	AD-A08	9 184 SIFIED	HAYYA LEADTII JUN 80	(JACK C ME VARI J C H) ASSOC ABILITY AYYA	IATES S	TATE CO	ALLEGE P Require	PA MENT PR	OJECTIO	F DNS.(U) -79-C-5	/6 15/5 143 NL		\sum
		t i t Arieta Arieta	ar a											
														a data ta data da
										END DATE FILMED IO 80 DTIC			 	
, int														

6.5. SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 1. REPORT NUMBER . 3. RECIPIENT'S CATALOG NUMBER AD-A089184 Leadtime Variability In Inventory Requirement C Final tec Projections. Final Technical Report and Summa Aug] A08918 Mr. Jack C./Hayya F33615-79-C-5143 9. PERFORMING ORGANIZATION NAME AND ADDRES PROGRAM ELEMENT. PROJECT. AREA & WORK UNIT NUMBERS Jack C. Hayya Associates 🗸 1962 Norwood Lane State College, Centre County, PA-CONTROLLING OFFICE NAME AND ADDRESS Air Force Business Research Mgt Cntr 8 3Ø Jun Wright-Patterson AFB, Ohio 45433 NUMBER OF PAGES 75 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS, (of this report) UNCLAS SAME 154. DECLASSIFICATION DOWNGRADING SCHEDULE STRIBL This document has been approved UNLIMITED for public release and sale; its distribution is unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) SAME 18. SUPPLEMENTARY NOTES NONE 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Inventory Requirements Stock Levels Procurement Leadtime Reorder Level Supply **Inventory Control** ATE FOR CO 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The BF has experienced inventory support problems apparently because of FILE COPY Leadtime Variability. This study was to find out whether Leadtime Variability had a significant influence on safety stocks. The researcher fitted different distributions to Lead time data of High-Intensity items and found the data to fit the laplace distribution. Previous work of Presutti and Tropp (1970) provide an optimization model for the distribution. Use of this model can raise the average service level significantly. Cost of conversion for AFLC is x_{1} DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION O 80 () 2 2

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

1.5

- By

Phase III (item no. 0004): Air Force Contract F 33615-79-C-5143

1 80 . 03

LEADTIME VARIABILITY IN INVENTORY REQUIREMENT PROJECTIONS: FINAL RECHNICAL REPORT AND SUMMARY

Submitted to:

Major Paul W. Gross Air Force Business Research Management Center (AFBRMC/LGPB) Wright-Patterson AFB, Ohio 45433

Submitted by:

Jack C. Hayya 1962 Norwood Lane State College, Pa. 16801 Phone: (814) 237-6409

June 30, 1980

TABLE OF CONTENTS

e., ,

SUM	MARY	1
1.	DESCRIPTION OF THE STUDY	4
2.	SUMMARY OF THE FIRST TWO TECHNICAL REPORTS	6
3.	THE DISTRIBUTION OF FORECAST ERRORS	7
4.	ABC ANALYSIS	16
5.	THE DISTRIBUTION OF LEADTIME DEMAND	26
6.	COST-BENEFIT ANALYSIS	36
7.	LIMITATIONS, ASSUMPTIONS, RESEARCH QUESTIONS, METHODS AND ANALYSES USED	47
8.	FINDINGS AND CONCLUSIONS	52
APPI	PENDIX A: MEMO OF UNDERSTANDING (MARCH 7, 1980)	53
APPI	PENDIX B: EXPLANATION OF TABLE 6.1: OPTIMAL SYSTEM	55
APPI	PENDIX C: EXPLANATION OF TABLE 6.2: AFLC'S CURRENT SYSTEM	63
REFI	ERENCES	70

ii

Page

LIST OF TABLES

Table		Page
4.1	ABC CLASSIFICATION FOR 1980 DATA	17
4.2	DATA OF MAY 23, 1980 BY FSN	20
4.3	DATA OF MAY 23, 1980 BY ITEM NUMBER	21
4.4	ABC CLASSIFICATION BASED ON 77-78 DEMANDS & PRICES	23
5.1	BEST FIT FOR LEADTIME	31
5.2	MEANS AND VARIANCES OF LEADTIME DEMAND: 1977-78 DEMAND DATA	32
5.3	GOODNESS OF FIT OF LEADTIME DEMAND TO THE NORMAL AND THE LAPLACE1977-78 DATA	33
5.4	MEANS AND VARIANCES OF LEADTIME DEMAND: 1980 DATA	34
5.5	FIT OF LEADTIME DEMAND TO THE NORMAL AND THE LAPLACE	35
6.1	OPTIMAL SYSTEM	37
6.2	CURRENT SYSTEM	39
6.3	CURRENT VERSUS OPTIMAL SYSTEM $\lambda = 660, \sqrt{R}=2, Z_1=0.5, n=56, WR-ALC$	41
6.4	OPTIMAL SYSTEM, Z _i =1/2	42
6.5	OPTIMAL SYSTEM, Z _i =1	43
7.1	CURRENT FILL RATES: REPORTED VS. THEORETICAL	49

S. Kitana

.

iii

LIST OF FIGURES

Figure		Page
3.1	Four Classes of Trend Mixed Together	11
3.2	The Distribution of Forecast Errors, Z9, for the Eighty Hypothetical Items when the Data are Not Detrended	12
3.3	The Distribution of Forecast Errors, Z9, for OC-ALC Items with SMGC = 2 (The distribution is based on approximately 22,500 items)	13
3.4	The Distribution of Forecast Errors, Z9, for the Same Items when the Linear Trends are Taken Out.' (Class 4 is not considered because the pattern of the first eight periods changes abruptly)	15
4.1	ABC Classification of the Sample Items1980 Data	19
4.2	ABC Classification of the Sample Items1977-78 Data	24
5.1	A Two-Way Classification of Annual Dollars Versus the Standard Deviation of Leadtime Demand1977-78 Data	29
6.1	Exchange Curves for Safety Stock versus Expected Number of Units Backordered at any Time, β_T	44
6.2	Exchange Curves for Safety Stock versus Annual Number of Backorders, 3 _N	45

SUMMARY

This is the Phase III of AF Contract F 33615-79-C-5143: Leadtime Variability in Inventory Requirements Projections -- Final Technical Report and Summary. The report summarizes the first two technical reports and the results of the cost benefit analysis. The study consisted of three phases, and this is the third phase. The purpose of the study was to find out whether leadtime variability had a significant influence on stock safety levels. We found that, indeed, it has.

Currently, AFLC revises its leadtime according to the following model:

 $\hat{L}_t = L_{t-1}$,

where \hat{L}_t is the estimate of the required leadtime during period t and L_{t-1} is the actual leadtime observed during the preceding period. This model is inappropriate because it implicitly assumes that leadtime for the next-period-ahead is deterministic, whereas it is stochastic. Cohen, in a similar study for the U. S. Army, makes like observations (Cohen, 1979).

The first phase of the study was concerned with fitting distributions to leadtime data of high-intensity items. The results showed that procurement leadtime can be fitted very well by the lognormal, the gamma, the normal, or the Weibull. The gamma distribution has very often been postulated for the distribution of leadtime (Burgin, 1972, for example) and our results support this assumption.

The second phase was to be a simulation study and an analysis to examine the impact on inventory control levels of the fitted distributions of leadtime. The simulation model was to have been provided by AFLC, but in a February 5, 1980, meeting at WPAFB with Major Paul Gross of AFBRMC and Gloria

Picciano, Diann Lawson, and Carol Hawks of LORRA, it was agreed that it would be more beneficial to do independent simulations as well as look into several important issues not specified in the original contract. The oral agreement was embodied in a memo of understanding received on March 7, 1980. This memo is provided as Appendix A to this report.

Addressing the several issues raised by the memo of understanding, we first conjecture that the "skewed normal" distribution reported upon by Demmy (1979, p. IV-13) in his analysis of forecast error is likely produced by faulty analysis. We support this conjecture by simulation and by an analysis the reader will find in section 3. A good forecasting methodology should produce normally distributed forecast errors.

When leadtime and demand are stochastic, leadtime demand would be a compound distribution or a convolution. We knew the distribution of leadtime for the items in the sample, but we did not have the corresponding distributions for demand. Consequently, we assumed that daily demand at a depot is Poisson-distributed. We then obtained via simulation the compound distribution of leadtime demand for a few representative items. And we succeeded in fitting the right tails of these simulated leadtime distributions to the Laplace. This result is important because it verifies an important assumption in the work of Presutti and Trepp (1970). With Laplace leadtime demand, Presutti and Trepp have already worked out the optimization models. We also found that the normal distribution is a good approximation to the distribution of leadtime, but that the Laplace is better. Optimization techniques concerning the normal have been extensively worked out (see Brown, 1967). Section 5 of this report deals at some length with the distribution of leadtime demand.

Section 6 presents results of a cost-benefit analysis. Using a scenario at WR-ALC with shortage factor $\lambda = 660$, requisition size, R = 4, and essentiality parameter, $Z_i = 0.5$, we simulate the current system versus the Presutti-Trepp model IV (1970, pp. 248-249) optimal system. We find that the current system is wanting, the present average service level being 79.6% versus an optimal level of 86.9%. To bring the system to optimality for our sample requires a one-time investment of about \$750,000 in safety stocks and an increase of about \$250,000 in annual operating costs. With an annual procurement of one billion dollars, our sample represents 0.5% of that procurement. Thus, if the sample is representative, AFLC would require a one-time investment of \$150 million in safety stocks and an increase in annual operating cost of \$50 million.

It is also evident that the present mix of stock levels is inappropriate, and that the policy of maintaining an aggregate safety level stock not exceeding a two-month supply is not sound. The reader will discern these details in section 6.

1. DESCRIPTION OF THE STUDY

In recent years, the Air Force Logistics Command (AFLC), with an inventory of economic order quantity (EOQ) of over two billion dollars, has encountered inventory support problem apparently because of leadtime variability. The purpose of this study is to determine whether leadtime variability has a significant impact on inventory support planning and control at AFLC.

Using Air Force leadtime data on high-intensity items, we performed the runs test for randomness (Siegel, pp. 52-56). The leadtime data were random except for a few instances of suspected "pencil-whipping." With random leadtime data, we could then fit statistical distributions to them. This was accomplished by means of the Kolmogorov-Smirnov (KS) goodness-of-fit test (Conover, 1971, pp. 293-298), fitting the data to the exponential, the gamma, the normal, the Weibull, and the lognormal. The results indicated that, in general, the lognormal, the gamma, the normal, and the Weibull could be postulated as good fits to the leadtime data.

The impact of leadtime variability on stock levels can be known exactly if we identify the distribution of leadtime demand. To do that we need to know not only the distribution of leadtime but also of period demand. Since we had no demand data except item monthly demand rates, we assumed that daily demand is Poisson-distributed. Then with the best fit for leadtime and with demand Poisson, we simulated the distribution of leadtime demand for some representative items in the sample. The results indicated that the right half of the simulated distribution can be fitted very well to the Laplace. This is quite an important finding since AFLC would like to use

the Presutti-Trepp Model IV (1970, pp. 248-249) which assumes that leadtime demand is Laplace-distributed.

The final stage of the study was to conduct a cost-benefit analysis of current and proposed stock levels. This was accomplished with the aid of data received from LORRA on May 23, 1980. With that data and using Changes 2 and 3 of AFLC Regulations 57-6 (Department of the Air Force, 29 December 1978 and 22 June 1979), we were able to describe the current system. And by using the Presutti-Trepp Model IV, we were also able to generate a proposed optimal system.

State States

2. SUMMARY OF THE FIRST TWO TECHNICAL REPORTS

According to the contract, the first technical report (Phase I) was to be delivered on December 31, 1979, the second (Phase II) on March 31, 1980. The Phase I report was to address the statistical distributions of leadtime, the Phase II report the AFLC simulation model. But because leadtime data were obtained in two subsets of sizes n = 16 and n = 46, the first in mid-October 1979 and the second toward the end of November 1979, and because of the memo of understanding (see Appendix A), the first two reports understandably did not conform precisely to the letter of the contract.

The Phase I report (27 pages) advanced the concept of leadtime demand as a compound distribution of period demand and leadtime. It also reported the results of goodness-of-fit tests on the first subset of sixteen items. Before doing the goodness-of-fit, the data were verified to be random.

The Phase II report (96 pages) completed the fitting of statistical distributions to the leadtime data, addressing the second subset of forty-six items. The Phase II report was made of seven technical appendices in order to facilitate future research and to serve as tutorials on the statistical distributions considered. Perhaps a very important Appendix in the Phase II report is the one that theoretically examines the influence of leadtime variability on buffer stocks and service levels, with examples provided on selected items.

3. THE DISTRIBUTION OF FORECAST ERRORS

In his analysis of forecast errors, Demmy (1979) arrived at distributions that are very much skewed to the right, distributions called "skewed normal" by LORRA. The purpose of this section is to show that when there is a mix dominated by declining demands for the many and sharply increasing demands for the few, then the method used by Demmy is very likely to produce distributions of forecast errors that are skewed to the right. We go on to validate our assertion by means of a set of experiments. But first we must say that data must be stationary and also random, that is uncorrelated, before distributions are fitted to them. This was evidently not in the case with Demmy's forecast errors. We concentrate on his Table IV-2 (Demmy, 1979, p. IV-13). The distributions he produced were based on approximately 22,500 items. For each of these items, he calculated a simple average and the MAD of the demands for the first eight quarters, that is, FY 71-72 (Demmy, 1979, pp. III-1 to III-3 and III-9 to III-11). The simple average became the forecast for each quarter in FY 73-75. Thus the forecast errors of quarters 9, 10, . . . , 20 were the actual demands for the quarter in question minus the simple average for the first eight quarters. Demmy then divided this forecast error by the historical MAD for that item in order to obtain standardized scores and in order to be able to aggregate the 22,500 odd forecast errors for each period. He called these standardized scores Z9, Z10, . . , Z20.

If the demands for these items were stationary, then the distribution of forecast errors would have been symmetric if not normal. But these demands were not stationary, and it seems that most were declining with time. Consequently, the majority of the forecast errors were negative.

which explains the negative bias in forecast errors that Demmy obtained (Demmy, 1979, p. III-16). With declining demands it is obvious that the absolute value of the bias would increase with time: this is precisely what Demmy reports.

