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Abstract.

Data flow analysis is well understood at the intra-procedural

level and efficient algoithms are available. When inter-procedural

mechanisms such as recursion, procedure nesting, and pass-by-reference

parameters are introduced, the data flow problems become more difficult.

Let ISIZE be the size of the problem and OSIZE be the size of the

resulting data flow relation-. A O(ISIZE+OSIZE) algorithm is demon-

strated for the existential summary data flow problem.
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INTRODUCTION:

DAta flow analysis problems have been studied extensively for

a number of purposes, among them global program optimization, software

validation, and program documentation [FO]. Initially, interest

centered on determining the data flow patterns visible at a given state-

ment within a procedure. For example, the available expression and

live variable problems are of this genre. The algorithms constructed

for such analyses [AC,GW,UH,UK] are efficient but strictly intra-

procedural in the sense that they do not take into account the effects

of other procedures within a program.

.1 More recent attempts have focused on determining these patterns

in the presence of inter-procedural effects induced by procedure calls.

Once the scope of the problem was so enlarged, an additional class of

problems arose. To wit, one could ask what effect the execution of an

entire procedure had on the variables of a program. Such information

was coined summary data flow information. Current inter-procedural

algorithms either compute an approximation to the precise answer up to

symbolic execution (Bar], or are very slow [R1, R2, R3], or ignore one

or more of the difficult effects such as recursion or aliasing IS,A].

Most data flow analysis problems are intractible in the presence

of aliasing. However, one version of the summary problem is not. Just

as live and avail are characterized by the use of existential and uni-

versal quantification respectively, there are two types of summary

problems, one existential, the other universal. This paper presents an

efficient and precise algorithm for solving the existential or MAY

summary problem [Ban]*. The algorithm operates in two phases. The first

*Near the completion of writing this paper, Banning [Ban] published a
paper containing the results given here.
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phase determines the side effects of procedure calls. The second

part establishes the aliasing pattern of the program. A subsequent

paper by this author will deal with the intractible problems.

II
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PROBLEM DEFINITION AND PROGRAM MODEL

The goal of this paper is to compute data flow information which

summarizes the effect of every procedure and procedure invocation in

a program. This information takes the form of relations between a

procedure and the variables it can address. For an invocation the

relations are between it and the variables the procedure containing

the invocation can address. These relations will be referred to as

summary relations and are of two types. Given some basic data flow

event such as the usage or definition of a variable, the goal is to

determine whether the event must or may occur as the result of execut-

ing an entire procedure.

Let P be the set of procedures in a program, I the set of in-

vocations, and V the set of variables. In a block structured language

such as Pascal, a name may refer to different variables depending on

where the name occurs in a program. By V is meant the set of distinct

variable declarations and not the set of names for these variables. This

identification problem can easily be taken care of in a prepass of the

program. The summary relations are subsets of PxV and IxV. Let

* PeP, IeI, and VeV--

P() MAYAFF V V is addressable by P(I) and the data flow

event in question may happen to V as a result

of executing P (invoking I).

1 P(1) MUSTAFF V V is addressable by P() and the data flow

event in question must happen to V as a result

of executing P (invoking I).

'0
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The degree of accuracy of the information computed is clearly

dependent on the assumptions made about the flow of control in a program.

Barth [Bar] defines the notions of correctness and precision in a formal

way. The goal here is to produce summary information which is precise

up to symbolic execution. That is, the aim is to compute the best

possible information under the assumption that any path through a

program is possible. This differs from Barth's treatment where the

assumption for may information is less restrictive. The treatment of

the VAR effect for the may case will require that any call chain is

possible and hence necessitates the more liberal hypothesis.

It will be shown that the MUST problem is co-NP complete

[GJ] in a subsequent paper and hence there is in all likelihood no

polynomial procedure for solving it. The remainder of the paper deals

exclusively with the MAY problem. The MAY problem has an efficient

solution because it is flow insensitive, i.e., it does not depend on

the intra-procedural structure of a program. Once one knows that an

effect may occur within the body of a procedure, one can conclude that

the effect may occur as the result of the execution of the entire pro-

cedure. This is not true for MUST problems as the effect must be known

to occur on all paths through the procedure's flow graph before one

can conclude that the effect must occur for the execution of the pro-

cedure as a whole.

The algorithm relies heavily on the assumption of bit vector arith-

metic. Modelling sets as bit vectors allows for fast set manipulation,

e.g., union, intersection, and complement are all 0(1). A shift-until-

one type operation is not assumed, however, and hence finding an element

in a set will take O(log LEN) where LEN is the length of the bit vector.

-~~~i~ r
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The algorithm computes every summary relation as a set of bit vectors - -

one for each procedure and invocation. The length of the bit vector., is

equal to the size of V. The set of bits that are one represent the vari-

ables that satisfy the MAYAFF relation with the corresponding procedure

or invocation. In algorithmic notation - -

type PROC r a . .P

type INVOKE range 1 . I

type VAR range 1 ..

type VARVEC bit vector of VAR

declare MAYAFF : array [PROC + INVOKE] of VARVC

This paper assumes a Pascal or Algol-like language v'hich features

block structuring and a pass-by-reference parameter -,me .haism.

Other parameter passing mechanisms will not affect the intcrproceilral

analysis. The block structuring is modelled in the r:,,rl way by a

nesting tree T. T is a rooted directed tree whose vertex set is P.

P R is an edge in T if and only if R is declared wit'iin the body of P.

