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I. INTRODUCTION

For some applications, a decrease in the amount of coolant required
for a transpiration-cooled reentry vehicle nose tip is desirable and potentially
very beneficial, The work presented here seeks to optimize the shape of a
reentry vehicle nose tip in order to minimize the total heat transferred (and
thus the transpiration coolant requirements) to the nose tip throughout a
realistic reentry trajectory. The nose tip shape is assumed to remain

constant throughout the trajectory.

The majority of work devoted to the determination of optimum body
shapes in a hypersonic flow environment has been concerned with the problem
of finding minimum drag bodiesl. Recently, however, work has appeared
which considers the determination of minimum heat transfer body shapes in a
constant freestream environment. Laminar flow solutions were found by
Belyanin2 and Aihara3. Belyanin discussed the relative heat flux to his
minimum heat transfer solution bodies, but did not give any details of the
body shapes. Aihara's solution has been shown by Hull4 not to be a minimum
solution. Perminov and Solodkins obtained nonslender body solutions for

both minimum total drag and minimum heat transfer for both laminar and

1Miele, A, (ed.), "Theory of Optimum Aerodynamic Shapes, " Applied Mathe-
matics and Mechanics, 9, Academic Press, New York (1965).

2Belya.nin, N, M., "Determining the Form of a Body Resulting in Minimum
Heat Flux, with Laminar Flow in the Boundary Layer, " Izv, AN SSSR,
Mekhanika Zhidkosti i Gaza, 2(6), pp. 37-45 (1967). English Translation,
Fluid Dynamics, Consultant's Bureau, New York (1969).

3Aihara, Y., "Optimum Body Geometries of Minimum Heat Transfer at
Hypersonic Speeds, " AIAA Journal, Technical Notes, 6(11), pp. 2187-2188
(November 1968),

Hull, D,G., "On Hypersonic Shapes of Minimum Heat Transfer, " The Journal
of the Astronautical Sciences, XVII(l), pp. 60-62 (July-August 1969),

SPerminov, V.D., and E.E. Solodkin, "Axisymmetrical Bodies with Minimal
Resistance and with Minimal Flow Toward the Surface of the Body, with Dif-
ferent Characters of the Flow in the Boundary Layer, " lzvestiya Akademii
Nauk SSSR, Mekhanika Zhidkosti i Gaza, (2), pp. 94-102 (March-April 1971).

4

English Translat;on Fluid Dynamics, Consultant s Bureau, New York (1973).
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turbulent flow., They found the laminar and turbulent minimum heat transfer .
shapes to be very similar to one another for a given fineness ratio, The work
presented here extends this previous work to the case of a reentry trajectory
environment and seeks to minimize the total heat transfer to the nose tip for

the entire trajectory,

Section II first presents a brief derivation of the total heat transfer
relationships used in this work and the approximate flow field evaluation pro-
cedures utilized., Then, in Section [II, the mathematical formulation of the
minimum heat transfer problem using a variational calculus approach is dis-

cussed. Calculated results are then given which discuss both minimum and

maximum heat transfer solutions and the relative heat transfer rates to these

shapes compared with several other body shapes.




II. HEAT TRANSFER PREDICTION METHODS

A, INTEGRATED HEAT TRANSFER EXPRESSIONS

When expressions for the laminar and turbulent convective heat transfer
coefficient given by Vag lio-Laurin6’ 7 are used, and the procedure of Allen
and Eggers8 is followed, the rate of change of integrated heat transfer with

altitude dQ/dy is given by

2 _ 2

40 ] Cnpoovooan peue[ler ds )
dy Re::7n+1 -

sin@ - _ |n/n+l
E ol rn+1ds
e e
0 0

where n = 1 for laminar flow and n = 1/4 for turbulent flow, When the inte-

omrvs

gration in nondimensional surface distance s = s/rB is performed, this

expression becomes

2 _2
daQ | )G PV ™R 1 1/n+l (2)
dy Re™ P 5ing Q
o E
where the integral IQ is given by
s
- — — = —n+l —
IQ = /peueﬂer ds (3)
0

6Vaglio-l.,aurin, R., "Laminar Heat Transfer on Three-Dimensional Blunt
Nosed Bodies in Hypersonic Flow, " ARS Journal, 29(2), pp. 123-129
(February 1959),

7Vaglio-Laurin, R., "Turbulent Heat Transfer on Blunt Nosed Bodies in Two-
Dimensional and General Three-Dimensional Hypersonic Flow, " Journal of
the Aero/Space Sciences, 27(1), pp. 27-36 (January 1960).

