very encouraging.

Introduction

Boundary layer separation is one of the least understood but most
important of fluid flow phenomena affecting aerodynamic forces and moments.
Its accurate modelling is essential to the estimation of airborne vehicle
performance. Currently, reliance is placed on wind tunnel tests to determine
the consequences of separation; a procedure which is not entirely free of doubt
because of Reynolds number effects. Successful theoretical modelling of sepa-
ration is 1imited to a small number of special cases, one of which is two-
dimensional turbulent boundary layer separation from airfoils or diffusers.
The first successful model for trailing-edge separation was developed by

The authors gratefully acknowledge the support given by the U.S. Army
Research Office, Research Triangie Park, N.C., for this work under Contracts
DAAG29-76-C-0019 and DAAG29-79-C-0004.




Jacob (1). With Jacob's model, the separation region is simulated using
source fluid, the distribution of which is chosen to give constant pressure
everywhere in the separation region. In general, the method predicts the
upstream pressure distribution in a satisfactory manner, although agreement
with experiment for base pressure level is not consistent.

Recently a separation model has been developed by Analytical Methods, Inc.
which replaces the source distribution in the separation zone by a vortex
wake model. This model is described in some detail in (2), but is discussed
herein for reasons of completeness.

Separation Model--Subsonic Flow

An approximate model of the flow about an airfoil with a region of sepa-
ration is shown in Figure 1. It is assumed that:

(i) The boundary layer and free shear layers do not have significant
thickness and, hence, can be represented as slip surfaces; that is,
streamlines across which there exists a jump in velocity.

(ii) The wake region does not have significant vorticity and has constant
total pressure (lower than the free-stream total pressure). It is,
therefore, taken to be a potential flow region.

The flow field in the potential flow is obtained using linearly varying
vortex singularities distributed on planar panels. The wake is represented
by sheets of vorticity shed at the separation points.

The mathematical problem is to find the vorticity sheet strength such
that the appropriate boundary conditions are met. The position of the vortic-
ity sheet representing the free shear layer is not known a priori.

Approximations For the Free Shear Layer

(i) Wake Shape

Initially, the streamlines are not known, and so the shapes of the free
shear layers must be obtained iteratively starting from an initial assumption.
Earlier calculations in which the vortex sheet shapes were obtained by itera-
tion suggested an initial shape as follows. The upper and lower sheets are
represented by parabolic curves passing from the separation poins to a common
point downstream. The slope at the upstream end is the mean between the free
stream direction and the local surface slope. (Indications from further cal-
culations are that this starting slope should be streamwise for calculations
beyond the stall.) Once the wake calculation begins, the initial slope and
downstream position of each wake is determined by iteration. The final wake
position represents the separating streamline.




(ii) Wake Length

Early calculations indicated that the results were sensitive to the
length of the free vortex sheets. Good correlation with experimental
results was obtained only with relatively short wakes; i.e., wakes extend-
ing .1c to .2c beyond the trailing edge. Such a model appears reasonable
in the 1ight of experimental evidence: the separated wake does, in fact,
close quickly downstream of the trailing edge, as a result of the strong
entrainment process brought about by the rotation in the free shear layers
(see (3)). On the basis of several comparisons with experiment, a simple
correlation was obtained for the wake length as a function of the airfoil
thickness to chord ratio. This is discussed in detail in (2).

(iii) Wake Pressure
The approximation of zero static pressure drop across the free shear
layer is used to obtain an expression for the total pressure in the wake in

terms of the strength of the free vortex sheets. Considering the upper
shear layer, if the average velocity in the layer is denoted by

V= i(‘Ioutew * Vinner)

then
vouter =V + yU/Z, and
Vinner =V- YU/Z’

since the vorticity, Yy = vouter
in the lower shear layer is Y = v

" Vipner® ON the upper sheet. (The vorticity

-V )

inner outer’

The jump in total pressure across the shear layer is then

A4 = H - H

inner outer

{ Pinner * *p V- YU/2 }

- :pouter + *p V + YU/2 }
= - oWy, = oWy -

3




given the boundary condition that the static pressure, p, has no jump in
value across the shear layer.

Since the wake has constant total pressure (assumption (ii)), the jump
in total pressure across the free shear layer is the same everywhere.

Once the vorticity strengths of the individual panels representing the
airfoil and of the vorticity sheets representing the wake are determined, the
velocity at any point in the flow field can be calculated.

The pressures are calculated from the velocities according to the
Bernoulli equation which is expressed non-dimensionally as

- VI M
Cp =1 - ( Va,> + o

h c P =P,
where C, = o

at infinity. Note that AH = 0 ever%where except in the wake region for which
p YL-

s Q. = gpvmz, and AH = increase in total pressure over that

it was previously shown that AH =

Calculation Procedure

The overall calculation procedure is shown in Figure 2, and invelves
two separate iteration Toops.

(i) Wake Shape Iteration

The iteration loop for wake shape is the inner loop and involves the
potential flow analysis only. Within this Yoop the separation points are
fixed. The separation points may be located anywhere on a surface panel;
they are not restricted to panel edge points.

The wake shape is calculated as follows. Using the previous vorticity
distribution, velocities are calculated at the panel mid-points on the free
vortex sheets. The new wake shape is then determined by piecewise integration,
starting at the separation points. The upper and lower sheet downstream end
points, which were coincident in the initial wake, are allowed to move in-
dependently in subsequent iterations. At each iteration, the wake influence
coefficients at the surface control points are recalculated, and a new poten-
tial flow solutionis obtained.

The number of wake iterations is an input parameter in the current version
of the program; typically, however, it has been found that three wake itera-
tions are sufficient to produce a converged solution.

PRIy o—- =




(i1) Viscous/Potential Flow Iteration

This outer iteration loop takes the potential flow pressure distribution
over to the boundary layer analysis and returns with the separation points and
with the boundary layer source distribution. The source distribution is
determined directly from the boundary layer solution as

d
g = ds (Ues*)s

where Ug is the streanwise potential flow velocity at the edge of the boundary
layer, and &* is the displacement thickness. The addition of this source
distribution modifies the normal velocity, VN, at each panel control point.
The sources are set to zero in the separated region.

The program generates a new wake shape using the new separation points
together with information from the previous iterated wake. A new potential
flow solution is then obtained, and so on. The outer iteration is terminated
when the change in Cg is below 1%. A limit of eight iterations is currently
imposed within the program.

Boundary Layer Methods

The boundary layer development on an arbitrarily-shaped two-dimensional
1ifting configuration with separated flow is very complex. A thorough and
exact calculation of this development is properly the domain of the time-
dependent solution to the general Navier Stokes equations. Unfortunately,
the computer does not yet exist which is capable of handling such a problem
in a reasonable time at a reasonable cost. Such a calculation is not, there-
fore, of practical interest to the aerodynamicist. Less difficult or costly
are the finite-difference boundary layer programs now in existence. The
amount of computer time required for each calcutation still prohibits their
use in an analysis procedure of the type reported herein. Having made the above
evaluation, one must conclude that if the objective is a viscosity-dependent
calculation procedure of practical use to the aerodynamicist for clmax analysis,

and, possibly, for preliminary design, the method must be relatively simple

to use and economic of computer time. This can only be achieved if integral
boundary l1ayer methods are used. In two dimensions, integral methods are typic-
ally about 100 times faster than finite-difference methods. They can, however,
be expected to break down in the region of separation where none of the bound-
ary layer methods (including three-dimensional) can be expected to be valid.

It is anticipated, therefore, that integral methods will suffice for most
applications of interest to the aerodynamicist for Cgmax prediction.

