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ABSTRACT

An exact analytic solution of the external resonant excitation of a
I

nonuniform plasma in the presence of a zero order finite electron drift is

presented. The process of linear mode conversion of the long wavelength

external radiation, of frequency,, into a Langmuir wave limits the peak

amplitude of the cold plasma resonance at" - wheretd is the local

electron plasma frequency. The finite electron drift alters the effective

group velocity of the Langmuir wave, and thus it modifies the peak amplitude

of the resonance in a significant manner. For drifts toward the overdense

side an amplitude enhancement is obtained, while for drifts toward the

underdense side a severe quenching takes place. The effect is governed

by a single scaled drift parameter -=andpsignifi-

cant modifications arise when4 I-ia. In here, vD is the small drift vel-

ocity, v the electron thermal velocity, and L the density scale length.
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I. INTRODUCTION
1-4

In recent years the subject of linear mode conversion has received

considerable attention in regard to the propagation and absorption of electro-

magnetic radiation in nonuniform plasmas. Some of the areas in which this

process plays an important role are: ionosphere modification, laser fusion,

RF heating of magnetized plasmas, and the spontaneous radio emissions from

astrophysical bodies. The essential feature associated with linear mode

conversion is the existence of some point in the plasma where the local dis-

persion relations of two different modes overlap, e.g., locally Wl =W2 P kl =

k2, but asymptotically k I j k2, for two modes of frequency w. and wavenumber

k.. At the mode conversion point energy and momentum can be transferred from
J

mode 1 to mode 2, or vice versa. An important property of the process is

that it depends linearly on the wave amplitude, hence the coupling between

the two modes depends only on the zero order equilibrium properties of the

medium, and it does not exhibit an excitation threshold. This behavior is

to be contrasted with parametric instabilities in which the coupling depends

explicitly on wave amplitude and a definite threshold exists. Of course,

mode conversion also becomes amplitude dependent4'5 if the wave amplitudes

are sufficiently large so that the zero order quantities (density, drift vel-

ocity, temperature) are modified by nonlinear interactions (e.g., pondero-

motive forces).

The cleanest environment for the study of linear mode conversion

consists of the resonant excitation of an unmagnetized nonuniform density

plasma by an external capacitor plate6 field (near field) E oscillating at

frequency w. Since the external field has the properties (k = 0, w) it can

mode convert into a Langmuir wave which satisfies w2 = 2 + -2
P v at a

point along the density gradient where w p. In here, w refers to the

1
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electron plasma frequency and v is the electron thermal velocity. The usage

of a capacitor plate pump field for a study of resonant excitation adequately

models the more general situation encountered when an electromagnetic wave

propagates obliquely at an angle e relative to the density gradient. The

reason is that the electromagnetic wave encounters a cut-off at that location

where w = wcose, thus the electric field which reaches the w = w point is

evanescent (i.e., k Z 0). The capacitor plate field is to be identified con-

ceptually with the evanescent field of the electromagnetic wave.

The present investigation is concerned with the modification of the lin-

ear mode conversion process by the presence of a small electron drift velocity

VD, with vD << v. Such a drift can be found in naturally occuring plasmas,

as in the auroral ionosphere, or can be created artificially in the laboratory.

Of course, the drift can also be the result of the resonant absorption process

itself.

For values of vD less than are required to trigger the ion acoustic in-

stability, as is assumed in this study, the principal effect consists of the

modification of the group velocity vg of the electron plasma wave at the point
W=p. For v = 0, vg =0 at the resonance point, hence the amplitude of

vD4 g )2/3

the electric field builds up to a large level given by E "' E (wpLF 2

where L represents the scale length of the density profile. In this case the

resonant external pumping of the plasma is limited by the leakage of the mode

converted wave down the density gradient, an effect which is manifested by

the L dependence of the amplitude scaling. However, for vD 0 0. vg = vD at w= wP.

