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ABSTRACT
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An exact analytic solution of the external resonant excitation of a
'
nonuniform plasma in the presence of a zero order finite electron drift is
presented. The process of linear mode conversion of the long wavelength

external radzat1on, of frequencthG into a Langmuir wave limits the peak
pnt’jt« 1 X8 "‘ P

oa.«("('
amplitude of the cold plasma resonance at @ = &, where u. is the local
P P

g

electron plasma frequency. The finite electron drift alters the effective

group velocity of the Langmuir wave, and thus it modifies the peak amplitude

of the resonance in a significant manner. For drifts toward the overdense

side an amplitude enhancement is obtained, while for drifts toward the

underdense side a severe quenching takes place. The effect is governed !

by a single scaled drift parameter u—-—fa-vﬁfé;}—{iugﬁf;al/3?—and signifi-

cant modifications arise when.|u#}—s>—% In here, v, is the small drift vel-
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ocity, Vv the electron thermal velocity, and L the density scale length
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I. INTRODUCTION

In recent years the subject of linear mode conversionl'4 has received
considerable attention in regard to the propagation and absorption of electro-
magnetic radiation in nonuniform plasmas. Some of the areas in which this
process plays an important role are: ionosphere modification, laser fusion,
RF heating of magnetized plasmas, and the spontaneous radio emissions from
astrophysical bodies. The essential feature associated with linear mode
conversion is the existence of some point in the plasma where the local dis-
persion relations of two different modes overlap, e.g., locally w =w,, kl =
k2’ but asymptotically k1 # kz, for two modes of frequency Wy and wavenumber
kj‘ At the mode conversion point energy and momentum can be transferred from
mode 1 to mode 2, or vice versa. An important property of the process is
that it depends linearly on the wave amplitude, hence the coupling between
the two modes depends only on the zero order equilibrium properties of the
medium, and it does not exhibit an excitation threshold. This behavior is
to be contrasted with parametric instabilities in which the coupling depends
explicitly on wave amplitude and a definite threshold exists. Of course,

mode conversion also becomes amplitude dependent4’5

if the wave amplitudes
are sufficiently large so that the zero order quantities (density, drift vel-
ocity, temperature) are modified by nonlinear interactions (e.g., pondero-
motive forces).

The cleanest environment for the study of linear mode conversion
consists of the resonant excitation of an unmagnetized nonuniform density

plasma by an external capacitor plate6 field (near field) Eo oscillating at

frequency w. Since the external field has the properties (k = 0, w) it can

mode convert into a Langmuir wave which satisfies w2 = w;-+ 3k2 VQ, at a

point along the density gradient where w = wp. In here, wp refers to the
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electron plasma frequency and v is the electron thermal velocity. The usage
of a capacitor plate pump field for a study of resonant excitation adequately ?
models the more general situation encountered when an electromagnetic wave

propagates obliquely at an angle @ relative to the density gradient. The

reason is that the electromagnetic wave encounters a cut-off at that location
' where wp = wcosf, thus the electric field which reaches the w = mp point is
‘ evanescent (i.e., k I 0). The capacitor plate field is to be identified con-
ceptually with the evanescent field of the electromagnetic wave.
The present investigation is concerned with the modification of the lin-

ear mode conversion process by the presence of a small electron drift velocity

Vps with vp << V. Such a drift can be found in naturally occuring plasmas,
as in the auroral ionosphere, or can be ¢reated artificially in the laboratory.
Of course, the drift can also be the result of the resonant absorption process
[ itself,

E For values of vy less than are required to trigger the ion acoustic in-
} ; stability, as is assumed in this study, the principal effect consists of the

l modification of the gfoup velocity vg of the electron plasma wave at the point
w = wp. For vp = 0, vg = 0 at the resonance point, hence the amplitude of
the electric field builds up to a large level given by4 En~E (pr/V)Z/S

where L represents the scale length of the density profile. In this case the
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resonant external pumping of the plasma is limited by the leakage of the mode

converted wave down the density gradient, an effect which is manifested by g
the L dependence of the amplitude scaling. However, for VD £ 0, vg =V at w = mp.