In those cases of special interest to the aerodynamicist, such as the
effect of area suction for boundary layer control or of roughness (rivets, etc.)
on clmax’ alternative boundary layer calculation modules are available. These

methods are called as needed into the overall calculation procedure. A brief
discription of the boundary layer methods is given in the following paragraphs.
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The laminar boundary layer development is calculated by Curle's method
(4), an adaption of the well known method of Thwaites (5). The calculation
proceeds either to Taminar separationor to the end of the airfoil--whichever
occurs first. The calculated boundary layer development is then interrogated
to determine if transition, laminar separation or forced transition (boundary
layer tripping) has taken place. If any of these phenomena have occurred,
the downstream flow is assumed to be turbulent.

Methods for the calculation of turbulent boundary layers in two dimensions
have been developed by many investigators. A review of these methods was made
at a conference held in 1968 at Stanford University (6). One of the methods,
an integral method by Nash and Hicks (7) compared very favorably with the more
complex finite-difference methods. Now, several years later, the method remains
an excellent approach for application to the current problem both in terms of
accuracy and speed.

If surface roughness or area suction are of interest, an alternate turbulent
boundary layer method developed by Dvorak (8) and (9) can be called. This
method is capable of predicting the downstream development and skin friction
drag of a turbulent boundary layer over a rough surface, or a surface with
area suction boundary layer control.

Turbulent boundary layer separation is predicted by either the Nash and

Hicks or Dvorak methods when the calculated local skin friction coefficient
reaches zero. ~

Discussion of Results

The method was applied to a GA{W)-1 airfoil. This section shape rep-
resents a difficult test case and pressure distributions are available from
experiments at NASA-Langley for a range of incidence.

The first set of results, Figures 3 through 5, are for a Reynolds number
of 6.3 x 10° with a boundary layer trip at .08c. Figure 3 shows a very good
agreement between the calculated and experimental pressure distribution at 20.05°
incidence. The calculation took six viscous/potential flow iterations, each
with three wake shape iterations. For comparison, the attached potential
flow solution at this incidence is also plotted, and indicates the large change
in pressures due to the separated flow.

The wake shape history for a 21.14° incidence is shown in Figure 4, and
indicates very good convergence characteristics. Lift and pitching moment
characteristics show excellent agreement with experiment, Figure 5. The
previous calculations show considerable improvement over a previous Lockheed/
NASA-Langley calculation. The attached potential flow solution is included
in Figure 5 to put into perspective the magnitude of the change achieved by
the new method.




Figure 6 shows the 1ift characteristics for the GA(W)-1 airfoil at a
Reynolds number of 2.1 x 10°. The calculations give good agreement with
experiment up to c“max’ but the turnover in the curve occurs 2 to 3 degrees

Tater than in the experiment.

Additional comparisons were made with experiment for several airfoils.
Shown on Figures 7 and 8 are the results for the 1ift characteristics for the
airfoils tested by McCullough and Gault (10). In the case of the.NACA 63009
airfoil, the program predicts a trailing-edge stall while experimentally the
airfoil stalls from the leading edge. As shown in Figure 7, a slight modifi-
cation to the laminar separation reattachment criterion leads to a much im-
proved correlation with experiment. This points out the need for a better
understanding of the laminar separation bubble bursting phenomenon.

Comparisons between theory and experiment for the 1ift characteristics
of the NACA 4412 at a series of Reynolds numbers are shown on Figures 9, 10 and
11. A summary of the predicted and experimental C“max variation with Reynolds

number is shown in Figure 12. The calculated values agree very closely with
the experimental curve from (11). Calculations for lower Reynolds numbers were
attempted, but problems with the laminar separation bubble bursting criterion
produced inconsistent results.

A series of calculations were made to demonstrate the capability of the
analysis method over a wide range of angles of attack. Figure 13 shows the
calculated wake shape for a NACA 0012 airfoil at 90 degrees to the free stream.
The corresponding pressure distribution is given in Figure 14. The calculated
1ift and drag coefficients are 0.25(.15) and 2.1(2.08 - 2.3), respectively.
These values compare well with measured 1ift and drag coefficients given in
the enclosed brackets. Figure 15 shows a comparison between measured and cal-
culated 1ift coefficients for the NACA 0012 airfoil from O degrees through 90
degrees angle of attack. The agreement is surprisingly good. A summary plot
of calculated versus experimental szax for a series of different airfoils is

shown on Figure 16.

Separation Model--Transonic Flow

In the transonic flow case, the wake model is analogous to that used
in the subsonic case. Specifically, there exists a direct analog between the
vorticity sheet wake model and the velocity potential (¢) discontinuity sheet
model. The gradient in ¢ with repsect to surface distance, s, i.e., 34/3s,
at the separation points, both upper and lower surface, must be equal in magni-
tude as required by the Kutta condition. The additional requirement is that the
entire ¢-discontinuity sheet representing the wake must retain the value of
9¢/3s at separation. Just as in the vorticity model where there is a jump in
tangential velocity across the wake sheet, in the ¢ field there must be a
jump in ¢ across the discontinuity sheet. The corrrect path of the separating
wake sheet is found by iteration; that is, the actual values of 3¢/an on the
wake sheet from the previous iteration are used to determine the new wake loca-
tion. A new ¢ field solution is then obtained, and so on, until the solution
has converged for a wake path having the requirement that 3¢/3n = 0 across the

7




discontinuity sheet. The requirement for a converged solution is that with
all other conditijons satisfied, the circulation should have attained a converged
value.

Potential Flow Model

Initially a pilot code was generated to solve the full potential version
of the equations of motion for flow about a circular cylinder using a line
over-relaxation finite-difference technique. With the separation point known,
the pilot code gives results in excellent agreement with experiment (see
Figure 17). The separation model was then incorporated into a transonic code
developed by Jameson (12). A compressible integral boundary layer program
consisting of the laminar method of Cohen and Reshotko (13) and the turbulent
lag-entrainment method of Green etal. (14) has been coupled to the potential
flow program.

Results for the circular cylinder are compared with experiment and with
the pilot code in Figure 17. A further comparison is shown in Figure 18 for
the GA(W)-1 airfoil at 19.06° angle of attack. The measure of agreement is
very encouraging.

Conclusions

The results of comparisons with experiment, including those presented
in this paper lead to the following conclusions.

(i) The basic analysis method predicts both the 1ift curve and the
maximum 1ift coefficient quite accurately for a wide variety of
airfoils over a range of Reynolds numbers.

(ii) Post-stall behavior is best predicted for the trailing-edge type of
stall.

(iii) Leading-edge and thin airfoil stall prediction could be considerably
improved by a better laminar separation bubble bursting criterion.

(iv) The use of vortex sheets to represent the separated flow boundaries
suggests that the model will be applicable to unsteady flows.

(v) The extension to the transonic case has lead to very good agreement
with experiment, at least for the lower Mach number, high angle-of-
attack regime.
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Figure 15.

COMPARISON CF CALCULATED AND EXFERIMENTAL LIFT CHARACTERISTICS FOR
A NACA 0012 AIRFOIL, REYNOLDS MUMBER 6.0 x 108, MACH NUMSER 0.2

©  CLMAX CALCULATION
NI EXPERIMENT (FROM HOERNER, NACA TN 3361 atc. )
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Figure 16. Comparison of Program CLMAX with Experiment.
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Figure 17.

Comparison of Calculated and Experimental Pressure 6
Distributions on a Circular Cylinder; Re = 8.4 x 10
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THEORETICAL DETERMINATION OF THREE-DIMENSIONAL FLOW SEPARATION

Tsze C. Tai®
David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland, U.S.A.

