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Sumary

A multivartate directed graph consists of a set of g nodes, and

a family of directed arcs (one for each relation) connecting pairs of

nodes. Such multivariate directed graphs provide natural representa-

tions for social networks. In this paper we-eensidei methods to analyse

a network of 73 organizations in a Midwest AImerican community linked

by three types of relations: information, money, and support. The
A

resulting data set, described by Galaskiewicz and Marsden (1978),

Involves 3 x 73 x 72 - 15,768 possible arcs or mobservationsO. .. 7) /"p4er-

describesa class of stochastic loglinear models for multivariate directed

graphs, demonstrate how they can be fit to the data using generalized

iterative scaling of Darroch and Ratcliff (1972), and explain the connection

between these models and variants on standard loglinear models for multi-

dimensional contingency tables discussed by Bishop, Fienberg, and

Holland (1975). Walso consldersa disaggregation of the organizations

into sub-groups, and demonstrate how to adapt .uP-models to explore

the intra- and inter-group relationships. These methods generalize

research of Holland and Leinhardt (1980), who develop a model for

dyadic relationships in univariate directed graph data. The paper

includes a detailed analysis of the Galaskiewicz-Marsden data.
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1. Introduction

Although this conference is entitled "Looking at Multivariate Data",

most attendees and authors have interpreted this to mean looking at multi-

variate data "using graphical methods". Despite the fact that the title

of the present paper contains the words "data", "multivariate", and

"graphs", we shall break step with these other authors and describe a

class of multivariate network problems. We would have liked to address

these problems using graphical methods but, for the moment,we have -been

forced to settle for a more traditional multivariate model-based approach.

This may seem even more surprising since the network problems we address

begin with data that correspond to a picture or graph.

-- Figure 1 goes about here --

Figure 1 contains an example of a univariate directed graph, a graphi-

cal representation of a network involving g = 6 individuals. There are

g(g-1) = 30 possible arrows or directed arcs linking these 6 individuals

in pairs, only 12 of which are present in Figure 1. The information in a

univariate graph for g individuals can be summarized by means of a g x g

adjacency matrix x, with elements

{ if I relates to J

xJ 0 otherwise,

where, by convention, the diagonal terms, xit, are set equal to zero.

The adjacency matrix for Figure 1 is:

4
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1 2 3 4 5 6

1 0 1 0 1 1 0

2 1 0 1 0 1 0

3 0 0 0 0 1 1

" 4 0 1 0 0 0 0

5 0 1 0 1 0 1

6 0 0 0 0 0 0

There are several approaches that we might adopt to model the

data in the adjacency matrix, x. For example, we might focus on the 6

individuals and assume that Individual i makes 5 possible independent

choices (corresponding to arrows), with some unknown Bernoulli parameter,

P1 (1 - 1,2,...,6). Then a suitable data summary would be the row totals

of x, i.e", (3,3,2,1,3,0). The assumption of independence of choices

is not likely to be satisfied in practice, however. Alternatively, we

might focus on the 6 x 5 a 30 pairs of individuals, and assume that the

data for the pairs are independent and identically distributed. In

effect, then, we would choose to focus on relationships, and would observe

three different types:

0 0 Null,

Asyimetri c,

Tos do bMutual.

Thus the observed data would be summtarized in the following 2 x 2 table:
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Receive Choice

Yes No

Yes 4 8 12
Send Choice

No 8 10 18

12 18 30

Note that each pair has been counted twice, once for "sending" and once

for "receiving", thus merging the asymetric relationships.

The approach involving pairs essentially uses the g(g-1) permutations

of the g individuals, two at a time, and thus leads to a doublecounting

of each pair. By focussing on the (2) - g(g-l)/2 combinations or dyads,

we can eliminate the doublecounting and obtain the following summary:

No. of Dyads

0 0 5
* 8

2

In this paper, we consider stochastic models of multivariate directed

graphs, involving several types of arrows or relationships, that treat the
( gJ dyads as independent random variables. We do this in the full know-

ledge that for most network problems dyads are constructs. We do not

sample them. Rather, if we sample at all, we take a sample of individuals

* and we measure information on dyadic relationships. The independence of

dyadic information is an assumption which in practice is in need of some

verification. We do not address this issue in this paper. For population



5

directed graph data, consisting of the dyad information for all of the

individuals in a network, the use of stochastic models leans for support

on Ca) randomization arguments, (b) superpopulation ideas, or (c) it

simply provides a convenient 'framework for exploratory data analysis.

