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UNCLASSIFIED
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Chapter 3 examines a concept for producing low voltage multielementadaptive optics deformable mirrors.

The effect on average antenna gain Jf te inability of an adaptive optic

laser transmitter to vary the intensity of the laser beam.across the
transmitter aperture is evaluated. In Chapter 1 this is found to result
in a degradation of the average antenna gain by a factor of exp(-01s } ),
where OA is the log-amplitude variance of the received beacon signal.
It is shown there that if the adaptive optics can accommodate the need
to be able to vary the laser intensity across the transmitter's aperture,
then the average antenna gain can be made to equal the diffraction
limited antenna gain. This is achieved when the adaptive optics implemen :s
wave function conjugation, transmitting a low/high laser intensity from
those points in the transmitter aperture where the received beacon
signal is correspondingly low/high.

In Chapter 2 the qdestion of whether the constraint that no part of an

image can be negative is sufficient to insure unambiguous reconstruction
of an image from its power spectrum is studied. The question is
relevant to the problem of whether or not the Labeyrie technique is
sufficient to allow image extraction from speckle data. It is shown ther
that a whole class of images exists for which extensive ambiguity is
present in the process of extracting the image from its power spectrum
(or rather from its correlation function). In the absence of any
reason to consider members of this class of images inherently uninterest-
ing, it is suggested that a technique like the Knox-Thompson algorithm be
referred to the Labeyrie technique with nonnegativity for image
traction from speckle data.

e need for a low voltage multielement deformable mirror is well known.
n Chapter 3 a concept is developed for just such a piezoelectrically
ctivated deformable mirror. The concept is based on use of the d31
iezoelectric coefficient, forming a piezoelectric "block" from a set of
ong narrow rods. Assembly techniques are suggested. Supporting
erformance analysis is developed.
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PREFACE

This report is submitted in accordance with the requirements of

Contract No. F30602-79-C-0062. It represents the results of work com-

pleted between October 1979 and March 1980.

This report is a collection of several reports which previously

had been issued only informally. They are assembled in this document,

each constituting a single chapter.
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Chapter 1

Laser Transmitter Adaptive Optics Compensation

for

Intensity Variations on the Aperture



1. 1 Introduction

The theoretical basis for a phase conjugation adaptive optics laser

transmitter is found in the reciprocity theorem proved by Lutomirski and

Yura in an appendix of their paper' . They prove that the wave function

U(R 1 , R 2 ) for propagation from a point source at R2 to a measurement

point at Re is identical to the wave function U(Re, R3.) associated with prop-

agation from a point source at R, to a measurement point at R .

U(RI R) - U(R2, R . (1)

This result follows from the time reversal invariance of Maxwell's

equations, and applies for any propagation medium (except for certain

magneto-optically active materials). From this it follows in a very direct

way that if the effect of a random medium is to introduce only phase vari-

ations in U(R 2,, Ra) , then to transmit to R, with an antenna gain that is

undegraded by the propagation medium, the wave that is launched by the

transmitter should correspond to the -complex conjugate of the wave received

from R., i.e., that the transmitted wave should be proportional to U*(R,, R).

The proof of this result is so straightforward that, to the best of

our knowledge, no proof has ever been published. This result, however,

assumes, as noted above, that the effect of any irregularities in the prop-

* agation medium affects only the phase of U(R 2,, R), andhas no affect on the

jamplitude of U(R, Re). In this work, however, we shall be concerned with

the effect of such amplitude variations on antenna gain if the adaptive optics

I yonly makes phase corrections, and with the question of what we would like the

adaptive optics to do to the amplitude of the transmitted wave to maximize

antenna gain-assuming that the adaptive optics could produce any desired

variation of the amplitude of the transmitted wave without having to "throw

away" transmitter power. For example, should the amplitude of the trans-

mitted wavefront be large where the amplitude of U( , R) is small so as

* -Z,, - --- .
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in effect to compensate for it, or should it also be small, as would be sug-

gested by the "principle" of transmitting the conjugate wavefront., U*(R 2 ,

R.). We shall show that this later is, in fact, the correct strategy for

maximizing antenna gain.

We shall restrict our analysis to the case of propagation through

utilizepherfct httelgrtmoh turbulence indce amplitudlie varioswlknnreutas-

ations follows a gaussian distribution, and that such log-amplitude variations

manifest a rather short correlation range. We shall also restrict our atten-

tion to an adaptive optics control logic which calculates the log-amplitude

of the transmitted wave as a linear function of the log-amplitude of the

received beacon signal at the same point on the transmitter aperture.

In the next section we shall consider the situation when the adaptive

optics provide for no variation of the intensity of the transmitted beam

across the transmitter aperture. This will provide a definitive result for

the extent of the loss in transmitter antenna gain due to completely un-

compensated intensity effects across the aperture. There it will be shown

that the effect is to reduce the antenna gain by a factor of exp(-oja) where

a2is the log-amplitude variance. The section after that will consider the

dependence of transmitter antenna gain on the form of the compensation of

intensity across the transmitter aperture. It will be shown that transmitter

antenna gain is optimized by making the variations across the aperture of

the intensity of the transmitted wave exactly match (i. e. ,directly propor-

tional to) the variations across the aperture of intensity of the received

beacon signal. It will be seen that with just such variations of intensity of

the transmitted beam, the average transmitter antenna gain will be just what

* would have been achieved in the absence of turbulence effects.

-3-



' 4.

j.Z Antenna Gain With No Intensity Pattern Compensation

For the purposes of the analysis we shall be carrying out here, it

will be convenient to represent the turbulence corrupted wave as received

from a point source beacon colocated with the target aimpoint of our

adaptive optics by the notation

U(R, ' ) = u(R,T) W(r) exp L(') + i o(7)J , (2)

where " is a two dimensional vector denoting position on the plane of the

transmitter aperture, and R is a vector denoting the position of the point

source beacon. (R is also the position of the aimpoint of the laser trans-

mitter. ) The function u(R, r) represents the wave function from the beacon

to the transmitter aperture in the absence of turbulence effects, while the

function W(7) defines the extent of the transmitter aperture in accordance

with the equation

W r , if r represents a point within the aperture,

0, if " represents a point outside of the aperture. (3)

The function 0(r) denotes the ordinary, i.e. , the phase portion of the

turbulence induced wavefront distortion while the function A(r) denotes the

natural logarithm of the turbulence induced variation of the amplitude of the

Pi beacon signal.