Therefore, the cold plasma resonance is destroyed and a corresponding change

in the mode conversion process takes place. In particular, if vD points

in the direction of decreasing density the zero order leakage rate due to

the density gradient is enchanced and results in the decrease of the peak

A:
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amplitude attained by the resonant electric field. However, it vD points in

the direction of increasing density, the leakage down the density gradient

is reduced and results in an enhancement of the peak amplitude. In addition

to the changes in peak amplitude, the entire Airy-like pattern of the mode

converted wave can be blown down (or up) the density gradient, depending on

the direction of the drift. This work provides an analytic description of

these changes.

Section II presents the physical model underlying the process. In

Section III the exact formal solution of the problem is obtained and the asymp-

totic behavior is extracted. Section IV exhibits the waveforms and parameter

dependences of the exact solution. Conclusions are given in Section V.

I
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II. FORMULATION

The essential physics of the problem considered can be treated through

a fluid description of the electron response provided that the zero order

electron drift velocity vD remains smaller than the threshold drift required

to trigger the ion acoustic instability. It is also understood that the ever

increasing electron Landau damping encountered by the mode converted Langmuir

wave as it propagates down the density gradient is neglected. This kinetic

effect does not significantly alter the peak amplitude of the resonance and

its proper inclusion requires an integral equation formulation which is be-

yond the scope of the present study.

The zero order plasma density profile n (x) is taken to be stationary

and represented locally by a linear function of position, i.e., n(x) =np

(1 + x/L), where n is the density at the point x = 0 defined by the resonancep

condition w = wp. The external pump electric field is given by Ep = Eo

exp(- iwt) and points along the density gradient. A qualitative sketch of

the relevant geometry is shown in Fig. 1.

The linearized high frequency electron fluid velocity v oscillating at

frequency w satisfies the force equation

- + 1E (1)

where the high frequency electron density n is self-consistently determined

by the linearized continuity equation

(2)

and the total high frequency field E must satisfy Poisson's equation
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I

in which the explicit role of the external charges is retained to account

for the pump field.

Inserting Eq (3) into (2) yields

(.-E - mr i 0 (4)

or

_-fe m -r 0 (5)

where D =(-i + vD d/dx) is the total time derivative operator. Applying

D to Eq (5) and using Eq (1) results in

+ tC E- -. +3 rC 6

in which a constant c appears. This constant can be set equal to zero be-

I cause the correct boundary conditions (vacuum) are automatically satisfied

by the explicit inclusion of the external pump in Eq. (3).

Proceeding to expand out D and neglecting the terms (d/dx)E0 and

(d2/dx 2)E0 because the pump amplitude E varies slowly over the region of

interest (i.e., the resonance scale length) results in

(A*C e)( (7)

where it is explicitly (and consistently) assumed that V2 << 72.

D
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The new physics being considered appears in Eq. (7) through the first

derivative term which has a purely imaginary coefficient proportional to

the electron drift velocity. A physical picture for the role played by

the drift can be obtained by analyzing the local dispersion relation for

a Langmuir wave having wavenumber k, i.e.,

T(8)

which is qualitatively sketched in Fig. 2. In this figure the solid curve

corresponds to vD = 0 and the dashed curve corresponds to a case vD > 0,

i.e., the drift is toward the overdense plasma. It is seen that for vD > 0

the group velocity v > 0 at k=O. This implies that in this environment the

external pump can match k and w, thus it is still able to excite a Langmuir

wave. However, because v > 0 the excited mode is a backward wave (k < 0,
g

Vg > 0) which propagates into the overdense plasma up to a point x = (vD /3v )L,A

where v = 0. At this point the wave turns around and becomes a forward wave

(k < 0, v < 0) which proceeds to propagate down the density gradient. There-
g

fore, for vD > 0 it is expected that the mode conversion pattern is shifted

into the overdense plasma and the amplitude of the resonance should be en-

hanced because the convection due to the drift opposes the natural leakage

associated with the density gradient.

