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0. ABSTRACT:

This paper describes the motivation, design, implementation, and

some preliminary performance characteristics of FLAT, a macro definition

capability for creating language enhancors and translators. FLAT en-

ables the user to specify transformations through STREX, a FORTRAN-like

language, which enables the specification of macros which are then used

to interpretively alter incoming programs. FLAT is specially adapted to

the processing of FORTRAN programs. This paper shows how it can be used
as a deprocedurizer (or flattener), a dialect-to-dialect translator, a

portability and version control aid, and a device for creating language

enhancements as sophisticated as new control structures and abstract

data types.
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I. BACKGROUND AND MOTIVATION FOR PRODUCING FLAT:

Over the past several years a significant number of software analysis

tools have been produced by the University of Colorado Software Validation

Group. These tools have at least initially been largely directed towards the

needs of the Mathematical Software community. Hence they have been designed to

be portable over a wide range of machines and to analyze programs written in

FORTRAN. These two considerations have led us to code our tools in FORTRAN. As

a result we have 1) had good success in readily rehosting our tools on a variety

of machines and 2) been able to use our tools to analyze themselves, thereby

increasing our confidence in them.

Through this considerable experience with FORTRAN, we have come to deeply

understand some of the significant shortcomings of this language. As tool

implementors we have chafed at the absence of such features as flexible control

constructs and powerful data aggregation capabilities. Yet as creators of

portable tools for producing mathematical software we felt a deep commitment

to FORTRAN, the lingua franca of that community. In addition we believe that

FORTRAN is, perhaps with the exception of COBOL, the most widely available,

most nearly standardized of all high level languages, thereby giving it the

best prospects as a basis for porting programs. We also found that newer

languages, such as Pascal, which offered superior control and data aggregation

facilities usually had drawbacks of their own. For example, Pascal's block

structure is an obstacle to independent recompilation of subprocedures. This

is a serious problem during the development of large tools such as our DAVE

system[OF76, F076].

Pulled by these conflicting considerations we have chosen a course taken

by many others before us - namely to enhance the FORTRAN language in the ways

necessary to facilitate our work. A large number of FORTRAN preprocessors have

been built to enhance FORTRAN by the creation of more powerful control constructs.

We were concerned more with the need for flexibly defining and accessing powerful

data aggregates. Because the preprocessors we studied did not offer significant

capabilities of this sort, we constructed a system of our own [0CS73]. This

capability enabled us to define a rather limited class of structured data types

and access them from our standard FORTRAN source text. The implementation de-

tails of these data objects were hidden by our data structuring capability, thus

enabling us to alter our data structures without the need to alter the source
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text which accessed them. This capability proved most useful, enabling us to
construct our prototype DAVE tool with a minimum amount of trauma.

A serious weakness of this capability is that it conceals the imple-

mentation details of the data structures through the use of layers of sub-
routines. Although quite effective in concealing details, this technique
proves quite costly in execution time, necessitating the invocation of numerous

subroutines for each data access.

Because of this difficulty we turned to the consideration of a macro cap-
ability. Our first goal was to build a capability which could deprocedurize
or "flatten" our code by substituting inline the texts of subroutines in place
of the subroutine invocations. We conceived of the subroutine text as being a
sort of macro definition and the subroutine call as being a parameterized

macro invocation. We produced a prototype capability of this sort and success-
fully used it to flatten the source code for our DAVE system.

According to our measurements we gained an improvement in execution

time of up to 50% by flattening only a small number of frequently executed sub-
program invocations. We then turned our attention to building a more general

macro processor to enable substantial, flexible enhancements to FORTRAN. The
key to doing this was allowing the user to define new source language statements
by declarations in the macro language. Thus, for example, superior control flow

constructs such as CASE, IFTHENELSE, and DOWHILE can readily be added to
FORTRAN by declaring them to be new statements whose semantics are established

by means of the text of the macros which define them.

The macro processor we created is called FLAT (Fortran Language Augmentation
Tool). Perhaps the most important capability which FLAT offers is the capability

for creating and accessing powerful data aggregates while hiding their implemen-
tation details, thereby adding to FORTRAN true abstract data type capabilities.
This is achieved by considering data structure declaration statements to be
Fortran language augmentations and data structure accessing constructs to be
new language operators. The definitions of the declaration and accessing con-
structs are made through macro definitions. As shall be shown these definitions
can (indeed must) share implementation details among themselves. These details
remain invisible to the source code. Thus there is complete freedom to create
and alter the implementations of data aggregates beyond the sight and control

of the FORTRAN source language coder. This inability to see or access
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implementation details qualifies this data aggregate capability as an

abstract data type definition facility in the classical sense [LZ75].

FLAT also facilitates the porting of FORTRAN programs, an important

consideration for tool developers. Although, as already noted, FORTRAN is

a widespread, standardized language, it is not entirely free of

portability problems. Numerous dialects of the language exist, offering a

variety of capabilities for handling such constructs as text strings, and

multiple precision numeric quantities. These differences are particularly

vexing to the writer of analytic tools for mathematical software, as he must

be concerned with both the manipulation of source text and the correct

analysis of code dealing with all possible numeric data types. A possible,

but unsatisfactory, solution is to create a family of versions of the tool

program, each intended for a different host compiler. The difficulty here

is that each must be maintained and, unless extraordinary care is taken,

each assumes a character of its own and incompatibilities between different

versions arise. The usual strategy is to write the preponderant majority

of the program in a portable subset of FORTRAN, such as PFORT [Ryder76] and

quarantine compiler dependencies to a very small body of code which must then

be recoded for every new host compiler. This approach has been widely used

with success but still has its drawbacks. The compiler dependent code is

usually written as a set of low level subroutines. Hence it usually is

frequently invoked, always at the undesirable cost of subroutine invocations.

In addition it still necessitates the creation and maintenance of a family

of programs with the attendant multiplication of effort and potential for

drift.

Through the use of FLAT, a single master copy of program text can be

maintained and targeted for the different host machines by translating it with

different sets of macros designed to adapt the master copy to the idiosyncrasies

of the different host compilers. This approach has been pursued in a limited

way (BM77] with good success. Our intention is to use FLAT to combine this

notion with the capabilities for creating advanced data and control constructs,

thereby enabling us to code in a very powerful, highlevel FORTRAN-like language,

yet still maintain a set of completely consistent FORTRAN-source language

versions merely by performing macro expansions (see Figure 1).
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The remainder of this paper discusses the particular macro capabilities

which we have implemented in FLAT. The salient features of these capabilities

are flexibility, power, and the ease with which FLAT can be used by FORTRAN

programmers. Much of the flexibility of FLAT derives solely from the fact that

it is a macro capability. The user is free to declare any macros and define

them in any way he chooses. Hence new statement types can be added to the

language and arbitrary subroutines can be expanded as in-line code in an

arbitrary way. Additional flexibility derives from the fact that existing

statements from standard FORTRAN can be redefined according to the dictates of

user specified macros. Thus, for example, the syntax and semantics of exist-

ing FORTRAN statements can be expanded to encompass new operators. Fxamples of

this will be shown in the following section.

The power of FLAT derives in large measure from the fact that it provides

for more than a straightforward in situ text insertion capability. Macro

definitions are parameterized, and source text lines are considered to consist

of the macro identifier and an argument string. Macro definition bodins can

be constructed to analyze the argument strings and to use them as the basis

for the construction of appropriate object text. Thus, the object text

produced may vary considerably from one invocation to the next. In addition

a macro definition body is capable of creating object text and specifying

its insertion in any of three places, corresponding to the site of the macro

invocation, a location within the declaration block of the invoking program

unit, and a location completely outside of the invoking program unit. Hence

a macro invocation can cause the creation of entire utility routines and

FORTRAN declarations, as well as executable code. This is the primary vehicle

for creating and hiding the implementation of powerful data aggregates.

Finally it is important to note that care has been taken to assure that

the macro definition process is not beyond the grasp of FORTRAN programmers.

Macros are themselves defined by means of code written in STREX, a string

extended FORTRAN dialect. Thus it is expected that FORTRAN programmers could

readily learn to produce their own macros.
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II. FLAT TECHNICAL DESCRIPTION:

A. FLAT Capabilities:

FLAT is a general purpose translation system for FORTRAN software. The

key theoretical concepts behind FLAT are those of syntax directed translation and

tree transducers [Baker78, KP80]. To configure a specific translator, one

submits a context free grammar [AU72] and a set of tree macros to the FLAT sys-

tem. The rewrite rules of the grammar determine the language that the translator

will accept as input. The tree macros are programs that accomplish the desired

translation by modifying the derivation tree [AU72] of the input. Each rewrite

rule in the grammar is coupled with a tree macro. The grammar and tree r acros

that configure a translator are termed a translation specification.