In the next section we describe a set of network data involving

organizations and three types of organizational relations. Then, in

Section 3, we describe a class of models and multivariate methods for the

analysis of such data, which treats the organizations as a single group.

After fitting these models to the data in Section 4, we further develop

the models in Section 5 to allow for disaggregation of the organizations

into subgroups. We conclude by returning to the graphical theme of this

conference, and suggest some extensions of our modelling approach which

might lead to interesting graphical summaries.

2. A Speciftc Network: Towertown, U.S.A.

The data that have motivated our work on this, topi.c come from a

study of 109 formal organizations (,with more than 20 employeesl in a

small midwest United States comunity of 32,000 persons, referred to by

the pseudonym "Towertown". Galaskiewicz (1979) described the survey of

Towertown, Galaskiewicz and Marsden (1978) report on the data considered

here, and we have described the data elsewhere in detail (Fienberg and

Wasseyman, 1981). For the present, it will suffice to note that we are

concerned with the results of questionnaire data for a subset of 73

organizations, representing the ties between pairs of organizations for

three types of relations: (i) information, (1i) money, and (Jii) support.

This data set can then be represented as a multivariate directed graph,

summarized by three adjacency matrices defined for the same 73 organizations,

r J



67

Cx V x2 ' x3 ). Each matrix is of dimension 73 x 73 and represents 73(73-1)

* 5256 possible directed arcs using O's and l's. Given the size of

these matrices, it should not be surprising that graphical representations

of even the univartate links are too complex to comprehend.

Thus, we still need a way to look at and, perhaps more importantly,

sumtarize the data. Table 1 contains one such summary of the data given

by Galaskiewicz and Marsden (1978), in the form of a 26 table of counts of

pairs of organizations. This table gives the direct multivariate generalization

of the 2 x 2 representation for a single relation given in Section 1. Each pair

of organizations is counted twice, once from the perspective of each

member. Thus,the total of the counts in the table is 5256, twice the

number of pairs, (73) = 2628. Henceforth,we refer to Table 1 as the

w-table with entries {wijj~kk,} "

-- Table 1 goes about here --

The 26 cells of Table 1 consist of (a) 8 cells whose counts are

doubled, and (b) 28 cells whose counts are duplicated. If we eliminate

the 'duplication and doubling of counts,we get an arrangement of 36 cells,

whose counts correctly total 2628. In Table 2 we give one

possible representation of these 36 cells in a form resembling a three-

dimensional 4 x 4 x 4 cross-classification, where the three "variables"

correspond to the three relations (1)information, (2) money, and (3) support.

-- Table 2 goes about here --

*Throughout this paper we work with summaries of this data set.
The full data set, consisting of three adjacency matrices and pseudonyms
for the organizations, is available on request from the authors.

,A
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When the dyadic structure for a single relation is asymmetric, the

*direction" of the corresponding arc does not matter. We use a single

subscript, A, to denote the relation in such situations. When

the dyadic links for two or more relations are both asymmetric, we need to

distinguish between situations where the arcs for a pair of relations

go in the same or different directions. Thus, for these situations, we

use two different subscripts, A and A, with identical subscripts for

those relations whose asynmetric directed arcs go in the same direction.

We arbitrartly assign the subscript A to the lowest numbered asymmetric

generator. (Note that interchanging the subscripts A and A yields the

same dyadic structural relationship.) We denote the observed counts in

Table 2 by Zabc , for a, b, c = M, A, A, N (for Mutual, Asymmetric,

Aymetric, and Null), where the convention for the use of the sub-

scripts A and A Is as described above. These observed counts can be

thought of as realizations of a set of random variables, Zabc}, whose

probability structure we wish to model.

3. Loglinear Models for Multivariate Directed Graphs

We wish to model the probability Pabc that a randomly selected dyad

would be assigned to cell (a,b,c) in Table 1, where

(3.1]) P: 'a 1.I

all cells Pabc "

Although we might think of using loglinear models directly for the (pabc1'

such an approach leads to difficulties of interpretation (see Fienberg

and Wasserman, 1980,for further details). Instead, we define
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log Pabc if a, b, and c are each equal to R or N,

(3.2) fogc

og If one of a, b, and c equals A.

