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which minimize the total trajectory heat transf (coolant requirements)
for fixed fineness ratio and reentry parameters. The calculated minimum
heat transfer shapes found have a flat nose with an expansion corner
followed by an afterbody with monotonically decreasing slope. The height
of the flat nose relative to the base radius decreases as the fineness ratio
decreases. However, for fineness ratios greater than 0.2, the laminar
and turbulent solution shapes were found to be very similar to one another.
For fineness ratios approaching zero (i.e., slender bodies), the laminar
and turbulent minimum heat transfer shapes are 1/2 and 8/13 power law
bodies, respectively. The relative heat transfer rate to a particular one of
the minimum heat transfer shapes was found to be a factor of up to three
times lower than that for other body shapes having the same fineness ratio.
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I. INTRODUCTION

For some applications, a decrease in the amount of coolant required

for a transpiration-cooled reentry vehicle nose tip is desirable and potentially

very beneficial. The work presented here seeks to optimize the shape of a

reentry vehicle nose tip in order to minimize the total heat transferred (and

thus the transpiration coolant requirements) to the nose tip throughout a

realistic reentry trajectory. The nose tip shape is assumed to remain

constant throughout the trajectory.

The majority of work devoted to the determination of optimum body

shapes in a hypersonic flow environment has been concerned with the problem
1

of finding minimum drag bodies . Recently, however, work has appeared

which considers the determination of minimum heat transfer body shapes in a

constant freestream environment. Laminar flow solutions were found by
2 3Belyanin and Aihara . Belyanin discussed the relative heat flux to his

minimum heat transfer solution bodies, but did not give any details of the

body shapes. Aihara's solution has been shown by Hull4 not to be a minimum

solution. Perminov and Solodkin 5 obtained nonslender body solutions for

both minimum total drag and minimum heat transfer for both laminar and

1Miele, A. (ed.). "Theory of Optimum Aerodynamic Shapes," Applied Mathe-
matics and Mechanics, 9 Academic Press, New York (1965).

2 Belyanin, N.M., "Determining the Form of a Body Resulting in Minimum
Heat Flux, with Laminar Flow in the Boundary Layer, " Izv, AN SSSR,
Mekhanika Zhidkosti i Gaza, 2(6), pp. 37-45 (1967). English Translation,
Fluid Dynamics, Consultant's Bureau, New York (1969).

Aihara, Y., "Optimum Body Geometries of Minimum Heat Transfer at~Hypersonic Speeds, "' AIAA Journal, Technical Notes, 6(11), pp. 2187-2188

(November 1968).
4 Hull, D. G., "On Hypersonic Shapes of Minimum Heat Transfer," The Journal

of the Astronautical Sciences, XVII(1), pp. 60-62 (July-August 19;97.
5 Perrminov, V. D., and E.E. Solodkin, "Axisymmetrical Bodies with Minimal

Resistance and with Minimal Flow Toward the Surface of the Body, with Dif-
ferent Characters of the Flow in the Boundary Layer, t Izvestiya Akademii
Nauk SSSR, Mekhanika Zhidkosti i Gaza (2), pp. 94-102 (March-April 1971).
English Translation, Fluid Dynamics, Consultant's Bureau, New York (1973).

4
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turbulent flow. They found the laminar and turbulent minimum heat transfer

shapes to be very similar to one another for a given fineness ratio. The work

presented here extends this previous work to the case of a reentry trajectory

environment and seeks to minimize the total heat transfer to the nose tip for

the entire trajectory.

Section II first presents a brief derivation of the total heat transfer

relationships used in this work and the approximate flow field evaluation pro-

cedures utilized. Then, in Section III, the mathematical formulation of the

minimum heat transfer problem using a variational calculus approach is dis-

cussed. Calculated results are then given which discuss both minimum and

maximum heat transfer solutions and the relative heat transfer rates to these

shapes compared with several other body shapes.

I 1
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I. HEAT TRANSFER PREDICTION METHODS

A. INTEGRATED HEAT TRANSFER EXPRESSIONS

When expressions for the laminar and turbulent convective heat transfer

coefficient given by Vaglio-Laurin 7 are used, and the procedure of Allen

and Eggers 8 is followed, the rate of change of integrated heat transfer with

altitude dQ/dy is given by

2 2 -r e n+1 s
C PV 7rr pu r dsdQ_ n 0) B e e (1

dy Ren/n+ n - e d]

Re sine~

0 u e A e n/n+l

fn
0

where n = I for laminar flow and n = 1/4 for turbulent flow. When the inte-

gration in nondimensional surface distance s = s/rB is performed, this

expression becomes

dQ -(n+l)C pV 2 7Tr2
dQ n m o B l/n+1 (2)dy Re n/n+l sin0e Q

0 E

where the integral IQ is given by

= I PeeP e r  ds (3)

6 Vaglio-Laurin, R., "Laminar Heat Transfer on Three-Dimensional Blunt
Nosed Bodies in Hypersonic Flow, " ARS Journal, 29(2), pp. 123-129
(February 1959).