In summary we conjecture that the "skewed normal" distributions obtained by Demmy are merely a result of wrong statistical analysis. Any forecasting method worth its salt should yield normally distributed forecast errors. Had Demmy accounted for the trends in demand, his forecast errors would have been normally distributed; and to validate our assertion, we perform a set of experiments.

A Set of Experiments

Eighty items are considered in the set of experiments. The demand function of every item can be described by the following expression:

$$D(t) = D(t-1) + C + X , \qquad (3.1)$$

where

C = a constant.

D(t) = demand in time period t,

and X = a normally distributed random variable with zero mean and std. dev. equal to σ_v .

Each item belongs to one of the four classes described below:

Class I : C is negative. Class II : C is zero. Class III : C is positive. Class IV : C is positive, but has a value of C' during the first eight time periods, and a value of C" during the next twelve time periods. In addition C" is greater than C'.

Each item has a unique combination of C and σ_{χ} . For each item twenty demand values were generated by a mechanism consistent with (3.1).

Class I items show declining demand with a linear trend. Class II items exhibit no trend, whereas Class III items show increasing demand again with a linear trend. Class IV items also exhibit increasing demand but the trend changes abruptly after the eighth period.

Forecasting Technique 1: Trend not removed. The average demand in the first eight periods was the forecast for each of the next twelve periods. The standardized forecast error Z(t) was computed as follows:

$$Z(t) = \frac{D(t) - F(t)}{MAD}, \qquad t = 9, 10, ..., 20,$$

$$8 \\ \Sigma D(t)$$

where F(t) = forecast for period $t = \frac{t=1}{3}$

Forecasting Technique 2: Trend removed. The first difference S(t) = D(t) - D(t-1), was computed for the first eight periods. Values of D(0) were generated by the appropriate mechanism. The average value of S(t) in the first eight periods was a forecast of S(t) in each of the next twelve periods. Let the forecast of S(t) be FS(t), and the forecast of demand be SF(t).

Then
$$FS(t) = \frac{S(1) + S(2) + ... + S(8)}{8}$$
, $t = 9$, 10, ..., 20;
and $SF(t) = D(t-1) + FS(t)$, $t = 9$, 10. ..., 20.

The standardized error SZ(t) is given by

$$SZ(t) = \frac{D(t) - SF(t)}{MAD}$$

<u>Experiments and Results -- Sample: Type A</u>. Type A samples consisted of items from Classes I, II, and III. Each sample had eighty items. When the proportion of Class I items in the sample was higher than that of Class III, the distribution of Z(t) was found to be skewed to the right with a negative mean. For higher values of t, the mean shifted further away from zero. The distribution of SZ(t), however, was symmetric with a mean very nearly equal to zero.

As more and more Class III items were substituted for Class I items, the distribution of Z(t) became increasingly symmetric. When the proportion of Class III items exceeded that of Class I items, the distribution of Z(t)became skewed to the left with a positive mean.

The distribution of SZ(t) remained symmetric in spite of changes in the mix of items.

Experiments and Results -- Sample: Type B. Type B samples consisted of items from all four classes. A typical sample had the following composition:

- 40 Class I items
- 20 Class II items
- 10 Class III items
- 10 Class IV items.

An example of these classes of trend is given in Figure 3.1.

For this sample the Z(t) distribution was skewed to the right with a long right tail. This may be immediately seen in Figure 3.2; and for comparison we reproduce in Figure 3.3 Demmy's Z9 distribution. The tail vanished when Class IV items were dropped, though the distribution remained skewed to the right. The SZ(t) distribution was also found to have a long

right tail. With the elimination of Class IV items, the tail disappeared and the distribution became symmetric around a mean that was very close to zero, as can be seen in Figure 3.4.

In conclusion, the assertion by LORRA that the distribution of forecast errors is highly skewed to the right does not seem valid. It is contrary to theory, and is most likely based on undue confidence in a very faulty forecast method.

Ľ

The Distribution of Forecast Errors, 29, for the Same Items when the Linear Trends are Taken Out. (Class 4 is not considered because the pattern of the first eight periods changes abruptly)

4. ABC ANALYSIS

Because of the large number of items in the inventory, it is sometimes convenient to classify them according to the annual dollars of usage; and even though we are dealing only with high intensity items, it would still be useful to classify these. For the fifty-six items in the sample, we find that the total annual usage is \$4,868,000, comprising about 155,000 units of demand. Of these 9.78% account for 54.34% of the annual dollars. We call these Class A items because they should receive the most attention. We similarly see that 25.64% of the number of units account for only 9.58% of the annual dollars. We call these Class C items because managing them can be kept as simple as possible. Between A and C, we have Class B items. For our sample, these comprise 64.58% of the number of units but account for 36.08% of the annual dollars. These results are taken from Table 4.1, and although arbitrary, the classification is consistent with the ABC classification scheme advocated in the literature. See, for example, Brown (1967, pp. 23-24) and Peterson and Silver (1979, pp. 71-73). The ABC classification is also consistent with the Supply Management Grouping Code (SMGC), even though the latter does not appear to be as useful. If we inspect Table 4.1, for example, we see that SMGC code M accounts for 79.46% of the annual dollars but 32.51% of the annual units; SMGC Code P accounts for 20.38% of the annual dollars but 66.66% of the annual units; and SMGC Code T accounts for 0.16% of the annual dollars and 0.83% of the annual units. In terms of the span of control, it should be clear that an ABC classification is superior to the SMGC. Furthermore, it would be easy to do tradeoffs between inventory investment and service level using ABC curves as Herron (1976) shows.

TABLE 4.1. ABC CLASSIFICATION FOR 1980 DAIA

1.

11

on mo	LCN						llaite	
	EC.	Annual \$ 5	Annual 2'S	5	of Demand	X UNICS		A items
37	1005007879802	1922543.17	5 45 E *	.3949	7811.5	J050.	.0504	9.585 units
ij	5895001167508	438165.09	0060.	6484.	5583.0	.0360	.0864	54 244 616
	7266669000115	284326.89	.0584	4C 49 .	1772.9	.0114	H190.	
33	1045004335657	170607.03	0350	. 5784	4872.5	.0314	.1292	
~	5960004009106	144757.20	8010.	.6042	4630.0	•0299	.1591.	
11	5831008903563	144364.62	1620.	.6388	5737.0	0370	.1960	
14	4210002727415	136725.60	.0281	.6664	5124.5	0110.	1925.	
23	1095009120256	127475.67	.0262	.6931	9.1215	1410.	. 2432	
10	58950008944003	114067.36	.0245	.7176	6.4 3 ° 6	1409.	. 2474	
20	3110009423451	F5F25.10	.0176	1361.	1166.0	.0075	. 2549	
	127000031981	78162.39	1410.	.7512	0.1001	0100.	. 2619	
Ĩ	4316610334204	74917.01	.0154	• 76.n.h	8717.N	.0562	1916.	
. "	1045010133414	66162.24	0410.	. 7806	914.0	.005.	.3240	
25	10950087473369	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0110.	7946	174.5	1100.	1225.	
		L955.27	1010	. 404.7	249.0	9100	1926.	
		12946 86	0000	8145	15.44.0	0044	336.8	
			00.00		12140 5	0.74.0	4144	B items
n (06 nu •					64.58 % units
	5 m2 n2 160n466 n1		Cena.					36 08% C's
5.	1 3076 \$6000451	10.445.64	2 6 0 0 •		5.57 C		1604.	
	1005007016793	44685.47	2600.		C. 78C	8500.	モナモニ	
32	1095004914447	39575.11	1400.	.4601	1072.6	•0069	1964	
ۍ 19	1005000511579	39527.64	LHOU.	. 4642	3943.5	.0248	.5215	
12	5821002694508	34247.20	1800.	. 4762	13461.0	.081.8	.6093	
54	1560007303454	38237.76	.0079	. 6 8 4 1	0.319	.0059	.6142	
17	4440005749186	33322.18	.0068	6968.	12881.5	.1217	.7359	
÷	5895009497160	32325.64	.0467	1749.	387.0	5400 .	.7384	
35	1005008934230	31914.37	.0066	\$ 406 .	144.0	1200-	7436	
2	5841060738392	29768.72	.0011	4016.	0.7871	.0115	.7551	
. 92	1015009553210	28330.64	8400°	.9162	660.0	.0043	.7593	
57	1560006117049	26955.40	.0455	7124.	171.5	.002h	. 76.17	
29	109500#f]4744	26863.94	.0055	.9272	509.0	.0033	.7650	
40	1005007545267	26617.64	.0055	. 9127	276.0	.0018	.7668	
50	704 500 44 7 90 20	26545.52	.0055	5856	4487.0	.0259	. 7957	
1	5826000146411	24803.10	1500.	. 9433	381.0	.0025	.7482	
22	5365007355943	24507.00	.0050	6848.	2622.5	.0130	.4112	
8 4	1005000178809	24059.48	.0049	.9532	5 • () 416,	1900.	. 4173	
59	1560004390167	23145.96	.0048	.9580	351.5	.00.23	. 8195	
51	3040006211345	20288.91	.0042	.9622	1546.9	00lu.	. 4295	
61	1440005727651	19964.06	1400.	6396.	A. E.4.P.C	.0192	.8487	C items
55	1560006284732	18934.43	PE00.	.9702	264.0	.0013	.8500	25.64% units
4 C	1095001111640	18432.57	.0038	.9734	1047.5	.005.8	.8569	9.58% ('c
	1005006999931	16609.29	.0035	4260.	860.5	.0055	. 8623	
13	5821009906461	12294.49	.0025	.9749	2444.5	.0183	. 8807	
30	1095005227703	11875.39	400.	. 9824	16.38.P	.0106	.8913	
6	5835004451349	11079.84	.0023	. 9нњ6	301.0	6100.	. 8932	
60	1560003101191	10449.05	. 9021	. 9868	530.5	.0034	.8966	
58	1560006099958	9685.45	.0020	. 9888	1307.0	.0084	.9050	
36	1005007889718	8336.04	.0017	. 9905	353.0	.0023	.9073	
31	1095005168069	8106.73	.0017	.9922	1456.6	100.	.9167	
38	1005007755579	7920.95	.0016	.9438	1444.5	.0122	.92#9	
39	1005007545243	6544.79	4100.	1388.	6773.0	.0437	.9726	
56	1560006220532	5644.80	.0012	6466.	820.6	.0053	.9779	
11	1005007545266	5215.91	1100.	.9974	699.5	.0045	42 H G .	
62	2530608269468	5119.80	.0011	4866.	1444.0	.0093	1166.	
52	1670067970253	4655.28	0100.	4666.	483.0	.0032	6 # 6 6 *	
	5962004537739	3043.59	.0006	1.0000	747.5	.0051	1.0000	

17

and the second second

In Figure 4.1 is plotted the cumulative percentage of items along the horizontal axis versus the cumulative percentage of total dollar usage along the vertical axis. Figure 4.1 makes it more convenient to reclassify, if necessary.

According to Brown (1967, p. 23), the distribution of annual dollars of demand is lognormal. This is indeed the case for our data. The Lilliefors (L) test of lognormality yields a $D_{max} = 0.1097$, less than the critical statistic, $L_{0.95} = 0.886/\sqrt{56} = 0.1184$. Hence we accept the hypothesis of lognormality for the annual dollars of demand. The fit to lognormality is, in fact, quite good. (The parameters of the lognormal are $\mu = 10.369$ and $\sigma = 1.213$.)

In a similar vein, we also fit the number of annual units demanded to the lognormal distribution. This yields $D_{max} = 0.0890$, as compared to the critical $L_{0.95} = 0.1184$. Thus we also accept the hypothesis of lognormality for the number of items demanded. (The parameters of this lognormal are $\mu = 7.263$ and $\sigma = 1.157$.)

The 1980 Data

The data used to generate the Figure 4.1 were obtained from LORRA on May 23, 1980. In inspecting these data, it became clear that the sample of sixty-two we originally used has now been reduced to one of fifty-six items. This was because five of the items were no longer high-intensity, and one item was inadvertently duplicated in the original sample.

For the sake of future research and in order that our results may be replicated, we organize the data received on May 23, 1980 in Tables 4.2 and 4.3. These tables account for fifty-six items only; we have kept the original item numbers reflecting the listing in the Phase I and Phase II reports.