8Allen, H, Julian, and A,.J. Eggers, Jr., "A Study of the Motion and Aero-

dynamic Heating of Ballistic Missiles Entering the Earth's Atmosphere at
High Supersonic Speeds, " NACA Report 1381 (1958),




e e

- ——

Allen and Eggers integrated an expression analogous to Eq. (2), representing

P and Voo as functions of altitude y from their trajectory analysis and
assuming Re to be constant. In the present analysis, the shock layer
Reynolds number Reo is represented as a function of y. Then, following
the general integration procedure of Brunnerg, the total integrated heat
transfer to a body throughout a trajectory is given for laminar flow by
L]Uz erf (@) (4)

Q = Cf_.r

L L.L _3/2
E

B |Pq

and for turbulent flow by
T.4/5
[T1*/

4/5 5/4
ol = Cngr;/s [513] f et at (5)
0

The complete derivation of Eqs. (4) and (5) is given in Ref, 10, The B

and r_ in these equations are the ballistic coefficient and the base radius,

respelztively. In the derivation of these equations, the ballistic coefficient
has been assumed to be constant throughout the trajectory. This is a reason-
ably good assumption over the altitude range of importance for convective
heat transfer, i.e., less than 100 kft. Optimum shapes allowing for the

changes in 8 through a trajectory have been reported z-ecently.11 The

9Brunner, M.J., "Analysis of Aerodynamic Heating for a Re-entrant Space
Vehicle, " Journal of Heat Transfer, 81(8), pp. 223-229 (August 1959).

Baker, R.L,, and R, F. Kramer, "Evaluation of Total Heat Transfer in
Hypersonic Flow Environments, " Report No, TR-0077(2550-15)-6, The
Aerospace Corporation, El Segundo, California.

10

1

Yelmgren, Capt. Kevin E,, "Optimum Nose Shape for Transpiration-
Cooled Reentry Vehicles," AFFDL TR-78-1117, Air Force Flight
Dynamics Laboratory (November 1978),




T ——

other parameters are given by

' (m) He 6 (z_+1) 45
L _ -6 \7-1 T _ 4,70x 10~ 7-1
C = 1,866x10 (—Zm y C = A]-]S (2U+9) (6a,b)
#1/2\,3/2 ul/s 975
fI., = _E E f'I‘ . _E E (7, b)
E . /2" E . 175 ’
(smOE) (s1n0E)
s s
L _ — - = =2 — T _ - — = =5/4 —
IQ = Pu M. ¥ ds, IQ = /peueﬂer ds (8a, b)
0 0
- p° L _ (w+3) T _ (2w+9)
B = [m] , B = 4 B, B = 10 B (9a,b, c)

The variables in these equations are the air specific heat ratio and
viscosity law exponent, ¥ and w; the density scale height factor in the expo-
nential atmosphere, A; the reentry velocity and entry flight path angle, VE
and 9 ; the air viscosity evaluated at the entry stagnatxon temperature, Hys
the balhstlc factor B and the heat transfer integrals IQ and I(T) which depend
upon an integration in body surface running length of the local boundary layer

edge density, Ee’ velocity Ge’ viscosity, ﬁe, and local radial coordinate r,

As indicated earlier, previous investigators have sought to minimize
the integrated heat transfer to a body for the case in which the freestream
environment is constant, Using the Vaglio-Laurin convective heat transfer

relationships and integrating over the surface area as in Eq. (1) results in




the following expression for the integrated heat tranasfer rate to a body in a

constant environmert for laminar flowlo
/2
L y+1 L -1/2
dQ /dt__ . 1.328 (%1) [IQ] Re, (10a)
poovcoHo (ﬂrB)
and for turbulent flow
4/5
T Y+l T -1/5
9 jat - 0. 0720(7:1) [IQ] Re, (10b)
poovooHo (ﬂrB)

where Re is a shock layer Reynolds number defined by

1/2
p(2H ) ' 'r
Re = o o B (11)
o H,

It is now evident that if we fix fjls. rp, B and BYin Eq. (4) or pme,
Ho’ Ty and Reo in Eq, (10a), thenﬁhe total heat transfer QL in the first case
and the total heat transfer rate dQ /dt in the second case will be minimized
if we minimize the integral 1(15. Similarly, in the turbulent case QT and
dQT /dt are minimized by minimizing the integral Ig. The relationship of
the ballistic trajectory environment problem considered in this work to the
constant environment problem considered by other investigators is thus

established,

B. EVALUATION OF I§and [

The heat transfer integrals Ié“ and Ig, given by Eqs. (8a) and (8b),

respectively, depend intimately upon the nose tip geometry, i.e., upon the

shape contour of the nose tip. As shown in Fig. 1, the local nose tip coordi-
nates r and z and the surface running length s are related to the local nose

tip surface angle & by the following simple trigonometric relationships .