7 Vaglio-Laurin, R., "Turbulent Heat Transfer on Blunt Nosed Bodies in Two-
Dimensional and General Three-Dimensional Hypersonic Flow, " Journal of
the Aero/Space Sciences, 27(1), pp. 27-36 (January 1960).

8Allen, H. Julian, and A.J. Eggers, Jr., "A Study of the Motion and Aero-
dynamic Heating of Ballistic Missiles Entering the Earth's Atmosphere at
High Supersonic Speeds, " NACA Report 1381 (1958).

-7-
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Allen and Eggers integrated an expression analogous to Eq. (2), representing

PO and V as functions of altitude y from their trajectory analysis and

assuming Re to be constant. In the present analysis, the shock layer

Reynolds number Re is represented as a function of y. Then, following
0 9

the general integration procedure of Brunner , the total integrated heat

transfer to a body throughout a trajectory is given for laminar flow by

L L L3/ ]1/2 f1
Q C f E r B  I erf (4)

and for turbulent flow by

[T]4/5
QT T Tr9/5r[ l f45 -t 5 /

Q C fr 9 [ T]45 e dt (5)

The complete derivation of Eqs. (4) and (5) is given in Ref. 10. The

and r B in these equations are the ballistic coefficient and the base radius,

respectively. In the derivation of these equations, the ballistic coefficient

has been assumed to be constant throughout the trajectory. This is a reason-

ably good assumption over the altitude range of importance for convective

heat transfer, i.e., less than 100 kft. Optimum shapes allowing for the

changes in through a trajectory have been reported recently. 1 1 The

Brunner, M.J., "Analysis of Aerodynamic Heating for a Re-entrant Space
Vehicle, " Journal of Heat Transfer, 81(8), pp. 223-229 (August 1959).

10 Baker, R. L., and R. F. Kramer, "Evaluation of Total Heat Transfer in
Hypersonic Flow Environments," Report No. TR-0077(2550-15)-6, The
Aerospace Corporation, El Segundo, California.

11
Yelmgren, Capt. Kevin E., "Optimum Nose Shape for Transpiration-
Cooled Reentry Vehicles," AFFDL TR-78-1117, Air Force Flight
Dynamics Laboratory (November 1978).

S-8-



other parameters are given by

L  1 866x1O- 6 -/cT - 470x10-6 (6_a,_b)

P 1 l/z V3/2 T /5 v 9/5

f/2'_ -EiVE 7T -E(7a, b)
(sinOE)1/' (sinE)1/5

s s
L =T =e, 5/4 d(ab
IQ Pe ue /Je r s, a O iee e _7 a_ 8,b

00

B PBL = (Zw+3) B T (Zw+9) B (9a, b, c)

Ws B L B, B 10

The variables in these equations are the air specific heat ratio and

viscosity law exponent, Y and W; the density scale height factor in the expo-

nential atmosphere, X; the reentry velocity and entry flight path angle, V E

and 0 E; the air viscosity evaluated at the entry stagnation temperature, #E;

the ballistic factor B and the heat transfer integrals L and T i depend

upon an integration in body surface running length of the local boundary layer

edge density, p , velocity ue, viscosity, / . and local radial coordinate r.

As indicated earlier, previous investigators have sought to minimize

the integrated heat transfer to a body for the case in which the freestream

environment is constant. Using the Vaglio-Laurin convective heat transfer

relationships and integrating over the surface area as in Eq. (1) results in

-9-
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the following expression for the integrated heat transfer rate to a body in a

constant environment for laminar flowl1

L /d, +I, L] 1 / 2 - 1/2

dQL/dt = 1. 328 --t/ Reo 0 (10a)

P V H (IrBr)

and for turbulent flow

7+1 [ Re4 / 5 -/5
dQ /dt = 0. 0720\0-iL/ o (10b)

H irr

where Re is a shock layer Reynolds number defined by
0

1/2
pZH) r~

Re = 00 (11)
0

L L
It is now evident that if we fix fT rB, P and B in Eq. (4) or P VCV,

L
H rB and Re in Eq. (10a), then the total heat transfer Q in the first case

0 B0 L
and the total heat transfer rate dQ /dt in the second case will be minimized

L T
if we minimize the integral I Similarly, in the turbulent case Q and

dQT /dt are minimized by minimizing the integral T The relationship of

the ballistic trajectory environment problem considered in this work to the

constant environment problem considered by other investigators is thus

established.