In accordance with well established results of propagation theoryp we

can consider both 0(7) and A(r) to be gaussian random functions, though it

is only the properties of .9(-) , the log-amplitude variation, that will be of

concern to us in this paper. Moreover, it is well established that the

statistics of these random functions are homogeneous and isotropic. The

statistics of the log-amplitude variation are characterized by a mean value,

",where
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7 = ( ( )) , (4)

and a covariance function, Ct(p), where

ct(P)= (CL() - 73 lt(') - 7]) , (5)

with

* p (6)

For convenience we also define the log-amplitude variance, oa , as

o' = C (0) (7)

It can be shown3 that by virtue of conservation of energy considerations

it ia necessary that

1= -2 (8)

This relationship is required since positive and negative values of A(r)

do not change the power density by the same amount. The bias

in the distribution provided by having " not equal to zero is necessary so

that equal but opposite sign values of £(r) will not occur with equal probability.

The value of 7 specified by Eq. (8) provides exactly the required bias of

the probability distribution.

If the laser transmitter emits a wave function V'(r), then it can be

shown that the power density at the beacon/airnpoint will be

d r U (R, 7) V (7)5



_77

where in writing this formula we have made use of the reciprocity result

of Lutomirski and Yura as embodied in Eq. (1) to introduce the effect of

propagation from each point in the aperture, through the turbulent atmos-

phere, to the aimpoint. The range of integration in Eq. (9) is to be under-

stood as being limited to the transmitter aperture by virtue of the fact that

V(?) vanishes for values of r outside the aperture. In Eq. (9) the quantity

denotes the range from the transmitter to the aimpoint. The antenna gain,

G, may be considered to be equal to the ratio of power density at the aim-

point to the total transmitter power, scaled as range squared. Thus, we

can write

G 2 r(10)

Combining Eq. Is (9) and (10), we can write for the laser transmitter

antenna gain

G r xIduR rV(0)1)

At this point it is convenient to take up consideration of the very simple

case in which there are no turbulence effects.

When there are no turbulence effects present the wave function

U(R,r) , as defined by Eq. (2), reduces to the very simple form

U. - W

The function u(R, r) can be considered to be a constant amplitude function

(providing that the beacon source is not so large that it can be resolved by

the transmitter's aperture) with only a phase dependence, t(r), across the

transmitter aperture. Accordingly, we can write

-6-



u(R,?) =expti *('r)] .(13)

Making use of Eq. Is (12) and (13) in conjunction with Eq. (11), the antenna

gain, in the absence of turbulence, can be written as

-d' WC*) expti 1)
Go d ~i1t V~I (14)

With a laser wave function of uniform amplitude 47 leaving the transmitter

aperture, the turbulence free antenna gain, Go will be maximized when

the laser wave function has the form

This exactly corresponds to focusing the transmitted wavefront on the

target, and in this case we get

Go -x-2 IdW (7) (16)

If we let A denote the transmitter aperture area, i. e. ,

A = Jd~r W(7) ,(17)

then we can write

Go A/7,2  ,(18)

and for the special case of a clear circular aperture of diameter D we get

Go 17 (D/X)2 7 (19)

A-7-
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When turbulence is present the beacon signal will have the form

U(R, ) = exp[i #(?)] W(') expA(') + i 0(')] (20)

which is obtained by substituting Eq. (13) into Eq. (2). In this case, by

combining Eq. Is (11) and (20) we see that the antenna gain is expressible

as.

G = - Jdr W(') expi *J'P)]expg[A(-r) + i€(7m)1V()I (

Since, for this section, we are restricting our attention to the case in

which the adaptive optics in the laser transmitter will only distort the

wavefront shape of V(ir) but will leave the amplitude of T(7) unchanged,

i. e. , independent of r, it is obvious from consideration of Eq. (21) that

the distorted wavefront will have a phase that exactly compensates for

*( ) and 0(7) . This will insure that the integrand in the integral in the

numerator in Eq. (21) will be everywhere positive, which choice max-

imizes the value of that integral. The adaptive optics would cause the

laser wavefront to be represented by the expression

V(7) = 4 exp[- i #(') - i0(')] W(7) . (22)

j The *(?)-dependence in Eq. (22) is just that which [as in the turbulence

free case corresponding to Eq. (15)] is required to focus the beam on the

Y- aimpoint taking appropriate account of the various geometric factors.

The 0(7)-dependence in Eq. (22) corresponds to correction for the phase

shift portion of the turbulence effect, and in a limited sense corres-

ponds to phase conjugation correction of turbulence effects.

When Eq. (22) is substituted into Eq. (21), we get the result that

-8-
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x-2 I-rd W() exp.(T)l 12
G Id? W?'d ) - (23)

In as much as the log-amplitude variation, Z(7) , is a random function

it is obvious that the antenna gain, G, as specified by Eq. (23), is a ran-

dom variable. Our interest is actually in the average value of the antenna

gain, which we can write as

' ; G ) - ( [ ' d ' W ( I  [ .t ( "r * ) 2 a

(rd W ) exp (24)

In developing Eq. (24) from Eq. (23) we have made use of the fact that

the integrand for this integral in the numerator is everywhere real and

positive, so that the value of that integral must also be real and positive.

This allowed us to drop the absolute value bars.

By writing the square of an integral as the product of two integrals

(one taken over the variable 7, and the other taken over the variable IF"),

then writing the product of two integrals as a double integral, and finally,

interchanging the order of integration and ensemble averaging, we can

obtain the result that

<(Sdl' W(7) exp[A('r*))2 >

= Sd~r dW-rW(-) W(?V)(exp[1('r) + L('r)3) . (Z5)

To evaluate the ensemble average term on the right-hand-side of Eq.

(25) we make use of the fact that if X is a zero mean gaussian random

variable and a is any constant, then it can be shown that 4

(exp(ax)) = exp(j a2 (x 2 )) (26)

-9-
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Making use of this result we can write

(exp[,t(,l) + ,(-")]) = (exp(rj(') -7 + ,/(') - 7>]) exp(271)

- exp(* (('[r) - 7-- + [L(r') - 1]]2))exp(27) (27)

By means of Eq. 's (5), (7), and (8) this can be reduced to

(exp[( ) + t('')]> exp(i [CtIO) + rC(I - r'It + C(o)])

X exp(-20g2 )

exp[Ce(I-V - )- at2] • (28)

When we substitute Eq. (28) into Eq. (25), we obtain the result that

= exp(-CI2 ) fJd d'' W() W(7') exp[Ct( I' - 7' i)]. (Z9)

We can form an estimate of the value of the double integral on the right-
hand-side of Eq. (29) by noting C,(l' - 'I) has a value less than'L 3 ,

which in general, will be less than' 0. 25, and that for laser transmitter

aperture sizes of practical interest the diameter is so much greater than

the correlation length associated with C1( I' - r' 1) that for almost all pairs

of values of r and 7" the value of C1( j - 71 I) is very nearly equal to zero.

