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1. FOREWORD (ABSTRACT)

A systematic approach to the calculation of coherent phase diagrams

using high-level approximations of the Cluster Variation Method has been

developed. The emphasis in this investigation was placed in higher than

first neighbor interactions in order to treat the complex ordering ob-

served in the Ni-V and NI-Mo systems. The new Cluster Variation approxi-

mations, when applied to the Ising ferromagnet, yielded significant im-

provement on the results of previous applications of the theory. A new

approach to the Ground State problem including pair and many-body inter-

actions was also developed.

for
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4. BODY OF REPORT

4.1. Introduction

Equilibrium phase diagrams are widely recognized for their practical

value in the design of alloys, the mechanical properties of which are

greatly controlled by the microstructures of second phases. The micro-

structures in question, however, are seldom determined by equilibrium

properties due to the fact that most metallurgical processes are carried

out in far-from-equilibrium conditions resulting, for example, from the

rapid quenching of a solid solution into metastable or even unstable

regions of the phase diagram. Furthermore, the crystal lattice imposes

a severe constraint on phase changes, particularly when such changes

are associated with ordering and/or segregation: the coexistence of

truly equilibrium phases will in most cases require the presence of

cyrstalline defects, e.g. dislocation at Incoherent interfaces which,

however, can only be introduced late in the decomposition since their

formation is mediated by diffusion and/or high internal stress fields.

Thus, the first products of decomposition will be characterized by the

fact that they share the same crystal lattice, allowing for small dis-

tortions, or are superstructures of the parent phase. Such initial

products, usually referred to as coherent phases, develop fine and very

homogeneous microstructures which, if not completely preserved, directly

affect the microstructure of the final products.

The goal of this project has been to Investigate the theoretical

tools needed for the calculation of order-disorder coherent phase dia-

grams in fcc based binary solid solutions. Whereas equilibrium phase *
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diagrams can be determined experimentally or synthesized by fitting ther-

modynamic data with regular or subregular solution models, coherent phase

diagrams are not in general amenable to either treatment. For the latter

phase diagrams, it is possible to perform first principle statistical

mechanics calculations which, at the present time, are not feasible for

the determination of equilibrium or incoherent phase diagrams. Thus

experiment and theory effectively complement each other, the former pro-

viding the incoherent and the latter the coherent phase diagrams, to

produce a complete picture of the possible mechanism of decomposition in

solid-solutions.

The method used for the free energy calculations throughout this

work was the Cluster Variation Method (CVM) proposed by Dr. Kikuchi in

1951. An important aspect of our work is that the usefulness and feasi-

bility of the CVM for the calculation of complex phase diagrams has been

clearly established.

In order to develop free energy models, or approximations that are

applicable to a significant number of ordered fcc superstructures, it

has been recognized, since the work of Kanamori et al. (2) and of Cahn

and co-workers(3), that at least second-neighbor pair interactions must

be included in the ordering energy. Second neighbor pair interactions

in fcc lattices had not been used in the past, however, and it was

therefore necessary to develop the appropriate CVM approximations and

to work with relatively large clusters and complicated superstructures.

The need for large clusters posed a serious bookkeeping problem since,

in the CVM, one must keep track of the probabilities of all cluster con-

figurations. Thus, a simple scheme for working with a reduced set of

Dim
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multisite correlation functions was developed (see Section 4.2 and Ref.

4). Such an approach suggested a concise and convenient manner of des-

cribing the state of order in binary solid solutions as points in the

multidimensional configuration space of correlation functions. The

configurational polyhedron introduced by Kudo and Katsura (5) can be

easily defined in such multidimensional space of correlation functions,

as explained in Section 4.5.7 and Ref. 6. Furthermore, the lowest

energy superstructures, or Ground States, follow once the vertices of

the configurational polyhedron are known.

Free energy expressions for different cluster approximations in-

cluding first and second neighbor interactions were derived and tested

in the case of the nearest neighbor Ising ferromagnet for which very

reliable values of the critical temperature are known. These results

are reported in Sections 4.3 and 4.4 and Ref. 4.

