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CHAPTER 1

INTRODUCTION

1.1 Task History

The research effort reported here was performed jointly by the

School of Electrical Engineering of the Georgia Institute of Technology

and the Dynastat Corporation for the Defense Communications Agency. In

this effort, the Georgia Institute of Technology was the prime contractor

and the Dynastat Corporation was the subcontractor. The monitoring

officer at the Defense Communications Engineering Center was originally

Dr. William Bellfield. The monitoring officer was later changed to be Mr.

James Vest.

This task, the investigation of the correlation between objective

and subjective measures for speech quality, followed previous work by both

Georgia Tech [1.11 and the Dynastat Corp. [1.21 [1.31 in related areas.

The portion of this research performed at Georgia Tech involved the produc-

tion of distorted and coded speech, the measurement of objective quality

measures, and the correlation of the objective measures with the subjec-

tive measures. The portion of the work performed at the Dynastat Corp.

included subjective quality testing and the associated analysis.

1.2 Technical Background

Since it has been clear for some years that some form of end-to-end

speech digitization would be initiated by the Defense Communications

Systems, a number of speech digitization systems have been developed at

various laboratories around the country. The job of selecting from these

candidate systems the features to be included in the final system requires



that extensive evaluation and testing be performed. Likewise, when a

"final" system is fielded, periodic and initial field testing of all links

will be a significant requirement. This effort deals with a set of tech-

niques which can be used for more effective and efficient operational

speech quality testing. In general, these "objective fidelity measures"

are computed from an "input" or "unprocessed" speech data set, S, and an

"output" or "distorted" speech data set, SQ, as shown in Figure 1.2-1. The

output speech data set results when the input speech data set is passed

through the speech communication system under test. Objective measures

may be very simple, such as the traditional signal-to-noise ratio, or they

may be very complex. A complex measure might use such diverse measures as

a spectral distance or other parameteric distances between the input and

output speech data sets; semantic, syntactic, or phonemic information

extracted from the input speech data set; or the characteristics or the

talker's vocal tract or glottis. If an objective fidelity measure conforms

to the triangular inequality and the other conditions shown in Figure

1.2-1, then it is a metric. Although metrics have many features which are

desirable in a fidelity measure, an objective measure need not be metric to

be of interest.

If an objective fidelity measure existed which was both highly

correlated with the results of human preference tests and which was also

compactly computable, then its utility would be undeniable. Clearly, it

could be used instead of subjective quality measures for testing and opti-

mizing speech coding systems. Such tests could be expected to be less

expensive to administer, to give more consistent results, andq in general,

not to be subject to the human failings of administrator or subject. Such

an objective measure would also be very useful in the design of speech

2



OBJECTIVE FIDELITY MEASURES

SPEECH

INPUT SPEECH CODING OUTPUT SPEECH
DATA SET SYSTEM DATA SET

S a So

OBJECTIVE
FIDELI1TY
MEASUREISSF(S, SQ)

Fa = F(S, SO)

CONDITIONS FOR A MEASURE TO BE
A METRIC

1. F(S, So ) = F(S, S)

2. F(S. SO) = 0 if S =S

F(S, SQ) > 0 if S :So

3. F(S. SQ)! F(S, Sy) + F(Sy, SO)I
Figure 1.2-1. System for Computing Objective Quality Measures.

3



r1

coding systems, either by iterative optimization of the parameters of the

coding system by repeatedly applying the quality measure--a process which

is extremely expensive using subjective tests--or, if the procedure were

analytically tractable, by designing the speech coding system to expli-

citly maximize the quality of the system as defined by the objective

quality measure. Finally, note that the results of the objective measure

applied at different times and at different locations could be compared

directly. This is clearly not generally the case for the results of subjec-

tive quality tests.

The problem is that an objective fidelity measure which is both

highly correlated with subjective measures over all possible distortions,

and which is compactly computable, does not exist. Although at this time

the speech perception process is not well understood, it is well enough

understood to state that the human speech perceiver is an active perceiver,

responding to semantic, syntactic, and talker related information as well

as phonemic content, and that he uses his vast knowledge of the language

interactively in the speech perception process. The acoustic correlates

of the various hierarchically structured elements of the language in the

speech signal are simultaneously overlapping and redundant. This means

that certain very small distortions which are properly placed with respect

to the syntactic structure or the semantic content could cause complete

loss of intelligibility, while other more extensive distortions might not

even be perceivable. Hence, it can be argued that objective fidelity

measures which do not use semantic, syntactic, and other language related

information cannot correctly predict the quality of a speech coding

system.

4



However, an important point concerning modern speech coding systems

is that, in general, they do not produce distortions which are in any way

synchronous with the semantic or syntactic content of the utterance.

Hence, the distortions introduced by speech coding systems represent a

subset of all possible distortions. It is our hypothesis that it is

possible to design relatively compact objective measures which correlate

well with subjective results over this subset of distortions introduced by

speech coding systems. We recognize that these measures cannot be com-

pletely general since they do not reflect the complexities of the speech

perception processing.

1.3 An Approach to Designing and Testing Objective Quality Measures

Over the years, there have been numerous objective measures sug-

gested and used for the evaluation of speech coding systems. These

measures include signal-to-noise ratios, arithmetic and geometric spectral

distance measures, cepstral distance measures, various parametric distance

measures, such as pseudo area functions and log area functions from LPC

analysis and many more.

The task of comparing and contrasting the validity of such measures

is immense. To check the validity of a particular candidate objective

measure over a wide class of distortions, a researcher must create a data

base of distorted speech and a corresponding data base of subjective

results. This is a time-consuming and expensive process, and, as a result,

the validity of most commonly used objective measures remains a subject for

speculation.

In general, we were interested in designing-a method for comparing

the validity of objective quality measures in a cost effective way. In



short, we have designed a system for measuring the quality of objective

fidelity measure--i.e. a quality measure for quality measures.

The essential features of our method are illustrated in Figure

1.3-1. First, a test set of undistorted sentences is created. This set,

in general, consists of phonemically balanced sentences spoken by four or

more speakers. For analysis purposes, the sentences are divided into

"frames" of a length of 10-30 msec. This sentence/frame set is called

U(m,n), where m is the "condition" (sentence and speaker) and n is the

frame number. An ensemble of distorted and coded sentences is then pro-

duced by passing the undistorted test set through a large number of con-

trolled distortions and speech coding systems. This forms the distorted

data base, D(m,n,d) (where d is the distortion) on which the objective

measures will be tested.

Once the distorted data base exists, all these sentences are tested

using subjective speech quality tests. These results form a data base of

subjective results called S(d). A particular candidate objective measure

is tested using these three data bases as follows. First, the objective

quality measure is applied to all the sentences in the distorted data base.

The application of the objective measure generally involves both the

undistorted and distorted data bases. Then a statistical correlation

analysis is done between the results of the objective measure and the

subjective data base. The results of this correlation analysis are used as

a figure of merit for comparing the various objective measures.

Several points should be made about this procedure. First, note

that the subjective tests are only administered once regardless of how many

objective measures are to be studied. Hence, the most expensive portion of

this process, namely the application of the subjective tests, need only be

6
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*done once. Note also that the subjective data base may be expanded over a

period of time to improve its resolving power or to extend the class of

distortions involved. Similarly, subsets of the entire data base may be

used if appropriate to the hypothesis being tested.

Second, note that this "quality test for quality test" system may be

used to optimize the parameters of particular objective measures. This may

sometimes be accomplished explicitly using statistical optimization tech-

niques, or may be accomplished iteratively by reapplying the test repeat-

edly to parametrically different versions of the same objective measure.

Two figures of merit are used for a particular objective fidelity

measure. The first is an estimate of the correlation coefficient between

the objective fidelity measures and 0(d), the subjective quality

measures, S(d), given by

- [ (S(d)-S('d)(O(d)-O(-d))

d
Pu [[ (S d) _ ) 1 2 [ (0 d .-- 2 1/2 1.3-1

d d

This results in a uinimum variance linear estimate of the subjective

results from the objective results given by

Pa5a
S(d) -T-d) + -- (O(d)-O(d)) 1.3-2o 

Ia0

where 0° and a are the estimated standard deviation of the subjective and
9 0

objective masures, respectively. To say that this correlationj 8



coefficient has any absolute validity would be incorrect. Since we have

not randomly sampled a universe of coding distortions, our estimate of the

correlation coefficient is biased. In short, estimates of correlation

coefficients computed in this way are only meaningful when comparing

objective measures over the same data base, and such estimates should not

be compared when estimated from different data bases.

A more pleasing way to view this analysis is to view the estimate of

the subjective measure as a linear regression analysis or as simply a least

squares linear fit. From this, the standard deviation of the error

expected when the objective estimate is used in place of the subjective

estimate can be estimated by

;2 )21 ;] -2 )

^2 E[(S-E(SJ0)) = 0(] p ) 1.3-3Oes

This estimate, which incorporates variation in the observed subjective

qualities as well as the correlation coefficient, is a more pleasing figure

of merit.

1.4 Principal Goals and Procedures

The research work reported here had these principal objectives:

1. To design -1000 simple objective measures and
to test their utility using correlation
analysis.

2. To design both time domain and frequency domain

frequency variant objective measures and to
test their utility using correlation analysis.

3. To design more complex composite objective

measures and to test their utility using
correlation analysis.

9 <



The accomplishment of these goals involved numerous additional

tasks which often led to interesting results in their own right. Some of

these tasks included:

1. The design and implementation of a large data
base of distorted and coded speech.

2. The performance of the subjective quality tests
on the distorted data base.

3. The analysis of the subjective results directly
from the distorted data base.

4. The implementation of the objective measures
across the distorted and coded speech in a cost
effective way.

5. The implementation of the "bulk" correlation
analysis procedures necessary to handle the
multitude of data produced by this effort.

In all, a total of approximately 1000 variations of simple and

frequency variant measures were implemented as part of this study. These

measures included simple spectral distance measures, frequency variant

spectral distance measures, parametric distance measures, noise measure-

ments, short time noise measurements, and frequency variant noise measure-

ments. Table 1.4-1 gives a summary of the objective measures studied.

The composite objective measures considered in this study were

formed by multiregression optimization on sets of the simple measures.

These "complex" measures often performed much better than the simple

measures, and their performance represents an estimate of the limit of the

ability of objective measures to predict the results of subjective tests.

The subjective quality test used in this study was the Diagnostic

Acceptability Measure (DAM) developed at the Dynastat Corporation. This

test has the special feature that it provides parametric subjective

results as well as isometric subjective results. This means that the

objective measures may be tested as to their ability to predict these

10



OBJECTIVE MEASURES

SIMPLE MEASURES

SNR 6
Short Time SNR 6
Spectral Distance 192
Parametric

Energy Ratio (Itakura) 64
PARCOR Coefficients 24
Area Ratios 24
Feedback 24

240

FREQUENCY VARIANT

Banded SNR 6
Short Time Banded SNR 40

Spectral Distance 192

238

COMPOSITE MEASURES 22

TOTAL 500

+Non-linear Regression 1,000

xParametric Subjective Qualities 40,000

Table 1.4-1. SUMMARY OF THE OBJECTIVE QUALITY MEASURES STUDIED

~11



parametric results as well as the isometric results. In particular, many

of the objective measures studied, including all of the frequency variant

measures and the composite measures, may be "tuned" in order to predict

specific parametric results. Such specific predictions, of course, are of

great utility to the systems designer.

The distorted and coded speech data base consisted of 264 "distor-

tions" which were applied to twelve sentences from each of four talkers.

The total amount of speech data in these tests totaled about eighteen

hours. The distortions included nine coding distortions, including both

vocoder and waveform coder techniques, and fourteen "controlled" distor-

tions, including filtering, additive noise, clipping, center clipping,

interruption, echo, and frequency variant distortions. The coded distor-

tions included both error free and fixed error rate channel simulations.

The implementation of the distorted data base, the measurement of

the objective meaures, and the correlation analysis were performed on the

Minicomputer Based Digital Signal Processing Laboratory [1.41 at the

Georgia Institute of Technology. The subjective data base and the asso-

ciated statistical analysis were performed at the Dynastat Corporation.

1.5 Summary of Major Results

One of the major characteristics of this study was that the large

number of objective measures which were studied coupled with the multiple

analysis methods and both the isometric and parametric subjective measures

resulted in a very large number of individual correlation results

(-420,000). From this large base of results, a number of specific

questions were asked and answered, and a number of important results were

obtained. This section will just list summaries of some of the major

results.

12



..... . --- --. - ..

1. A very good objective quality measure for waveform
coders and noise distortions was developed based on
frequency variant (banded) short time signal-to-
noise measurements. This measure resulted in a
correlation coefficient of .93 across all relevant

distortions and a & of 3.2 quality points on a 100
point scale. 

e

2. The best composite measure involved some preclassi-
fication of the candidate system (vocoder vs. wave-
form coder), and resulted in an estimate correlation

coefficient of .90 and a a 3.5.
e

3. The best composite measure study which did not
require preclassification had an estimated correla-

tion coefficient of .86 and a a = 4.2.
e

4. Neither of the two composite measures above used
higher order regression models. If such models are
used, these results are improved, but there are some

questions as to the accuracy of such predictions.

5. The optimum value for P in the L norm for spectral
distance measures was found to %e 8. This is a
considerable departure from current practice.

6. Energy weighting of the time frame was found to have
little value for any of the measures.

7. The best simple measure was found to be a log area
ratio measure, which had a p = .64 and ae = 6.8.
Surprisingly, this measure was better than any of
the simple spectral distance measures.

8. The only two parametric measures which did well were
the log area ratio measure and the energy ratio
measure.

9. The frequency variant spectral distance measures
performed with about a .1 point improvement in
correlation over the simple measures. This was less
than hoped.

10. The reliability of virtually all of the better
objective measures was quite high for the number of
frames used (-.99). The reliability of the subjec-
tive measures was -.9.

11. The use of higher order regression analysis (3rd

order and 6th order) often gave considerable
improvement in the predicted performance of the
objective measures. These results, however, must be
approached with caution, since some tracking of the
noise is bound to be occurring.

13



1.6 Discussion

There are a great many aspects to this study. On the one hand, it

gives, often for the first time, quantitative comparisons between many of

the commonly used objective quality measures. Similarly, it gives quanti-

tative predictions for the performance of such measures when used as pre-

dictors of subjective acceptability, at least as it is defined by the DAM

test. In addition, it allows the comparison of parametrically different

objective measures of the same type, and the "tuning" of individual objec-

tive measures to predict parametric subjective results. All of these

results are of importance to the system's designer and the speech

researcher, but, in general, do not bare directly on the overall problem of

system quality measure. This is because the performance of any one measure

by itself (with the noteworthy exception of the banded short time signal-

to-noise ratio for waveform coders) is not good enough to effectively

predict system acceptability.

S

On the other hand, the results of this study tell us a good deal

about ehe.performance of the subjective measures themselves, and offer new

data from which 'to improve the subjective measures. The subjective

results, in turn, can be used to judge the design of the distorted data

base. These developments, once again, are quite important, but do not

appreciably improve the overall quality testing environment.

The real potential for improvement comes from the use of the compos-

ite objective measures. As previously stated, this study gives fairly safe

predictions of p -. 86 and G = 4.2 for such measures. There are severale

issues which need to be discussed here, however. First, the approach used

in this study, which was necessitated by the mass of data involved, was

essentially a "bulk" approach in which only standard multiregression

14



analysis and coarse, non-data-dependent preclassification was used. If a

final "best" measure were to be designed, the results of this study should

be used as a base to study the detailed behavior of the composite measures

as a function of the particular distortions. Only after this is done can

pragmatic variations of the composite measures be designed which allow for

the special interaction of the measures with the data. Second, it should

be noted that this "best" result was obtained by setting a number of

parameters in the composite objective measure to optimize this measures

across the distorted data base. Thus, this should be considered a limit on

expected performance.

Another point concerns the nonlinear regression analysis. The

number of degrees of freedom in this analysis was (usually) 1056. Hence,

using 3rd order or 6th order nonlinear regression analysis was a long way

from having the order of the analysis equal to the number of degrees of

freedom. it is nTteworthy that often remarkable improvements were

obtained using nonlin ar regression. Some of this effect must be noise,

but clearly, some of 't must be real improvement. Exactly how much

improvement can be really obtained by nonlinear regression is a subject for

further study.

A major point which hould be made concerns the reliability of the

objective measures. For th number of frames used in this study, the

measured reliability was of the order of .98 or .99 for most "good"

measures. This means that wha ever an objective measure really measures

for a distortion, it measures th same thing every time. This means that

these measures could be utilized with great effectiveness for detecting

malfunctions or nonstandard operat'dn of systems in the field.

15



Some retrospective comment on the contents of the distorted data

base is also appropriate. The data base was designed to include numerous

frequency variant controlled distortions in order to facilitate the design

of frequency variant objective measures. This worked well for time domain

measures, but not nearly so well for frequency domain measures. Had this

result been known at the outset, relatively more coding distortions would

have been included.

The utility of the measures designed in this study are a function of

the task for which they are to be used. This study seeks only to quantify

the predicted effectiveness of objective quality measures. Thus, to

determine their specific utility, one must also decide what constitutes an

acceptable prediction of user acceptance.

A final point should be made here about further possible work in

this area. The same techniques developed here might also be used to

predict other features from subjective testing. The two most obvious

classes of such tests are the parametric intelligibility tests, such as

DRT, or a talker identification features test.

16
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CHAPTER 2

SUBJECTIVE CRITERIA OF SPEECH ACCEPTABILITY

2.1 Background

It is generally acknowledged that user acceptance of voice communi-

cations equipment depends on factors other than speech intelligibility.

Intelligibility is unquestionably a necessary condition, but clearly not a

sufficient condition of acceptability. Until recently, however, no

generally satisfactory method of evaluating the overall acceptability of

"quality" of processed or transmitted speech has been available.

Under contract with the Defense Communications Agency, Dynastat

recently undertook to remedy the situation that existed in the area of

acceptability evaluation. The results of this effort included the Paired

Acceptability Rating Method (PARM) and the Quality Acceptance Rating Test

(QUART). Both of these methods provide improved reliability of measure-

ment on an absolute scale of acceptability, though each has limitations

with respect to range of application. Both served as valuable research

tools to clarify a number of crucial methodological issues and to indicate

possible means of further refining the technology of speech evalua-

tion[2.1]. Drawing on insights gained from research with these methods,

Dynastat continued, under its own auspices, to further develop the tech-

nology of acceptability evaluation. These efforts have culminated with

the development of the Diagnostic Acceptability Measure.

2.2 Design of the Diagnostic Acceptability Measure (DAM)

In comon with several previous methods of evaluating accepta-

bility, the DAM requires the listener to characterize transmitted speech

by mans of absolute, rather than relative, rating or judgments. However,

18



two important features distinguish it from previous methods of predicting

speech acceptability. First is the fact that it combines an indirect or

parametric approach with the more conventional direct or isometric

approach.

In the case of the isometric approach, the listener is required to

provide a simple, direct, subjective assessment of the acceptability of a

sample speech transmission, for example, simply to rate a sample transmis-

sion on a 100-point scale of acceptability. Although the isometric

approach has considerable appeal from the standpoint of face validity, it

has several disadvantages[2.2]. For one thing, listener ratings are

subject to enormous interindividual and intraindividual variation in

subjective origin and scale, whether as a result of adaption level dif-

ferences or simply of differences in understanding of the task. Research

with PARM has shown that much of the seemingly random component of varia-

tion in rating scale data actually stems from stable listener differences

in rating scale behavior. The practical implication of this finding is

that differences between individual listeners or crews can seriously

complicate the task. For another thing, listeners' ratings of accepta-

bility tend strongly to be colored by differences in aesthetic preference

or taste. The first of these disadvantages can be overcome to some extent

through careful instructional and training procedures and by the discrete

use of "anchors" and "probes." The most direct means of overcoming the

second advantage is to use relatively large, representative listening

crews. However, once the nature or dimensions of the interindividual

differences in taste are known, stratified sampling may permit the use of

smaller crews.
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In the case of the parametric approach, the listener is required to

evaluate the sample transmission with respect to various perceived char-

acteristics or qualities (e.g., hissiness), ideally without regard for his

personal affective reactions to these qualitities. Hence, the parametric

approach serves to reduce the sampling error associated with individual

differences in "tastes." An individual who does not personally place a

high valuation on a particular speech quality may nevertheless provide

information of use in predicting the typical individual's acceptance of

speech characterized by a given degree of that quality.

A second distinguishing feature of DAM is that it solicits separate

reactions from the listener with regard to what he perceives to be the

speech signal itself, what he perceives to be the background, and with

regard to his evaluation of the overall effect. This serves at once to

reduce the listener's uncertainty as to the nature of his task and to

provide the experimenter with more precise information as to the defic-

iencies of the system being tested. The results of many studies of human

information processing indicate that, in concentrating successively on

different aspects of a complex stimulus configuration, individuals are

able to assimilate a greater amount of information from the stimulus--and

thus respond more consistently--than otherwise.