’ Therefore, the cold plasma resonance is destroyed and a corresponding change

. in the mode conversion process takes place. In particular, if vp points

in the direction of decreasing density the zero order leakage rate due to

the density gradient is enchanced and results in the decrease of the peak
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amplitude attained by the resonant electric field. However, if vp points in

the direction of increasing density, the leakage down the density gradient
is reduced and results in an enhancement of the peak amplitude. In additijon
to the changes in peak amplitude, the entire Airy-like pattern of the mode
converted wave can be blown down (or up) the density gradient, depending on
the direction of the drift. This work provides an analytic description of
these changes.

Section II presents the physical model underlying the process. In
Section III the exact formal solution of the problem is obtained and the asymp-
totic behavior is extracted. Section IV exhibits the waveforms and parameter

dependences of the exact solution. Conclusions are given in Section V.




II. FORMULATION
The essential physics of the problem considered can be treated through
a fluid description of the electron response provided that the zero order

s electron drift velocity Y remains smaller than the threshold drift required

to trigger the ion acoustic instability. It is also understood that the ever

increasing electron Landau damping encountered by the mode coﬁverted Langmuir

wave as it propagates down the density gradient is neglected. This kinetic

effect does not significantly alter the peak amplitude of the resonance and

o n ———

its proper inclusion requires an integral equation formulation which is be-

; yond the scope of the present study.

§ | The zero order plasma density profile no(x) is taken to be stationary

é and represented locally by a linear function of position, i.e., n(x) = np

(1 + x/L), where np is the density at the point x = 0 defined by the resonance

. condition w = mp. The external pump electric field is given by Ep = Eo
exp(- iwt) and points along the density gradient. A qualitative sketch of
the relevant geometry is shown in Fig. 1.

The linearized high frequency electron fluid velocity v oscillating at

frequency w satisfies the force equation

~ —24 g
. d ~ _Q@FE - 3¥ ”
(-..w«-v;,:;)v- - o, dx a)

1; where the high frequency electron density ; is self-consistently determined

by the linearized continuity equation

. o+ A (HA+MT) =0

L. (2)

. and the total high frequency field E must satisfy Poisson's equation
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dx (3)

in which the explicit role of the external charges is retained to account

for the pump field.

Inserting Eq (3) into (2) yields

~iwd (&- E)-\-;_Y%é_( -6)- 4-1re'n,v']..o )

or

4 (:ws _€,) - 4Te «,v'l = o
dx
where D = (-iw + vp d/dx) is the total time derivative operator. Applying

D to Eq (5) and using Eq (1) results in

7‘(§'—E,)+w;’;'€-317 (E' E.)=¢ (6)

axt
in which a constant ¢ appears. This constant can be set equal to zero be-
cause the correct boundary conditions (vacuum) are automatically satisfied
by the explicit inclusion of the external pump in Eq. (3).

Proceeding to expand out D2 and neglecting the terms (d/dx)Eo and
d /dxz)Eo because the pump amplitude E° varies slowly over the region of

interest (i.e., the resonance scale length) results in

’_cl__g+n.vmele+c-__;_)e—s

w‘* dx* w dx (7

where it is explicitly (and consistently) assumed that vg << VQ,
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The new physics being considered appears in Eq. (7) through the first

derivative term which has a purely imaginary coefficient proportional to
the electron drift velocity. A physical picture for the role played by
the drift can be obtained by analyzing the local dispersion relation for

a Langmuir wave having wavenumber k, i.e., 3
2 2 =212
W= hv) + (w? ‘\'3h v ) (8)

which is qualitatively sketched in Fig. 2. In this figure the solid curve

corresponds to v, = 0 and the dashed curve corresponds to a case vp > o,

D
i.e., the drift is toward the overdense plasma, It is seen that for vp > 0
. the group velocity vg > 0 at k=0. This implies that in this environment the

external pump can match k and w, thus it is still able to excite a Langmuir

PRS- aAE

| ' wave. However, because Vg > 0 the excited mode is a backward wave (k < 0,

vg > 0) which propagates into the overdense plasma up to a point x = (VDZ/SVQ)L,
where vg = 0. At this point the wave turns around and becomes a forward wave