For algorithmic purposes T is mcdelled as follows

declare ROOT PROC

declare FATHER array [PROCC] of PROC

declare SONS array [PROC] of list of PRDC

Each procedure has a set of pass-by-reference formal paramPtcrs

and a set of variables which are declared within it. A given proc-dure P
can address any variable declared within it and the variables declared

within any ancestor of P in T. Formally, let LOCAL(P) be the set of

variables declared in P. Then the set of variables addressable byo' is

ADDRESS(P) U LOCAL(R)
R sANCESTOR(P)

'At

ii
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A slightly different set that will also be of interest is SCOPE(P) =

ADDRESS(P) - LOCAL(P). For every variable x, LPROC[x] will be the

unique procedure P for which xe LOCAL[P]. The address, scope, and

formal parameter sets are modelled as bit vectors. For computational

purposes the formal parameter set will also have a list representation.

In algorithmic notation - -

declare ADDRESS, SCOPE, FORMVEC : array [PROC] of VARJEC
declare LOCAL, FORMLST array [PROC] of list of VAR

declare LPROC : array [VAR] of PROC

The dynamic manner in which procedures invoke or call each other

is modelled by a call graph C. C is a directed graph whose vertex set

is P and whose edges are labelled with tuples of varying sizes. Each
<a a>

edge represents an invocation in I. P anQ is an edge or invo-

cation in C if procedure P contains a call on procedure Q and passes by

reference to Q the actual variables a1 through a . This assumes that

each invocation has been statically checked, i.e., every formal parameter

of Q corresponding to one of these actual parameters is a pass-by-

reference parameter. Thus the edges pointing at a given procedure all

have tuples of the same size.

C is implemented with a reverse adjacency structure, i.e.,

CALL[P] is a list of the invocations of procedure P. For each invoca-

tion, the calling procedure is given in the array CALLER. The parameter

passing mechanism is not modelled as tuples associated with invocations.

Instead, imagine that every invocation edge is split into as many edges

as there are actual parameters labelling it and each such pseudo-edge

is labelled with one of the actual parameters. The array ACIUAL

associates each formal variable with a list of these pseudo-edges.
q

( , - ..
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For a given formal parameter f, this list consists of those pseudo-

edges which are calls on the procedure in which f is declared and which

are further labelled with the actual parameters to which f would be bound

on such a call. For each pseudo-edgE the corresponding actual argument

and invocation edge are in the arrays AVAR and AINV. If x is a variable

which is not a formal parameter for ,; procedure then ACMIAL Cx] is

the empty list. Algorithmically - -

type PAR" range I. Y Ithe tuple labelling Il
le INVOKE

declare CALL : array [PROC] of list of INVOKE

declare CALLER : array [INWOKE] of PROC

declare AClUAL : array [VAR] of list of PARIM

declare AVAR : array [PARMI of VAR

declare AINV : array [PARI]4 of INVOKE

In a recursive language such as the one being hypothesized here,

the call graph may contain cycles. Due to the static block structuring,

* -however, certain edges are forbidden as indicated in the lemma below.

Invocation Lemma: If P o R e I then FATHER(R) E ANCESTOR(P)

Proof: Observe that P can address and hence call only those procedures

declared in the ancestors of P. Thus since FATHER(R) is the procedure

R is declared in, it must be that FATHER(R) e ANCESTOR(P).

Suppose that procedure P1 invokes P2 which in turn invokes P3

and so on until finally procedure P n is invoked. Such a sequence of

invocations is called a call chain and clearly corresponds to a path

from PI to Pn in C. The existence of this path is written as P1  * Pn

If the path from P1 to Pn is simple (contains no cycles) then the chain

is termed a simle chain. The simple invocation lemma has an interest-

ing consequence for call chains - -
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Chain Lenma: If P +* R and Pc ANCESTOR(R) then

1/ any chain from P to R contains every procedure in

ANCESTOR(R) -ANCESTOR(P)

2/ there is a simple chain from P to R.

Proof: Proof is by induction on the length of the path from P to R.

The basis is trivial as P - R and P c ANCESTOR(R) and

FATHER(R) ANCESTOR(P) (invocation lemma) implies either P = R or

P = FATHER(R).

Suppose the lemma is true for paths of length k. Let

P -* R = P Q- Q R be a path of length k+1. If P = R the result is

immediate. Otherwise P. e ANCESTOR(R) - R and by the invocation lemma

FATHER(R) e ANCESTOR(Q). This implies that P c ANCESTOR(Q) and thus by

the inductive hypothesis there is a simple path from P to Q, P -* Q and

every element of ANCESTOR(Q) - ANCESTOR(P) is on the chain P -* Q.

Suppose R is not on the path P -* Q. Then clearly P -* Q - R

is a simple chain from P to R. If R is on the path P -* Q then

truncate that part of the path that follows R's occurrence. The path

from P to R that remains must be simple as it is a subpath of the simple

chain P -* Q. Note that this part of the lemma does not depend on the

invocation lemma.

Q -o R implies by the invocation lemma that FATHER(R) c ANCESTOR(Q)

0 ANCESTOR(R) -R sANCESTOR(Q)

0 ANCESTOR(Q) -ANCESTOR(P) - [ANCESTOR(R) -ANCESTOR(P)] - R

Thus the path from P to R must contain every element in

ANCESTOR(R) -ANCESTOR(P). l
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One last set of items is needed to complete this paper's

hypothetical model. These sets reflect the particular data flow

event of interest and are the only structures in which the specific

event is relevant. For every variable in V one needs to know the set

of procedures in which the event of interest is known a priori to

happen. For example, if the definition of a variable is the data

flow event in question then one needs to know every procedure which

contains a statement assigning a value to the variable. The possible

side effects of procedure invocations within basic blocks are ignored.

The algorithm described here will use these direct events to determine

whether the event may happen as the result of the execution or invo-

cation of a procedure. This information takes the form of an array of

bit vectors. For each procedure P, DIRAFF[P] will be the set of those

variables directly used in P. Formally, - -

declare DIRAFF ara [PROC] of VARVEC

4

, i . . . . ~ liii~
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INTER-PROCEDURAL EFFECTS

The focus of this section is on the ways that the inter-

procedural mechanisms of scope and parameter passing affected sunmary

relations. There are three ways in which a procedure's summary

relation can be affected as the result of invocations within it. The

first effect is a result of the block structuring. The other two

effects are the result of-the pass-by-reference mechanism.