This -suggests that with only a modest effect on the accuracy of our results,

we can replace the exponential in the double integral by unity. Once we

make this replacement the double integral can be rewritten as the product

of two identical integrals, each of which is evaluated in Eq. (17). Thus,

-10-
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we can write from Eq. (29) that

(tJd W(r) exp[L()3 2 ) A2 exp(-at) . (30)

When we substitute this result into Eq. (24), and again make use of

Eq. (17) we obtain a result which can be reduced to the form

(G> = (A/X 2 ) exp(- a .2 ) (31)

Taking note of Eq. (18), and defining the intensity variation (random

apodization) reduced efficiency, TAA , of the antenna gain of the phase-

only-correcting adaptive optics laser transmitter as the ratio of average

antenna gain, (G) , to the diffraction limited antenna gain, G. , i.e.,

"IIA (G) /Go , (32)

we see that this efficiency factor is given by the expression

%A = exp(-at2 ) (33)

This expression represents the basic result when the adaptive optics of

the laser transmitter take no account of the intensity variations of the

beacon signal. The transmitted laser beam is of uniform intensity across

the aperture and there is only phase distortion correction.
IL

This probably represents a practical limit. Nonetheless, it is

interesting to consider the question of achievable antenna gain when the

intensity of the transmitted laser beam across can be adjusted. In the

next section we take up the question of what is the optimum form of the in-

tensity adjustment, i. e., how do we determine what intensity pattern to

transmit given the intensity pattern of the received beacon signal, and what

then is the achieved average antenna gain.

-11-

| - . _.___ •

L ~ ~~ ~ i l.= , . .. .-- 71,-.



1. 3 Antenna Gain With Intensity Pattern Compensation

If the adaptive optics portion of the laser transmitter is able not

only to adjust the shape of the laser wavefront leaving the transmitter aper-

ture (i.e., make phase corrections), but is also able to redistribute the

laser power so as to provide any desired power density pattern across the

transmitter aperture (i.e. , make a random apodization correction), then

it should be possible to compensate, at least in part, for the intensity ef-

fects that gave rise to the less-than-unity value of JIRA . In this section,

we shall establish the exact form of the desired random apodization and

shall show that with an optimized choice of this apodization, we can achieve

an average antenna gain equal to the diffraction limited value.

The idea that ideal adaptive optics performance is provided by wave

function conjugation carries with it the implication that the power density of

the transmitted laser beam should vary across the transmitter aperture in

exactly the same way that the power density of the received beacon signal

varies across the aperture. Where the intensity of one is high, the inten-

sity of the other should be correspondingly high, and where the one is low,

the other should also be similarly low. This is in juxtaposition with the

seemingly plausible thought that where the one is high, the other should be

low, and vice versa. We shall show that in fact use of the wave function

conjugation concept does lead to optimum correction, i. e., that the power

density of the transmitted laser beam should match that of the received

beacon signal.

With wave function conjugation, the random apodization correctedI *laser wave function would , in place of the form given in Eq. (22), have

the form

=r, (r) 67 exp -i I + (r) - i()) W(r) (34)

Il



The fact that the exponent depends on plus L(r) rather than on minus L(G)

implies that the intensity variations of the laser beam match the intensity

variations of the beacon, rather than being the inverse. To allow for the fact

that the optimum intensity pattern may be different from that developed by

wavefront conjugation, we shall consider transmission of the laser wave

function corresponding to the expression

V) = a exp [-i *() + aA (r) - i0(7)] W() (35)

where a is a constant whose value is to be determined based on antenna

gain optimization criteria. Our choice of this sort of function is based on

the following two considerations. First, the intensity pattern across the

aperture of the transmitted laser beam should depend on the intensity of

the received beacon signal in a way that is unchanged by such things as a

doubling of the beacon intensity everywhere over the aperture. This is

satisfied by making the log-amplitude of the transmitted laser beam a linear

function of the log-amplitude of the received beacon signal. Second, the in-

tensity of the transmitted laser beam should be a local function of the inten-

sity of the received beacon signal. This means that the log-amplitude of

the transmitted laser beam at position 7 should depend on the log-amplitude

of the received beacon signal only at position r . The expression given in

Eq. (35) is the most general expression we can write satisfying both of

these criteria. Our problem now reduces to developing an expression for

the average antenna gain as a function of a. , and then determining the

value of a that maximizes the average antenna gain. We shall find, when

we carry out this analysis, that the optimum antenna gain is in fact achieved

when m equals unity. Comparison of Eq. 's (34) and (35) makes it clear that

that this fact implies that wave function conjugation does indeed yield the

optimum compensation for the random apodization induced by atmospheric

turbulence, as well as of course completely correcting for the turbulence-

induced phase perturbations. We shall see that with wave function conjugation

-13-
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the average antenna gain is equal to the diffraction limited antenna gain.

In terms of average antenna gain, wave function conjugation completely

eliminates the effect of atmospheric turbulence

To develop an expression for the dependence of antenna gain on the

value of the parameter c we start with Eq. (10). This expression gives

the instantaneous antenna gain as the ratio of the instantaneous "range

scaled" power density at the target to the instantaneous total laser power

leaving the transmitter aperture. For our purposes it is not really appro-

priate to take the ensemble average of the instantaneous ratio on the right-

hand- side of Eq. (10) and consider that to be the average antenna gain.

Rather, we should consider the ratio of the ensemble average of the in-

stantaneous "range scaled" power density at the aimpoint to the ensemble

average of the instantaneous total laser power leaving the transmitter

aperture as being the effecLive average antenna gain. It is this ratio,

which is denoted by Ca, which we wish to maximize.

In view of this discussion, and starting with Eq. (10), we can

write

G (fdr J I_ 'fa(1)12) (36)

Proceeding in exactly the same way that we did in going from Eq. (10)

to Eq. (21), we can obtain from Eq. (36) the result that

•f = CLs dC Wlr?) expCi *(7)1 expE J(7) + io(C*)]V ()1 2 ) (37)
ISrr1?a(*)13)

When we substitute Eq. (35) into this equation and appropriately simplify,

we obtain the result that

-14-I. ,
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- '. 2 (I r' W(i7) exp[(l + (8) 1 ) (3)(I'd? W(T) exp2cte1()])1

Our problem now is to make manifest the nature of the a-dependence in

this expression.