Abstract

A streamline approach for determining the free
vortex-layer type, three-dimensional flow separation
is presented. The procedure is based on the Maskell
postulation about separation patterns in three
dimensions. The line of separation is determined by
the envelope of merging streamlines inside the
viscous layer. The required streamlines are calcu-
lated by three ordinary differential equations,
using inviscid pressures along with proper viscous
damping parameters. The method is illustrated by
two examples, a prolate spheroid in an incompres-
sible flow and a spherically blunted cone at hyper-
sonic speed, both at moderate angles of attack.
Comparisons of the theoretical results with
experiments and 3 three-dimensional boundary-layer
solution are made.

Nomenclature
a,b major and minor axes of an ellipsoid
e eccentricity
f local body radial distance from the
centerline
g“. g 1 metric tensor for body gecmetry
hl' hz metric coefficients for coordinates

£, 8

[ length of a body

M Mach gumber

P static pressure

R nose radius

s distance along a streamline measured
from the stagnation point

u, v, ¥ velocity components in body-oriented
coordinates
v velocity
x, ¢, 2 body-oriented nonorthogonal coordi-
nates
Xs Vo Z Cartesian coordinates
a angle of attack
Y rstio of specific heats
[} streamline angle
A coefficlent for friction model
7] viscosity
£, 8, ¢ streamwise coordinates
[} density
-pu'w', -pv'w’ Reynolds stresses
k4 shearing stress
Subscripts
i init{al cond{ition
] stagnation
t,2 x,9 direction
- freestrean
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*Research Aerospsce Engineer, Aviation and Surface
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Introduction

The criterion for flow separation in three
dimensions is radically different from the conven-
tional concept based on two-dimensional flows, where
separation takes place as the skin friction vanishes.
In three-dimensional flows, the vanishing of skin
friction in either or both directions cannot be used
to define a flow separation. Instead, the concept
of the envelope of limiting streamlines as the sepa~
ration line, has been developed. First suggested
by Eichelbrenner and Ondart,! the eanvelope idea was
further explored by Maskell,? basad on general flow
obgervations and supported by Wang? from the stand-
point of numerical results. A comprehensive review
of the subject was given by Wang.*

Maskell? postulated two basic forms of separa-
tion patterns in three dimensions ~~ a bubble and a
free vortex (or shear) layer. In the case of a
bubble, the surface of separation encloses fluid
which is not part of the main stream but is carried
along with the body surface. In the case of a
vortex layer, both sides of the separation surface
are filled with the main stream fluid. Although
each displays a different flow structure, the line
of separation is generally identifled as an envelope
of the limiting streamlines. In reality, a combina-
tion of both types of flow separation with a bubble
and a free vortex layer is most likely to exist.

The Maskell descriptions, which are representa-
tions of experimental observatlions, are found by
Wang® to be consistent with the three-dimensional
boundary~layer theory. Wang*® introduced an open-
and-closed separation concept, however., In a closed
separation, the separated region 1is inaccessible to
the upstream flow. For an open separation, on the
other hand, the limiting streamlines on both sides
of the separation line stem from the same front
stagnation point; the separated region is accessible
to the upstream flow. Physically, therefore, Wang's
closed~type separation corresponds to Maskell's
bubble type, and the open-type separation corre-
sponds to the vortex-layer type. The open separa-
tion concept, which is relatively new, has been
substantiated by recent measurements made by Meier
et al.” and Han and Patel.

Formation of Vortex~Layer-Type Separation

Of particular importance is the vortex-layer-
type separation (or the open type) which covers a
wide clags of flows of practical interest. Flows
around a body of revolution, at angles of attack
that ofter model spacecraft,’ missiles,® and sub-
marine configurations? in maneuver, fall into this
category. Also, free vortices over a wing-body
combination'® or in a ship stern'! are generated by
the vortex-layer-type separation due to merging of
streamlines which originated from a commor upstream
gﬂow. The phenomenon i3 unique in three-dimensional

lows.

Maskell's postulation on the free vortex-layer-
type separation pattern {s shown in Fig. 1, which
is based on description given 1n Ref. 12, It {s

o



noted that above the limiting streamlines, there lie
the inviscid streamlines. Since the limiting stream-
lines and the inviscid streamlines are both influ-
enced by the surface pressure distribution and the
deviation between the two is strictly of a boundary-
layer nature, it is proper to suggest that the
limiting streamlines are eventually distated by the
streamlines above them. The line of separation,
which is an envelope of the limiting streamlines,
therefore, can be determined approximately by the
loci of merging streamlines inside or at the edge

of the boundary layer. These streamlines, however,
must be calculated accurately based on realistic
pressure distributions containing physical proper-
ties that have direct bearing on the flow behavior.
Experimental or empirical pressure distributions or
theoretical pressures obtained by means of viscous-
inviscid interactions involving not only attached
flow but also separation are considered to possess
such physical properties. If pure inviscid pres-
sures are used, proper viscous damping terms should
be incorporated to simulate the real flow.

In the present analysis, a method is developed
to determine the vortex-type separation by the
envelope of merging streamlines inside or at the
edge of the boundary layer. An exact, yet simple
method for determining the inviscid streamline
geometry over general three-dimemnsional bodies has
been developed. To trace the streamline inside the
boundary layer, the method is extended to viscous
flows by adding a friction model. The latter is
particularly useful when realistic pressure distri-
bution 1is not available.

Inviscid Streamline Equations

A. General Three-Dimensional Body

Few analyses have been developed in the litera-
ture to obtain the inviscid streamline geometry.l13-16
Here we will consider an exact method using non-
orthogonal systems.!” In body-oriented nonorthogonal
coordinates (x,¢,z), the inviscid momentum equations
for the flow over the surface of a general three-
dimensional body can be written as follows.l?

x - Momentum

¢ - Momentum

. 21273
Wy v [ 22 1) v €22
ax 1/2 3¢ 2g 1/2 | 9x
57 22

ov2 (22 1 \%a2, 2172 22 %1
22172 g ) 3¢ TV Bp & S
59 22

2
vigll By B f 12k, 222
SYEAD o \& =xTE® 3

22 (2)

where x is the distance along the body surface of a
constant ¢ plane, ¢ is the azimuthal angle measured
from the most windward line, and z is normal to the
surface (see Fig. 2). The velocity components u and
v are measured along the surface in x and ¢ direc-
tions, respectively, and P and p are the static
pressure and density, respectively. The gij is

the metric tensor for the body geometry and gij is
the conjugate metric tensor of gij' Their expres-
gions are given in Ref. 17.