Once a translator has been configured, it will transform a segment of

text as follows. If the submitted text is not in the language generated by

the translator's grammar then errors are issued where appropriate and the text

is output unmodified. Otherwise a derivation tree for the text is built where

each vertex in the tree corresponds to a rewrite rule and hence a tree macro.

These tree macros are invoked when their associated vertices are reached in a

traversal of the derivation tree. This activity results in a modification of

the derivation tree. The string derived by this modified tree is then output

as the desired translation.

It is important to note that the idea of producing a source code trans-

formation system is not new with this effort. Boyle has produced a system,

TAMPR [BrI77], based on the notion of supporting user specified, correctness-

preserving tree transformations. Our own work differs from TAMPR most strik-

ingly in that it is specially adapted to the needs of the FORTRAN community.

Thus the user specifies translations in STREX, a language comfortably close to

FORTRAN. In addition, many primitives are supplied to facilitate the transfor-

mation of FORTRAN programs. We conjecture that these primitives also give to

the FLAT system more power than is available through TAMPR.

FLAT has a built-in FORTRAN grammar. Thus FLAT translators will always

accept FORTRAN software as input. This built-in grammar can be augmented at

the statement and operator levels by the placement of additional rewrite rules

in a translation specification. Tree macros must accompany these additional

rewrite rules but their presence is optional for the built-in FORTRAN rewrite
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rules. Whenever a tree macro is not present in a translatiun specification it

is assumed to be the null program. Thus the translator configured from the

empty translation specification will accept FORTRAN code as input and return

the same code as output. This augmentation approach to translation specifica-

tions is in keeping with FLAT's role as a FORTRAN software tool. FLAT trans-

lators will accept a specified superset of FORTRAN as input and perform a

translation based on a selected subset of the rewrite rules.

The target or output code of a FLAT translation is expected to be FORTRAN,

although any other language (e.g., assembler, Pascal) could be output. To

facilitate the production of FORTRAN as output, there are a number of special

primitives available to the tree macro writer for this purpose. The efficiency

of translated code is dependent on the coding effort put into the tree macros.

Good but not optimal results can usually be obtained with little effort.

As already noted, the FLAT system can be used to configure translators

for a variety of tasks. In the paragraphs below, we describe in a general

way how FLAT can be used to create some of these different types of translators.

At the highest level FLAT can be used as a compiler-compiler [AU72]. In

order to do so, one must compose a translation specification encompassing the

desired language and transformation. In this case, the built-in FORTRAN granrnar

is ignored. As an example of this, FLAT is currently being used to build a

compiler for a PASCAL-like language which produces FORTRAN as target code.

FLAT can be used to extend the FORTRAN language in several ways. For

example, new data abstractions [Morris79, LZ75] such as a STRING or BIT VECTOR

data type can be added to the language. This requires the introduction of

at least one new declarative statement and a number of operators and execut-

able statements for manipulating the data type. The rewrite rules for these

new forms and tree macros which translate them into standard FORTRAN are all

that is needed to accomplish the extension. New control structures such as

IFTHENELSE and DOWHILE can be added by the introduction of rewirte rules

and tree macros for these new statements. The tree programs necessary for

these forms are particularly simple and thus a preprocessor having the power

of IFTRAN [IFTRAN75], for example, can readily be configured.

The need for a program flattener for a program coded in FORTRAN has

already been discussed. A FLAT translator for performing this flattening
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can be configured simply by specifying the appropriate tree programs for those

FORTRAN rewrite rules which correspond to the subroutine calls and function

references which are to be flattened.

The utility of a macro processor as a portability aid has also been

discussed. The use of FLAT to accomplish this will be discussed in detail

shortly.
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B. The Use of FLAT:

The design of FLAT envisions two classes of users. A small group of

FLAT experts, called macro writers, are responsible for configuring trans-

lators. Only macro writers need to know how to compose translation specifi-

cations. The second user class is called the usini community and consists

of those groups that use any of the translators provided by the macro writers.

The members of the software using comm,,unity need only know how to program

code which utilizes any of a translator's enhancements.

The structure of FLAT is depicted in Figure 2. The system consists

of a translation compiler and an expander. A translation specification is

submitted to the translation compiler which results in the creation of a

translation moduie. This module consists of parsing tables and object modules

for the tree macros. The expander when coupled with a translation module, forms

a translator which takesa user's input and transforms it accordingly.

The translation specification and the input have been separated in the

FLAT system to accomodate the distinction between macro writers and the using

community. Furthermore, a translation specification is compiled because it

is expected to be used repeatedly. To interpret complex specifications

for each translation would be extremely inefficient.

Consider as an example the approach t.o porting illustrated in Figure 1.

This approach can be implemented by using FLAT as follows. A group of macro

writers must first compose a translation specification to support a high-level

FORTRAN dialect as requested by the using community. They also write specifica-

tions that configure porting translators for host machines 1, 2, and 3. Call

these specifications HLF-TS, P1-TS, P2-TS, and P3-TS respectively. Using the

FLAT translation compiler, the macro writers form the translation modules

HLF-TM, P1-TM, P2-TM, and P3-TM as follows.*

TranslationCompiler(S=HLF-TS,M=HLF-TM)

TranslationCompiler(S=Pi-TS,M=Pi-TM) for i = 1,2,3.

*The functional notation, 'iranslationCompiler (S=<file 1>,M=<file 2>)'

denotes an application of the translation compiler, where the translation

specification is <file 1> and the resulting translation module is <file 2 >.

Similarly, in the statement 'Expander(l=<file1 >,M=<file 2>,O=<file 3>)'

<filet> is the input, <file 2> the translation module, and <file 3> the result-

ing output.
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Now suppose that a development group in the using community has written

code for an application system in the Fortran dialect they specified previously.

Call the code SC-HLF. To run this code on the local machine requires invokinq

the appropriate FLAT translator and compiling the result with the local

FORTRAN compiler. This procedure is expressed in functional notation as:

Expander(I=SC-HLF,M=HLF-TM,O=SC-FOR)
FortranCompiler(I=SC-FOR,O=SC-BIN)

Once the development group's software is ready for porting to machine i the

appropriate porting translator is used.

Expander(I=SC-FOR,M=Pi-TM,O=SC-FORi)

The output, SC-FORi, is then sent to host machine i, where it is subsequently

compiled by that machine's FORTRAN compiler. Thus by writing the four trans-

lation specifications above, the macro writers have created an environment for

the software using comunity in which a high-level FORTRAN can be employed and

in which porting to three additional machines is automatic.
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C. Implementation of FLAT:

In Figure 3, the structure and interaction of a translation module and

the FLAT expander are shown in detail. The expander performs a translation

in three passes. In the first pass, the front-end builds a derivation tree

of the input by consulting the syntax tables of the translation module. This

derivation tree is output as the first image. In the second pass, the

evaluator traverses the derivation tree calling the tree macros of the trans-

lation module when appropriate. This activity results in a modification of

the derivation tree which constitutes the second image. In the last pass,

the formatter produces as the final output the string yielded by the modified

derivation tree.

Up to this point a rather abstract model of FLAT's operation has been

given. FLAT's behavior has been described in terms of context-free grammars,

derivation trees, and tree programs. A system which tries to embrace the

full generality of these concepts, would undoubtedly be highly inefficient.

One of the main design aims of FLAT was to simplify these concepts in such a

way that they still provide a powerful translation capability for which an

efficient implementation is, nevertheless, possible. These simplifications

are described in the paragraphs below.

C.1. Front End & Syntax Tables:

A grave space problem arises iF one attempts to build a derivation

tree for the entire input stream in a straightforward manner. The FLAT

system simplifies matters by processing the input text and inter-pass images

in sequential forward scans, one statement at a time. A statement is defined in

the FORTRAN sense of the word, that is, as a 72-character line, optionally

followed by up to nineteen 66-character continuation lines. There are assumed

to be four types of statements - header, specification, executable, and tail -

which must be grouped into program units according to the following syntax.

<Input> * <ProgramUnit>*

<ProgramUnit> o <Header> <Specifications>* <Executable>* <Tail>

There is also a neutral type statement whose occurrence in the input is un-

restricted. This organization supports the FORTRAN notion of program units

or modules, but other organizations are possible by declaring all statements

to be neutral and placing the burden of sequence checking on the tree programs.
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The range of syntactic augmentation allowed in a translation specification
is restricted to the extent that a simple LL-parsing [AU72] scheme suffices

in syntactically decomposing the input. In this scheme, look-ahead is very

rarely required and usually involves the scanning of just one or two characters.

The front-end builds a derivation tree for each statement and outputs these

in sequence. The front-end also detects any syntactic errors.