One of the difficulties in analyzing these effects is the fact

that the recursive nature of the language being modelled allows for

a variable to be instantiated more than once. For example, suppose

procedure P calls itself and has a local variable x. Each time P is

called a new instance or incarnation of x is created. In the analysis

that follows, it must be guaranteed that if two procedures, P and R,

refer to a variable x then they refer to the same incarnation of x.

Suppose P - R in C and P and R can both address x. In this instance,

it is clear that they address the same incarnation of x as long as a

new instance of x is not created by the invocation of R, i.e., x is

not a local variable of R. Using the invocation lemma one can arrive

at the following subtle statement of this condition - -

Incarnation Basis: If P - R in C then P and R address the same

, incarnation of x <0 X E SCOPE(R)

Proof: (r) R can address x4)x e ADDRESS(R)

R addresses the same incarnation as P Ox J LOCAL(R)

x e ADDRESS(R) and x j LOCAL(R)4Px c SCOPE(R)

.
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() x c SCOPE(R) :0 R can address x and x i LOCAL(R)

x c SCOPE(R) *x c ADDRESS(FATHER(R)) (1)

P - R : FATHER(R) c ANCESTOR(P) [invocation lemma] (2)

(1) and (2) :x c ADDRESS(P)

Thus R and P can both address x and x 0 LOCAL(R) implies

they address the same incarnation of x. U

Extending this condition to a call chain P -* R is simple. Let

{P-*R} denote the set of all procedures on the chain from P to R ex-

cept for P. One must simply insure that x is not local to any

procedure in {P4*R};

Incarhation Lemma: If P - R is a call chain in C then P and R address

the same incarnation of xr x c n SCOPE(Q)
Q c {P+*R}

Proof: Suppose the call chain is P Q0 Q+QI 1 - Q2+ 
.  n _ )QQn - R

P and R address the same incarnation of x

<>¥Yi > 0 (Qi-1 and Qi address the same incarnation of x)

<-O Vi > 0 (x e SCOPE(Qi)) [incarnation basis]

>x n SCOPE(Qi)i>O

The first interprocedural effect is called the SCOPE effectIIbecause of its connection with the block structuring of the language.
Suppose P - R in C and x c MAYAFF[R]. Then x satisfies the MAYAFF

relation at the basic block containing the invocation of R if and

only if P and R both address the same incarnation of x. Using the

incarnation basisthe statement of the conditions for this effect is

easy - -

7-
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SCOPE Effect: If P R in C and x c SCOPE(R) then

x c MAYAFF(R] <>* xe MAYAFF[P-R]

The first of the two aliasing effects is called the FORMAL effect

because the addition of a formal parameter to the MAYAFF relation implies

that its corresponding actual parameter is in its invocation's MAYAFF

relation. Suppose P R in C and the tuple labelling this invocation

results in actual parameter, a, binding to formal parameter, x. Clearly

if x c MAYAFF[R] then by the aforementioned alias, it must be that

a e MAYAFF[P R].

FORMAL Effect: If P <-.a..> R(..x..) then

x E IIAYAFF[R]<=>* a E MAYAFF [P R]

The final effect is quite different from the FORMAL and SCOPE

effects. The latter can be viewed as a propagation of members of

summary relations from an invoked procedure to the source of an invoca-

tion of that procedure. The ALIAS effect, however, is a broadening of

the relation at each procedure and invocation due to the establishment

of aliases along call chains. The effect is called the ALIAS effect

because a variable is included in a summary relation due to its being

aliased along a call chain to a variable already in the relation.

Suppose an alias is established between a and x by the invocation

'<"a"R(..x..). This alias stays in effect on any chain continuing

from R. These aliases concatenate along chains as follows - -

* The equivalence assumes that the effect in question is the only inter-
procedural mechanism in operation. If more than one effect is in opera-
tion then a variable may be included in an invocations MAYAFF relation by
some other mechanism. The idea is that the formal condition describes
exactly those conditions under which a specific effect takes place.

0*
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Alias Concatenation: Suppose there is a chain to P on which a and x

are aliased, and that P<"a">-R(..y..). Then x is aliased to y along

any extension of this chain continuing through P R.

Aliasing is transitive along specific chains - -

Alias Transitivity: Suppose there is a chain on which a and x are aliased

and a and y are aliased. Then x and y are aliased along this chain.

A more accurate charactPrization of the structure of the chains that

give rise to these aliases will be made in the section in which the

ALIAS-effect is solved.

Suppose x c MAYAFF[P] and a is aliased to x at P on some chain

to P. By the symbolic execution hypothesis this call chain can be ex-

ecuted and hence a c MAYAFF[P] as a could be aliased to x at P. T.he

possibility that a is not addressable at P has not yet been ruled out.

(Recall that MAYAFF[P] sADORESS [P]). One must show that when

a J ADDRESS [P] the inclusion of a in MAYAFF[P] does not result In

the subsequent inclusion of valid summary relation members elsewhere.

a J ADDRESS [P] :a J SCOPE [P] zP a cannot propagate due to the SCOPE-

effect, a i ADDRESS[P] OLPROC[a] a P -0 a cannot propogate due to the

FORMAL-effect. Hence one can assume that a c ADDRESS[P].

ALIAS Effect: If x is allased to f on some chain to Q and f c ADDRESS[Q]

then

x c MAYAFF [Q] 4,* f . MAYAFF [Q]

x e MAYAFF CQ.RJ <.0,* f c MAYAFF [-Q+R]

t

*

) * ~ ~ ~
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INTER-PROCEDURAL ALGORITHM: PROPAGATION PHASE

The inter-procedural algorithm consists of two distinct phases.