Among all the approximations tested, the tetrahedron-octahedron

cluster combination was used in order to calculate order-disorder phase

diagrams.

The starting point for phase diagram calculations by means of the

CVM is the so-called Ground State problem (see Section 4.5.1 and Ref. 6)p

that is, one must determine all superstructures that will be realized

in a given phase diagram and for a certain set of pair and/or many-body

interactions. To proceed with the calculations one then chooses inter-

action energy parameters which, according to the ground-state analysis,

will ensure the presence of the desired low temperature phases.

In the results discussed in Section 4.5.2 and Ref. 7, first and

second neighbor interactions v, and v2 , respectively, with vj>O and
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vj/vj = 0.25 were used in order to guarantee the presence in the phase

diagram of some of the characteristic ordered structures of the Ni-V

system, namely the D022 and the Ni2V superstructures.

The final step in the calculation of the coherent phase diagram re-

quires the minimization of the free energy functional for different values

of the temperature and average concentration. The numerical calculations

are somewhat involved providing, in addition to the coherent phase diagram,

a very complete picture of the state of order. That is, long and short

range order parameters, and in fact the probability distribution for all

tetrahedron and octahedron cluster configurations, follow directly from

the minimization procedure. By performing an instability analysis in

reciprocal space one can calculate the mean square amplitude of the clus-

ter probabilities which can be approximately related to experimentally

determined short range order diffuse intensity. Furthermore the in-

stability analysis yields the instability loci, or ordering spinodas, as

it is discussed in detail in Section 4.5.2 and Ref. 7.

This preliminary investigation of ordering in fcc binary solid solu-

tions was concluded with a study of the effect on the phase diagram of

the ratio of second to first neighbor pair interactions in the range 0 to

0.5. The results are presented in Section 4.6.

Each of the items briefly sketched in the introduction will be ex-

panded in more detail in the remaining sections of this report.

4.2. Cluster Algebra

When using the CVM, one is confronted with the cumbersome task of

characterizing a generally large number of cluster probabilities. For

example, in a binary alloy being described by an n-point cluster one
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must keep record of 2n probabilities. Due to the point group symmetry

of the crystal lattice, however, there are definite constraints among

the cluster probabilities; i.e., the number of independent configurational

variables is considerably less than 2n for an n-point cluster. One can

therefore save much computational effort by establishing a set of in-

dependent configurational variables.

A given cluster of lattice points will be identified by a pair (n,s),

where n refers to the number of points in the cluster and s is used to

distinguish different n-point clusters; e.g., first and second neighbor

pairs, different types of triangles, etc. Each point in the cluster can

be occupied by any of the atomic species, let us say A and B for a binary

solid solution. A particular distribution of A and B atoms on the n,s

cluster will be referred to as a cluster configuration and it will be

specified by a collective index J indicating the manner in which the

cluster is populated, e.g., J = [1, -1, 1,...-1] where 1 and -1 stand

for A and B, respectively.

Let x () be the probability that the n,s cluster is in the J con-n,s
figuration, the total number of possible configurations being 2n for a

binary solid solution. As already mentioned, the probabilities associated

with the 2n configurations are not all independent due to the linear con-

straints which arise from the symmetry of the ns cluster and of the

crystalline phase. In order to obtain a set of independent configurational

variables, we introduce the occupation operator

ri(p) - [l + iap (1)

where a takes values 1 or -1 if lattice point p is occupied by an A or

a B atom, respectively, and where I equals 1 for A and -1 for B. Thus
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r1(p) takes value 1 if p is occupied by an i-type atom and zero otherwise.

The probability xn,s(J) can then be calculated as:

Xn,s (J) = ri(p) rj(P')...rk(P") (2)

where p, p..." are n lattice vectors defining the n,s cluster, where

J stands for the set [i, j...k] and where the brackets denote an ensemble

average.

