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Summary
S A multivariate directed graph consists of a set of g nodes, and

a family of directed arcs (one for each relation) connecting pairs of
nodes. Such multivariate directed graphs provide natural representa-
tions for social networks. In this paper we-eenﬂ-de; methods to analyse
a network of 73 organizations in a Miadwest American community linked

1S ColS DERE
by three types of relationz: information, money, and support. The

resulting data set, described by Galaskiewicz and Marsden (1978),

involves 3 x 73 x 72 = 15,768 possible arcs or “observations®. 4e 7¥F REpoRT
describesa class of stochastic loglinear models for multivariate directed
graphs, demonstrate how they can be fit to the data using generalized
fterative scaling of Darroch and Ratcliff (1972), and explain the connection
between these models and variants on standard loglinear models for multi-
dimensional contingency tables discussed by Bishop, Fienberg, and
l-lol'land_(l975). H’e-";Iso considers a disaggregation of the organizations

into sub-groups, and demonstrate ht_m to adapt mmdﬂs to explore

the intra- and inter-group relationships. These methods generalize

research of Holland and Leinhardt (1980), who develop a model for

dyadic relationships in univariate directed graph data. The paper

includes a detailed analysis of the Galaskiewicz-Marsden data. &




1. Introduction
Although this conference is entitled "Looking at Multivariate Data",

most attendees and authors have interpreted this to mean looking at multi-
variate data "using graphical methods". Despite the fact that the title
of the present paper contains the words "data", "multivariate", and
“graphs", we shall break step with these other authors and describe a
class of multivarifate network problems. We would have liked to address
these problems using graphical methods but, for the moment,we have -been
forced to settle for a more traditional multivariate model-based approach.
This may seem even more surprising since the network problems we address
begin with data that correspond to a picture or graph.

-- Figure 1 goes about here --

Figure 1 contains an example of a univariate directed graph, a graphi-

cal representation of a network involving g = 6 individuals. There are

g{g-1} = 30 possible arrows or directed arcs linking these 6 individuals
in pairs, only 12 of which are present in Figure 1. The information in a

univariate graph for g individuals can be summarized by means of a g x g

adjacency matrix Xs with elements

1 1f { relates to j
x'lj =

0 otherwise,

where, by convention, the diagonal temms, Xgqe are set equal to zero.

The adjacency matrix for Figure 1 is:




There are several approaches that we might adopt to model the

data in the adjacency matrix, X. For example, we might focus on the 6
individuals and assume that individual 1 makes 5 possible independent
choices (corresponding to arrows), with some unknown Bernoulli parameter,
py (1 =1,2,...,6). Then a suitable data summary would be the row totals
of x, i.e., (3..3.2,1 +3,0). The assumption of independence of choices

is not likely to be satisfied in practice, however. Alternatively, we
might focus on the 6 x 5 = 30 pairs of individuals, and assume that the
data }or the pairs are independent and identically distributed. In
effect, then, we would choose to focus on relationships, and would observe

three different types:

O) ©) Nul1,
o ) S —

M Mutual.

Thus the observed data would be summarized in the following 2 x 2 table:




Receive Choice

Yes No
Yes| 4 8 |12 |
Send Choice |
No 8 10 |18 }
12 18 | 30

Note that each pair has been counted twice, once for “sending” and once
for "receiving”, thus merging the asymmetric relationships.

The approach involving pairs essentially uses the g(g-1) permutations
of the g individuals, two at a time, and thus leads to a doublecounting
of each pair. By focussing on the (g) = g(g-1)/2 combinations or dyads,

we can eliminate the doublecounting and obtain the following summary:

No. of Dyads
® @ 5
. O—0 ?
@._—_z@ 2
In this paper, we consider stochastic models of multivariate directed

graphs, involving several types of arrows or relationships, that treat the
g } dyads as independent random variables. We do this in the full know-

ledge that for most network problems dyads are constructs. We do not

i
‘ : sample them. Rather, if we sample at all, we take a sample of individuals
and we measure information on dyadic relationships. The independence of

dyadic information is an assumption which in practice 1s in need of some

verification. We do not address this issue in this paper. For population




directed graph data, consisting of the dyad information for all of the
individuals in a network, the use of stochastic models leans for support
on (a) randomization arguments, (b) superpopulation ideas, or (c) it

simply provides a convenient ‘framework for exploratory data analysis.