The first phase is an iterative scheme which propagates SCOPE and FORMAL

effects around the call graph. The ALIAS effect is the concern of the

algorithm's second phase and will be dealt with later. The propagation

algorithm is straightforward. Procedures in the call graph are processed

in an arbitrary order but care is taken that a particular summary bit

is propagated through a given procedure at most one time.

Observe that a variable may propagate from a procedure Q to an

invocation of Q only by a SCOPE or FORMAL effect. The only bits which

these effects can propagate are those in FORMVEC [Q] u SCOPE [Q]. These

variables are termed the critical variables of Q. The main correctness

assertion for the algorithm is the fact that - -

CRIT[Q] = those critical variables of Q which have been added to

MAYAFF[Q] since the last time critical variables were

propagated through Q.

A queue of those procedures P, for which CRIT[P] * 0 is kept. Procedures

are pulled off this queue at random and their new critical variables

are propagated to their invocations, possibly enlarging the CRIT sets

of the calling procedures. This process continues until the queue is

empty at which point it is asserted that the MAYAFF sets are correct

with regard to the FORMAL and SCOPE effects. Termination is guaranteed

by the strictly increasing size of the MAYAFF relation.

The propagation of critical bits through a procedure P is quite

simple - -

Ii
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new-scope CRIT EP] n SCOPE [P] - the critical bits that propagate

because of the scope effects.

new-formal = CRIT[P] n FORMVEC [P] - the critical bits that are

formal parameters.

new-actualEe] = {ajx enew formal and x corresponds to a along

edge e} the bits that are in ;AYAFF[e] because of the FORMAL

effect.

new-use[e] = (new-scope u new-actualfel) -MAYAFF[e] S the new

bits that are set in MAYAFF[e because of critical bit propagation.

Let Q = CALLER [e]. Each of the bits in new-use [e] can be added to

MAYAFF(Q] as the data flow effect is flow insensitive. If this results

in an addition to CRIT[Q] then Q is put on the queue if it is not

already there.

The queue is initialized as follows. Initially it is known that

MAYAFF[P] is exactly DIRAFF[P] for each procedure P. Using this set,

CRIT[P) is computed. If CRIT[P] is not empty then P is initially

placed on the queue.

The primitive "turn VEC into list LIST" is assumed to turn the

vector representation VEC, of a set into its corresponding list rep-

resentation LIST. As stated earlier one can find each bit that is set

in VEC In time O(S log LEN) where LEN is the length of the bit vector

VEC and S is the number of bits set in VEC. The primitive operations

for the queue QUEUE should be obvious.

I ________
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PROPAGATION ALGORITHM:

declare a:PARM, x:VAR, e:INVOKE

declare p,q:PROC

declare QUEUE:gueue of PROC

declare new-scope, new-form, new-use, new-crit:VARVEC

declare new-f-list:list of VAR

declare CRIT:array[PROC] of VARVEC

declare new-act:array [INVOKE] of VARVEC

#Initialize the summary relation on each invocation, the CRIT-sets
of each procedure, and the queue#

1. for e E INVOKE do

2. MAYAFF [e] 0

3. QUEUE - 0

4. for p c PROC do

5. MAYAFF[p] - DIRAFF[p]

6. CRIT[p] - MAYAFF[p] n (FORMVEC[p] u SCOPE[p])

7. if CRIT[p] * 0 then

8. QUEUE * QUEUE + p

#While the queue is not empty pick a procedure p off it#

9. while QUEUE * 0 do

10. pick p from QUEUE arbitrarily

#Compute new-form and new scope. Reset CRIT(p)#

11. new-form FORMVEC[p] n CRIT[p]

12. new-scope + SCOPE[p] n CRIT[p)

13. CRIT~p] 04d
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#Comipute new-act~e] for each e in CALLLp]#

14. turn new-form into list new-f-list

15. for e e CALL[p) do

16. new-act (e] 4- 0

17. for x c new-f-list do

-18. for a E ACTUAL~x] do

19. new-act [AINV [all +new-act [AINV [all+AVAR [a]

#Compute new-use~e] for each e#

20. for e c CALL(p] do

21. new-use - (new-act [e] u new-scope) - MAVAFF (e]

22. if new-use * 0 tten

#Compute M'AFF[e]. Call MBLK with each new bit and for q = CALLER~e],

add q to the queue if its CRIT-set is nonempty.

23. MAYAFF~e] - MAYAFF[e] u new-use

*24. q *+ CALLER[e)

* 25. new-crit ,- (new-use - MAYAFF~q]) n
* (FORVEC~q] u SCOPE[q]

26. if CRIT[q] = 0 and new-crit 0 then

27. QUEUE *- QUEUE + q

28. CRIT~qJ + CRIT[qJ u new-crit

29. MAYAFF[q) M-tAYAFF[q] u new-use
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The worst case time estimates for this algorithm will be given

not only in terms of the size of the input but also the size of the output.

To this end let MAYPROC be tne size of the summary relation over all

procedures, i.e., MAYPROC = I IMAYAFF[P]I. Let MAYINVOKE = I !MAYAFF[I]

P s PROC I e INVOKE

The cost analysis with regard to time demonstrates a

O(PROC+INVOKE+PARM+MAYINVOKE+MAYPRoC* log VAR) asymptotic behavior.

The loop in. lines 1 and 2 is executed exactly INVOKE times; line 3

* is 0(1); and the loop in lines 4 through 8 is executed PROC times at

constant cost per iteration. Each time a procedure P is pulled off the

queue, at least one new bit is in CRIT[P] since the last time P was pulled

from the queue. Since CRIT[P] c MAYAFF[P], the main loop (lines 9-29)

is executed at most MAYPROC times. Lines 10 through 13 of this loop take

a constant amount of time. A maximum of MAY PROC bits will be found in

statement 14 as new-form c CRIT[P]. Thus a maximum of MAYPRoC* log VAR

time will be spent on this statement.