Using Equations (1) and (2) and expanding the products, one obtains

Xn,s(J) _ xx(r) = rr1 + EI VZX,(J) E,.] (3)

where, in order to simplify the notation, i and ' stand for the collective

indices (n,s) and(n',s'), respectively, and where the multisite correla-

tion function E. is given by:

Et En,s = <ap ap,...ap>. (4)

The coefficients V9,, (J) in Equation (3) are given by sums of n'-order

products of the i,j,...k (which take values t 1) in the collective index

J. The particular structure of the coefficients V9,, (J) can be best

illustrated by an example: the probability for an i,j,k (wherei,j,k is

1 for A and -l for B) triplet of nearest neighbors is given by:
x3(i,j,k) = i'{l + (i+j+k)t1 + (ij+ik+jk)E2 + (ijk)(3] (5)

where C1, E2, and Es are the point, nearest neighbor pair and triangle

correlations, respectively. The coefficient V91(J) = i+j+k is obtained

by summing, over all points in the triangle, the associated indices in

configuration J. Likewise V32(J) = ij+jk+ik is obtained by summing over

all pairs the associated product of indices. In general, the procedure

is continued until all subclusters, including the cluster itself, are

exhausted. For the 3-point cluster of Equation (5), the largest "sub-

cluster" is the triangle itself and the coefficient V33(J) is just ujk.
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In writing Equation (5), we have assumed the space group symmetry

of the fcc lattice. For ordered superstructures, however, one must dis-

tinguish the value of the point correlation function on different lattice

points, the value of pair correlations along different crystallographic

directions, etc. The expression for the triplet probabilities, for

example, will be slightly different from Equation (5). The procedure for

determining all the independent multisite correlation functions and the

coefficients V EVJ), can be summarized as follows:

i) A multisite correlation function is associated with each distinct

subcluster of the largest cluster (included), where two subclusters are

said to be distinct if they are not related by a symmetry operation of

the space group of the crystal under consideration. The multisite cor-

relation functions thus defined give a set of independent configurational

variables for the cluster approximation chosen.

ii) The coefficients V,.(J) relating the probabilities x n,s(J) and

the correlation functions En',s (see Equation 3) are obtained by sunming

over all n', s' cluster in n,s the associated n'-order products of the

indices i,j...k in configuration J.

4.3. Higher Cluster Approximations

The central problem of the CVM is that of calculating approximate

expressions for the number of configurations S1 of a crystal lattice having

definite distribution of clusters (pairs, triads, etc.) of lattice points

which may be, in general, occupied by any one of a given set of atomic

"species".' The equilibrium cluster distribution is then determined by

minimizing the free energy

F - E - TS a E - kBT knil

where E, a linear function of the cluster concentrations, is the energy
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of the configuration in question and where S is the configurational en-

tropy of the system.

Although it is found that larger clusters yield, in general, succes-

sively higher levels of approximations, the degree of difficulty involved

in the minimization of the free energy increases sharply with the size

of the basic cluster. Due to such difficulties, and despite the fact

that the CVM represents a remarkable improvement over other approximate

methods such as the molecular field and quasichemical approximations,

only clusters containing a relatively small number of lattice points

have been treated thus far. The CVM entropy associated with a number

of higher cluster approximations have been derived in Ref. 4. Those

which have been used for free energy calculations are:

a) The Tetrahedron-Octahedron (TO). This approximation consists in

combining the nearest neighbor tetrahedron and the regular octahedron

in fcc lattices. Since the clusters contain first and second neighbor

pairs most fcc superstructures, in principle, can be described within

this approximation.

b) The Double Tetrahedron-Octahedron (OTO). In this level of approxi-

mation the basic clusters are the regular octahedron as in a), and a clus-

ter formed by two tetrahedrons joined by a nearest-neighbor pair. The

DTO cluster combination is the largest cluster so far used for actual

calculations in the CVM, and it allowsup to third neighbor pair inter-

actions in the configurational energy.

4.4. The Ising Ferromagnet

In order to test the reliability of the TO and DTO approximations,

we calculated the critical temperature and specific heat for the fcc,
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spin-I Ising ferromagnet (see Ref. 4). The value of Tc obtained from

different approximations and that calculated from a high temperature

expansion are shown in Table I. Table II gives the coefficients of the

expansion for the high temperature specific heat. The resulting value

of Tc in the DTO approximation was only 1.5% higher than the one obtained

from a high temperature expansion, and the expansion for the high tem-

perature specific heat gave four coefficients exactly, the fifth one

being determined to within 0.4%.