For each program unit, the front-end builds a symbol table of the labels
and identifiers that occur in the unit. The front-end also builds a global
symbol table of all those identifiers whose context determines that their scope
is global (e.g., subroutine names, common block name, etc.). These tables are
used to generate unique identifiers and labels by the tree macros in the
evaluation pass. They are also used for associating attributes or descriptors

with each identifier.

C.2 Evaluator:

The FLAT evaluator processes the derivation tree of each statement in

a postorder traversal. As each vertex is traversed, its associated tree macro,
if present, is invoked. Conceptually, tree macros can be thought to trans-
form the derivation tree directly. However, in the FLAT system the mechanisms

for text generation (modification) are quite simple. A tree macro can append
statements, semantic error messages, and comments to the text stream at
several strategic locations. In this way, a tree macro can generate side
effects, document them, and report semantic errors. A tree macro can also
modify the derivation tree containing the invoking vertex, v, as follows.
The tree macro can replace the string currently yielded by v in the derivation

tree by any string it chooses to produce. The tree macro receives as
arguments, the strings currently yielded by each son of v in the derivation

tree. Figure 4 gives an example of this text substitution process. In Figure 4,
the operator subscripts are shown to indicate the order of evaluation followed.
Also note only the operators Fun and + have defining tree macros. The other

operators are evaluated according to the usual rules of FORTRAN.

Since the simple text substitution scheme employed in the FLAT system
deals only with the strings yielded by derivation tree vertices, a derivation

tree need never be built. A simple text substitution algorithm used in many
of the older macro processors [Cole76] suffices to perform the desired trans-
formation and only requires the post-order sequence of invoking vertices. This
algorithm provides increased space and time efficiency especially when the
translation only operates on a small subset of the arammar rewrite rules.
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C.3 Tree Macros:

In FLAT translation specifications, a tree macro is a program unit

written in an extension of FORTRAN called STREX (String Extended) FORTRAN.

A compiler for this extension of FORTRAN was produced by a bootstrap of

the FLAT utility. The STREX language supports a subset of FORTRAN and has

the following additional features -

1. A STRING data type.

2. A HEAP data type.

3. Text generation primitives.

4. Symbol table primitives.

5. Global and local macro communication primitives.

STREX FORTRAN supports all FORTRAN constructs except for those involvinq

I/O or Hollerith, Real, Double Precision, or Complex data types [ANSI66]. The

additional features are described below.

STREX supports the notion of a string data type in full generality

[Elson73]. Simple variables, arrays, and functions can all be declared to

be of type string. The value of a string variable may vary arbitrarily in

length at runtime. At the expression level strings can be concatenated,

substrings can be selected, the current length can be queried, and strings

can be tested for equality. String constants are denoted by a sequence of

characters enclosed in dollar-signs($). At the statement level string variables

can be assigned (by value) and the replacement of a substring of a string

variable is also possible. Strings are used in features 3, 4, and 5 above.

The STREX heap data type is a vector of storage of arbitrary length.

The elements of the vector may be any data type including heap. In this way,

recursive structures such as lists and trees can be readily implemented. The

type of a vector element is latent; that is, it may vary at runtime. Whereas

assignment is by value for all other data types, assignment to a heap variable

changes the vector the variable refers to. Thus an assignment between two

heap variables, say H1 = H2, causes HI to refer to the vector referred to by

H2, and H2 becomes undefined. There are primitives to determine the length

of a variable's vector and whether a variable is undefined. There are also

statements for creating and freeing heap vectors. Heap variables are used in

features 4 and 5.

The STREX language contains several statements which append strinqs to the

output text stream at any of three locations. The string expressions used in



-17-

these primitives are assumed to represent either statements, conments, labels,

or error messages depending on the primitive. The three locations at which

a string may be appended are:

a/ immediately before the statement currently being scanned.

b/ immediately before the first executable statement of the

program unit currently being scanned,

c/ immediately before the first statement of the current program

unit.

These locations allow one to generate side-effects, additional specification

statements, and additional program units, respectively. There are expression

level primitives for generating identifiers and labels which are unique with

respect to either the global symbol table or the local symbol table of the

current program unit. These primitives return the labels and identifiers as

strings and are used in constructing branches and temporary variables.

The symbol tables produced by FLAT's front end are available to the

macro writer. A heap variable, presumably containing a descriptor, is

associated with each symbol. One can look up a symbol, thereby accessing

the symbol's heap variable. This variable may be accessed or modified according

to the intentions of the macro writer. New symbols may be added dynamically.

Tree macros can communicate to each other in one of two ways. Common

blocks can be included in any tree macro. The extents of the variables in

such a common block are global to the evaluation process. In this way,

global communication is possible - any tree macro may modify or access these

global variables. In the event that a son of an invoking vertex is also an

invoking vertex, the tree macro associated with the son may pass a heap vector

to the tree macro of its father. This local commpnication mechanism is

accomplished with a pair of "pass-catch" primitives. This mechanism allows

for the bottom-up propagation of synthesized attributes (heap vectors) [Knuth].

C.4 Formatter:

The FLAT formatter preserves the spacing and indentation found in the

input stream. This formatter has two output ports. The primary output

contains the transformed text less any comments or error messages. The other

port is to the printer. This output contains the comments and error

messages and in addition contains summaries of the tree macros' activities.
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III. SOME SIMPLE FLAT EXAMPLES:

Two FLAT examples are given in the following paragraphs. For each

example the FLAT translation specification is listed and discussed first.

The discussion is then followed by a sample translation.

The first example generates in-line code for the following function

which computes the sum of the elements of an array.

REAL FUNCTION SUM(A,N)
REAL A(N)
SUM = 0.
DO 10 I = 1,N

10 SUM = SUM + A(I)
RETURN
END

The translation specification which will perform this in-lining consists of

one tree macro --

1. REFERENCE B = SUM(A,N)
2. STRING IL, I, L
3. B = .GENR.
4. IL = .GENI.
5. 1 = .GENI.
6. L = .GENL.
7. EXECUTE B* $= 0.$
8. EXECUTE IL*$ = $*N
9. EXECUTE $DO $*L*$ $*I*$=1,$*IL

10. LABEL L
11. EXECUTE $ $*B*$ = $*B*$+$*A*$($*I*$)$
12. RETURN
13. END

The header of the tree macro (line 1) indicates that the macro is to

be activated for every reference to SUM which has two arguments. The vari-

bles B, A, and N in this statement are implicitly STRING variables. The

value of B when the macro returns is the string which replaces the reference.

The variables A and N are passed to the macro on entry and their values are

the strings representing the two arguments to SUM. Line 2 declares the

variables IL, I, and L to be of type STRING.

In line 3, the value of B is assigned to an implicitly real identifier

which is unique with respect to the current program unit. Lines 4, 5, and

6 have the same effect except that implicit integer identifiers (lines 4 and

5) and labels (6) are generated. Lines 7 through 11 generate code for the

function SUN's side-effect and place it immediately before the current
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statement. Each of these lines consist of the keyword EXECUTE or LABEL

followed by a string expression. The characters between $-signs are string

constants and * denotes string concatenation.

Suppose one submitted the following input to the translator configured

from the above translation specification.

REAL A(15), B(20), T(5), SUM
READ (INPUT) (A(I),I=1,15)
READ (INPUT) (B(I),I=1,20)
DO 10 I = 1,5

10 IF(I.NE.5) T(I) = SUM(A,3*I)+SUM(B,20)
WRITE (OUTPUT) (T(I),I=1,4)
STOP
END

The output would be as follows

REAL A(15), B(20), T(5), SUM
READ (INPUT) (A(I),I=1,15)
READ (OUTPUT) (B(I),I=1,15)
DO 10 I = 1,5

IF(.NOT.(I.NE.5)) GOTO 10
AOOO = 0.
100000 = 3* I
DO 10000 100001 = 1,130000

10000 AOOOOO = AOO00 + A(IO0001)
AOOOO1 = 0.
100002 = 20
DO 10001 100003 = 1,100002

10001 AO0001 = AO0001.+ B(00003)
T(I) = AOOOOO + AO0001

10 CONTINUE
WRITE (OUTPUT) (T(I),I=1,4)
STOP
END

Note that the meaning of the DO label 10 was preserved. The FLAT front-end

automatically preconditions the input code so that the meaning of labels is

preserved. It also splits the logical if statement so that any text placed

"immediately" before the second clause of the IF statement is guaranteed to

be executed just before the execution of this clause. The code produced is

not optimal. A slightly more sophisticated tree macro would not generate

100002 or 100003 or the assignment to 100002.

The second example illustrates the addition of an IF-THEN-ELSE control

structure to the FORTRAN language. This requires the addition of three

statements with the syntax --
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<statement> - 'IF' <expression> 'THEN'

- 'ELSE'

- 'ENDIF'

The proper nesting of these statements is enforced. An ELSE-statement refers

to the most recent IF-statement. The translation specification consists of

four tree macros and a global block.