The bodies of the two invocation loops (statements 15-16 and

20-29) are executed at most MAYINVOKE + PARM times by the following

argument. If new-scope s 0 then new-use s 0, implying that a new bit

is added to MAYAFF[e] for each e. Thus each iteration may be charged to

one of these MAYINOKE additions. If new-scope = 0 then it must be

that new-f-list s 0 and thus at least one formal-actual correspondence

is being made. These take place only once for each actual parameter

and hence a total of PARM may be charged to this event. From the second

part of the preceding argument, one can also conclude that line 19 is

executed at most PARM times. The code block in lines 23 through 29 is

executed at most MAYINVOKE times as new-use = 0 when this block is

executed.

I
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INTER-PROCEDURAL ALGORITHM: CLOSURE P'HASE

The second and final phase of the inter-procedural analysis is

basically a transitive-closure computation which solves for the ALIAS

effect. In order to do this, one needs a better characterization of

which aliases are relevant and the manner in which they come about. In

order for the ALIAS effect to take place at a procedure Q, the two vari-

ables involved, say x and y, must be addressable at Q. So the concern

is to find which variables in ADDRESS[Q] are aliased along some

chain to Q. Suppose this is true for x and y. Then WLOG xcADDRESS

[LPROC[y]]. So it suffices to find those ordered pairs <x,y> for which

* xEcADDRESS[LPROC[y]] s ADDRESS[Q] and x is aliased to y on some

chain to Q. <y,x> can be inferred later from the symmetry of the

relation. The next lemma simplifies matters even further by showing

that it is only necessary to know when x is aliased to y on some

chain to LPROC[y].

Local Lemma: <x,y> on some chain to Q<=>

ye ADDRESS[Q] and <x,y> on some chain to LPROC[y].

Proof: (>) y EADDRESS[Q] =>Q is a descendant of LPROC[y] in the nest-

ing tree. Suppose x is not aliased to y on all chains to

LPROC[y]. Any chain to Q passes through LPROC[y] by the

chain lemma. Thus x cannot be aliased to y on any chain

to Q (Contradiction).

(0p) Since y cADDRESS[Q], one concludes from the chain lemma that

every chain to Q passes through LPROC[y] F P. For any chain

to Q let P-'.*Q be the simple-chain suffix. As every procedure

on P-*Q is a strict descendent of P in the nesting tree,

application of the incarnation lemma demonstrates that P and Q

. . -'
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address the same incarnations of x and y. Thus the alias

between these variables remain in effect until Q is reached. I

The local lemma implies that the procedure at which x is aliased

to f on some chain is not important; one need only concern himself

with whether x is aliased to f at LPROC[f]. To this end, let

MAYEQ[x] = {fI xsADDRESS[LPROC[f]] and x is aliased to f on some chain to

LPROC[f]}. Once one has computed MAYEQ[x] its symmetric counterpart, call

it MAYEQlx], is easily found with the equation - -

MAYEQ~x] = MAYEQ[x] u {ylx eMAYEQ[y]} [I]

Now, given the MAYEQ sets, the ALIAS-effect is solved by applying the

equation- -

MAYAFF[Q] = u (MAYEQx] n ADDRESS[Q]) [2a]
x e MAYAFF,[Q]

for procedures and the equation - -

MAYAFF[Q-R] = u (MAYEQx] n ADDRESS[Q]) [2b]

x E: MAYAFF,[QR]

for invocations. The sets MAYAFF* are the summary relation sets computed

in the propagation phase of the inter-procedural analysis. The validity

of these formulas is a simple consequence of the local lemma. As

x:FVYEQx] it should be clear that MAYAFF, s MAYAFF. In order to

guarantee that the summary relations computed above are the final answer,

it must be shown that the ALIAS effect does not interact with the FORMAL

and SCOPE effects. The proof of this fact is delayed until the end of

this section, when a better characterization of the ALIAS effect has been

given.

The remaining problem is to characterize and compute the MAYEQ

4:
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sets. For the moment consider the consequence of alias concatenation

in isolation; alias transitivity will be dealt with subsequently. It is

clear that x is aliased to x on some chain to LPROC[xJ, i.e.,

xc MAYEQ[xJVx. One can inductively characterize concatenations as

follows - -

Alias Concatenation Lemma: ye MAYEQ[x] by alias concatenation if and only

if xE:SCOPE[LPROCfy]] and 3z(P.- -*L4R(..y..)

and (x EMAYEQ~z] or z c MIAYEQ[x]))

Proof: ( y) yeMAYEQ[x] by alias concatenation <4> x eADDRESSCLPROCry]]

and3z (P *-~~R(..y..) and x is aliased to z along some

chain to P). If LPROC~x] = LPROC[y] =-R then the incarnation

of x that is aliased to z is not the one referred to after the

chain reaches R. So xE:ADDRESS[LPROC[y]) and LPROC[x] *LPROC[y]

=>x e SCOPE[ LPROC[y] ]. x e SCOPE[R] => LPROC~x] c ANCESTORER]

and P.+R= FATHER[R) £ ANCESTOREP) by the invocation lemma. Hence

x£ ADDRESS[P]. P" Z..-R(.Y z cADDRESSMp. Thus

either x£-ADORESS[LPROC[z]] or z£:ADDRESS[LPROC[x]]. But x

is aliased to z along some chain => X EMAYEQ~zl or

z c MAYEQ[x].

(C)xe SCOPECLPROC~y)] and P- >R.y. implies by the invo-

cation lemma that LPROC(x] £ANCESTOR[P). Also LPROC[z) c11 ANCESTOR:P]. Suppose xe:MAYEQ[z) -- there is a chain,
Q-**LPRQC[x) to LPROC[x) along which x and z are aliased. By

the chain lemma there is a simple chain from LPROC(x] to P.