We start by noting that by commuting the operations of integration

and ensemble averaging, we can write for the denominator of Eq. (38)

(J'd W(7) exp[Za 1(7) = jdr W(r) (exp[Za 1(00)> ( (39)

Making use of Eq. 's (5), (7), (8), and (26), we can write

(exp[2a A-)]) = (exp [Z L.L( ) - T'3) exp2't)

= exp(2 C a1) exp(2 cY')

= exp(2 a 2 2 ) exp(-2oaar

= exp[Zot 2- o1) 0, 2 ] (40)

When we substitute Eq. (40) into Eq. (39) and make use of Eq. (17), we

can obtain the result that
.1

(fdl W(7) exp[ZZ1of2() > A exp [2(V2 -  ) at22 (41)

This completes our evaluation of the denominator in the right-hand- side

of Eq. (38). We now have to evaluate the numerator.

To evaluate the numerator of the right-hand-side of Eq. (38), we

*" shall follow basically the same procedure that we used in proceeding from

Eq. (25) to Eq. (30). We start by noting that we can write the square of an

-15-



integral* as a product of integrals, and then write the product of integrals

as a double integral. In this form we can commute the operations of in-

tegration and ensemble averaging. Thus, we obtain the result that

I Jdr W(7) exp[(1 + a) r)] 12

= JJd' dr' W(7) W(') (exp[(l + a) [ (7) + tr(')j] . (42)

Again, making use of Eq. 's (5), (7), (8), and (26), we can write

(exp((l + ae) [1(7) + Z1"r'ffl)

= (exp r + exp[Z(l + l)-ji

= exp( + a)22+ 2C(rI - ')+ exp[-( )a

= exp (a 2 -) oU 2 J1 exp[(l + CI)2 CL( N -r 'I)] (43)

Combining Eq. Is (42) and (43) and appropriately simplifying, we get the

result that

(I d W(7) exp[(l + 0) A(r)] 12) = expL(o12 -l) a

ix Sfdr dW rW('?)W('r)exp[(l+a) ' C(I'r - '*'I)] (44)

Here again, just as in going from Eq. (29) to Eq. (30), we make use of the

argument that the correlation range for log-amplitude variations is so small

Since the integrand is everywhere real and positive, the integral is also
real and positive. This allows us to simply ignore the presence of the
absolute value bars in the numerator of the right-hand-side of Eq. (38).

-16-



compared to the telescope aperture diameter that for practically all values

of " and ', C;( ] - 7' 1) is nearly equal to zero, and that even for the limited

set of cases where ' and ' are close together, the correlation is not partic-

ularly large. This allows us to estimate the value of the double integral on

the right-hand- side of Eq. (44) by replacing the exponential function by

unity. Thus, we obtain the result, making use of Eq. (17), that

KIrd' W(7) exp[(l + a) (r2)I) A 2 exp[(a 2 -2)
2L2 ]  (45)

With this result in hand we can now evaluate the average antenna gain.

When we substitute Eq. 's (41) and (45) into Eq. (38) and appropriately

simplify the result, we get the equation

A exp -(a- 1)2a2] (46)

It is obvious that this average antenna gain will be maximized when a is

chosen to have a value of unit. In this case, the average antenna gain will

be equal to the diffraction limited antenna gain given in Eq. (18), i. e. , on

an average basis there is perfect compensation for the effect of atmos-

pheric turbulence. This perfect compensation is achieved with a equals

unity, corresponding exactly to the case of wave function conjugation as

the basis for the adaptive optics control. This means that where on the

transmitter aperture the intensity of the received signal is low/high the

intensity of the transmitted laser beam will be made correspondingly

low/high.

-17-
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Chapter 2

Ambiguity In Image Extraction From

Speckle Measurements Using Nonnegativity

I
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2. 1 Introduction

It is by now quite well known that nearly diffraction-limited infor-

mation can be obtained from imagery through turbulence by means of

speckle techniques. It was shown by Labeyriei that if a set of very short

exposure images is formed, it is possible to determine the power spectrum

and correlation function of the diffraction-limited image. The correlation

function and the power spectrum are, of course, quite different from the

image itself, which is our real interest, but it is possible to learn a great

* deal about the object and its image from its correlation function, particu-

larly for relatively simple objects like binary stars. However, for more

I complex objects, there is a pressing need to generate a representation of

the image per se, and not just of the correlation function. A rather inter-

esting method of doing this, referred to as the Knox-Thompson algorithm,

has been described and analyzed by Knox. 2 However, because of various

factors, another approach to this problem has been suggested by Fienup. 3

This approach is based on the still unproven hypothesis that while there

are many functions all of which give rise to the same correlation function,

the implied ambiguity associated with trying to determine which of the

various possible image-functions gave rise to the correlation function

measured using Labeyrie's technique can be resolved by noting that the

image-function must be everywhere nonnegative. The presumption is that

except for a 180 0 -rotation ambiguity, there is in general only one everywhere

j nonnegative image-function corresponding to a measured correlation func-

tion. It is the purpose of this chapter to explore a certain aspect of this

assumption and show under nontrivial conditions that this assumption will

break down. Since the conditions we shall consider are far from general

in their nature, it is not clear how widely applicable these conditions are.

This is a matter we shall leave for the reader to decide.
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In the following sections, we shall first develop some mathematical

tools, and then in the subsequent section will show how these tools may be

used to build up a whole class of image patterns for which there is massive

ambiguity in reconstructing the image from the measured correlation func-

I tion. In the final section, we shall offer some comments and conjectures

relating to this result.

-- o



2. 2 Mathematical Formulation

In the development of this section, we shall draw very heavily upon

the mathematical techniques of Bruck and Sodin. 4 We shall assume that

without loss of generality, we may consider the image plane to be spatially

quantized, and may restrict attention to images of finite extent. We shall

consider the spatial quantization to correspond to a square array lattice

oriented par Alel to the x-y coordinate system axes with lattice spacing A

the same along both axes. We shall use the notation (p,q) , with p and

q both denoting integers, to indicate a particular lattice point. The p,q-

lattice point will have coordinates

x = p& y = q AI

We shall use the notation a, q to denote the intensity of some particular

image pattern of interest, at the p,q-lattice point. The set of values

defines the image.

In order for the concept of an image as defined by [a,.q) to con-

form to our practical understanding, it is necessary that we consider two

images defined by the coefficients (lapq} and (.a.,q) to be equivalent if

for all combinations of values of p and q , we can write any of the

following relationships:

For intensity scaling-

MapaNM 2ap(2)

'where M is some positive parameter (which does not depend on p and/

or q ).