In the next section we describe a set of network data involving
organizations and three types of organizational relations. Then, in
Section 3, we describe a class of models and multivariate methods for the

analysis of such data, which treats the organizations as a single group.

After fitting these models to the data in Section 4, we further develop
the models in Section 5 to allow for disaggregation of the organizatioms
into subgroups. We conclude by returning to the graphical theme of this
conference, and suggest some extensions of our modelling approach which

might lead to interesting graphical summaries.

2. A Specific Network: Towertown, U.S.A.

The. data that have motivated our work on this topic come from a

study of 109 formal organizations (,wjth more than 20 employees) in a
' small midwest United States comuni..tsf of 32,000 persons, referred to by
: the pseudonym "Towertown". Galaskiewicz (1979) described the survey of

Towertown, Galaskiewicz and Marsden (1978) report on the data considered
here, and we have described the data elsewhere in detail (Fienberg and

‘ Wasserman, 1981). For the present, it will suffice to note that we are

concerned with the results of questionnaire data for a subset of 73

t organizations, representing the ties between pairs of organizations for

} : three types of relations: (i) information, (1i) money, and (iii) support.

F This data set can then be represented as a multivariate directed graph,
summarized by three adjacency matrices defined for the same 73 organizations,

ol




(31. Xp» 53). Each matrix is of dimension 73 x 73 and represents 73(73-1)
= 5256 possible directed arcs using 0's and 1'3.* Given the size of
these matrices, it should not be surprising that graphical representations

of even the univariate links are too complex to comprehend.

Thus, we stil1l need a way to look at and, perhaps more importantly,
summarize the data. Table 1 contains one such summary of the data given

by Galaskiewicz and Marsden (1978), in the form of a 26 table of counts of

pairs of organizations. This table gives the direct multivariate generalization
of the 2 x 2 representation for a single relation given in Section 1. Each pair
of organizations is counted twice, once from the perspective of each
member. Thus,the total of the counts in the table is 5256, twice the
number of pairs, (723) = 2628. Henceforth,we refer to Table 1 as the
w-table with entries {wii'jj'kk'}’
-- Table 1 goes about here --

The 25 cells of Table 1 consist of (a) 8 cells whose counts are
doubled, and (b) 28 cells whose counts are duplicated. If we eliminate
the duplication and doubling of counts,we get an arrangement of 36 cells,

whose counts correctly total 2628. In Table 2 we give one

possible representation of these 36 cells in a form resembling a three-

dimensional 4 x 4 x 4 cross-classification, where the three "variables"

1 ' correspond to the three relations (1) information, (2) money, and (3) support.
-- Table 2 goes about here --
*Throughout this paper we work with summaries of this data set.

The full data set, consisting of three adjacency matrices and pseudonyms
for the organizations, is available on request from the authors.




A T R T T T R Y N ORI N 5 A
proci-hut T

When the dyadic structure for a single relation is asymmetric, the
"direction” of the corresponding arc does not matter. We use a single
subscript, A, to denote the relation in such situations. When

the dyadic 1inks for two or more relations are both asymmetric, we need to

distinguish between situations where the arcs for a pair of relations
go in the same or different directions. Thus, for these situations, we

use two different subscripts, A and A, with identical subscripts for

those relations whose asymmetric directed arcs go in the same direction.
We arbitrarily assign the subscript A to the lowest numiaered asymmetric
| generator. (Note that interchanging the subscripts A and A yields the
same dyadic structural relationship.) We denote the observed counts in
Table 2 by Zabe? for a, b, ¢ = M, A, A, N (for Mutual, Asymmetric,
Asymmetric, and Null), where the convention for the use of the sub-

scripts A and A is as described above. These observed counts can be

thought of as realizations of a set of random variables, {Zabc}' whose

probability structure we wish to model.