The geometry of any streamline emanating from
the stagnation point may be expressed as ¢ = ¢ (x,B),
vhere B Is constant along a streamline. The co-
ordinates are related to the velocity components
through the relation, with the aid of the following
sketch:

i = v-ol/2
u:dx Vigy, dé
1/2
g
22
1/2
2220 v
dx u 3)

Defining D/Dx as the substantial derivative, or
derivative along a streamline, Eq. (3) can be writ-
ten in the form

DJ. v
12 2 11\ 3 o 3'175“
1 2 4
“3_u+v3_u+ uv _vs 22 2 )
x 81/2 FY) 815 2322 x
22 22
Differentiate the above equation with respect to x
to get
vigl? 38 517 38y, (211 3,
8., 3 Y& ¢ 3 v _ Du
27 822 0’ _ 1 [“ﬁ“'i; v 1 Dgzz]
Dx2 8;;2 uz 2u 897 Dx
1 11 3P, 12 p )
-'—'B —+g —
[ Ix LT )
Also, introduce a variable 8, the angle between the
tangent of local streamline and the x-axis by the
relation
D¢
14+g,,
8 = arc cos 12 Dx
2
‘/ D Do
1+ 822 (Dx) + 2312 Dx (6)
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Differentiating Eq. (6) with respect to x along a In a similar manner, Eq. (2) gives
streamline and rearranging, there yields

_D_V_ - 2‘—’ + A4 3v
2]9/2 D8 Dx  ox o o1/2 )
23% . sin 8 [1 + Zglzt + gzzt B 22
Dx (8,9 = 52 )t
22 12 2 12 1s
S N 2 N S O S22
Dy, Ty 2%852]  2ugll?|
I.(1 * &t Bx -2 (312 * 8500 o
2(g,y - s )t
22 12 N ) v2 2 1 3322
7z |8 g Ex)
Zug22 22
where t = D¢/Dx. Equating Eqs. (5) and (7), yields
Do ( Du Dv) 3g 2 12 ag
=Qfx, ¢, U, Vv, ==, = _l/2 22 P12 v 12
Bx ’ * V2 Dx’ Dx (8) ugy,” 8 5 177 5
. ugysy
Integration of Eq. (8) gives the local direction
of a streamline. For streamlines in the nose region 1/2
that first move forward from the stagnation point 57 12 ap 22 ap
and then bend towards the leeside, the Dx term laryras ( % +g 5;) (12)
experiences zero movement adjacent to the turning
point. It causes the derivative to approach ianfin-
ity. To amend such a numerical problem, the length
of the streamline S is used as the independent Fyrthermore, that
variable instead of x. Accordingly, Eq. (8) is ] v 1/2
recast in the form <" 8y 'b% bis (4)
Do _ D6 Dx and
DS Dx DS
2
2 _YMP 1
- e (13)
R(x $,u, V- Dx’ ) ) [ Z

D¢ D¢

1+ 83, 0% + 555(p%)
The expressions for the total derivatives Du/Dx
and Dv/Dx in Eq. (9) are obtained from Eqs. (1) and

Using Eqs. (11) through (13), Eq. (9) can be com-
(2) in conjunction with the following relations pleted to read

Do dubx, by 0o 1
x Dx = 3¢ Dx 5
Vi + g3500 + 83559 (g = 5770
- a_u -+ v 22
x 172 %%
U822 (10) x ] L g cogooy 22 - (a0
/ o 5 8125%8229) 3 ~ (648,9) 34

Rearranging Eq. (1) and substituting in Eq. (10),
there results 3 )
- o %22 82 }

( 12 2 11) my, 2122, 7%= o (4

_&75 2“522

2
g5

3 2ug
The geometrical relations between the % and S, and
¢ and S are

RUIL T Be wt! . c A as
9x “‘22 ) D 7 ~3
(11) \/; + 8y + Zglzde

1 (11 P, 12 ar)
~ =gt =+g pA8
Pu ax T Dy . 9
" a6)
\/c +8y0 + 23120c
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where

€= gy coa2 e - (17)

g2

9 =g, sin2 e+ (822 - gfz) sin 6 cos © (18)

Equations (14) through (16) constitute a set of
first-order, ordinary differential equations for
determining the geometry of a chosen streamline from
the known pressure distribution. The method is
considered exact in the sense that no approximations
have been made in the process of derivation and
provided that exact expressions for the pressure
gradients can be incorporated. The streamline
pattern so calculated, strongly depends upon the
input pressure distribution. The more realistic is
the input pressure distribution, the more realistic
is the streamline geometry, including the streamline
merging for determining the three-dimensional flow
separation to be further discussed later.

B. Body of Revolution at Incidence

For a body of revolution at incidence, where the
x and % coordinates can be set orthogonal, simplifi-
cation can be achieved by letting

312 81y 8y
8, = = =t s —££ 20
12 ax 3% 3%
orthogonal
2 system only
8 = f
Eqs. (1) and (2) are reduced to the form:

x ~ Momentum (orthogonal system only)

2
du ., vau v df 1 9P
Ux*E3 TF ax T b (19)
¢ ~ Momentum (orthogonal system only)
v , v av _ uv df 1 3P
U YTt Tt daxT T ot a9 (20)

Following the same procedure, Eqs. (19) and (20)
can be reduced to ordinary forms for calculating the

streamline geometry of a body of revolution at inci-
dence
De 1 (ap 1 ap ) 1 df
— = ——l-——3i08 - > —cos9] - - -— 508
DS) cth. yHZP 3x f 49 f dx
(21)

22 - sin 6
DSicen.  ° (22)
%%) = cos O

orth. (23)
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Streamlines in a Boundary Layer

A. Equations for Viscous Streamlines

Many times a realistic pressure distribution is
not available. To simulate the physical flow, so
that the three-dimensional flow separation can be
detected, it is necessary to consider streamlines
inside the boundary layer; see Fig. 3. Without
losing generality, a body of revolution at incidence
will be considered as an illustration. The equa-
tions of motion that govern a three-dimensional
boundary layer flow can be wrirten as follows

% - Momentum

2 ar
du v 3u Bu_vigaf 1P 1
U tF YT T ax p<ax az) (24)
¢ - Momentum
v , v v v . uv df 1 /3P 312
“‘a?*?ﬁ*“;;*?g";(m'az) (23

where 11 and 12 are the shearing stresses in x and ¢

directions, respectively, i.e.,

du =y

11 * u 7z pu'w (26)
T

Ty = ugs - vl 27

The substantial derivatives along a streamline
inside a three-dimensional boundary layer are

Du 3u _ v 3u W 3u

Dx - 3x T Uf 3¢ T u 3z (28)
Dv v v v w v
Bx "k TuF 3% Uz 29

It indicates that additional z-component terms
can be absorbed {n the total derivatives in the
derivation of the streamline equations. Following
the same procedure as for the inviscid case, the
resulting ordinary equations for calculating the
streamline geometry inside the boundary layer are

3T 3T
D8 1 Iap 1 1 3P I
- w——— == - =" sin b -(= == - —=Jcos ¢
stiscous 7M2P (Bx az) (f EE) az)
1 df
£ ax *in @ (30)
Eﬁ) - sin 8
DS/ sscous t (31)
(%% = cos @
viscous (32)

Note that terms in parentheses in Eq. (30) zepresent
the effective pressure gradients fur computing 9.
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B. Friction Model

The additfon of friction terms 311/32 and 812/31

wakes the system (30) through (32) not -eadily
solvable even if the.pressure values are provided.
A proper determinatica of these terms, of course,
is to solve the th-ee-dimensional boundary-layer
equations. Even tuat, the solution involves turbu-
lence modeling which has been a problem for many
years. It is attempted, therefore, to model these
friction terms without solving the complex three-
dimensional boundary-layer problem.