B. EVALUATION OF ILand I

L T
The heat transfer integrals IQ and IQ given by Eqs. (8a) and (8b),

respectively, depend intimately upon the nose tip geometry, i. e., upon the

shape contour of the nose tip. As shown in Fig. 1, the local nose tip coordi-

nates r and z and the surface running length s are related to the local nose

tip surface angle C by the following simple trigonometric relationships

dr = tanG, - sindr (12)
dz ds

-10-
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Fig. 1. Nose Tip Geometry and Coordinate System



To a reasonably good approximation the local nondimensional boundary

layer edge properties pe' U and pe in Eqs. (8a) and (8b) may be representedee
as functions of af. In the present work the simplest equations of this type

have been used, i. e., the hypersonic Newtonian approximations for both

pressure and velocity. Thus, the local pressure Pe = Pe/P is given by
Pe e sin

sin (13)

and the local velocity u u/V2H- is given by
e e

u = cosa (14)

If the viscosity is assumed to be proportional to the temperature and inde-

pendent of pressure, the density-viscosity product is then directly propor-

tional to the pressure, i. e.

_Pe_ .2
Pe=e P o sin a (15)

0 0

The utility rendered by the simplicity of these equations was felt to

compensate for inherent inaccuracies associated with them for purposes of

comparing relative heat transfer rates to various nose tip shapes as discussed

herein. Work is currently in progress to reconsider the problem discussed

in this report and to replace the approximations given by Eqs. (13) through

* (15) with numerical inviscid flow field calculation procedures. Numerical

flow field calculations for fixed body shapes somewhat similar to those

discussed here, i.e., flat-face cones, are given in Ref. 10.

M-12-
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C. LOCAL PROPERTIES ON A FLAT FACE

In order to allow for solutions which may have a flat 'Ace, it is neces-

sary to have an alternate expression for the boundary layer edge velocity u e .

This is because direct use of Eq. (14) would indicate that ue and, therefore,T e
I and IT are all identically zero on a flat face. In Refs. 2 and 5, the follow-
0 Q

ing approximation for the PeUee product, obtained from a correlation of

method of integral relations solutions, was used.
P e Ue Pe r

- (16)
eUete r

[Pu eye

Equation (16) indicates that for a flat-faced body, the normalized PeUePe

product varies linearly with distance to the sonic point. The sonic point

values of the dependent variables may be obtained by isentropic expansion

from the stagnation conditions. The terms P u and pe in Eq. (16) mayPee e

then be renormalized by the stagnation values po' J§ Po . Using ideal

gas relationships, we obtain

e 1 P er F(Y) T (17a)
e ee Po(2Ho) 1/2 P r

F (Y) = (1 7b)

In Section III, Eqs. (12) through (17) are used to express the heat transfer

integral IQ explicitly in terms of the body geometry.

-13-
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III. THE VARIATIONAL PROBLEM

A. MATHEMATICAL FORMULATION

This section will be concerned with the determination of those shapes

which in a limited sense produce extreme values of IQ* Body shapes with a

flat forward face of height r , possibly zero, will be considered (see Fig. 1).

Normalizing all coordinates by rB, define

x z/rB, y r/r B  (18)

The Newtonian flow approximations, Eqs. (14) and (15), and the geo-

metric relationships, Eqs. (12), may be substituted into the expressions for

IQ, Eqs. (8a) and (8b), to produce the following expression for IQ along the

body:

Q2 n+l.Z d (19)Q Obody f 2 Y ,"-

0 l+y

Similarly, integrating Eq. (8), using approximation (17a), over a flat face

yields

[iQlface - F(7) [y(o)]n+2 (20)Q face n+3

Thus, the total value of IG may be expressed as

) + Z/7 n+l.2

nF() y yn+ dx (21)Q -IT ( o l+y

-15-



Since T is defined to be the ratio of the diameter to the length of the body,

y(Z/7r) = 1 (22)

We wish to determine the function y(x), chosen from a suitable class of

functions on the interval 0 : x 5 2/7 which minimizes (or maximizes) the

functional IQ' Eq. (21), and which satisfies the condition (22). Any such

minimum (or maximum) must satisfy the Euler equation associated with this

problem.

jy[_3j 2 _ (n+) 2 (23)

The boundary condition y(Z/T) = I is given, but y(O) is not specified. Hence,

this is a variable end point problem of the calculus of variations, and the

following transversality condition must be satisfied at x = 0.

yn+l j _. n+Z 1 2a
y (142)2 F(y) =0 (24a

Since the integrand of Eq. (21) is not explicitly a function of x, a first

integral of the Euler equation (23) can be derived. This equation may be

written in the following form:

22
yn+l . C(+ (24b)

2 2

Examination of this equation reveals that there is no real value of k which

allows y to be zero. Hence, there is no solution of the Euler equation for

which y(O) 0.