dr _ dr _ . .
dz - tand, rrile sin0O (12)
-10-
e | YT ALY I AL - al =




Fig. 1. Nose Tip Geometry and Coordinate System
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To a reasonably good approximation the local nondimensional boundary
layer edge properties Be’ Ee and 7e in Eqs, (8a) and (8b) may be represented
as functions of a., In the present work the simplest equations of this type
have been used, i.e., the hypersonic Newtonian approximations for both

pressure and velocity. Thus, the local pressure Be = pe/pt is given by
2
p. = si Za 13
P, = sin (13)
and the local velocity Ge = ue/‘/ 2H  is given by
u, = cosa (14)
If the viscosity is assumed to be proportional to the temperature and inde-

pendent of pressure, the density-viscosity product is then directly propor-

tional to the pressure, i,e,

= = sin’a (15)

The utility rendered by the simplicity of these equations was felt to
compensate for inherent inaccuracies associated with them for purposes of
comparing relative heat transfer rates to various nose tip shapes as discussed
herein. Work is currently in progress to reconsider the problem discussed
in this report and to replace the approximations given by Eqs. (13) through
(15) with numerical inviscid flow field calculation procedures. Numerical
flow field calculations for fixed body shapes somewhat similar to those

discussed here, i.e., flat-face cones, are given in Ref, 10,

-12-
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C. LOCAL PROPERTIES ON A FLAT FACE

In order to allow for solutions which may have a flat "ace, it is neces-
sary to have an alternate expression for the boundary layer edge velocity Ee'
This is because direct use of Eq, (14) would indicate that Ge and, therefore,
1% and 1%
Q Q

ing approximation for the Pu H, product, obtained from a correlation of

are all identically zero on a flat face, In Refs. 2 and 5, the follow-

method of integral relations solutions, was used.

peue”e T

(16)

o
3%

* T =
[peue”e] ¥

Equation (16) indicates that for a flat-faced body, the normalized peue"e
product varies linearly with distance to the sonic point. The sonic point
values of the dependent variables may be obtained by isentropic expansion

from the stagnation conditions, The terms Py U and H, in Eq, (16) may

then be renormalized by the stagnation values po, v ZHO, ﬂo. Using ideal

gas relationships, we obtain

pPul = Pe"eke -F X (17a)
e e e PO(ZHO)I/Zﬂ ;*
y/1-7 1/2
FO) = [y—;l] [%’ﬁ] (170)

In Section III, Eqgs. (12) through (17) are used to express the heat transfer
integral IQ explicitly in terms of the body geometry,

-13-
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III. THE VARIATIONAL PROBLEM

A, MATHEMATICAL FORMULATION

This section will be concerned with the determination of those shapes
which in a limited sense produce extreme values of IQ. Body shapes with a

* ,
flat forward face of height r , possibly zero, will be considered (see Fig. 1).

Normalizing all coordinates by ry» define
x = z/rB, y = r/rB (18)

The Newtonian flow approximations, Eqs. (14) and (15), and the geo-

metric relationships, Eqs. (12), may be substituted into the expressions for

IQ, Eqs. (8a) and (8b), to produce the following expression for IQ along the
body:
2T 1.2 4
[IQ]body B / 1__2_1 3 (19)
0 ty

Similarly, integrating Eq. (8), using approximation (17a), over a flat face

yields

lolace = 2R (y@** (20)

Thus, the total value of IQ may be expressed as

2/r

n+l.2
Ig = S8 [y)™* + / Fwvale @1)
0

-15-
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Since T is defined to be the ratio of the diameter to the length of the body,

y@2/T) =1 (22)

We wish to determine the function y(x), chosen from a suitable class of
functions on the interval 0 € x £ 2/7 which minimizes (or maximizes) the
functional IQ, Eq. (21), and which satisfies the condition (22). Any such
minimum (or maximum) must satisfy the Euler equation associated with this
problem,

. -2 +1) .2 .4

y y[1-3y7] = - (n—z—)y [1-y7] (23)
The boundary condition y(2/T) = 1 is given, but y(0) is not specified. Hence,
this is a variable end point problem of the calculus of variations, and the

following transversality condition must be satisfied at x = 0,

n+l y n+2
y L - F(»] =0 (24a)
(1+Y2)2 2(n+3)

Since the integrand of Eq. (21) is not explicitly a function of x, a first
integral of the Euler equation (23) can be derived. This equation may be

written in the following form:

2
2
y"t e Sl (24b)
yly -1)

Examination of this equation reveals that there is no real value of y which

allows y to be zero. Hence, there is no solution of the Euler equation for
which y(0) = 0,




If a flat-faced, y(0) # 0, solution exists, then [from Eq. (24a)] the initial

slope must be a solution of the equation

¥(0) - (n+2)

(25)

This equation is a quartic in y(0). An examination of this quartic for the
range of parameters (n,¥) of interest reveals two real positive roots and a
pair of complex conjugate roots., Thus, there are apparently two functions

y (x) which satisfy the Euler equation and the transversality condition, It ,

should be observed that the values of the two permissible initial slopes are

x independent of T,

One might expect that the two solutions for y(x) discussed in the

preceding paragraph represent a minimum and a maximum of IQ. There

are further checks which may be made to verify or limit this conclusion,
The necessary condition of Legendre implies that one of the two solutions
for y(x) is a minimum (maximum) if y(x) € ~3/3 [y(x) 2 3/3] for all x in the

interval 0 € x £ 2/7. The Jacobi condition is somewhat difficult to apply.

However, it can be shown that the necessary condition of Weierstrass cannot

be satisfied over the class of all possible shapes, Hence, neither of the

above solutions corresponds to a minimum or a maximum of IQ over the
class of all piecewise continuously differentiable functions on the interval
0 € x € 2/T which satisfy the boundary condition Eq. (22). Hull? has pointed

out a similar occurrence in a related problem.

B, INTERPRETATION OF SOLUTIONS

The solutions discussed in the preceding subsection are insufficient as

] global extrema., This may be demonstrated as follows: The integral appearing
. in Eq. (19) is zero over any segment for which y is zero or for which y is

. infinite. Hence as y(0) approaches zero, there are infinite numbers of shapes
for which IQ is arbitrarily close to zero, i.e,, shapes composed of vertical

-17-
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and horizontal segments. Further consider functions y(x) which are straight .
lines between y(0) at x = 0 and 1 at x = 2/, As y(0) becomes arbitrarily

large, I. will become arbitrarily large. .

Q

The two solutions which satisfy the Euler equation [Eq. (23)], the
transversality condition [Eq, (25)] and the boundary condition [Eq, (22)]
will be referred to as a "minimum" solution or a "maximum" solution pro-
vided they satisfy the legendre condition for a maximum or a minimum. As
has been shown, these solutions do not represent minima or maxima over
all possible shapes, However, a minimum solution (y € ¥3/3) will satisfy
the Weierstrass condition for a minimum over the class of all piecewise
continuously differentiable functions y(x) on the interval 0 £ x £ 2/T for

which y(2/7) = 1 and for which y(x) £ N3/3 for all x in the interval, Similarly,

a maximum solution (y 2 N3/3) will satisfy the Weierstrass condition for a

maximum over the class of all piecewise continously differentiable functions

y(x) on the interval 0 < x £ 2/7 for which y(2/7) = 1 and for which y(x) 2 N3/3 .
for all x in the interval. With these restrictions on derivatives, not only is

the Weierstrass condition satisfied, but the Weierstrass-Erdmann corner -
condition cannot be satisfied by any pair of admissible slopes. Hence, there

are no minimum or maximum solutions with discontinuous derivatives,

These limits seemed unduly restrictive, However, after obtaining the
solutions it was found that they could be extended. For instance, it was
observed that the calculated maximum solutions had the property that y(x) 2 1
for all x, Examination of the Weierstrass excess function for this problem
leads to the following conclusion: If a maximum solution is found whose
derivative is greater than or equal to one for all x, then the IQ corresponding
to this solution will be larger than the IQ corresponding to any piecewise
continuously differentiable function y(x) on the interval 0 £ x £2/7 for which

y(2/r) = 1 and for which y(x) 2 0 for all x in the interval,

-18-
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When a minimum solution is found, its maximum derivative Ymax °VeT

the interval 0 £ x £ 2/T may be determined. If the constant A is defined by

1-y2

then examination of the Weierstrass E-function for the problem leads to the
following situation. If a minimum solution is found with maximum derivative
y and constant A, then the I

max Q
smaller than the IQ corresponding to any piecewise continuously differentiable

corresponding to this solution will be
function y(x) on the interval 0 £ x £ 2/T for which y(2/T) = 1 and for which

y(x) £ A for all x in the interval, It is in this limited sense that the solutions

given in the following sections may be considered minima and maxima,

C. COMPUTATION OF SOLUTIONS

The actual computation of a solution consists of solving a two-point
boundary value problem for a second-order nonlinear ordinary differential
equation, The differential equation is the Euler equation (23), The
boundary conditions are y(2/T) = 1 and at x = 0 the transversality condition
(25), A program was written to solve a class of such problems, including
the one discussed herein, In this program the differential equations and
boundary conditions were replaced by finite difference approximations, and

the resulting equations were solved by Newton's method (qQuasilinearization).