Figure 4.1. ABC Classification of the Sample Items--1980 Data Source: Table 4.1

TABLE 4.2. DATA OF MAY 23, 1980 BY FSN

Item #	FSN	Monthly Demand	Quarterly MAD	Unit Price
-	Many Mar Paral	n 7 i) • 4 ń	413.60	3.08
• ~	1000000110/-	400.25	423.00	7.08
<i>→ i</i>	1100003307314	147.67	128.75	27.08
4.4	100-01-41-4-2	4(5.04	371.94	9.64
-	100-00-00-00-00-00-00-00-00-00-00-00-00-	345.43	215.00	10.64
	1114 144431	47H . 0H	201.25	2.93
	1005007015743	-27-04	109.84	8.72
	1000007565200	102.03	124.40	2.34
- 1	1000070.007	53 53	73 07	41 36
s	1005007543207	JJ.03	13.01 AG 30	5 66
		00 02	102 25	7 26
37	1005007670-02	726 42	102.20	220 55
3-	100-007579007	75 17	20 000	6 12
)- 10	1005004654719	14 54	10 22	192 44
1		140,14	1700	
3		23+33	14.10	יים,כט כב נונ
5.5		121.03		111.622
	104-004414441	1003.04	1982.13	3.21
5 i	10 450 10 10 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40	+12.40	293-32	1.43
5 ·	11-2012-201143	44/./4	344.53	2.21
	in in an the second s	4.4 . 7 4	34.12	+n.12
<u> </u>	· · · · · · · · · · · · · · · · · · ·	44.34	115.66	53.45
2	$(1, 2, 2, 2, 3) \neq (1, 2, 2, 2, 3)$	· · · · · · · · · · · · · · · · · · ·	R-1.MM	11.79
? •	2	1121.75	o71.06	4.+7
-	1	75.33	na.00	30.93
P 1	10	1573.46	525.47	3.01
	1270310541971	32.25	19.25	201.97
-1	1446015727551	71.71	37.10	23.20
► ,,	1	157.40	3.47	5.53
	1	52.04	2+.50	77.04
÷.	17) Incland	70+.+2	321.75	1.+3
- 7	Charles on 127 and	22.35	37.04	32.45
	in an and	D 24	45.05	5.07
• •	1-2011-204732	123.75	7+.75	13.07
` +	لاحجة راجت والاحجاد	24.42	24.07	105.31
	1	121.34	h3.dn	30.87
N <i>P</i>	1-70317-732-3	40.75	136.13	9.52
		20.22	70.14	5.44
· ;	· . + 1) 1] . +		30.03	25.44
•	• • • • • • • • • •	++ • 21	62.30	535.94
~	المسجع فيشار والمراجع	144.50	172.33	+3.05
	- 1 1 2 1 2 7 - 1 -	in. 10	54.50	207.16
-		13.70	20.13	201.65
1 • -,			42.25	02000
			71 25	1
		10.0025	25 5 1	142 20
		000CP	50.00 50.75	2 74
		313+7C	1. En	<u> </u>
•		31+77	14000	71 - 20
<u>!</u>		175.74	77.15 57.05	11.30
		75.34	⊐ 3• 86	51.00
1		67.67	~~	330.10
1.7		144,91	114.13	203.25
4	• • • • • • • • • • • • • • • • • • •	240.53	2+0.40	3,72
	ー ・チャング デオキ チアシカリ	17.10	17.75	100.91
<u>,</u>		133.57	11+.75	41.38
i.	5 - 5 - 1 + + 7 - 5 F / 5 -	637.14	512.00	1.07
,	1)+561+47+123	.7.24	115.00	25.39

į

UNIT STATES I THE STATES

20

معترد

Table 4.3. DATA OF MAY 23, 1980 BY ITEM NUMBER 21

		Monthly	Quarterly	-
Icem #	FSN	Demand	MAD	Unit Price
1	5926000106011	21 75	1 11 5 5	<u> </u>
2	5911000739393	JL+/J 79 30	L 4 • 20	57.10 51 CC
2	5841000738392		03.00	31.65
3	5352004537733	237.04	219.85	1.07
,	52050004004109	130.57		91.38
0	5895009497160	1/.00	1/./5	160.91
9	5895004451349	248.53	24().4()	3.72
10	5895000894403	29.29	29.09	338.75
11	5831008903563	168.54	58.13	71.38
12	5821002594508	23.00	25.50	142.20
13	5821009905461	373.92	540.75	2.74
15	5895001167508	128.91	118.13	283.25
17	4440005749186	42.33	32.25	65.50
13	4310010339204	30.96	26.13	201.65
19	4210002727815	55.00	88.50	207.18
20	3110009429451	148.50	172.38	48.05
21	3110006999957	44.21	22.38	535.94
22	53F5007855943	108.92	70.25	18.75
23	1095009120256	1121.75	- 671.06	9.47
24	1270000831981	32.25	19.25	201.97
2.5	1095010133419	1573.49	525.47	3.51
26	1095009553210	76.33	65.00	30.93
27	1095009120243	320.29	351.82	11.79
28	1095008747369	89.38	136.66	63.45
29	1095009814744	#8°2#	39.72	46.12
30	1095005227703	447.79	344.53	2.21
31	1095005168069	472.42	299.32	1.43
32	1095004918497	1008.54	1082.13	3.27
33	1095004335657	127.93	68.25	111.22
34	1095001111640	23.33	14.75	55.94
35	1005008938230	14.54	19.28	182.04
36	1005007889713	76.17	32.26	9.12
37	1005007979902	726.42	666.50	220.55
38	1005007753579	30.92	102.25	7.29
39	1005007545283	97.17	85.33	5.48
40	1005007545267	53.63	73.07	41.38
41	1005007545268	182.53	124.40	2.33
42	1005007016793	427.04	109.39	3.72
43	1005006999923	395.83	215.00	10.84
44	1005006993931	479.08	201.25	2.3
45	1005006999982	405.04	371.94	9.64
46	1005000511573	465.25	923.05	7.29
47	1005003357313	147.57	128.75	27.08
48	1005000179809	550.95	483.60	3.79
50	7045009479020	97.29	115.05	25, 19
51	3040006211345	36.45	30.03	25.44
52	1670007970253	40.75	136.13	9.52
5.3	1560009492097	121.38	53,89	30.97
54	1560007803854	29.42	28.07	109.31
55	1560005284732	120.75	74.75	13.07
56	1560006220532	58.29	45.88	 א_ הי
57	1560006117049	68.38	37.09	32.25
58	1560006090988	564.42	320.75	1,43
59	1560004330187	25.09	24.50	77 72
R D	1560003101191	157.46	83.47	5.53
51	1440005727851	71.71	37.15	23.11
62	25300012263468	66.25	70.19	6.44

THIS FARE IS FAIT OW DITY PRACIDUALLE

ENON CONTRACTOR SECTION TO LOUG

Table 4.2 lists the items by ascending order of stock number; Table 4.3 lists these items by ascending order of item number. Note in Table 4.3 that these items were deleted: item 4 (FSN 302101866582JH: Latch), 5 (FSN 1560005722616JH: Rod Assembly), 6 (FSN 5305001117850AB: Screw Spec), 14 (FSN 589500172114: Antenna), 16 (FSN 7045008479020), and 49 (FSN 4935006506352AB: Cable Assys - 2). Item 16 is in fact item 50 (FSN 7045008479020); the other items are no longer high-intensity.

The 1977-78 Data

We had, prior to obtaining the 1980 data, played detective with 1977-78 order quantities and unit prices originally provided with leadtime data. We thus generated the annual units demanded as well as the dollar values of demand for 1977-78. For the sake of comparison with 1980 data, we provide Table 4.4 and Figure 4.2. Table 4.4 is the analogue of Table 4.1, and Figure 4.2 is the analogue of Figure 4.1. In Table 4.4, we see that 5.68% of the top units account for 63.09% of the dollars; 56.8% of the intermediate units account for 34.79% of the dollars; and 37.52% of the bottom units account for only 2.12% of the dollars. In 1977-78, the sample accounted for an annual usage of S6,940,000 and comprised 399,528 units of demand. Thus, the demand for these items has fallen, on the average, between 1977 and 1980. An item-by-item comparison, using Tables 4.1 and 4.4, shows that a majority have declined in demand, but that for a few, demand has sharply increased. This is consistent with our conjectures in Section 3.

The distribution of annual dollars of demand in Table 4.4 is also lognormal. The Lilliefors (L) test of lognormality yields a D_{max} of 0.07017. This is much less than the critical statistic $L_{0.95} = 0.886/\sqrt{62} = 0.1125$. Hence we accept the hypothesis of lognormality, the parameters of the

Table 4.4. ABC CLASSIFICATION BASED ON 77-78 DEMANDS & PRICES

5

- Stand -

.

lognormal being μ = 10.595 and σ = 1.210. Furthermore, the number of annual units demanded is also lognormal with parameters μ = 7.717 and σ = 1.407. The L test yields a D_{max} of 0.1097, less than the critical L_{0.95} = 0.1125.

It should be observed that the analysis of the 1977-78 imputed data is based on the original sample of size sixty-two which contains one redundant item (\neq 16) and five items (\neq 4, 5, 6, 14, and 49) that are no longer highintensity. Since item 16 plays a very minor role, the effect of its presence is negligible.

5. THE DISTRIBUTION OF LEADTIME DEMAND

We may think of leadtime demand as a random sum of demands that are independently and identically distributed. Thus leadtime demand may be written as

$$X = D_1 + D_2 + \dots + D_i + \dots D_i, i = 1, 2, \dots, L$$
, (5.1)

where D and L are random variables denoting demand and leadtime. Thus leadtime demand, X, may be thought of as a mixture, while leadtime, L, is the mixing distribution. More specifically, f(X) may be said to be a <u>compound distribution</u> with G(L) being the compounding distribution (Ord, 1972, pp. 64-66).

It can be shown (Drake, pp. 109-112) that for the structure (5.1)

$$E(X) = E(L) \cdot E(D)$$
, (5.2)

and

$$V^{*}(X) = E(L) \cdot V(D) + [E(D)]^{2} \cdot V(L)$$
, (5.3)

the star denoting the variance of leadtime demand with variable leadtime.

If, on the other hand, leadtime is constant at L, then E(X) would be as in (5.2) but

$$V(X) = E(L) \cdot V(D)$$
 (5.4)

We can immediately see the influence on safety stocks if we begin to consider the variability of leadtime. For the same safety factor, k, this increase would be in the ratio

$$f(X) = \left(\frac{E(L) V(D) + [E(D)]^2 V(L)}{E(L) V(D)}\right)^{1/2}$$

$$= \left(1 + \frac{VMR(L)}{VMR(D)} \cdot E(D)\right)^{1/2}, \text{ where VMR denotes the (5.5)}$$

$$\approx \sigma(L) \left(\frac{E(D)}{E(L)}\right)^{1/2}, \text{ for VMR}(D) = 1 \text{ and large VMR}(L).$$

A similar analysis appears in Appendix G of the Phase II report (Hayya, March 31, 1980, pp. 88-94). An explicit treatment of the impact on safety stocks will be considered in the next section.

Theory of Compound Distributions

It would be easy if compound distributions were readily recognizable: sometimes they are, sometimes they are not. Hadley and Whitin (1963, p. 117) have shown that where the procurement leadtime is gamma-distributed with parameters α , 3, and if a Poisson process with mean λ t generates demands with units being demanded one at a time, then the distribution of leadtime demand is a negative binomial with parameters $\alpha + 1$, $\beta/(\beta + \lambda)$. Burgin (March 1972) has treated the case with demand normal and leadtime gamma. There is other work (for example: Sherbrooke, 1968; Ord, 1972; Bott, 1977), but the leadtime distributions are too complex for our present purposes.

In the absence of data on daily demands, the assumption of Poisson demands may be appropriate. Furthermore, the fitting of statistical distributions to leadtime data supports the notion that leadtime is gamma-distributed. Consequently, we can assume that leadtime demand is a negative binomial. Better yet, we can use simulation in order to see whether we can fit the distribution of leadtime demand for our items to the normal or the Laplace. Particularly, if we can fit the distribution of leadtime demand to the Laplace, we can take advantage of the models developed for the Air Force by Presutti and Trepp (June 1970)

Simulation Experiment 1: Poisson Demands; Best Fit for Leadtime--1977-78 Demands

We had no demand distribution data at the writing of this report; and until May 25, 1980, we had no 1980 daily demand data. Consequently we made the assumption that daily demand at the depot is Poisson-distributed, and, at the beginning, we estimated mean daily demand by averaging the quantities ordered over the two most recent years of data: 1977 and 1978. Then we estimated the annual dollars of demand. These ranged from \$6,000 for item no. 3 (Integrated, FSN: 5962004537739) to \$2,825,000 for item no. 37 (20 mm GunBa, FSN: 1005007879802). On the other hand, the standard deviation of leadtime demand, σ_i^* , ranged from 29.33 for item no. 12 (Antenna, FSN: 5821002694508) to 15,385.47 for item no. 23 (PAD-ASSY 1, FSN: 1095009120256). We could see by inspection that dollar value of demand and σ_i^* are hardly related. A calculation of the linear correlation coefficient yields r = 0.256, barely significant at the 0.05 level (the calculated value of the test statistic is t(60) = 2.055). It may, however, be possible to fit an exponential function to the two variables.

A cross-tabulation of annual dollars of demand versus σ_i^{T} produces the frequencies given in Figure 5.1. From the cross-tabulation in Figure 5.1, we choose five items for a simulation experiment. These are:

Item no.	Noun: FSN	<u> •</u> *	<u>Annual \$'s</u>
23	Pad Assy-1: 1095009120256	Very high	High (\$172.000)
37	20 mm. Gun Ba: 1005007879802	(15,385) High (7,422)	Extremely high
39	Guide Rolle: 1005007545293	(7,423) LOW (294)	(\$2,825,000) Very low
50	Lead Tape: 7045008479020	Very high	(\$11,000) Very low (\$16,000)
53	Adapter: 15600094987JH	(10,530) Moderate (1346)	(\$10,000) Moderate (\$79,000)
Annual \$'s (in thousands)

Low Moderate High Very high high 20 - 50 50 - 100 100 - 200 200 - 600 >600 Totals	BI 1111 1111 1111 1111 114	1// /// J18	/// //// / 13 item #50	/// // // // // // // // // //	1 2 2 item #23	18 14 7 3 1 62
Very low 6 - 20 2	#	MAL 111 11 item #39	II 74		l item #50	16
	Very low (30-200)	Low (200-800)	Moderate (800-2000)	High (2,000-10,000)	Very high (10,000-16,000)	Totals
		Standard	veviation of Leadtime Demand,	٥ []] (x)		

A Two-Way Classification of Annual Dollars Versus the Standard Deviation of Leadtime Demand--1977-78 Data Figure 5.l.

29

+

۱۰.'yı

The best fit for the leadtimes and corresponding parameters is given in Table 5.1. Table 5.2 gives the mean and variances of leadtime demand. With Poisson demands and with leadtimes as described in Table 5.1, we generate by simulation distributions of leadtime demand, using samples of size n = 30 and n = 100. We then fit these distributions to the normal and to the Laplace. The results are given in Table 5.3: we see in that table that we are not successful in fitting the normal or the Laplace for the entire distribution of leadtime demand; we are, however, quite successful in fitting the normal and the Laplace to the right half of the distribution of leadtime demand, that is, for k > 0.

Simulation Experiment 2: Poisson Demands; Best fit for Leadtime--1980 Demands

Since demands declined in general from 1977 to 1980, we verified the results of the previous simulation using 1980 demands. Using samples of size n = 30, we again simulate daily Poisson demands and the leadtime distributions given in Table 5.1.