(k <0, vg < 0) which proceeds to propagate down the density gradient. There-

fore, for v, > 0 it is expected that the mode conversion pattern is shifted

D

into the overdense plasma and the amplitude of the resonance should be en-

hanced because the convection due to the drift opposes the natural leakage
associated with the density gradient.

For v, < 0 (i.e., drift down the gradient) mode conversion also occurs

D

at w = mp, but now vg < 0, hence the excited wave is a forward wave from the
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outset and propagates down the gradient at a rate faster than the leakage

P

* rate due to the density gradient alone. Consequently, the mode conversion

the peak amplitude of the resonance should decrease due to the enhanced

| .

r - pattern is expected to be shifted (blown down) to the underdense side and
|
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convection.

It is useful to introduce the scale amplitude and space variables .

A= (E7e) (L /Y

—\%/3 (9)
2z = (x/L) (wpL /V3' )
to transform Eq. (7) into a single parameter equation
2 .
.‘i_A+Lu.‘\_.A-2A=| (10)

d2? d2

in which the new physics associated with the drift is determined by the

lumped parameter u defined by
— -\
w = (29 /3T) (3L /T) an

Physically, this parameter represents the ratio of the drift velocity to

the effective leakage speed associated with the density gradient. It should
be noted that although vy << v, the parameter u can be of order unity or
larger because mpL/V'can attain rather large values both in natural and
laboratory plasmas. As is expected from Eq. (10), and shown in Sec. IV,

the range of values for which the effect of the drift becomes important is

lu] > 1.
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ITI. FORMAL SOLUTION

R To solve Eq. (10) one proceeds to eliminate the first derivative term

by introducing the auxiliary function y defined by

AR) = (D »p (-Luz/2) (12) ]
i i which transforms Eq. (10) into

1- .
4 Y - l%—u%) Y= ﬁfﬁ’(t“%/?) (13)

i d=*

Defining a shifted coordinate § = z - u2/4 yields

i %;.:‘P— % ¢ = J»ﬂ)[t\\fgh_a- “3/%\‘_& (14)

which is a generalization of the inhomogeneous Airy equation in which the
forcing function now oscillates in space. The reason for this oscillation
is that the density gradient destroys the translational invariance in this
problem.

The general solution of Eq. (14) is given by the linear superposition

of the homogeneous solutions7 of the Airy equation (Ai, Bi), and the inhomo-

geneous solution, namely,

¥ Pt = o Atle) + B Bi(y)

e =g

e

A
. Auts) |4t BLlt) (Luwtr2)
_Tryﬂb(“f/s') L‘\So " |

(15)

| I

g “
P -Bi(‘g)Sdt ALY 2p (Luwth2)

as can be easily verified by direct substitution.

In Eq. (15) o and B are constants which depend on the parameter u,

and their values are determined by the asymptotic boundary conditions as
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E++ =, For £ -+ « (overdense region) the electric field amplitude

(and hence y) must remain bounded. Since in the limit £ + =

BLl®) ~ s1p(% X"2) /(nryyt

ALY ~ 21p(-3772) /(wt 5y a6

Eq. (15) requires that B must satisfy
Bw) = - Wagp(Luw/s) A(w)
Aw= S:&Ot Ai(t\,w.p(tutlz) (17)

To evaluate a one demands that as £ + -« (underdense side) ¢ must asymp-
totically approach a wave travelling down the density gradient. Since to
evaluate a explicitly one needs to know A as well as the asymptotic be-
havior of the other terms in Eq. (15), we proceed to examine A(u).