For displacement scaling -

Iaq= ap_-6,q-v (3)

. -22-
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where and v are some integer values (which do not depend on p and/

or q ).

For 180-rotation scaling

aq= a.p,q (4)

Moreover, we will consider the images defined by f 1a,,J and by ( 2 a,,q

to be equivalent if any sequence of the three transformations defined by

Eq. 's (2), (3), and (4) will carry 6%a,qI into (I a., q)

The correlation function associated with the image (a, 1  is also

representable by a set of values on the same square array lattice space.

We will use the notation Apq to denote the correlation value for a dis-

placement of the image with respect to itself equal to x = pA and y = qA

Thus we can write

A , = 1  q ,.,_p q,_q (5)
Pi q,

The problem of unambiguous image reconstruction can be viewed as that of

trying to determine the values in the set (a, q) thus defining the image,

given the set of measured values (A,. J of the correlation function of the

image.* It is hoped that any ambiguity inherent in this process can be

eliminated by recourse to the constraint that the image is everywhere non-

negative, i.e. , for all values of p and q , we can write

Sa.,q Z 0 (6)

To develop a handle on this question, we shall make use of the ploy of ex-

pressing the image by means of a polynomial.

* Generally the Labeyrie speckle technique is thought of as providing the
power spectrum associated with the image, but can just as well be con-
sidered to provide the correlation function.

-23-
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We shall define the polynomial f(u,v) by the expression

f(u,v) a.. qup v. (7)

P, q

Clearly, a complete knowledge of this polynomial is entirely equivalent to

a knowledge of the image pattern as defined by the set of values (a,)

Not only can the image be defined by a polynomial function, but the correla-

tion function can also be expressed in terms of a polynomial function. The

polynomial function

F (u, v) q , u1 vq , (8)

'sq

defines the image-correlation function in just the same way that f(u,v)

defines the image itself. The problem we are addressing is whether or not

(or rather under what conditions) we can unambiguously calculate the

polynomial f(u, v) given the polynomial F(u, v) .

* It is perhaps worth remarking here that Bruck and Sodin 4 arrived at this

type of formulation indirectly. They first considered the fourier trans-

formation of the image pattern, which for spatial frequencies X, ,t can
be written as

0 h P ,Ky) a. exp [-Zn i (K. pA + K )
p. q

By defining u and v by the relationships

u = exp (-2n ixt, A) v exp (-Zr i KY A)

they are then able to write

0(hK, , hy* uF

P, q

and eventually can write

f f(u, V) 0 N ' ,KY) a. / q u p  vq •

p9 q

(Continued on next page)
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Making use of Eq. 's (5), (7), and (8), it is now possible to prove

a key relationship. Starting with Eq. (7), we can write

f(7 V' f(u v)a , u- p 
P~ av-.u "

P, Q

/-,asq- a., u~p _- P v qo- Q  (9)

Now making a change of variables for the summation indices, writing

p =p'-P , q q-Q (10)

we can rewrite Eq. (9) as

f N71 v-1 f f(u, v) a,, a, -..- qUPv

Up V
Pa., q,

{/.2 L %q %,pq, u1 vq (11)

pq P$qV

From Eq. (5), we see that this can be rewritten as

f(u" v) f(u,v) = Ap, q i v q  (12)
'I

Pe q

Comparing the right-hand-side of Eq. (12) with Eq. (8), we can see that

f(u , v') f(u, v) = F(u, v) (13)

* (Continued from previous page) This approach makes manifest a re-
lationship between the polynomial f(u, v) and the fourier transform of
the image. However, we see no real requirement for this, and there-

*fore have chosen the direct approach of simply writing down Eq. (7)
Fwithout bringing in fourier transform considerations.
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This is a very important mathematical relationship which eventually will

show us how to generate all sorts of sample images for which the deter-

mination of the image polynomial, f(u,v) , from measured values of the

image correlation polynomial, F(u,v) , is very ambiguous within the

nonnegativity constraint of Eq. (6). We shall take this up in the next

section.

"i2
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2.3 Extracting the Image Function From the Correlation Function

The basic problem of processing speckle data as generated by the

Labeyrie technique so as to form an estimate of the diffraction-limited

image of the object being viewed can be considered equivalent to the fol-

lowing problem. Given the image correlation polynomial function F(u,v)

can we find a polynomial function, f(u, v) that has only nonnegative coef-

ficients such that the product f(u,v) f(u ,v " ) is equal to F(u,v) ? This

problem is presently being studied by Fienup, using an iterative technique.

Implicit in the formulation of this problem is the question of unique-
Siness, i. e. , is there only one such function, f (u, v) for any function F(u, v)?

In the following, we shall show that the uniqueness criteria is not always

satisfied, and in fact will present a technique for generating any desired

number of samples of image correlation functions, F(u,v) for which the

uniqueness criteria is not satisfied. In judging uniqueness, we of course

make allowance for differences in forms of f(u,v) which are "removable"

by some combination of the three scaling transformations defined by

Eq. 's (2), (3), and (4). Nonetheless, we will be able to show violations of

uniqueness.

We shall start by introducing the concept of a "completely factor-

able" polynomial function. By this we mean a function, f(u, v) , which

can be written as

f(u,v) = ['(v-) (14)
PA q'

This is certainly not the most general expression we could write for

f(u,v) as there are many choices of the function f(u,v) as defined by

Eq. (7) which can not be cast in the form of Eq. (14). For example, such

a simple form as f(u, v) equal to 1 + u + v is compatible with Eq. (7),

-27-
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certainly satisfies the nonnegativity constraint of Eq. (6), and is not

expressible in the form of Eq. (14). Nonetheless, the set of possible

forms of the image function f(u,v) which are compatible with Eq. (14)

is extensive, and we have no reason to rule out consideration of such

functions, provided that they each satisfy the nonnegativity constraint of

Eq. (6). In the following, we shall restrict our attention to image poly-

nomial functions, f(u, v) , which are completely factorable, i.e., can

be. written in a form compatible with Eq. (14).

The zeros of the polynomial f(u,v) , i.e., the sets o and

{ , define the set of coefficients, [a, , of the polynomial when ex-

pressed in the form of Eq. (7). We could, if we wished, write out the

relationships between a,,q and (N,] and Dq,] , but there is no need

to do this. It is, however, necessary for us to note that since all of the

coefficients a, q are real, then if any of the zeros, ao, or ., , are

complex, then their complex conjugate, %,* or 0,,* , must also be a zero.