The means and variances of leadtime demand, using 1980 data, are given in Table 5.4; it is the analogue of Table 5.2. The goodness-of-fit of the 1980 leadtime data (actually 1980 demands and 1975-78 leadtimes) to the normal and the Laplace are also verified as seen in Table 5.5. It is seen in Table 5.5 that the fit is better in the right tail of the distribution; the fit improves dramatically beyond k = 1. This is what we are looking for.

TE

al burners

BEST FIT FOR LEADTIME

Item no. FSN	Best Fit	Parameters
23: 1095009120256 (Pad Assy-1)	Norma 1	μ = 384.57; σ = 272.00
37: 1005007879802 (20 mm. Gun Ba)	Gamma	$\alpha = 6.09; \beta = 75.19$
39: 1005007545293 (Guide Rolle)	Lognorma 1	μ = 4.90; σ = 0.41
50: 7045008479020 (Lead tape)	Gamma	α = 5.63; β = 26.60
53: 1560009492087JH (Adapter)	Gamma	α = 3.40; β = 91.74

1. -1 MEANS AND VARIANCES OF LEADTIME DEMAND: 1977-78 DEMAND DATA

I tem No.	1977-80 Expected Daily Demand E(Di)	Expected Leadtime in Days $E(L_i)$	Variance Leadtime in Days V(Li)	Expected Leadtime Demand E(X)	Variance & St. Dev. Leadtime Demand V(X); g(X)
23 (Pad Åssy-1) SN: 1095009120256	56.6 (37.4)*	384.6	73984	21,752.	236,712,811; 15,385.5
37 (20 mm. Gun Ba) SN: 1005007879802	39.9 (24.2)*	459.3	34615	18,323	55,109,982; 7423. 6
39 (Guide Rolle) SN: 1005007545293	6.3 (3.2)*	145.3	3698	915.5	147,747; 384.4
50 (Lead tape) SN: 7045008479020	166.7 (2.9)*	149.6	3977	24,982	110,876,427; 10,530
53 (Adapter) SN: 1560009492087JH	7.9 (4.1)*	312.1	28690	2,478	1,810,423; 1345.5

) $\tilde{}$ represents 1980 demand data

32

•• 'y • • •

GOODNESS OF FIT OF LEADTIME DEMAND TO THE NORMAL AND THE LAPLACE--1977-78 DATA

		Entire Dis	tribution	Right F	alf
Item No: FSN	Sample Size	Nornia D IIIax	Laplace D max	Normal D max	Laplace D max
23: 1095009120256	30	0.1568	0.1143	0.0938	0.1143
(Leadtime normal)	100	0.0998	0.1403*	0.0800	0.1403*
37: 1005007879802	30	0.0784	0.1326	0.0784	0.1001
(Leadtine ganna)	100	0.0743	0.1363*	0.0742	0.0688
39: 1005007545293	30	0.1900	0.1941	0.1190	0.0759
(Leadtime lognormal)	100	0.0858		0.0858	0.0755
50: 7045008479020	30	0.2171	0.2791*	0.1683	0.1181
(Leadtine gamma)	100	0.1416*	0.1851	0.0901	0.1015
53: 1560009492087	30	0.0955	0.1450	0.0531	0.0715
(Leadtine ganma)	100	0.1745*	0.2283*		0.0955
				-	

¹From the Table of the Kolmogorov-Smirnov Statistic, two-sided test, the 0.95 critical value for n=30 is 0.242, that for n=100 is 0.136 (Conover, 1971, p. 397).

 \star

** at k = 0.37; beyond that, the fit is quite good.

MEANS AND VARIANCES OF LEADTIME DEMAND: 1980 DATA

Item no.	Expected Daily Demand E(D _i)	Expected Leadtime in Days E(Lj)	Expected Leadtime Demand E(X)	Variance and Standard Deviation of Leadtime Demand $V(X); \sigma(X)$
23	37.4	384.6	14,384.04	103,500,305.7; 10,173.51
37	24.2	459.3	11,115.06	20,283,043.47; 4503.67
39	3.2	145.3	464.96	27,486.32; 195.79
50	2.9	149.6	433.84	33,881.76; 184.07
53	4.1	312.1	1,279.61	434,781.98; 659.38

34

6- ¹. .

ì

1

FIT OF LEADTIME DEMAND TO THE NORMAL AND THE LAPLACE

Tail	Laplace D max	0.1174 0.1174 0.0241	0.1163 0.0799 0.0271	0.1143 0.0562 0.0290	0.1661 0.0731 0.0580	0.1946 0.1504 0.0916
Right	Normal D max	0.0986 0.0986 0.0173	0.0731 0.0608 0.0324	0.1471 0.0349 0.0329	0.1876 0.0646 0.0646	0.1510 0.1155 0.0938
	×	0 to +∞ 1.00 to +∞ 1.64 to +∞	0 to +∞ 1.00 to +∞ 1.64 to +∞	0 to +∽ 1.00 to +∽ 1.64 to +∞	$\begin{array}{c} 0 & to + & \\ 1 & 00 & to + & \\ 1 & 64 & to + & \\ \end{array}$	0 to +∞ 1.00 to +∞ 1.64 to +∞
stribution	Laplace D max	0.1174	0.1877	0.1893	0.2547*	0.1946
Entire Di	Norma I D max	0.1594	0.1596	0.1686	0.2089	0.1510
	×	-e to +e	-10 tu	-5 to + 8	-6 to +8	-e to + e
	Size	30	30	30	30	30
	ltem No.	53	37	39	50	53

¹From the Table of the Kolmogorov-Smirnov Statistic, two-sided test, the 0.95 significance level for n=30 is 0.242 (Conover, 1971, p. 397).

st Reject the hypothesis of good fit at the ninety-five percent significance level.

6. COST-BENEFIT ANALYSIS

In doing the cost-benefit analysis, we compare the current system at AFLC with an optimal system. Because of arguments presented in the previous section, we choose the Presutti-Trepp Model IV (1970, pp. 248-249) as the optimal system. One simulation, using 1980 data and with $\lambda = 660$, $Z_i = 0.5$, $a_i = 0.23$, is presented in Table 6.1, which is sorted by FSN for convenience. And based on the same parameters and upon an understanding of the present procedures at LORRA, Table 6.2 presents a description of the current system. How each column in these tables is calculated may be respectively seen in Appendices B and C of this report.

The question concerning the mix of items at an ALC and how that mix would change is answered by comparing the corresponding columns in Tables 6.1 and 6.2. The mix will change.

It may be worthwhile to compare the current system with the equivalent optimal system. This comparison is presented in Table 6.3 in terms of several attributes: service level, number of backorders, fill ratio, value of safety stock, and so on.

It may also be worthwhile to study the behavior of the optimal system for different shortage factors, λ_i , and different item essentiality, Z_i . Table 6.4 presents this behavior for $Z_i = 0.5$ and for $\lambda = 660$, 600, 500, 400, 300, 200. Table 6.5 gives a similar comparison for $Z_i = 1$

From Tables 6.4 and 6.5 we produce the exchange curves in Figures 6.1 and 6.2. These exchange curves should give an idea of the additional investment in safety stock required to reduce the number of backorders or to improve the service levels. The reader should keep in mind that these tables and exchange curves are based on a sample of size n = 56. This sample represents

TABLE 6.1. OPTIMAL SYSTEM

; •

5

																							T	11	3 i	P'A	07	ŗŢ	S	36	I	: Q 	۵ ۲:	I:I Pu	נד) ביב	I P XC	F.	101	11(.A.	BL	25					3	/				
(12) Ontieval	Safety .	factor, k	2. 242	2.376	1.681	2 281	2. 485	2.288	2.923	1. 30 3	2.126	PCC - 7	447°		396	.175	3.001	3.257	3.046	. 776	1.077	1.450	1 2 2 2 2 1 E	2.812	150	1.529	2.312	. 603	2.840	2-030	2.052	. 240	1.554	1.903	1, 323	.000	1.090	[4] .	1.038	164.1	. 128	2.661	. 675	1.021	000	.036	2.780	.260	.852	J. 336	86.902	1.552
(11)	Opt imal	50	3497.0	2714.0	17 32. 2	4032-0	3125.8	2527.5	2002.6	5 15.0	876.6			1.05 4		1.955	65°3.4	4101.6	1392.6	281.2	870.8	2.12.01	14/23.0	6665.9	141.6	582.2	1210.8	175.7	19285	605.2	976.1	147.8	1130.5	1.041	475.0	172.9	644.4	227.0	512.4	666.5	120.0	24.89.9	207.5	1.0/12	174.2	619.6	2109.5	124.1	1651.8	5 1 2 0 7 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	10 25 29. 4	1830.9
(10)		6	3118.9	1719.1	501.0	6 76FL	2229.0	1521.3	1528.6	244.3	121.0	C-/19	2.162	5 * H D C		0.015	3767.6	7.171E	2483.9	220.1	254.6	2-211	C	##78.9	85.7	377.2	2-160	122.4	3466.9 300 c	0.640	530.4	111.8	425.4	361.0	1.400 346.8	61.6	1.176	110.5	172.1	517.1	86.3	2038.5	149.8	1.626	1.13	144.7	1426.6	69.7	202-3	6 - / 5C2	5 1665.0	922-6
(6)		ر. ر.	3.08	7.08	27.08	4° 01	2.93	8.72	2.39	41.16	5.66	1.16		21 °C 1		111.22	3.27	1.43	2.21	46.12	63.45			1.61	201.97	23.20	5.53	77.04	1.43	8.07 8.07	13.07	108.31	10.87	9.52		535.94	48.05	207.16	C0.102	18.75	142.20	2.74	65.10 21.20	11.37	110.76	283.25	3.72	160.91	91.38	25-19	1726.22	66.58
(8)	Std. Dev.	αας πμε υςπαπ *(χ)	505.84	1111111	1172.41	54 . 5/ 5/ 1	1086.71	1156.64	541.05	349.695	198.15	9H	47.405 8	02.03	12 - 0C	124.44	06.0016	1165.42	00.1111	76.49	10105	19-113	#7.1/101	2406.08	63.47	219.91	349.78	63.91	514.77 100 10	171.00	48.384	44.76	686.23	124.09	255, 91 156, 91	106.69	299.61	122.45	321.21	187.69	a0.96	580.47	70.24	17.2021	106.901	414.22	809.41	60.09	1138.53	144-67	4 9070.76	876.26
(2)	Variance	bender finger e	255470	1274 144	1259/97	2476748	6600611	4197661	149 340	44677	19265	155555	P12408 02	00.30	60491	10/16	1124242	1154178	12 1976 3	6927	117048	04.94575	9768 90 9768 90	6791670	41128	57077	122145	4085	61 64 61	91.1.61	236620	F 002	470915	16665	00249	11384	H970F	56646	101238	15228	1678	336941	[[6]	225H144		514111	055151	101	1296256	C ()1 71	177101950	1162571
(9)	Mean	Dewand	1976	2465	2025	2/08	4404	4116	1017	651	471	588 57 • • •	17111	5 9		65.6	8505	3282	2525	595	612	2112		2775	267	642	1140	226	1/16	904	562	250	1263	376	4 20 5 7 3	516	1647	116 1	159.	835	118	2620	101		210	1125	1942	141	12 10	4/ 07	1 10 177	1771
(9)	in the second second	l eadt me	5 35. 00	5305.67	51411.07		44 67 14	6582.08	4141.36	27855.61	16-11.86	16967.46	14014.00 01.41045	07.1201	C1 NEENC	1.1.5	8508.22	5468.60	5548.76	2084.44	15676.56	17	00.44461 20.002308	2466-12	07.42.21	4468.44	4349.67	55,21.98	101.4.20	76 17 . 0.1	14570.90	1423.29	28649.58	8478.44	1 5280 . 20 1900 . 00	5004.15	90 n ° 91, 58	4 101.28 211. 28	51574.46	2609.17	2653.28	2152.03	4046.23	147/241/	11714.06	11.11.1	9510.15	10H05.60	62440.00	50 - 50 - 1 50 56 - 10 - 10	104.2211.62	18968.06
(4)	Mean Fourth free	Davs	183.25	215.50	411.40	100. HB	2 Jf . 13	249.17	176.34	0, 296	145.29	00.692		14.444		201.50	253.00	20H.43	169.17	290.00	272. 0	760.04 201.53	10.974	107.24	248.60	249. 56	217.29	270.13	11.611	209.86	13.611	254.50	312.14	276.80	11.141 11.87C	3-0.25	3 12. 12	143.33	403.23 M65.77	2 30.00	154.13	210.18	374.00		2 H H L	261.40	234.33	248.50	2 10.10	27.8.6	148 18.50	264.62
(E)	v Li ell	beward	21.70	15,51	4.92		15.94	14.23	60°)	1.79	7 .*:					90.1	33.62	11.75	14.43	1.62	2, 9H	10.68	5° • • •	5 1 - 2 5	1.07	2.39	5.25	. Ru	14°41	10.94	4.02	. 9 R	4°02	1.36	2.22	1.47	4.95	1.83				12.46	1.06	24.0	86	4.30	N.29	-53	ب م م	6.0	30.83	7.69
(2)		I SN	109471 CE05 CD1	6651150005001	HTE7241452001	1045046949882	1800000000	E & L JE VE SUUL	1005797545266	1005007545267	1005001545243	10050101755574	20H6/6/00-001	NU 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	06234454065604	10450111111111111111	1945164004444	1095405168069	1011525005404	1095306614744	101640110110	104500120241	9671716665.01	01717111111111111	127.000611941	144 1005727651	1560903101141	1	1 60006099968 *** 2020 112040		156.000L 2H4 732	156.0007303854	1560004442087	1470007970253	24101062113469	111000111	3110001427451	421000:/27815	4 1 1 1 1 1 1 1 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5365907855043	5821002694508	5821609906461	5H26-000 146411	5 3 2 5 0 5 M 2 0 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	265 M 7 14101 PL 5	5445001167504	5495-0004451449	5844500000106	5960504009106	700 01 01 01 01 01 01 01 01 01 01 01 01 0	IDIALS 4	AVI.KAUA S
Ξ		ltem .	17	37	1	ş :	; ;	7	-	?	2	ÞÌ ;	2:	<u>م</u> :	23	: -	27	1	5	6.7	9	17	5	2	74	5	3	6.5	25	3.5	33	45	3	3	79		2	2:	21	. 27	71	2	- ;	= ^	7 g	<u>5</u>	~	Ð	~ ·	- 7	R	
			-			-																		i. FH	11: W	ir A C	، <u>۲۰</u> آب ر اب	4.4 YI	13 M	S I		i I St		14. 2 T	Ы Ю 1	ty DD	P. C	-	د ل 	به ند 	ل ا - لا ر		•							-		

lAbbe o.t. OPTIMAL SYSTEM (Continued)