First, consider that in a boundary-laver flow,
the friction force 1s of comparable order of magni-
tude with the inertia force. Schlichting'® suggest-~
ed that for a flatr plate, the friction force per
unit volume can be estimated by the condition of
equality of the friction and inertia forces:

T ovz
i e (for a flat plate)

where L 1s the characteristic length of the body in
question. It is assumed that the flow under consid-
eration 1is locally similar to that over a flat plate
and that other influences can be absorbed in an
empirical relation:

2
2 oV 2 2
It _ — oV =« f{V N
z A A ( ) - A(Vm) B3
Then, the friction component {n the x-direction can
be written as

at 2
1,2 (du_oom = (&
3z "3z (Wag meu'v) Al(va) (34
and that in the ¢~direction
T 2
2 3 v
3z 3; (U -a— - pv'ul) - XZ(-‘-/-:) (35)

The parameter ) could be a function of Reynolds
number, Mach number, pressure gradient, and possibly,
the angle of attack. To simplify the approach, it
is assumed that ) takes on the following form

=ix|

AI - al + b1 (36)

and

A, » a

2 37)

2 + bzo

where .l' bl' a,, and b2 are constants to be deter-

wined experimentally, It is noted that near the
wall, the sign for ) {8 directly affected by the
velocity profile, which is ultimately dominated by
the pressure gradient.!® These closure statements,
which merely represent a working formula, are far
from complete., Further improvement might have to
be pursued in a similar way for modeling the turbu-
lence in usual boundary-layer computations.
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Determination of Three-Dimemsional

Flow Separation

With the streamline method available, the fl.u.
separation can be approximately determined by merg-
ing streamlines at the edge of or inside the bound-
ary laver, depending on the particular pressure
distribution used. If a realistic pressure distri-
bution is available, i.e., experimental or empirical
pressuve distribution, or theoretical pressures
obtained by means of viscous-inviscid interactions,
the simple inviscid streamline zpproach can be
employed, For the case of a pure inviscid pressure,
then the streamlines must be calculated with proper
viscous terms included. The former will be illus-
trated by the case of a spherically blunted cone at
an angle of attack at a hypersonic speed and the
latter demonstrated by a prolate spheroid at moder-
ate incidences ir an incompressible flow. In both
cases, the streamlines are computed by the initial
value technique. That is, all the streamlines
originate from the forward stagnation point and the
envelope of merging streamlimes is traced out by
the interception of streamlines from windward and
leeward sides. Once two streamlines intercept, it
is assumed that they immediately leave the surface,
resulting in a flow separation.

A. Determination of Flow Separation over a
Spherically Blunted Cone at Incidence

In hypersonic flows, a typical configuration
frequently considered in the past is the spherically
blunted cone. Experimental and theoretical pressure
distributions for the case of a 9-deg half-anple
cone at M_ = 18 and specific angles of attack were
made available by Knox and Lewis.!? The body geom-
etry can be expressed as follows; see Fig. 4.

For spherical cap:

2()- (%)

IR
.
x|

(38)

For the cone:

|

%‘ sec ¢ + tan ¥ (39)

where ¢ 1is the cone half angle.

To obtain the pressure gradients required by the
the present method, the empirical interpolation
formula suggested by Zakkay’? is employed

+Aa cosé + B + 663 cos 2%

é& .(T%)a-o

which can be recast into the form:

L. Acos ¢ +B+ Ccos 2¢

(40)
E.O

where A, B, and C are functions of x only, that can
be determined by collocating the pressure dat

along ¢ = 0 deg, 90 deg, and 180 dey mertdian lines,
The pressure gradients are




3 [P dA dB . dC

H(E) s+ R R @
3 (P

H(P_o) = -A sin ¢ - 2C sin 2¢ (42)

Pressure solution by the method of characteris-
tics on ¢ = 0 deg, 90 deg, and 180 deg meridian
lines at M_ = 18 and a = 10 deg are taken from Ref.
19, which were then curve fitted with a polynomial
to form A, B, and C. The theoretical pressure
values were used with empiricism built into the
interpolation formulas, Eq. (40). A comparison
between the interpolated and the original theoreti-
cal pressure distributions is shown in Fig. 5.

Equations (40) through (42), together with body
geometry equations and the isentropic relatiom
between the local Mach number and pressure, consti-
tute all the terms needed for the right-hand side
of Eqs. (21) through (23) for calculating stream-
lines. To start the calculation, the initial
conditions are determined by the exact geometrical
relations on the spherical cap; see Fig. 6.

-1
X, = cos (cos a cos S

4 - sin a sin S, cos B)

i i

-1
oi sin (sin Si sin B / sin xi)

8i - sin”} {sin a sin 8 / sin xi) (43)

For a spherical body, these exact relations
hold everywhere. It is, therefore, convenient to
apply these relations right at the juncture and
initiate the integration there. The integration of
Eqs. (21) through (23) can be accurately performed
by using a fourth-order Runge-Kutta scheme to give
the location of the streamline in terms of coordin-
ates x and ¢, and its direction measured with
respect to the x axis. The calculated streamlines
are designated by B values whiclh run from O to 180;
B = 0 for the most windward line. The three-
dimensional flow separation then can be determined
by tracing the envelope of inviscid streamlines.

B. Determinatjon of Flow Separation over
a Prolate Spheroid at Incidence

The flow separation over a prolate spheroid
(ellipsoid) at specific incidences has been investi-
gated both theoretically? and experimentally.’§

It is a good case for comparison purposes. Also,
since a closed form potential flow solution is
available for this body, it is convenient to illus-
trate the viscous procedure proposed earlier in the
present paper.

With the major and minor axes of the ellipsoid
defined by a and b, respectively, the body coordi-
nate is given by (see Fig. 7):

£=b J1- (%/a - 1)2 (64)

The surface pressure can be expressed by

wlp_ W22
PP 4+ <x-—2-7 (45)
v v
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n
The required velocity components are given by Wang
based on the potential flow solution

(1 + k) (cos o) (2K - %4y

1
2.2.%

JL S
Yo @ -e’zh

+ (b/a)(1 + k) (sin a) (x - 1) cos ”l (46)

v
- a+ kc) sin o sin ¢ (47)

where a is the incidence and e is the eccentricity
given by

e = 1 - — (48)

Parameters ka and kc are the axial and cross coef-

ficients of virtual mass defined by

1 1l+e 1 1 l+e
k, = |5z 1ng=< - ll/ll—ez-ﬁ 1n——1_e] (49)

and

1

ke * 17 2%
a

(50)

The pressure gradients are readily obtained
through the following relations

= 2
P 2 u 2x - X 3 Ju
- * WM P — l 2] —= v (51)
ax v, 1 - e2(;_ 1) X ( w)
3P 2 u 3 fu v 3 v n
3 " 'Y“a"e[?csa ) +v % (v;)] )

For this particular case in wnich the inviscid
velocity components are known everywhere, the local
inviscid streamline angle 6 is also known

0 = tan”! (E) (53)

Equation (53) is useful for (a) testing the
accuracy of the system, Eqs. (21) through (23), by
comparing the integrated 6 value against the exact
value and (b) providing the initial condition for
calculation of viscous streamlines using Eqs. (30)
through (32).

The viscous streamline equations, Eqs. (30)
through (32), with the aid of Eqs. (44) through (52)
and the proper friction model, can then be inte-
grated using a fourth-order Runge-Kutta scheme.

The initial condition for 6§ is evaluated by Eq. (53)
at a point close to the forward stagnation point.
Similar to the previous case, the calculated stream-
lines are designated by 8 values which run from 0

to 180; 8 = 0 for the most windward line. The
three-dimensional flow separation can be then
determined by tracing the merge of viscous stream-
lines.
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Results and Discussion

The procedure described in the previous section
has been coded in FORTRAN using a CDC 6600/6700
computer. Each case, either the spherically blunted
cone or the ellipsold, takes less than 150 state-
ments and occupies a very limited storage. Because
of its small size, the program was subsequently
converted to the BASIC language using a Tektronix
desk-top computer. The latter has instant graphic
capability to facilitate evaluation of the friction
model.