Our plan Is to develop a class of linear models for the {Cabc }, which

for {pabc) yields an affine translation of a class of loglinear models

(see Chapter 9 of both Haberman, 1974 and Haberman, 1979). This approach

(a) treats dyads involving asymmetric ties as having been produced

with an orientation and then pooled. (This also accounts for

the divisor of 2 for counts involving asymmetric ties.)

(b) includes as a special case the model of independent individual

choices (see the discussion of Section 1).

(c) is directly related to an approach of Holland and Leinhardt

(1980) which allows for parameters associated with the indivi-

duals in the dyad (see also Fienberg and Wasserman, 1981).

We plan to consider models for the {Eabc} which are linear in parameters

that reflect the 13 distinct types of dyadic patterns depicted in Figure

2. Note that the patterns have a hierarchical structure. For example,

the six-arrow full symmetry pattern, (xiii), contains all the other

patterns as special cases, and the conditional multiplex mutuality pattern,

(xii), contains patterns (i) through (xi) as special cases. We consider

a class of increasingly complex loglinear models for the wiabc1 with

parameters based on the patterns in Figure 2.

-- Figure 2 goes about here --

(I) The null model corresponding to Figure 2(1) depicts the

probabilities (Pabcd as being constant, and could be represented as

gabc
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where 0 -log(1/36). This is an Individual, Independent Bernoulli choice

model. For subsequent models we use 0 as a normalizing constant.

(II) At the next level, we add choice parameters ,{81 , 2,e 3 } -for the

relations (Figure 2(11)), one for each directed arc. For example,

tMm a 6 + 20I + 02

tMMA a +20 1 + 0 2 + 03

%MAA +2e 1 +2 2+03.

(Iml) Next,we add sets of parameters corresponding to heightened

or diminished effects related to pairs of directed arcs:

(a) 011- P121 P33 for mutuality effects (see Figure 2(111)),

(b) P12' P13 ' P23 for exchange effects (see Figure 2(iv)),

Cc) e12, 0l3, e23 for multiplexity effects (see Figure 2(v)),

For bxample:

J j q1AA O+ 201 +0 2  3 + Pll + P12 + P13 + P23 + 012 + 013

- 9 + 2e 1 + 02 + 203 + ll + P33 + 012 + 2P13 + 023

+ e12 + 2813+ e23.

There are additional sets of parameters corresponding to the remaining 4

levels in Figure. 2. At level IV, one of these parameters involves only multi-

plexity and thus is denoted by a triple subscripted e, I.e., 8,23. The

remaining parameters involve mixtures of mutuality, exchange. and multi-

plexity, and are denoted by subscripted (pO)'s. Overbars on subscripts are

used to distinguish asymmetric directed arcs going in opposite directions,
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The parameters in this class of models are GLIM-like In structure

(e.g., see Nelder and Wedderburn, 1972), in that a parameter is included

in the model if and only if the corresponding effect is present. The

entries of the resulting "design matrix" for the parameter structure for

any given model will be O's, l's, and 2's. This particular problem could

be handled in GLIM directly only through the explicit construction of

this design matrix, which is a formidable task.

The parameters have a hierarchical structure, i.e., if we set some

parameters equal to zero, all related higher-order terms are also zero.

For example,

e12 = 0 e 123 - (pe) 112  (P8)221 - (pe)3TZ

a (pe) 1123 - (pe) 11r a (pe)2213

= (Pe)22TT (pe)1122 = (p8)11223

(Pe)11332 (p8)22331

=an (p8)112233  0o

p1 l 0 (pe)112 - (pe) 113 - (pe)1123  (pe)llZY

a (pO) 1122  (pe)1133 * (p)11223

0 (pe) 11332 = (pe) 112233 * 0.

In the next section we discuss how to fit these models to

social network data.

.........
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4. Fitting the Models to Data

Fitting the loglinear models of the preceding section to

data In Table 2 follows, in principle, directly from the general results

for loglinear models in Haberman (1974) or Appendix 1I of Flenberg (1980).