۲

																																														3	8					
(24)	, .	84	46	5	4 S		; ;	;;	0.8	39	38	5	90			32	1	30	53	28	27	5	0 K		5	60	59	58	57	36		5	52	62	51		6	81	5;	22	7 7	:-	=	~	23	Č. a	• •	~	. –	50		
100)	(S)	100 5000 17 8809	1005000511579	100 500 3357 318	1005006949882	576666900001 10060069009001	100 500 701679 3	1005007545266	100 500 7545 267	1005007545293	1005007755579	1005007979802	1005007849718	0121212002001	1095004315657	109 5004918487	1095005168069	109 500 522 770 3	109 < 00 86 14 74 4	1095004747369	1095000120243	947071600.601		127000081690	1440005727651	161101101951	1560004190187	1560006049968	1560006117049	1560006720512	2 F / HHZ 300094 F	1560009492087	1670007970253	253000P264468	304 0006211345	110006994957 110009474451	4210002727815	4310010334204	4440005749186	536-007855943 52230034045045	582 1009906455	5826000 146411	5 83 100480 1563	584 1000738392	589 4000694403	905/91100-585		5960004009106	596 2004537739	704 500H479020	TOTALS AVERAGES	
(22) Annual no. of Backorders	N ⁵¹	16.77	27.55	33.45	32.74		11.14	3.64	18.55	4°90	5.52	1339.95	5. H]	17.85	116-911	27.58	5.65	8. 2A	1 P. 72	47.43	31.5H	CR.N8			13.91	7.28	16.16	6.75	18.79	1.6.1	13.20	31. 34	3.74	1.57	14.14	104.07	95.29	52.21	23.22	70°11	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	17.29	100.62	20.75	04.89		22.80	104.30	2.12	18.54	3284.44 58.65	
(21) Annual	Uperating on Cost	5.44.06	12.118-46	30.07.06	30.29.68	CI .42677	16.91-06	2402 54	13,37.59	2119.41	4171.13	7111073.62	22.94.22	18 2019	29-15-62	16.78.91	3406.47	4 . 11 . 30	Bu 15. 64	11,94,12	CO.11091	16 02 72	PL PL 41	17464.99	7447.22	3104.54	6,46.51	2012.11	91H6.65	[6°6677	0,70 00	21129.05	2176.46	2,186.34	6093.51	47.11.0C1	23.41.65	29111.52	19.49.81	1,101,1	1.34.64	9078.84	6 Yu 26 . 50	86°1 575	24,10,12	87.CC.CC	8.11.01	64016-45	4.01.56	6428.30	781454.12 31415.25	
(20) Amuał Holding	cost venturv Positi	445.8.60	120 11. 13	24755-85	31365.72		16396.79	2193-20	12507.06	63-LET	14 18°75	781.172.54	1464.71 		27540.21	15464.36	EL . 2008	8d6°.09	7101.48	27055.44	18-17671	101 co 101	10.2002	14459.41	1145.11	1249.11	640.45	10.4212	18.2102	1962.67	64°9019	20551-00	1468.70	2084.52	1952.44		22.99.27	27232.60	14412.57	6196.N1 6004 36	C2-066C	8268.99	68616.39	8241.61	284 39.99		RURE JS	61.19.43	4045.72	5587.12	1742044.37 7 31118.65	
(19) Ordering	Amual Im	945.25	407. 13	451.21	461.97	6/0°70	894.26	119.15	5 30. 53	186.17	132° HI.	601.08	101.10	16.96	1495.41	114 55	403.34	462.29	913.76	54 3. 29	10.54, 24	78.704	1245 61	1205-04	11, 11, 91	455.41	755.62	503. 10	75.1.84	117.76	41.14 H	569-26	101,76	301.42	740.52	11.1.1.1	1202.38	900.42	417.19	864.90 1011 - 50	525 89	809.45	410.12	R10.11	840.13	1101.20	HI 711	437.62	155. Hu	841.18	34004.75 696.60	
(1d) \$5	on Hand	8880.66	286 75.51	74940-61	91549. AH	74475°447	141 JE- NO	64.96.11	27458.81	416.8.40	10253.74	1051202.29	14.6471	06 71151	250 16-61	41175.32	H 164.67	11244.38	9114.02	67236.47	14.11/17	11760 14 1. 14 11760 10	345.46 65	16256.61	15289. 46	1425.06	9923.70	5106. 16	16 179. 30	5244.22	17 .Cupt	50691-63	4551.17	6259.56	11373.64	19.00.745 115.00 64	29/41.40	24025.90	39167.23	24-11-11-42 04 94 10	24 - MA - 24	84-3866	191606. 36	16570.37	14-60-61	12 10 10 10	11765 57	164755-60	14728.03	11246.48	3013490.09 51112. 12	
	F111 Katio	. 99 H	346	196.	1 66.		144	946	114.	. 446	3 bb .	. H46		450	(29.	Hot.	909.	нее.	. 96.8	4.4	765-		101	. 85 4	1944	946	446.	666.	115.			H16.	+ 66.	. 946	246.	104 ·	. 856	.H59	- 954 -		4 d H	. 955	046.	. 97H	. 60.		HHH -	426-	949	. 99.2	- 62 I	
(16) Meighted Backorders	ы	H	1.47	7.49	7,08		94.0		3.05	.2H		05.442	. 19			2.50		-61	18.	B. NO	H. 1			3.16	1. 17	315	1.21	.22	1 1				. 30	. 4 1	86°.		6.25	5.03	5. 19		- -		26.43	1.60	1.19	16.47 Ju	HT C	25.64	. 76	1.16	a /a . 79 . 59	
(91)	Service Level	610	. 483	. 954	EH6.	086. Cup	046	(65 -	1.2.1	. 175	.982	777 - T	046.	101-	706	5 65	945	1993		1 65 .	1.15 ·		1 07		. 44.2	190.	Lar .	160.		24.5		446	- 966	1 80.	124.	607. -	264	.612	. AP5		NHP -	.807	. HRI	.920	004.	055	10-11-1 1-1-11-1	. 850	866 .	124	48.617 . 869	
(14) \$\$	Stock	14-12_92	19739.49	5. 10HO. H2	64137.12	10°19376	15 - CI (L.		16111.70	7 184 . 49	6766.26	237402.58	1165.42	1/56	191.94	30448.20	54 30. 84	7192.84	2151, 73	7-14-4-47	14055.82	10 . FE 10 . 10	20151 70	676-67	1472.53	447.00	7464.66	4.1	4347.60	2400.62	CC 1911	12414 30	2314.31	11 19. 29	52H1. 75	00° 71 70731	15 34. 83	3660. OH	21440.35	0, 450,	76 °C P	1045.72	110201.07	A 16.7. 65	00.	10.0.1 11.1	01 JU 20	B3600.77	11476.79	6265.04	1247448.92 23169.45	
(13) . afetv	Stock, K o	11.4.07	2019.26	1446.29	1111.10	21.9/61	2645.43	1127.45	14.008	421.24	49.126	10/8.10	121.70		40.49	11.14	SP.1618	4,0,61	17.65	634.49	117-711	24746.10642		1.15	04.201	808.48	1d. 15	1145.47	11.552	10°/ 17	710.14	1006.14	245.42	530.45	207.60	80°	11.51	14.15	47. LLL	260,61	15.4011	01.1	154 J. H9	264, 38	6. ;	11.0576	15 (1)	769.54	11099.80	246.75	10,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
		-	•	1. 13			r	• *		در ک	الا		: تتر:	هن: ن	L' N	LT V	У Д(1 1	A.	<u>ل</u> لم 	ب م	<u>A</u>	لىلە 	Ê.												-			-		-			-		-			-		~	