1. GLOBAL PSHDWN
2. HEAP LABSTK
3. END
4. STATEMENT/E/ $IF$-.EXP./A-$THEN$
5. INCLUDE PSHDWN
6. HEAP H
7. STRING LAB
8. LAB = .GENL.
9. EXECUTE $IF (.NOT.($*A*$)) GOTO $* LAB

10. NEW H(2)
11. H(1,.HEP.) = LABSTK
12. H(2,.STR.) = LAB
13. LABSTK = H
14. RETURN
15. END
16. STATEMENT/E/ $ELSE$
17. INCLUDE PSHDWN
18. STRING LAB
19. IF (.UNDEF.LABSTK) GOTO 10
20. LAB = .GENL.
21. EXECUTE $GOTO$ * LAB
22. LABEL LABSTK(2,.STR.)
23. LABSTK(2,.STR.) = LAB
24. RETURN
25. 10 ERROR $IMPROPER NESTING$
26. RETURN
27. END
28. STATEMENT/E/ $END$-$IF$
29. INCLUDE PSHDWN
30. IF (.UNDEF.LABSTK) GOTO 10
31. LABEL LABSTK(2,.STR.)
32. LABSTK = LABSTK(1,.HEP.)
33. RETURN
34. 10 ERROR $IMPROPER NESTING$
35. RETURN
36. END
37. END OF UNIT
38. INCLUDE PSHDWN
39. IF (.UNDEF.LABSTK) RETURN
40. ERROR $IMPROPER NESTING$
41. FREE LABSTK
42. RETURN
43. END
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In lines 1 through 3 a global block called PSHDWN is declared to con-

sist of the single HEAP variable LABSTK. LABSTK will be used to implement

a pushdown stack of the labels being used in the transformation. The

INCLUDE statements (lines 5, 17, 29, and 38) in each of the tree macros

indicate that the variables in the PSHDWN global block are to be used by

these macros.

The first tree macro (lines 4 to 15) corresponds to the IF-THEN state-

ment. In lines 8 and 9 the appropriate conditional branch is generated. The

label used in this branch is pushed onto the LABSTK push down stack in lines

10 through 13.

The ELSE tree macro (lines 16 to 27) checks the nesting of statements

(line 19) and produces an error message if appropriate (line 25). If the

nesting is correct then a branch is generated to tie off the IF-THEN clause

and this clause's target label is appended to output (lines 20-22). The

ELSE label replaces the IF-THEN label in the top element of the push-down

stack (line 23).

The END-IF tree macro (lines 28-36) also checks the nesting of statements
(line 30). If there are no errors then the current target label is appended

to the output and the push-down stack is popped (lines 31 and 32).

The last tree macro (lines 37 to 43) is a special macro which is

activated whenever the end of a program unit is reached. This macro checks

the nesting of statements and frees the push-down stack.

Suppose one submitted the following input to the translator configured

from this translation specification.

IF I.NE.0 THEN
IF J.NE.0 THEN

A = A+I+J
ELSE

A = A+ I
ENDIF

ELSE
IF J.NE.0 THEN

A= A+J
ENDIF

ENDIF
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The output would be as follows --

IF (.NOT.(I.NE.0)) GOTO 10000
IF(.NOT.(J.NE.0)) GOTO 10001
A= A+I+J

GOTO 10002
10001 A = A+ I
10002 GOTO 10003
10000 IF (.NOT.(J.NE.0)) GOTO 10004

A = A+J
10004 CONTINUE
10003

Once again the semanitics of the transformation is correct but not

optimal. The use of .NOT. could be folded in the three IF statements. The

statement "GOTO 10003" is spurious. A more sophisticated translation

specification could avoid these failings.

This concludes the technical description of FLAT. Appendix A contains

the grammar for STREX FORTRAN. Appendix B illustrates an ambitious trans-

lator for a bit vector data type.

.1-J
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IV. EXPERIENCES AND FUTURE WORK

FLAT is written in a portable subset of FORTRAN 66, in which machine

dependencies have been quarantined to a small set of subprograms. We intend

to use FLAT to write macro sets which will enable us to transform a standard

FLAT source text so that FLAT can be ported to a modest set of host compilers.

At present FLAT consists of 12,000 lines of source text.

FLAT is at this writing (June 1980) just becoming operational, hence

empirical data about its performance is currently sketchy and unreliable. As

indicated earlier, we are producing the STREX compiler module of FLAT by a

bootstrapping operation utilizing a prototype version of FLAT. Early debugging

runs indicate that the STREX compiler will operate at a speed of at least 16

source lines per second. The speed of FLAT in translating enhanced Fortran

dialects will, of course, vary with the complexity of the macros defining

the particular Fortran enhancement. Nevertheless, early indications are

that FLAT should be expected to emit translations at a rate of at least 30

object lines/second for a modestly enhanced Fortran dialect.

We are currently in the late stages of using FLAT to define a trans-

lator capable of accepting as input esentially a large subset of PASCAL and

producing as output essentially Fortran 66. The completion of this translator

will mark the beginning of our efforts to use FLAT as a production tool. We

expect to use this translator, along with the sets of Fortran-dialect-specific

macro adapters mentioned earlier, to target a large PASCAL program simultane-

ously for a modest range of host Fortran compilers. This attempt will do much

to help us evaluate the practicality of this macro approach as a portability

and version control aid.
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APPENDIX A: THE SYNTAX OF STREX FORTRAN

An extended version of Backus Naur Form grammar rules will be used to

describe the syntax of a STREX translation specification. Non-terminals

will consist of the token's name surrounded by angle brackets, e.g.

<Program Unit>

Terminal strings will be enclosed in single quotes, e.g.

'STRING'

A plus sign will be used to compress several rules having the same left-hand

sides, e.g.

<A> <B> + <C> E <A> 4- <B>

<A> - <C>

A superscript star will denote zero or more repitions, e.q.

<A> *- <B>* = <A> - " + <A><B>

Curly braces will be used for bracketing purposes, e.g.

<A> - (<B> <C>}* <D> S <A> - <D> + <B><C><A>

An exclamation mark will denote optional occurrence, e.g.

<A> * <C>! E <A> 4' 8+ <C>

In STREX FORTRAN there are four different kinds of data types or modes -

STRING INTEGER

HEAP LOGICAL

The semantic notion of data type is included in this grammar spec-

ification by considering the above modes to be attributes of the various

non-terminals. For example, <IdcSTRING> asserts that the identifier

in question is of mode STRING. These attributes are synthesized in all

executable statements, and inherited in all others.



-28-

I. PROGRAM UNIT LEVEL:

<TranslationSpecification> - <ProgramUnit>

<ProgramUnit> - <Header> { <TypeDeclarations> + <Includes> }

<Executable> <End>

+ <GlobalHeader> <Type_Declarations> <End>

<Header> - <Macro Header> + <Subroutine Header> + <Function Header>

<Executable> *- <Assignment>

+ <HeapAllocation>

+ <Text Generation>

+ <Return>

+ <Continue>

+ <IFStatements>

+ <DO Statement>

+ <GO TO Statements>

+ <CALL Statement>

+ <Catch Statement>

+ <Symbol Statements>

II. STATEMENT LEVEL:

A. Headers:

<Global Header> - 'GLOBAL' <Global Id>

<Subroutine_Header> * 'SUBROUTINE' <SubId>
*n 'F<UNCTIO' <mlId>TType

<Function Header>-q <T <.Type> 'FUNCTION' <SimpleIdeTType>

' '<1d6 { ' <1 Id } ' '
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<Macro Header> ~-<STRINGTemplate> + <IDENTIFIERTemplate>

+ <OPERATORTemplate> + <REFERENCETemplate>

+ <INVOCATIONTemplate> + <SPECIALTemplate>

+ <STATEMENTTemplate>

<STRINGTemplate> .4 'STRING' <ReturnArg Id> ''''<ArgId> '$

<IDENTIFIERTemplate> -- 'IDENTIFIER' <ReturnArg Id> '

{ <Id> + <WildId> I

<OPERATORTemplate> -* 'ZOP' <ReturnArg Id> ''{<Id> + <WildId> I

+ 'UOP' <ReturnArg Id> =

{ +' + 19 + ' {<Id> + <WildId> I 'I

<ArgId>

+ 'BOP' <Return Arg Id> ' <Arg-Id>

{''<WildId>''

+ { + + e + /.+ ~*

<ArgId>

<REFERENCETemplate> ~-'REFERENCE' <ReturnArgId> '

{ <WildId> '( <HWildId> )

+ <Id> 'T { <HWildId> + <ArgId> {''<ArgId>}} I)T1

<INVOCATIONTemplate> .- 'INVOCATION'

{ <WildId> 'T <HWildId> '

+ <Id> ''{<HWildId> + <ArgId> {''cArgjd>I* )

<SPECIAL Template> 4- { 'START' + 'END' I 'OF' 'TEXT'

+ 'START' 'OF' 'UNIT' '( <ArgId> ')

+ 'EXIT'

+ 'ENTRY'

+ 'TERMINATION'
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<STATEMEKTTemplate> t-'STATEMENT' ( 1I H1 + 'S' + 'E' 'To 'N' 1 '/1 J!
<Arg DPel> { ''<Arg-Del> I

<ArgDel> +- <Delimiter>

+ <Phrase> TI <ArgId>

+ <HPhrase> rn/ <H Arg Id>

<Delimiter> +$'<Char>'$

<Phrase> 4- '.ID.' + '.GID.' + '.REF.' + '.STR.' +'.INT.' + .EXP.'