* Clearly x is aliased to y on the chain

* Q-*LPROCrx..*P<! Z "R(..y..). A similar chain can be

cons tructed when Z EMAYEQ[x).

--LI
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The alias transitivity effect is somewhat more involved. Its

inductive characterization includes that in the concatenation char-

acterization plus the starred condition in the lemma below - -

Alias Transitivity Lemma: yeMAYEQ[x] by alias transitivity if and only

if x ESCOPE[LPROC[y]] and3z(P- '-'z ' >R(..y..)

and (x cMAYEQ[z] or ze MAYEQ[x])) or LPROC[x] :

LPROC[y] and 3zr,z 2 (P<".zl'z2"'. R(..y,x..)

and zI MAYEQ[Z2])*

Proof: (=>) y £ MAYEQ[x] by alias transitivity > 3a such that a is

aliased to x and a is aliased to y along some chain and

X E ADDRESS[LPROC[y]]. Clearly one need only consider the

case where x / a y. Thus a is aliased to x = 3 z1

(a is aliased to z1 on the chain and P< zl±R(..x..)).

Similarly 3 z2 (a is aliased to z2 on the chain and

Q <..z2..>- S(..y. )I .

First suppose x t SCOPE[S]. Consider that part of

the chain following the edge P - R. The edge Q - S must

be part of this suffix as otherwise x c SCOPE[S] implies

the chain must loop through S again before x and y are

,, both addressable again, but at this point a different

K incarnation y is being referred to. This suffix must also

not pass through R again, as then a different incarnation

of x is referred to. If a is aliased to z2 when R is

reached then z2 is aliased to x hy transitivity. z2 must

be addressable at R as otherwise a new incarnation is

created before reaching Q. Thus x c MAYEQ[z2]. Otherwise

*1'
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sets. For the moment consider the consequence of alias concatenation

in isolation; alias transitivity will be dealt with subsequently. It is

clear that x is aliased to x on some chain to LPROC[x], i.e.,

x c MAYEQ~x] Vx. One can inductively characterize concatenations as

follows - -

Alias Concatenation Lemma: y eMAYEQ[x] by alias concatenation if and only

and (xE-MAYEQ[z] or z F.MAYEQ[x]))

Proof: y=> yMAYEQ[x] by alias concatenation <-> x £ADDRESS[LPROC[y]]

and3 z I~'Z* R.y. and x is aliased to z along some

chain to P). If LPROC[x] = LPROC[y] =_R then the incarnation

of x that is aliased to z is not the one referred to after the

chain reaches R. So x eADDRESS[LPROC[y]] and LPROCfx] *LPROC[y]

0> xeSCQPE[LPROC[y]]. xeSCOPE[R] => LPROC[x)£cANCESTOR[ R]

and P-*R= FATHER[R] e ANCESTOR[P] by the invocation lemmna. Hence

x E:ADDRESS[P). PL- z '. >R( ..y. . z zcADDRESS[p]. Thus

either xe ADDRESSCLPROC[z]] or ze ADDRESS[LPROC(x33. But x

is aliased to z along some chain => x EMAYEQ[z] or

Z E MAYEQ~x).

0~= x c SCOPE[LPROC~y)] and P:****4R.y. implies by the invo-

cation l enua that LPROC~x] cANCESTOR[P). Also LPROC[ z]c

ANCESTOREP). Suppose xE MAYEQ~z) 4 there is a chain,

Q..*LPROC~xJ to LPROC~x) along which x and z are allased. By

the chain lemmna there is a simple chain from LPROC~x] to P.

Clearly x is aliased to y on the chain

Q+*LPROCfx]-*P,!~-±.L.!R(. .y..). A similar chain can be

constructed when z cMtAYEQ~x).
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The alias transitivity effect is somevhat more involved. Its

inductive characterization includes that in the concatenation char-

acterization plus the starred condition in the lemma below - -

Alias Transitivity Lemma: y MAYEQ[x] by alias transitivity if and only

if xE SCOPE[LPROC[y]] and3z(P- ' z- ' R(..y..)

and (xEMAYEQ[z] or zeMAYEQ[x])) or LPROC[x] =

LPROC[y] and 3zT,z2(P <''z1,z2 ..>R(..y,x..)

and zleMAYEQ[z2])*

Proof: (=>) y E MAYEQ[x] by alias transitivity <=> 3a such that a is

aliased to x and a is aliased to y along some chain and

x e ADDRESS[LPROC[y]]. Clearly one need only consider the

case where x t a t y. Thus a is aliased to x = 3 z1

(a is aliased to z1 on the chain and P<"zl'>-R(..x..)).

Similarly 3 z2 (a is aliased to z2 on the chain and

Q <"z2"'>, S( . -y . .)1.

First suppose x v SCOPE[S]. Consider that part of

the chain following the edge P + R. The edge Q -"S must

be part of this suffix as otherwise x c SCOPE[S] implies

the chain must loop through S again before x and y are

both addressable again, but at this point a different

incarnation y is being referred to. This suffix must also

not pass through R again, as then a different incarnation

of x is referred to. If a is aliased to z2 when R is

reached then z2 is aliased to x hy transitivity. z2 must

be addressable at R as otherwise a new incarnation is

created before reaching Q. Thus x c MAYEQ[z2]. Otherwise
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suppose that the alias between x and z2 is established

at LPROC[z2] somewhere between R and Q. x c SCOPE[S]

and the chain between R and Q does not loop through

R => x c ADDRESS(LPROC[z2]). Thus z2 e MAYEQ[x] as it

is aliased to a and so is x at LPROC[z2].

Finally, suppose R = S. If P<'z- R(..x..)