The first step in the development of the DAN involved a series of

exploratory studies designed to identify the major perceptual correlates

of overall acceptability--the perceived qualities which govern the

listener's acceptance reaction--and to develop the most appropriate

descriptors for these correlates. This involved the experimental evalua-

tion of a large pool of potential descriptors (e.g., hissiness) and the

selection of those candidates which collectively provided the most

20



comprehensive and reliable discrination among various forms and degrees of

speech impoverishment.

Factor analytic techniques were applied to rating data obtained

with the most promising descriptors to determine the most appropriate

combination of descriptors and, ultimately, to determine the nature and

number of elementary perceptual qualities collectively tapped by these

descriptors. Combinations of redundant descriptors were then combined to

define a relatively limited number of highly discriminative rating scales.

Factor analysis was used again on several occasions to further clarify the

nature and number of underlying perceptual qualities and to select the

combination of multidescriptor rating scales that would provide the purest

and most precise measurement of each quality.

The results of several studies showed that virtually all of the

perceived differences among a diversity of transmission systems and condi-

tions could be accounted for in terms of six underlying perceptual

qualities of the signal and four perceptual qualities of the background.

These ten perceptual qualities were in turn found sufficient for predict-

* ing virtually all of the variation in listener ratings of the intelligi-

bility, pleasantness, and overall acceptability of transmitted speech. It

was further found that acceptability could be predicted with a high degree

of precision from ratings of the two higher order qualities, perceived

intelligibility and pleasantness.

The rating form shown in Figure 2.2 was developed on the basis of

results of the above investigations. All items on the form involve 100-

1Based in part on the results of the present investigation, this form will
undergo several modifications for purposes of future research and services
with the DAM.
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point rating scales, though it should be noted that the polarities of the

items pertaining to the perceptual qualities of the signal and background

are the reverse of those used to evaluate overall effect. One reason for

this is that most, if not all of these generally undesirable qualities, are

assumed to have "true psychological zeroes." This generally is not

warranted for such complex qualities as perceived pleasantness and intel-

ligibility and overall acceptability.

Some amount of redundancy in the rating form should be evident even

on casual examination. This is not an undesirable feature at this stage in

the development of our knowledge of the perceptual consequences of digital

voice coding. Also evident, perhaps, are the results of some attempt to

provide for the perceptual consequences of yet-to-be encountered forms of

speech degradation or processing. It is a reasonable expectation that

features of the rating form which are redundant or extraneous at this time

may find unique applicability with further developments in speech coding

technology.

It follows from the above description of the rating form that more

refined scoring algorithms can be developed as the need arises. For

example, two of the background-rating scales clearly pertain to noise,

though one would pertain most directly to high frequency noise while the

other would appear to denote perceptual qualities associated with low

frequency noise. For the present, these scales are combined to yield a

single score for perceived background noise.

The ten perceptual qualities treated by the DAM are shown in Table

2.2-1. Each of these scoring dimensions or scales is identified by a

mnemonically useful code, e.g., SL denotes that signal quality which is

most conspicuously associated with "lowpassed" speech. (It should be
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Table 2.2-1. STRUCTURE OF THE DAM*

Signal Quality Measures

Perceptual Rating Representative
Quality Scales Used Descriptors Exemplars

SF 1,7 Fluttering Amplitude-
Bubbling Modulated Speech

SH 3,5 Distant Highpassed
Thin Speech

SD 4,14 Rasping Peak Clipped
Crackling Speech, Quantized

Speech

SL 2 Muffled Lowpassed
Smothered Speech

SI 8,10 Irregular Interrupted
Interrupted Speech

SN 9 Nasal Bandpassed Speech
Whining Vocoded Speech

Background Quality Measures

Perceptual Rating Representative
Quality Scales Used Descriptors Exemplars

BN 11,13 Hissing Guassian Noise
Rushing

BB 15 Buzzing 60-120 Hz Hum
Humming

BF 12,17 Chirping Errors in narrow
Bubbling band systems

BR 16 Rumbling Low frequency
Thumping noise

Total Quality Measures

Rating Representative
Quality Scales Used Descriptors Exemplars

Intelligibility 18 Intelligible Undegraded Speech

Pleasantness 19 Pleasant Undegraded Speech

Acceptability 20 Acceptable Undegraded Speech
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stressed, however, that lowpassing of speech has perceptual consequences

other than those reflected on the SL scale, and, moreover, that SL scores

may be affected by other conditions than high frequency attenuation.)

For greater convenience in interpretation of score patterns, the

polarities of the ten derived scales are reversed from those of the origi-

nal seventeen rating scales. High scores on the derived scales are thus

associated with freedom from the various perceptual qualities; and are

thus associated with acceptability, as is the case with ratings of intel-

ligibility, pleasantness and acceptability, itself.

The contribution of each perceptual quality to the listener's

acceptance reaction has been closely approximated through experimentation,

so that each diagnostic score represents the estimated level of accepta-

bility a system would be accorded if it were deficient with respect only to

the single perceptual quality involved. Thus, the pattern of diagnostic

scores provides estimates of the relative contributions of the ten per-

ceptual qualities to the acceptance of the system, and permits the comuni-

cations engineer to identify the characteristics of a system or device

which are most detrimental to its acceptance, regardless of difference in

the values listeners place on the various qualities.

The application of a multiple nonlinear regression equation (based

on an analysis of DAM data for more than 200 system-conditions) to the ten

diagnostic scores yields one gross parametric estimate of the accepta-

bility of the system or condition being evaluated. Appropriately trans-

formed ratings of intelligibility and pleasantness provide two additional

parametric estimates. (These transformations take into account the fact

that acceptability is a slightly positively accelerated function of judged

intelligibility while being a negatively increasing function of judged
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pleasantness.) The three parametric estimates are then averaged with raw

or isometric ratings of acceptability to provide the one best, composite

estimate of acceptability.

To permit comparisons with the results of previous evaluations

obtained with PARM, composite acceptability estimates are transformed to

their PARM equivalents on the basis of the observed regression of PARM

scores on DAM composite scores in a sample of more than 200 system condi-

tions. A relatively crude estimate of intelligibility is obtained from

intelligibility ratings based on the regression of DRT scores on these

ratings in a sample of approximately 100 system conditions (actual speech

coding systems.)

2.3 Materials and Procedures

2.3.1 Speech Materials

The test speech material used with the DAM consisted of twelve

phonemically controlled six-syllable sentences [2.1] which are uttered by

speakers at a rate of one sentence per four seconds. Different sentences

are used by different speakers, but the same twelve sentences are always

spoken by each speaker.

2.3.2 Evaluation Procedures

From six to twenty-four experimental system-conditions may be

evaluated in the course of one testing session, depending on the number of

speakers involved. Ideally, listeners evaluate all system-conditions in

sub-sessions involving one speaker at a time. It is particularly desir-

able, however, that the time-ordering of the conditions varies from one

speaker to the next in a counter-balanced manner. At the beginning of each

sub-session, listeners evaluate two "anchors" and four "probes." The
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purpose of the anchors is to provide the listeners with a frame of

reference in which to make their ratings of experimental system condi-

tions. Data from the four probes, (an LPC, a CVSD, a channel vocoder, and

Parkhill) are used to adjust all rating data for any circumstantial factors

which may have operated to increase or decrease the average of all system

ratings for a given sub-session. Where average ratings of the four probes

on any scale deviate from historical norms, all data for that scale are

adjusted in the opposite direction. But, due to the fact that deviations

in averaged probe ratings do not provide perfectly reliable measures of

changes in the crews subjective origin or adaptation level, ratings of

system conditions and the probes themselves are adjusted by an amount equal

to only .5 of the probe deviation from historical norms.

2.3.3 Listener selection and calibration

Listeners used for system evaluations with the DAM undergo rigorous

selection and training procedures. Initial selection is achieved with the

use of the DAM itself. Candidates make ratings of a diversity of system

conditions. The correlations between the candidated ratings and normative

ratings provide the basis of selection. Following learning sessions with a

diversity of system-conditions, listener trainees undergo a calibration

session in which they rate a highly diverse sample of more than 200 system-

conditions with three speakers for each condition.

The regressions of individual listener ratings on normative rating

values provide the basis for adjusting the individual's data to compensate

for differences between his subjective origins and scales and those of the

historical normative listener. Coefficients of correlation obtained in

the course of this analysis determine the relative weight accorded the

individual listener's data in subsequent tests and experiments. Listeners

27
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are periodically recalibrated to adjust for changes in their response

characteristics that may occur with time and experience.

2.3.4 Analysis of DAM data

The first step in the analysis of DAM data involves the inversion of

signal and background quality rating data for each listener.

ij(u) =90-R.. 2.3.4-1

where R! is an inverted rating datum for the jth condition on the ith
Ii(u)

rating scale, 90 is the historically-normative inverted rating of the high

anchor on the ith rating scale and Rij is a raw rating of the jth condition

on the ith scale. All values are further transformed such that:

' = b. R.. + C. 2.3.4-2

ij(u) i ij i.
where bi and C. are selected such that Rij(u ) closely approximates the

acceptability rating condition j would receive it its sole deficiency were

in terms of the system characteristic tapped by scale i. Values for Ri for

various scales are then used singly or averaged in various combinations to

yield unadjusted (for listener idiosyncracies) perceptual quality values,

(S. for each listener condition).IL

Values of Sij(u ) for each listener, k, are transformed as follows:

S- -b- S. 2.C.4-3
ijk i bk ijk + Cik 234-3

where bik is a scale factor which relates listener k to the normative

listener for perceptual quality scale, i, and Cik is the difference in
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subjective origin between listener k and the normative listener. A

weighted average:

1-I

k = rik
TI 2.3.4-4I r ik

kffi1

where rik is the correlation between listener k's rati on a scale i of a

standard set of conditions and the historically normat ye ratings of the

same set of conditions. The effect of this process is to give greatest

weight to those listeners whose response characteris3tic, correlate most

highly with those of the historically normative listener.

A final, minor adjustment of all averaged adjusted perceptual

quality values is made in an effort to control transient circumstantial

influences to which the crew as a whole may be subject during a given

experimental session. This is accomplished by means of the formula:

Sij(p) = Sii - .5 (Pi -Pi(h) )  2.3.4-5

where (p) is the "probe-adjusted" crew average rating of condition j on

perceptual quality, i, P. is the presently obtained average rating of the

four probes and P.M) is the historical average rating of the same crew's

IThe bar over the subscript i is used here to indicate that perceptual
quality scale values are in some instances obtained by averaging two trans-
formed rating scale values. Henceforth, i will be used without the bar to
denote the perceptual qualitites, themselves, rather than the rating
scales from which estimates of them are obtained.
2The normal symbological convention in statistics is that the subscripts

to r. denote the two correlated variables. This convention is not
observed in this instance alone.
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ratings of the four probes, and .5 is the estimated coefficient of relia-

bility (session to session) of the probe average. Fully adjusted percep-

tual quality averages serve, as such, for purposes of detailed system

diagnosis, but they also provide the basis for estimates of three higher-

order criteria of system performance: total signal quality (TSQ), total

background quality (TBQ) and a parametric estimate of overall system

acceptability (PA). These measures are derived by means of the following

equations:

TSQ -C b S1 + c Ji ) -c ]

2.3.4-6

1!10

(Corresponding constants in the two equations are not identical, but C. isI

in each case designed to transform the measure in question into its accept-

ability equivalent e.g., the acceptability level the system would be

accorded if itt deficiencies were confined to perceived signal qualities.)

10

PA biS + C (TSQ x TBQ) + C 2.3.4-7
i=1 2

where the regression coefficients regression constants have been estimated

on the basis of data for more than 200 system conditions. Even with a

sample of this size, however, it is to be expected that minor adjustments

of the b.'s and constants, and of the form of these equations will be made

as more DAM data are accumulated.

Two additional parametric estimates of acceptability are derived

from isometric ratings of intelligibility and pleasantness.
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PI = C I + C212 + C 2.3.4-81 21 C3

1 2 23 .-
PP = CP +C 2 P 2 + C3 2. -

where I and P are averaged ratings of intelligibility and pleasantness

which have been adjusted for listener idiosyncracies and circumstantial

effects in the same manner as the perceptual quality values.

Direct, isometric, ratings of acceptability provide the last of the

four gross estimates of system acceptability. Following adjustments for

listener idiosyncracies, the isometric estimate of system acceptability is

averaged with PA, PI, and PP to obtain the best composite estimate, CA, of

overall acceptability. Due to slight differences in the reliabilities of

these four estimates--PA has a slightly higher reliability (.976) than the

other three measures--a weighted averaged is used for this purpose.
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CHAPTER 3

OBJECTIVE MEASURES

3.1 Introduction

Three of the goals of this study as discussed in Chapter 1 were: (1)

to identify a set of promising objective measures for speech quality; (2)

to test these measures in order to quantity their effectiveness as speech

fidelity measures; and (3) to design new measures which are better able to

predict the results of subjective speech quality measures. The purpose of

this chapter is to describe in detail the "basic" objective measures con-

sidered in this study.

In the past several years, there has been considerable interest in

defining and using objective measures for speech quality 13.1]. As was

discussed in Chapter 1, the two main uses of objective quality measures are

the prediction of user acceptance of candidate coding systems and the

f"optimization" of coding systems using the objective quality measures as

fidelity criteria. The first use leads to reduction in cost of subjective

quality testing, while the second leads to higher quality speech comnuni-

cations systems.

The objective measures included in this study were mainly intended

for the testing of the three main classes of digital coding systems:

waveform coders, in which the coding system tries to duplicate the input

signal at the output; vocoders, in which the system does a deconvolution of

the filtering effect of the upper vocal tract from the excitation function;

and transform coding, where a two dimensional time-frequency represen-

tation of the speech waveform is coded instead of the waveform itself.
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This bias toward digital systems is mainly motivated by current trends in

technology. This does not mean that the results here are not applicable to

analog systems, but such systems do pose somewhat greater problems in

synchronization and phase control.

The objective measures studied here can be divided roughly into six

classes: simple spectral distance; simple noise; parametric; frequency

variant spectral distance; frequency variant noise; and composite. Simple

spectral distance measures includes all those measures in which the dis-

tortion is computed entirely in the frequency domain and in which the

spectral weighting of the measure is either unity or derived from the

original speech signal. Simple noise measures include all those measures

in which the main component is the "noise" between the input speech signal

and the output coded signal computed entirely in the time domain. Para-

metric measures include all those measures in which the measure is derived

from some secondary parameter set which has been derived from the speech

signals under test. In frequency variant spectral distance measures, the

measures are performed in the frequency domain, but are performed in bands

rather than across the entire frequency range. In frequency variant noise

measures the noise is measured in predetermined frequency bands by approp-

riate pre-filtering. Composite measures are new, hopefully improved,

measures derived by combining measures from the other five classes.

The two classes of "simple" measures and the parametric measures

are included for three principal reasons. First, they are to quantity the

effectiveness of many of the measures currently in common use for speech

quality prediction. Second, they are to test the effect of parametrically

different forms of the various measures. Finally, they are to test the

utility of such measures against more complex measures.
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The two frequency variant classes of measures are included for two

principal reasons. First, it has been known for some time [3.4] that

hearing and speech perception are a frequency variant operation. This

phenomenon has been studied physically, but the measurement of nrecise

physical parameters is very difficult. The frequency variant measures

form a domain in which a secondary measurement of these effects can be made

using correlation analysis [3.3]. Second, it is well known that many of

the parametric subjective measures from the DAM (see Chapter 2) are fre-

quency related. The frequency variant objective measures form a domain in

which the objective measures may be "tuned" to predict such parametric

subjective quality results.

The design of the composite measures is one of the principal goals

of this study. Composite measures are specially intended-to be used in

future objective-subjective testing and as diagnostic tools for coding

systems.

3.2 Basic Concepts and Notations

Objective measures are made between an undistorted speech data set,

*, and a distorted speech data set, d. In this study, the undistorted

speech data set is made up of a four speaker set, s. Each basic speech set

consists of twelve sentences from each of the four speakers (see Chapter 4

for more details).

In computing objective measures, the estimate is generally formed

by averaging the results from a number of "frames" of the undistorted and

distorted speech. In order for the measures to be unbiased, precise frame

synchronization between the distorted and undistorted speech signal must

be maintained. Since all of the distortions in this study were digitally

produced, synchronization was not a great problem during this study (see
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Chapter 1 and Chapter 4). However for the testing of non-simulated coding

systems, the synchronization problem would have to be carefully con-

sidered.

The objective measures in this study are computed from a set of

input undistorted speech frames, X(n,s,*), where n is the frame index, s is

the speaker index and 0 means no distortion, and a distorted speech set,

X(n,s,d), where d is the distortion. Here, the distortion may mean coding

distortion or a controlled distortion (Chapter 4). In general, each

distortion measure is characterized by a specific function, F at the frame

level; and, in general, all the objective measures, called 0(d), are

computed from

4 N

1 F' W(n,s) F[X(n,s,O),X(n,s,d)1O(d) Iw 3.2-1

4 N
I W(n,s)

s1l nul

where N is the number of frames in the analysis, and W(n,s) is a weighting

function for the nh frame and the s- speaker. Note that W(n,s) may also

be a function of X(n,s,O), X(n,s,d), or both. In this environment, there-

fore, describing the objective measures reduces to describing the func-

tions W(n,s) and F[X(n,s,0),X(n,s,d)] used for each measure.

3.3 The Simple Measures

The simple measures refer to the set of measures which produce an

isometric quality measure from a single compact computational algorithm.

These measures include such traditional measures as SNR, spectral

distance, etc. This section describes measures of this type used in this

study.
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3.3.1 The Spectral Distance Measures

All spectral distance measures are based on a function V(n,s,d,O),
th t

the "spectrum" for the n frame speaker s, the d-- distortion, and the

frequency variable, e. The first question to be answered is how to derive

this spectrum from the input speech sample X(n,s,d). Let x(m,s,d) be the

sampled (at 8 kHz) digital representation of the distorted signal for the

th th
s- speaker and the d- distortion. Then the "framed" speech time sample

for the frame, xn(m,s,d), is given by

x (m,s,d) w x(m,s,d) W(m-nI) 3.3.1-1

where W(m) is a finite length window function and I is the frame interval

in samples. The Discrete Fourier Spectrum for this signal is given by

V(n,s,d,e) = n 9n(m,s,d)e-J 3.3.1-2

where the limits on the sum are really finite because of the finite length

of Xn(m,s,d). The short time stationarity of speech (3.41 suggests that a

good window length is 10-30 msec. Although the DFT is a very natural

function to consider, there are several arguments against its use. First,

for the window lengths above x n(m,s,d) would normally include several

pitch periods. This would cause V(n,s,d,e) to be a line spectrum, as shown

in Figure 3.3.1-1. Because small variations in pitch, which have little

impact on quality, would cause great differences between such spectra,

then the DFT is not a good candidate for a spectral distance measure. What

is really needed is the spectral envelope of the DFT. This can be approxi-

mated in several ways. First, it can be approximated by always having only
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one pitch period in the analysis window of the DFT. This method, however,

would need the use of a pitch detector plus additional synchronization

logic which makes this approach unattractive. Second, the spectral

envelope can be estimated using the parametric LPC analysis technique

[3.51,[3.6],[3.71. The advantage of this technique is that it is computa-

tionally simple and results in a very compact representation of the

spectral envelope. However, like all parametric approaches, it is subject

to modeling errors. Finally, the spectral envelope could be extracted

using cepstral deconvolution techniques (3.81,[3.9] . However, previous

research has shown [3.1],[3.10] that this measure is very highly corre-

lated with the corresponding LPC technique and cepstral analysis is more

computationally intense.

3.3.1.1 The LPC Parametric Analysis Technique

In this study, the basis for the spectral envelope approximations

was always the LPC parametric technique. In this technique, a set of

autocorrelation functions, given by

Rn (k) = n Xn(m,s,d) Xn(m+k,s,d) 3.3.1.1-1

th

for the n-- frame and 0 k ! 10, are computed, and then a set of 10

"feedback coefficients," a(k), are computed from Durbin's recursion, given

by

a (n) R R(O); K(O) - -R(I)/R(0); a 1(l) - -K(l)

a (n) = (1 - K2(n-1)) (n-1)

n-1 
3.3.1.1-2

K(n) y - (an-l(i)R(n-i)-R(n))/a(n)
i-l

an(n) -K(n); an(i) -an-l(i) + K(n)an-l (n-i)
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where the autocorrrelation subscripts have been dropped. In this

recursion, the K(n) parameters are the well-known PARCOR (partial

correlation coefficients) first used by Itakura [3.11]. From the feedback

coefficients, the energy spectrum can be computed by

V(n,s,d,e) = G 3.3.1.1-3

1 - a(k)e'jek

k=1

where G is the gain term, given by

10

G = [R(0) - a(k)R(k)] 1 2 . 3.3.1.1-4
k=l

The LPC approach has several specific advantages when used for

spectral analysis. First, the entire analysis for a frame results in only

II numbers, a(l) - a(1O), and G. This means that a large number of

spectral analysis results may be stored relatively compactly. Second, the

gain analysis is separate from the spectral analysis. Since small changes

in gain do not have great impact on perception, it is desirable to remove

gain effects from the spectral distance measure. One reasonable way in

which this may be done from the LPC analysis is force the gain term in

Equation 3.3.1.1-2 to be I, giving

V(nsde) 10 e 3.3.1.1-5

k- a(k)e- j n
k-l

This normalizes the total area under the V(n,s,d,e) to be equal to 1.