<HPhrase> *- 'LIST' 'T <Del> I '-' <Del>I

<Del> -(-. <Delimiter> + <Phrase> + <HPhrase>

<ReturnArgId> +<SimpleIdeSTRING>

<Arg Id> <Simple_-IdeSTRING>

<HArg_Id> ~-<SimpleIdeHEAP>

<WildId> 1 <SimpleIde-STRING>''

<HWild Id> +' <SimpleIdcHEAP>''

B. Specifications:

<Type_Declarations> - <TType> <RefeTType> {''<RefcTType> I

+ <1Type> 'REFERENCE' <FunIdeFType> {''<FunIdcFType>

<TType> ~- 'HEAP' + 'STRING' + 'INTEGER' + 'LOGICAL'

<Includes>.+- 'INCLUDE' <Global._Id>
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C. Executable Statements:

<Assignment> '- <VRefcSTRING > <~ ExpeSTRING>

+ <VRefeHEAP> '1<ExpeHEAP>

+ <VRefEJNTEGER> ''<ExpcINTEGER>

+ <VRefeLOGICAL> 1= <ExpeLOGICAL>

+ <VRefeSTRING> a(a <ExpeINTEGER> { ',' <ExpcINTEGER> 1!''

='<ExpeSTRING>

<HeapAllocation> -4- 'FREE' <VRefeHEAP>

+ 'NEW' <VRefcHEAP> TC <ExpeINTEGER> T)

<TextGeneration> +{'EXECUTE' + 'LABEL' + 'COMMENT' + 'ERROR' +

'DECLARE' + 'CREATE' I<ExpeSTRING>

<Return> +- 'RETURN' + 'PASS' <VRefeHEAP>

<Continue> -* 'CONTINUE'

<IFStatements> - 'IF' '(' <ExpeLOGICAL>''

I <Executable>t + <Label> ''<Label> ''<Label> I
t=All except DOStatement

<DOStatement> +'DO' <Label> <SimpleIdeINTEGER>''

<ExpeINTEGER> ',' <ExpcINTEGER> I <ExpeINTEGER> 1!

<GOTOStatements> +'GO' 'TO' { <Label>

+ 'T <Label> f',' <Label>} ) , <IdcINTEGER>

<CALLStatement> +- 'CALL' <SubId, ( <Exp> {' <Exp> I ''I

<CatchStatement> - 'CATCH' {<VRefLSTRING> + <FRefcHEAP> I 'IN' <RefeHEAP>

<SymbolStatements> +'LOOKUP' {'''GLOBAL' ' 1 ! <ExpeSTRING> 'IN' <RefeHEAP>

D. End:

<End> ~-'END'
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III..EXPRESSION LEVEL:

<ExpeBOP(TT 2)> <ExpeT 1> <Bop> <ExpeT2 >

Operator Precedence Type Rules

**100 **(INTEGERINTEGER) =INTEGER

* 200 *(STRING,STRING) = STRING
*(INTEGER,INTEGER) = INTEGER

I200 /(INTEGER,INTEGER) = INTEGER

-300 +(INTEGER,INTEGER) =

-(INTEGERINTEGER) = INTEGER

.NE.s.EQ. 400 .NE.(STRING,STRING) =
.EQ.(STRING,STRING) =
.NE4kINTEGER,INTEGER)=
.EQ.(INTEGER,INTEGER) = LOGICAL

.GT.,.GE., 400 .GT.(INTEGER,INTEGER) =
.LT.q.LE. .GE.(INTEGER,INTEGER) =

.LT.(INTEGER,INTEGER) =

.LE.(INTEGER,INTEGER) = LOGIICAL

.AND.,.OR. 500 .AND.(LOGICAL,LOGICAL)=
.OR.(LOGICAL,LOGICAL) = LOGICAL

<ExpcUOP(T)> *- <Uop> <ExpeT>

Operator Type Rules

.CONVER. .CONVER.(INTEGER) =STRING

.INTERP. .INTERP.(STRING) INTEGER

.UNDEF. .UNDEF.(HEAP+STRING) =LOGICAL

- +(INTEGER) = -(INTEGER) = INTEGER

.LENGTH. .LENGTH. (HEAP+STRING) = INTEGER
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<ExpcT> 4('<ExpsT>')

<ExpeSTRING> '.EMPSTR.' + -, ~Char>~ +$

<ExpeINTEGER> <I nt>

<ExpcT> *- <VRefcT> + <FRef HEAP>

<ExpcSTRING> .- <ExpeSTRING> '(' <ExpcINTEGER> f ' <ExpeINTEGER> 1 )

IV. REFERENCE LEVEL:

<RefcT _Type> 4- <Simple_-IdET ype>

+ <ArrayEdtTType> '(' <ExpcINTEGER> {''<ExpeINTEGER> ')

<VRefcTType> 4- <RefclTType>

+ <RefeHEAP> T( <ExpeINTEGER> ''<CoerceTType> )

<CoerccHEAP> 4- .HEP.'

<CoerceSTRING> 4- .STR.'

<CoerceINTEGER> 4- .INT.1

<CoerceLOGICAL> '.LG.

<FRefcTType> *- <FunIdeTType> ''<Exp> f ', Exp> t

t=All FORTRAN Intrinsic functions on INTEGERs and LOGICALs

are supported.

V. IDENTIFIER LEVEL:

<SimpleId> 4-<Id>

<ArrayId> 4-<Id>

<FunId> +<Id>

<Sub Id> 4- 'd>

'Global Id> < Id>
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APPENDIX B: A FLAT TRANSLATOR FOR A BIT-VECTOR DATA TYPE

Many algorithms employ the notion of a set whose underlying implemanta-

tion is assumed to utilize bit vectors. This provides the motivation for ex-

tending the FORTRAN language to incorDorate a BIT VECTOR data type via a

FLAT translator. Such an extension is described in this appendix.

We begin by informally describing the syntax and semantics of the

augmentation. Simple variables and arrays may be declared to be of type

BIT VECTOR. For example, the statement 'BIT VECTOR(180) A,B(1O)' declares

A to be a bit vector of 180 bits, and B to be a 10 element array whose elements

are bit vectors of 180 bits. Bit vector variables may be formal parameters

but not function names. It was also thought to be convenient to allow one

to declare integer constants. For instance,

CONSTANT NPROC = 100

CONSTANT NVAR = 1000

declares NVAR to be the constant 1000 and NPROC to be the constant 100.

These statements can occur anywhere within the input and apply in all sub-

sequent code. For example,

BIT VECTOR(NVAR) LOCAL(NPROC)

declares LOCAL to be a 100 element array of 1000 bit bit vectors.

Bit vector arithmetic is performed with the aid of a number of binary,

unary, and nullary operators with which one can build expressions. These

bit vector operations are sketched in the table below.

Op Precedence Type of Result I Meaning
A.NE.B 400(lowest) LOGICAL A * B

A.EQ.B 400 LOGICAL A B

A.UNION.B 300 BIT VECTOR A u B

A.INTER.B 200 BIT VECTOR A n B

A.DIFF.B 100(highest) BIT VECTOR A - B

.COMP.A - BIT VECTOR ' A

.EMPTY. BIT VECTOR 0

.UNIV. BIT VECTOR 0
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For all binary operators, the arguments must be bit vectors of the same length.
Additional operators can be supported as needed by adding to the translation

specification which supports this extension (see Figure B2). A specific bit

of a bit vector may be tested by referencing the bit'sposition. For example,

the expression '(A.INTER.B(1))(I*3)' returns a logical value which is true if

and only if the 1"3th bits of both A and B(1) are set. Bit vector expressions

may be actual arguments to a procedure invocation.

Assignment is extended to include the BIT VECTOR data type. For example,

the statement 'B(3) = .COMP.A' assigns the bit vector value of the expression

.COMP.A to the variable B(3). In addition, individual bits can also be

assigned. For example, 'B(3)(2) = .TRUE.' sets the second bit of B(3) and

'B(3)(2) = A(2)' assigns the second bit of B(3) to the value of the second

bit of A.