Thus the CVM yields useful approximate results, provided that large

enough clusters are used, with far less computational labor than is

commonly required with more precise theoretical methods. More importantly,

the CVM, as handled here, allows the incorporation, in the energy ex-

pression, of second and third neighbor pair interactions and even many-

body interactions with absolutely no additional difficulties. This is

a very significant consideration since, as discussed in the Introduction,

the stability of various ordered structures found experimentally in fcc

and bcc bitary alloys can only be demonstrated by appealing to higher

than first-neighbor pair interactions. Hence clusters large enough to

contain explicitly at least second neighbor distances must be used in

the CVM calculations.

4.5. Order-Disorder Phase Diagrams

The program briefly outlined in the Introduction for the calculation

of order-disorder phase diagrams, namely the determination of ground-states

and the free energy minimization, was carried out in the TO approximation

in fcc lattices.
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4.5.1. The Ground State Problem

The cluster algebra presented in Section 4.2 provides a simple

starting point for the study of ground states in binary solid solutions

(See Ref. 6). In particular, requiring that the cluster probabilities

defined by equation (3) be positive, a set of linear constraints given by:

1 + V.,2 ,(J) Et. > 0 (1 1...2 n) (6)
2.'

must be imposed on the multisite correlation functions.

The set of inequalities (6) together with the restriction I £ < 1,

clearly imply that the configuration space is limited to a convex poly-

hedron: the so-called configurational polyhedron originally introduced

by Kud6 and Katsura.5 The fact that the configurational polyhedron is

convex allows us to write any state of order, represented by a vector

whose components are the multisite correlation functions, in terms of

the barycentric coordiantes Pk; namely:

K

I Pk (k) (7)

k-l

where E(k) corresponds to one of the K vertices of the configurational

polyhedron and where the Pk are non-negative numbers such that:

K

Pk (8)
k-l

The use of barycentric coordinates is very convenient for the minimi-

zation of the configurational energy and, therefore, for the determination

of the ground-states. In a given approximation involving r distinct cor-

relation functions, the most general form for the configurational energy

is:
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r

E = vi E (9)

X=1

where the v, are effective k-body interaction parameters.

Using Equations (7) and (9) we can write the configurational energy

as:

K

E= I pk E(k) (10)
kal

where

r
E(k) = , ( k )  (11)

te=l

is the configurational energy of the state represented by the vertex k.

In order to determine the ground states, one must minimize the energy

E subject to the constraint of constant average concentration. In terms

of the point correlation C1' the average concentration constraint is:

i = k (k) (12)

k

where El(k) is the point correlation of the k-th vertex. From Eqs. (8),

(10) and the fact the Pk > I, it follows that the unconstrained minima

of the configurational energy will be located at the vertices of the

configurational polyhedron. If the constraint of Eq. (12) is imposed,

the state of minimum energy will correspond to a linear superposition

of at most two vertices of the configurational polyhedron. The ground

state problem is then reduced to: a) determining all vertices of the

configurational polyhedron, and b) determining the range of the inter-

action parameters v. for which given vertices of the configurational

polyhedron are ground states. The associated maps in interaction space,

I.e., the space formed by the v,, will be called ground-state diagrams.
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Both points a) and b) are difficult problems in linear programming

for which a number of algorithms have recently been developed.8 The

vertex enumeration required in a), has been carried out for the TO ap-

proximation using a method based on the Simplex algorithm.

The results obtained can be summarized as follows. A total of 43

vertices were found, of which only 26 were truly distinct since there

were 17 pair of vertices connected by the operation of exchanging the

role of A and B atoms. Of the 26 distinct vertices, one corresponded to

pure A (or B) atoms and 8 were associated with the ground-state super-

structures known from previous investigations to be stable with first

and second neighbor pair interactions only.21 3 Thus, all the ground

states originally predicted by Kanamori (see Table 11I) and confirmed

by Cahn and coworkers in the first and second neighbor pair approxima-

tion for fcc lattices are, as one should expect, recovered in the present

formulation.