-16-



If a flat-faced, y(O) - 0, solution exists, then [from Eq. (24a)] the initial

slope must be a solution of the equation

i(O) (n+2) (5

[1 + i(O)2 2  2(n+3) F(y)

This equation is a quartic in j(O). An examination of this quartic for the

range of parameters (n,Y) of interest reveals two real positive roots and a

pair of complex conjugate roots. Thus, there are apparently two functions

y(x) which satisfy the Euler equation and the transversality condition. It

should be observed that the values of the two permissible initial slopes are
independent of 'r.

One might expect that the two solutions for y(x) discussed in the

preceding paragraph represent a minimum and a maximum of IQ. There

are further checks which may be made to verify or limit this conclusion.

The necessary condition of Legendre implies that one of the two solutions

for y(x) is a minimum (maximum) if y(x)_5 3/3 [j(x) _ -3/3] for all x in the

interval 0 : x _< 2/7. The Jacobi condition is somewhat difficult to apply.

However, it can be shown that the necessary condition of Weierstrass cannot
be satisfied over the class of all possible shapes. Hence, neither of the

above solutions corresponds to a minimum or a maximum of IQ over the

class of all piecewise continuously differentiable functions on the interval

O : x < 2/T which satisfy the boundary condition Eq. (22). Hull4 has pointed

out a similar occurrence in a related problem.

B. INTERPRETATION OF SOLUTIONS

The solutions discussed in the preceding subsection are insufficient as
global extrema. This may be demonstrated as follows: The integral appearing

in Eq. (19) is zero over any segment for which j is zero or for which y is

infinite. Hence as y(O) approaches zero, there are infinite numbers of shapes

for which IQ is arbitrarily close to zero, i.e., shapes composed of vertical

)Q

-17-
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and horizontal segments. Further consider functions y(x) which are straight

lines between y(O) at x = 0 and 1 at x = Z/1.. As y(O) becomes arbitrarily

large, IQ will become arbitrarily large.

The two solutions which satisfy the Euler equation [Eq. (23)], the

transversality condition [Eq. (25)] and the boundary condition [Eq. (22)]

will be referred to as a "minimum" solution or a "maximum" solution pro-

vided they satisfy the Legendre condition for a maximum or a minimum. As

has been shown, these solutions do not represent minima or maxima over

all possible shapes. However, a minimum solution (y:g -j3/3) will satisfy

the Weierstrass condition for a minimum over the class of all piecewise

continuously differentiable functions y(x) on the interval 0 : x 5 2/-" for

which y(Z/7) = 1 and for which j(x)_g %r3/3 for all x in the interval. Similarly,

a maximum solution (r ?_ %r3/3) will satisfy the Weierstrass condition for a

maximum over the class of all piecewise continously differentiable functions

y(x) on the interval 0_< x 5 2/r for which y(Z/'r) = 1 and for which (x) Z %[3/3

for all x in the interval. With these restrictions on derivatives, not only is

the Weierstrass condition satisfied, but the Weierstrass-Erdmann corner

condition cannot be satisfied by any pair of admissible slopes. Hence, there

are no minimum or maximum solutions with discontinuous derivatives.

These limits seemed unduly restrictive. However, after obtaining the

solutions it was found that they could be extended. For instance, it was

observed that the calculated maximum solutions had the property that j'(x) ! 1

for all x. Examination of the Weierstrass excess function for this problem

leads to the following conclusion: If a maximum solution is found whose

derivative is greater than or equal to one for all x, then the IQ corresponding

to this solution will be larger than the IQ corresponding to any piecewise
continuously differentiable function y(x) on the interval 0 _ x < 2/7" for which

y(Z/-r) a 1 and for which (x) > 0 for all x in the interval.