The translation specification which supports this extension is listed in

Figure B2. The code is quite lengthy (approximately 400 lines) and thus will

not be discussed in detail. Instead, the nature of the transformation this

translation specification performs will be discussed using the sample trans-

lation in Figure Bi as an example.

All occurrences of a constant identifier are replaced with the constant

assigned to the identifier. For example, in Figure BI, 'COMMON /LIST/ LLST,

LARR(NVAR) becomes 'COMMON /LIST/ LLST,LARR(1000)'. All bit vector variables

are turned into integer arrays by the addition of an extra dimension. The

size of this dimension is the number of words required by a bit vector. The

specification in Figure B2 is for a CDC 6600 which has 60 bit words. Thus

the declaration, 'BIT VECTOR(NVAR) TV' becomes 'INTEGER TV(17)' where 17

equals (NVAR-1)/60+1.

Any reference to a bit vector variable within the executable part of

a program unit, is transformed into an augmented array reference where the

extra dimension is a unique free variable. For example, a reference to 'TP'
becomes 'TP(IO0000)' and a reference to 'AT(SN)' becomes 'AT(IOOOOO,SN)'.

The free variable, 100000, is used as required by the context of the reference.

For example, the assignment 'AT(SN) = TP' is transformed into the two lines

of code -

DO 10004 100000 = 1,2

10004 AT(18OOOO,SN) = TP(IOOO00)
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By constructing a do loop in which the free variable is the index, the assign-

ment takes place word by word. As another example of the context sensitive

usage of the free variable, consider the code generated for the bit selection

in the statement 'IF (.NOT.ATB(SNP)(R)) GO TO 60' -

100000 = (R-1)/60+1

I00001 = R-(IO00O0-1)*60

100005 = (ATB(IOOOOO,SNP).AND.IO0002(IO0001)).NE.0

IF(.NOT.100005) GO TO 60

The free variable pair (100000,100001) determine the word and index within

the word of the selected bit R. 100005 is a generated logical variable in

which the result of the bit selection is stored. 100002(100001) is a constant

word whose I00001th bit is set in the block data unit initializing 100002.

The free variable is not bound, however, when forming bit vector ex-

pressions. For example, the expression 'LOCAL(P).DIFF.FORMAL(P).INTER.OPT(P)'

is transformed into 'LOCAL(IOOOOO,P).AND..NOT.FORMAL(IO00OO,P).AND.OPT(IOO00O,P)!.

The free variable is not bound until a context like the ones above is reached.

In Figure B1, the expression is passed by value to the subroutine LIST in the

statement 'CALL LIST(LOCAL(P).DIFF.FORMAL(P).INTER.OPT(P),NVAR)'. The code

generated for this statement is -

DO 10003 100000 = 1,17

10003 100003(100000) = LOCAL(IOOOOO,P).AND.NOT.FOR.IAL(IOOOOO,P.AND.OPT(IOOOOO,P)

CALL LIST(I0003,1000)

A unique bit vector variable 100003 is generated and the value of the expression

is assigned to it. 100003 is then passed to LIST as an actual argument.

Some features of the translator are not illustrated in Figure 8i. The

constants .EMPTY. and .UNIV. are folded whenever possible. That is, an ex-

pression like (A.INTER..EMPTY.).DIFF.B is simplified to '.COMP.B'. Semantic

errors such as type incompatibilities are detected and reported. For example,

the expression 'TP(SNP)(P).AND.AT' is transformed into '**ERROR**.AND.**ERROR**'

as TP(SNP) is not a bit vector expression and AT is not a logical expression.

The code generated is quite efficient but not optimal. In Figure BI,

only four temporary variables were generated and occupied only 22 words of

storage. A small amount of superfluous code is present. For example, the
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word-index pair for bit position V is computed twice in the sequence of

statements -

TV(V) = .TRUE.

CALL LIST(LOCAL(P) .DIFF.FORMAL(P) .INTER.OPT(P) ,NVAR)

TV(V) = .FALSE.

when it only needed to be computed once.
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FIGURE Bi: SAMPLE TRANSFORMATION

INPUT:

CONSTANT NPROC - 100
CONSTANT NINV - 500
CONSTANT NVAR - 1000
CONSTANT NSET - 3000

SUBROUTINE ALIAS(LOCAL,FORMAL,OPT,NCALL,CALLST,INVOK,NUMP,
* AT,SET,NUMS)

C
BIT VECTOR(NVAR) LOCAL(NPROC),FORMAL(NPROC),OPT(NPROC)

C
INTEGER NCALL(NPROC) ,CALLST(NPROC) ,INVOK(NINV)

C
BIT VECTOR(NPROC) AT(NSET),ATB(NSET)

BIT VECTOR(NVAR) SET(NSET)
C

BIT VECTOR(NVAR) TV
C

BIT VECTOR(NPROC) TP
C

COMMON /LIST/ LLST,LARR(NVAR)
C

INTEGER V,P,R,E
C
C

CALL INTHSH
WK P- 0
TP-. EMPTY *

TV-. EMPTY.
DO 30 P-1,NUMP

TP(P)-. TRUE.
CALL LIST(LOCAL(P).DIFF.FORMAL(P).INTER.OPT(P),NVAR)
IF (LLST.EQ.0) GO TO 30
DO 20 I-1,LLST

V-LARR( I)
TV(V)-. TRUE.
SN-HASH(TV, SETNUMS)
TV(V)-. FALSE.
AT( SN)-TP
WKP-WKP+l

20 WLIST(WKP)-SN
30 TP(P)-.FALSE.

C
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40 IF (WKP.EQ.O) RETURN
SN=WLIST(WKP)
WKP-WKP- 1
CALL LIST(AT(SN).DIFF.ATB(SN),NPROC)
ATB(SN)-AT(SN)
DO 60 I-1,LLST

P-LARR( I)
L-NCALL(P)
K- CAL LST(CP )
L-K+L- 1
DO 60 E=K,L

R-INVOK( E)
CALL FOPT(XP,SN,E)
SNP-HASH(XP, SET,NUMS)
IF (.NOT.ATB(SNP) CR)) GO TO 60

IF (AT(SNP).NE.ATB(SNP)) GOTO 50
WKP-WKP+l
WLIST(WKP)-SNP

50 AT(SNP)(R)-.TRUE.
60 CONTINUE

GO TO 40
C

END
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OUTPUT:

BLOCKD DATA AOOOO1
COMMON IAOOOOO/ 100000(60)
DATA IOOOOO(1)/40000000000000000000B/,100000(2)/2000000000000000

*OOOOB/ .100000(3) /10000000000000000000B/

DATA I00000(58)/00000000000000000004B/.I00000(59)/00000000000000
*OOcOrJB/ .100000(60) /00000000000000000001B/
END

SUBRiOUTINE ALIAS(LOCAL,FORMAL,OPT,NCALL,CALLST,INVOK,NUMP,
* AT,SET,NUMS)

C
INTEGER LOCAL(17.100),FORNAL(17.100),OPT(17.100)

C
INTEGER NCALL(jQQ) ,CALLST(LU) ,INVOK(.M)

C
INTEGER AT(2.300 ),ATB(2.3000

C
INTEGER SET(17.300)

C
INTEGER TV(17)

C
INTEGER TPLZI

C COMMON /LIST/ LLST,LARR(jI=)

C
INTEGER VP,R,E

C

COM4MON /AOOOOO/ 100000(60)
INTEGER 100003(17)
INTEGER 100004(2)
LOGICAL 100005
LOGICAL 100006

C
CALL INTHSH
WKP-0
DO 10000 100000-1,2

1~.~. T~~Ql-000000 T(O0n-OO OO000OQO0ODOB
DO 10001 100000-1,17

10001j TV(jg.00flfl-0000000000oo00oB
DO 10002g.~ P-1,NUMP

I00000-(P-1) /60+1
1O0001-P-(I00000-1 )*60
TP(LQ..Q.Q )-P(I0 000) .OR.-100002(100001)
DO 10003 100000-1.17

* OPT(1aQ0fl0,P)



CALL LIST(100003,1000)
IF (LLST.EQ.0) GO TO 30
DO 20 1-1,LLST

V-LARR( I
100000-(V-1) /60+1
Io0o01-V-( 100000-1) *60
TV(I00000)-TV( 100000) .OR. 100002(100001)
SN-HASH~(TV, SET,NUMS)
I00000-(V-1) /60+1
Ioooo1-V-( 1000-1) *60
TV(tO000 )-TV(100OO0).AND. .NOT.100002(100001)
DO 10004 100000-1,2