-19.




IV. RESULTS AND DISCUSSION

Results obtained by numerical solution of the Euler equation with ap-
propriate boundary conditions, as discussed above, are presented here for
the cases of both laminar and turbulent flow in the boundary layer, i.e.,
n=1and n=1/4, respectively., In all cases the specific heat ratio ¥ has
been assumed to be the hypersonic value of 1,2, In the first subsection below,
the body shapes and minimum heat transfer integrals Ié‘ and Ig are shown
\ for a wide range of the fineness ratio 7. Then, in the next subsection, the
minimum heat transfer results are compared with heat transfer rates to

other selected body shapes and to some maximum heat transfer solutions.

A, MINIMUM HEAT TRANSFER SOLUTIONS

Laminar flow minimum heat transfer shapes for several values of the
fineness ratio T are shown in Fig. 2 where the shapes as they appear physi-
cally are shown in the upper part of the figure, In the lower part of the
figure, the shapes are shown with the radial coordinate normalized by the
base radius and the axial coordinate normalized by the body length. In this
way the maximum value of both r = r/rB and z = z/f is unity since two
reference lengths have been used. In the remainder of this report, all body
shapes will be presented normalized as in the lower part of Fig. 2. It should
be kept in mind that presenting results in this way masks the needlelike
appearance of shapes with very small fineness ratios T as well as the blunt

‘ disklike appearance of shapes with large fineness ratios.

' All of the shapes in Fig. 2, for nonzero values of T, exhibit a flat face.
- i The ratio of the radius of the flat face to that of the base increases with
[', increasing 7. In the limit of T approaching infinity, the shape becomes a

’ flat-faced cylinder of zero length, i.e., a disk. In the opposite limit, as T

. approaches zero, the flat-face height approaches zero, and the shape
approaches the shape obtained invoking the slender body approximation, i.e.,

a 1/2 power law body4. However, since the slender body power law shape is

-21-
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only approached for fineness ratios less than 0,02, this shape appears

to be of little practical interest.

In Fig. 3, turbulent flow minimum heat transfer shapes are shown and

compared with the laminar shapes for corresponding fineness ratios. As

concluded by otherss, the turbulent shapes are surprisingly similar to
the laminar shapes for a given fineness ratio. In the limit of large T, the
turbulent minimum heat transfer shape also approaches a flat-faced
cylinder; in the limit of T approaching zero it can be easily shown that the
turbulent minimum heat transfer shape is an 8/13 power law body. The
slender body derivation of power law shapes for minimum laminar and
turbulent heat transfer is given in Appendix A. Thus, in the slender body
limit the minimum laminar heat transfer shape is a 1/2 power law body, 1

the minimum turbulent heat transfer shape is an 8/13 power law body, and

(from Ref. 12) the minimum drag shape is a 3/4 power law body., The non-

slender body minimum heat transfer shapes found in the present work
approach the slender body minimum heat transfer shapes only at very small
fineness ratios (7 < 0,02), However, the nonslender body minimum drag
shapes approach a 3/4 power law body at much larger fineness ratios12
(T=0.2).

The question of how much reduction in the heat transfer is achieved by a
minimum heat transfer shape is considered in the results presented in
Figs, 4 through 6 and in the following subsections, Recall that Eqs, (4)
h and (5) represent expressions for the integrated heat transfer to a nose tip

throughout a trajectory. Likewise, Eqs. (10a) and (10b) represent similar

expressions for the constant freestream environment case, For all cases,
trajectory environment or constant freestream environment, the parameter

needed to obtain numerical predictions of heat transfer is the heat transfer

- s c—

integral or body shape parameter IQ.

) 5 12Eggers, A,J., Jr.,, M, M, Resnikoff and D. H, Dennis, "Bodies of Revolu-
tion Having Minimum Drag at High Supersonic Speeds, " NACA Report
No., 1306 (1957).
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In Fig. 4, IQ for the minimum laminar and turbulent heat transfer
shapes is shown as a function of T. The IQ for both laminar and turbulent
flow is quite insensitive to fineness ratio for 1 < 7 < 10, This is because
the ratio of flat-face height to base radius is greater than 0,9 for all T> 1,
Thus, for T >1, a large fraction of the total heat transfer occurs over the
flat face. However, for T <1 the Ié" and Ig

the body or nose tip becomes more slender, i.e., decreasing T. This

values decrease significantly as

decrease is due in large part to a significant reduction in the flat-face height,
which decreases the area associated with the relatively high flat-face heat

transfer.