While it is possible for all of the coefficients a,q to be nonnegative even

with zeros, a, and/or e , which have positive real parts, we are

assured that the nonnegativity constraint will be satisfied if all of the zeros

have negative real parts. This can be seen by noting that for a real nega-

tive zero or a complex conjugate pair of zeros with negative real parts,

the corresponding factors will be of the form (lu + a, 1) or (Iv +0q'[)

for the real zero, or of the form (1 u2 +2u I.,? I+ .C
1
2
) or (I v 2 + 2v

X I OqAP + I0q, 2) for the pair of complex zeros. Here the superscript r

as in a,/ and Oq, , indicate that only the real part of a complex number,

a., or 0q, , respectively, is intended. In each expression, we have

written a seemingly superfluous factor of unity for the leading term to make

explicit the fact that its coefficient is positive. The important thing to note

about these expressions is that as a result of restricting the zeros to the

left half plane, we have insured that the corresponding factor in Eq. (14)

S-i8-
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contains only positive parameters. This insures that any sum of products

of combinations of the parameters in the factors in Eq. (14) will be posi-

F tive. Since the polynomial coefficients, a, q , in Eq. (7) are each the

sum of products of combinations of the parameters in the factors on the

right-hand-side of Eq. (14), then we are assured that all of the coefficients,

a.. , , of the image function polynomial, f(u, v) , will satisfy the non-

negativity constraint of Eq. (6) if the zeros of the polynomial, Q2 , and

are all located in the left half of the complex plane!

We now turn our attention to the zeros of the image correlation

function polynomial, F(u,v) . We can see from consideration of Eq. (13)

that the zeros of F(u, v) will consist of the zeros of f(u, v) plus the zeros

of f(u -1 , v-1 ) . The zeros of f(U-1,v - 1 ) can be determined by noting from

Eq. (14) that we can write

f(u 1 , v) = (u' - O (v - 0) (15)
S,-' q*

from which it follows that the zeros of f(u'4,v-1) correspond to

i u-1 = C "  'V-1 =  Oq' (16).

or

The zeros of f(u'1,v4 ) are the sets [,T plus (B) • Thus the zeros

of the image correlation function polynomial, F(u,v) , consist of the sets

N(a,,,a ii plus No, OV

~ The Labeyrie speckle technique, when studying an object whose
diffraction-limited image is expressible in the form of Eq. (14), may be

considered to yield the image correlation function polynomial, F(u, v)

- from which we would extract the set of zeros {(a.,, plus O',

-29-



Extracting the image function polynomial, f(u,v) , from this data cor-

responds to the task of selecting from each of the P' pairs of zeros,

, ,and the Q pairs of zeros, q , the correct one of the two

zeros in the pair of zeros. There are 2P' Q' possible combinations, all of which

will yield an image function polynomial, f(u,v), that is consistent with the measured

correlation function, F(u, v) , since no matter whether we choose Cx, or

a-i (or $q. or , the zeros of the correlation function F(u, v)

calculated from that form of f(u,v) will contain both c , and a (or

q, and 0) , just as does the measured correlation function.

Our sole hope in resolving this 2P '  ambiguity lies in the non-

negativity constraint of Eq. (6). But unfortunately, if o , ( or ) lies

in the left half of the complex plane, then so does a,-z, ( or ) This

is sufficient to insure that whether we correctly choose a , or incorrectly

choose -,' (or correctly choose Oq, or incorrectly choose B~?) the non-

negativity constraint will be satisfied! Seemingly, then, if we consider an

image function, f(u,v) , which is completely factorable in the sense of

Eq. (14), and if all of the zeros of this function lie in the negative half of

the complex plane, then there is an unavoidable ambiguity in the process

of trying to extract the image function, f(u, v) from the measured image

correlation function, F(u,v) !

The ambiguity will be of the order of 2p*Q*-2 , the minus two

being there since one set of choices, namely [o ,] plus [B.3 will be

strictly correct, while the choice of all of the inverse zeros, i. e. 3

* - plus - 3 will be equivalent to the correct choice on the basis of the

t, 1800 rotation scaling law of Eq. (4). But 2 p*Q- 2 is a large degree of

ambiguity. Thus we see that at least for one class of objects, namely,

those corresponding to image function polynomials which are completely

factorable and having all of their zeros in the left half of the complex plane,

the ambiguity associated with the process of extracting the image from

speckle data of the type generated by the Labeyrie techriique will be very

large.

-30-
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2.4 Comments and Conclusions

The set of images for which the image function polynomial is com-

pletely factorable with all of its zeros in the left half of the complex plane

is certainly much less than the set of all possible images. Nonetheless,

since there is no reason to believe that these are basically uninteresting

images, we are forced to conclude that we can not, in general, extract

an image from its power spectrum or correlation function with the aid of

the nonnegativity constraint. Accordingly, we conclude that speckle data

for image development should preferably be processed by a technique which

relies on something like the Knox-Thompson algorithm2 to develop all of

the details of the image directly (and analytically) from the speckle data,

rather than attempting to process the speckle data by means of the Labeyrie

technique in conjunction with the nonnegativity constraint. We believe it

would prove interesting to generate several completely factorable images,

with left half plane zeros, and attempt their reconstruction from speckle

data processed using the Labeyrie technique.

~-i3
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Chapter 3

Electrically Induced Mirror Deflections:

An Improved Method
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3. 1 Problem Formulation and Basic Approach

The performance of optical systems employing large diameter

optical elements is degraded by distortions of the wavefront induced

by atmospheric instabilities. One method which has been employed to

reduce this degradation is to deform a mirror used as part of the optical

system in such a manner as to compensate for the wavefront distortion

caused by the atmosphere. In the Compensated Imaging System, this has

been implemented by bonding a relatively thin glass mirror to a piezo-

electric disk and applying an electric field across the disk's thickness

with an appropriate spatial distribution of field strength over the face of

the disk, so as to produce the desired compeiLsating distortion of the disk's

thickness and thus of the mirror bonded to the disk.

The currently established procedure is to use a piezoelectric

ceramic substrate polarized normal to the surface to which the deform-

able mirror is bonded, and apply an electric field parallel to the direc-

tion of polarization. One surface of the piezoelectric substrate is covered

with a continuous electrode, and the other, which lies just below the mir-

ror, is covered with a mosaic of electrically isolated electrodes. By

applying differing voltages to the various electrodes in the mosaic, the

p desired spatially varying field can be produced. At least nominally, the

voltage required to produce a given change, AT , in thickness of the

piezoelectric substrate is given by

where dsa i s the constant relating strain along the polarization axis to

field strength parallel to the same axis.