-18-



When a minimum solution is found, its maximum derivative Ymax over

the interval 0 : x 5 2/? may be determined. If the constant A is defined by

1-.2
I - max

A = 2k max (26)
2max

then examination of the Weierstrass E-function for the problem leads to the

following situation. If a minimum solution is found with maximum derivative

imax and constant A, then the IQ corresponding to this solution will be

smaller than the IQ corresponding to any piecewise continuously differentiable

function y(x) on the interval 0 S x 5 2/T for which y(2/T) = I and for which

j(x) S A for all x in the interval. It is in this limited sense that the solutions

given in the following sections may be considered minima and maxima.

C. COMPUTATION OF SOLUTIONS

The actual computation of a solution consists of solving a two-point

boundary value problem for a second-order nonlinear ordinary differential

equation. The differential equation is the Euler equation (23). The

boundary conditions are y(2/T) = 1 and at x = 0 the transversality condition

(25). A program was written to solve a class of such problems, including

the one discussed herein. In this program the differential equations and

boundary conditions were replaced by finite difference approximations, and

the resulting equations were solved by Newton's method (quasilinearization).

-19-



IV. RESULTS AND DISCUSSION

Results obtained by numerical solution of the Euler equation with ap-

propriate boundary conditions, as discussed above, are presented here for

the cases of both laminar and turbulent flow in the boundary layer, i. e.,

n l 1 and n = 1/4, respectively. In all cases the specific heat ratio Y has

been assumed to be the hypersonic value of 1.2. In the first subsection below,

the body shapes and minimum heat transfer integrals IL and T are shown
Q

for a wide range of the fineness ratio r. Then, in the next subsection, the

minimum heat transfer results are compared with heat transfer rates to

other selected body shapes and to some maximum heat transfer solutions.

A. MINIMUM HEAT TRANSFER SOLUTIONS

Laminar flow minimum heat transfer shapes for several values of the

fineness ratio r are shown in Fig. 2 where the shapes as they appear physi-

cally are shown in the upper part of the figure. In the lower part of the
figure, the shapes are shown with the radial coordinate normalized by the
base radius and the axial coordinate normalized by the body length. In this

way the maximum value of both r = r/rB and z = z/1 is unity since two

reference lengths have been used. In the remainder of this report, all body

shapes will be presented normalized as in the lower part of Fig. 2. It should
be kept in mind that presenting results in this way masks the needlelike

appearance of shapes with very small fineness ratios ' as well as the blunt
disklike appearance of shapes with large fineness ratios.I:

All of the shapes in Fig. Z, for nonzero values of 7, exhibit a flat face.

The ratio of the radius of the flat face to that of the base increases with'I ' | increasing '". In the limit of T approaching infinity, the shape becomes a

flat-faced cylinder of zero length, i.e., a disk. In the opposite limit, as 7
approaches zero, the flat-face height approaches zero, and the shape

* iapproaches the shape obtained invoking the slender body approximation, i.e.,
4a 1/2 power law body4 . However, since the slender body power law shape is

r -6
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Fig. 2. Minimum Lamninar Heat Transfer Shapes
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only approached for fineness ratios less than 0. 0Z, this shape appears

to be of little practical interest.

In Fig. 3, turbulent flow minimum heat transfer shapes are shown and

compared with the laminar shapes for corresponding fineness ratios. As
5

concluded by others , the turbulent shapes are surprisingly similar to

the laminar shapes for a given fineness ratio. In the limit of large "r, the

turbulent minimum heat transfer shape also approaches a flat-faced

cylinder; in the limit of Tr approaching zero it can be easily shown that the

turbulent minimum heat transfer shape is an 8/13 power law body. The

slender body derivation of power law shapes for minimum laminar and

turbulent heat transfer is given in Appendix A. Thus, in the slender body

limit the minimum laminar heat transfer shape is a 1/2 power law body,

the minimum turbulent heat transfer shape is an 8/13 power law body, and

(from Ref. 12) the minimum drag shape is a 3/4 power law body. The non-

slender body minimum heat transfer shapes found in the present work

approach the slender body minimum heat transfer shapes only at very small

fineness ratios (7 < 0. 02). However, the nonslender body minimum drag

shapes approach a 3/4 power law body at much larger fineness ratios

(T0. 2).

The question of how much reduction in the heat transfer is achieved by a

minimum heat transfer shape is considered in the results presented in

Figs. 4 through 6 and in the following subsections. Recall that Eqs. (4)
and (5) represent expressions for the integrated heat transfer to a nose tip

throughout a trajectory. Likewise, Eqs. (10a) and (10b) represent similar

expressions for the constant freestream environment case. For all cases,

trajectory environment or constant freestream environment, the parameter

needed to obtain numerical predictions of heat transfer is the heat transfer
integral or body shape parameter I

t 2 Eggers, AJ., Jr., M.M. Resnikoff and D.H. Dennis, "Bodies of Revolu-
tion Having Minimum Drag at High Supersonic Speeds," NACA Report
No. 1306 (1957).
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In Fig. 4, 1 for the minimum laminar and turbulent heat transfer

shapes is shown as a function of T. The I Qfor both laminar and turbulent

flow is quite insensitive to fineness ratio for 1 < ' < 10. This is because

the ratio of flat-face height to base radius is greater than 0. 9 for all 7r> 1.