For vD < 0 (i.e., drift down the gradient) mode conversion also occurs

at w = wp, but now v < 0, hence the excited wave is a forward wave from the

outset and propagates down the gradient at a rate faster than the leakage

rate due to the density gradient alone. Consequently, the mode conversion

pattern is expected to be shifted (blown down) to the underdense side and

the peak amplitude of the resonance should decrease due to the enhanced

pSe
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convection.

It is useful to introduce the scale amplitude and space variables

to transform Eq. (7) into a single parameter equation

A 4 L ~A -:iA = (10)

in which the new physics associated with the drift is determined by the

lumped parameter u defined by

Physically, this parameter represents the ratio of the drift velocity to

the effective leakage speed associated with the density gradient. It should

be noted that although vD << v, the parameter u can be of order unity or

larger because w L/V can attain rather large values both in natural and
p

laboratory plasmas. As is expected from Eq. (10), and shown in Sec. IV,

the range of values for which the effect of the drift becomes important is

lul > I.
IuIl

ii
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III. FORMAL SOLUTION

To solve Eq. (10) one proceeds to eliminate the first derivative term

by introducing the auxiliary function * defined by

AVO = %p (-.,k--z) (12)

which transforms Eq. (10) into

A~. 'I' (~-~/+ IP k (L A /-) (13)

Defining a shifted coordinate C = z - u 2/4 yields

Lk (14)

which is a generalization of the inhomogeneous Airy equation in which the

forcing function now oscillates in space. The reason for this oscillation

is that the density gradient destroys the translational invariance in this

problem.

The general solution of Eq. (14) is given by the linear superposition

of the homogeneous solutions7 of the Airy equation (Ai, Bi), and the inhomo-

geneous solution, namely,

I'~C At*t +t (S)(~t

oJ) StLUi/t) I (lS)

0

as can be easily verified by direct substitution.

In Eq. (15) a and 0 are constants which depend on the parameter u,

and their values are determined by the asymptotic boundary conditions as
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w ± -. For + = (overdense region) the electric field amplitude

(and hence i) must remain bounded. Since in the limit

1Z V 4 (16)

Eq. (15) requires that 0 must satisfy

00

0

To evaluate a one demands that as -- (underdense side) , must asymp-

totically approach a wave travelling down the density gradient. Since to

evaluate a explicitly one needs to know A as well as the asymptotic be-

havior of the other terms in Eq. (15), we proceed to examine A(u).

In calculating A(u) it should be noted that the quantity A(O) can be

easily obtained by applying Cauchy's theorem in the complex t plane and

using the integral definition of Ai(t). However, it is nontrivial to ex-

tend this technique for u 0. Consequently, we proceed to find A(u) by

direct manipulation in the real t plane. Integrating by parts twice in

Eq. (17) yields

,. .t -(. 1l") W~~O') + (" 0 I )'+ •ttJpi.
- --/I)&L~(18),

IA

where the prime notation represents the derivative operator. Recognizing

• I~



that Ai" = tAi and using the definition of A in Eq. (17) yields a differen-

tial equation in u

(a/k) do -(~a~'~o~2L(z&VA. A tk (19)

which can be integrated over u to yield

((20
A&L "/-z4 ~ IA ~ iiz4 i (20)

The remaining indefinite integrals in Eq. (20) can be expressed in terms

of the incomplete y function
8

(21)

to find

AlfL -L4, 
(22)

A ( 3 W V'/ (/3 (24

and where Ai(0) = (3) -2 3/r(2/3), Ai'(O)= -(3)-4/3 /r(4/3). In the small

u limit Eq. (22) results in

A( )W -~ ( )ALo~ (6)U (23)pt

- " ---j
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Using the integral representation for the functions Ai, Bi, it is

straightforward to apply the saddle point method to extract the asymptotic

behavior of the terms appearing in Eq. (15). The results for C + are

- -J" Itv4  - i z) ul- + I3 1%

(24)

0 (25)

where, a (2/3) I 2 the limit t these tems take the form

I 1 t ,  )  _ f . ( iv. , t ) ev1 ,A 0 k) ., , 4 )+ .B .o l . ( -.