The chief problem with this approach is the large voltages (typi-

cally, well in excess of 1000 volts) required to produce the desired mirror

* surface deflections. It is to be noted that the required voltage is independent
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of the thickness of the ceramic substrate, so no reduction in driving voltage

can be achieved by varying this parameter. It is possible, however, to

greatly reduce the required driving voltage through use of a fundamentally

different type of piezoelectric configuration. It is possible to reduce the

required voltage by taking advantage of the cd, constant of the piezoelectric

ceramic. This is achieved by applying the electric field parallel to the

polarization axis as before, but utilizing the deflection along an axis nor-

mal to the polarization axis to deform the mirror. It is this concept which

we wish to develop into a reasonable configuration and then evaluate its

performance.

Separate EIectroues

L•LL L- 'L _- _1---

ii

Figure 1. Single Sheet Unit with Multiple do, PiezoeLectric Elements.

, Consider a sheet of piezoelectric material as shown in Fig. 1. If

the back of the slab is covered with a continuous electrode and a voltage is

applied between it and one of the front electrodes, the deflection along the

L direction will be approximately

-35-
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AL 2V d 31 LIT .(2)

For this configuration, the deflection for a given voltage is proportional

to L/T . The voltage required to achieve a desired distortion can be

reduced by a suitable choice of the element dimensions.

If these slabs are cemented together into a set, as shown in Fig. 2,

with alternating facing of the slabs (i.e. , slotted sides to slotted sides, and

unslotted sides to unslotted sides), and the ratio of L to T is made large,

the resulting composite could be used as a substrate to produce some re-

quired deformation of a mirror with a much lower voltage than is needed

to produce that deflection when the substrate utilizes the d., piezoelectric

constant. However, this analysis is overly simplistic in that when the

ratio of L to T is large, and W is made equal to T (required for

elements of square cross section), then there is a very strong mechani-

cal coupling between neighboring elements, so that the deflection of an

element whose neighbors are not deflected is substantially less than in-

dicated by Eq. (2). A quantitative analysis of the effect of this undesired

coupling of adjacent elements will be found in the Appendix.

Figure 2. Multiple Sheet Unit with Two-Dimensional Array
of d31 Piezoelectric Elements.
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3.2Z Approach Refinement

To avoid this limitation, the elements must be mechanically de-

coupled. Since the shear modulus determines the mechanical coupling,

one possibility would be to cut the elements completely apart and then

bond them together with a thin layer of some material, such as indium,

whose shear modulus is low in comparison to that of the piezoelectric

ceramic, in the hope that this would provide sufficient decoupling. Un-

fortunately, the shear modulus of piezoelectric ceramics with a large

d3 l constant (e.g. , EG-70) is only about ten times that of indium. Thus,

although some decoupling can be accomplished with this technique, it is

not sufficient to permit the use of large values of LIT, with the impli-

cation of very low values of required voltage.

A more satisfactory approach is to cut the elements apart and

then mechanically hold them together in an array without actually bond-

ing them. This can be realized based on the following procedure. A

thin copper foil electrode, as shown in Fig. 3, is sandwiched between

two piezoelectric ceramic slabs. The total thickness, T , of the

resulting sandwich wiUl be twice that of a slab. A set of narrow slots

are then cut Into the sandwich starting from each end to near the middle

to separate the individual elements, as shown in Fig. 4. The slots

extend sufficiently close to the middle so as to reach the preslotted part

of the copper foil, resulting in electrical isolation of copper foil strips.

(The slots may be filled with a potting compound to provide a measure

of mechanical stability for the elements.) The array is then built by

~ tstacking a number of these pie zoelectr ic/ copper sandwiches alternately

with thin sheets of steel lubricated by graphic or some other solid lubri-

cant. The entire array is held together by a clamp around its central

band which applies force normal to the plane of the steel separator plates,
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L -~ ~ j Tabs which will be used
qr--or electrical connection

to each eleen

I Figure 3. Copper Foil Electrodes Initial Pattern.
Copper electrode before slots are cut in the ceramic slab.

TW

-- _---Copper Electrode

Ceraic labssho slts ct t searat elmenste

portion of the elements in the lower half are used to provide a
reaction to the motion of the elements in the upper half.
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near the middle. These clamps extend only over the unslotted middle

part oi the array, as shown in Fig. 5.

Slot Rear Clamping

Plate

IN

Steel Separater0 Frunt Clanipirig Plate Plates

Figure 5. Two-Dimensional Array of d3L Piezoelectric Elements.

The gray shaded area is the top of the array and will be covered
by a deforniable thin glass mirror.

The individual copper electrodes serve to activate individual
piezoelectric elements, and the steel separator plates serve as a com-

mon electrode. The deflection of the elements will be given by

AL = 2 V d3, L/T (3)

since the separation of the electrodes is T/2 This assumes that the

unit is mounted at the center so that the displacement of the lower half

of each element provides only a compensating reaction, and produces no

useful displacement.
'4'
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3.3 Friction Considerations

The frictional forces between the electrodes and the steel plates

will produce a small hysteresis type effect in the electrode motion, which

can be calculated as follows: Assume that the clamping pressure is P

and that the coefficient of friction between the ceramic and steel is C

The friction force opposing the motion of an element will be PCW1 dis-

tributed over the length of the element. Here I denotes the L direction

dimension of the clamp. It is only over this range, A , that the friction

force is significant. This will reduce the electrode motion by

PC A2R = Vc___ (4)I R=2TE

where E is the longitudinal modulus of elasticity of the piezoelectric

ceramic. Using Eq. (3) to determine the "friction voltage" required to

compensate for this reduction, we get

PCA2/LV, = 4 E ds (5)

For example, if

P = 6.9 x 104 N/M 2 - (10 psi)

C =0.05

A =0.01 m

L 0. 1 m

, and assuming that the piezoelectric is EC-70, for which

E= 6.4 x 1011 N/M 2

d = 225 x 10-12 V/M

then V, = 0. 06 volts. This represents the hysteresis voltage, the additional

voltage [in excess of that specified by Eq. (3)] that must be applied to the

elements to overcome the frictional forces.