3. Loglinear Models for Multivariate Directed Graphs

We wish to model the probability Pabe that a randomly selected dyad
would be assigned to cell (a,b,c) in Table 1, where

i ‘ (3.1} L Punn = 1.
: all cells abc

4 Although we might think of using loglinear models directly for the {pabc}’
such an approach leads to difficulties of interpretation (see Fienberg
and Wasserman, 1980, for further details). Instead, we define

TS e —reme oo e e mame

DN Ak 7 e P ]
s be -

' o | : .




Tog Pabe if a, b, and ¢ are each equal to M or N,

(3.2) fabe” 3
Tog [%EE] if one of a, b, and ¢ equals A.

Our plan is to develop a class of linear models for the {E_, .}, which

abc
for {pabc} yields an affine translation of a class of loglinear models

(see Chapter 9 of both Haberman, 1974 and Haberman, 1979). This approach
(a) treats dyads involving asymmetric ties as having been produced

with an orientatfon and then pooled. (This also accounts for

the divisor of 2 for counts involving asymmetric tfes.)

(b) 1includes as a special case the model of independent individual
choices (see the discussion of Section 1).

(c) 1is directly related to an approach of Holland and Leinhardt
(1980) which allows for parameters associated with the indivi-
duals in the dyad (see also Fienberg and Wasserman, 1981).

We plan to consider models for the {£_, .} which are linear in parameters

abc
that reflect the 13 distinct types'of dyadic patterns depicted in Figure

2. Note that the patterns have a hierarchical structure. For example,

the six-arrow full symmetry pattermn, (xiii), contains all the other

patterns as special cases, and the conditional multiplex mutuality pattern,
(xi1), contains patterns (i) through (xi) as special cases. We consider
{ ' a class of increasingly complex loglinear models for the {Eabc} with
‘ parameters based on the pattems in Figure 2.
-- Figure 2 goes about here --
(I) The null model corresponding to Figure 2(f) depicts the

probabilities {pabc} as being constant, and could be represented as

Eabc 9

l & T e oo - ea . e . e e e
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where 0 = 10g(1/36). This is an individual, independent Bernoulli choice

model. For subsequent models we use 6 as a normalizing constant.

(II) At the next level, we add choice parameters ,{91.62 .93} for the

relations (Figure 2(ii)), one for each directed arc. For example,

EMAN =9 + 201 + 62
EMM'0+261+62+03

5MAA'°+291+92+93-

S

(II1) Next,we add sets of parameters corresponding to heightened

or diminished effects related to pairs of directed arcs:

(a) P11s P2 P33 for mutuality effects (see Figure 2(i1{)),
]
(b) P2» P13s Pp3 for exchange effects (see Figure 2(iv)),
i (c) 8120 8130 O3 for multiplexity effects (see Figure 2(v)),

., ‘ For example:
t g %M'6+291+02*93+9"+p.'2+p13+923+912+e.|3,
l
| Swam = 8+ 209 + 8y * 205 % 0y + Pgz * Pyp * 2013 * Pyg
I o + Oy ¥ 2013 + 03
‘ There are additional sets of parameters corresponding to the remaining 4

levels in Figure 2. At level IV, one of these parameters involves only muiti-

plexity and thus is denoted by a triple subscripted 6, i.e., 0123. The

i- . remaining parameters involve mixtures of mutuality, exchange, and miti-
E plexity, and are denoted by subscripted (p6)'s. Overbars on subscripts are
| )
’ used to distinguish asymmetric directed arcs going in opposite directions,
! oo i B LT T ]
N | o ' w, Aiatils . -, ) )




e.g., (96)1-2-3-.
The parameters in this class of models are GLIM-1ike in structure

(e.g., see Nelder and Wedderburn, 1972), in that a parameter is included
in the model if and only if the corresponding effect is present. The
entries of the resulting “design matrix" for the parameter structure for
any given model will be 0's, 1's, and 2's. This particular prodlem could
be handled in GLIM directly only through the explicit construction of
this design matrix, which is a formidable task.