" (- ' - "((-) iA t/z 4j)

j 
(26)

- L,___ ___ _ ~~~l4IZ.(27)

The spatially independent term r(u) in Eq. (27) can be obtained in a

manner analogous to the calculation of A(u). The result is

(3Y13 (3 'Sf1b

(28)

.r-
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and in the small u limit

M 8 (29)

Taking into consideration that as -m

SiP ~ AA~ +1/4

c~. (30)

and using the asymptotic forms in Eqs. (26) and (27) yields the leading be-

havior in the underdense side of the profile

________- i4f LI/ ",)I 4 A4L~i41

- iiL ? Cft (+141r4

(31)

which indicates that the choice

AlfU .j( AZ/S) PV~) (32)

results in an asymptotically travelling wave (i.e., the mode converted wave).

Having evaluated the coefficients a(u) and (U') the solution is completely

determined

with•1
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++
The asymptotic behavior for the field amplitude can be obtained with

the help of the expressions in Eqs. (24) - (27). In the overdense side,

z .-, the quantity 4 behaves as

which together with Eq. (31) results in the leading term

A 0 - - (36)

showing that deep into the plasma the behavior is insensitive to the value of

u, i.e., the response is entirely determined by the cold fluid response E
2 2

E0/c with e =1 - p2/W

In the underdense region z -- the leading behavior consists of

(37)

1 I which explicitly shows the coexistence of the mode converted wave and the

pump. It is seen that asymptotically the effective origin of the Languwir

wave is shifted up the gradient by an amount u 2/4. However, the asymptotic

amplitude of the mode converted wave does not exhibit any u dependent changes.

Near the resonance region (z u 0), where the peak electric field is

generated, there is no convenient simple representation of the formal solu-

j tion. Therefore, we investigate this interesting behavior of the system by

' i
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directly plotting Eq. (33), as shown in the next section. For the sake of

completeness, the response of the system to a delta function 6(x) source in

the presence of finite electron drift is included in the appendix.

I
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IV. SPATIAL BEHAVIOR

The exact spatial behavior of the scaled electric field A(z) is obtained

by evaluating the formal solution, given by Eq. (33), with the help of a dig-

ital computer. The resulting waveforms are shown in Fig. 3 for u = 0, ± 5.0.

In this figure the solid curves represent the real part of A, and the dashed

curves the imaginary part. The corresponding modulus (i.e., JAI 2) is exhibited

in Fig. 4. In this figure the slopping straight line shown for the u = 0

case represents the effective cold plasma diaelectric, e' = £ P pL/r3 )2/3' or

equivalently, the scaled density profile. It should be noted that in Fig. 4

different amplitude scales are used for different values of u in order to

appropriately display the waveforms.

It is observed from Figs. 3 and 4 that the qualititative behavior obtained

from the simple consideration of Eq. (8), and discussed in Sec. II, is indeed

reproduced by the formal solution. For u < 0, i.e., when the drift is directed

toward the underdense side, the Airy-like pattern is blown down the gradient.

Since in this case the effective group velocity is increasedythe peak amplitude

of the resonance is reduced. For u > 0, i.e., when the drift points toward

the overdense side, the opposite behavior is encountered. In this case the

Airy-like pattern penetrates beyond the resonance point (z =0), and since the

drift opposes the convection }the peak amplitude of the resonace is enhanced

above the u = 0 level. It is also found from Figs. 3 and 4 that for jzI >> I

the field amplitude is independent of u, as predicted by the asymptotic analysis

given in Eq. (37). In addition to these effects, it is found that the wave-

length of the mode converted wave is shortened as Jul increases, as expected

from Eq. (8).