A. Spherically Blunted Cone at a = 10 Degrees

The results of a 9~deg spherically blunted cone
at M, = 18 and a = 10 deg are shown in Fig. 8. All
the streamlines are labelled with 8 values; 8 = O
for the most windward line. The streamlines in the
upper leeward region turn back to the windside
because of flow retardation caused by the empirical
nature of the pressure gradient employed. The flow
exhibits vortex-layer-type (open type) separation
resulting from streamline merging. The line of
separation is easily traced using the envelope con-
cept. A remarkable resemblance between the present
result and Fig. 15c of Ref. 4 1s observed. This
same case was considered by the author earlier.?
However, then the reason for leeside streamlines
bending toward windside was not identified. As a
consequence, those streamlines for 8 > 90 deg were
not published; see Fig. 12 of Ref. 22.

B. Prolate Spheroid at Incidences

In the case of a prolate spheroid at incidences
in an incompressible flow, both the inviscid ap-~
proach (streamlines at the edge of boundary layer)
and the viscous approach (streamlines inside the
boundary layer) were examined numerically.

Using the inviscid approach with pure potential
flow pressures, the calculated streamlines mono~
tonically approach the apex of the leeward side;
see Fig. 9. The integrated values for the stream-
line angle @ agree very closely with those exact
values given by Eq. (53). It serves as a test case
for validating the method.

The viscous approach was first investigated with
a very simple friction model. Constant viscous
parameters (11 =T, - 5) were assigned for the case

of a prolate spheroid (a/b = 4) at a = 30 deg. The
result is shown in Fig. 10. It indicates that
streamlines in the leeward side turn back to the
windward side and then encounter those directly from
the windside and, therefore, form a flow separation.
The trend is consistent with the previous case. The
line of separation is determined by the envelope of
merging streamlines. The level of agreement between
the present result and the experimental data is
comparable to that between the three-dimensional
boundary-layer solution and the experiment; see

Fig. 11. The results, in geaeral, depend on the
magnitude of the damping parameters used. Figure 1l
also reveals the effect of the friction model. A
slightly improved location of the line of separa-
tion can be found as a consequence of change of
values of empirical parameters.

Finally, the present viscous result is further
compared with recent experimental data provided by
Meier et al.5 Empirical constants for the friction
model were adjusted so that the theoret{cally
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determined separation pattern matches that of the
experimental one. This 1is depicted in Fig. 12 for
an a/b = 6 prolate spheroid at a = 30 deg. The
constants were found as follows:

a = 3.0 b, = 5.0

1 1

a, = 5.0 b, = -0.02

2
for Eqs. (36) and (37). The set represents one of
many possible combinations. In general, the param-
eter v is affected by the nature of the boundary
layer, the compressibility, the velocity profile
and possibly, the angle of attack. The first three
may be represented by the Reynolds number, the Mach
aumber, and the presgure gradient. A physically
oriented friction model is yet to be developed in
the future.

Concluding Remarks

A streamline approach for determining the free
vortex-layer-type, three-dimensional flow separa-
tion is developed. Both inviscid and viscous
approaches were considered. For the inviscid
method, the more realistic are the input surface
pressures, the more realistic are the streamline
and, therefore, the separation patterns. Experi-
mental or empirical pressure distributions or
theoretical pressures, obtained by means of viscous-
inviscid interactions, are considered to possess
such physical properties.

The viscous approach allows use of pure inviscid
pressures along with proper viscous damping. The
accuracy of the new, simple method depends on the
ability of modeling the friction force in the
boundary layer. An approximate model based on the
equality condition between the friction and inertia
forces works reasonably well for the case of a
prolate spheroid at incidence. The model needs to
be improved with more considerations from a boundary-
layer point of view.

Nevertheless, because of its simplicity and
small computation requirement, the present approach
may become a useful tool to facilitate computation
of viscous-inviscid interactions with flow separa-
tion in three dimensions and to predict the inter-
ference drag involving free vortices resulting from
flow separation.
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ANALYSIS OF SELF-EXCITED OSCILLATIONS IN FLUID FLOWS

* Ak

W. L. Hankey and J. S. Shang
Alx Force Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio

Abstract

A class of self-excited oscillations in fluid
flows has been analyzed., It was shown that the
source of the instability is a separated shear
layer with an inflection point in the velocity pro-
file. The larger the extent of separation, the
greater the amplification of the instability.
Separated flows possess a natural frequency for
which they are most likely excited and are stable
on either side of that frequency. Self-excitation
results when a feedback mechanism occurs within
the flow field and pressure waves travel upstream
through the subsonic separated flow to the origin
of the initial disturbance. All frequency modes
of oscillation can be predicted from a simple for-
mula attributed to Rossiter. Resonance occurs when
one of the feedback frequencies is near the natural
frequency of the shear layer.

Navier-Stokes solutions were obtained for open
cavity oscillations and spike tipped body buzz.
Encouraging agreement with experiment resulted that
reinforced understanding of the phenomenon. Inlet
buzz was also investigated and found to be caused
by a similar instability in a separated shear layer
for subcritical flow rates.

Nomenclature
L stagnation speed of sound
A saplifier transfer function
B fevdback loop transfer function
[ complex wave speed
<, propagation velocity
<y amplification factor
£ frequency
1 -1
k %f = dimensionless propagation velocity
L length
Ho =2 . Mach oumber based on stagnation
sound speed
P period
t time
u,v,w Cartesian velocity components
S A8 Cartesian coordinates
a wave nuaber
[} shear layer thickness
0 phase angle
v kinemstic viscosity
¢ fluctuatfon amplitude function
™ 2nf = angulsr frequeacy

Introduction

A self-excited oscillation is one in which the
force that sustains the motion is created by the
motion itself; when the motion ceases the alternat~-
ing force disappeatsl. (In a forced vibration, the
alternating force exists independently of the motion
and persists even when the motion is stopped.) Self-
excited oscillations are encountered in mechanical
and aero-mechanical systems as well as in other
fields. Some examples are nose wheel shimmy,
machine chatter, chalk screech, galloping transmis-
sion lines, Karman vortex trails, wing flutter
and inlet buzz.

Den Hartogl analyzes self-excited oscillations of
mechanical systems with particular attention given
to the damping term, Consider a spring-mass system
with viscous damping for which the motion may be
described as follows:

mx + ex + kx = 0

The solution to this equation for constaant coef-
ficients is
—ct

x= xoezm cos(ut + @)

The natural frequency of the system is
k cz by
w==1-72]

Given an initial disturbance, the motion will
grow or decay depending upon the sign of the damping
term (c). Negative damping (¢ < 0) is necessary to
produce a self-excited oscillation. For this linear
analysis, the disturbance will be amplified and grow
without bound. In nature, however, non-linear
effects occur and and both negative and positive
damping exist during portions of the oscillation so
that a "limit-cycle" can regsult. A balance is
reached between energy production and dissipation
#o that the net work is zero during one cycle. This
steady state periodic solution is the self-excited
oscillation that we observe in nature for a simple
mechanical system,

The analysis for fluid flows is analagous to the
mechanical system. For an incompressible two dimen-
sional flow, the governing equations are linearized
by assuming small perturbations of the following
form<:

v - oy Qlolx - ct)

This results in the Rayleigh equation (which is
a degenerate Orr-Sommerfeld equation appropriate for
large Reynolds numbers)

Ly e=0
U-c
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with boundary conditions as follows:
4(0) =0 ; ¢(=) =0

- t
U(y) is the mean velocity component in the x direc~
tion, and ¢ is complex.

; |

- +
c <, ic

Here cp is the propagation speed of the wave and
¢4 determines the degree of damping or amplifica-

tion depending upon its sign. !