In calculating A(u) it should be noted that the quantity A(0) can be
easily obtained by applying Cauchy's theorem in the complex t plane and
using the integral definition of Ai(t). However, it is nontrivial to ex-
tend this technique for u # 0. Consequently, we proceed to find A(u) by
direct manipulation in the real t plane. Integrating by parts twice in
Eq. (17) yields

AW = (2i/w)Ale) + (2 /u\‘[A’uo) + j:st ALLY) lfﬂ’(iut/zﬂ(

18)

where the prime notation represents the derivative operator. Recognizing

e en x
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o . .
Aum(tu’/gﬂ = 2HP(I&1V¢) l('l3;-t‘k3124)
Yo (3y"3 )
~» W . .
dw \x.\,f.f(uﬁ/u) = 4xpliwi) ‘5(2/—5;-.,“/24)
Yo K
to find
- . Ai(o) 4 (LT/3) ¥ (213 ;- LW/24)
: 3 (2>
. _ 3
o Awy= 2p(-i8/20) o | o .
x LA 2 (ime) ¥ (U3 ;- (Wh2e)
; | (3)"3

that Ai" = tAi and using the definition of A in Eq. (17) yields a differen-

tial equation in u

C AW = (U AL - (/) ALty 20/ i‘& AW as)

which can be integrated over u to yield
AN )}

w , (20)
.. . . o
- _'7._ Sod w ogpliw /14){!1&_ Aito)+ LALL )]

Aw= (- LW /24)

The remaining indefinite integrals in Eq. (20) can be expressed in terms

of the incomplete ¥y function8

-4/3

and where Ai(0) = (3)°2/3/r(2/3), Ai'(0)= -(3)"3/T(4/3). In the small

u limit Eq. (22) results in

2, . , '
A 2 L- (L)AL - (L) Aile




Using the integral representation for the functions Ai, Bi, it is
straightforward to apply the saddle point method to extract the asymptotic -E

behavior of the terms appearing in Eq. (15). The results for £ + = are

: .
| | _ 1 splitwsmy-n
for Attt Ao - i, 2l

(24)
¥ [ewer)+n)
: | NP
dt Bi(t) spp(intl) ~ — |
L L ”f \)Tr-' [(!\“L + Lu,z] (25) 1
where, n = (2/3) (5)3/2. In the limit £ + - these terms take the form 1

3
SAt ALty e (nt) A~ Aw) - e (- W /24) ’

+ Mpl-tulsie) %fEi\’[i'WMj N m[&mwﬂ}
'f 20 51" | s\ au2 15\ w2

(26)

i
SAteutmf(mth) ~ Mw

_imppl-iuin) ) aplieriml _ pplitnamia
20T 15l | slReniz gt wiz

-._, ‘
. el TS

(27)

The spatially independent term I'(u) in Eq. (27) can be obtained in a

manner analogous to the calculation of A(u). The result is

| () = - spl- i2r24) {B'Llovfg(itla) ¥(2/3 ;- L0124) i B:'.(o\"I-B("“")“"&"“e’“)}

(3y" e

(28)
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and in the small u limit

M) % - i & B0 - W Bilo)
2

8 (29)
Taking into consideration that as £ + -=
Aldr ———— A (7 +T/4)
Wi x4 "
(30)
Bigy v ——— o (+T/4)
s\

and using the asymptotic forms in Eqs. (26) and (27) yields the leading be-

havior in the underdense side of the profile

V(%) ~ \ (_4 - aqplin’/s) muﬂm \q+7/4)
ERRM
— Tagp (Ly2) con (74TA)
(31)
which indicates that the choice
ok = “MP(L\EIQ) Miw) - i.‘“'»ﬂ)('u?llz) 2

results in an asymptotically travelling wave (i.e., the mode converted wave).
Having evaluated the coefficients a(4) and B@) the solution is completely

determined

A = V(2-u/r4) syp(-inziz) (33)

with

e - ‘:i&iiiiﬁiiiﬁlii?"
-
. ' . . L
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Wis) = Toyp(L19) | Aity Pty - ppl- i20) - {atittimgglinti) |

s8] A+ Sit N spplintr) | .