-40-
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It is to be noted that this value of the "friction voltage" does not

depend on T . It can be seen that an attempt to reduce the required

voltage to achieve the desired mirror distortion by reducing T can result

in a significant hysteresis problem when the invariant value of the "friction

voltage" becomes a significant factor compared to the driving voltage. The
minimum useful value of T will be determined by the requirement that the

"friction voltage, " which will appear as though produced by a hysteresis

effect, contribute no more than some specified displacement. Making use

of Eq. (3) and allowing no more than some small displacement, AL , due

to the friction voltage, the allowed limit on thickness T will be

T 2 V, dl L/ L, (6)

If we are willing to allow on a displacement

ALF =2.5x 10- s m , (i.e., x/20 @ X=5x 10 " m )

then with the parameters given above, we find from Eq. (6) that

T t 1.08 X 10-4 m

This constraint is so small as to be of no particular significance.

Thus far no mention has been made of the coupling between elements

due to the potting compound. It will not be significant as long as the shear

modulus of the compound multiplied by the ratio of the slot length to the

slot width is small compared to the shear modulus of the piezoelectric

ceramic. If this is not the case, the potting compound can be replaced

by some nonconducting solid strips (e. g. , teflon) which will just fill the

slots and thereby prevent lateral motion of the ceramic elements. This

may be desirable in any event, since it will eliminate any tendency for the

elements to buckle even if they are very long and thin. A very soft pottingJ? compound might not provide enough mechanical stability

2' _-41-
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3.4 General Considerations

When the completed array is being ground and polished in prepara-

tion for bonding the mirror to its front face, it probably will be desirable

to apply clamping not only near the center, as shown in Fig. 5, but also

near the top of the array, and to increase the clamping force beyond the

10 psi used in the examples. This, along with keeping the motion of the

polisher normal to the plane of the steel separator plates, will insure that

the ends of the elements are not bent or broken by the polishing action.

When the polishing is complete, the clamp near the top would be removed,

and at the middle the clamping pressure would be reduced to 10 psi to

reduce the frictional forces.

The following considerations should be borne in mind when selec-

ting the element length, L . If L is large, the resonant frequency of

the element will be reduced, thus reducing the upper limit of the opera-

tional frequency of the array. ( L = 10 cm implies a resonant frequency

of about 10, 000 Hz. ) If L is small, T will also have to be small to get

the required displacements from the driving voltage [cf. Eq. (3)]. Also,

* as T decreases, the ratio of active area (piezoelectric ceramic) to total

area (including inactive components - steel separator plates, copper

electrodes, and slots) decreases. rf this ratio gets too small ( less than

there may be insufficient coupling between the array and the mirror. The

relative importance of all these factors will have to be assessed in more

* detail to determine the best value of L . Properly chosen values of L

and T will produce an array capable of deforming the attached mirror with

a voltage far less than is required by current piezoelectric ceramic sub-

strates utilizing the d 3 constant.
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Appendix to Chapter 3

If a voltage, V , is applied to just one element of width, W , in

the configuration shown in Fig. 1, its deflection will be reduced somewhat

by the neighboring elements which, of course, are physically attached to it,

but are not being deflected electrically. The magnitude of the reduction

.will depend on the ratio of W to L . If W is very large, the effect of

the adjoining elements will be felt only in the neighborhood of the boundaries.

The deflection at the center of the element will be almost unaffected. As

W gets smaller, eventually the motion of even the center of the element

will be affected. The value at which this occurs represents W",N , the

minimum value for W for which the approximate deflections given by

Eq. (2) are applicable.

WI, may be evaluated as follows: Fig. 6 shows a single element

being deflected electrically when W =WMI . In particular, consider a

small section dX of the element being activated, located at a distance X

from the base of the element. When the field is applied to dX inducing a

strain, PE , the section will increase in length by cE dX . This will in-

duce a shear strain of e dX in the material above dX . This shear
W

strain induces a shear stress which tends to compress the portion of the
element below dX . The shear force is 2(L-X) TeW E S . where E.

I ;is the shear modulus of elasticity, and the factor of 2 is due to there being

* €two neighboring undeflected elements. The factor (L-X) T is the cross

sectional area along the shear plane of the material above dX . The com-

pression (of the element below dX ) caused by this force is given by

2 (L-X) e dX E, XA)
SW2 

(A1EL

V where E, is the longitudinal modulus of elasticity of the material.
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Additionally, the material above dX will be compressed by the

shear forces, the exact amount varying according to its location. Consider

* I "a small section, dY , located at a distance Y from the section, dX , as

shown in Fig. 7. It will be subjected to a compressional force, F2 , given

by
F 2 F (L-X-Y)T fdX E. (AZ)

2W "

This, in turn, will cause a compression of dY , given by

dC 2  2 (L-X-Y) CE dX Es dY (A3)

it 
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The total compression of the material above dX is thus

C 2  ee d E (L-X-Y) dY (A4)

0

C 2 CE dX E, L -X +(A5)

W2S-t

and the total compression of the whole element due to the shear forces

induced by the expansion of dX is

C I 2=p2 dX (A6)

A measure of the degree to which this compression reduces the electrical

expansion of dX is given by

I I

2 e. dX - (C, + Qe

dXd
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where it will be remembered e. dX is the electrical expansion of dX

Substituting the value of C1 + C- , we get

Ed2 E1 , (A8)EdX W2 E 2 2

The ratio, E , for the entire element is

L
Ed0 dX

= , (A9)• L

or

E= l(Alo)
3 E W 2

It should be noted that two approximations have been made in this

analysis. Since the shear stresses tend to compress the element which is

expanding, the final shear strains will be somewhat less than used here,

but for values of E close to I , the error (an underestimation) will not

be large. This analysis also assumes that the expansion of dX induces

shear stresses only in the material above dX . Since there is no dis-

continuity at dX , some shear stress must propagate below dX as well.

An approximation ignoring shear stress below dX tends to overestimate

E . Eq. (AlO) does, however, yield an insight into the effect of the ratio

of L to W on the behavior of E . Taking the ratio F_/Ef to be 1/3

for the piezoelectric ceramic, and requiring that E bl . , we find

=or (All)

W>L (i.e., Wmlm=§L (A12)
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If W is significantly smaller than this, E quickly gets very small due

to the quadratic dependence on the L/W ratio. E , of course, can never

be less than zero. Of course, Eq. (AIO) becomes less and less accurate

as E deviates from 1

If the cross section of the elements is made rectangular with

W = L and T << L , then large deflections as predicted by Eq. (2) can

be realized. If, however, it is required that W = T , then either L/T

will not be much larger'than I , or E will be very small. In either

case, the use of the ds3 mode will not give an appreciable improvement

over the more conventional d. mode for this configuration. Decoupling

between the elements, as suggested in Fig. 's 4 and 5, is required to avoid

* this severe limitation.
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