Finally, the LPC method results in a relatively compact computation of

V(n,s,d,0) from a(l) - a(10). V(n,s,d,e) may be thought of as the
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magnitude of the discrete Fourier transform (DFT) of the impulse response

of an infinite impulse response filter MUR) whose Z transform is given by

V1 3.3.1.1-6

I- [ a(k)Zk

k= 1

The inverse of this filter is an FIR (finite impulse response) filter whose

Z transform, I(Z), is given by

IM =f -VTZ = 1 - I a(k)Z 3.3.1.1-7

k=l

The spectrum for I(n,s,d,6), the inverse of V(n,s,d,O), can hence be

computed from

10 .
I(n,s,d,O) f 1 - I a(k)e-Jk 3.3.1.1-8

ik= 1

Since this sum has only 11 terms, it can be computed very compactly. Even

greater gains may be obtained if the FFT is used. Once I(n,s,d,e) is

known, V(n,s,d,0) may be simply obtained from

V(n,s,d,e) 1/I(n,s,d,0). 3.3.1.1-9

3.3.1.2 The Computation of Objective Measures

In this study, six variations of the distance function for spectral

distance analysis, i.e. the function F in Equation 3.2-1, were studied.

The first, called the "linear unweighted" spectral distance, is given by
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F L 1 [V(n,s,4,e)- V(n,s,d,O ))P 3.3.1.2-1

t=0

i.e. the Lp norm of the sample difference. In general, Lf128 and

- L- = O,...,L-1 3.3.1.2-2

-The second form, called the "linear frequency weighted" form, is given by

L lyii 1pY 'V(n,s, ,6l {  IV(n,s, ,O)_ V(n,s,d,O)

F =s -=0I3.3.1.2-3

L
I P v(n,s,,e) I Y

In this form, the measure is weighted by the spectrum of the undistorted

spectrum taken to the y power. The third form, called the "log unweighted"

spectral distance is given by

I/p
LI V(n,s,,) p

F = 20 log[ V---,d,) 3.3.1.2-4

Here the constant 20 is used to produce results in db. The fourth form,

the "frequency weighted log" spectral distance measure is given by

L-1 IV(n,s,,) 20 lg100 V(mss,dd)

F = d,6iO 3.3.1.2-5

I Iv(n,s,O,e Wl
e=o

~~4 2-_.



The fifth form of the spectral distance measure, called the "unweighted 6 "

form is given by

F L I JV(n,s,,) 6 - V(n,s,d,e )6 3.3.1.2-6

Finally, the "frequency weighted 6 " form is given by

I p

F V(nts,,e )I V(n~s,* ,ee
6) V(n,s,d,ee)3

L-1 3.3.1.2-7

I Iv(n,s,.,ed IY
t=0

Implicit in the definitions of the spectral distances above are

three major questions. First, what nonlinearity should be applied to the

spectrums before computing the distances for best results? The three

candidates here are none (linear), log, and raising the spectrum to the 6

power. This last form is an approximate bridge between the other two

forms. Second, should the spectrum be weighted by a function of the

undistorted spectrum, and, if so, by how much? The control parameter for

this case is Y. Finally, what value of p for the L norm should be used?
P

For this case, as p->®, the criterion approaches minimax.

3.3.2 Parametric Distance Measures

As in the case of spectral distance measures, the parametric

distance measures assume that the distorted and undistorted speech signal

has been divided into frames, given by X(ns,0) and X(n,s,d) where n is the

frame number, s is the speaker, d is the distortion, and f indicates no
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distortion. For each parametric distance measure, a set of L parameters,

t(n,s,d,),Z -9,...,L, are derived from the corresponding speech frame

X(n,s,d). As in the case of spectral distance, a function F for use in

Equation 3.2-1 is derived for each case, given by

F I I 1 (n,s,d, ) - C(n,s,d,t)J 3.3.2-1L =1 P

where once again the L norm is taken. As before, p is an object of study
p

for each parametric distance measure.

All of the parametric distance measures studied were derivatives of

LPC analysis. There were eight basic measures considered in this study.

The first two were based on the feedback coefficients set, a(l)-a(10),

which is described in Equation 3.3.1.1-2. The first form, the "linear

feedback" measure is given by

F1 10 1/p

F 1 1 Ia(n,s,d,Z) - a(n,s,d,o)l 3.3.2-2

and second form, the "log feedback" measure is given by

F 1 20 log1 0  a(n,sgdgt) 1 /p 3.3.2-3
10 2ll a(n,s,,)St= 1 lp
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This second measure was not expected to be of much interest, but was

included for completeness.

The third and fourth measures were based on the PARCOR coeffic-

ients, K(m), as defined in Equation 3.3.1.1-3. These two measures are

given by

10 10
F Y IK(n,s,d,t) _ K(n,s,,,)

3.3.2-4

and

1 10
Fio lK(n,sdt)

r L e 20 log K(n,s,0,t) 3.3.2-5

where K(n,s,d,t) and K(n,s,0,t) are the Lth PARCOR coefficients derived

from the (n,s) frame of the distorted and undistorted speech sample,

respectiv : ly.

The fifth, sixth, and seventh measures were based on the area ratios

functions AR(n,s,d,t) given by

1 - K(n.s,d,t)1 + K(n,s,d,t) 3.3.2-6

These measures are given by
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F = I IAR(n,s,, t) - AR(n,s,d,t)IP] 3.3.2-7

and

10 20 lgjAnsdt)3.3.2-
£=1 1g10 R(n,s,0

and

10 6 3.3.2-9
10 I AR(n,s,d,.)- AR(n,s,*,t)6Ip 3.p10 .

The final parametric measure of interest is called the "energy

ratio" measure which was first suggested by Itakura [3.11], and has been

widely used as a quality measure [3.121,(3.131. In this analysis, a frame

by frame LPC analysis is performed on both the undistorted and distorted

speech, as shown. Then undistorted speech is passed through two "vocal

track inverse filters" given by

10
H(Z) = 1- a z

10
.I'(z) - 1 - U a'() 3.3.2-10
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The energy out of each channel is squared and sumed, given e2 (n,s,*) and

e 2(nsd). The energy ratio is then given by

F e 2(n'sd) 3.3.2-11
e 2(n,s,*)

or

F 20 log e(nsd) 3.3.2-12
10 e(n,s,f)

It turns out that this measure can be computed more compactly than

is suggested by the above results. In particular, it can be shown that

e(n,s~d) = AT(n,s,d) R(n,s,f) A(n,s,d) 1/23.3.2-13
e(n,s,d) = 3..21

e(n,s,)L AT(n,s,f) R(n,s, ) A(n,s,f)J

where

R(0) R(1) . . R(9)

R(1) R(0) . . . R(8)

R(2) R(1) R(0) . . R(7)
RU
_ 3.3.2-14

R4(9) R(O)U 47
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and R(k) is defined by Equation 3.3.1.1-1 and

a(1)

a(2)

A= 3.3.2-15

L a(10)I

where a(k) is defined by Equation 3.3.1.1-2. The three forms of this

measure which were studied are given by Equations 3.3.2-11 and 3.3.2-12,

plus

F = e(n,s,d) 3.3.2-16

The parametric distance measure study had three main goals. First,

to compare the various types of parameters for their ability to predict

subjective results. Second, to investigate the value of p for the Lp norms

which gives the best results. Finally, to investigate the nonlinearity

(none, log, or .I ) which is most appropr'iate for good prediction of

subjective results.

3.3.3 Simple Noise Measurements

For many years, the signal-to-noise ratio (SNR) has been used as a

quality measure for systems in which it is an applicable concept. In

digital communications, the signal plus noise model is meaningful in

systems where the received signal is designed to be a point by point copy
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of the input signal. These systems include all forms of waveform coders,

including CVSD, ADM, DPCM, ADPCM, and APC, as well as such new techniques

as sub-band coding and adaptive transform coding. These systems do not

include the vocoder and "vocoder-like" systems such as LPC, VEV's of all

types, channel vocoders, etc.

In this study, two types of broadband noise measurements were

studied. The first was the traditional SNR. In this system (see Fig.

3.3.3-1) any linear or nonlinear phase variations introduced in processing

are first corrected. Since all of the distortions in the study were

produced by computer simulation, this process was a completely tractable

procedure. If real digital communications systems were to be tested, the

synchronization and nonlinear phase correction problem could be very

great. Once the phase corrected signals are available, the frame noise

energy, N(n,s,d) is computed as

r _ 21/2

N(n,s,d) - i+ [xn(m,s,d) - xn(m's,0)] 3.3.3-1

where xn(w,s,d) and xn(w,s,o) are the windowed distorted signal and

undistorted signal, respectively, as defined by Equation 3.3.1-1, and W is

the window length. Note that the limits on m are really finite because of

the windowing process. In the same terms, the signal energy is defined as

SG(n, s) (X(m s9))2 3.3.3-2
m-
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and the traditional SNR can be defined as

I (SG(n,s))

SNR- O(d) -10 log10  3.3.3-34( s 1

I(N(n, s,d)) 2

Ls=i n~l

where O(d) indicates this is an objective measure and the definitions of

terms is the same as in Section 3.2.

The second class of measures of interest were "short time" or

"framed" noise measurements. in this measurement, a frame by frame signal-

to-noise ratio is computed, and then a global average is computed as usual

from Equation 3.2-1. In this measurement,

F f 20[log10 G(n,sd)]
6  3.3.3-4

where

log [1 + G2(n,s,d)= log + N2(n,s,d) 3 -
10ni~ L10 N 2(n,s,d)

and 6 is a parameter for study. These short time signal-to-noise ratios

have recently been shown to be more highly correlated with subjective

results than traditional SNR measurements [3.14J,(3.15).
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3.4 Frequency Variant Objective Measures

One of the major hypotheses of the study was that, since it is well

known that the perception of sound in humans is a frequency variant

process, then frequency variant objective measures could be expected to

perform better as predictors of subjective results than objective measures

which are frequency invariant. One method of testing this hypothesis has

already been discussed in the section on simple spectral distance

measures. This was the technique of weighting the spectral distance

measure by a function of the spectrum of the undistorted speech (see

Equations 3.3.1.2-3 and 3.3.1.2-5). This section offers a different

approach to frequency weighting, an approach in which the frequency

weights are set so as to give maximum correlation between the objective

measures and the subjective measures.

The analysis technique can be described as follows. First, a

frequency sampled objective measure is defined. In this study, two such

measures, spectral distance and short time banded signal-to-noise, were

used. These two measures will be described in detail below. Let there be

B frequency bands in the analyses. Then for each distortion, B different

objective measures, 0b(d), where b is the band index and d is the distor-

tion index, are computed. In general, the subjective results for distor-

tion d may be estimated by a linear sum of the banded objective measures by

B
S(d) I C(b) Ob(d) + C(O) 3.4-I

b-i

where S(d) is the estimate of the subjective measure S(d) and C(b) are a
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set of unknown constants. The error between the true subjective result and

the estimated subjective results is given by

E(d) = S(d) - i(d). 3.4-2

Now, if the C(b), b = Ot...,B are chosen to minimize the squared error,

then a maximum correlation between S(d) and S(d) is achieved. This minimi-

zation results in a set of equations

0C =p3.4-3

where

C(O)

LCIc1)
cffi l3.4-4

.C (B) J

D
S(d)

d=1

dff4-5

D
S (d) 0O(d)

d-1

3.4-5

D
.S(d) OB (d)
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p-M-

where f (m,n), the (m,n) entry of the matrix is given by

D
O(m,n) = O(d)O n(d) 3.4-6

d=1

where D is the total number of distortions considered. Clearly, an optimal

set of values for C(b)'s may be obtained in this way for any set of

distortions in the data base.

Several points should be discussed here. First, the correlation

coefficients obtained between S(d) and S(d) after the C(b)'s have been

found must be considered a limit on the correlation obtained by weighted

frequency analysis. This, of course, is becabse the data itself is being

used to compute both the correlations and the weights. Second, since for

many of the distortions in the distorted data base the banded distortions

are highly correlated with one another, the results of this analysis cannot

be considered as a direct estimate of the underlying optimal physical

weights. This is the reason that a large subset of the distorted data base

is made of frequency banded distortions. Estimates based on this subset

would have more universal validity than those taken across the entire data

base. Finally, since the optimization of Equation 3.4-3 may be done

against any of the different parametric subjective results (see Chapter

2), these measures may be "tuned" to predict specific parametric subjec-

tive results as well as isometric subjective results. Since many of the

parametric subjective results are frequency variant in nature, such tuning

should be very effective.
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3.4.1 Banded Spectral Distance Measures

One of the two types of frequency variant distance measures con-

sidered is the frequency banded spectral distance measure. From Section

3.3, recall that in frequency invariant measures, the frequency index,

o 1 -Lt fore O,...,L. This is clearly a one band analysis. For a B

band analysis, the total frequency band (71 radians) is divided into B

sub-bands by

r 6b-iL 0 b L

6 = t bi - < b 3.4.1-1

th

where 0b is the upper band limit for b- band. In this study, B was

normally equal to 6.

To measure the banded spectral distance measure, the values for

0b (d) were computed by the same techniques as discussed in Section 3.3.1

but using the reduced bands given by Equation 3.4.1-1. In this analysis,

two types of spectral normalizations were computed. First, the spectra,

V(n,s,d,6 ), were normalized to have an area of one across the entire band,

as before. Second, the spectra were normalized to have an area of one in

each individual band. Since this second method gives a better fit to the

overall spectrum, it was expected that it would give better correlation

results.

3.4.2 Banded Noise Measures

The frequency banded noise measures are the second class of fre-

quency variant measures considered in this study. Like all noise measures,

56

" ' .I~ . .. - -!__ . . .. ,. I I l I I



these were only applied to the subset of the distorted data base for which

noise measures are meaningful.

The computation of the banded noise is illustrated in Fig. 3.4.2-1.

As can be seen, the noise is computed in the usual way and then the results

are filtered into (usually) 6 separate bands. If the banded time signal is

given by xb(m,s,d) and the windowed banded time signal is given by

Xnb(ms,d) - xb(m,s,d)W(m-nI) 3.4.2-1

where W(m) is the window function and I is the frame interval as before,

then the banded noise energy for the nh frame of the sh speaker of the

dth distortion is given by

4o nb~n s,))2} 1/2

Nb(n,s,d) [= Xn,b(m,s,d) - x (nsO)) 3.4.2-2b m-- -.nb

where, as before, the limit on m is really finite. The banded signal

energy, SGb(n,s), is given by

S +(n,s) x 2 cb s 12) 3.4.2-3Sb~ns W m - n',b~m

In this context then, the banded short time objective measure is computed
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from

Fb 20[log 10 Gb(n,s,d)) 
6  3.4.2-4

where

log10 [1 + G 2(n,s,d)J log10 L1 + b 342-5

as before. In these studies, 6 is a parameter for study.

3.5 The Composite Measures

The composite measures studied as part of this work were all taken

to be linear combinations of groups of simple measures or frequency variant

measures. The procedure in identifying and testing the composite measures

was as follows. First, choose a set of candidate objective measures which

have relatively high correlation with the subject results, and which are

judged to be measuring different objective quantities. This measure will
th

be designated 0 (d), where this is the p- measure of the distortion d.p

Second, rank these measures according to their estimated correlation with

the subjective data base. Third, study all possible measures which are

sums of two objective measures, i.e.

O(d) - g(i)O (d) + g(2)Op2 (d) P1  P2 3.5-
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where g(l) and g(2) are unknown constants. Using least squares analysis

(see section 3.4), choose the g(l) and g(2) for each combination which

produces the highest correlation with the subjective data base. Fourth,

study all measures which are combinations of 3,4 ,...,p objective measures

using least squares (maximum correlation) analysis. Finally, within each

group (, 2 ,...,p measures), rank the objective measures by their correla-

tion coefficients.

This analysis produces the optimal, in a least squares sense,

objective measure which can be constructed from the original p measures for

a 1 term, 2 term, 3 term,..., and p term composite linear objective

measures. This p term analysis can be thought of as a limit on the

correlation obtainable from these measures. At each level, the measure

with the highest correlation can be thought of as a limit on obtainable

correlation for that number of terms. The level to level improvement

supplies information as to the expected gain derivable from including

additional measures as part of the composite measures. Fially, the weight-

ing factors, g(k), form a vehicle for tuning these composite eassures to

effectively predict parametric subjective results.
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CHAPTER 4

THE DISTORTED DATA BASE

This chapter describes in detail the contents of the "distorted

data base." As was discussed in the introduction, the undistorted data

base consisted of four sets of twelve sentences, each set spoken by a

different speaker, and each of which was band limited to 3.2 kHz and

sampled to 12 bits resolution at 8 kHz. The total duration of the twelve

sentence sets were adjusted to be 49.152 sec., or 393216 time samples, for

each set. There were three male speakers, CH, LL, and RH, and one female

speaker, JS.

A total of 264 "distortions" were identified and applied to the

undistorted data base (see Table 4-1). The distortions can be roughly

divided into two types: "coding" distortions, which are simulations of

digital coding systems; and "controlled" distortions, in which some

specific perceptually relevant distortion is applied to the speech. All

distortions were applied digitally using the Georgia Tech Minicomputer

Based Digital Signal Processing Laboratory [4.1]. The 264 distortions are

subdivided into 44 types of distortions and, within each type, there are six

levels of distortion. The total length of the distorted sentences after

preparation for subjective testing was over 17 hours, excluding anchors

and probes.

Subjective testing was applied to the distorted data base using

eleven four speaker DAM's (see Chapter 2). Each DAM tested four types of

distortions for each of their six levels, giving 24 distortions per DAM.

The contents of the individual runs is given in Table 4-2.
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.40. OF
M",.,JTOTTq DI9TORrIONS

('odinV Distort ion

Vla,tive PM (A"C'.I) 6
t ,Yrtive Dif Fereat ial PCM1 (ADPrM) 6

i"'~ i) C)

.Xaptive !)elta .fodulator (ADM) 6
Anr!tive Predictive ro.iing (APC) 6

Line-ar Predictive Codinc (LPC) 6

Voice Excited Vocoder (VE.") 12
Adaptive Transfori', Coder (.-XTC) 6

54

ControlleA Distortions

Additive Noise 6
Low Pass Filter 6
'ic,b Pass Filter 0

Band Pass Filter 6

Interruption 12
Clipning 6
Center Clioping 6

Ouantization 6
'c1o _6

60

Frequency Variant Controlled Distortions

Additive C;olored Voise 36
Banded Pole Distortion 78
Banded Frequency Distortion 36

150

TOTAL 264

Table 4-1. TOTAL SET OF DISTORTIONS
IN TRE DISTORTErD DATA BASE.
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COT'EMT1 nFr TIT !NTNTTIr!AT 'W)A" PD.';

Run Number Distortion

1 Additive noise (',)
Low pass filter ( )
High pass filter a')
Band pas-s tilter (')

2 Interrupted (12)
Clippin (.)

Center clipDing (6)

3 Colored noise (24)

4 Colored noise (12)

APCM (,
ADPCM

5 Banded freq. dist. (24,)

6 Panded freq. dist.

Banded pole dist. (IS)

7 Banded freq. dist. a')

Banded pole dist. (18)

8 Banded pole dist. (24)

n Banded pole dist. (I)
Echo (,)

'1|0 A I(46)
CVSD (

APC ( *)

Ouant izat ion (()

1 I LPC
'REV ( 1 : )

ATC

Table 4-2. Contents of the Tndividual flAM 1hns.

65



The remainder of this chapter will be devoted to describing the

individual distortions.

4.1 The Coding Distortions

In all, there were nine types of coding distortions used in this

study, resulting in a total set of 60 distortions. In all cases, the

coding distortions were simulated and were designed to be zero phase if

possible. They were always at least designed so that the distorted speech

would have frame by frame synchronization with the undistorted speech.

4.1.1 Simple Waveform Coders

In this study, there were four systems which were classed as

"simple" waveform coders: Continuously Variable Slope Delta Modulator

(CVSD): Jayant's [4.11 Adaptive Delta Modulator (ADM); Adaptive Pulse Code

Modulation (APCM); and Adaptive Differential Pulse Code Modulation

(ADPCM). All of these systems can be thought of as special cases of the

general adaptive waveform coding system illustrated in Fig. 4.1.1-1. In

all cases, the interpolater, where used, was implemented using zero phase

FIR interpolation filters implemented with FFT techniques, as was the

decimation. The "channel simulation" shown in these systems was always

only capable of introducing random bit errors at fixed rates and simulated

no other characteristic of a real channel.