There remained 17 vertices to be accounted for. One can show that,

with the cluster probabilities associated with 10 of these vertices, it

is not possible to construct fcc superstructures. The fact that certa.n

vertices of the configurational polyhedron are not superstructures is

a general limitation of the method, rooted in the fact that the linear

constraints of Eq. (6) are in terms of average concentrations for small

clusters which cannot ensure an either A- or B- only occupancy at the

lattice points. Finally we were able to associate the remaining 7 ver-

tices with fcc superstructures. The superstructures in question are

listed in Table IV and their associated unit cells are shown in Fig. (1).

The final step in the characterization of the ground-states, con-

sists in the determination of the so-called ground-state diagrams. Such
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diagrams define regions in interaction space in which different sets of

ordered superstructures will be ground states. Two examples of ground-

state diagrams are shown in Figs. (2) and (3), where v1 and v2 stand,

respectively, for first and second neighbor pair interactions and where

v6 is the octahedron interaction. The remaining energy parameters were

taken equal to zero. The first neighbor pair interaction energy v1 is,

respectively, positive and negative for Fig. (2) and Fig. (3). Finally,

the different regions on the diagrams have been labelled by a prototype

superstructure, when possible, or by the ground-state superstructures

designated according to Table III and Fig. (1).

4.5.2. Prototype Phase Diagram

In order to keep the number of parameters as low as possible, only

first and second neighbor pair interactions will be considered. Working

with a reduced temperature scale T defined as the absolute temperature

T normalized by v/k with v1 the first neighbor interaction energy and

k Boltzman's constant, there is only one physical parameter in our cal-

culation, namely the ratio E = v2 /v1 with V2 the second neighbor pair

interaction energy. Three cases can be distinguished depending on the

ratio c. These three cases are conveniently classified in terms of

families of ordered structures labeled by the point in reciprocal space

where the Fourier transform of the pairwise energy has its absolute

minimum. Such families are: (i) the 4100> family for c < 0, (11) <fft>

family for e > , and (iii) the '10> family for 0 < e < 1. The ground-

state ordered superstructures belonging to each family are summarized

in Table III where the space group and, when applicable, the structure

information and examples are given.
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As seen in Table III, the <IJO> family comprises six different

ordered structures. At stochiometry 1/3, there are three different

degenerate structures: A2B, A2B', and A2B" (see Table III). The A2B'

and A2 B" structures together with thatof the A5B phase at stoichiometry

1/6, have monoclinic Bravais lattices.

Calculations were carried out for the following ground-state super-

structures of the <110> family: (1) the A2B2 phase with space group

141/amd, (ii) the A2B phase with space group Immm, and (iii) the A3B

phase with space group 14/nmm. The three structures above have a par-

ticularly simplifying feature in common: they can be formally obtained

by stacking of (420) lattice planes which are either occupied entirely

by A or by B atoms. On the other hand, the remaining <110> superstruc-

tures, namely, the monoclinics A2B', A2B", and A5B cannot be obtained

by stacking of pure A or B (420) planes. Due to the fact that low

symmetry makes actual computations a cumbersome undertaking and that

the structures in question do not seem to be realized in nature, we

did not consider them further in this work. The particular sequences

of planes for the A2B2, A2B, and A3B superstructures are schematically

shown in Fig. 4 together with a (001) projection of their respective

unit cells.

Included in Fig. 4 is the Dla structure with stochiometry 1/5 (A4B)

and space group 14/m. The Dla structure, an example of which is N14mo,

is not a ground state in the first and second neighbors energy model

used here, but it is degenerate with a mixture of the A3B (DO22) and

the monoclinic AsB phases of the <140> family. Nonetheless, the A4B

phase was included in our study since it can also be obtained by stacking
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pure A or B (420) planes. The A4B phase was found to be unstable for

the particular value of second to first neighbor interaction-energy

ratio of 0.25 and temperature range used in our calculations. Such

finding clearly emphasizes the importance of a detailed analysis of the

ground-state problem prior to CVM calculations.