Thus, for T' >1, a large fraction of the total heat transfer occurs over the

flat face. Howe ve r, for 'r < 1 the ILand I T values decrease significantly asQ Q
the body or nose tip becomes more slender, i.e., decreasing 7'. This

decrease is due in large part to a significant reduction in the flat-face height,

which decreases the area associated with the relatively high flat-face heat

transfer.

In the limit of 'Tapproaching zero, I Land I Tboth go to zero. However,
L T QQ
I Q/7' and I Q/'r are finite for 'r =0, and the limiting values are given by slen-

der body theory (see Appendix B). They are

L T

Comparing the numerical values of Iand IT from these equations with the
Q Q

nons lender body calculated values in Fig. 4, we see that for 'r:50. 02 the

slender and nonslender body calculated values are virtually identical. A

quantitative comparison of minimum heat transfer rates to those for other

body shapes is given below.

B. COMPARISON WITH OTHER BODY SHAPES

The minimum heat transfer body shapes and heat transfer integrals

discussed above will now be compared with these quantities for a sphere,
truncated spheres, sharp cones, minimum drag bodies, stable ablating

shapes and maximum heat transfer bodies. Except for the spheres, sharp

cones and minimum drag bodies, the remaining body shapes listed above

depend upon the boundary layer state, i.e., laminar or turbulent.
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The minimum and maximum heat transfer solutions were obtained

directly by numerical solution of the EuLer equation as discussed previously.

The minimum drag body solutions were obtained by application of the present

numerical calculation procedure to the appropriate equations as given in

Ref. 12. A stable ablating shape is one for which, even though it is ablating

and its surface is receding, the body shape contour is independent of
13

time . The following analytic equations for laminar and turbulent stable

ablating nose tip shapes, using the approximations given by Eqs. (13) through

(15), are derived in Appendix C. For laminar flow

(28a)

and for turbulent flow

4-3/4 1 1/4
-z = r + - sin -

(Z8b)

The shape contours for the six body types listed above are compared in

Figs. 5a and 5b for fineness ratios of 8 and 4 for laminar and turbulent flow,

respectively. The laminar stable ablating nose tip shape in Fig. 5a most

closely resembles the truncated sphere shape, whereas the turbulent stable

shape in Fig. 5b is similar to the maximum heat transfer shape. The flat-

nose height is smallest for the maximum heat transfer body, somewhat

larger for the minimum drag body and largest for the minimum heat transfer

body.

13
Baker, R. L., "The Effect of Freestream and Material Parameters on
Stable Ablating Nosetip Shapes, " Report No. TOR-0074(4450-76)-10, The
Aerospace Corporation, El Segundo, California (May 1974).
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Lan T
The heat transfer integrals 16 and are shown for these body shapes

in Figs. 6a and 6b, respectively. The relative IQ values for the different

body shapes are generally similar for laminar and turbulent flow. The maxi-

mum solution Q values are up to four times greater than the minimum solu-

tion values with this ratio decreasing as T" increases for 2 < r< 8. This

means that for this range of fineness ratio, the heat transfer for the laminar

maximum solutions is up to two times greater than the laminar minimum

solution values. The corresponding heat transfer increase for the minimum

to maximum turbulent solutions is up to three times greater.

The IQ values for truncated spheres, sharp cones, stable ablating shapes

and minimum drag bodies all lie between the minimum and maximum solution

values but tend to be much closer to the maximum value for a given 7. An

exception is the IQ for minimum drag bodies for small r. 'The IQ for these

bodies peaks for ' = 2 and decreases for all other fineness ratios. At 7 = 2,

the minimum drag body IQ's for laminar and turbulent flow are close to the

corresponding maximum heat transfer solution values. However, for 7

decreasing and approaching zero (T < 0.02), the minimum drag body IQ values

approach the minimum heat transfer body values. Maximum heat transfer

solutions could not be found for 7 < 2.