The minimal sufficient statistics (MSS's) take the form of linear combina-

tions of the (Zabc},

. (4.1) r Mabc Zabc,
all cells

where for a MSS corresponding to "generic" parameter, 0,

(4.2) abc = multiple of 0 in Cabc-

The multiples of all parameters are either 0, 1, or 2, and thus all of the

a's are either 0, 1, or 2.

If we let the expected value for the (a,b,c) cell be mabc N N.Pabc

where N 01 ()then the likelihood equations are found by setting the

MSS's equal to their estimated expected values, i.e., for a generic

parameter the likelihood equation is:

(4.3) E bc mabc a . abc Zabc .
all cells all cells

We can solve a set of likelihood equations, each of the form (4.3), by

using a version of the generalized iterative scaling algorithm due to

Darroch and Ratcliff (1972), with starting values as fcllows:

(.4I(0) if a, b, and c are each equal to N or N

4abc if one or more of a, b, and c equals A.

04~iy -
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There are two drawbacks to this approach. First, one needs to work with

data arrays of the irregular shape of Table 2. Second, the convergence

of generalized iterative scaling can be excruciatingly slow.

All, however, is not lost. Two results, one simple and one relatively

complex, lead us to a very straightforward alternative approach for

computing the {mabc .

4 bc

Result 1: For the class of affine translations of hierarchical

loglinear models described in Section 3, each set of NSS's is

equivalent to a set of marginal totals for the 26 table (i.e.,

the w-table) with doubled and duplicated counts.

For example, the simple model with only a choice parameter, 81 , and a

mutuality parameter, p11 , for the first relation has MSS's ZM+ + , zA+ + ,

Z,++},and

(4.5) zM4++ a * Wl++++,

zA++ a WlO0++++ = W01++++,

ZN++ = 11 woo++++.

Result 2: For each affine translation of a loglinear model

for the z-table, there is a corresponding loglinear model

for the w-table, with equivalent estimated expected values,

once we take account of the duplication and doubling.

For example, for the model with choice and mutuality parameters, i.e.,

(4.6) (e'e1 e2 'e 3 9p11,P22 #P33
) 0

r'* .. .. .-
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tne corresponding loglinear model for the w-table that yields

equivalent MLE's is, in GLIt4-like notation:

(4.7) log miiljjlkkl + 116 +~~ +'li

+ X 26  + "2 0Ij I

+ X36k + XLek

+ ~ '22j'J

+ )L33 6kakso

Here mjvj~k Is the expected value for the (i~i'.,J',k,k') cell,

and each. 6-term equals 1 if the subscript takes the value 1, and is zero

otherwise.

To understand Result 2 we need to note the following correspondences

between the w-table and the z-table:

w-table z-table

*Cell: 0(.I,J,.J,k,kl) (a,b,c)

Symmetric flows: i- aI', j a j , k k* a,b,c u M or N

Because of the doubling of the counts in Table 1, we have:

*log (2 "'abc) for symmetric flows,
-a

(4.8)o lo "I1abkkd for asymmetric flows.

.- lltlboa'.
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Substituting expression (3.2) into (4.8) and noting that mabc (2) Pabc'

we get

(4.9) log IIJm k [2 (i)] + Eabc'

Thus the models for log mlijj'kk, and abc differ by only a constant.

A direct consequence of these two results is that we can compute

MLE's for the expected values under the models of Section 3 using standard

iterative methods for contingency tables. (This is in fact what Galaskiewicz

and Marsden (1978) did in their original analyses of Table Ui). For

example, for the model with parameters given by (4.6), the MSS's are

equivalently given by the two-way marginal totals of the w-table:

{wil ' +++), w++Jjt,++},{w+++.kk,)

These marginals can be fit to the 26 table using the standard iterative

proportional fitting procedure (or some other program such as GLIM).