4.1.1.1 CVSD

The CVSD is a delta modulator, so that the quantizer is always a two

level quantizer and the coder is a one bit coder. The main feature of the

CVSD is in the way it computes 6 (n) (see Figure 4.1.1-1). Sincet (n) is

the output of a one bit quantizer, it may be thought of as a series of± l's.
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6 (n) is computed as

6(n) = a6(n-1) +A(n) 4.1.1.1-1

where A(n) is equal to one of two constants depending on whether all of the

last three values of 4(n) were equal to one another or not. So

A if last 3 4(n) equal
A (n) ;4.1.1.1-2

P B if last 3 Z(n) not equal

B is known as the "minimum step size" for CVSD. The corresponding maximum

step size is given by (I_)A.

CVSD is hence characterized by five features: the input speech

sampling rate; the value of the predictor parameter, a; the value of the

"step integrator" parameter, $; the value of the minimum step size, B; and

the value of A. A is usually not given, but is rather represented as an

"expansion ratio," which is the maximum step size divided by the minimum

step size, giving ( 1 ) A

In terms of its basic parameters, the CVSD systems used in this

study are summarized in Table 4.1.1.1-1.

4.1.1.2 ADM

The adaptive delta modulator used in this study was essentially

suggested by Jayant (4.21. Like CVSD, the ADM is a delta modulator, so the

different data rates are controlled by the interpolation process, the

quantizer is a one bit quantizer, and the coder is a one bit coder. For

this delta modulator,

6(n) A A(n)6(n-1) 4.1.1.2-1
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Predictor Step Size Minimum Expansion Bit
Constant Integration Step Size Ratio Rate

(at) (a) (B)

1 .86 .9922 10 166 8 KBPS
2 .9696 .9922 10 166 12 KEPS
3 .98 .9922 10 166 16 KBPS
4 .99 .9922 10 166 24 KBPS

5 .995 .9922 10 166 32 KBPS

Table 4.1.1.1-1. Parameters for CVSD.
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where A (n) takes on one of two values: "A" where Z (n) and k(n-1) are

equal; and "B" when they are not. In general, A is greater than one and B

is less than one. For this study,

A = 1/B 4.1.1.2-2

The ADM is hence characterized by only three parameters: the input

speech sampling rate; the value of the predictor parameters, a; and the

value of the quantizer control parameter, A. In terms of these parameters,

the ADM distortions used in this study are summarized in Table 4.1.1.2-1.

4.1.1.3 APCM

APCM has three main characteristics: first, it uses a multilevel

quantizer; second, it operates at the Nyquist rate, and hence the inter-

polation and decimation filters are not used; and third, it has no predic-

tion loop, i.e., a- 0. The quantizer control sequence, for this study,

was controlled exponentially from

Z (n) = B6(n-l) + (1-B)Ij(n)j 4.1.1.3-1

This can be thought of as an exponentially integrated estimation of the

energy in the quantized error signal, E(n). From this,

6(n) = -4 Z(n) 4.1.1.3-2
N

where Q is a control parameter and N is the number of levels in the

quantizer. This realization is, therefore, completely controlled by three

parameters: the quantizer integration factor, 8; the quantizer
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Predictor Single Bit Bit
Constant Multiplier Rate

(a) (A)

1 .86 1.1 8 KBPS
2 .90 1.06 12 KBPS
3 .96 1.03 16 KBPS
4 .98 1.03 24 KBPS
5 .99 1.03 32 KBPS
6 original

Table 4.1.1.2-1. Parameters for Adaptive Delta Modulator (ADM)
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multiplier, Q; and the number of levels, N. In terms of these parameters,

the APCM distortions used in this study are given in Table 4.1.1.3-1.

4.1.1.4 ADPCM

The ADPCM used in this study was exactly the same as the APCM

previously described except the value of a was not zero. The operation of

this system is hence characterized by four parameters: the quantizer

integration factor, a; the quantizer multiplier, Q; the number of quanti-

zer levels, N; and the feedback parameter, a. In terms of these

parameters, Table 4.1.1.4-1 describes the ADPCM distortions used in this

study.

4.1.2 The LPC Vocoder

The operation of the LPC vocoder used in this study is illustrated

in Figure 4.1.2-1. This procedure is a framed analysis and is character-

ized by a frame interval, I. At each frame interval the input speech,

x(m,s,d), is windowed, as before, to give

xn(m,s,d) - x(m,s,d)W(m-nI) 4.1.2-1

where W(m) is a window function of length W, n is the frame number, m is the

time index, s is the speaker, and d is the distortion. For this study, a

aming window was used. From this, a set of autocorrelation functions is

estimated from

R(k) = xn(m,s,d)xn(m-k,s,d) 4.1.2-2
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ItI

Quantizer Ouantizer # of ,it
Integration Multiplier Tevels ".- t.

(a) (Q) (t.) O'Pq)

1 .92 1 3 126T7k
2 .92 1 5 1!.575
3 .92 1 7 2245'1
4 .92 1 75*35U
5 .92 1 11 2767'-
6 .92 1 13 Q 603

Table 4.1.1.3-1. Parameter for Adaptive Pulse Code Modulation (PC").
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'Ire 04ctor Ouantizer Ouantizer #of 11it
:7onstant Integration Multiplier Levels Rate

1 9.92 1 3 12679
2 .0.92 1 5 18575
1 .92 1 7 22453
4 .92 1 025359
5 .9 .92 1 11 27675

.9.92 1 13 29603

Table 4.1.1.4-1. Parameter for Adaptive Differential
Pulse Code Modulation (AT)PCM).
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Using the well known Durbin's recursion (see 3.3.1.1) a set of feedback

coefficients, a(l)...a(lO), a set of PARCOR coefficients, K(1)...K(1O),

and a gain, given by

10
G =[(0) - Y a(k)R(k))1/ 2  4.1.2-3

k=1

is computed.

The set of PARCOR coefficients are an equivalent set of parameters

to the feedback coefficients which may be interchanged by the recursions

a (1) = -K ()

an(k) an (k) + K(n)an (n-k) 4.1.2-4

an(k) = -K(n) k = 1,2,...,n-I

and

b (k) = -a(k)

K(N) = b (N)

K(n) = bn (n)

n-i n-I n-I 2I
b(k) (b(k)-K(n)b(n-k))/1-K (n) kil,...n-I 4.1.2-5

Since the spectral sensitivity to quantization errors increases when the
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PARCOR coefficients have values close to _1, the inverse sine transform of

the parameters is used [4.3].

The pitch detector used is a form of "Homomorphic" or Cepstrum"

pitch detector (4.4], [4.5]. The pitch and voicing output from the pitch

detector is multiplexed in with the vocal tract information for transmis-

sion.

There are four parameters which characterize the LPC vocoder dis-

tortion. They are the window length, W; the number of bits per frame for

the PARCOR coefficients; the frame interval, I; and the pitch and gain

bits. The LPC distortions used in this study are described in terms of

these parameters in Table 4.1.2-1.

4.1.3 The Adaptive Predictive Coder (APC)

The operation of the APC used in this study is illustrated in Figure

4.1.3-1. In this system, the first step is that a framed LPC analyzer is

applied to the input speech waveform. The LPC analyzer is the same as that

described in section 4.1.2, and produces a vector of feedback coefficient,

a(k) for k - 1,...,10. This information is coded to some fixed bit rate

using "inverse sine" PARCOR quantization [4.3] and then used to control a

time varying prediction filter with the Z transform

10k
P(Z) -1 - a(k)Zk 4.1.3-1

k I

The {a(k) } coefficients are also transmitted to the receiver. The adaptive

predictor, inside the prediction loop, is then used to estimate the input

sequence x(m). The error signal, e(n), between the input sequences and the

..output of the predictor is then quantized by an adaptive quantizer
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"i ot 'Pits/ "itch Frame 73it
',qn tb Prame & Gain Tnterval Pate

(msec) (vocal tract) (msec) (BPS)

30 unquantized 7 15 --

30 5s 7 15 4333

30 48 7 15 3666
30 39 7 15 3000

5 30 29 7 15 2400
6 30 20 7 15 1800

Table 4.1.2-1. Parameters for the LPC Vrocoder.
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consisting of a AGC followed by a fixed quantizer. In this simulation 6 (n)

was taken to be the "look ahead" frame energy average, given by

1~ 1W21/2 Q(n) X (msd) - 4.1.3-2

where W is the window length, Q is a quantizer control parameter, and N is

the number of levels in the uniform quantizer.

The total operation of this APC is then characterized by five

factors: the number of levels in the quantizer N; the frame rate; the

window length; the number of bits per frame in the predictor coding; and

the quantizer control factor, Q. In terms of these parameters, the APC

distortion used for this study is given in Table 4.1.3-1.

4.1.4 The Voice Excited Vocoder (VEV)

The voice excited vocoder used in this study is illustrated in

Figure 4.1.4-1. Its operation is essentially similar to the APC described

in section 4.1.3 except for the following features. Instead of sending the

entire residual signal, Z(n), a low passed version of this signal is sent.

There is some data rate compression gained by coding and down sampling this

low passed signal to the Nyquist rate appropriate to its bandwidth. At the

receiver, the excitation function is recreated by using the base band,

where appropriate, and using a full wave rectification and LPC flattening

to regenerate the higher frequency.

The VEV vocoder simulated here is characterized by five parameters:

the frame interval, I; the window length, W; the ADPCM transmission rate;

the voice band bandwidth; and the vocal tract parameter bit rate. Table

4.1.4-1 described the VEV distortions used in this study as a function of

these parameters.
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Window Bits/ Level Frame 1i t

Length Frame (N) Interval Rate
(Rps)

1 30 unquantized 3 15 --

2 30 58 3 15 15867
3 30 48 3 15 1520.1

4 30 38 3 15 14533

5 30 29 3 15 13933

6 30 20 3 15 13333

Table 4.1.3-1. Parameters for the Adaptive Predictive Coder (ApC).
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FRAVE WINDOW A!)M.C 7' VOTCE "0CAL TO"A,
INTERVAL TFNGrTH RkTE WIT) TRArr I-ATA

(msec) (msec)

1 15 30 5615 1000 3R67
2 15 30 5; 15 1000 320l 8R I
3 15 30 5615 1000 2533 I4
4 15 30 5515 lOnO 003 754'
5 15 30 5615 1000 1333 6
r 15 30 5615 1000 1030 6, I
7 15 30 7400 1003 3Q67 1126,7
8 15 30 7400 11100 3200 10'00
9 15 30 7400 1000 2533 '933

10 15 30 7400 i013 1033 333
11 15 30 7400 101i 1333 ^733
12 15 30 7400 1000 1000 )40f'

Table 4.1.4-1. Parameters for the Voice Excited V'ocoder (vp").
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4.1.5 Adaptive Transform Coding (ATC)

Adaptive transform coding is a relatively new coding technique as

applied to speed 14.61, [4.71, and one that has been shown to have great

promise. In this study, it was not desired to produce high quality ATC

speech, because that was still a subject of research at the time these

distortions were chosen. Rather it was to include in the data base a

distortion which was qualitatively "like" that produced by ATC.

The ATC coding system used in this study is illustrated in Figure

4.1.5-1. First, the speech is windowed to 256 samples using a rectangular

window and a frame interval of 256 points also. Each windowed speech

sample is then both transformed using the DCT and analyzed using LPC

analysis. An approximate spectrum is computed from the LPC analyzer from

1
V(6) i 10

I - a (k)eJk 4.1.5-1
k=1

and then the levels are allocated at spectral sample 6t, 0<1e<255, by

levels (0) (TOTAL LEVELS) -V(%) 4.1.5-2

255

(recall that V(6z) = I), where if B is the total bits allocated, then
l=o

TOTAL LEVELS 2 B  4.1.5-3

Th' individual quantizers are uniform with a range, r(t) given by

-GV(ee) < r(Z) < Gv(O ) 4.1.5-2

84



AD-AGSO 210 GEORGIA INST OF TECH ATLANTA SCHOOL OF ELECTRICAL EN--ETC F/B 17/2
AN ANALYSIS OF 08.JCTIVE MEASURES FOR USER ACCEPTANCE OF VOICE -ETC(U)
SEP 79 T P BARNWELL, W 0 VOIERS DCAI0-78-C-0003

UNCLASSIFIED E2165978-T8-1



1111 - Jig 112.8 112.2

MICROCOPY RESOLUTION TEST CHART



Iswz

4 0

I-

m 0

> 0

< 0

w 0

0 W .

00 W

0c I cc

> ILI
II

4( 0 0

2x _ _o_

* ) 4f 0I.u...
x :T

z X .

85



where G, the gain, is given by equation 4.1.2-3.

The operation of this transform coder is characterized by 4

parameters: The frame interval and window length, which must be the same;

the order of the LPC; the LPC vocal tract parameter bits per frame; and

the transform coder bits per frame, B. The distortions used in this ATC

system are summarized in terms of these parameters in Table 4.1.5-1.

4.2 The Controlled Distortions

A large portion of distortions used in this study were not explicit

coding distortions, but were "controlled" distortions. These distortions

were included for one of two reasons. Either they were considered to be

examples of specific types of subjectively relevant distortions, or they

were considerd to be one type of which occurs in coding distortion, but

which does not occur in isolation.

A large portion of the controlled distortions are frequency variant

distortions. These distortions are included for two reasons: first, they

offer a measure of the subjective importance of different tyies of distor-

tions when applied in different bands; and, second, they offer an environ-

ment in which the frequency variant objective measures will be relatively

uncorrelated from band to band.

4.2.1 Simple Controlled Distortions

In this section, each of the non-frequency variant controlled dis-

tortions will be discussed separately.

4.2.1.1 Additive Noise

In the additive noise distortions, white Gaussian noise was added

to each sample of the undistorted signal, i.e.,
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LPC Trans Bit
Window Length LPC Bits/ Bits/ Rate
Frame Interval Order Frame Frame (BPS)

1 256 10 4,333 15,667 20,000

2 256 10 3,666 12,334 16,000

3 256 10 3,000 9,000 12,000

4 256 10 2,400 8,600 11,000

5 256 10 1,800 7,800 9,600

6 256 10 1,500 6,500 8,000

Table 4.1.5-1. PARAMETERS FOR THE ADAPTIVE TRANSFORM CODER
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x(m,s,d) x(m,s, )+ A.n(m) 4.2.1.1-1

where n(m) is a zero mean unit variance white noise sequence, and A is a

multipicative constant. This distortion is well characterized by its

signal-to-noise ratio (SNR) as shown in Table 4.2.1.1-1.

4.2.1.2 Filtering Distortions

There were three filtering distortions included: low pass filter-

ing; high pass filtering; and band pass filtering. The filters were

implemented digitally using recursive eliptical filters, i.e.,

K K
x(m,s,d) = I b(k)x(m-k,s,O) + I a(k)x(m-k,s,d) 4.2.1.2-1

k=O k=1

where K is the order of the eliptical filters. Table 4.2.1.2-1 gives the

orders of the filters used along with the band limits for each distortion.

4.2.1.3 Interruptions

The interruption distortion was characterized by two numbers: a

"keep" number, KP, and a "discard" number, DR. The interrupt distortion

operated on frames of length KP + DR. Within in frame, the first KP

samples were undisturbed, while the last DP were set to zero. Table

4.2.1.3 summarizes the interrupt distortions in this study.

4.2.1.4 Clipping

The clipping distortion is a nonlinear distortion given by

SCL j x(m,s,#)f CL

x(m,s,d) C1 4.2.1.4-1
x(m, s,) j x(m,s, )I< CL
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1 30

2 24

3 13

4 12

5

60

Table 4.2.1.1-1. T14E ADDTTII. -nOIj !MTOF
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Low Pass Filters

Order land Limit(IIZ)

400

1300
7 1,300

4 7 1,900

7 2,600

5 3,400

7!!gh Pass Filters

0Order Rand Limit
. 4 0

400

3 7 800

- 7 1,300

7 1,noQ

7 2,600

Rand Pass Filter

Order Lower Pand Limit Upper Band Limit

0 400

2 9 400 800
3 9 300 1,300

4 1,300 1,900

1, 900 2,600

i l2,600 3,400

Tn')Ie 4.2.1.2-1. VTLTER rTARArTERIqTIr. FOR RFCURRlVf.
rlT.TrRg U1f3r) FOR 'TT,17E1 DTITORTIONT
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Keep Constant Discard Constant

1 300 10

2 300 25

3 300 50

4 300 75

5 300 110

6 300 150

7 1,024 16

8 1,024 32

9 1,024 64

10 1,024 128

11 1,024 256

12 1,024 512

Table 4.2.1.3-1 "KEEP" AN~D "DROP" COqAT
FOR TNTERRUIPT DTSTORTT0N
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where the constant CL is called the clipping constant. The constant must

be compared to the "maximum average energy," MAE, for an utterance, given

by

MAE = MAX[E(m) 4.2.1.4-2

where E(m) is given by

E(m) = (1-a)E(m-1)+ ax(m,s,o) 4.2.1.4-3

where a is an exponential integration constant set to have a window length

- 30 msec. For all the input sentences, the HAE was set to be .122 on a

scale -1 <x(m,s,d)1. In these terms, the clipping constants for the

clipping distortions are shown in Table 4.2.1.4-1.

4.2.1.5 Center Clipping

The center clipping distortion is a non-linear distortion given by

x(m,x. ) x(m,s, )t CN

x(m,p,d) s 4.2.1.5-1

0 1 x(m,s,O) <c

where CN is the "center clipping constant." Table 4.2.1.5-1 gives the

parameters for the distortion on the same scale as for clipping.
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Clipoing Constant

1 .152

2 .076

3 .038

4 .0305

5 .0153

6 .0076

Table 4.2.1.4-1 CLIPPING CON!STANTS rR
CLIPPING DISTORTION

Center Clipping

Constant

1 .0019

2 .0038

3 .0076

4 .019

5 .038

6 .076

Table 4.2.1.5-1 CENTER CLIPPING CONSTA,,T rO7
CENTER CLIPPINr r)TSTOr'O'-0
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4.2.1.6 Quantization Distortion

The quantization distortion is just a PCM system which is non-

adaptive and which uses relatively coarse quantization. The quantizers

used were always chosen to be linear and to cover a range of twice the

maximum energy (see 4.2.1.4). The quantization distortion is described in

terms of the number of levels in the quantizer and the associated bit rate

in Table 4.2.1.6-i.

4.2.1.7 Echo Distortion

The Echo distortion was implemented by

x(m,s,d) - [x(m,s,4)+x(m-EC,s, )] 4.2.1.7

This is clearly not the only way to implement an echo, but the result is

very clearly a subjective echo. The distortion is entirely characterized

by the "echo delay," EC, and is described in Table 4.2.1.7-1.

4.2.2 Frequency Variant Controlled Distortions

This study included a total of three types of frequency variant

controlled distortion. The first, the "additive colored noise," was

designed to approximate waveform coder distortions in a frequency variant

way. The second, called "pole distortion," was to approximate vocal tract

modeling distortions in vocoders and APC's in a frequency variant way.

Finally, the "banded waveform distortion" was designed to approximate the

distortions found in ATC and adaptive subband coders in a frequency variant

way.
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Number of Levels
in Quantizer flit Rlate

1 64 48,n000

2 48 44,67.

3 32 40,090

4 24 36,67 .7

5 16 32,000

6 12 28,679.7

Table 4.2.1.6-1. QUANTTZATT0NT DlqTORTTON PARAmT'fS

Echo Constant

1 10

2 50

3 100

4 200

5 500

Table 4.2.1.7-1. ECHO r9NflTAM' 1F07
'I THE TrCTIO r)TflT00.Tnl
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4.2.2.1 Additive Colored Noise

The additive colored noise system is illustrated in Figure

4.2.2.1-1. White Gaussian noise is first bandpass filtered into six bands

giving an output signal Nb(m), where b is the band number and m is the time

index. Then the banded noise is added to the input speech using a noise

constant, NC, giving

x(m,s,d) = x(m,s,o)+NC Nb(m) 4.2.2.1-1

The bandpass filters were all eliptical with a unity gain in the passband

(see 4.2.1.2). Table 4.2.2.1-1 gives a summary of the additive colored

noise distortions.

4.2.2.2 The Pole Distortion

Figure 4.2.2.2-1 illustrates the implementation of the "pole dis-

tortion." The speech is first pre-emphasized using a second order filter,

and a framed LPC analysis is performed. The results of the LPC analysis is

then used to inverse filter the original speech, giving an approximation of

the glottal wave excitation [4.8].