10004 AT(IO0000,SN)-TP(IOOOOO)
WKP-WKP+1

20 WLIST(WKP)=SN
30 100000-(P-1)/60+1

I00001-P-(IOQ 100-) *60
1.D.DflZ TP(100000 Q-TP(IOOOOO).AND. .NOT.100002-(100001)
C

40 IF (WKP.EQ.0) RETURN
SN-WLIST(WKP)
WKP-WKP- 1
DO 10005 100000=1.2

1005100004(I00000)=-AT(O000,SN).AND..NOT-.ATB(IOOO1D SN)
CALL LIST(10000,LUQ)
DO 10006 10O000-12

10006g ATB(IOOOO SN)-AT(10000QSN)
DO 60 I-l,LLST

P-LARR( I)
L-NCALL(P)
K-CALLST(P)
L-K+L- 1
DO 60 E-K,L

________________________________
CALL FOPT(XP,SN,E)
SNP-HASH(XP, SET,NUMS)
I00000-(R-1) /60+1
1O0001-R-( 100000i) *60
I00005-(ATB(IOOQO gSNP).ANI).100002(IOOOOI)).NE.0
IF (.NOT.1000Q.Q) GO TO 60

100006-. FALSE.
DO 10007 I00000-1.2Z

10007.. I00006-100006.OR.AT(.Q0.0.QSNP) .NE.ATB(IGQOQO,SNP)
IF (100006.Q) GOTO 50
WKP-WKP+1
WLIST(WKP)-SNP

50 IOOOOO-(R-1)/60+11
I0O0l0-R-(IOOQOO 1) *60
AT(10000 SNP)-AT(IOOO SN).R.I0002(InO001)

60 CONTINUE
GO TO 40

C 9.

END
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FIGURE B2: BIT VECTOR TRANSLATION SPECIFICATION

GLOBAL CONS
STRING BIT,ZERO,UNIVWRDS,INDEX,INDX2,ERRS,GLON

INTEGER WRDLEN,IKUND,IKSMP,IKARRIKABV,IKSEL,

*LOGICAL DECLAR IKLHS,IKVAL,IKONE,IKZER,IKCON

END
C

C

C START OF TEXT

INCLUDE CONS
C
C

WRDLEN - 60

WRDS - $60$
UNIV w $77777777777777777777B$
ZERO w $O000000000000000000B$

ERRS a $**ERROR**$

C
IKUND - I
IKSMP - 2
IKCOH - 2
IKARR - 3
IKABV - 4
IKSEL - 5
IKLHS - 6
IKVAL - 7
IKONE - 8
IKZER - 9

C
BIT - ,GENI,
GLON - ,GENG.
EXECUTE $BLOCK DATA $*.GENG.
EXECUTE $COMMON /$*GLON*$/ $*BIT*$($*WRDS*$)$
DO 20 1-1,20

S - .EMPSTR.
DO 10 J-1,3

ZERO(I) - .CONVER.(2**(3-J))
10 S - S*BIT*$($*.CONVER.(3*I+J-3)*$)/$*ZERO*$/,$

ZERO(I) - $0$

20 EXECUTE $DATA $*S(O,.LENGTH.S)
EXECUTE $END$

C
RETURN

END
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C
C --- - - - - - - - - - - - - -

C
STATEMENT/ $CONSTANT$-.ID./A-$-$-.INT./B

C
INCLUDE CONS
HEAP HA

* C
C

LOOKUP(GLOBAL) A IN HA
IF (.UNDEF.HA) GO TO 10

EXECUTE $CONSTANT $*ERRS
RETURN

10 NEW HAM2
HA(1,.INT.) - IKCON
IA(2,.STR.) - B
RETURN

END
C
C - - - - - - - - - - - - - - -

C
START OF UNIT(A)

C
INCLUDE CONS

C
C

DECLAR - .TRUE.
RETURN
END

C
C - - - - - - - - - - - - - - -
C

ENTRY
C

INCLUDE CONS
STRING S

C
C

INDEX - .GENI.
INDX2 - .GENI.
BIT - .GENI.
DECLAR - .FALSE.

C
DECLARE $COMMON /$*GLON*$/ $*BIT*$($*WRDS*$)$

C
RETURN
END
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C
C

C
STATEMENT/S/ $BIT$-$VECTOR$-$($-.INT./A-$)$-LIST(.REF.)/B

C
INCLUDE CONS

STRING LENS
C
C

NBIT - .INTERP.A

LEN - (NBIT-I)/WRDLEN+I
LENS - .CONVER.LEN
CALL DECBIT(BLENLENS)
RETURN
END

C

C
STATEMENT/S/ $BIT$-$VECTOR$-$($-.ID./A-$)$-LIST(.REF.)/B

INCLUDE CONS
STRING LENS
HEAP HA

C
C

LOOKUP(GLOBAL) A IN HA
IF (.UNDEF.HA) GO TO 10

NBIT - .INTERP.HA(2..STR.)
LEN - (NBIT-1)/WRDLEN+l
LENS - .CONVER.LEN
GO TO 20

10 LEN - I
LENS - ERRS

20 CALL DECSIT(BLENLENS)
RETURN
END
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C
C --- - - - - - - - - - - - - -

C
SUBROUTINE DECBIT(B ,LENLENS)

C
INCLUDE CONS
STRING LENS,S
HEAP B,HB

C
INTEGER REFERENCE TRAN

C
C

J = .LENGTH.B
S = .EMPSTR.
DO 40 1-1,3

CATCH B(I,.STR.) IN HB
IB-TRAN( HB)
GO TO (10,30,30,20,30,30,30,30,30) ,IB

10 S a S*B(I,.STR.)*$($*LENS*$),$
NEW HB(2)
HB(1,.INT.) - IKSMP
HB(2,.INT.) - LEN
GO TO 40

20 S -S*HB(2,.STR.)*LENS*$,$*HB(3,.STR.)*$,$

HB(1,.INT.) - IKARR
HB(2,.INT.) - LEN
GO TO 40

30 S - S*ERRS*$,$
40 CONTINUE

DECLARE $INTEGER $*S(0,.LENGTH.S)
RETURN
END



-46-

C
C --- - - - - - - - - - - - - -

C
IDENTIFIER Ain*B*

C
INCLUDE CONS
HEAP H,HB

c
INTEGER REFERENCE TRAN

C
C

IF (DECLAR) GO TO 100
C

LOOKUP(GLOBAL) B IN HB
IF (.NOT. .UNDEF.HB) GO TO 40
LOOKUP B IN HB
IB-TRAN(HB)
GO TO (30,10,20,30,30,30,30,30,30),IB

10 A - B*$($*INDEX*$)$
NEW (3)
H(1,.INT.) - IKLHS
GO TO 25

20 A - B*$($*INDEX*$,$
NEW H(3)
H(1,.INT.) - IKABV

25 H(2,.INT.) - HB(2,.INT.)
H(3,.STR.) - B
PASS H

30 A -B
RETURN

40 A - HB(2,.STR.)
NEW H(1)
H(1,.INT.) - LKCON
PASS H

C
100 A = B

LOOKUP(GLOBAL) B IN HB

IF (.UNDEF.HB) LOOKUP B IN HB
PASS HB

C
END
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C
C C - - - - - - - -- - - - - - -
C

REFERENCE A=*B*(*C*)
* C

INCLUDE CONS
STRING TLI,S
HEAP HHB,HC

C
INTEGER REFERENCE TRAN
STRING REFERENCE EVAL

C
C

CATCH B IN HB
IB - TRAN(HB)
3 w .LENGTH.C
IF (DECLAR) GO TO 200

C
IF (IB.GT.IKABV.AND.J.NE.1) GO TO 10
GO TO (70,1O,10,60,10,40,50,20,30),IB

10 A -ERRS
RETURN

20 A - $.TRUE.$
RETURN

30 A - $.FALSE.$
RETURN

40 A -B
HB(1,.INT.) - IKSEL
HB(2,.STR.) - B
HB(3,.STR.) - C(1,.STR.)
PASS HB

50 A - EVAL(BC(1,.STR.))
RETURN

60 A - .EMPSTR.
DO 65 1-1,J

65 A - A*C(I,.STR.)*$,$
A - A(O,.LENGTH.A)*$)$
HB(1,.INT.) - IKLHS
HB(3,.STR.) - HB(3,.STR.)*$($*A
A - B*A
PASS HB
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70 A -*(

DO 130 I-1,J
CATCH C(I,.STR.) IN HC
IC - TRAN(HC)
GO TO (120,120,11O,80,90,80,100,11O,110) ,IC

80 A -A*HC(3,.STR.)*$,$
GO TO 130

90 A - A*EVAL(HTPC(2,.STR.),HC(3,.STR.))*$,S
GO TO 130

100 TL = .GENI.
DECLARE $INTEGER $*TL*$(S*.CONVER.HC(2,.INT.)*$)$
CALL LOO1P(TL*$($*INDEX*$)i$*C(I,.STR.),HC(2,.INT.))
A - AT*,
GO TO 130

110 A - A*ERRS*$,$
GO TO 130

120 A - A*C(I,.STR.)*$,$
130 CONTINUE

A - A(O,.LENGTH.A)*$)$
RETURN

C
200 S - .EMPSTR.