and the second for

TABLE 6.2. CURRENT SYSTEM

Ľ

¥ %

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0)	(2)	(3)	(4)	(2)	(9)	(1) Std (hev	(8)	(0)	1017	
	2		Munthly	Months	Leadt ine	Quarterly	teadtime Dewand		(5) Unit		Safety Stock
	2		Denkand	T EddL THK	Denand	INN		- -	Cust	¥	κ.
	11	1005000178809	650 . 96	6.11	3976	4H 3. 60	985. 19	3906	2.03 1	2.63	25.54.27
	\$;	8/51150005001 8/61150005001	C2 .C3#			92.9.06	2132.28	1617	H0 - /		2942.0 20 300
	12	1005.006499989	406.04	10.01	4072	10.171	1127.41	74.76		2.22	2506.74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:7	1005004949923	145. P1	н. 19	12.17	215.00	562.40	2315	10.64	1.73	972.91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ +	18 6667 9003,001	472.08	4.21	A 0 4 4	201.25	01 - 894,	2868	2.91	2.50	1420.27
	2	10020010146743	427.04	9.64	4116	104° HH	322.20	2562	9.72		453.37
	Ţ	1005.007545266	162.63		1101	124.40	246.80	06 1 1	2.38	2.52	621-89
	33	1975467605601		12.27		19-91	262.61	22	41.30 5.25		- 9 - 16 - C
	2 3	100.007257579	(h (h		AAR	01 - CN			00°.C		CO 177
	20	100.00/07079902	726.42	15.11	11121	666.50	2412.12		22.0.55		620-52
	: :	1005001	76 17			40.00	171 18			50.0	154 64
	2		10.54		86	14.48	CH.F.M	5	1		
	1 3	10421111640		7 - 44	E HI	14.75	3 (n. 5 M	140	1.5. At	61	17.94
	: =	1041914197457	127.83	6.1.9	5.1	68-25	149.59	767	111.22	00	00
1 1000000000000000000000000000000000000	77	TRUBLE POOL POL	1008_54	R . 4]	H 505	1042.13	284 2. 51	6051	1.27	3.00	8505.35
	; =	670-71 5005601	472.42	6.95	3282	248-12	671-11	111H		1.00	2011.93
	; 2	107755705901	107.79		2525	304.53	661_0W	7697		2.85	1884.00
	27	1095004614744	48.54	64.6	1691	19.77	116.75	160			120.02
		104500474747	84 BB	9,08	812	116.66	7.4.1. a.A	2.5	34-6-		M29 15
10 10<	27	1 40 021 000 001	PC - 041	8.67	2776	151, 89	945.12	1925	11.79	2.12	2000.94
6 100		362.024.004.601	1121.75	12.42	14 140	671.06	2508.51	67.10	7 8 7	2,10	TC 0105
Distribution Distribution<	, . , .	103 - 200 - 210	16.47	13.61	10.14	66.00	259.07	85 N	10.91	1.52	394.04
3.1 1.1 <th>14</th> <td>1045.10133419</td> <td>1573.46</td> <td>15.8</td> <td>7725</td> <td>525.47</td> <td>911.09</td> <td>9441</td> <td>1.61</td> <td>1.84</td> <td>1679.65</td>	14	1045.10133419	1573.46	15.8	7725	525.47	911.09	9441	1.61	1.84	1679.65
0.1 10.0.0 0.1.1 0.1.2 11.1 0.1.2 11.2	3	1 9916 - 00607.1	37.75	8.24	267	19.25	44.45	193	201.97	00.	00
30 1560004101191 157,46 7.24 114 11,47 194,05 5.53 2.06 403 31 156000410191 157,46 7.24 114 171 170,75 170,15 170 1	5	1449905727651	71.71	49-6	692	17.16	109.09	4 10	23-20	1.21	191.61
5.1 1.600004.97964 7.04 2.6 9.00 22.6 2.4,55 2.4,55 1.0 1.0 2.5,69 9.00 1.0)c	1911011000321	157.46	7.24	1140	13.47	194.09	445	5.53	2.08	402.81
Discretion (17, 0) (17, 11) (17, 10) (17, 10) (17, 11) <th>3</th> <td>1560004 340 147</td> <td>204</td> <td>00-6</td> <td>226</td> <td>24.50</td> <td>67.90</td> <td>150</td> <td>17.04</td> <td>.74</td> <td>50.15</td>	3	1560004 340 147	204	00-6	226	24.50	67.90	150	17.04	.74	50.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	15600060939968	56.4.42	5.97	1166	120.75	642.51	3522	1.43	2.95	1894.31
(1, 0) (1, 0) (2, 0) (2, 0) (1,	57	1560006117049	E.P., 3H	10.24	200	17.09	114.40	4 10	J2.85	1.03	117.59
55 15:1007 (4732) 120.75 4.45 562 74.75 124.71 124.11 144 55 15 124.11 145 155 16 16 <t< td=""><th>ېږ</th><td>1560796229532</td><td>F.H. 29</td><td>1.00</td><td>HON</td><td>45.88</td><td>101.80</td><td>476</td><td>R.07</td><td>1.85</td><td>192.09</td></t<>	ېږ	1560796229532	F.H. 29	1.00	HON	45.88	101.80	476	R.07	1.85	192.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>ن</u> 5	156.3406.294732	120.75	4.65	56.7	74.75	124./1	724	13.07	1.34	167.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1560007603854	24.42	47.4	250	28.07	74.09	111	1.8. 11	. 45	33.57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	15600094420H7	121.39	10.40	1263	53.98	168.45	128	10.97	*6 *	159.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	147000797070253	40.75	9.23	376	116.11	184.95	112	9.52	2.63	375.99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŗ	2510908269468	ff. 25	6.5H	9	10.14	151.47	541	6.44	2.18	330.71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	C#F11290000000	0 -	F. 51	275	10.03	80.23	64 6	25.44	86.	74-77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1-66669600115	17°hh	11.67	910	22. 14		265	16.000	00.	00.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2	36867666601111		64°11		1/2. BH	1 C . D / C	164		12.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10 46	15 44		01.00			27 1 45		
2 5166007855941 108.92 7.67 815 70.25 170.46 654 18.75 1.38 23.00 1 592100996461 37.3.92 7.01 26.20 540.75 1724.44 25.70 31.0 251 3.00 3.00 3.11 4.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.	22	44400.5749186			123		14.7 6.6				77.72 77 051
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$: 2	5165007855947	108.92	7.67	e e	30.05	170-HR		18.75	1. 18	235.86
13 5921004906461 373.92 7.01 2620 540.75 1224.44 2244 2.74 3.00 2613 11 5431000416411 31.75 12.63 401 14.56 53.74 31.76 200 255 23 11 5431000416411 31.75 12.63 901 14.56 53.74 100 55 23 12 544100145411 31.75 12.43 7.41 512.64 401 17.65 11.8 214 2.74 3.00 251 491 911.76 1011 11.65 1.18 191.49 244 2.74 3.00 2619 591 591 290 291 <	12	5821002694508	23,00	5.14	119	25,50	45.69	H I	142.20		. 92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	5921004906461	373.92	1.01	2620	540.75	1224.44	2244	2.74	3-00	2619.68
11 5.331004001/63 164.54 9.19 1548 68.13 191.94 1011 11.38 .21 40 2 54410007032 743 612 63.49 157.64 4070 1.65 1.18 .21 40 10 549500103403 2243 7.41 612 63.49 191.94 117 116 115 116 115 101 11.38 .21 40 10 549500103403 128.91 9.49 214 1125 114.13 112.45 114 17 246.45 100 117 123.25 00 1664 50 1664 50 1664 50 1664 102 10.2 102 10.2 102 10.2 10 10 101 101 101 101 101 101 101 101 102 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 100 101 101 1	-	5826000146411	31.75	12.63	104	14.56	53.74	190	w5.10	- 55	29.66
2 544 1007 18 392 74.33 7.41 612 61.49 151.64 470 11.65 1.18 185 10 5.495 001107 160 129.39 9.49 778 114.13 119.04 176 1.16 1.16 185 15 5.495 001107 160 129.49 778 114.13 119.04 771 611.56 1.00 166 16 5.495 001107 160 17.00 8 549.56 149.13 177.55 619.24 166 64 1 5.495 0004017 160 17.00 8 541.75 140.75 142.75 160.01 22.96 166 1 5.465 0004017 160 17.00 12.30 141.75 177.75 142.05 1.00 22.96 166 1 5.465 0004017 160 114.57 9.10 12.30 117.75 144.95 1.00 1.00 22.16 166 1 5.465 0004017 160 114.57 9.10 117.75 144.95 1.00 22.16 166 22.16 166 22.16 166 22.16 166 22.1	=	5331004401563	168.54	9.19	1548	68.13	191.44	1011	/1.38	.21	40.54
10 5.49500000000000000000000000000000000000	~	544 10007 38 392	78.34	14.7	612	6 J. HR	157.64	4 70	J1.65	1.18	185.75
15 5.4456011.7508 128.41 H.71 113.55 119.08 771 2.3.25 .00 3 5.495004471149 244.63 7.81 1942 240.40 5.91.56 1492 3.72 2.80 1664 3 5.495004471149 244.64 7.81 1942 240.40 5.91.56 1492 3.72 2.80 1664 3 5.4950044971160 17.700 8.28 141 17.75 45.45 140.00 819 3.13 5.2 1664 3 5.94500449106 114.59 2676 219.45 714.68 2512 1.07 3.00 2216 3 5.94500441719 277.04 11.29 2676 219.45 716.68 2512 1.07 3.02 201 3.02 201 3.02 201 3.02 201 1.42 201 1.42 201 1.42 201 1.42 201 1.42 201 3.02 3.01 3.02 201 1.42 201 1.42 201 1.42 201 1.42 201 1.42	2	5895000494403	29.24	57.5	916	29.09	84.19	176	344.76	00'	00.
y 5,40,5000051149 240,63 7,61 1942 240,40 5,11.56 1492 3.72 2.60 16.4 x 5,49,50000197160 17,00 8.28 141 17,75 45,45 10.0 1220 9 .22 9 .22 9 x 5,47,5000019106 116.57 9.00 1230 114.75 114.00 819 x11.38 .52 166 x 5,46,2000011719 271,04 11.29 2676 2914,45 716.64 2913 3.00 2216 x 70450000117139 271,04 815 115.06 201.77 5.4 .5.19 1.42 281 x0450105 17.29 4.99 415 115.06 201.77 5.4 .5.19 1.42 281 x0450105 17.79 4.99 415 115.71 301.77 5.4 .5.19 1.42 281 x0450105 12724403 10127 38 27244,03 1011 3726.22 00.28 976	15	5445001167508	124.41	H.71	1125	114.13	119.04	113	2.1.25	60 -	00-
B 5495004427160 117,00 8.28 141 17,75 45,95 102 100.91 .22 9 3 595200451719 277.04 11.29 2676 219,75 114,00 819 512 1.07 3.00 2216 50 794500451719 277.04 11.29 2676 219,75 115,64 2512 1.07 3.00 2297 50 7945004479020 877.29 491.95 110377 10127.38 27274.03 40141 3726.22 00.28 4977	7	5 40 CO 00 4 2 1 3 4 0	24H.63	7.81	2 # 6 1	240.40	5.03.56	1492	3.72	2.80	1664.05
/ 596/3004/07106 116/57 9.00 1230 114.75 114.00 819 71.38 .52 166 3 596/2004/1719 277.04 11.29 2676 219.85 736.68 2512 1.07 3.00 2210 50 794/60164 790.20 87.29 4.99 4.59 145.06 201.77 5.4 25.39 1.42 281 10/ALS 12920.65 491.95 110377 10127,38 272/4.03 40141 3726.22 00.28 49776	70 1	5895007497160	17.00	8.28	141	17.75	45.45	102	160.91	.22	96.6
5 595200517179 277.04 11.29 2676 219.45 736.68 2512 1.07 3.00 2210 50 79450040 59020 877.29 4.99 43 115.06 201.77 524 25.39 1.42 281 10/ALS 12920.65 491.95 110377 10127.38 272/4.03 40141 3726.22 80.28 49776	~	196, 1004, 001, 106	116.57	9-00	1230	114.75	J1H_00	819	v1.38	. 52	166.61
UINT TO THE TO TO THE TO T	-	6611656002965	247.04	11-29	2676	219.85	716.68	2512	1.07	00'E	2210.05
	2	7 116.7 million (Million (1997)	12426 45	46.4 101 05		115.0t	201.17				05.785 02.785
			UN OLC			06 . / 21 DI			3140-22		FC.0///F

The Press

IABLE 6.2. CURRENT SYSILM (Continued)

ni D

۲

(14 Actu Meigh	(16) (17) (18) 5 Annual Inventory 1:11 Ordering IIo	(19) (20 Annual Annu Dìdiny Cost Opera)) (21) al Annual iting Units	(22)	(53)
اب نن	un Hand Ritig Cost (Inver	illory Pusition, Cus	t Backordereu	FSN Iter	년 DO.
1. 10.	14005.25 1.000 9A2.14 23600 13 1.000 942.14	6034.00 6924	. 14 . 25	1005000178809 1	8 ¥
42.24	36656.76 .894 882.14	20519.12 21405	1.26 188.47	1005003357318	
94.94	977342.67 _ 910 BH2.14	17287.89 19175	1.03 439.33	100 50 069 998 82	45
63.24 .7	24013.25	13115.38 1401/	1.52 474.74	1005006949923	**
14 10 17 17 17 17 17 17 17 17 17 17 17 17 17		4091.24 92 1261.4		1 5 6 6 6 6 6 0 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	
	3284°11 .969 429.15	1111.77 1764	61.43	100 5007545266	
54 B2.4	23206.23 .960 882.14	11505.5P 1238/	1.72 26.02	1005007545267	0 #
. 74 . 94	1955.75989 470.6H	14 /4. 18 194.	16 13.16	1005007545293	66
1°46 °49		3244.43 5744 147.00 20204	11.61 15.11	V144411004031	9.7
95°)('164	775078.90 .776 882.14 /	//6164.98 /0/04/ 2275 48 280	21.4661 21.	1002131002001	22
			1. 10 1. 10 1. 10 1. 10		
65° (3°6	401.71 .799 SAJ.64	4102.91 4684	. 55 56.27	1095001111640	
2.73 .50	41259.05 .940 8H2.14	1171.19 32652	13. 91.51	1095004335657	
3. н.3 99	17731.35 .997 BH2.14	15064.32 15951	1.46 42.29	1095004918487	32
4.63 .96	F122.50 .989 530.58	2754.65 2782	23 63.66	1095005168069	5
5.09 .95	7154.98 .987 SH3.64	2021.98 89.1501	.62 69.47	1045005227703	õ
76° 80°	12277.23 . 440 8H2.14	7195.14 3671	. 28 5.97	104 50 046 14744	29
14.61 .43	46f04.64 .907 9H2.14	22021.90 22984	04 100.27	10950 0874 7369	28
.23 1.00	14921.23 .499 BA2.14	19954.79 16441 60.30 60 6000		E 0202120260	2
			20.0012 24.1 00.001 3C	0105336005001	22
		1172H 15 1241	71 21 21 12 12 12 12 12 12 12 12 12 12 12		35
2.5.7		16171 01-10191	-84 44-28	1270000831941	24
7. 00 .77	11/4 10 917 AH2.14	5 C44. 58 F420	72 71.36	1440005727651	61
1.11 .40	4674, 14 . 975 543.64	2561.73 114/	. 37 47.46	1560003101191	60
1.06 .64	9125,99 .952 882.14	6221.25 710.	14.37	15600 643 901 87	59 59
. 17 . 44	5227.5H .949 561.19	2 110. 42 2474		1560006099968	58
4.91 .76	10524.05 .930 882.14	7724.30 8614	, 44 57.41	1560006117049	57
1.54 .90	1494.21 .479 .429.12 22.201 .201 .201 .201			1560006220532	ŝ
22.05 EU.22	49°545 7/M° (NA°664/	- CLUL - C - C - C - C - C - C - C - C - C -		26/63/00101011	, 4 1 1
19 86 90		19911 19-20/20	1.70 271.Au	15600.044 92081	5.2
00 1 00	74A.40 1.000 381.97	2051. 39 2411	- 11 - 00	1670007970253	25
2.29 .92	3500-06 .975 429-15	1536.24 , 196.	39 20.20	2530008269468	62
3.69 .75	7263.92 .943 887.14	4476.08 5854		3040006211345	5
5.20 .50	76.660.90 .862 862.14	79972, a.6 8085	.00 73.20	3110006999955	21
	56244.14 .990 BKZ.14	511/20*2 H 5/103			2.1
		1007 61 71107		1001010101017	
18.49 73		11418.22 14424	1.36 82.69	###00057#91HE	1
1. 13 . 42	10°91.57 .983 882.14	F049 147 6403	.61 22.2H	5365007855943	22
1.27 .58	10E73_04912 882.14	62H2. 39 7164	1.53 24.23	5821002694508	12
.00 1.00	19251.57 1.000 583.64	4008.78 4594	.42 .05	5821009906461	:
1.74 .72	H359.72 .910 BA2.14	7876.35 8754		5826000146411	- ;
164.95 .52	62532.62 .690 882.14	34 701.31 35264	.45 627.91	5831008803563	:
2.96 .HG	13F0P.77 .959 8P2.14	7517.56 8394	.70 38.51	5841000712392	2
7. 14	34743.04 .806 882.14	28501.45 2935.	••54 68•24	5895000894403	2
75.15	124129.12 .H24 AH2.14	98482.47 99364	1.61 272.01	5695001167508	5
5 - 14 - 7	H3H2H2 046° F 13° 245H	3721.56 430/	28.95	5895004451349	σ,
3. HI .6	10+19.26 .H's0 68.2.14	7467.58 8143	.72 30.56	E 8950 094 97160	ec 1
102.67	71429.08 242 882.14	17955.52 3081/	.66 418.02	40160000000055	
		5750.58 6632	72 14-18	7045008479020	20
INCH. Hu Bu 5		198315-65 1541424	.07 10147.26		
13. 17 . 80	16725.04 .921 769.36	26155.99 27522	. 16 181.20	AVERAGES	

TABLE 6.3

ì

. .

۲

۰.

CURRENT VERSUS OPTIMAL SYSTEM λ=660, /R=2, Z₁=0.5, n=56, WR-ALC

		Current	<u>Optimal</u>	Difference
	Average Service Level	79.6%	86.9%	7.3%
	No. of Units backordered at any time, eta_T	3,738	950	-2788
	Annual number of backorders, eta_{N}	10,147	3284	-6863
4.	Fill ratio	92.1%	95.8%	3.7%
5.	Value of Average Inventory on Hand	\$1,923,768	\$3,013,490	\$1, 089,722
و.	Value of Safety Stocks	\$ 570 , 085	\$1, 297 ,489	\$727,404
7.	Annual Operating Cost	\$1 ,541,420	\$1,781,654	\$240,234
.	Two Months of Demand	25,850	25,850	1
б	Safety Stock, units	49,777	105,354	55,577

-

۲

TABLE **6.4** Optimal system, Z_i=1/2

		<u> </u>	λ=600	λ=500	λ=400	<u> </u>	<u> </u>
-	Service Level	.869	.859	.840	.822	.798	.757
2.	No. of Units Backordered at any time, eta_T	950	1039	1225	1375	1552	1902
т	Annual no. of Backorders, B _N	3284	3580	4170	4670	5251	6369
4.	Fill Ratio	.958	.954	.948	.943	.936	.924
5.	Value of Inventory on Hand	\$3013,490	\$2905441	\$2712,119	\$2577232	\$2451,861	\$2281986
6.	Value of Safety Stocks	\$1297488	\$1,175,499	\$954,049	\$805215	\$672074	\$487,044
7.	. Annual Operating Cost	\$1,781,654	\$17 53596	\$1,702563	\$1,668,431	\$1£37£09	\$1,595,252
8.	. Two Months of Demand in Units	25450	25850	25850	25850	25850	25850
0	. Safety Stock in Units	105354	102075	95850	88,795	7979	67,590

42

an salaran i

TABLE 6.5

Ľ

OPTIMAL SYSTEM, Z_i=1

.