The poles of the vocal tract functions are then found by factoring

the LPC polynomial. Then the pole distortion is applied by first identify-

ing all the poles within a fixed frequency range, and then moving them

slightly in both frequency and bandwidth. This "jittering" of the poles is

controlled by two uniform random number generators. The "frequency

range," FR, factor gives the range of frequency, in Hertz, in which the

poles are allowed to move. The "bandwidth factor", BF, is a multiplicative

factor controlling the bandwidth motion by
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Noise Constants

k Bandpass
Filter 1 2 3 4 5 6

0-400 HZ .305 .152 .076 .038 .019 .009

400-800 HZ .305 .152 .076 .038 .019 .009

800-300 Z .05 .52 076 038 .019 .00
800-100 HZ .305 .152 .076 .038 .019 .009

1900-2600 HZ .305 .152 .076 .038 .019 .009

2900-2600 HZ .305 .142 .076 .038 .019 .009

Table 4.2.2.1-1. COLORED NOISE DISTORTIONS
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distorted radius = (undistorted radius)(C+BF-r) 4.2.2.2-1

where r is a uniform random variable which ranges between plus one and

minus one.

Once the pole locations are distorted, they are recombined to form a

new set of LPC coefficients, a'(k). These coefficients are used to imple-

ment a new vocal tract filter to create the distorted speech.

The pole distortions (PD) are summarized in Table 4.2.2.2-1.

4.2.2.3 The Banded Frequency Distortion

The operation of the banded frequency distortion is illustrated in

Figure 4.2.2.3-1. The speech is first windowed using overlapping Hamming

windows, where the window length is twice the frame interval, and the frame

interval is 128 points. The speech is then transformed using a 256 point

FFT. In the frequency domain, noise is then added to the samples in bands.

The noise is added with a random magnitude but with a phase equal to the

phase of the original speech. Then the samples are inverse transformed

back into the time domain and recombined using overlapped adds.

The parameters controlling the banded frequency distortion are the

band limits and the standard deviation of the added noise, which is white

and Gaussian. Table 4.2.2.3-1 summarizes the banded distortions used in

this study.
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Pole Distortion
Frequency nistortion

Frequency Range (HZ)

Distortion
Band (T!Z) 1 2 3 4 5

200-400 20 40 60 P0 100 120

400-300 20 40 60 30 1,) 120

800-1300 50 90 130 170 210 250

1300-1900 50 90 130 170 210 250

1900-2600 100 150 200 25!) 300 .

2600-3400 150 200 250 300 350 400

Bandwidth Distortion

Distortion
Band 1 2 3 4 5

0-400 .025 .05 .075 .1 .2 .3

400-800 .025 .05 .075 .1 .2 .3

800-1300 .025 .05 .075 .1 .2 .3

1300-1900 .025 .05 .075 .1 .2 .3

1900-2600 .025 .05 .075 .1 .? .3

2600-3400 .025 .05 .075 .1 .2 .3

Table 4.2.2.2-1. POLE DISTORTION CONTROL PARAMT"71
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landed Distortion

Band Standard Deviation
Limits of Noise

1 2 3 4 6

0-400 .1 .2 .4 .6

400-800 .5 .8 1.1 1.!, 1.7

900-1300 2.0 2.2 .4 2.6 2. 3.0

1300-1900 2.0 2.2 2.4 2.6 2.3 3.0

1900-2600 3.5 4.0 4.5 5.0 5.5 6.0

2600-3400 10. 13. 16. 19. 22. 25.

Table 4.2.2.3-1. CONTPOL PARAMETERS F0R rAWDEP '10Tq DYTSr0)V"I0A
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CHAPTER 5

EFFECTS OF SELECTED FORMS OF DEGRADATION ON SPEECH

ACCEPTABILITY AND ITS PERCEPTUAL CORRELATES

The primary purpose of this phase of the project was to provide

criterion measures for evaluating the predictive potential of the various

physical voice measures presently under consideration. For this purpose

it was essential that representatives of widely diverse forms of degrada-

tion be included among the conditions evaluated. Among the forms con-

sidered are those inherent in the simplest types of analog speech trans-

mission as well as those associated with the most elegant digital voice

coding and transmission techniques in use today. Only with such diversity

could any assurance be had that observed correlations between specific

physical voice measurements and various subjective criteria will obtain

for more than a narrow class of distortions.

A second purpose to be served by this phase of the project was the

cross validation of the DAM itself. Since the DAM was developed as the

result of a comprehensive examination of the effects of representative

types of degradation (including many of those treated in the present

investigation) on various subjective criteria of acceptability, the

results of the present investigation permit a rigorous test and possible

refinement of DAM administration and scoring procedures.

Finally, depending on the configurations of DAM scores produced by

various novel forms of degradation, some insights may be gained which

permit improvements in current technology of acceptability prediction from

physical voice measurements. Conceivably, novel techniques may also be

suggested by these results in combination with results bearing on the
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efficiency of specific prediction techniques for specific classes of

degradation.

All of the above purposes are given consideration as appropriate in

the course of discussing the results presented in the following sections.

5.A Methods and Materials

5.A.A Listening Crews

Professional listening crews (young adults of both sexes) of eight

to ten members participated in all evaluation sessions conducted under the

project. On the basis of a retrospective criterion of self-consistency

within each testing session, one or more members were eliminataed such that

the data fox the eight most self-consistent members were retained for

analysis.

5.A.B Speakers

Four speakers, three males and one female, were used for all evalua-

tions. The ordering of experimental system-conditions varied from one

speaker to the next in a systematic manner designed to minimize time-order

effects on the data for any system-condition. Twenty-four system-

conditions, two anchors and four probes were evaluated in each testing

session. The anchors and probes were always presented at the beginning of

each series of system-conditions involving a given speaker. The ordering

of anchors and probes was randomly determined in each instance. Whenever

possible, several distinct types of degradation were represented in a

given session. System-conditions were effectively randomly ordered within

a session for one speaker, and then systematically reordered for the

remaining speakers to provide some amount of counterbalancing and, thus,

to soften the effects of any inter-condition influences.
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5.B Experimental Results

Presented in the following sections are DAM score patterns for the

various forms of degradation. For each class of degradation the diagnostic

patterns are presented in separate sub-figures for male (average of three)

and female speakers. Except where pronounced sex differences are evident,

the discussion will be addressed primarily to the results for the male

speakers. Primary interest in these figures attaches to the Composite

Acceptability score (C-A) and the parametric score for acceptability,

(P-A), intelligibility (P-1), and pleasantness (P-P). Although it is one

of the components of C-A, the isometric acceptability score (I-A) is not

included in the graphic portrayals. The reason for this is that it has a

virtually perfect correlation (.994) with the average of the parametric

intelligibility and parametric pleasantness scores. Of considerable but

secondary interest are the "diagnostic patterns" of perceptual quality

scores. Depending on the form of degradation involved, diagnostic score

patterns for experimental systems may provide insights of substantial

value for purposes of remedial action. Here, they serve primarily to

enhance our basic knowledge of the perceptual affective consequences of

speech degradation and to reveal further useful features of the DAM.

Two administrations of the DAM, separated by intervals of four to

six weeks, were performed for all the system-conditions except those

involving pole distortions and band distortions. W" exception of

these later cases, all results presented in the follo .. i. ,tions are thus

averages based on response data from two administrations.

5.1 Degradation by Coding

Treated in this section are cases of distortion which are intrinsic
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to various speech coding techniques and, in a sense, reflect the inade-

quacies of such techniques. In one category are various broadband wave

form-preserving techniques in which a major source of degradation is quan-

tization of the speech signal. In the second category are various, more

complex predictive coders.

5.1.1 Simple wave-form coders

The wave-form coders treated in this investigation are CVSD, ADM,

/PCM-, and ADPCM which are described in section 4.1.1.

5.1.1.1 Effects of continuously variable-slope delta modulation (CVSD)

on DAM scores

Five realizations of CVSD technique, which differed only with

respect to data rate, were treated in this investigation. A control

condition involving essentially unprocessed speech was included within the

same DAM testing session. The DAM results are presented in Fig. 5.1.1.1.

In all major respects they are typical of previous DAM results for CVSD

[5.11. Except in the case of the lowest data rate, background quality is

negligibly affected by CVSD. Listeners evidently do not confuse quantiza-

tion "noise" with true noise. Rather, they correctly perceive it as

distortion: the SD scale of the DAM is the most sensitive of the percep-

tual quality measures. The present results differ somewhat from those of

previous studies in that they show consistent, though not pronounced

reductions in scores on the SH, SL and SN scales as data rate is reduced.

Such results are most typical of conditions involving audio pass-band

restriction and may, therefore, have a rational basis in the present case.
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For reasons that are not immediately obvious, scores for the

control case and for the case of 32K bps CVSD are generally somewhat lower

than those previously obtained for nominally comparable conditions, though

scores for the 16K bps case are very close to historical norms for this

condition.

5.1.1.2 Effects of adaptive delta modulation (ADM) on DAM scores

Figure 5.1.1.2 presents DAM results for the case of adaptive delta

modulation. Predictably, perhaps, they are quite similar to those for CVSD

at most corresponding data rates. An exception is the case of ADM at 8K

bps where a severely depressed score on the SI (signal interrupted) scale

can be observed. It is quite possible that this result can be attributed

to an experimental artifact, but further investigation will be needed to

resolve this issue. This is not of great interest since no one has

seriously suggested using such a coding procedure at this rate.

5.1.1.3 Effects of adaptive pulse code modulation (APCM) on DAM scores

Figure 5.1.1.3 presents DAM results for the case of adaptive pulse

code modulation techniques. As in the two previous cases the subjective

consequences of this type of coding are confined almost exclusively to

signal quality. Here their general form is quite similar to those for the

cases of CVSD atd ADM but for a small, though consistent, depression of

scores on the SI scale. However, the general level of scores for APCM is

substantially lower than for CVSD and ADM.

5.1.1.4 Effects of adaptive differential pulse (ADPCM) code modulation

on DAM scores

Figure 5.1.1.4 shows DAM scores for adaptive differential pulse

code modulation. The results for this condition are quite similar to those
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for APCM. It would appear that adaptive differential pulse code modulation

does not significantly improve acceptability over APCM at comparable

degrees of quantization, but may, however, at comparable transmission data

rates with optimal channel coding. Qualitatively, ADPCM would appear to

sound somewhat less distorted but more interrupted than APCM.

5.1.2 The effects of linear predictive coding on DAM scores

The linear predictive coder used in this investigation is described

in Section 4.1.2. Figure 5.1.2 shows that the present realization of LPC

in the range of 2-2.9K bps yields DAM score patterns and overall levels

very similar to those of the normative 2.4K bps LPC as reported by Voiers

[5.11. Normative DAM results for the higher data rates are not available

for systems without error correction, so that comparisons are not possible

for the higher data rates. However, the present results indicate that

increasing the data rate to 3.9K bps significantly improves the quality of

LPC-processed speech, though further increases do not appear to be bene-

ficial. On the other hand, it appears that digitization at high data rates

does not significantly impair quality obtained with analog LPC techniques.

(LPC/Orig. in Figure 5.1.2)

5.1.3 The effects of adaptive predictive coding on DAM scores

Figure 5.1.3 shows the effects of APC on DAM scores. The parameter

in these graphs is bits/frame which is associated with data rates of from

13333 to 15867 bps.

Perceptual quality score patterns for APC are quite similar to

those for LPC. Though score levels are generally somewhat higher for APC,

this superiority is evidently achieved only at enormous cost in trans-

mission data rate. Listeners perceive significant amounts of signal and
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background "flutter" (SI scale) and raspiness (SD scale).

5.1.4 Effects of voice-excited vocoding (VEV) on DAM scores

The voice excited vocoding technique, described in Section 4.1.4 is

essentially a modification of the APC technique treated above. Two reali-

zations of VEV were examined here. In the first (Fig. 5.1.4.1) the voice

band had seven level quantization; in the second (Fig. 5.1.4.2), thirteen

level quantization. The parameter in each case is PARCOR frame rate.

Differences between the subjective effects of these two techniques are

very small. Listeners possibly perceive a slightly greater degree of

signal and background flutter with coarser quantization in the case of male

speakers, but this trend is absent in the case of the female speaker.

Generally, more background flutter is perceived in the case of VEV than in

the case of APC.

5.2 Controlled Degradation

Treated in this section are various basic types of speech degrada-

tion, one or several of which may be encountered in most speech-communica-

tion situations. They are distinguished from the coding distortions dealt

with in Section 4.1 by the fact that they are generally not deliberately

introduced but occur rather as by products of various coding techniques or

channel characteristics.

5.2.1 Simple forms of controlled degradation

Seven of the commonly encountered forms of degradation are dealt

with in the following sections. They include broad band-limited Gaussian

noise, frequency passband restriction, interruption, peak and center clip-

ping, coarse quantization and echo.
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5.2.1.1 Effects of additive broad-band noise on DAM scores

Noise is the most umbiquitous of all deterrents to efficient

communications. Accordingly, its effects on DAM scores merit special

consideration.

Figure 5.2.1.1 shows DAM diagnostic profiles for six conditions of

S/N ratio (4K Hz passband for the speech and noise). From the figure it is

clear that the SN scale is the most sensitive to additive Gaussian noise,

but the results again illustrate an important principle of the psycho-

physics of speech: In virtually no instances are the consequences of

degradation with respect to a single stimulus parameter confined to a

single stimulus elementary phychological parameter. It has long been

known, for example, that whereas the elementary psychological parameter,

pitch, depends primarily on stimulus frequency, it also varies with

stimulus intensity, duration, and complexity. In the present case, the

mechanism whereby values on the SL scale (normally most sensitive to high

frequency attenuation) also decreases with S/N ratio is easily specified:

The spectrum level of typical speech is highest in the region of 500 Hz but

decreases at approximately 9 dB per octave both above and below that

region. A secondary effect of uniform spectrum noise, therefore, is

generally that of passband restriction, particularly at the upper end of

the speech spectrum. Less readily predicted, but by no means contrain-

tuitive, is a slight reduction of the SD scale (the scale most sensitive to

amplitude distortion). With extremely unfavorable S/N ratios, listeners

are evidently not able to make the noise vs. distortion distinction with

the same ease that they accomplish this under less severe conditions of

degradation.
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5.2.1.2 Effects of frequency on DAM scores

The results of research leading to the development of the DAM served

in many instances to confirm the principle that even the simplest forms of

signal impoverishment have relatively complex subjective consequences:

Although the effects of a given form of distortion may be most pronounced

in one subjective dimension, they are usually evident in two or more

dimensions. On the other hand, many forms of degradation may have a common

perceptual effect, as well as unique perceptual consequences. In fact,

perceptual quality scales SH, SL, and SN were found to be sensitive in

varying degrees to the effects of three major forms of frequency distor-

t ion.

All forms of passband restriction have previously been observed to

affect the SL scale, which is associated with the perceptual qualities of

muffledness, dullness, etc. The effects of high frequency attenuation

were found to be confined primarily to this DAM parameter, though some

!epression of scores on the SH scale was observed with extremely severe

high frequency attenuation.

The effects of low frequency attenuation, i.e., high-pass filter-

ing, were observed to be most pronounced in the case of the SH scale, which

was in fact designed primarily to sense such effects. However, the SL

scale was also observed to be sensitive to high-pass filtering in lesser

degree. A third scale, (SN) which is concerned with the perceptual quality

of nasality, was found to be sensitive to passband width restriction more

or less without regard to the location of the passband. Present results

will be seen to provide strong confirmation of findings of the earlier

validation studies of the DAM, though sharper filtering was achieved here

than previously. In the present investigation frequency filtering was
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achieved by means of elliptic digital filters with 40 dB or less ripple and

transition bands equal to 5 percent of the nominal cutoff frequencies.

5.2.1.2-1 Effects of bandpass filering on DAM scores

Figure 5.2.1.2-1 shows the effects of bandpass filtering on DAM

diagnostic score patterns. Consistent with previous findings, three of

the primary perceptual quality scales (SH, SL, and SN) are sensitive, but

in different ways, to this form of signal distortion. Differences between

the trends of the SH scores and SL scores are best rationalized in terms of

the character of the rejected band(s) associated with each condition. To

the extent that high frequency rejection predominates, SL scores suffer

greatest reduction, whereas SH scores reflect the predominance of low-

frequency rejection. Scores on the SN scale vary in a more complex manner

with the location of the passband, being highest for the high and low

extremes, lowest for those passbands near the middle of the frequency

scale, in particular those covering the frequency range of the second

format. Generally, the scales pertaining to background qualities are

little affected by passband restriction. The one case in which a back-

ground exhibits depression (BB scale in the case of the 2600-3400 Ilz

condition) is quite possibly due to an increase in hum associated with the

higher gains needed for the high frequency bands.

5.2.1.2-2 Effects of low-pass filtering on DAM scores

From Figure 5.2.1.2-2 it is evident that the effects of low-pass

filtering are confined primarily to the SL scale, a result consistent with

the purpose for which this scale was designed. Although some variation in

other signal quality scales is evident, no consistent trends emerge. All

of the background quality scales are virtually "blind" to this form of
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degradation. It may be of some interest to note that neither the most

sensitive perceptual quality nor overall acceptability are substantially

affected until attenuation of frequencies below 2K Hz occurs. The fact

that the parametric scale for intelligibility is more uniformly affected

by high frequency attenuation is consistent with results on the effects of

high frequency attentuation on objectively measured intelligibility. It

is perhaps consistent with common intuition that parametric pleasantness

is generally the least affected of the higher order qualities.

5.2.1.2-3 Effects of high-pass filtering on DAM scores

Four perceptual quality scales appear sensitive to high-pass

filtering as shown in Figure 5.2.1.2-3. As expected, the SH scale ulti-

mately exhibits the greatest depression, but two other scales, SL and SN,

are more sensitive to moderate degrees of high-passs filtering. Only after

frequencies as high as 800 Hz are attenuated does the signal appear to

acquire the characteristic "high-pass quality."

Again, a decrease in BB scores with increased high-pass filtering

is possibly an experimental artifact. The fact that no comparable trend in

BB scores is evident in the case of the female speaker adds credibility to

such an explanation.

5.2.1.3 Effects of periodic interruption on DAM scores

Two interruption rates, each with six signal-duty factors were

treated in this investigation. In the first case, the signal was inter-

rupted once every 300 samples or 26.6 times a second. The duration of each

interruption was then varied from 10 to 150 samples, i.e., from 1.25 milli-

seconds to 18.75 milliseconds. In the second case, the signal was
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interrupted once every 1024 samples or 7.8125 times a second. Duration of

these interruptions was varied from 2 milliseconds to 64 milliseconds.

Figure 5.2.1.3-1 shows that the predominant perceptual quality

associated with the more rapid interruption rate is "signal flutter,"

which quality becomes increasingly pronounced as signal duty factor

decreases. Listeners perceive the signal to be interrupted with increas-

ing duration of interruption, but the interrupted quality is less salient

than the fluttering of quality. Figure 5.2.1.3-2 shows the effects of less

frequent interruption. The fluttering quality is still pronounced but the

interruption is now more apparent and in fact predominates in the case of

the lowest signal duty factor (.50). Moreover, listeners appeared less

inclined in this case to perceive the background as fluttering than they

did in the case of more rapidly interrupted speech.

5.2.1.4 Effects of Peak Clipping on DAM scores

Two forms of amplitude distortion are potentially present in many

voice communications channels. They can be simply described as "peak

clipping" (clamping) and "center clipping," (as might result from inter-

modulation distortion). It was out of concern for the first of these that

the SD scale of the DAM was developed. However, no special provision for

the latter was made in the design of the DAM.

Figure 5.2.1.4 shows the effects of six levels of peak clipping on

DAM score patterns. The values associated with each condition indicate

levels at which peak clipping occurred on a scale where the rms amplitude

of the unclipped speech signal was approximately 1350. Two perceptual

quality scales SD and BB appear sensitive to this form of degradation.

However, an experimental artifact is possibly involved in the case of the

latter scale. As noted earlier, the BB scale is quite sensitive to 60 Rz
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hum, which might have been expected to increase as audio gain was increased

to compensate for the effects of clipping on signal level.

5.2.1.5 Effects of center clipping

The effects of peak clipping and center clipping on speech intel-

ligibility have long been known, but no attempt has thus far been made to

quantify their effects on acceptability. Licklider ( 5.2 1 observed that

peak clipping can actually enhance intelligibility under certain circum-

stances but that center clipping is detrimental to intelligibility under

all circumstances. The reasons "or this are readily found in the fact that

the low energy segments of the speuch signal thqt are removed by center

clippings are general lv those involvinR consonant sounds, which are, in

turn, the major carriers of uset speech information.

Since the low enerRv coor of speech are also those involving

the unper range of the speech v. one would predict the perceptual

effects of center clipping to be coiisiderablv more complex than those of

peak clipping. Fig. 5.2.1.5 shows this to be the case. From the figure it

appears first that the perceptial consequences of center clipping are

confined completely to perceived signal qualities. Listeners perceive

virtually no background effects. Among the six signal qualities, however,

the effects of center clipping are quite diverse. All but one (SH) of the

signal quality scales appear highly sensitive to this form of degradation.