In the limit of T approaching zero, I(I)" and Ig both go to zero. However,
ICI)"/T and I(T)/T are finite for 7= 0, and the limiting values are given by slen-
der body theory (see Appendix B), They are

L T
Q _ Q _ 32
= = = =5 (27a, b)

14

00| 1=

Comparing the numerical values of Ié‘ and 18 from these equations with the
nonslender body calculated values in Fig, 4, we see that for T< 0,02 the
slender and nonslender body calculated values are virtually identical, A
quantitative comparison of minimum heat transfer rates to those for other

body shapes is given below,

B, COMPARISON WITH OTHER BODY SHAPES

The minimum heat transfer body shapes and heat transfer integrals
discussed above will now be compared with these quantities for a sphere,
truncated spheres, sharp cones, minimum drag bodies, stable ablating
shapes and maximum heat transfer bodies. Except for the spheres, sharp
cones and minimum drag bodies, the remaining body shapes listed above

depend upon the boundary layer state, i,e., laminar or turbulent,




The minimum and maximum heat transfer solutions were obtained

directly by numerical solution of the Euler equation as discussed previously.

The minimum drag body solutions were obtained by application of the present

numerical calculation procedure to the appropriate equations as given in

Ref, 12. A stable ablating shape is one for which, even though it is ablating
and its surface is receding, the body shape contour is independent of

time 13. The following analytic equations for laminar and turbulent stable
ablating nose tip shapes, using the approximations given by Eqs. (13) through

(15), are derived in Appendix C. For laminar flow

Zz = An [—1—'———-— v 1-r J -V1-F 4 (28a)

\

2

i T

and for turbulent flow

3/2 |
/4y l% [;1/4 ViEt/e . sin'l(’;”‘*)” - g1z

(28b)

Wik

2o .
—-z_
T

The shape contours for the six body types listed above are compared in

Figs. 5a and 5b for fineness ratios of 8 and 4 for laminar and turbulent flow,

respectively, The laminar stable ablating nose tip shape in Fig. 5a most
f closely resembles the truncated sphere shape, whereas the turbulent stable
shape in Fig. 5b is similar to the maximum heat transfer shape. The flat-

nose height is smallest for the maximum heat transfer body, somewhat ;

'
;
y
. § larger for the minimum drag body and largest for the minimum heat transfer
body.

13
Baker, R. L., "The Effect of Freestream and Material Parameters on
Stable Ablating Nosetip Shapes, " Report No, TOR-0074(4450-76)-10, The
Aerospace Corporation, El Segundo, California (May 1974),

*

-r‘-*--.
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The heat transfer integrals Ié" and Ig are shown for these body shapes -

in Figs. 6a and 6b, respectively. The relative IQ values for the different
body shapes are generally similar for laminar and turbulent flow, The maxi- .

mum solution I values are up to four times greater than the minimum solu-

tion values with this ratio decreasing as T increases for 2 < T< 8, This

means that for this range of fineness ratio, the heat transfer for the laminar

maximum solutions is up to two times greater than the laminar minimum

P A

solution values. The corresponding heat transfer increase for the minimum

; to maximum turbulent solutions is up to three times greater,

! The I values for truncated spheres, sharp cones, stable ablating shapes
{ and minimum drag bodies all lie between the minimum and maximum solution
values but tend to be much closer to the maximum value for a given 7. An
exception is the I for minimum drag bodies for small 7. “The In for these
bodies peaks for T = 2 and decreases for all other fineness i-atios. At T=2,
the minimum drag body In's for laminar and turbulent flow are close to the

1 corresponding maximum heat transfer solution values. However, for T
decreasing and approaching zero (T < 0.02), the minimum drag body I values

; approach the minimum heat transfer body values. Maximum heat transfer

solutions could not be found for T < 2,

C. SOLUTION CHARACTERISTICS AND ACCURACY

Since many of the extremal solution body shapes discussed here have a
. flat nose followed by a body contour, it is of interest to compare these solu-

tions in terms of the body angle immediately aft of the flat face and the ratio

of flat-face height to base radius, For minimum heat transfer, minimum 1
‘ ’1 drag and maximum heat transfer bodies, the body angle aft of the flat face is
about 4, 45, and 63 deg, respectively, independent of T and essentially inde-

! pendent of the boundary layer state, i,e., laminar or turbulent. This is shown i

. in Table 1, Caution must be exercised concerning the maximum solutions,
. While the local flow at the expansion aft of the flat face is indicated to be .