		<u>γ=660</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
	. Service Level	. 930	.923	606.	.889	.859	.822
<u>ې</u>	. No. of Units Backordered at any time, eta_T	483	531	634	789	1039	1375
ъ.	. Annual no. of Backorders, $eta_{\sf N}$	1696	1861	2213	2740	3580	4670
4	. Fill Ratio	116.	.975	070.	.964	. 954	.943
ц л	. Value of Inventory on Hand	\$3867,276	\$3745094	\$3516640	\$3241695	\$2905441	\$2577,232
ē.	. Value of Safety Stocks	\$2227341	\$2097,106	\$1,851,772	\$1551507	\$1,175,499	\$805215
7.	. Annual Operating Cost	\$1,995520	\$ 1,965,566	65 (6061 \$	\$1,840,078	\$1753596	\$1,668,431
8.	. Two Months of Demand in Units	25,850	25850	25850	25850	25850	25,850
Ο	. Safety Stock in Units	129342	126038	119726	112000	102075	88795

....

L

an annual procurement of \$4.9 million. Since total annual procurement is one billion dollars, our sample represents about one-half of one percent of total procurement. Consequently, the numbers in this section must be multiplied by 200 in order to fathom the impact on the total inventory system. Returning to Table 6.3, for example, we see that to bring the system to optimality would require a one-time additional procurement for safety stocks of \$727,400 x 200 \approx \$150 million. We can also see that the annual operating cost will increase by \$240,234 x 200 \approx \$50 million. This is the price to pay in order to reduce backorders by 6663 x 200 \approx 1,400,000 units per year.

In Figures 6.1 and 6.2, we see that the current policy itself is not on the optimal curve. Thus, AFLC can presently reduce the number of backorders without any additional investment in safety stocks. Conversely, with the current number of backorders, AFLC can reduce its investment in safety stocks. We illustrate by means of Figure 6.2. At present, the total number of annual backorders for the sample is about 10,000; the total safety stock is about S600,000. With the same investment in safety stock, we can immediately reduce our annual backorders to about 5750 units per year. This translates to a reduction of backorders for the total system of about (10,000 - 5750) X 200 = 850,000 units per year. Thus the number of backorders can be almost halved by incorporating leadtime variability and by adhering to the Presutti-Trepp optimal model.

7. LIMITATIONS, ASSUMPTIONS, RESEARCH QUESTIONS, METHODS AND ANALYSES USED

Limitations

The uninvolved reader may find fault with a study of this kind, but considering the limited scope originally envisaged, that reader may perhaps discern the amount of work that was nevertheless put in it. We are dealing here with inventories whose worth runs into the billions and whose management is necessarily very complex. Consequently, it would be vain to claim that this modest study will resolve all the problems of shortages encountered by AFLC.

Assumptions

Since we did not have daily demand, but only demand rates, it was convenient to assume that daily demand was Poisson-distributed. LORRA had supplied us with daily shipment data on two items, but shipment data are not demand data. The daily shipment data do not appear to conform to the Poisson distribution.

We had also assumed that leadtimes and demand rates were statistically independent. Lacking simultaneous demand and leadtime data, it was impossible to validate that assumption.

Finally, we implicitly assumed that the sample of fifty-six high-intensity items is representative of the population of such items. In fact, it was not a random but a convenience sample.

Research Questions

In a study of this kind, the questions raised by the research overwhelm the answers provided, and this study is no exception. Also the questions raised depend very much on the reader's point of view. From our point of view, there are numerous questions, and as an example we ask only two:

1. Why the incongruities in the mathematics of the current system? In calculating the safety factors, AFLC relies on a Presutti-Trepp formula which in turn is based on leadtime demand being Laplacedistributed. But in calculating the quarterly MAD, AFLC pretends that leadtime demand is normally distributed. One effect of this incongruity is in the calculation of the standard deviation of leadtime demand, σ , from MAD. We see that for the normal,

$$\hat{\sigma} = 1.25 \text{ MAD}$$
 , (7.1)

whereas for the Laplace,

$$\hat{\sigma} = MAD$$
 (7.2)

Thus, with Laplace leadtime demand, we should use (7.2) rather than (7.1).

2. What is a proper definition of fill ratio? Does fill ratio address the percentage of requisitions filled or the annual fraction of demand satisfied? Using the latter as a definition of theoretical fill ratio does not produce results that are compatible with actual fill rates, as may be seen in Table 7.1. Of course, the calculation of theoretical fill ratio in Table 7.1 does not consider customer priority.

TA	BL	E.	7	•	1

CURRENT FILL RATES: REPORTED VS. THEORETICAL

			Fill Rates	
Item no.	FSN	Reported ¹	Theoretical ²	1 - β _T /Q
9	5895004451349	81.90	99.0%	99.6
8	5895009497160	63.06	85.0	93.8
7	5960004009106	98.79	74.5	74.9
3	5962004537739	67.80	90.4	92.3
10	5895000894403	98.75	80.6	91.7
2	5841000738392	100.00	95.9	98.74
15	589001167508	73.29	82.4	93.33
11	5831008803563	99.76	69.0	67.4
13	5821009906461	100.00	100.0	100.0
12	5821002694508	37.28	91.2	98.2
50	7045008479020	99.41	98.6	99.7
51	3040006211345	17.09	93.3	98.2
52	1670007970253	72.57	100.0	100.0
53	1560009492087	95.08	81.3	87.6
28	1095008747369	100.00	90.7	93.1
27	1095009120243	95.92	99.9	100.0
29	1095008614744	100.00	99.0	99.8
30	1095005227703	100.00	98.7	99.6

		Fill Rates		
Item no.	FSN	Reported ¹	Theoretical ²	1 - β _T /Q
31	1095105168069	98.49%	98.9%	99.7
32	1095004918487	96.47	99.7	99.9
33	1095004335657	77.70	94.0	99.3
34	1095001111640	84.73	79 . 9 [°]	87.6
35	1005008938230	95.55	85.3	94.0
36	1005007889718	99.25	100.0	100.0
37	1005007879802	93.55	97.6	83.6
38	1005007755579	98.96	98.6	99.4
39	1005007545293	100.00	98.9	99.7
40	1005007545267	100.00	96.0	99.4
41	1005007545266	100.00	96.9	99.1
42	1005007016793	100.00	91.2	97.2
43	1005006999923	100.00	89.7	94.5
44	1005006999931	100.00	97.9	99.4
45	1005006999882	100.00	91.0	92.2
46	1005000511579	96.15	100.0	100.0
47	1005003357318	100.00	89.4	90.5
48	1005000178809	100.00	100.0	100.0

TABLE 7.1 (Continued)

¹From fill rates for April 1979 - March 1980 obtained from LORRA

 $^2 {\rm From}$ a computer simulation of the current system

50

44 (g) 14 (g) Indeed, there are several methods of calculating theoretical fill ratios. Brown (1967, pp. 91-92) comments on this, suggesting to us the use of $1-\beta_T/Q$. This alternative computation is also given in Table 7.1.

Methods and Analyses Used

In fitting leadtime data to the exponential, the gamma, the normal, the Weibull, and the lognormal, we used an existing U.S. Army computer program (1971). In testing the leadtime data for randomness, we wrote our own program. We similarly wrote our own computer programs in simulating leadtime demand, fitting leadtime demand to the normal and the Laplace, doing ABC classification of inventory, and in simulating the current and optimal systems. Furthermore, we wrote a simulation program to show that the long right tail of the distribution of forecast errors produced by Demmy (1979) was due to a wrong statistical procedure.

8. FINDINGS AND CONCLUSIONS

The major finding of this study is that leadtime variability does indeed influence safety stocks, and in order to maintain these at appropriate levels, a one-time investment of about \$150 million is necessary. Also necessary would be an increase in annual operating expenditure of approximately \$50 million.

Even if AFLC does not wish to build up its stocks, it can immediately halve its number of backorders by explicitly incorporating leadtime variability in its calculations and by adhering to the Presutti-Trepp optimal model. This would require a different mix of items and, in general, larger order quantities.

We have also found it worthwhile to use an ABC classification of the high-intensity items. On the one hand, ABC classification is dynamic and thus much superior to the statitic SMGC in current use at AFLC. On the other, the ABC classification points directly to the few high-intensity items management should really concentrate its attention upon. In this regard the SMGC seems anachronistic.

52

APPENDIX A

MEMO OF UNDERSTANDING (MARCH 7, 1980)

MEMO OF UNDERSTANDING

SUBJECT: Hayya Leadtime Variability Study - AF Contract F33615-79-C-5143

1. The results from Phase I of AF Contract F33615-79-C-5143, Leadtime Variability in Inventory Requirements Projection, were discussed in the 5 Feb meeting of contractor Dr. Jack C. Hayya, Capt Paul Gross/AFBRMC and representatives from LORRA. During the meeting it was determined that Phases II & III could not be conducted as originally planned. The leadtime distributions found in Phase I were for 16 specific items during the 76-79 time period. Thus the simulation model, INSSIM, which has 71-75 data cannot be used in Phase II.

2. Leadtime data on 46 more items have been given to Dr. Hayya and he has agreed to curve fit their distribution using the same methods as were used on the original 16 items. Also he will determine and analyze the convolution of the leadtime distributions with demand distributions assumed to be Normal, Laplace, or "skewed Normal". Dr. W. Steven Denny's results in "Statistical Characteristics of Forecasting Techniques for D062 Economic Order Quantity Items" shows distributions for demands that are near normal but skewed. The one in Table IV-2 for OC with SMGC=2 will be used for this study.

3. A data request for 76-79 demands for the 62 items on which Hayya has leadtime is being processed and should be available in March. Hayya will use this to determine the actual leadtime demands for the items and test the fit of the curves to the p.d.f.s specified in the original contract. This also will be compared to the p.d.f.s of the convoluted distributions discussed in paragraph two above.

4. Dr. Hayya has also agreed to investigate our Variable Safety Level formula. He will conduct an analysis of the sensitivity of the safety level to changes in variance from demand variance to leadtime demand variance. Typical holding costs range from .15 to .25. The implied shortage factor or Lagrangian multiplier normally ranges from 350 to 600. The Lagrangian multiplier is always adjusted so that each ALC will have a total current safety level stock of dollar value equivalent to 2 months supply of all stock at that ALC. Any indication of how the mix of items at an ALC will change when using leadtime demand variance is important. Dr. Hayya will also make recommendations on possible marginal analysis techniques which will use variable leadtime demands to minimize back orders.

5. A copy of "More Ado About Economic Order Quantities (EOQ)" by Victor J. Presutti Jr and Richard C. Trepp was furnished Dr. Hayya when he visited W-P AFB on 5 Feb 1980. Copies of the EOQ briefing, Vic Presutti's VSL briefing, and "Measurement and Implications of Production Leadtime Variability", by the US Army Inventory Research Office will be furnished Dr. Hayya along with a copy of this memo. Demand data on the 62 items will be furnished as soon as available. APPENDIX B

EXPLANATION OF TABLE 6.1: OPTIMAL SYSTEM

This table can be sorted by item no. or by FSN. The table has 24 columns, 12 on page 1 and 12 on page 2. I shall use the data for item #48 to illustrate. Col. 1: Item no., following the sequence in the Phase II report

Col. 2: FSN

Col. 3: Daily Demand, E(d)

Col. 4: Average leadtime in days, E(L)

Col. 5: Variance of leadtime, V(L)

Col. 6: Mean of leadtime Demand

 $E(x) = E(L) \cdot E(D)$ = (183.25) (21.70) = 3976 ,

for item ≠48

Col. 7: Variance of leadtime Demand

 $V^{*}(x) = E(L) \cdot V(D) + [E(D)]^{2} V(L)$ = $E(L) \cdot E(D) + [E(D)]^{2} V(L)$, for Poisson demands = $E(x) + [E(D)]^{2} V(L)$ = $3976 + (21.70)^{2} (535)$ = 255,902.

(The computer result of 255,870 is more accurate)

Col. 8: The standard deviation of leadtime demand, $\sigma^{*}(x)$

 $\sigma^{*}(x) = \sqrt{V^{*}(x)}$ $= \sqrt{255870}$ = 505.34.

Col. 9: Unit cost, c_i

Col. 10: The Wilson Formula

$$Q_{w} = \sqrt{\frac{2A_{i}D_{i}}{a_{i}c_{i}}}$$

where $A_i = 441.07 , if $c_i D_i > $19,500$, \$291.82 otherwise (See AFLCR 57-6 (C3), 22 June 1979),

$$D_i$$
 = Annual demand,
 a_i = holding cost factor, which is 0.23 in this example,
 c_i = unit cost .

Hence

$$Q_{w} = \sqrt{\frac{2(441.07)(650.96)(12)}{(0.23)(3.08)}}$$

= 3118.9 .

= 3497 .

Col. 11: Optimal EOQ, Q^{*}, calculated according to formula (14) in Presutti and Trepp (1970, p. 249):

$$Q_{i}^{*} = 0.707 \ \sigma_{i}^{*} + \left\{ (2A_{i}D_{i}/a_{i}c_{i}) + \sigma_{i}^{*2}/2 \right\}^{1/2}$$

= 0.707 \sigma_{i}^{*} + \{Q_{w}^{2} + \sigma_{i}^{*2}/2 \}^{1/2}
= 0.707 (505.84) + \{(3118.9)^{2} + 255870/2 \}^{1/2}

What is necessary in order to use the above formula is for $\frac{Q_i}{\sigma_i^*} > 2 \text{ or } 3$. For item =48, $\frac{Q_i}{\sigma_i^*} = \frac{3497}{505.84} = 6.9$. Col. 12: Optimal safety factor, k_i^* , calculated according to formula IV.2 in Presutti and Trepp (1970, p. 249):

$$k_{i} = -\frac{1}{\sqrt{2}} \ln \left[\frac{\sqrt{2}Q_{i}^{*}a_{i}c_{i}}{0.5(-\lambda)Z_{i}\sigma_{i}(1-\exp(-\sqrt{2}\frac{Q_{i}^{*}}{\sigma_{i}^{*}})} \right]$$

Here we are using

$$-\lambda = 660$$
 , $Z_i = \frac{1}{2}$, $a_i = 0.23$.