Q-<z2">S(..y..) then on any chain different incarnations

of x and y are being referred to. Clearly

zI, z2 e ADDRESS[P=Q]. WLOG suppose z2 c ADDRESS[LPROC[zII'.

Then by alias transitivity z1 F MAYEQ[z2].

(4) The reverse direction is a simple extension of the alias

concatenation lemma

Taking the ewo proceeding lemmas together one has a characterization

of the MAYEQ sets.

Alias Lemma: y e rAYEQ[x] if and only if x = y

or x e SCOPE[LPROC[y]] and 3 z (p-- and

(x c MAYEQ[z] or z c MAYEQ[x]))

or LPROC[x] = LPROC[y] and 3 z1, z2 (p<" . ziz2.>,R(..xy..)

and z1 c MAYEQ[z2])

Every member of the MAYEQ relationship may be found iteratively

by applying the alias lemma. MAYEQ is reflexive is equivalent to

stating x c MAYEQ[x] for all x. All of these reflexive elements are

put on a queue. New elements of the relation are found by examining

pairs still on the queue. These new members are put on the queue and

processed in turn. Given a relational element y c MAYEQ[x] on the

queue one may infer from it by using the alias lemma that

W-V0 --
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a/ There is an invocation P<"-x- LPROC[a](..a..) and

y c SCOPE[LPROC[a])

> a e MAYEQfy]

and b/ There is an invocation P<"Y"*>b LPROC~a](..a..) and

x c SCOPE[LPROC[a]]

a c MAYEQ[x]

and c/ There is an invocation p<..xy.>LPROC[a](..a,b..)

a E MAYEQ[b] and b c MAYEQ[a]

The process stops when the queue becomes empty. It remains to show that

every element of the MAYEQ relation is uncovered by this iterative

process. The alias lemma states in the reverse direction that

y c MAYEQ[x] implies there is another pair a c MAYEQrb] such that

d/ b = x and x e SCOPE[LPROC[y]] and there is an invocation

or e/ a = x and x c SCOPELLPROC[y]] and there is an invocation
p<- ---: >R(..y.. )

or f/ LPROC[x] = LPROC[y] and there is an invocation Pn>R(..x,y..)
Note that if a c MAYEQ[b] then y c MAYEQ[x] will be inferred by one of

the conditions a through c. The chain establishing the alias between

a and b is shorter than the chain establishing the alias between x and y.

Hence by repeatedly applying d through e, one eventually must reach a

reflexive element c E MAYEQ~c). But this element is initially in the

relation and the conditions a through c will thus eventually discover

y e MAYEQ[x].

In order to quickly find invocations satisfying conditions a, b,

or c a number of structures are used. For a procedure P, SVEC[P] is

the set of invocations calling procedures which are strict descendants

J

b ..
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of P in the nesting tree. For a variable x, EQUIV[x] is the set of

invocations in which x occurs as an actual parameter. For a variable

x and an invocation P-,FR , ATOF[x,P+)R] is a list of the formals to which

x is passed on P+*R.

type INVOKEVEC: bit vector of INVOKE

declare SVEC: array [PROCd of IINOKEVEC

declare EQUIV: array [VAR] of INVOKEVEC

declare ATOF: array [VAR,INVOKE] of list of VAR

declare AFTEMP: array [VAR] of INVOKEVEC

declare QUEUE: queue of struct (xc:VAR, yc:VAR)

declare x, y, a,b : VAR, f: PARM, e: INVOKE

proc POSTR(p:PROC) #This routine recursively computes SVEC-

declare q : PROC

1. for q c SON[p] do

2. POSTR(q)

3. SVEC[p) * SVEC(p] u SVEC[q]

4. for e e CALL~q] do

5. SVEC[p] SVEC[p] + e

6. return

4~. end POSTR

proc UPDATE(x,y :VAR) #This is a utility routine which updates

* MAYEQ, and QUEUE#.

j1. if y d MAYEQ(x) then

* j2. MAYEQ(xJ MAYEQ(xJ + y

3. QUEUE -QUEUE + <xc : x, yc Y

4. return

jend UPDATE
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1. QUEUE 0 #Initialize QUEUE, and !IAYEQ. Get ready

2. for x e VAR do to compute ATOP and EQUIV#

3. AFTEMP~x) -

4. QUEUE+QUEUE+ <xc xyc :x
5. EQUIVW - 0
6. MAYEQ~x) Ix)

7. for q c PROC do #Compute EQUIV and ATOF. Get ready to compute

8. for x c FORMLST[q] do SEC

9. for f e ACTUAL[x) do

10. e +AINV(f]

11. a 4-AVARMf

12. EQIV[a] --[a] +e
13. if e i AFTEMP~a) then

14. AFTEMP[a) - AFTEMP[a]+e

15. ATOF[a,e] - 0
16. ATOF~a,eJ +- ATOF[a,e]+x

17. SVEC(q] 4- 0

18. POSTR(ROOT) #Compute SVEC#

19. while QUEUE 0 do #Iteratively find members of MAYEQ#

20. pick <xc x, yc :y> from QUEUE arbi trari ly

21. for e c EQUIV[x] n SVEC[LPROC[y]J do #Apply condition a#

22. for a c ATOF[x,e) do

23. U PDATE(y,a)

24. for e £ EQUIV~y) n SVEC[LPROC[x)] o #Apply condition N#

25. for a E: ATOF~y,e] do
26. U PDATE(x,a)

27. for e e EQUIV[x) n EQUIVfy) do #Apply condition c#
28. for a e ATOF~x,e) do

V29. for b c ATOF~y,e) do

30. U PDATE (a,b)
31. UPDATE(b,a)

ti
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In lines 1 through 18 the structures SVEC, EQUIV, and ATOF

are computed and the queue QUEUE is initialized. Lines 19 through 31

constitute an iterative application of the conditions a, b, and c

discussed above. The worst case timing analysis is easy except for

the iterative loop. Lines 1 through 6 clearly operate in time

O(VAR). Lines 7 through 17 process each variable in every tuple

labeling an invocation for a cost of O(PARM). The routine POSTR

called in line 18 traverses each procedure and the invocations of it

in a depth first search of the nesting tree for a time of O(PROC+INVOKE).