C. SOLUTION CHARACTERISTICS AND ACCURACY

Since many of the extremal solution body shapes discussed here have a

flat nose followed by a body contour, it is of interest to compare these solu-

tions in terms of the body angle immediately aft of the flat face and the ratio

of flat-face height to base radius. For minimum heat transfer, minimum

drag and maximum heat transfer bodies, the body angle aft of the flat face is

about 4, 45, and 63 deg, respectively, independent of r and essentially inde-

pendent of the boundary layer state, i.e., laminar or turbulent. This is shown

in Table 1. Caution must be exercised concerning the maximum solutions.

While the local flow at the expansion aft of the flat face is indicated to be

supersonic using the present approximations, more exact calculations could

f i -30-
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indicate subsonic flow at this location. The present formulation assumes the

flow to be supersonic at the expansion corner. If this condition is not met,

the proof of the existence of maximum solutions becomes much more difficult

and the present solutions are not valid.

Table 1. Body Angle Aft of Expansion Corner for
Different Variational Calculus Solutions

La mina r Turbulent

Minimum Heat Transfer 3° 411 30 24'
Solution

Minimum Drag Solution 450 450

Maximum Heat Transfer 650 391 660 23'

The flat face-base radius ratio for minimum heat transfer, maximum

heat transfer and minimum drag shapes is shown in Fig. 7 as a function of

fineness ratio. This ratio increases from essentially zero to 0. 6-0. 7, for 7

increasing from 2 to 10 for the maximum heat transfer solutions. For the

minimum drag body, the flat-face height increases over the same range for

fineness ratios from 0. 2 to 10, and for the minimum heat transfer body

the 7" range is about 0. 02 to 10 for the same increase in flat-face height.

A final word of caution is in order regarding the accuracy of the pre-

dicted reduction in heat transfer associated with the minimum heat transfer

shapes. Calculations using numerical inviscid flowfield computer codes for
10flat-face cones were carried out recently by Baker and Kramer . These

calculations indicate that while the local flow along the surface is highly over-

expanded immediately aft of the flat-face expansion corner, the flow rapidly

recompresses to pressure levels considerably above those for the same sta-

tion on a sphere-cone. Because of this behavior, the reduction in heat

transfer attributable to minimum heat transfer type shapes, when calculated

using numerical flowfield calculation methods, is expected to be a factor of

up to 2 rather than the factor of 3 predicted by the present work.
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V. SUMMARY AND CONCLUSIONS

Analytic expressions for total integrated heat transfer to a nose tip

through a trajectory and variational calculus procedures have been used to

determine nose tip shape contours having minimum total heat transfer for

specified fineness ratio. Solutions for both laminar and turbulent boundary

layer flow were obtained by numerical solution of the appropriate Euler equa-

tion and boundary conditions.

For fineness ratio rgreater than zero, all solutions found have a flat

face. The ratio of flat-face height to the base radius increases as T" increases.

As 'r becomes large (r > 10), both the laminar and turbulent solutions approach

a flat-faced cylinder of vanishing length, i.e., a disk. As T* approaches zero

(r < 0. 02), the solutions approach the slender body (T = 0) solutions which

are a 1/2 power law body for laminar flow and an 8/13 power law body for

turbulent flow. For a constant base radius, the relative heat transfer rates

to a family of minimum heat transfer shapes decreases monotonically as 7

decreases, i.e., as the bodies become more slender. For T >_ 0. 02, the lami-

nar and turbulent shapes are surprisingly similar to one another, i.e., the

flat-face height to base radius ratio and the afterbody shape contour are

essentially independent of the boundary layer state.

Additional solutions to the Euler equation depicting maximum heat

transfer body shapes were found for T 1 2. The heat transfer to the maximum

solution shapes is up to two times greater than for the minimum solution

shapes for laminar flow and up to three times greater for turbulent flow for

2 < 'r < 8. Laminar and turbulent heat transfer rates to sharp cones, spheres,

truncated spheres and stable ablating shapes were found to be generally much

closer to the maximum solution values than to the minimum solution values.

The laminar and turbulent heat transfer to a minimum drag body was also

calculated.
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The minimum and maximum solutions obtained could be shown mathe-

matically to be minima and maxima only over restricted classes of body

shapes. However, of all the p!iysically reasonable additional body shapes

considered, none were found which result in heat transfer rates lower than

the minimum solution or greater than the maximum solution values.