The parameters have a hierarchical structure, i.e., if we set some
parameters equal to zero, all related higher-order terms are also zero.

For example,

912 = 0 = 8153 = (p8)1q5 = (PBlgpy = (e)yyy

= (08)1123 = (PO)qyz3 = (p8)yp13

= (00)5517 = (P8)1q22 = (PO)yq223
, = (p0)17332 = (PB)2233

= (06)192233 = 0>

and

Pry = 0= (pe)ypp * (00)qq3 = (08)yyp3 = (00)yyzy
= (0001122 = (00)333 = (p8)y9223
= (p0)y1332 = (p0)y12233 = O

In the next section we discuss how to fit these models to

socfal network data.
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4. Fitting the Models to Data

Fitting the loglinear models of the preceding section to
data in Table 2 follows, in principle, directly from the general results
for loglinear models in Haberman (1974) or Appendix II of Fienberg (1980).
The minimal sufficient statistics (MSS's) take the form of linear combina-
tions of the {zabc}’
(4.1) I Gorn Zopns
all cells abc “abe

where for a MSS corresponding to “generic" parameter, 8,

(4.2) Gpe = multiple of 8 in Eabc:

The multiples of all parameters are either 0, 1, or 2, and thus all of the
a's are either 0, 1, or 2.

If we let the expected value for the (a,b,c) cell be Mabe ™ N'pabc
where N = (g). then the 1ikelihood equations are found by setting the
MSS's equal to their estimated expgcted values, i.e., for a generic
parameter the likelihood equation is:

A

(4.3) b %pe Mabe

G Zoy. .
all cells abc “abe

z
all cells
We can solve a set of likelihood equations, each of the form (4.3), by
using a version of the generalized iterative scaling algorithm due to

Darroch and Ratcliff (1972), with starting values as fcllows:

(4.4) m0) .

1 1if a, b, and ¢ are each equal to Mor N
abc {

% 1{f one or more of a, b, and c equals A.

-

M’%;’ b .

DRRURUIIRY " Sl " SO R VN




There are two drawbacks to this approach. First, one needs to work with

data arrays of the irregular shape of Table 2. Second, the convergence
of generalized iterative scaling can be excruciatingly slow.

A11, however, is not lost. Two results, one simple and one relatively
complex, lead us to a very straightforward alternative approach for

computing the {aabc}'

Result 1: For the class of affine translations of hierarchical
loglinear models described in Section 3, each set-of MSS's is
equivalent to a set of marginal totals for the 25 table (i.e.,
the g-tab]e) with doubled and duplicated counts.

For example, the simple model with only a choice parameter, 61, and a
mutuality parameter, 1 for the first relation has MSS's {ZM++' Zpre?

zN++},and
(4.5) Zye =% W e
. Zper = W04+ T Y0140

3% Wo0++++°
Result 2: For each affine translation of a loglinear model
for the g-table, there is a corresponding loglinear model

for the g-table, with equivalent estimated expected values,

once we take account of the duplication and doubling.

For example, for the model with choice and mutuality parameters, {.e.,

(4.6) (9,91.92.9309«”00220933)0

T

BRI

e
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tne corresponding 1oglinear model for the w-table that yields
equivalent MLE's is, in GLIM-1ike notation: ‘

(4.7) 109 Myguggrpier = A+ M8 + 085

Here Mgyr 530Kk is the expected value for the (1,1',j,J',k,k*) cell,
and each §-term equals 1 if the subscript takes the value 1, and is zero

otherwise.
To understand Result 2 we need to note the following correspondences

between the !-table and the E-tab'le:

' w-table - z-table
! * Cell: (1,1"23.3° koK) (a.b,c)
Symmetric flows: is{,§=3',k=Kk' a,b,c=Mor N ﬂ

Because of the doubTing of the counts in Table 1, we have:

PRRIICE o TN

o Tog (2 m, ) for symetric flows,

(408) 109 mii.JJ'kk. =
log ("'abc) for asymmetric flows.