Let EQMAY = I IMAYEQ[x]!. The loop in lines 19 through 31 is
xCVAR

executed EQMAY times as a member of the MAYEQ relation is put on

QUEUE only once. The total time in this loop is proportional to the

number of times UPDATE is called. Suppose there is a call UPDATE

(x,y), that is, it is discovered that y c MAYEQ[x] by a chain passinq

through some edge e. Suppose that e p. .a.. LPROC[y](..y..).

By examining the predicates d through f, one realizes that there is

only one element of the MAYEQ relation from which y e MAYEQ[x] through e

can be inferred unless it is condition f in which case there are at

most two. Hence UPDATE is called with (x,y) for an edge e at most

twice. Thus UPDATE is called at most

y ICALL(LPROC(y]]I times where CALL[LPROC[y]] is the number(x,y) cEQMAy

of invocations of LPROC[y] Let MAXINWOKE ' max ICALL[P]I. Then
PePROC

clearly the cost of the loop Is O(EQMAy*MAYINVOKE*loqINVOKE) where the

log term is the cost of finding the set bits in lines 21, 24, and 27. So the

algorithms total running time is O(PROC+PARM+EQMAy*MAYINVOKE*lOgINVOKE+VAR).

For any reasonable program MAXINVOKE will tend to remain constant, hence

I1
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the iterative loop will take an amount of time proportional to EQMAY.

Now that the MAYEQ sets are computed, the sets FYi can be

found in time O(EQMAY) by applying formula [1]. The final MAYAFF

sets can be found by applying formulas [2a] and [2b]. To do so requires

time O(MAYPROC+MAYINVOKE). It just remains to show that [2a] and [2b]

give the final answer by demonstrating that the ALIAS effect does

not interact with the FORMAL and SCOPE effects. For example, it might

be that a bit included in a sunary relation as a consequence of the

ALIAS effect, subsequently requires propogativn due to a FORMAL or

SCOPE effect. It is shown that if such an instance arises, the

ALIAS-effect will also broaden the relation to include such a propogated

bit. Thus the FORMAL and SCOPE effects need never be reconsidered.

Independence Lemma: Suppose x e MAYAFF[R] as the result of an ALIAS-effect.

1. If x e MAYAFF[P-R] because of a SCOPE effect then

x c MAYAFF[P-R] because of an ALIAS-effect.

2. If y e MAYAFFIP- R] because of a FORMAL-effect with x

then

y E MAYAFF[P-R] because of an ALIAS effect.

Proof: x E MAYAFF[R] as the result of a VAR-effect < 3 f such that

f c MAYAFF[R] and x e 9W [f] n ADDRESS[R].

Suppose x e MAYAFF [P-R) by a SCOPE effect ->x c SCOPE(R)

0 x e ADDRESS(P]. If f e SCOPE[R] then f c MAYAFF,[P-R] by

the SCOPE effect. Hence x c MYEQ [f] n ADDRESS(P] =>

x c MAYAFF(P-*R] by an ALIAS-effect. Otherwise LPROC[f] = R.

It must be that f E MAYEQx] -0 f is a formal parameter.

J
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Suppose p<.A&R(f.). It may be that x is not aliased

to a, i.e., x is not aliased to f through this invocation.

If so then x should not be included in MAYAFF[P+R]. But if

x e MAYEQ~a] then A E MAYAFF[P-.R] by the ALIAS effect as

a c MAYAFF*CP-R] by the FORMAL-effect.

*Suppose y e MAYAFF[P-).R] by a FORMAL effect, i.e., p<-*--Y.A',R(..x..).

LPROC[x] = R and f c ADDRESS[R] = x £ MAYEQUf]. First suppose

that f c SCOPE[R1. It may be that f is not aliased to y in

which case one must again conclude that y should not be in

MAYAFF[P*R]. However, if y c MYEQ(f I then y c MAYAFF[P-R]

by the ALIAS-effect as f c MAYAFF[P-R] by the SCOPE effect.

Finally, suppose that LPROC[f] = R and assume

.<y~z. >,R(..x,f..). Again, if y is not aliased to z then

one should not conclude that y c MAYAFF[P-R]. Otherwise

y e MAYAFF[P-.R] by the ALIAS effect as z e MAYAFF*[P-R]

by the FORMAL-effect and y c MAY M z].U
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CONCLUSION

Putting all the sub-algorithms together, one has a O(PROC+INVOKE+

PARM+VAR+MAYINVOKE+MAYPROC* log VAR+EQMy*MAXINVOKE*lOqlMVOKE) alqorithm

for computing MAY summary information for a program. Let I SIZE =

PROC+PARM+INVOKE+VAR and 0SIZE = MAYINVOKE+MYPRoc+EQMAY' The logarithmic

terms arise from the necessity of listing the elements of a bit vector.tI
In many bit vector systems it is assumed that this is a constant time

operation. If one were to assume this and that MAXINVOKE is bounded

by some constant, then one could conclude that this algorithm runs in

time O(IsIZE+OSIZE).

There remains the problem of computing MUST summary information

and of extending live and avail to include inter-procedural effects.

These problems are intractable in theory (unless P= NP). This intractability

is due to the fact that at any procedure there can be an exponential

number of aliasing patterns. In most realistic programs, however, the

number of these patterns is small. In a subsequent paper, the problems

will be proven (co-) NP-complet! and an algorithm will be presented

which operates quickly for "reasonable" programs.

404
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