Because of symmetries in marginal totals, e.g.,

wlO++++ " wOl++++,

w++++1  " w++01++,

w4M.10 - +u .1

the resulting parameter estimates are such that

* ~~~ 1  A, A2 ' tU~O

I

-Al - It '2 '- . 3 "31
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The estimated parameters for the models for abc can be computed directly

from these parameters:

A A

ti 'ii 12,3

We note that the d.f. for any model must be calculated using the model

for the z-table, not the one for the w-table, and the value of any standard

goodness-of-fit statistic computed directly on the fitted w-table must

be divided by 2.

5. Initial Analyses of the Towertown Data

In Table 3 we list a set of seven loglinear models that we have fit

to the Galaskiewicz-Marsden data of Table I (some of these models correspond

to ones fit by Galaskiewicz and Marsden). The first six models are of

increasing complexity, and only the most complex of these models, (6), pro-

vides a fit which it not significant at the 0.05 or even 0.01 level.

Model (7) is a compromise between models (5) and (6) that drops one of the

conditional mutuality and two of the multiplex mutuality effects but still

provides an acceptable fit to the data. Its parameter estimates are listed

in Table 4.

--Tables 3 and 4 go about here --

The most substantial estimated effects (in ters of magnitude) are

those associated with choice (t 's), mutuality (Pit's), conditional

mu y()331  -2.15 and multiplex mutuality (p0)1133 - 2.88. Inter-mutuality (O3,P)13"28.Itr

preting these effects is complicated. For all hierarchical models, with
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nonorthogonal designs, the parameters that are easiest to interpret are

those associated with the highest-order effects. Here the multiplex mutuality

parmaeter estimate implies a heightened likelihood of simultaneous recipro-

cation of both information and support, relative to what we would expect In

a model without the multiplex mutuality parameter.

One of the major difficulties with the models of Section 3 is that

dyads are considered to be homogeneous and thus do not allow for the inherent

differences among the organizations. Without some allowance for this hetero-

geneity, further interpretation of fitted models makes little sense. In

Table 5 we list pseudonyms for each of the 73 organizations, and provide a

partition of them into four sub-groups:

1. Business g, 1 6,

2. Political 92 - 24,

3. Nonprofit voluntary associations g3 - 21 ,

4. Nonprofit service associations g4 a 12.

IIWe postulate that the sociological factors affecting interaction should beI

original I~ g1 () 2628 dyads into the cells of an upper triangular
4 x4 array:

Gi G2  G 3  G4

S120 384 336 192 G,

No. of Dyads: 04 252 G2

44
660 G3

For each cell in this array there is a 26 table.

r 77
Ow., ,
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-- Table 5 goes about here --

Within each of the four groups we can analyze flows using a 26 table

and the models from Section 3. These 26 tables have the same doublings

and duplications as the aggregated 26 table. The flows between groups

(in pairs) now have an orientation and there are corresponding 26 tables

describing these flows which contain no doubling and no duplication. We

can analyze each of these tables with standard loglinear models that

parallel those models for within group flows. The total number of cells

in the full table is (4 x 36) + (6 x 64) a 528.

In Table 6, we report the result of fitting separate multiplex mutuality

models (model (6) of Table 3) to each of the 10 26 arrays. While this model

fits extremely well (G2 is less than the d.f.), this is in large part the

result of fitting 352 parameters. An alternative modelling approach links

the within and between group models. For example, we might take a common

'Itnteraction structure" for all 10 26 tables, but allow only the choice

parameters (the e's) to depend on groups. The result is model (2) in Table

5, whose fit is not horrid but is still significant at the 0.005 level. A

compromise between models (1) and (Z) of Table 3 would have a common model

for within-group flows and a separate variant on model (2) for between-

group flows. We report the fit of two such models in Table 6. Model (3b)

fits extremely well, and provides a convenient starting point for further

analyses of the. data.

-- Table 6 goes about here --

6. A Possible Graphical Display for Multivariate Directed Graphs

The second set of analyses of the preceding section leads quite