—

LW A




= [9
Substituting expression (3.2) into (4.8) and noting that Mabe (2) Pabc®

we get

(4.9) 109 mii.jj‘kkl = [2 (g)] + Eabc-

Thus the models for log '“ii'jj'kk' and £ differ by only a constant.

abc
A direct consequence of these two results is that we can compute

MLE's for the expected values under the models of Section 3 using standard
iterative methods for contingency tables. (This is in fact what Galaskfewicz
and Marsden (1978) did in their original analyses of Table 1.). For
example, for the model with parameters given by (4.6), the MSS's are
equivalently given by the two-way marginal totals of the w-table:

These marginals can be fit to the 26 table using the standard iterative
proportional fitting procedure (or some other program such as GLIM).

Because of symmetries in marginal 1':otals, e.9.,

.

Y1044+ = 0T+
War104+ = Y0104
Worrt10 = V01

the resulting parameter estimates are such that

A ~

11')«'., xz.izlg Xs.xso-
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The estimated parameters for the models for £, _ can be computed directly

abe
from these parameters:

o3 2 [2]]
B = Ay f=1,2,3
3“ =y 1123

We note that the d.f. for any model must be calculated using the model
for the z-table, not the one for the w-table, and the value of any standard
goodness-of-fit statistic computed directly on the fitted !-table must
be divided by 2.

5. Initial Analyses of the Towertown Data

In Table 3 we list a set of seven loglinear models that we have fit
to the Galaskiewicz-Marsden data of Table 1 (some of these models correspond
to ones fit by Galaskiewicz and Marsden). The first six models are of
increasing complexity, and only thé most complex of these models, (6), pro-
vides a fit which it not significant at the 0.05 or even 0.01 Tevel,
Model (7) is a compromise between models (5) and (6) that drops one of the
conditional mutuality and two of the multiplex mutuality effects but still
provides an acceptable fit to the data. Its parameter estimates are listed
in Table 4.

-~ Tables 3 and 4 go about here --
The most substantial estimated effects (in terms of magnitude) arve

those assocfated with choice (ai’s), mutuality (Sii.s)’ conditional

mutuality (96)33] = -2.15 and multiplex mutuality (65)1]33 = 2.88. Inter-
preting these effects 1s complicated. For all hierarchical models, with
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nonorthogonal designs, the parameters that are easiest to interpret are
those associated with the highest-order effects. Here the multiplex mutuality
parmaeter estimate implies a heightened 1ikelihood of simultaneous recipro-
cation of both information and support, relative to what we would expect in

a model without the multiplex mutuality parameter.

One of the major difficulties with the models of Section 3 is that

dyads are considered to be homogeneous and thus do not allow for the inherent
differences among the organizations. Without some allowance for this hetero-
geneity, further interpretation of fitted models makes little sense. In
Table 5 we 1ist pseudonyms for each of the 73 organizations, and provide a

partition of them into four sub-groups:

1. Business gy =16,

2. Political g, = 24 ,

3. Nonprofit voluntary associations 95 = 21,
4

Nonprofit service associations 9 " 12,

We postulate that the sociological factors affecting interaction should be
relatively homogeneous within these groups. Thus, we can categorize the
original (g’ = (723) = 2628 dyads into the cells of an upper triangular

4 x 4 array:

G, & G, Gy
| 120 |38 3% |92 6
276 | 504 |288| G,

210 | 252 | G,
6 | 6

No. of Dyads:




v e

-~ Table 5 goes about here --

Within each of the four groups we can analyze flows using a 26 table
and the models from Section 3. These 26 tables have the same doublings
and duplications as the aggregated 26 table. The flows between groups
(in pairs) now have an orientation and there are corresponding 26 tables
describing these flows which contain no doubling and no duplication. We
can analyze each of these tables with standard loglinear models that
parallel those models for within group flows. The total number of cells
in the full table is (4 x 36) + (6 x 64) = 528.