For prescribed values of  this is an eigenvalue
problem in which c(a) can be obtained subject to
satisfying the boundary conditions. The resulting
solution takes on the following form:

. acit fla(x - crt) g
v' = de e
i

For positive values of ci a self-excited oscil-
lation occurs which is equivalent to a negative
damping case. Rayleigh3 first investigated this
type of flow and proved that velocity profiles
with inflection pocints are unstable. In order to
further explore this fact, a class of separated
flows was analyzed. The stability of Stewartson's
Lower Branch solutions of the Falkner-Skan equation
was investigated (Fig 1). The Rayleigh equation
was solved for several different values of the
pressure gradient parameter, £, for the entire
range of separated flows from incipient to a free
shear layer®. Figure 2 presents the values of
the amplification factor for the unstable fre-
quency range. (Note fy = a ¢,/2n8). For reference
purposes, these amplification factors are nearly
two orders of magnitude greater than the more
familiar Tollmien-Schlichting waves?. The propaga~-
tion speed (cy) for the_disturbances was generally
between 0.4 and 0.9 of U (Fig 3). Therefore, one
can deduce from these results that self-excited
oscillations do exist (positive ci) over a very
limited frequency range for similar separated lam-
inar boundary layers. By analogy, the frequency
for which maximum cj occurs can be viewed as the
natural frequency of the shear layer. This cor-
responds to the most probable Strouhal Number
11kely to occur for periodic disturbances and is
slways numerically less than unity. In Ref 5,
compressibility effects of a free shear layer were
investigated and the instability was found to
diminish as Mach number increased (Fig 4).

Although only one class of flows with inflection
points has been examined, one is tempted to .
generalize these findings for all separated flows.
One can speculate that (1) ¢ :parated flows become
more unstable in progressing from incipient to
fully separated; (2) separated flows possess a
relatively low natural frequency for which they are
most likely to be self-excited and are stable on
either side of that frequency; (3) the instability
diminishes as Mach number increases. Based upon
these hypotheses, one can embark upon an analysis
of self-excited flow problems. ‘
1
!

To investigate these flows in detail the
Reynolds averaged Navier-Stokes equations will be
required. Use of the Reynolds averaged Navier-
Stokes equation to numerically simulate unsteady
buffeting was demonstrated by Levy®. Steger and .
ll£1¢y7 used these same equations to simulate
atleron buzz. Chapman® showed that unsteady :
practical problems can be solved with the Reynolds

Eweraged eaﬁaiions provideh ‘that thé_§fgaaéncies of
interest are twe orders of magnitude below the mean
frequency of the turbulent eddies. This generally

'implies that the Strouhal Number (%E) be less than
unity. e

One of the first numerical examples of a self-
lexcited oscillation was the time-dependent computa-
tion of a stalled airfoil by Hodgeg. In Fig 5, a
series of eddies is observed on the upper side of
the airfoil where the flow experiences an adverse
‘pressure gradient. These eddies grow and are shed
in a regular periodic manner as shown in Fig 6.

The oumerical values of ¢y = 0.4 and ci = 0.07 for
this flow are within the range of values obtained
from linear theory (Figs 2 and 3). Note that the
Eflow is under a favorable pressure gradient on the
lower surface and of course no instability occurs.
}In Fig 7, the velocity vector field shows inflection
‘points only on the upper surface of the airfoil. It
is, therefore, concluded that numerical methods can
be used successfully to analyze self-excited oscil-
latioms.

Feedback Mechanism i

Separated flows were shown to possess a natural
frequency for which small disturbances are highly
amplified over a limited frequency range. For a
significant self-excited oscillation to persist, a
feedback mechanism is required in which signals in
the natural frequency range are returned to the
shear layer origin and then selectively reamplified.
The mechanism considered here is a pressure wave
(acoustical signal) which travels ypstream through
the subsonic separated shear layer. Three cases
will be discussed which are physically dissimilar
but generically related to the same physical pheno-
menon, i.e., a large separated unstable shear layer
with an acoustical feedback mechanism. These cases
are open cavity resonance, spike buzz and inlet
buzz. All of these examples contain a fluid
amplifier (separated flow) and a feedback mechanism
(upstream acoustical propagation).

A. Frequency of Disturbance

The frequency of a self-excited oscillation can
now be predicted based upon the previous statements.
A forward traveling pressure wave disturbance pro-
pagates at speed, cy, until it reaches a reflection
surface at lemgth L. After reflection, an acoust-
ical rearward traveling wave returns at sonic speed,
ag, through the subsonic separated shear layer (Fig
9). The cycle is then repeated. The period of this
disturbance can be deduced ecasily from the figure.

! L L
) P, == +—
1 ct .o

Since multiple waves are possible, the frequency
(and higher harmonics) may be determined as follows:
|

| -
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This is the modified Rossiterll‘ equation

{for o« = 0) in which
3

k= T s ®" mode mmber
e (integer)

M=
o

o |oc

It may be informative at this point to compare
8 fluid dynamic oscillator with an electromic
oscillatorl®, 1In an electronic circuit an
amplifier with a feedback loop will oscillate under
cextain conditions. This instability can be
readily determined by examining the transfer
functions. If A in Figure 10 is the transfer fumc-
tion (a complex number) of the amplifier and B is
the transfer function of the feedback loop then
the overall gain is as follows:

A
Gain = 1T - AB
The existence of a frequency for which the return
ratio, AB, equals unity is a sufficient condition

for an instability and is hence the criterion for
a sustained oscillation.

2 1(a, L - wt)

Pe 1 fa, L
A= doe T lieTme

Pe
and .

- ~dlwt

Pe ia, L

B-T—_"———' =g 2 H W =g, a

? ei( uzL - wt) 2 o

At resonance, AB = ei(ul + GZ)L =] = eiz

(m = integer)

This relationship produces two results from
equating the real and imaginary parts of this
equation.

(1) Real Part:
(a1 + uz)L = 2mm or
fm ___nuﬁ_..i.
L(Ho +k )
which is identical to Rossiter's equation

(2) Imaginary Part:

b ©1
(e—f)l + (:—2)2 =0
T o

This indicates that the net damping is zexo during
one cycle.

We therefore, conclude that a fluid dynamic
oscillator may exist when amplification occurs
(cg > 0) 1in the flowfield with a feedback wechan—
ism. However, sustained oscillations will result
only for very specific phase relationships. We
will later see that this is consistent with both
the experimental and numerical results.

In susmary, any oscillator possesses three main
features, i.e., an amplifier, a feedback loop and
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tuned operation with positive feedback at the cor-
rect phase.

B. Resonance

A self-excited oscillation occurs (analogous to
a resonant state for forces oscillations) when one
of the Rossiter frequencies (fp) exists near the
natural frequency of the shear layer (f,). These
signals will be selectively amplified while all
other frequencies will decay. The amplified signals
will continue to grow until a limit cycle is
achieved.

Several points concerning resonance should be
made. First, since the fundamental Rossiter fre-
quency must be less than the natural frequency
range of the shear layer for resonance to occur, it
is therefore possible to design a system to elimin-
ate resonance (Fig 10).

For example:

im > fu design requirement
L1 ac
e 5 r
Lat, + k-l) 2n8

or since minimum m = ]

L, 27
§ & __ (1 +kM)
max °

By decreasing the characteristic length of the
shear layer, this "length resonance mode" may be
eliminated.