The derivation and form of the free energy in the TO approximation

for the <110> family is highly technical and will not be reproduced here,

the interested reader being referred to Ref. 7. Depending on the symmetry

of the phase under consideration, the number of correlation functions

needed to describe the state of order in the TO approximation varies.

Since the free energy functional must be minimized with respect to the

correlation functions in order to obtain the equilibrium state, the size

of the numerical problem to be solved also varies from phase to phase.

The number of non-linear algebraic equations to be solved forthedis-

ordered, A2B2, A2B and A3B phases were respectively 10, 33, 46 and 45.

Representative plots of the long range order parameters for the different

ordered phases are shown in Figs. 5-8. Note that for the A3B phase two

ordered parameters, namely the amplitude of compositional waves of wave

vector <100> and <1i0>, are needed. Furthermore the discontinuity in

the order parameter characteristic of first order transitions observed

near stochiometry A3B (Fig. 7) is not present in Fig. (8), indicating a

second-order transition.

The calculated phase diagram is shown in Fig. 9. Characteristic

features in the phase diagram are the tricritical points labeled T

T2 and T3 -where second and first order transitions meet-end the bi-

critical point B at the junction of two second order and a first order

[ , 2
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transitions. The so-called ordering spinodal, corresponding to the con-

centration-temperature loci at which the disordered solution becomes

unstable, is also shown in Fig. 9 (broken line).

4.6. The effect of varying Interatomic pair interactions

The calculated coherent phase diagram described in Section 5 can be

regarded as a prototype for coherent ordering in Ni-V, Au-Cr and Ni-Mo,

for example. As mentioned in the introduction, coherent phase diagrams

are in general not available experimentally and therefore a detailed com-

parison with real systems is not possible at the present time. Neverthe-

less, it is of interest to study the effect of the ratio of second to

first neighbor pair interaction energy (e) on the relative stability of

the different ordered phases.

For the value of c = 0.25 used to calculate the phase diagram of

Fig. 9, the A2B ordered phase is seen to become stable over a very narrow

phase field and at very low temperatures. In order to raise the ordering

temperature of the A2B phase with respect to that of the D022 (A3B)

structure, the value of c was systematically varied within the range

0 to 0.5. Figure 10 shows a portion of the temperature-chemical potential

phase diagram in the neighborhood of the bicritical point B (see Fig. 9),

for values of c equal to 0.28, 0.3 and 0.33. Figure 11 shows a plot of

the difference in ordering temperatures for the fcc disordered (a) - A2B2

and the A2B2 . A2B reactions near the A2B stochiometry as a function of

the ratio a. Figure 11 suggests that the reaction a + A2B takes place

only for values of e larger than 1/3. Since the a -l A2B reaction takes

place in the NiV system and apparently does not in NiMo, one can infer

that the latter system is characterized by small values of c whereas in

the former the value of e should be larger than 1/3.
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Temperature-composition phase diagrams were calculated for C = 0.35

and for £ = 0.45. The results are shown in Figs. 12 and 13. A complicated

topology is observed for e = 0.35, the phase diagram displaying a number

of multicritical points. It is unknown to the authors whether the fea-

tures of the phase diagram in Fig. 13 has been detected either in alloys

or in antiferromagnetic systems.

A much simpler topology is achieved by increasing c to 0.45 as it

can be seen in Fig. 13. The dominant feature is now the Increased

stability of the A2B over larger temperature and composition ranges.

Thus the phase diagram of Fig. 13 can be considered as prototype for

coherent ordering in NI-V systems.

Simple inspection of the equilibrium Ni-V phase diagram suggest,

however, that the coherent phase diagram may be considerably more com-

plicated than that of Fig. 13. In fact it is not expected that the simple

interaction energy model used here, namely constant first and second

neighbor Interaction energies, will accurately account for real systems.

In fact, as shown by de Fontaine and Kikuchi, 9 even for the simpler case

of Cu-Au one must rely on many-body interactions in order to obtain a

reasonable fitting to the phase diagram.