DO 210 1-1,J
210 S - S*C(I,.STR.)*$,$

S -S(0,.LENGTH.S)*$)$
A *(*
IF (IB.NE.IKUND) PASS HB
NEW HB(3)
HB(1,.INT.) - IKABY
HB(2,.STR.) - *(
HB(3,.STR.) - S
PASS HB

C
END
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SC
C

INCLUDE CONS
HEAP H

A - ZERO

NEW H(l)
H(1,.INT.) - IKZER
PASS H
END

C - - - - - - - - - - - - - - -
C

UOP A-.NOT.B
C

INCLUDE CONS
HEAP HB

C
INTEGER REFERENCE TRAM
STRING REFERENCE EVAL

C
C

CATCH B IN HB
IB - TRAN(HB)
IF (IB.NE.IKSEL) GO TO 10

IB - IKUND
B - EVAL(HB(2,.STR.),HB(3,.STR.))

10 IF (IB.EQ.IKUND) GO TO 20
A - ERRS
RETURN

20 A - $.NOT.$*B
RETURN

END
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C
C --- - - - - - - - - - - - - -

C
BOP A-B.AND.(500)C

C
STRING REFERENCE BOOL

C

A - BOOL(B,$.AND.$,C)
RETURN
END

C
C
C - - - - - - - - - - - - - - -
C

BOP A-B.OR.(500)C
C

STRING REFERENCE BOOL
C
C

A - BOOL(B,$.OR.$,C)
RETURN
END

C
C - - - - - - - - - - - - - - -
C

STRING FUNCTION BOOL(B,OP,C)
C

INCLUDE CONS
HEAP HB,HC
STRING B,OP,C

C
INTEGER REFERENCE TRAM
STRING REFERENCE EVAL

C
C

CATCH B IN HB
CATCH C IN HC
IB - TRAN(HB)
IC - TRAN(HC)
IF (IB.NE.IKSEL) GO TO 10

IB - IKUND
B - EVAL(HB(2,.STR.),HB(3,.STR.))

10 IF (IC.NE.IKSEL) GO TO 20
IC - IKUND
C - EVAL(HC(2,.STR.),HC(3,.STR.))

20 IF (II.LE.IKCON.AND.IC.LE.IKCON) GO TO 30
BOOL - ERRS
RETURN

30 BOOL - B*OP*C
RETURN

END



C
C --- - - - - - - - - - - - - -

C
BOP A-B.NE.(400)C

C INCLUDE CONS

C
HEAP HB,HC

C
INTEGER REFERENCE TRAN
STRING REFERENCE BOOL

C
C

CATCH B IN HB
CATCH C IN HC
IB - TRAN(HB)
IC - TRAN(HC)
IF (IB.LE.IKSEL.OR.IC.LE.IKSEL) GO TO 50
IF (IB.GE.IKONE) GO TO 10

J - HB(2,.INT.)
GO TO 20

10 IF (IC.GE.IKONE) GO TO 30
J -HC(3,.INT.)

20 A - GENI.
DECLARE $LOGICAL $*A
EXECUTE A*$in.FALSE.$
CALL LOOP(A*$in$*A*$.OR. $*B*$ .NE. $*C,J)
RETURN

30 IF (IC.EQ.IB) GO TO 40

RETU$.FALSE.$

40 A - $.TRUE.$
RETURN

50 A - BOOL(B,$.NE.$,C)
RETURN

END
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C

C
BOP A-B.INTER.(200)C

C
INCLUDE CONS
HEAP HB,HC

C
INTEGER REFERENCE TRAW

C
C

CATCH B IN HB

CATCH C IN HCI

IC - TRAN(HC)
IF (IB.LE.IKSEL.OR.IC.LE.IKSEL) GO TO 30
IF (IB.EQ.IKONE.OR.IC.EQ.IKZER) GO TO 10
IF (IC.EQ.IKONE.OR.IB.EQ.IKZER) GO TO 20
IF (HB(2,.INT.).NE.HC(2,.INT.)) GO TO 30
A - B*$.AND.$*C
HB(1,.INT.) -IKLHS

PASS HI
10 A -C

PASS HC
20 A- B

PASS HB
30 A -ERRS

RETURN
END
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C
C -

C
BOP A-B.DIFF.(00)C

INCLUDE CONS
HEAP HB,HC

C
INTEGER REFERENCE TRAN

C
C

CATCH B IN HB
CATCH C IN HC
IB - TRAN(HB)

IC - TRAN(HC)
IF (IB.LE.IKSEL.OR.IC.LE.IKSEL) GO TO 30

IF (IB.EQ.IKZER.OR.IC.IKZER) GO TO 20

IF (IC.EQ.IKONE) GO TO 15
IF (IB.EQ.IKONE) GO TO 10

IF (HB(2,.INT.).NE.HC(2,.INT.)) GO TO 30
A - B*$.AND..NOT.$*C

HB(1,.INT.) a IKVAL
PASS MB

10 A - $.NOT.$*C
HC(I,.INT.) - IKVAL
PASS HC

15 A - ZERO
HC(1,.INT.) - IKZER
PASS HC

20 A a B

PASS HB
30 A - ERRS

RETURN
END

i



- 54-

C
C --- - - - - - - - - - - - - -

C
STATEMENT/El .REF./A-$-$-. EXP./B

C
INCLUDE CONS
HEAP HA,HB
LOGICAL LOGT,LOGF
STRING CI,TRG,T1,T2

C
INTEGER REFERENCE TRAN

C

C AC NH
CATCH A IN HA

IA - TRAN(HA)
IB - TRAN(HB)
GO TO (40,1O,1O,1O,20,30,1O,1O,1O),IA

10 EXECUTE $ASSIGN $*ERRS
RETURN

20 IF (IB.EQ.IKUND) GO TO 21
IF ([B.NE.IKSEL) GO TO 10

B -EVAL(HB(2,.STR.),HB(3,.STR.))

21 Cl - A(2,.STR.)
TRG -HA(3,.STR.)
EXECUTE INDEX*$-($*Cl*$-1)/$*WRDS*$+1$
EXECUTE INDX2*$-$*Cl*$-($*INDEX*$-l)*$*WRDS
LOGT - B.EQ.$.TRUE.$
IF (LOGT) GO TO 22
LOG! - B.EQ.$.FALSE.$
IF (LOGF) GO TO 23
TI - .GENL.
TZ - .GEHL.
EXECUTE $IF ($*B*$) GO TO $*TJ

22 EXECUTE $ $*TRG*$-$*TRG*$.0R.$*BIT*$($*INDX2*$)$
IF (LOGT) RETURN
EXECUTE $ GO TO $*T2
LABEL TI

23 EXECUTE $ $*TRG*$-$*TRG*$.AND..NOT.$*BIT*$($*INDX2*$)$
IF (LOGF) RETURN
LABEL T2
RETURN

30 GO TO (1O,10,10,10,10,31,31,32,32),IB
31 IF (HB(2,.INT.).NE.HA(2,.INT.)) GO TO 10
32 CALL LOO(A*$i$*B,HA(2.INT.)

RETURN
40 GO TO (50,50,1O,10,45,10,1O,10,10),IB
45 EXECUTE A*$-$*EVAL(HB(2,.STR.),liB(3,.STR.))

RETURN
50 EXECUTE A*$-$*B

RETURN
END
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C
C --- - - - - - - - - - - - - -

C
SUBROUTINE LOOP(STR,LEN)

C
INCLUDE CONS
STRING STR,LAB

C
C

LAB - .GENL.
EXECUTE $DO $*LAB*$ $*INDEX*$-Il,$*.CONVER.LEN
LABEL LAB
EXECUTE $ $*STR
RETURN
END

C
C - - - - - - - - - - - - - - -
C
C

STRING FUNCTION EVAL(STRB,STRC)

C INCLUDE CONS

STRING STRB,STRC

C
EVAL - .GENI.
DECLARE $LOGICAL $*EVAL
EXECUTE INDEX*$-($*STRC*$-1) /$*WRDS*$+1$
EXECUTE INDX2*$in$*STRC*$-($*INDEX*$-1)*$*WRDS
EXECUTE EVAL*$-($*STRB*$.AND.$*BIT*$($*INDX2*$)).NE.O$
RETURN
END

C

C
INTEGER FUNCTION TRAN(HP)

C
INCLUDE CONS
HEAP HP

C
C

TRAN - IKUND
IF (.UNDEF.HP) RETURN

TRAN - HP(1,.INT.)
RETURN

END