(34)

The asymptotic behavior for the field amplitude can be obtained with

the help of the expressions in Eqs. (24) - (27). In the overdense side,

e b i St e

z + +o, the quantity ¢ behaves as 1

Yis) o - m[é(u’/s *us/2) |\

(35)
; (% +W7)
? which together with Eq. (31) results in the leading term
" A
ARy ~ - 3 (36)

showing that deep into the plasma the behavior is insensitive to the value of
u, i.e., the response is entirely determined by the cold fluid response E n

. _ 2,2
Eo/e withe =1 - wp/w .

In the underdense region z + -=» the leading behavior consists of

Aot 4 sp (2 -Tg) m(\i[w»\!-“‘/ﬂ”—‘- wisl}
2 \2- “2/4|‘/4 (37) 1

~ ——

which explicitly shows the coexistence of the mode converted wave and the

PR

pump. It is seen that asymptotically the effective origin of the Langmuir
wave is shifted up the gradient by an amount u2/4. However, the asymptotic
amplitude of the mode converted wave does not exhibit any u dependent changes.

Near the resonance region (z = 0), where the peak electric fieid is .

' generated, there is no convenient simple representation of the formal solu-

i, tion. Therefore, we investigate this interesting behavior of the system by
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directly plotting Eq. (33), as shown in the next section. For the sake of
- completeness, the response of the system to a delta function &(x) source in

the presence of finite electron drift is included in the appendix.
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IV, SPATIAL BEHAVIOR

The exact spatial behavior of the scaled elertric field A(z) is obtained
by evaluating the formal solution, given by Eq. (33), with the help of a dig-
ital computer. The resulting waveforms are shown in Fig. 3 for u = 0, + 5.0.
In this figure the solid curves represent the real part of A, and the dashed
curves the imaginary part. The corresponding modulus (i.e., |A|2) is exhibited
in Fig. 4. In this figure the slopping straight line shown for the u = 0
case represents the effective cold plasma diaelectric, ¢” = eﬁan//3 732/3, or
equivalently, the scaled density profile. It should be noted that in Fig. 4
different amplitude scales are used for different values of u in order to
appropriately display the waveforms.

It is observed from Figs. 3 and 4 that the qualititative behavior obtained
from the simple consideration of Eq. (8), and discussed in Sec. II, is indeed
reproduced b& the formal solution. For u< 0, i.e., when the drift is directed
toward the underdense side, the Airy-like pattern is blown down the gradient.
Since in this case the effective group velocity is increased,the peak amplitude
of the resonance is reduced. For u > 0, i.e., when the drift points toward
the overdense side, the opposite behavior is encountered. In this case the
Airy-like pattern penetrates beyond the resonance point (z = 0), and since the
drift opposes the convection ,the peak amplitude of the resonace is enhanced
above the u = 0 level. It is also found from Figs. 3 and 4 that for |z| >> 1
the field amplitude is independent of u, as predicted ﬁy the asymptotic analysis
given in Eq. (37). In addition to these effects, it is found that the wave-
length of the mode converted wave is shortened as |u| increases, as expected
from Eq. (8).