; supersonic using the present approximations, more exact calculations could




indicate subsonic flow at this location, The present formulation assumes the
flow to be supersonic at the expansion corner. If this condition is not met,
the proof of the existence of maximum solutions becomes much more difficult

and the present solutions are not valid.

Table 1. Body Angle Aft of Expansion Corner for
Different Variational Calculus Solutions

Laminar Turbulent
Minimum Heat Transfer 3% 41 39 24!
Solution
Minimum Drag Solution 45° 45°
Maximum Heat Transfer 65° 39 66° 231

The flat face-base radius ratio for minimum heat transfer, maximum
heat transfer and minimum drag shapes is shown in Fig. 7 as a function of
fineness ratio. This ratio increases from essentially zeiro to 0,6-0.7, for T
increasing from 2 to 10 for the maximum heat transfer solutions, For the
minimum drag body, the flat-face height increases over the same range for
fineness ratios from 0,2 to 10, and for the minimum heat transfer body

the T range is about 0,02 to 10 for the same increase in flat-face height,

A final word of caution is in order regarding the accuracy of the pre-
dicted reduction in heat transfer associated with the minimum heat transfer
shapes. Calculations using numerical inviscid flowfield computer codes for
flat-face cones were carried out recently by Baker and Kramerm. These
calculations indicate that while the local flow along the surface is highly over-
expanded immediately aft of the flat-face expansion corner, the flow rapidly
recompresses to pressure levels considerably above those for the same sta-
tion on a sphere-cone. Because of this behavior, the reduction in heat
transfer attributable to minimum heat transfer type shapes, when calculated

using numerical flowfield calculation methods, is expected to be a factor of

up to 2 rather than the factor of 3 predicted by the present work,
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V. SUMMARY AND CONCLUSIONS

Analytic expressions for total integrated heat transfer to a nose tip

through a trajectory and variational calculus procedures have been used to

determine nose tip shape contours having minimum total heat transfer for
specified fineness ratio. Solutions for both laminar and turbulent boundary

layer flow were obtained by numerical solution of the appropriate Euler equa-

tion and boundary conditions,

For fineness ratio T greater than zero, all solutions found have a flat

face. The ratio of flat-face height to the base radius increases as T increases,

O A R

As T becomes large (T >10), both the laminar and turbulent solutions approach
a flat-faced cylinder of vanishing length, i.e., a disk, As T approaches zero
(T < 0,02), the solutions approach the slender body (T = 0) solutions which

are a 1/2 power law body for laminar flow and an 8/13 power law body for
turbulent flow. For a constant base radius, the relative heat transfer rates

to a family of minimum heat transfer shapes decreases monotonically as T
decreases, i.e., as the bodies become more slender, For T 20,02, the lami-
nar and turbulent shapes are surprisingly similar to one another, i.e., the
flat-face height to base radius ratio and the afterbody shape contour are

essentially independent of the boundary layer state.

Additional solutions to the Euler equation depicting maximum heat
transfer body shapes were found for T 2 2, The heat transfer to the maximum
solution shapes is up to two times greater than for the minimum solution

shapes for laminar flow and up to three times greater for turbulent flow for

2 < T<8, Laminar and turbulent heat transfer rates to sharp cones, spheres,

p—
o T

truncated spheres and stable ablating shapes were found to be generally much

closer to the maximum solution values than to the minimum solution values,
The laminar and turbulent heat transfer to a minimum drag body was also

: calculated,
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The minimum and maximum solutions obtained could be shown mathe-
matically to be minima and maxima only over restricted classes of body
shapes., However, of all the physically reasonable additional body shapes
considered, none were found which result in heat transfer rates lower than

the minimum solution or greater than the maximum solution values.




APPENDIX A

SLENDER BODY MINIMUM HEAT TRANSFER SHAPES

Following the methods and nomenclature of Ref, 1, define the following

nondimensional coordinates:

| n=y &=3x

2R
: _ “"p
;_ T = T (A-1)
:
‘ Then, after differentiation and direct substitution into Eq. (17), we have
2/ 1 n+l 2
+1.2 ] .
- Y i [ 1= a2
I, = dx = 2 dg
Q 1+y° 2 1+(Z) 52
. 0 y 0 2
. Since Tz <« 1 for a slender body, in the slender body approximation the

expression for IQ becomes

1 1
(Slender Body) 1, = f tnlag = f F(n, £)d¢ (A-3)
0 0

For the case in which the function F is not an explicit function of the
independent variable, &£, the first integral of the Euler equation can be written

immediately as

F - na;,; c (A-4)
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Performing the indicated differential and algebraic manipulations, the follow-
ing first integral of the Euler equation for this problem is obtained from