The reasons for this diversity of effects are easily determined, moreover,

once it is recalled that removing the low energy components of speech

serves at once to interrupt and to low-pass the speech.
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5.2.1.6 Effects of signal quantization on DAM scores

Amplitude quantization is an essential step in a number of modern

speech coding techniques, though the ultimate effect in most cases is

extremely fine quantization. Because the SD scale was originally designed

for sensitivity to these techniques it is of some interest to know how the

DAM generally and the SL scale in particular respond to relatively coarse

quantization.

Figure 5.2.1.6 shows that the SL scale is in fact extremely sensi-

tive to this form of distortion, but that several other scales are also

somewhat sensitive. Perceptually, quantized speech has some of the

quality of band-pass filtered speech, lowband-passed speech in particular.

A moderate buzz quality is also evident. Possibly of additional interest

is the difference between scores for the higher order qualities, intel-

ligibility and pleasantness. Listeners perceive quantized speech to

possess relatively high intelligibility but apparently find it unaccept-

able on aesthetic grounds, as evidenced by the low ratings they give it on

pleasantness.

5.2.1.7 Effects of echo on DAM scores

As noted in Section 4.2.1.7 the echoic conditions treated here were

somewhat unrealistic but were selected to ensure a clear subjective

effect. As observed elsewhere the DAM in its present version does not make

explicit provision for echo: no single rating scale pertains unequivocal-

ly to this phenomenon. From Figure 4.2.1.7, however, listeners were evi-

dently able to find the means of distinguishing between the various delays

through a combination of perceptual quality scales. It appears, moreover,

that listeners experienced no uncertainty as to whether echo should be
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characterized as a signal distortion or a background disturbance. They

agreed that it should be the former and indicated their perceptions primar-

ily via the SL and SI scales, with the result that all of the higher order

perceptual quality scales "tracked" in a consistent manner.

5.2.2 Effects of frequency-variant controlled distortions on DAM scores

Three classes of degradation fall in this category: additive

colored noise (Section 4.2.2.2), pole distortion (Section 4.2.2.2), and

banded frequency distortion (Section 4.2.2.3).

5.2.2.1 Effects of additive colored noise on DAM scores

Figure 5.2.2.1 permits a comparison of the effects of noise bands in

six different frequency regions on DAM score patterns. The six bands are

designated in the figure as follows:

NI - 0- 400 Hz

N2 - 400- 800 Rz

N3 - 800-1300 Hz

N4 - 1300-1900 Hz

N5 - 1900-2600 Hz

N6 - 2600-3400 Hz

Figure 5.2.2.1M-N1 shows the pattern of DAM scores which results

from speech masking by a low-frequency band of noise. Depressed scores on

the BN (background noise) and BR (background rumble) scales conform with

intuitive expectations, and otherwise serve to provide additional valida-

tion of these two scales. Not inmediately clear is the reason for somewhat

depressed scores on several perceived signal quality scales and on the

scale for total signal quality.
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As shown in Figure 5.2.2.1M-N2, the quality, background rumble,

decreases significantly as the noise band is raised above the 0-400 Hz

region.

As the frequency region of the noise band is increased beyond the

800-1300 liz frequency region, the perceptual consequences of the noise

undergo several qualitative changes. The noise is perceived to have less

"rushing-roaring" quality (BN) but more of a "buzzing-humming" quality as

reflected in scores on the BB scale. At the highest noise levels listeners

also tend to perceive an increasing raspy (SD scale) quality which is most

typical of amplitude-distorted speech.

5.2.2.2 Effects of Pole Distortion on DAM scores

Two types of pole distortion, as described in Section 4.2.2.2, are

examined in this section. The first of these involves distortion of pole

frequencies within a given frequency band, the second, involves "radial

distortion" and, hence, band-width distortion.

5.2.2.2.1 Effects of pole frequency distortion

Figure 5.2.2.2-1 shows the effects of pole distortion in each of six

frequency bands:

200- 400 Hz

400- 800 Hz

800-1300 Hz

1300-1900 Hz

1900-2600 Hz

2600-3400 Hz
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The parameter within each sub-figure is range of frequency distortion

(rms). Values of this parameter are as follows:

3 A N D

0-400 400-800 800-1300 1300-1900 1900-2600 2600-3400

20 20 50 50 100 150

40 40 90 90 150 200

60 60 130 130 200 250

80 80 170 170 250 300

100 100 210 210 300 350

120 120 250 250 350 400

From Figure 5.2.2.2-1, it appears that the subjective effects of

pole frequency distortion are expressed primarily via the SF (signal

flutLt:r) and BF (background flutter) scales. The remaining perceptual

quality scales are virtually unaffected by this form of degradation. It

appears, farther, that tile perceptual consequences of pole distortion are

generally neglible in the upper end lower extremes of the 3.4K Hz band

involved here.

5.2.2.2-2 Effects of radial pole distortion

Figure 5.2.2.2-2 shows the effects of radial pole distortion. In

this case the frequency bands involved were as indicated above except for

the lowest band which was 0-400 Hz instead of 200-400 Hz. The parameter in

all sub-figures is relative "radius jitter." The values being:
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in all cases. From the figure it is evident pole-bandwidth distortion has

qualitatively different perceptual consequences than pole-frequency dis-

tortion. The perceptual effects of radial or bandwidth distortion are

confined primarily to the background and are quite pronounced in all but

the highest frequency band.

5.2.2.3 Banded frequency distortion

Banded frequency distortion is of interest in relation to transform

coding techniques where noise may be a factor at the power spectral level.

In the present case six levels of noise were produced in each of six

spectral bands (See Section 4.2.2.3).

From Figure 5.2.2.3 it appears that banded frequency distortion in

the range treated here has relatively minor subjective consequences. In

all but the lowest frequency band involved, perceived background flutter

is the most pronounced effect.

Some amount of signal flutter (SF scale) and raspiness (SD scale) is

evident in the cases of the 400-800 Hz and 800-1300 Mz bands, but these

qualities are negligible in the remaining bands.
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CHAPTER 6. THE EXPERIMENTAL RESULTS

6.1 Introduction

This chapter gives both a detailed description of the experiments

performed as part of this study and a complete analyses of the experimental

results. In all cases, the experiments performed were based on correlation

analyses, and the figure-of-merit used for each objective quality measure

studied was either the estimated correlation coefficient, p , or the esti-

mate standard deviation of error when the objective measure is used to

estimate the subjective measure,a e (see Chapter 1).

This chapter is divided into five additional sections. The first

describes the standard analysis techniques used in this study. The second

describes the results of the spectral distance measure studies. The third

describes the results from the parametric measure studies. The fourth

describes the results from the frequency variant measure studies. The

fifth describes the results from the composite measures.

6.2 Analysis Procedures

Every correlation experiment performed as part of this study

resulted in an estimated correlation coefficient, P , and an associa"!d

estimated standard deviation of error, 0  To describe each experimente"

exactly, one must therefore know four things: exactly what objective

measure(s) was used; exactly what analysis method was used; exactly what

subjective parameter was used; and exactly what set of distortions was used

in the correlation analyses. The first three items will be discussed in
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this section. The objective measures will be discussed in the following

sections.

6.2.1 The Estimation Procedures

The three estimation procedures used in this study were linear

regression, non-linear regression, and linear multi-regression. In linear

regression, the subjective result is estimated from the objective result

by

S(s,d) 6(1) O(s,d) + (0) 6.2.1-1

where S(s,d) is the estimate of the subjective result for speaker s and

distortion d, O(s,d) is the objective measure for speaker s and distortion

d, and 6(0) and B(O) are constants. The solution which gives a minimum

squared error between S(s,d) and S(s,d) is given by

B(1) = 6.2.1-2

and

~pa
(0) = S - 0 6.2.1-3

0

where a is the estimated standard deviation over the subjective data, a0

is the estimated standard deviation over the objective data, P is the

estimated correlation coefficient, S is the average subjective result, and

6 is the average objective result.

In non-linear regression analysis, the subjective estimate is given

by

K k
S(s,d) I a(k) 0 (s,d) 6.2.1-4

k=0
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where K is the order of the regression. Note that for K=1, this equation

* becomes the linear regression equation. To find ,(k), the subjective

error, given by

2 sd (S~s,d)-S~s,d))2  6.2. 1-5

is minimized with respect to akW. This leads to a set of linear equations

of the form

E ~Z 6.2. 1-6

where

zTk

= [T s(s,d), 0(s,d)S(s,d), 0 k . ' s,d)S~s,d)]
s,d s,d s,d

6.2.1-8

and

kI

E(k,Z) 0 ( kZs,d) 6.2. 1-9
s,d

where E(k,fZ) is the k and f-entry to the matrix E. Once F. is inverted, p is

obtained from

~2 1 T
= [~E -N a (k)T 6.2.1-10

s N-l-k=O
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_ K k 1/2

k=O 6.2.1-11

S S

where N is the total number of points in the sample.

Linear multiregression is in many ways similar to non-linear

regression. In this procedure, it is desired to estimate the subjective

results from several (K) different objective measures by

K
S(s,d) = Y (k)O(s,d,k) 6.2.1-12

k=O

where the extra index "k" has been added to the objective measure to

differentiate the different measures. To find (k), the squared subjec-

tive error

X e2 (s,d) : (S(s,d)-S(s,d))2  6.2.1-13
sd s,d

is minimized, giving

e8 = Z 6.2.1-14

where

T is given, as before, by equation 6.2.1-7, ZT is given by

Z T = [ Y S(s,d), I S(s,d)O(s,d,l), ... . S(s,d)O(sd,k)]
s,d s,d

6.2.1-15

and

e(k,e ) O(s,d,k)O(s,d,Z) 6.2.1-16
s,d

After _ is computed by inverting e, P may be computed from
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^2 1 T K
N- e = (k)O(s,d,k)]6..17

N 1 Z - N S a(k)O(s,d,k)]
k=O 6.2.1-18

s s

where O(s,d,O) = 1.

6.2.2 The Distorted Data Sets

In Chapter 4, a detailed description of the distorted data base was

given. This data base contained coding distortions, wideband controlled

distortions, and frequency variant controlled distortions. There are

several points which should be made about this data base. First, it was

heavily loaded with frequency variant distortions because it was felt that

considerable improvement in objective quality measures might be achieved

by better understanding the frequency variant perceptual effects. Hence,

measures tested over the set of all distortions, called ALL, is of consid-

erable interest, and represents a lower limit on the performance of any

measure.

However, an ensemble of distortions which contains as many fre-

quency variant distortions as this data base does not represent a good

estimate of a true coding environment. Hence, a second major distortion

set was identified, called WBC (wide band distortions) which, in the

opinion of the researchers, gives a better estimate of the true behavior of

the measures in a true coding environment. A description of the distortion

set WDB is given in Table 6.2.2-i.

In addition to WDB, a total of seven additional data subsets were

identified and used. These were WFC (waveform coders), CODE (coding
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Coding # of
Distortions Cases WBD WFC CODE CON WBN NBN BD PD ND

ADPCM 6 X X X
APCM 6 X X X
CVSP 6 X X X
ADM 6 X X X
APC 6 X X X
LPC 6 X X
VEV 12 x X
ATC 6 X X X

Controlled
Distortion

Additive Noise 6 X X X X X
Low pass filter 6 X X
High pass filter 6 X X
Band pass filter 6 X X
Interruption 12 X X
Clipping 6 X X
Center clipping 6 X X
Quantization 6 X X X X
Echo 6 X

Frequency
Variant

Additive colored 36 X X

noise
Banded pole 78 X X

distortion
Banded frequency 36 X x

distortion

Table 6.2.2-1. SUBCLASSES OF DISTORTIONS USED AS PART OF THIS RESEARCH
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distortions), CON (controlled distortion), WBN (wide band noise), NBN

(narrow band noise), BD (band distortion), and PD (pole distortions). The

contents of these various sets are also shown in Table 6.2.2-2.

6.2.3 The Subjective Data Set

In all, the subjective data base contains 20 subjective results per

distortion. Although 18 of these were used in the total data analysis of

this study, the emphasis in on the results on only a few. This includes CA

(composite acceptability), TBQ (total background quality), and TSO (total

system quality) for the isometric measures, and all the parametric results

for the parametric measures. Of these, CA was considered most important,

and most major isometric results are based on this measure.

6.2.4 Non-parametric Rank Statistics

An important part of this study was the comparison of different

analysis methods and parameterizations for their ability to better predict

subjective results. Based on our figures-of-merit, correlation coeffic-

ients and standard deviation of error, it is easy to rank these methods

with respect to one another. The problem is that the specific statistical

environment for our tests, namely correlation coefficient estimates with

non-zero centered correlation coefficients across correlated sample sets,

has not been widely treated in the literature.

In order to get some statistical handle on this problem, non-

parametric pairwise rank statistics were used. In this approach, treat-

ments are always treated in pairs, so that the question being asked is

always if one treatment is better than the other. The data base is then

scanned to find all cases where two measures differ only in that one of the

measures has received treatment 1 and the other has received treatment 2.
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I

The null hypothesis is that the treatments make no difference. If this

were true, then each of the treatments would be ranked first in the pairs

in about one-half of the cases. Let there be N such cases, and let the rank

of the first treatment (either I or 2) be given by RK(l,n), 1< n < N. Then

the rank statistic which is formed, called RS, is given by

N

RS I RK(1,n) 6.2.4-1
N n=1

This statistic varies between I and 2. If it is equal to I, then the first

treatment was always ranked first. If it is equal to 2, then the first

treatment is always ranked second.

N N+l
RS can only take on a finite set of values, namely g , - ,..,

2N- I 2N N+ct
-1 . The probability is that RS takes on a value - is given by

N N N

N!

N+r - a! (N-)! 6.2.4-2
prod 2N

N+ct

Hence, the probability that RS takes on a value of (--) or less is given by
N

prob (RK < N+a) " =1 a N! 6.2.4-3
N 2 N a=0 a!(N-a)!

From this relationship, it is always easy to compute the significance of a

ranking in the usual sense.

For multiple values of the same parameter (i.e., multiple treat-

ments of the same type), all possible pairwise rankings were done. An

example of the results of such an analysis for four parameter values is

given in Table 6.2.4-1. Above the diagonal in the matrix is placed the
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PARAMETERS

2 3 4

1 RS12 RS13 RS14

2 SL12(N12) RS23 RS24

3 SL13(N[3) SL23(N23) RS34

4 SL14(N14) SL24(N24) SL34(N34)

RSXY = Rank statistic between parameters
X & Y (equ. 6.2.4-1)

SLXY = Significance limit (in the probability domain)
for the X-Y rank statistic

NXY = Number of samples available for computing RSXY

Table 6.2.4-1. EXAMPLE LAYOUT FOR THE RESULTS OF A

FOUR PARAMETER PAIRED RANKING TEST
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pairwise values for RS. Below the diagonal is placed the one-sided proba-

bility limit. For significance at the .01 level, this number must be below

.01, and for significance at the .05 level, it must be below .05.

The pairwise ranking test described here is a relatively weak

statistical test. It has been adopted because it does give some statisti-

cal insight into the significance of the test results, and because many of

the results reported here are very strong.

6.3 The Spectral Distance Measure Results

A total of 192 variations of the spectral distance measures

described in Chapter 3 were included as part of this study. Any of these

spectral distance measures can be described by four conditions. First, the

spectral distance measure may be between linear spectra, log spectra, or a

spectrum taken to the 6 power. If the latter case is used, the value of 6

must be specified. Second, between frames, the measures are weighted by

the energy of the original signal taken to the a power. If a=0, then there

is no energy weighting. Third, the measures always involve an L norm, and
P

the value of p is important. Fourth, within frames, the distance measure

may be spectrally weighted by V(n,s,d,6)Y. If y=O, there is no spectral

weighting. In these terms, Table 6.3-1 summarizes the 192 spectral

distance measures studied here.

The total analysis performed on the 192 spectral distance measures

was linear, 3rd order nonlinear and 6th order nonlinear regression. These

analyses were performed across all nine of the distortion subsets (ALL,

WBD, WFC, CODE, CON, WBN, NBN, BD, PD) for nine subjective parameters (CA,

TBQ, TSQ, P, A, I, PP, PA, PI). In all, there were therefore 192 x 3 x 9 x

9 = 46,656 analyses. Obviously, it is unreasonable to even print this
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SUMMARY OF SPECTRAL DISTANCE MEASURES

Linear Spectral Distance Measures

Energy Weighting (a) 0 .5 1 2

Lp Norm (P) 1 2 4 8

Spectral Weighting (y) 0 1 2

Total cases = 48

Log Spectral Distance Measures

Energy Weighting (a) 0 .5 1 2

Lp Norm (P) 1 2 4 8 10 12 14 16

Spectral Weighting (y) 0 1 2

Total cases = 64

Spectral Distance Measures

Energy Weighting (a) 0

Lp Norm (P) 1 2 4 8 10 12 14 16

Spectral Weighting (Y) 0 1 2

Nonlinearity (6) .2 .3 .4 .6 .8

Total cases =90

Table 6.3-1. SUMMARY OF THE 192 SPECTRAL DISTANCE MEASURES STUDIED
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number of results. What is done, instead, is to use this new data base of

results to answer specific questions of interest about the utility of

sample spectral distance measures and the optimality of the controlling

parameters.

6.3.1 The Best Spectral Distance Measures

The first question of interest is what are the best spectral

distance measures and how good are they. Table 6.3.1-1 gives a list of the

five best spectral distance measures for CA, TSQ, and TBQ for ALL and WBD.

Several points should be noted here. First the best measure for the

spectral distance measure overall distortions for CA uses the 1 1.2 non-

linearity and uses neither energy weighting nor spectral weighting. The

1 j.2 nonlinearity is very close to the log nonlinearity over much of its

range, and indeed, two log measures are included in the top five.

The maximum correlation coefficient is -.6020, corresponding to a

standard deviation of error of 7.86. This is not very good, and even

though this is one of the better simple measures, it does not do very well.

This is a general result and clearly indicates that composite measures are

necessary if effective objective measures are to be designed.

The results over TSQ are similar, though slightly lower, than those

for CA. Here, the log measures are consistently better than those using

the 1 16 nonlinearity.

By comparison, the results for TBQ are very poor, with a maximum

correlation of only .135. Note that these correlations are all positive,

as would be expected. Since all the spectral distance measures explicitly

measure signal distortion, it is not surprising that they do a poor job on

background qualities.
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Lp Spectral Energy
p a Nonlinearly Norm Weighting Weighting

e (P) () ()

CA (ALL) .60 7.9 11 .2 2 0.0 0.0
.60 7.9 11 .2 2 0.0 0.5
.60 7.9 log 4 0.0 0.0
.59 7.9 log 2 1.0 0.0

.59 7.9 11 .2 4 0.0 0.0

CA(WBD) .63 7.0 log 2 1.0 1.0

.63 7.0 log 4 2.0 1.0

.63 7.0 log 8 2.0 1.0

.63 7.0 log 4 1.0 1.0

.63 7.0 log 2 1.0 0.5

TSQ(ALL) .57 8.8 log 2 1.0 2.0

.57 8.8 log 2 1.0 1.0

.57 8.8 log 1 1.0 2.0

.57 8.8 log 1 2.0 1.0

.57 8.8 log 1 1.0 2.0

TSQ(WBD) .64 7.5 log 8 2.0 2.0
.64 7.5 log 4 2.0 2.0

.64 7.5 log 4 1.0 2.0

.64 7.5 log 8 2.0 1.0

.64 7.5 log 4 2.0 1.0

TBQ(ALL) .14 7.2 linear 1 0.0 2.0
.13 7.2 linear 2 0.0 2.0
.13 7.2 linear 2 1.0 2.0
.13 7.2 linear 1 1.0 2.0
.13 7.2 linear 4 2.0 2.0

TBQ(WBD) .23 6.2 11 .6 1 0.0 2.0
.23 6.2 11 .4 1 0.0 2.0
.23 6.2 11 .8 1 0.0 2.0
.23 6.2 11 .6 1 0.0 1.0
.22 6.2 11 .8 1 0.0 1.0

Table 6.3.1-1. Best Five Spectral Distance Measures for CA, TSQ,
and TBQ Across ALL and WBD.
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The correlations of all the measures over the WBD set show about a

.03-.08 point improvement over the ALL set. This, of course, is a more

realistic estimate of how these parameters would perform on true coding

distortions. Here, the best result for CA is P = -. 6345 witha e= 7.086 and

for TSQ is p = .6427 with a e= 7.67, with the log nonlinearity always the

best. The results for TBQ are once again very poor, though significantly

better than for ALL.

6.3.2 The Effect of Energy Weighting

The effect of energy weighting was tested for spectral distance

measures using the ALL and WBD data sets, for four groupings: all spectral

distance measures; log spectral distance measures; linear spectral

distance measures; and j j spectral distance measures. The composite

rank analyses for this test is shown in Table 6.3.2.