I
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APPENDIX A

SLENDER BODY MINIMUM HEAT TRANSFER SHAPES

Following the methods and nomenclature of Ref. 1, define the following

nondimensional coordinates:

* 17=, e -jx

ZR B-I (A-1)

Then, after differentiation and direct substitution into Eq. (17), we have

/yn+ n+ 1 2

I0= f dx =1fd
Q 2 +(

Since r2 << 1 for a slender body, in the slender body approximation the

expression for IQ becomes

I 1

(Slender Body) I f T n+l 17d f = F(7, )d4 (A - 3)
0 0

For the case in which the function F is not an explicit function of the

independent variable, , the first integral of the Euler equation can be written

immediately as

p= C (A-4)
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Performing the indicated differential and algebraic manipulations, the follow-

ing first integral of the Euler equation for this problem is obtained from

Eqs. (A-3) and (A-4) after rearrangement

= c -(n+=)/7 (A-5)
dj-

The boundary conditions for Eq. (A-5) are

11(0) =0

17(1) =1 (A-6)

Integrating Eq. (A-5) and applying the boundary conditions, we obtain

for laminar flow (n=l)

= 1/2 (A-7)

and for turbulent flow (n=1/4)

= 48/13 (A-8)

~-3i

.I
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APPENDIX B

HEAT TRANSFER INTEGRA LS- -SLENDER BODY THEORY

Lan T
The values of the heat transfer integrals 14:)an I Q both go to zero as

the fineness ratio, 7*, goes to zero. However, from Eq. (A-3), we have

21 1nil gj 2
Q n1 ,)d (B-1)

0

I For laminar flow this becomes

Z IQ- 1 _2

7. f 2 (pY7 d4 d (B -2)
0

From Eq. (A-7), for laminar flow

4 1/2 1/2(B3
d4 2

Substituting Eq. (B-3) into Eq. (B-2) and integrating, we have

2 1 L 1 1/2)2(1 )Z d

Q (B-4)
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Similarly, for turbulent flow Eq. (B-i) becomes

21T 5 4 n= f,"5f4 d d4  (B-5)

0

From Eq. (A-8), for turbulent flow

I
/= 8/13 d.. =1 3 -5/1383 d / (B-6)

Substituting and integrating, we have

5/422I (48/13 /-5/13)

0

T
Q 32- (B-7)

L T
Comparing the numerical values of IQ and I from Eqs. (B-4) and

(B-7) with the non-slender body calculated values in Fig. 5, we see that for

T< 0.02 the slender and non-slender body calculated values are very close to

one another.
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APPENDIX C

STABLE ABLATING NOSETIP SHAPES

The transient shape change equation derived in Ref. 10 becomes after

differentiation with respect to s and appropriate substitutions related to the

geometry of Fig. 1

s (C- 1)
zi- sinQ 8s Qs in(t

For a steady-state condition, i.e., a stable ablating nosetip shape, the local

body angle, C1, is not a function of time. Thus

d 0 (C-Z)Q "s ino

Integ rating

constant = C (C-3)

Q sint 1

We wish to determine the body shape such that the heat transfer distri-

bution q = 4(0, s) will satisfy Eq. (C-3). From Ref. 10, for laminar flow in

the boundary layer
L

*L C LPeUe e r

zf Pe~ee rds

0
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Combining Eqs. (C-3) and (C-4) and assuming that the effective heat of

ablation, Q , is constant

L L (Peue ue r
4L C V sina (5

C fPeUele r 2 dr 11/2

[2 si J-
0

Let

f ee (C-6)

Then Eq. (C-5) becomes

C Q  C Lfr (C7)
sinai r 1/2

2z f frdrj

By direct substitution, we find that Eq. (C-7) is satisfied by

1 
2

L r (C-8)

Combining Eqs. (C-6) and (C-8) together with Eqs. (11) through (13) and the

trigonometric relations

dr tanG, sin= , cosei (C-9)

the following differential equation for the laminar stable ablating nosetip

shape is obtained;

2A L - (A) 4r 2

rr (C-10)
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wher A L (C Q /C L or defining r =/ LA

Az 1 I7 T
r - (C-lob)

Integ rating Eq. (G-10) and applying the boundary condition z(O) =0, we obtain

-- z z In +(C-11)
z LZ

* For turbulent flow in the boundary layer we have from Ref. 11

C Tp r1/4
.T Peee(-

q=

Applying the same procedures as in the laminar case above, we find that the

differential equation describing the turbulent stable ablating shape is

-ZA T 4(A T - 4r1/

r Zr / 4

AT 1( / IQ )-/ (C -13)
T i 7c T

'I 1/4
Integrating Eq. (C - 13) with the aid of the substitution X =r ,applying the

boundary condition z(O) = 0 and nondimensionalizing, we obtain

z T= 413 2 r! V1- T:12 + sin~lIl- r-1/4

(C -14)
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