Eqs. (A-3) and (A-4) after rearrangement

%_21 - Cn-(n+l)/2 (A-5)

The boundary conditions for Eq. (A-5) are

n
[=]

n(0)

(A-6)

(]
(-

n(1)

Integrating Eq., (A-5) and applying the boundary conditions, we obtain

for laminar flow (n=1)

n= ¢l/? (A-7)

and for turbulent flow (n=1/4)

8/13
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APPENDIX B

HEAT TRANSFER INTEGRALS--SLENDER BODY THEORY

The values of the heat transfer integrals Ié‘ and Ig both go to zero as

the fineness ratio, T, goes to zero, However, from Eq. (A-3), we have
1
21 2
Q _ /‘ n+l (dn 1
0

For laminar flow this becomes
L 1 5
Q _ 2({dn
- - f n (ds) d¢ (B-2)
0

From Eq. (A-7), for laminar flow

n=gl/f Gl jentl? (B-3)

Substituting Eq. (B-3) into Eq. (B-2) and integrating, we have

L 1

== () ()
0




Similarly, for turbulent flow Eq. (B-1) becomes

ZIT 1
—Q_. - n
2.

0
From Eq. (A-8), for turbulent flow

n =813,

Substituting and integrating, we have

2
5/4(d

(E?) dg (B-5)
dn _ -5/13
& - 8/13¢ (B-6)

T 1

21 5/4 2
Q _ 8/13 -5/13

e [ E) )

T
To
c

5 (B-7)

L T

Comparing the numerical values of IQ and IQ from Eqs, (B-4) and

(B-7) with the non-slender body calculated values in Fig. 5, we see that for

T< 0,02 the slender and non-slender

one another,

body calculated values are very close to

-38-
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APPENDIX C

STABLE ABLATING NOSETIP SHAPES

The transient shape change equation derived in Ref. 10 becomes after
differentiation with respect to s and appropriate substitutions related to the

geometry of Fig. 1

a“) -Lo2f 49 (C-1)
(58), - o & | e

For a steady-state condition, i.e., a stable ablating nosetip shape, the local

body angle, &f, is not a function of time. Thus

.(;i_s ___Cl___ = 0 (C-2)
Q sinot
Integrating
——i— = constant = C1 (C-3)
Q sinat

We wish to determine the body shape such that the heat transfer distri-
bution q = qfot, s) will satisfy Eq. (C-3). From Ref, 10, for laminar flow in
the boundary layer

L
Cpupr
L e e e (C-4)

: , |1z
Zf peueyer ds
0

q




Combining Eqs. (C-3) and (C-4) and assuming that the effective heat of

b3
ablation, Q , is constant

pupur
o )
- =C,Q = (C-5)
singt 1 pu it r2dr 1/2
2 e e e
sin¢¢
0
Let
PeleHe
* e (C-6)
Then Eq. (C-5) becomes
. L
* C fr
sinat C\Q = r 1/2 (C-7)
2 ffr dr
0
By direct substitution, we find that Eq., (C-7) is satisfied by
1 CIQ'. 2
f =3 r (C-8)
2 CL

Combining Eqgs. (C-6) and (C-8) together with Eqs, (11) through (13) and the
trigonometric relations

P = % = tanol, sinot = — X, cosQ = -1 (C-9)

vl + rz vl + éz

the following differential equation for the laminar stable ablating nosetip

shape is obtained;

(a4
>
3
B
>
s
N
'Y
~
[y¥]

Fo= (C-10)
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Integrating Eq. (C-10) and applying the boundary condition z(0) = 0, we obtain

S =2
;=LL=1,1[_____1+ l-r ]-Jl-?z+1 (C-11)
2
A
For turbulent flow in the boundary layer we have from Ref. 11
T 1/4
. C'pugpur
q—T e e’ e (C-12)

= s 1/5
5
S peseter® s
0

Applying the same procedures as in the laminar case above, we find that the

differential equation describing the turbulent stable ablating shape is

I EPRYZ
l.' - ZAT ‘/;(AT) - 4r
Zr1/4
*\ -5/4
A . }_(2)1/2 CIQ (C-13)
T =~ 2\2 CT

1/4

Integrating Eq, (C-13) with the aid of the substitution X = r , applying the

boundary condition z(0) = 0 and nondimensionalizing, we obtain

3/2
7 =2 =aplh. [% l?”“ VioFliey sin";”“” - Fl/4 [1 - ;”2]

(C-14)