In Table 6, we report the result of fitting separate multiplex mutuality
models (model (6) of Table 3) to each of the 10 26 arrays. While this model
fits extremely well (G2 is less than the d.f.), this is in large part the
result of fitting 352 parameters. An alternative modelling approach links
the within and between group models. For example, we might take a common
"interaction structure" for all 10 26 tables, but allow only the choice
parameters (the 31'5) to depend on groups. The result is model (2) in Table
§, whose fit is not horrid but is still significant at the 0.005 level. A
compromise between models (1) and (2) of Table 3 would have a common model
for ;ithin-group flows and a separate variant on model (2) for between-
group flows. We report the fit of two such models in Table 6. Model (3b)
fits extremely well, and provides a convenient starting point for further
analyses of the data.

-- Table 6 goes about here --

6. A Possible Graphical Display for Multivariate Directed Graphs
The second set of analyses of the preceding section leads quite

naturally to analyses involving a further disaggregation of organizations.

Indeed we could carry the disaggregation to the 1imit, with each organiza-
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tion forming its own group of one. We could postulate models with
different choice parameters for each organization and a common higher-
order parametric structure. Actually, we would end up with individual
sending and receiving parameters for each organization and each relation.
The resulting model is in the same spirit as the bivariate models sug-
gested by Holland and Leinhardt (1980).

The attractive feature of this fully-disaggregated approach 1s that
we can examine the estimated higher order structure in a tabular form
similar to that of Table 4, and look separately at the estimated individual
parameters. The latter can be displayed in a set of three overlayed
"correspondence-1ike" plots of the 73 organizations. The sending and
receiving parameter estimates for an organization could be used as the
abscissa and ordinate for a corresponding point, and the three points for
different relations could be linked to form a triangle. This plot should
show not only the clustering of organizations but also the similarities
of their behavior with regard to the three different relations being
considered. We have stopped short .of producing the plot for the Towertown
data. for computational reasons. The iterative methods used here, and in
Fienberg and Wasserman (1981) for the univariate version of the disaggre-
gated model, when applied to the Towertown data simply take up too much
computing storage. We hope, however, that alternative computational methods
currently under development might make possible some graphical displays

for multivariate directed graphs in the not-too-distant future.
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TABLE 2.

Information

M

A

Money

Money

STRUCTURE FOR ACTUAL TABLE OF 36 COUNTS

Support
M A N
Zyv ZyMA 2y
14 25 8
ZuaM | %MAn | ZmaR | Zman
50 38 15 47
ZynM ZyNA ZMnN
50 77 161
Zavm | ZaMA | ZaMR | 2N
0 3 1 7
Zaam | ZanA | ZAAR ) Zaan
4 9 2 | 15
Zafm | ZARA | ZARR | ZaAN
6 3 20 1 11
Zanm | ZANA | ZANR | ZanN
15 20 32 | 145
ZNMM ZNMA ZpmN
2. 3 10 _|
Znem | *NAA | INAR | ANAN
14 18 12 10
ZNNM ZNNA ZNNN
58 111 1521 |
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TABLE 4. 'PARAMETER ESTIMATES FOR MODEL (7) FITTED TO THE DATA FROM

TABLE 1

Parameter

Estimate

-0.55

-3.02
<3.35
-30 28

3.8
1.52
3.28

].01
1.73
0.60

00 78
1.34
1.57

-0.52
-1.30
-0.70
-2.15
-0.83

2.“

Normalization Constant

Choice

Mutuality

Exchange

Multiplex

Conditional Mutuality

Multiplex Mutuality
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TABLE 6. MODELS FIT TO THE 10 28 TABLES FORMED BY THE PARTITION OF THE
73 ORGANIZATIONS INTO THE 4 GROUPS GIVEN IN TABLE 8 (528 CELLS)

Mode1 62 D.F.

(1) Separate models for each 26 table, each
based on all multiplex mutuality and
implied lower-order terms 136.0 176

(2) A common interaction structure for all 26
tabTes, based on all multiplex mutuality
. and implied lower-order terms, but one-
- factor choice parameters (8,'s) depending
P on the groups : 629.0 482

(3a) A common multiplex mutuality model for
within group flows plus a between group
5e1 2

model similar to mo 409.0 352

(3b) Model (3a) plus a set of “information®
multiplex parameters (611) for between

groups that depend on the groups 355.7 343
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