The results for energy weighting here are very clear. Energy

weighting does not help. The ranking for a is 0 - .5 - I - 2, where 0 or no

weighting is best. This is a very strong result for all the spectral

distance classes. Note also that the only deviation from this strong (in

fact, perfect) result occurs in the linear spectral distance case. How-

ever, linear spectral distance measures consistently perform poorly, so

these deviations are of little interest.

6.3.3 The Effects of Spectral Weighting

The effects of weighting the spectral distance measure in the

frequency domain by IV(ns,d,O)l was tested for ALL and WBD for y = 0,1,

and 2 across the same for groups of spectral distance measure used in

section 6.3.3. The results of this study are shown in Table 6.3.3-1.
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Energy Weighting Parameter (a)

Group Tested

0 .5 1 2

All spectral 0 -- 1.04 1.02 1.00

distance .5 .4xi0-11(48) -- 1.00 1.00

measures 1 .2x0-12 (48) .4x0-14 (48) -- 1.00

2 .4x104 (48) .4x104 (48) .4x104 (48) --

0 .5 12

Log spectral 0 -- 1.00 1.00 1.00

distance .5 10-6 (20) -- 1.00 1.00

measures 1 10 (20) 10 (20) -- 1.00

10-(20) 10-(20) 10-(20) --

0 .5 1 2

Linear spectral 0 -- 1.00 1.00 1.00

* distance .5 .2x0-5 (16) -- 1.00 1.00

4 measures 1 .2x0-5 (16) .2xi0-5 (16) -- 1.00

2 .2x0-5 (16) .2x10-5 (16) .2x0-5 (16) --

0 .5 1 2

.j spectral 0 -- 1.67 1.08 1.00

distance .5 .019(12) -- 1.00 1.00

measures 1 .003(12) .002(12) -- 1.00

2 .002(12) .002(12) .002(12) --

Table 6.3.2. RANK TEST RESULTS FOR ENERGY WEIGHTING

Each frame was weighted by the energy in
the undistorted speech frame to the a power.
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Spectral Weighting Parameter (y)

0 2

All spectral 0 -- 1.84 1.50

distance 1 .5x10- (32) -- 1.28

measures 2 .57(32) .01(32) --

Log spectral 0 1 2

distance 0 -- 2.00 1.31

measures I *15x10- (16) -- 1.06

2 .10(16) .2xl10- (1.6) --

0 1 2

Linear spectral 0 -- 1.68 1.68

distance 1 .10(16) -- 1.50

measures 2 .10(16) .59(16) --

Table 6.3.3-1. RANK TEST RESULTS FOR SPECTRAL WEIGHTING BY
V(m,p,d,e)'y FOR SPECTRAL DISTANCE MEASURES.
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The consistent result here is that the second case, y l, is signifi-

cantly better than Y=0 at both the .05 and .01 level, but is significantly

better than y=2 at only the .1 level. Once again, this result is weaker

for the case of linear spectral distance measures. So the basic result is

that y=l should be used, but this is a weak statement.

6.3.4 The Effects of L Averaging
p

The effects of L averaging in the frequency domain for p = 1,2,4,
P

8,10,12,14, and 16 were tested for ALL and WBD across the same spectral

distances groups as in the last two tests. The results of the study are

given in Table 6.3.4-1.

When viewed across all the spectral distance measures, the results

are mixed, with p=l best, but not significantly so. However, the individ-

ual results here show a very different picture. The linear spectral

distance measures, the ranking is p = 1-2-4-B, where every result is

significant at the .01 level. Since linear spectral distance does not

perform well, this is not an interesting result. For the log spectral

distance measure, the ranking is p = 4 - 8 - 2 -11 - 10 - 12 - 14 - 16,

where the only non-significant results occur between the 4 and 8 levels.

(Note that the lack of significance generally associated with the 10 - 12 -

14 - 16 levels is due to the lack of samples.) This is a very powerful and

interestingresult since most researchers have used p=l or p=2 in utilizing

log spectral distance measures. These results clearly show that a value of

p between 4 and 8 will work better.

The results for I lyspectral distance measure are mixed. This is

clearly expected since this measure, in a sense, forms a bridge of non-

linearities between the linear (6=1) and the log (6.33) nonlinearity.
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12 4 8

Linear 1 1.00 1.00 1.00Spectral -
Distance 2 .2x0-3 (12) --- 1.00 1.00

-itne3 -3Measures 4 .2x10 (12) .2xi0 (12) --- 1.00

8 .2x10-3 (12) .2x0-3 (12) .2xi0-3 (16) ---

116 1 1.25 1.05 1.00

Spectral 2 .02(20) --- 1.00 1.00

4 .2x10-4 (20) 10- 6(20) --- 1.00

8 10-6 (20) 10-6(20) 10-6(20) ---

Table 6.3.4-1(b). RANK TEST RESULTS FOR Lp NORM
FOR SPECTRAL DISTANCE MEASURES
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6.3.5 The Effect of the Pointwise Nonlinearity

In the study of the effects of the pointwise nonlinearities, the

cases considered were I for 6 = 1,.2,.3,.4,.6, and .8 plus log. The

results are shown in Table 6.3.5-1.

The basic result here is that the ranking is .2 - log - .3 - .4 - .6

-.8 - I where there is no significant difference between the 6=.2 case and

the log, but all other differences are significant at the .01 level. This

means that (1) a nonlinearity should be used (linear was ranked lowest),

and (2) the log, 12 , and 11"3 give very similar results. These three

functions are indeed very similar over most of their ranges.

6.3.6 The Effects of Other Subjective Measures

Table 6.3.6-1 shows the maximum correlation value found for

spectral distance measures over ALL and WBD for nine different isometric

subjective quality measures available from the DAM; Composite Acceptabil-

ity, CA; Total System Quality, TSQ; Total Background Quality, TBQ; para-

metric Pleasantness, PP; Parametric Intelligibility, PI; Parametric

Acceptability, PA; raw Pleasantness, P; raw Intelligibility, I; and raw

acceptability, A. The maximum values are given here, since they were

fairly representative of the overall results for the entire subjective

parameter.

Several things are noteworthy here. First, note, as before, TBQ is

not tracked well by the objective measures. Second, note that the behavior

is similar over all the measures, but with intelligibility measures (PI and

1) being tracked better than the rest. The worst tracking of a system

quality was for pleasantness (PP and P), with acceptability showing inter-

mediate behavior. a
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6.3.7 The Effects of Different Distorted Data Bases

Table 6.3.7-1 shows the results for the best spectral distance

measures for CA, TSQ, and TBQ over all the distorted data base subsets (see

section 6.2.2). There are several surprising features of this data.

First, the performance of the individual measures of many of the subsets is

surprisingly uniform. This suggests there is only a slight gain to be

expected from these measures if there is a preclassification step in the

analysis. Another interesting result is the measures performance on wide

band noise vs. narrow band noise. It does outstandingly on narrow band

noise, and not very well on wide band noise. This is probably due to the

fact that no energy measurement is included in these spectral distance

measures.

6.3.8 The Effects of Nonlinear Regression Analysis

In order to study the effects of using higher order regression

analysis, the CA, TSQ and TBQ subjective measures were tested for third and

sixth degree regression analysis across the ALL and WBD distorted data

base. Table 6.3.8-1 gives a compilation of these results for the best

measures observed. In both the CA and TSQ cases, it would appear that one

obtains remarkable improvements by going to higher order regression

analysis. In the most remarkable case, sixth order WBD across CA gives a

correlation of .98 and a o on only 1.7. One must be very careful ine

analyzing these results. Clearly, the more parameters in the nonlinear

approximation which are set optimally, the better the results will be.

This, of course, is a mathematical certainty. As we allow larger higher

order regressions, at some point we begin to track the noise in the system.

In this sense, the numbers presented here should be considered approximate
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DISTORTION
SET

CA TSQ TBQ

ALL P -.60 -.57 .13
7.8 8.8 7.2

WBD p -.63 -.64 .23
^7.0 7.7 6.0

CODE p -.65 -.64 -.30
6.1 6.8 6.6e

CON p -.63 -.64 .21

e 8.3 8.6 7.5

WBN p -.58 -.57 -.29

e 6.2 7.1 6.5

NBN p -.92 -.83 -.87
0 e 3.6 3.4 3.8eI

BD p -.65 -.67 -.50

e 5.6 7.6 4.1

PD p -.67 -.67 -.30

e 6.0 6.2 7.4

Table 6.3.7-1. MMIMUM CORRELATION VALUES FOR SPECTRAL
DISTANCE MEASURES FOR CA, TSQ, AND TBQ
OVER THE DIFFERENT SUBSETS OF THE DISTORTED

DATA BASE.
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CA

1st 3rd 6th

Order Order Order

ALL p .60 .69 .80
7.8 7.1 5.8

e

WBD p .63 .73 .98
7.0 6.1 1.7

e

TSQ

Ist 3rd 6th
Order Order Order

A

ALL P .57 .64 .75
8.8 8.2 7.0

e

WBD P .64 .70 .88
a 7.7 7.1 4.61

e

TBQ

1st 3rd 6th

Order Order Order

ALL p .14 .28 .44
a 6.0 6.9 6.4

e
A

WBD p .23 .42 .84
^ 6.0 5.5 3.3
e

Table 6.3.8-1. THE EFFECTS OF NON-LINEAR
REGRESSION ANALYSIS ON

SPECTRAL DISTANCE MEASURES.
ONLY MAXIMUM RESULTS ARE
SHOWN.
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upper limits on the performance of measures based on higher order regres-

sion models.

In spite of the above warning, these results are very promising.

Certainly, the third order effects are probably attainable in a real

system. Because of the apparent improvement attainable from these poly-

nomial pointwise nonlinearities, it would be of great interest to investi-

gate other forms of this nonlinearity.

For the case of TBQ, the improvements are equally remarkable. How-

ever, as before, the spectral distance measures are relatively ineffective

at predicting the subjective background quality.

6.4 Simple Noise Measures

The simple noise measures studied, as described in Section 3.3.3,

include both the ordinary SNR and the "short time" SNR. In this study,

only four measures were studied: the ordinary SNR and the short time SNR

with 6 = .5, 1, and 2. In all the short time studies, the frame interval

was taken to be 256 points. Previous researchers [6.11 have indicated that

this measure is relatively insensitive to the frame interval. This

measure, of course, is only meaningful over the waveform coders and those

controlled distortions which can be thought of as being additive noise.

Hence, these measures were only tested across WFC (waveform coders) and ND

(noise distortions). Table 6.4-1 shows the results of these experiments.

The first obvious point here is that the traditional SNR is not a

very good objective measure. By comparison, all forms of the short time

SNR always perform better. The performances of all the measures are

comparable over the WFC and ND distortion sets, and this should be a good

estimate of their expected performance in real coding tests. The best
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W4FC ND

SNR .24 8.8 .31 8.8

Short time SNR (6 .5) .76 5.6 .77 5.9

Short time SNR (6=1) .77 5.7 .78 6.0

Short time SNR (6 2) .75 5.5 .77 5.9

Table 6.4-1. RESULTS FOR SNR AND SHORT TIME
SNR FOR CA ACROSS WFC AND ND
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value of 6 was found to be 1, though the differences between the three

values were small.

The clear point here is that the short time SNR is clearly superior

to the traditional SNR, and should replace this measure whenever possible.

6.5 The Parametric Distance Measures

The parametric distance measures, as discussed in Section 3.3.2,

can be divided into seven classes; feedback coefficient distance measures;

log feedback coefficient distance measures; PARCOR distance measures; log

PARCOR distance measures; area ratio distance measures; log area ratio

distance measures; and the energy ratio measure. In the experimental

study, the first six measures were studied as a group, while the energy

ratio measure, because of its wide use, was studied separately. In all, 38

forms of the energy ratio measure and 72 forms of the other measures were

studied. The overall experimental philosophy was the same for these

measures as for the spectral distance measures, and a similar set of

experiments were conducted. These are isometric measures, so, as before,

the ALL and WBD distortion subsets are used to predict their effectiveness.

Within each of the seven classes of parametric distance measure,

the particular distance measure may be described by two conditions: the

value of p in the Lp norm; and the energy weighting parameter, a. In terms

of these parameters, Table 6.5-1 describes the measures tested for each of

the seven classes.

6.5.1 The Best Parametric Distance Measures

The best parametric distance tested was found to be theL log area

ratio measure without energy weighting. This measure has a correlation

coefficient of -.62 for CA across ALL, and a correlation coefficient of
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Energy
Lp Norm (P) Weighting(a) Total

Linear feedback 1, 2, 4 0, 1, 2 9

Log feedback 1, 2, 4 0, 1, 2 9

Linear PARCOR 1, 2, 4 0, 1, 2 9

Log PARCOR 1, 2, 4 0, 1, 2 9

Linear area ratio 1, 2, 4 0, 1, 2 9

Log area ratio 1, 2, 4 0, 1, 2 9

Energy ratio measure .25,.5,1,2,4,8 0,.25,.5,1,2,4,8 38

Table 6.5-1. SUMMARY OF PARAMETERS FOR

PARAMETRIC DISTANCE MEASURES
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-.65 for CA across WBD. This is a very important result, for it says that

this parametric distance measure performed better than any of the spectral

distance measures. Since this measure is an order of magnitude more

compact to compute, this is a very important result.

Tables 6.5.1-1 through 6.5.1-7 give the best six measures for each

of the seven categories for CA across ALL and WBC. The only two of these

measures which show any promise are the log area ratio distance measure and

the energy ratio distance measure. The results for these two measures will

be presented in more detail.

6.5.2 The Log Area Ratio Measure

The results for the log area ratio measure tests are summarized in

Table 6.5.2-1, which gives the results of all the log area ratio measures

studied for CA, TSQ, and TBQ across CA and WBD. In each case, the log area

ratio measure performs comparable to but better than the corresponding

spectral distance measure. Like the spectral distance measure, perfor-

mance was relatively poor for TBQ.

Table 6.5.2-2 shows the maximum results for the log area ratios

across the other distortion subsets for CA. Here, once again, the results

are comparable to but better than those from the spectral distance

measures.

Table 6.5.2-3 shows the effects of third order and sixth order

nonlinear regression. Improvements here are also comparable to those from

spectral distance measures.

Examination of the data also shows other similarities to the spec-

tral distance results. For the log area ratio, no energy weighting is

best, followed by energy weighting to the first, then second power.
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- - - - - -

CA (ALL)

p e p

.06 9.8 1 0

.06 9.8 2 0

.04 9.8 1 1

.03 9.8 2 1

.03 9.8 1 2

.03 9.8 2 2

CA (WBD)

0 ^

.14 8.9 2 0

.14 8.9 1 0

.12 8.9 2 1

.12 8.9 1 1

.11 8.9 2 2

.08 8.9 1 2

Table 6.5.1-1. BEST SIX RESULTS FOR LINEAR
FEEDBACK PARAMETRIC DISTANCE MEASURE
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CA (ALL)

p ae pt e

.1 9.8 1 0

.10 9.8 2 0

.05 9.8 1 1

.05 9.8 2 1

.04 9.8 1 2

.04 9.8 2 2

CA (WBD)
^P a P a

e

.32 8.5 2 0

.31 8.6 1 0

.29 8.6 2 1

.28 8.6 1 1

.26 8.6 2 2

.25 8.7 1 2

Table 6.5.1-2. BEST SIX RESULTS FOR LOG PARCOR
PARAMETER DISTANCE MEASURE
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CA (ALL)

.11 9.8 1 0

.11 9.8 2 0

.06 9.8 1 1

.06 9.8 2 1

.05 9.8 1 2

.05 9.8 2 2

Aa

.33 8.5 2 0

.32 8.5 1 0

.31 8.5 2 1

.30 8.6 1 1

.28 8.6 2 2

.27 8.6 1 2

Table 6.5.1-3. BEST SIX RESULTS FOR LOG FEEDBACK
COEFFICIENT PARAMETRIC DISTANCE MEASURE
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CA (ALL)

p a p ai e

.24 9.6 1 0

.22 9.6 1 1

.21 9.6 1 2

.20 9.6 2 0

.19 9.7 2 1

.18 9.7 2 2

CA (WBD)

p a p a
e

.32 8.5 1 0

.30 8.6 2 0

.28 8.6 1 1 i

.28 8.6 1 2

.27 8.6 2 1

.26 8.7 2 2

Table 6.5.1-4. BEST SIX RESULTS FOR LINEAR AREA
RATIO PARAMETRIC DISTANCE MEASURE
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CA (ALL)

P o p
e

.46 8.7 1 0

.30 9.3 2 0

.29 9.4 1 1

.21 9.6 1 2

.16 9.7 2 1

.12 9.8 2 2

CA (WC)
A

P e pe

.43 8.1 1 0

.31 8.5 2 0

.30 8.6 1 1

.24 8.7 1 2

.21 8.8 2 1

.18 8.8 2 2

Table 6.5.1-5. SIX BEST RESULTS FOR THE LINEAR
PARCOR PARAMETRIC DISTANCE MEASURE
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CA (ALL)

e

.62 7.7 1 0

.62 7.7 2 0

.62 7.8 1 1

.61 7.8 2 1

.60 7.9 1 2

.59 7.9 2 2

CA (wBC)

p 0Y p a

.65 6.8 1 0

.64 6.9 2 0

.64 6.9 1 1

.64 6.9 2 1

.64 6.9 1 2

.62 7.0 2 2

Table 6.5.1-6. BEST SIX RESULTS FOR LOG AREA
RATIO PARAMETRIC DISTANCE
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CA (ALL)

Energy
e Weighting(a)

.60 7.9 .25 0.0

.58 8.0 .5 0.0

.53 8.3 .5 .25

.51 8.5 2.5 .25

.49 8.6 1.0 1.0

.49 8.6 1.0 .50

CA (WBD)

p p Energy
e Weighting(a)

.65 6.8 .25 0.0

.63 7.0 .50 0.0

.62 7.0 .50 1.0

.62 7.0 .25 .25

.61 7.1 .50 .50

.61 7.1 .25 .50

Table 6.5.1-7. BEST SIX RESULTS FOR THE ENERGY
RATIO PARAMETRIC DISTANCE MEASURE
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pe Lp ENERGY

NORM WEIGHTING
p (a)

CA (ALL) .62 7.7 1 0

.62 7.7 2 0

.62 7.8 1 1

.61 7.8 2 1

.60 7.9 1 2

.59 7.9 2 2

CA (WBD) .65 6.8 2 1.0

.64 6.9 2 2.0

.64 6.9 1 1.0

.64 6.9 2 0.0

.64 6.9 1 2.0

.62 7.0 1 0.0

TSQ (ALL) .58 8.7 1 2.0
.58 8.8 1 1.0
.57 8.8 2 1.0
.57 8.8 2 0.0

.54 9.0 1 0.0

.52 9.1 2 0.0

TSQ (WBD) .62 7.0 2 1.0

.61 7.1 2 2.0

.61 7.1 1 2.0

.60 7.2 1 1.0

.59 7.2 2 0.0

.58 7.3 1 0.0

TBQ (ALL) .11 7.2 1 0.0
.11 7.2 2 0.0

.03 7.2 1 1.0
.2 7.2 2 1.0

.006 7.2 2 2.0

.0006 7.2 1 2.0

TBQ (WBD) .15 6.1 2 2.0

.15 6.1 1 2.0
.14 6.1 2 1.0
.13 6.1 1 1.0
.10 6.1 2 0.0

.10 6.1 1 0.0

Table 6.5.2-1. TOTAL RESULTS FOR LOG AREA RATIO PARAMETRIC
MEASURE FOR CA, TSQ, AND TBQ FOR ALL AND WED
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Distortion
Subset ae

ALL .62 7.7

WBD .65 6.8

WFC .64 6.9

CODE .62 6.2

CON .65 8.2

WBN .40 7.0

NBN .91 3.8

BD .58 6.0

PD .53 6.9

Table 6.5.2-2. THE MAXIMUM VALUES FOR CA FOR THE
LOG AREA RATIO MEASURE ACROSS
DIFFERENT DISTORTION SUBSETS
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ANALYSIS ORDER

Ist 3rd 6th
Order Order Order

p a p 0 p e
e e e

CA (ALL) .62 7.7 .64 7.5 .69 7.1

CA (WBD) .65 6.8 .66 6.7 .79 5.5

TSQ (ALL) .58 8.7 .59 8.7 .72 7.4

TSQ (WBD) .62 7.0 .63 7.0 .72 6.1

TBQ (ALL) .11 7.2 .24 7.0 .42 6.6

TBQ (W D) .15 6.1 .35 8.4 .94 3.1

Table 6.5.2-3. THE EFFECTS OF HIGHER ORDER REGRESSION ANALYSIS
ON THE LOG AREA RATIO DISTANCE MEASURE
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6.5.3 The Energy Ratio Distance Measure

The results for the energy ratio distance measure are summarized in

Tables 6.5.3-1, 6.5.3-2, and 6.5.3-3. The first table gives maximum

results for CA, TSQ, and TBQ over CA and WBD. The second table gives

maximum results for CA over the other distortion subsets. The third table

shows the results of nonlinear regression analysis.