The dependence of the location Zm of the peak electric field on the drift

parameter is exhibited in Fig. 5. It is found that for u > O, Zm increases as
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? 1
uz. The corresponding u dependence of the square of the maximum value of the

; resonant electric field, IAmlz, is shown in Fig. 6. It is observed that for

0 <u < 4.0 the peak value increases monotonically with u, eventually attain-
ing a maximum enhancement factor IAm(U)IZ/IAm(°)|2:3-5- However, the enhance-
ment saturates as u increases further because of the decreasing scale length

of the pattern as u increases. For u>>1 the enhancement becomes nearly in-

dependent of u and approaches a value IAm(u)IzllAm(O)l2 2 3.2 asymptotically.
For u < 0 the peak amplitude of the resonance decreases monotonically with u

due to the enhanced wave convection.
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V.  CONCLUSIONS

An exact analytic solution of the resonant excitation of a nonmuniform
plasma in the presence of a zero order finite electron drift velocity has been
obtained. The process of linear mode conversion ¢f the external long wave-
length radiation into a short wavelength Langmuir wave is found to limit the
peak amplitude of the cold plasma resonance occurring at w = wp(x). The inclu-
sion of a finite electron drift alters the effective group velocity of the
Langmuir wave, and thus it modifies the peak amplitude of the resonance. For
drifts that point up the density gradient an enhancement is obtained, while
for drifts down the gradient a severe quenching can take place. The effect is
shown to be governed by the scaled drift parameter u = (ZVD/SV)(SwPL/V)lls, and
significant modifications are obtained when |u| > 1. This level of u may be
attainable in some practical situations at very low drift velocities Vp because
of the large density scale lengths L that can be encountered in the laboratory
or the ionosphere. Consequently, the various effects found in this study should
be considered when interpreting and or planning experiments concerned with the

resonant excitation of nonuniform plasmas in these environments.

"
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APPENDIX

For completeness, the response of the plasma to a delta function source

in the presence of finite electron drift is presented. The relevant scaled

equation, equivalent of Eq. (10), is

* ‘w4 - -
j\;A +L“£A—%A- Bl2-20) (1)

where z, is the location of the source. Transforming as in Eq. (12) and

shifting coordinates leads to

4* - 0 2
I{z""”""”f( U, fe) 3(“%-%) (A2)

Applying the outgoing wave boundary condition for £ + -» results in the two

separate expres sions

Yl5) = - T Ailz,- 1) syp L w ety [Bite) + L AT |

(A3)
for §&L 2o~ \LzM» , and
. 2 . 2 . .
-\ LAL(2,-W/a) tuzo/2) ALLy)
V(%) = _-“-“Ba.(to /4)+ ° ]’1‘?( ° \ (A2)
for ¥ o \’3/4— .
i Transforming back to obtain the electric field A in terms of the scaled 1
coordinate z yields 31

e e
Alz)= - T Al (2,- uVa)sppl-in 220 1) {u (- wa)rLAlle - 83)}

. where z, is the greater of (z,zo) and z_ the lesser of (z,zo). The result

. of (AS) has been plotted for several (v10) uniformly spaced sources and it

is found that the behavior predicted by Eq. (33) is recovered. Of course,

some additional sharp edges are obtained which are not present for the uni-

form pump case.
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FIGURE CAPTIONS

Fig. 1. Qualitative sketch of the geometry of the problem. The density n(x)
corresponds to the slopping line and the small electron drift vp can point up w

or down the density gradient.

Fig. 2. Qualitative sketch of the effect of finite electron drift velocity on

the local dispersion relation for Langmuir waves.

Fig. 3. Spatial dependence of the scaled electric field A for values of the
scaled drift parameter u = 0, * 5.0. The solid curves correspond to the real

part and the dashed curves to the imaginary part.

Fig. 4. Spatial dependence of the square of the modulus corresponding to the 1
waveforms of Fig. 3. Note that different amplitude scales are used. The slop-
ping line shown for u = 0 represents e¢“ the effective dielectric, or equiva-

lently, the scaled density profile.

Fig. 5. Dependence of the position z of the peak amplitude of the electric

field on the drift parameter. The cold plasma resonance corresponds to z, = 0.

Fig. 6. Dependence of the peak amplitude squared IAml2 on the drift parameter.

u > 0 corresponds to drifts toward the overdense side.
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