4.7. Conclusion

The problem of ab-initio phase diagram calculations remains one of

the great challenges of modern solid-state physics and statistical

mechanics. The prospect of being able to predict a phase diagram Is at

the same time very attractive to the materials scientist since most

macroscopic properties can ultimately be related to the equilibrium phase

diagram.
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It has been the main objective of this work to investigate the feasi-

bility of such phase diagram calculations. To begin with, it was essential

to formulate the problem in such a manner that, without becoming utterly

unrealistic, it could be solvable. Thus we limited ourselves to the study

of coherent phase diagrams and, furthermore, we assumed that the configura-

tional energy was given in terms of constant-pairs and/or many-body inter-

actions, the values of which, hopefully, will be provided in the future

by the solid-state physicists. In this manner we could concentrate on the

thermodynamic and statistical mechanics aspects of the problem. Out of

a number of approximate techniques available to calculate coherent phase

diagrams we choose the CVM for a variety of reasons. Among them is that

althought the CVM is a classical "mean field" theory it provides remarkably

accurate results, away from critical regions, with much less computational

difficulties than more elaborate techniques such as Renormalization Group

Theory. Of course the use of regular or subregular solution models was

-not considered in our work since such models are very poor approximations,

valuable mainly for the rationalization of thermodynamical data. Thus

the CVM is an intermediate alternative between the very sophisticated

methods of modern statistical mechanics and the very empirical approach

based in free energy fitting by regular or subregular solution models.

Some of the attractive technical features of the cluster method used

in our investigation can be summarized as follows:

1) The method provides a simple description of the state of order in

terms of a finite number of multisite correlation functions.

2) The Ground-State problem is concisely formulated as that of

enumerating the vertices of the so-called configurational poly-

hedron.
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3) A hierarchy of increasingly more accurate approximations can be

generated by using larger cluster sizes in the CVM free energy.

4) Instability and fluctuation analysis can be carried out in reci-

procal space.

Although the calculation of coherent phase diagrams for complex

superstructures and large cluster approximations are in general tedious,

they are also, as we have proved, feasible and fundamentally simple. The

development of more systematic approaches to the problem of minimizing

the free energy and the implementation of more efficient computer codes

will undoubtedly broaden the field of application of CVM in the future.

We feel that with this work the first important step in that direction

has been taken.

WY
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TABLE I

Critical temperature for the fcc Ising ferromagnet.

Approximation kBTc /12v I

Tetrahedron 0.83544

DT 0.84045

OT 0.83394

DTO 0.82981

High T Expansion 0.81627

TABLE II

Expansion coefficients for specific heat.

an

n OT DTO Exact.

0 6 6 6

1 48 48 48

2 390 390 390

3 3216 3216 3216

4 26004 26724 26844

*1
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Table III

Ground-states for fcc lattices with first and second neighbor pair
interaction energies.

SStrutur- Symmetry Class Int. Table Examples/bericht designation

E<O Ll s. tetragonal P4/rmm CuAu

L12  s. cubic Pm3m Cu3Au

C>O.5 L 1  rhombohedral Rlm CuPt

- s.c. monoclinic C2/m A2B

O<<O.5 - b.c. tetragonal 14 /amd A2B2

- b.c. orthorhombic I mmm Ni2V, MoPt2

- s.c. monoclinic C2/m A28'

- s.c. monoclinic C2/m A2B"

D022 b.c. tetragonal 14/mmm Ni3V, TiA13

>- s.c. monoclinic C2/m A5B
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Table IV

Ground-states stabilized by many-body interactions

in the tetrahedron-octahedron approximation

for the fcc lattice.

Designationt Symmetry Class Int. Table

AB (a) s. tetragonal P4/nmm

AB (b) s. tetragonal PTM2

AB (d) s. tetragonal P42/mcc

AB (e) s. orthorhombic Pmmm

AB (f)tt f.c. cubic Fd3m

AB2 (c)* b.c. tetragonal 14/moi

A5B3 (g) t b.c. cubic 1432

t See Fig. (1) for two dimensional projections of super-
structures.

tt Cubic axis are 2ao <100> with a the fcc lattice para-
meter.

• Tetragonal axis are a = ao [100], b = a0 [001], c =
2ao (010].
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