Another point of interest is that the pre-
dominate frequency mode can jump from one value of
the fundamental to another integer value as flow
parameters are varied. The scientific community
has studied edgetones for some time and observed a
shift in frequency with Reynolds numberl3 (Fig 11).
This fact can be explained readily by examination
of the natural frequency for this case.

L (fu)opt. at maximum c, q
s, . Jopt. °r
LM + ) 2n8

or

m .!———k&“‘ v (gﬁé)
v

opt 278

The frequency mode will therefore increase with
Reynolds number (provided the remaining quantities
in the relationship are not changed significantly).
Since only discrete values are possible the
dominant frequency must jump with Reynoids number,
as shown 1in Fig 11, rather than vary continuously.
Three cases of self-excited oscillations will now
be discussed, i.e., cavity, spiked body, and inlet.

Open Cavity
Transonic flow over an open cavity has been ﬁ
investigated experimentally by many investigators o
3@




[and found to produce severe pressure oscillations
under certain conditionsli,12,1 14,15 The flow
obviously has an inflection point as shown in the
velocity vector plot (Fig 12) from a numerical com-
putationlﬁ. A linear stability analysis predicts a
patural frequency of this shear flow of

I
a tc l
£, =BT = 200 H: |

|

with Rossiter feedback frequencies of

'ne
£ = = 115m Hz

|

a — i
L(H° +k ) i

i

Fig 13 shows the amplification factor for this
flow. Also shown in Fig 13 is the experimental
spectral analysis®’ confirming the existence of
Rossiter frequency modes and the fact that only
the unstable range of frequencies are amplified.
A numerical solution of the Reynolds averaged
Navier-Stokes equations for the open cavity
produced a self-excited oscillation which qualita-
tively reproduced the intensity of the pressure
disturbance. The spectral distribution for this
case, shown in Fig 15, was also found to be in
agreement with linear stability theory.

|

Spiked_Body Buzz E

Spike-tipped bodies at supersonic speeds are
noted for producing violent buzz under a restricted
range of spike lengths®’. Fig 16 shows the experi-
mental pressure intensity for different spike
lengths at a Mach of 3. Also shown in Fig 17 is
the predicted Rossiter frequencies (fp) for the
first three modes compared with the experimental
frequenciesl8. .

The agreement observed indicates the validity of
the wave analysis of Rossiter. However, as
observed in Fig 16, these frequencies only occur
between 20 and 45 wm spike lengths. Oscillations
are not encountered at other lengths. As noted pre-
viously, resonance will not occur (even though

separstion exists) when fg > f, or EilJLJELEQ— <1

2ns -

This appears to be the situation for this case.

Fig 18 displays velocity profiles for spike
lengths for which numerical calculations were per-
formed in Ref 19. For the spike length of 13mm,
the shock wave is detached and subsonic flow com~
pletely envelops the spike. The numerical results .

show that E% = 1.5, thereby creating a condition

for which ﬂl_"’Tl"n_k_& < 1 or fg > fy; hence the !

shoxt spikes are stable. Alternativ.ly the numer-

ical calculations show that L. 9 for the 38mm :
opikel?, which creates a condition where fn < fg |
and results in resonance. Numerical computations
have not been performed for spike lengths greater
then 45 mm, however, as the spike length is further
iocressed, § increases and M becomes supersonic '
csusing & dramatic decrease in apay (see Fig 4).
Separation will not occur at the spike tip but only
over a restricted portion of the spike (L. <1Ll). N

i

All of these changes tend to increase fgn/f,. When
fy, suddenly exceeds f, (as shown in Fig 10) reson-
ance will cease causing a discontinuous cut-off

of pressure intensity as observed in Fig 16.
Although the separated region is still unstable,
only random tunnel turbulence will be amplified,
and no commensurable frequency modes will appe?r.
{The wind tunnel data supports this conclusionl

;  The numerical results for the spike length of
'38mm are shown inFigs 19-22. These results confirm
the hypothesis that large regions of separated flow
exist-during resonance (Fig 19) that a limit cycle
18 achieved in which the shock wave oscillates
between the weak and strong shock solution, the wave
form of the numerical results duplicate the experi-
‘mental measurements, (Fig 20), the frequencies are
commensurable (Fig 21) and that pressure waves are
propagated upstream at acoustical speed (Fig 22) to
cloge the feedback loop.

Inlet Buzz

Experimental evidence of instabilities
encountered in sugersonic inlets has been available
for many years? In spite of these observa-
tions, no reliable prediction method of inlet buzz
exists and no completely satisfactory explanation
of the phenowmenon is available.

i

A supersonic inlet operating at subcritical flow
‘conditions 1s believed to possess the two features
necessary for buzz, i.e. a large region of separated
flow and a downstream interface to reflect acous-
tical signals. When an inlet with a supersonic
diffuser is throttled back to subcritical flow con-
ditions a second throat occurs at the throttle.

The normal shock is expelled from the diffuser caus-
ing separation on the centerbody. If the boundary
layer never reattaches on the center body a flow
field similar to the open cavity results. Pressure
waves are reflected from the second throat and
returned to the shear layer origin. This separated
layer is known to be unstable and is the principal
cause of the oscillation. Standing waves will occur
in the duct with the natural frequency of the shear
layer. During buzz of an inlet the downstream end
appears to behave as a closed end (even though

small flow rates still exist% and produces an anti~-
node in the pressure wavel If the upstream

end behaves as an open end, antisymme:ric modes
will occur and all harmonics will be odd. If the
‘upstream end behaves as a closed end, only symmetric
modes will occur and all harmonics will be even.

1wo very significant results can be obtained fr m
a standing wave analysis<®, Firat, the measured
frequencies should be commensurable in which har-
momics occur at exact integer values of the funda-
ntal frequency. Secondly, antisymmetric (m = odd)
‘or symmetric (m = even) mode shapes occur in the
‘inlet duct if a standing wave exists. This analysis
cannot predict which mode to expect but restricts
‘the solution to a limited selection of eigenvalues.
One can also anticipate frequency modes to jump
discretely, in ® quantum fashion, as flow conditions
are changed by different throttle settings. 1
|
To examine the validity of the standing wave '

analysis, the frequency was predicted for six experi-

mental cases of buzz. Table I lists these cases
with the last column showing a correlation of the
3
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measured frequency divided by the predicted funda-
mental frequency, i.e., m = 4Lf/a. These results
give a strong indication that buzz occurs primarily
in the antisymmetric mode (m = 1, odd). The error
in frequency for all cases 1s less than 20% which
is encouraging comsidering the simplicity of the
method. Buzz is believed to occur when one of the
frequency modes occurs near the natural frequency
of the shear layer. To confirm this hypothesis the
reduced frequency was estimated for the same cases
of buzz tabulated previously in Table 1. These
results, also presented in Table I, show buzz occurs
at a reduced frequency at the appropriate values of
natural frequency displayed in Fig 2 (0 < a < .2),
thereby reinforcing the hypothesis that massive
separation in the duct is the source of the
instability. This preliminary analysis is hoped

to be useful in conducting a Navier-Stokes computa-
tion of inlet buzz.

TABLE 1

IKLET FREQUENCY DATA

Data H L f  w=4Lf/a R a
fr Hz inch
Connors?? 1.87 8.0 29 1.03 4 .12
Trimpi?3 1.9 13.0 18  1.064 2 .04
Sterbentz?® 1.98 7.87 28 98 4 .12
3.17 120 82 8 .1
15.6 13 90 8 .11
Nagashima?® 2.0 2.2 110  1.07 .8 .09
Conclusions

Self-excited fluid flows have been analyzed.
Numerical solutions of the time dependent Navier-
Stokes equations have produced encouraging agree-
me