The energy ratio distance measure does quite well in all tests, but

it is not able to quite match the performance of either the log area ratio

measure or the best spectral distance measure. The general performance of

all three of these measures is very similar, with the energy ratio measures

being the poorest of the three. This is probably because these measures

are measuring very similar features of the speech distortions.

6.6 Frequency Variant Measures

There are two basic classes of frequency variant measures studied

as part of this research: frequency variant spectral distance measures;

and frequency variant noise measurement. For both cases, the frequency

range 200-3200 Hz is divided into six bands, as shown in Table 6.6-1. The

individual measures for each of the bands is then computed, and the overall

objective measure is formed as an optimally weighted sum of the subband

results.

6.6.1 The Frequency Variant Spectral Distance Measures

The parameters controlling the frequency variant spectral distance

measures are the same as those controlling the spectral distance measures.

These include four conditions. First, the distance measure may be between

linear spectra, log spectra, or spectra taken to the 6 power. Second, the
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CA WBD

p a ep ae

CA .59 7.9 .65 6.9

TSQ .54 9.0 .62 7.0

TBQ .12 7.1 .24 6.8

Table 6.5.3-1. MAXIMUM RESULTS FROM THlE
ENERGY RATIO DISTANCE MEASURE
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Distortion
Subset p

e

ALL .59 7.9

WBD .61 6.9

WFC .58 6.7

CON .59 8.7

CODE .53 6.7

WBN .47 6.7

NBN .80 5.5

BD .60 5.9

PD .57 6.7

Table 6.5.3-2. THE MAXIMUM VALUE OF CA FOR THE
ENERGY RATIO MEASURE ACROSS
DIFFERENT DISTORTION SUBSET
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ANALYSIS CODE

1st 3rd 6th
Order Order Order

p a e a ep e

WAALL) .59 7.9 .64 7.6 .64 7.5

CA(WBD) .65 6.9 .66 6.7 .68 6.6

TSQ(ALL) .54 9.0 .38 8.8 .60 8.6

TBQ(ALL) .62 7.0 .63 7.0 .65 6.8

T13Q(ALL) .12 7.1 .24 7.0 .69 5.2

TBQ(WBD) .24 6.8 .30 6.7 .36 6.4

Table 6.5.3-3. THE EFFECTS OF HIGHER ORDER REGRESSION
ANALYSIS ON THE ENERGY RATIO DISTANCE MEASURE
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BAND NU1MBER RANGE (HZ)

1 200-400

2 400-800

3 800-1300

4 1300-1900

5 1900-2600

6 2600-3400

Table 6.6-1. FREQUENCY BANDS USED FOR THE FREQUENCY
VARIANT OBJECTIVE MEASURES
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distance measure may be frequency weighted by the energy spectrum,

V(n,sd,e) ¥ . Third the measure may be time weighted by the energy of the

frame taken to the a power. And finally, of course, an Lp norm is evolved,

and the value of p is an important parameter. In all, a total of 96

variations of these measures were studied. These measures are summarized

in Table 6.6.1-1.

Table 6.6.1-2 shows the results for the five best log spectral

distance measures. As can be seen, the use of frequency weighting improves

the spectral distance results by about .1 points in the correlation

measure. Also, it was found that the same log spectral distance measures

which did well in the non-frequency-variant cases did well in the frequency

variant cases as well.

Table 6.6.1-3 shows the results for the five best linear spectral

distance measures. Here, the improvement from the non-frequency-variant

case is remarkable. Not only is the frequency variant linear spectral

distance measure better than the non-frequency-variant case, it is better

than the log measure also. This is an important result.

An important point about these frequency variant measures is that

they are "tunable" for parametric as well as isometric subjective quality

measures. Hence, correlation analyses were performed for the parametric

subjective categories of SFSHSD,SLSI,SNBNBBBF, and BR across ALL and

WBC. Table 6.6.1-4 shows some results from that study.

Qualitatively, these results are relatively easy to understand.

Basically, the frequency variant spectral distance measures did well on

frequency variant parametric subjective measures (SF,SH,SLSN,BN, and BB)

and poorly on the non-spectrally-related subjective measures (SPSI,BF,
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Linear Spectral Distance Measure

Spectral weighting parameter (Y) 0, .5, 1, 2

Energy weighing parameter (a) 0, 1, 2

Lp Norm (p) 1, 2, 4, 8

TOTAL 48

Log Spectral Distance Measure

Spectral weighting parameter (Y) 0, .5, 1, 2

Energy weighting parameter (a) 0, 1, 2

Lp Norm (p) 1, 2, 4, 8

TOTAL 48

Table 6.6.1-1. SUMMARY OF 96 FREQUENCY VARIANT
SPECTRAL DISTANCE MEASURES TESTED
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LOG FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES

Spectral Energy Lp
Condition Weighting Weighting Norm

(y) (a) (p)

CA (ALL) .68 7.2 1.0 0.0 4
.68 7.2 1.0 0.0 2
.68 7.2 2.0 0.0 8
.67 7.3 1.0 0.0 1
.67 7.3 1.0 0.0 8

CA (WBD) .72 6.2 1.0 0.0 2

.72 6.2 1.0 0.0 4

.71 6.3 1.0 0.0 8

.71 6.3 1.0 0.0 4

.70 6.4 0.5 0.0 2

TSQ (ALL) .61 8.5 1.0 1.0 2

.61 8.5 2.0 1.0 4

.61 8.5 2.0 1.0 8

.60 8.6 1.0 1.0 2

.60 8.6 1.0 0.0 4

TSQ (WBD) .64 7.7 2.0 2.0 8
.64 7.7 2.0 2.0 4

.64 7.7 2.0 1.0 4

.64 7.7 1.0 2.0 8

.64 7.8 1.0 2.0 4

TBO (ALL) .23 6.0 2.0 0.0 1

.23 6.0 2.0 0.0 2

.22 6.0 2.0 1.0 2

.22 6.0 2.0 1.0 1

.22 6.0 2.0 2.0 4

TBQ (WBD) .35 5.8 2.0 0.0 1

.34 5.8 2.0 0.0 1

.34 5.8 1.0 0.0 1

.33 5.8 2.0 0.0 2

.32 5.8 0.5 0.0 1

Table 6.6.1-2. BEST FIVE SYSTEMS FOR EACH CATEGORY FOR LOG
FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES
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LINEAR FREQUENCY VARIANT SPECTRAL DISTANCE MEASURE

Spectral Energy Lp
Weighting Weighting Norm

Condition y) (ct) (p)

CA (ALL) .68 7.2 0.0 2 1
.68 7.2 0.0 2 2

.68 7.2 0.5 2 1

.68 7.2 0.0 1 1

.68 7.2 0.0 2 4

CA (WBD) .72 6.2 0.0 2 1
.71 6.3 0.0 2 2
.70 6.4 0.0 1 1
.70 6.4 0.0 1 2
.70 6.4 0.5 2 1

TSQ (ALL) .61 8.5 0.5 2 1
.61 8.5 1.0 2 1
.61 8.5 0.5 2 2
.61 8.5 0.5 1 1
.61 8.5 1.0 1 1

TSQ (WBD) .68 7.3 0.0 2 1

.67 7.4 0.5 2 1

.67 7.4 0.0 2 2

.67 7.4 0.5 2 2

.67 7.4 0.5 1 1

TBQ (ALL) .24 7.0 0.0 2 1
.24 7.0 0.0 1 1
.23 7.0 0.0 2 2
.23 7.0 0.0 1 2
.22 7.1 0.0 2 4

TBQ (WBD) .38 5.7 0.0 0 2
.38 5.7 0.0 1 2
.38 5.7 0.0 2 2
.38 5.7 0.0 2 4
.38 5.7 0.0 1 1

Table 6.6.1-3. BEST FIVE SYSTEMS FOR EACH CATEGORY FOR LINEAR
FREQUENCY VARIANT SPECTRAL DISTANCE MEASURES
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ALL WBD

Parametric

Subjective

Measure p P ae e

SF .61 3.8 .74 4.2

S11 .63 3.9 .73 3.9

SD .42 6.3 .26 6.7

SL .72 3.6 .81 3.6

SI .17 5.6 .19 7.9

SN .45 3.8 .55 4.2

BN .48 5.1 .23 4.0

BB .43 4.0 .26 3.5

BF .18 6.5 .38 5.4

BR .27 2.8 .21 1.8

Table 6.6.1-4. SAMPLE OF RESULTS FOR FREQUENCY VARIANT
SPECTRAL DISTANCE MEASURES USED FOR
PREDICTING PARAMETRIC SUBJECTIVE RESULTS
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and BR). The performance on several of the measures (SF,SH,SL) can be said

to be very good, while the performance on the others is moderate or poor.

6.6.2 Frequency Variant Noise Measurements

The frequency variant noise measures studied include both the

frequency variant form of the ordinary SNR and the frequency variant form

of the short time SNR. Only the one form of the frequency variant SNR was

tested. However, 49 versions of the short time frequency variant SNR were

tested. These different measures are characterized by two parameters. The

first parameter, the energy weighting parameter a , controls the time

domain weighting by the energy of the original speech. The second, 6

controls the power to which the log of the measure is taken (see 3.4.2).

In terms of these parameters, the 49 cases studied are shown in Table

6.6.2-1.

Of course these noise measures, like all noise measures, cannot be

used across the whole distorted data base. Hence, these tests were only

run across WFC, WBN, NBN, BD, and PD. The most important of these is WFC

(waveform coders), since it represents an estimate of the measures' per-

formance in a real coding environment.

Table 6.6.2-2 shows the results for WFC. The first noteworthy point

is that these are outstanding results, with the best measure having a

correlation coefficient of .93 and a a of only 3.28. Note also that thise

is not an isolated measure, but that several forms of the measure come

close to this performance.

In order to test the best values for the various parameters, a rank

order study was done on both a and S. The results of these studies are

shown in Tables 6.6.2-3 and 6.6.2-4. As can be seen, the ranking for 6 is
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Banded Short Time SNR

Energy Weighting (a) 0,.25,.5,1,2,4,8

Power of log (6) 0,.25,.5,1,2,4,8

TOTAL 49

Table 6.6.2-1. SUMMARY OF 49 SHORT TIME BANDED

SIGNAL-TO-NOISE RATIO MEASURE
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Energy Powe r
Weighting Parameter

p aY 1 6
e

CA (WFC) .93 3.3 0.0 .25
.93 3.3 0.0 .50
.93 3.3 .25 .25
.93 3.3 .25 .50
.93 3.3 .50 .25

TSQ (WFC) .81 3.6 0.0 .25
.81 3.6 0.0 .50
.81 3.6 .25 .25
.81 3.6 .25 .50
.81 3.6 0.0 1.00

TBQ (WFC) .93 2.9 0.0 .25
.93 2.9 .25 .25
.93 2.9 0.0 .50
.93 2.9 .25 .50
.93 3.0 .50 .25

Table 6.6.2-2. BEST FIVE RESULTS FOR BANDED
SHORT TIME SNR MEASURE ACROSS WFC
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Energy Weighting Parameter (a)

0 .25 .50 1.0 2.0 4.0 8.0

0 --- 1.0 1.0 1.0 1.0 1.0 1.0

.25 .008(7) 1.0 1.0 1.0 1.0 1.0

.5 .008(7) .008(7) --- 1.0 1.0 1.0 1.0

1.0 .008(7) .008(7) .008(7) --- 1.0 1.0 1.0

2.0 .008(7) .008(7) .008(7) .008(7) --- 1.0 1.0

4.0 .008(7) .008(7) .008(7) .008(7) .008(7) --- 1.0

8.0 .008(7) .008(7) .008(7) .008(7) .008(7) .008(7) ---

Table 6.6.2-3. RESULTS OF THE PAIRWISE RANKING TEST FOR THE ENERGY

WEIGHTING PARAMETER, a , FOR THE SHORT TIME SIGNAL-

TO-NOISE RATIO
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Power Parameter

6

.25 .5 1.0 2.0 4.0 8.0

.25 --- 1.14 1.0 1.0 1.0 1.0

.5 .06 (7) --- 1.0 1.0 1.0 1.0

1.0 .008(7) .008(7) --- 1.0 1.0 1.0

2.0 .008(7) .008(7) .008(7) --- 1.0 1.0

4.0 .008(7) .008(7) .008(7) .008(7) --- 1.0

8.0 .008(7) .008(7) .008(7) .008(7) .008(7) ---

Table 6.6.2-4. RESULTS OF THE PAIRWISE RANKING TEST FOR THE POWER

PARAMETER FOR THE BANDED SHORT TIME SIGNAL-TO-

NOISE RATIO
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.25-.5-1-2-4-8, with .25 and .5 giving similar results. The ranking fora

is 0-.25-.5-1-2-4-8. So, as before, the best energy weighting is no energy

weighting.

6.7 The Composite Distance Measures

The composite distance measures studied in this research were

always taken to be linear sums of up to six of the simple or frequency

variant measures already discussed. Basically, there were two types of

composite measures studied: measures without preclassification and

measures with preclassification. In the measures without preclassifica-

tion, exactly the same composite objective measure was applied to all the

distortions under study. In the measures with preclassification, each of

the distortions was assigned a class, and a different composite measure was

applied to each class. The preclassification technique was not exten-

sively explored in this study, but was only used to differentiate the

spectral coders, such as vocoders, from those coders which could be consid-

ered as signal plus noise.

The composite measures were used in two ways in this study. The

first use was to determine if different single measures were really measur-

ing the same quantity or were measuring some different quantity. If they

measure the same quantity, then the correlation coefficient based on their

composite measure show only slight improvement. If they measure a differ-

ent quantity, then the correlation coefficient show more improvement.

The second use for the composite measure was to search for a reason-

able measure to be used in an objective quality testing system which

attempts to predict the subjective results from the objective results. Two

Points should be made about this study. First, since the optimization of
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the composite measure involves the setting of certain of the parameters

based on the data, the results found here are limits on the performance of

these measures, and other tests need to be made concerning their robustness

Second, the composite measure technique used here is essentially a "bulk"

technique which allows the automated study of a number of combinations

rather easily. It is undoubtedly true that some additional gain might be

obtained from studying the measures "by hand", using interactive graphics,

and making appropriate pragmatic changes in the definitions of the objec-

tive measures.

6.7.1 The Composite Measure Used to Measure Mutual Information

In this part of the study, a large number of six wide composite

measures were designed to find to what extent the correlation coefficient

could be improved by combining the results of specific groups. For

example, composite measures were made from all log spectral distance

measures. This would answer the question of whether all the log spectral

distance measures really contained similar information, or if some con-

tained different information. Similarly, composite measures between log

spectral distance measures and log area ratio measures would determine if

they measured different information. By no means are these tests all

inclusive, but they do represent a reasonable sampling of the effects.

Table 6.7.1-1 gives a summary of the maximum results for the classes

studied for CA across WBC and, where appropriate, WFC.

The results here can be summarized as follows. First, from line I,

all the log spectral distances contain similar information. This is true

to a lesser extent (line 2) of all classes of spectral distance measures.

From line 3, the best parametric measures, the log area ratio, and the best

2
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OBJECTIVE MAXIMUM MAXIMUM DISTORTION
QUALITY SINGLE COMPOSITE SUBSET
MEASURES ^4ESULT RESULT

p a p ee e

1. 1 .63 7.0 .64 6.9 WBD
2. 1,2,3 .63 7.0 .67 6.7 WBD
3. 1,11 .65 6.8 .69 6.6 WBD
4. 1,2,3,6,7,8,9,10,11,12 .65 6.8 .75 6.0 WBD
5. 11,12 .65 6.8 .67 6.7 WBD
6. 1,2,3,15 .72 6.2 .74 6.0 WBD
7. 4,5 .77 5.7 .78 5.7 WFC
8. 13,14 .93 3.3 .93 3.3 WFC
9. 4,5,13,14 .93 3.3 WBD

10. 10,11 .65 6.8 .69 6.6 WBD
11. 8,9,10,11 .65 6.8 .70 6.5 WBD
12. 6,7,10,11 .65 6.8 .70 6.6 WBD

1. Log Spectral Distance 9. Log Parcor Distance
2. Linear Spectral Distance 10. Linear Area Ratio
3. Spectral Distance 11. Log Area Ratio
4. SNR 12. Energy Ratio
5. Short Time SNR 13. Frequency Variant SNR
6. Linear Feedback Distance 14. Frequency Variant Short Time
7. Log Feedback Distance SNR
8. Linear Parcor Distance 15. Frequency Variant Spectral

Distance

Table 6.7.1-1. RESULTS OF THE COMPOSITE DISTANCE MEASURE TESTS
TO MEASURE MUTUAL INFORMATION AMONG DIFFERENT
DISTANCE MEASURES
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spectral distance measures contain some separate information, but are

really also quite similar.

In studying the parametric measures, we see that the whole para-

metric set when combined with the whole spectral distance set (recall 6

systems from this group is still all that is involved) a reasonable

improvement is obtained. This illustrates a more or less general phenom-

enom which was observed. That is that often more improvement was obtained

by combining a good measure with a bad measure of a vastly different type

than from combining two or more similar good measures. Evidently, the

better parametric measures are measuring similar information as the

spectral distance measures (line 3), and likewise, the better parametric

measures contain similar information (line 5). However, when some of the

less good parametric measures are included (linc.s 4, 10, 11, 12), better

overall results are obtained.

In the non-frequency-variant noise measures (line 7), the addition

of the SNR to the short time SNR adds little. Similarly, in the frequency

variant case (line 8), the addition of the frequency variant SNR adds

little to the frequency variant short time SNR. In fact, including all

these measures together (line 11) adds little to the frequency variant

short time SNR.

Finally, it should be noted that the addition of simple spectral

distance measures to frequency variant spectral distance measures (line 6)

adds little information not available from the frequency variant case

above.
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6.7.2 Composite Measutes for Maximum Correlation

Because the study of the composite measures was a very time consum-

ing task, it was impossible to study a large number of them in detail

Basically, the results from all of the correlation studies plus the results

from section 6.7.1 were used to guess at what might be good measures. In

all, 12 measures without preclassifications and 8 measures with preclassi-

fication were studied. Table 6.7.2-1 describes the best of each of these

types of measures and shows their results across ALL and WBD for CA, TSQ,

and TBQ.

Several points should be made about these results. First, these are

maximum obtainable results, and the robustness of these measures has not

been tested. Second, the remarkable gain obtained from the preclassified

version was almost solely due to the action of the short time frequency

variant signal-to-noise ratio measure. However, with these reservations,

these results are clearly quite good.

In a real, fieldable system for objective quality testing, it is not

clear how close to the limits observed in this study the results would be.

However, this was done across a very large data base with many degrees of

freedom, and the results here are the best estimates available at this

time.
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BEST COMPOSITE MEASURE WITH PRECLASSIFICATION

CLASS: SYSTEMS WHICH ARE SIGNAL + NOISE
MEASURE

#
1. SHORT TIME BANDED SNR 16=1]
2. LOG AREA RATIO (=O; p-i]
3. FREQUENCY VARIANT LOG SPECTRAL [a=O; y-1.0; p- 4]
4. PARCOR lam0; p-1]
5. LINEAR SPECTRAL DISTANCE [6=1; a-2; y=O; p=2]
6. ENERGY RATIO [a -0; 6 =. 25]

CLASS: ALL OTHER SYSTEMS

MEASURE
#
1. LOG AREA RATIO [a-0; p=l]
2. FREQUENCY VARIANT SPECTRAL DISTANCE N-=0; Y-l.O; p- 4]
3. PARCOR [a-0; p-1]
4. FEEDBACK [aO; p-l]
5. ENERGY RATIO [a-O; 6=.25]
6. SPECTRAL DISTANCE [6=1; a-2; y=0; p-2]

RESULTS

CA TSQ TBq!A

-Po e P e P e

ALL .89 3.5 .88 4.0 .41 6.1
WBD .90 3.5 .90 3.9 .32 3.8

BEST COMPOSITE MEASURE
WITHOUT PRECLASSIFICATION

1. LOG AREA RATIO [-O; p-li
2. FREQUENCY VARIANT SPECTRAL DISTANCE [ci0; yil.0; p=4]
3. PARCOR [a-0; p-1]
4. SPECTRAL DISTANCE [6-1; a-2; y=0; p-2]
5. ENERGY RATIO [Ni-0; 6-.25]
6. FEEDBACK [a-0; p-l]

RESULTS

CA TSQ TBQ

p a p a p ae e e

ALL .84 4.6 .82 4.9 .38 6.2
WBD .86 4.2 .86 4.6 .48 6.0

TABLE 6.7.2-1. THE BEST COMPOSITE MEASURES DISCOVERED DURING THIS STUDY
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