The dependence of the location Z aof the peak electric field on the drift

parameter is exhibited in Fig. 5. It is found that for u > 0, Z* increases as

, Tedpnec fteloainZo h ekeecrcfedo h rf
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2u . The corresponding u dependence of the square of the maximum value of the

resonant electric field, JAm1 2 , is shown in Fig. 6. It is observed that for

0 < u < 4.0 the peak value increases monotonically with u, eventually attain-

ing a maximum enhancement factor A m(u)12/A3 (0)1 2-3.6. However, the enhance-

ment saturates as u increases further because of the decreasing scale length

of the pattern as u increases. For u >>l the enhancement becomes nearly in-

dependent of u and approaches a value JAm(u)12/1Am(0)t2 Z 3.2 asymptotically.

For u < 0 the peak amplitude of the resonance decreases monotonically with u

due to the enhanced wave convection.

I,
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V. CONCLUSIONS

An exact analytic solution of the resonant excitation of a nonuniform

plasma in the presence of a zero order finite electron drift velocity has been

obtained. The process of linear mode conversion of the external long wave-

length radiation into a short wavelength Langmuir wave is found to limit the

peak amplitude of the cold plasma resonance occurring at w = wpx(x). The inclu-

sion of a finite electron drift alters the effective group velocity of the

Langmuir wave, and thus it modifies the peak amplitude of the resonance. For

drifts that point up the density gradient an enhancement is obtained, while

for drifts down the gradient a severe quenching can take place. The effect is

shown to be governed by the scaled drift parameter u - (2vD/ v)(JwpL/V)l/' , and

significant modifications are obtained when Jul > 1.. This level of u may be

attainable in some practical situations at very low drift velocities vD because

of the large density scale lengths L that can be encountered in the laboratory

or the ionosphere. Consequently, the various effects found in this study should

be considered when interpreting and or planning experiments concerned with the

resonant excitation of nonuniform plasmas in these environments.

-I
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APPENDIX

For completeness, the response of the plasma to a delta function source

in the presence of finite electron drift is presented. The relevant scaled

equation, equivalent of Eq. (10), is

A A , A- t:A= '
(Al)

where z is the location of the source. Transforming as in Eq. (12) and

shifting coordinates leads to

k Y -- 1 = ..IF (L A tjz) u(M_4=(A,2)

Applying the outgoing wave boundary condition for E - results in the two

separate expressions

W -Nr Aklto- %J14) A-if 1Z)t 4 Ai'K (A3) CAM)

for o 1 , and

(A4)

for N) 'to- /4.

Transforming back to obtain the electric field A in terms of the scaled

coordinate z yields

- A- (AS)

where z+ is the greater of(z,zo) and z_ the lesser of (z,z 0 ). The result

of (AS) has been plotted for several (n'10) uniformly spaced sources and it

is found that the behavior predicted by Eq. (33) is recovered. Of course,

some additional sharp edges are obtained which are not present for the uni-

form pump case.
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FIGURE CAPTIONS

Fig. 1. Qualitative sketch of the geometry of the problem. The density n(x)

corresponds to the slopping line and the small electron drift vD can point up

or down the density gradient.

Fig. 2. Qualitative sketch of the effect of finite electron drift velocity on

the local dispersion relation for Langmuir waves.

Fig. 3. Spatial dependence of the scaled electric field A for values of the

scaled drift parameter u = 0, ± 5.0. The solid curves correspond to the real

part and the dashed curves to the imaginary part.

Fig. 4. Spatial dependence of the square of the modulus corresponding to the

waveforms of Fig. 3. Note that different amplitude scales are used. The slop-

ping line shown for u = 0 represents c' the effective dielectric, or equiva-

lently, the scaled density profile.rFig. . Dependence of the position zm of the peak amplitude of the electric

field on the drift parameter. The cold plasma resonance corresponds to zm = 0.

Fi. . Dependence of the peak amplitude squared "Aro12 on the drift parameter.
Qm

10

u>0corresponds to drifts toward the overdense side.
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