naturally to analyses Involving a further disaggregatton of organizations.

Indeed we could carry the disaggregation to the limit, with each organiza-

I _________________________. .,e-----. ..-.-- ____________________________
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tion forming its own group of one. We could postulate models with

different choice parameters for each organization and a comuon higher-

order parametric structure. Actually, we would end up with individual

sending and receiving parumeters for each organization and each relation.

The resulting model is in the same spirit as the bivariate models sug-

gested by Holland and Leinhardt (1980).

The attractive feature of this fully-disaggregated approach Is that

we can examine the estimated higher order structure in a tabular form

similar to that of Table 4, and look separately at the estimated individual

parameters. The latter can be displayed in a set of three overlayed

"correspondence-like" plots of the 73 organizations. The sending and

receiving parameter estimates for an organization could be used as the

abscissa and ordinate for a corresponding point, and the three points for

different relations could be linked to form a triangle. This plot should

show not only the clustering of organizations but also the similarities

of their behavior with regard to the three different relations being

considered. We have stopped short of producing the plot for the Towertown

data for computational reasons. The iterative methods used here, and in

Fienberg and Wasserman (1981) for the univariate version of the disaggre-

gated model, when applied to the Towertown data simply take up too much

computing storage. We hope, however, that alternative computational methods

currently under development might make possible some graphical displays

for multivartate directed graphs in the not-too-distant future.

It

. ....r,,, - q -- m-*
-

. .- ..
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Figure 1: Example of a Univarlate Directed Graph involving g u6 Individuals

OF 2)G.



FIGURE 2. PATTERNS OF FLOW DEPENDENCY IN DYADIC PATTERNS

(I) (0) COMPLETELY NULL

X Y

(nl (i) SINGLE CHOICE

RELATION I

X Y

(III) (lit) MUTUALITY (iv) EXCHANGE (v) IULTIPLEXITY

RELATION 1 RELATION 1 RELATION 1

X Y x Y X Y

RELATION 2 RELATION 2

(IV. (vl) CONDITIONAL (vii) CONDITIONAL (viii) MULTIPLE
MUTUALITY MULTIPLEXITY MULTIPLEXITY

RELATION I RELATION 1 RELATION 1

X Y X Y X Y

RELATION 2 RELATION 2 RELATION 2

RELATION 3 RELATION 3



FIGURE 2 (CONTINUED)

(V) (x) MULTIPLEXITY AND Cx) EXCHANGE AND (xi) MULTIPLEX
MUTUALITY MUTUALITY MUTUALITY

RELATION I RELATION 1 RELATION 1

x Y X Y x Y

RELATION 2 RELATION 2 RELATION 2

RELATION 3 RELATION 3

(VI) (xli) CONDITIONAL
MULTIPLEX
MUTUALITY

RELATION 1

X Y

RELATION 2

RELATION 3

(VII) (xiii) FULL MUTUALITY

RELATION 1

x Y

RELATION 2

RELATION 3
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TABLE 2. STRUCTURE FOR ACTUAL TABLE OF 36 COUNTS

Support

M A N

M Z ZA Z

14 25

N Money A zA ZAA  ZMA A  ZMAN

50 38 15 47

N M ZMA ZlN

50 77 !61

M ZAMR ZAMA  ZAMA  ZAMN
0 4 ,1 7

zAAM ZAAA ZAAA zA.N

Informtion A Money A 4 9 2 1 5

zAM zAA zAAA ZAAN

6 3 11

N zAM ZMA ZANA ZANN
15 20 32 145

Z ZAM NMM  ZNMA  Z AAN

2. 10

N Money A ZNd ZNM ZNA zNA

14 18 12 10

N ZNNA ZNNN

! 58 11 1 -
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TABLE 4. 'PARAMETER ESTIMATES FOR MODEL (7) FITTED TO THE DATA FROM
TABLElI

Parameter Estimate

e -0.55 Normalization Constant

A

-3.02

A2 -. 5Choice

* e3
A

p22  1.52 Mutuality
AI
"33 3.28
A

012 1.01

A

812 0.78

8131.34 Multiplex

823 1.57

(PO'112 -0.52

* ~ ~ ~ l13-1.30

W)~223 -0.70 Conditional Mutuality

00~331 -2.15

(PO)332 -0.83

~~~l332.88 Multiplex Mutuality
(0)13
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(6

TABLE 6. MODELS FIT TO THE 10 26 TABLES FORMED BY THE PARTITION OF THE
73 ORGANIZATIONS INTO THE 4 GROUPS GIVEN IN TABLE 8 (528 CELLS)

Model G2 D.F.

(1) Separate models for each 26 table, each
based on all multiplex mutuality and
implied lower-order terms 136.0 176

-(2) A common interaction structure for all 2
taie t based on all multiplex mutuality
and implied lower-order terms, but one-
factor choice parameters ( 1i's)-'_ipending
on the groups 629.0 482

(3a) A common multiplex mutuality model for
within group flows pls a between group
model similar to mod~V2 409.0 352

(3b) Model (3a) plus a set of "information"
multiplex parameters (011) for between

groups that depend on the groups 355.7 343
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