Then

$$k_{i} = -0.707 \ln \left[\frac{\sqrt{2}(3497)(0.23)(3.08)}{0.5(660)(0.5)(505.84)(1-e^{-\sqrt{2}(3497)(505.84)}} \right]$$

$$= -0.707 \ln \left[\frac{3503.39}{83,458.86} \right]$$

= - 0.707 ln 0.04197

= 2.242 .

Col. 13: Safety stock k o

$$k^{*}\sigma^{*} = (2.242))505.84)$$

= 1134 , for item #48 .

Col. 14: Value of safety stock,

$$c_i k_{\sigma}^{*} = $3.08 (1134)$$

= \$3492 .

Col. 15: Service level. This is

$$1 - \frac{1}{2} e^{-\sqrt{2}k_i^*} = 1 - \frac{1}{2} e^{-\sqrt{2}(2.242)}$$
$$= 0.979$$
$$\simeq 0.98 .$$

Col. 16: Weighted Backorders at any time, β_T . We may think of this as the number of requisitions backordered when $Z_i \neq 1$. If $Z_i = 1$, β_T would be the average number of units backordered at any time.

We use formula IV.2 (Presutti and Trepp, p. 249) or formula (10) (Presutti and Trepp, p. 246). From formula IV.2, we have

$$\beta_{T} = \frac{0.5}{2} \frac{Z_{i} \sigma_{i}^{*2}}{Q_{i}^{*}} \left(1 - e^{-\sqrt{2}} \frac{Q_{i}^{*}}{\sigma_{i}^{*}}\right) e^{-\sqrt{2}k_{i}^{*}}$$

For item #48,

$$\beta_{T} = \frac{0.5}{2} \frac{(\frac{1}{2})(255870)}{3497} \left(1 - e^{-\sqrt{2}} \frac{3497}{505.84}\right) e^{-\sqrt{2}} (0.242)$$
$$= 0.38$$

The actual units backordered at any time would be

$$\frac{0.38}{Z_i} = \frac{0.38}{\frac{1}{2}} = 0.76 .$$

Col. 17: The fill ratio is

Annual backorders are given in Col. 22. They are calculated according to formula (9) in Presutti and Trepp (1970, p. 246):

$$B_{\rm N} = \frac{0.5}{\sqrt{2}} \frac{D_{\rm i} \sigma_{\rm i}}{Q_{\rm i}^{\star}} \left(1 - e^{-\sqrt{2}} Q_{\rm i}^{\star} / \sigma_{\rm i}^{\star}\right) e^{-\sqrt{2}} k_{\rm i}^{\star}$$
$$= \frac{0.5}{\sqrt{2}} \frac{(21.70 \times 360)(505.34)}{3497} \quad (0.999943)(0.041976)$$
$$= 16.77 \quad \text{units per year} \quad .$$

Actually,

$$B_{N} = \sqrt{2} \beta_{T} D_{i}/Z_{i} \sigma_{i}^{*}$$
$$= \sqrt{2} (0.38)(7812) / (\frac{1}{2})(505.84)$$

= 16.60 (the difference is due to rounding) .

Hence, the fill ratio is

$$\frac{7812 - 16.77}{7812} = 0.998$$

60

in i ga ga s Col. 18: Average value of inventory on hand.

, The formula is from Presutti and Trepp (1970, p. 247), where

Value E[OH] =
$$(k\sigma + Q/2 + \beta_T) c_i$$

= $(k\sigma + Q/2 + \beta_T/Z_i) c_i$.

For item #48, this would be

Value
$$[OH] = [1134 + \frac{3497}{2} + 2(0.38)] 3.08$$

= \$8880.44.

Col. 19: Annual Ordering Cost. This is

$$\frac{A_i D_i}{Q_i} = \frac{(\$441)}{3497} \frac{7812}{3497}$$
$$= \$985.15$$

Col. 20: Annual holding cost, based on average inventory position. This is

$$a_{i}c_{i}(\mu_{i} + k_{i}\sigma_{i} + \frac{Q_{i}}{2})$$

 $= 0.23(3.08) (3976 + 1134 + \frac{3497}{2}) = 4858.56 .

Col. 21: Annual Operating Cost. This is from Formula IV.1 (Presutti and Trepp, p. 249):

.

$$\frac{A_i D_i}{Q_i} + a_i c_i \left(\mu_i + k_i \sigma_i + \frac{Q_i}{2} \right)$$

= 985.25 + 4858.80

= \$5844.05.

Col. 22: Annual no. of backorders.

Col. 23: FSN

Col. 24: Item ≠

62

÷

APPENDIX C

EXPLANATION OF TABLE 6.2: AFLC'S CURRENT SYSTEM

This table can also be sorted by item no. or by FSN. The table has 23 columns, 11 on page 1 and 12 on page 2. Again I use the data for item #48 to illustrate.

Col. 1: Item no.

Col. 2: FSN

Col. 3: Monthly demand, E(D)

Col. 4: Months leadtime, E(L)

Col. 5: Leadtime Demand:

 $E(x) = E(L) \cdot E(D)$

= (6.11)(650.96)

= 3977, for item no. 48

Col. 6: Quarterly MAD

Col. 7: The std. deviation of leadtime demand, according to AFLCR 57-6(C2), 29 December 1978. It is

 σ = 0.5945 MAD (0.82375 + 0.42625 L)

 $= 0.5945 (483.60) \{ 0.82375 + 0.42625 (6.11) \}$

= 985.59.
Col. 8: The EOQ. Using the EOQ table for WR-ALC (AFLCR 57-6(C3) 22 June 1979), we have

$$Q = 0.50$$
 , since $c_i D_i > $10,000$

$$= 0.5(650.96)(12)$$

Col. 9: Unit cost

Col. 10: The safety factor, according to AFLCR 57-6(C2), 29 December 1978, p. 7-2. It is

$$K = -0.707 \ln \frac{2\sqrt{2} \operatorname{Qa}_{i}c_{i}}{\lambda(\frac{1}{\sqrt{R}})\sigma(1 - e^{-\sqrt{2}Q/\sigma})}$$

where for our example

R = the average requisition size, 4 in this case,

 λ = 660,

and the other terms as before. Hence

$$K = -0.707 \ln \frac{2\sqrt{2}(3906)(0.23)(3.08)}{660(\frac{1}{2})(985.39)\left(1 - e^{-\sqrt{2}}\frac{(3906)}{985.39}\right)}$$
$$= -0.707 \ln \frac{7826.29}{323,983.2}$$
$$= -0.707 \ln 0.024156$$
$$= 2.63 .$$

The value of K must be between zero and three.

Col. 11: Safety Stock

ko = 2.63 (985.39)

= 2591.58 , for item #48 .

This value must not exceed that for leadtime demand.

Col. 12: S Safety Stock. This is

$$c_i K_i \sigma_i = 3.08 (2594.27)$$

= \$7990.35 .

Col. 13: True K. The K-value of Col. 10 is not based on the true standard deviation of leadtime demand, σ^* . The value of σ^* obtained from Table 6.1, Col. 8 is 505.84 not 985.39. Hence the true K is

True K =
$$\frac{\text{Safety Stock}}{\sigma^*}$$

= $\frac{2594.27}{505.84}$
= 5.129 .

Col. 14: Actual β_T weighted by essentiality, Z_i . To be consistent, we set

$$Z_i = \frac{1}{\sqrt{R}} = \frac{1}{2} .$$

Then using formula IV.2 in Presutti and Trepp (1970, p. 249), we have

$$\beta_{T} = \frac{0.5}{2} \frac{Z_{i}\sigma_{i}^{*2}}{Q_{i}} \left(1 - e^{-\sqrt{2}} \frac{Q_{i}}{\sigma_{i}^{*}}\right) e^{-\sqrt{2}} k_{i}^{*}$$
$$= \frac{0.5}{2} \frac{(\frac{1}{2})(505.84)^{2}}{3906} \left(1 - e^{-\sqrt{2}} \left(\frac{3906}{505.84}\right)\right) e^{-\sqrt{2}} (5.129)$$

= 0.006

66

The actual number of backorders expected at any time is actually

$$B_{T}/Z_{i} = 0.006/0.5 = 0.012$$
.

Col. 15: Actual Service Level

~

$$1 = \frac{1}{2} e^{-\sqrt{2} k_{i}}^{*}$$

$$1 = (0.5) (0.00070769)$$

$$1.00$$

Col. 16: \$ Inventory on hand. This is

- c_i (Safety stock + $\frac{Q}{2}$ + $3_T/Z_i$) = 3.08 (2594.27 + $\frac{3906}{2}$ + 0.012)
- = \$14,005.

Col. 17: Fill Ratio. This is

We obtain the annual number of backorders using formula (9) in Presutti-Trepp (1970, p. 246):

$$B_{N} = \frac{0.5}{\sqrt{2}} \frac{D_{1}\sigma_{1}}{Q} \left(1 - e^{-\sqrt{2} Q/\sigma^{*}}\right) \left(e^{-\sqrt{2} k^{*}}\right)$$
$$= \frac{0.5}{\sqrt{2}} \frac{(12)(650.96)(505.84)}{3906} (0.99998) (0.00070769)$$
$$= 0.25 .$$

You see this value in Column 21.

Hence,

Fill Ratio =
$$\frac{12(650.96) - 0.25}{12(650.96)}$$

≃ 1.00 .

Col. 18: Annual Ordering Cost

$$\frac{A_i D_i}{Q_i} = \frac{441.07(650.96)(12)}{3906}$$

= \$882.09 **≃** \$882.14 .

It is strange that the ordering cost for so many items is \$882.14 or \$583.64. Apparently an annual ordering cost of \$882.14 corresponds to an ordering cost of \$441.07, whereas an annual ordering cost of \$583.74 corresponds to an ordering cost of \$291.82. Thus

 $\frac{291.82}{441.07}$ (\$882.14) = \$583.64.

Consider item =3 where the dollar value of annual demands is 373.92 X (12)(\$2.74) = \$12,294.49 < \$19,500. Hence, the ordering cost, A = \$291.82; and the annual ordering cost would be

$$\frac{AD}{Q} = \frac{(291.82)(373.92)(12)}{2244}$$

= \$583.52 .

It seems that the EOQ table for WR-ALC (AFLCR 57-6(C3), 22 June 1979, p. 7-14-1) is designed to produce precisely these annual order costs.

68

Col. 19: Annual Holding Cost based on the Inventory Position. This is

- $a_i c_i (\mu + Safety Stock + \frac{Q}{2})$
- $= \$0.23(3.08)(3976 + 2594.27 + \frac{3906}{2})$
- = \$6037.88 .
- Col. 20: Annual operating cost. This is the sum of the annual ordering cost and the annual holding cost.
- Col. 21: Annual number of units backordered. This has already been calculated under Col. 17.

Col. 22: FSN

Col. 23: Item no.

فيتعملا فتداريها والاعداد

REFERENCES

- Bott, D. L. "Compound Distributions with Efficient Computation in Inventory Model Applications." <u>Naval Research Logistics Quarterly</u>, Vol. 24, No. 3 (1977), pp. 407-416.
- Brown, Robert G. <u>Decision Rules for Inventory Management</u>. New York: Holt, Rinehart, and Winston, Inc., 1967.
- Burgin, T. A. "Inventory Control with Normal Demand and Gamma Lead Times." Operations Research Quarterly, Vol. 23, No. 1 (March 1972), pp. 73-80.
- Cohen, Martin E. "Measurement and Implications of Production Lead Time Variability." Philadelphia, Pa.: U.S. Army Inventory Research Office, September, 1979.
- Conover, W. J. <u>Practical Noparametric Statistics</u>. New York: John Wiley & Sons, Inc., 1971.
- Demmy, W. Steven. "Statistical Characteristics of Forecasting Techniques for D062 Economic Order Quantity Items." Dayton, Ohio: Decision Systems, May 1979.
- Department of the Air Force. "Requirements Procedures for Economic Order Quantity (EOQ) Items," Change 2. AFLC Regulation 57-6, 29 December, 1978.
- Department of the Air Force. "Requirements Procedures for Economic Order Quantity (EOQ) Items," Change 3. AFLCR 57-6, 22 June 1979.
- Drake, Alvin W. <u>Fundamentals of Applied Probability</u>. New York: McGraw-Hill Book Co., 1967.
- Hadley, G. and Whitin, T. M. <u>Analysis of Inventory Systems</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1963.
- Hayya, Jack C. "Leadtime Variability in Inventory Requirement Projections: Statistical Distribution Report." Air Force Contract F 33615-79-C-5143, December 18, 1979.
- Hayya, Jack C. "Leadtime Variability in Inventory Requirement Projections: Simulation Report," Air Force Contract F 33615-79-C-5143, March 31, 1980.
- Herron, David. "Industrial Engineering Applications of ABC Curves." <u>AIIE</u> <u>Transactions</u>, Volume 8, No. 2, June 1976, pp. 210-215.

McFadden, Fred R. "On Lead Time Demand Distributions." <u>Decision Sciences</u>, Vol. 3, No. 1 (April, 1972), pp. 106-126.

- Ord, J. K. <u>Families of Frequency Distributions</u>. London: Charles Griffin & Company, Ltd., 1972.
- Presutti, Victor J., Jr. and Trepp, Richard C. "More Ado About Economic Order Quantities (EOQ)." <u>Naval Research Logistics Quarterly</u>, Vol. 17, No. 2 (June 1970), pp. 243-251.

Sherbrooke, C. C. "Discrete Compound Poisson Processes and Tables of the Geometric Poisson Distribution." <u>Naval Research Logistics Quarterly</u>, Vol. 15, No. 2 (1968), pp. 189-204.

United States Army, Combat Developments Command, Maintenance Agency. <u>Computerized Data Preparation for Reliability Analysis and Distribution</u>. PAM71-9, Aberdeen Proving Ground, Maryland 21005, August 1971.

United States Army, Combat Developments Command, Maintenance Agency. Distribution Selection Form. PAM71-8, Aberdeen Proving Ground, Maryland 21005, September 1971.