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EXPERIMENTAL RESEARCH ON THE
MECHANISMS OF FORMATION FOR
SPHEROIDS PRODUCED BY
CAVITATION EROSION

1.0 INTRODUCTION

///Jffiln modern machinery, a major cause of unscheduled downtime
is the wear and eventual failure of load carrying components such
as shafts, gears, and bearings. These wear and fatigue failures
precipitate wear particles such as metal fragments, shavings, and

chips. The mechanisms involved in the formation of wear parti-

cles, if understood, would lead to an optimization of the fail-

ure prediction method. A potentially important mechanism of wear

is the application and release of a local high pressure on a

i working surface. This wear, known as cavitation erosion, is rec-
ognized as a powerfully destructive force in many high speed hy-

drodynamic systems. Cavitation is one of the major problems con-

fronting designers and users of modern high speed hydrodynamic
systems such as pumps, marine propellers, hydraulic turbines,
valves and control devices, hydrofoils, sonar domes, other acous-
tic signal devices, bearings, and diesel engine wet-cylinder lin-
i ; ersLS})*

'q 1.1 Background

Under the initial feasibility study conducted at DAEDALEAN
! ASSOCIATES, Inc. (DAI), the standard ASTM vibratory cavitation

* Numbers in parenthesis refer to references at the end of this
Technical Report.
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erosion tests were conducted on annealed SAE 52100 bearing steel
and 1100-F aluminum. The two test media used were SAE 10W non-
detergent lubricating oil and distilled water. Analysis of the

eroded particles indicated a large degree of plastic deformation

prior to failure.(2) Most of the eroded particles were of irreg-
ular shape. However, smooth, perfectly spherical particles, sphe-
roids, were also observed. Spheroids were observed in both oil
and distilled water by erosion of 52100 bearing steel, and 1100-F
aluminum. It has been theorized that the high strain rates caused
by the implosion of the cavity bubbles led to the plastic flow of
the metals into the surrounding fluid where surface tension pro-
duced spheroids. (3)

To further understand the mechanisms of spherical particle
formation, the cavitation erosion particles from three additional
specimen materials, nickel, monel, and lead have been studied in
the current program.

This report describes the apparatus, techniques, and pro-
cedures utilized for generating, collecting, and analyzing spher-
ical cavitation erosion particles. The laboratory results are
discussed along with the conclusions and recommendations result-

ing from the experimental program.

R T
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2.0 EXPERIMENTAL APPARATUS, TECHNIQUES, AND PROCEDURES

Several recognized techniques are presently being utilized

to conduct cavitation erosion investigations in the laboratory.

These include:

1. The ASTM vibratory apparatus;

2. The rotating disk apparatus, and;

3. The liquid jet impact apparatus.
The erosion debris generated from two of these methods, the ASTM
vibratory apparatus, and the liquid jet impact apparatus have
been analyzed during this program with the emphasis placed upon
characterizing spherical erosion particles.

2.1 Erosion of Test Specimens Utilizing the Standard ASTM

Vibratory Apparatus

. Figure 1 is a photograph of the ASTM vibratory apparatus

utilized to generate spherical erosion particles during this

program. This equipment consists of a commercially available

piezoelectric transducer, velocity transformer, power supply,

e T

and voltmeter. The vibratory equipment drives a test specimen

through a small amplitude, high frequency, axial oscillation, i

The oscillation produces alternating pressure fields causing
cavitation bubbles to grow and collapse on the specimen's sur-

face. 1In order to produce the cavitation bubbles, the face of

- —— —————

the test specimen must be submerged within a fluid media. The

. frequency of vibration was fixed at 20 KHz. The peak to peak

displacement amplitude was 2 x 10"® inches. Since heat is a
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byproduct of the acoustic energy radiating from the test speci-
men, a temperature bath was utilized to maintain the various test
liquids at a constant temperature of 80°F * 2°F,

2.1.1 Test Materials and Liquid Test Media

Four specimen materials were eroded using the ASTM vibra-
tory equipment. Aluminum, nickel, monel, and lead samples were
eroded in both distilled water and 10W nondetergent oil. Tle
erosion of the sample materials in distilled water took an aver-
age time of two hours per specimen to collect a sufficient a-
mount of particles for analysis. The erosion of the sample ma-
terials in 10W nondetergent oil required an‘average time of 30
hours per specimen.

2.1.2 Lead Specimen Mounting Technique

A specimen mounting technique had to be developed in order
to erode the lead specimens. The cavitation button attached to
the end of the vibratory horn must weigh ten grams in order for
the system to vibrate properly. 1In the case of the lead speci-
men, the combined weight of the button and the threaded mounting
pin was greater than the allowable ten grams. This additional
weight increment prevented the system from achieving the speci-
fied vibratory mode required to attain cavitation erosion. The
first attempt to fabricate a ten gram lead button consisted of
securing a three gram piece of lead to a specially machined,
seven gram aluminum button with an epoxy glue. Figure 2 is a

photograph of this modified aluminum button with the lead tip
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attached. This technique was unsuccessful due to the lead having
a tendency to separate from the aluminum as a result of the high
tensile stresses produced by the frequency of vibration.

Figure 3 depicts the test apparatus used to successfully e-
rode a 1/8 inch lead plate. This technique involved placing a
titanium button on the end of the vibratory horn. The lead spec-
imen was suspended in either distilled water or 10W nondetergent
oil. The titanium button was then lowered to within 0.025 inches
of the surface of the lead plate. The titanium button vibrated
causing cavitation erosion to occur on the face of the titanium
button. The lead plate was in such close proximity to the ti-
tanium button that it was eroded by the cavitation bubbles col-
lapsing upon its surface. The erosion strength of titanium was
significantly higher than the erosion strength of lead. 1In the
amount of time used to erode the lead plate, a negligible amount
of erosion occurred on the titanium button. Figure 4 is a pho-
tograph of the lead sample after it was eroded in distilled wa-
ter .

2.1.3 Particle Collection Technique

Once the particles had been eroded from the test material,
the particles were separated from the test fluid for study. The
simplest method for separating the particles from the test flu-
id was sedimentation. The particles eroded in distilled water
settled to the bottom of the beaker within a 24 hour period.

The excess water was carefully siphoned away and the erosion
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particles were allowed to dry. The particles eroded in 10W non-
detergent o0il did not settle as quickly through the oil. It was
necessary to dilute the o0il in order to lower its viscosity so
that the particles could settle more quickly. A mixture of one
part hexane to one part oil allowed all of the particles to set-
tle within a 48 hour period.

The dried erosion particles were then mounted on specimen
plates which could be placed in either a metallurgical micro-
scope or in a scanning electron microscope for examination. This
mounting technique insured that the particles which were studied
with the metallurgical microscope, shown in figure 5, would also
be the particles photographed by the scanning electron micro-
scope.

Particle size distribution curves were developed for each
specimen material. The metallurgical microscope has a scale
etched on an eyepiece which was used to measure the particle di-
ameters. The eyepiece scale was calibrated with a 0.011lmm divi-

sion micro-scale.

2.2 Erosion of Test Specimen Using CONCAVER ™ System

Cavitation erosion particles were also generated using a
cavitating water jet system. Figure 6 is the pumping system
used to eroded aluminum specimen plates. This system is capa-

ble of delivering five gallons per minute with a maximum pres-

sure of 20,000 psi.
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Figure 7 shows the particle collection chamber used for the
collection of particles produced by the cavitation water jet sys-
tem. The chamber was constructed of 1/2 inch thick Plexiglas.
Plexiglas was the chosen tank material to insure that the eroded
particles would not be confused with metallic particles from a
metal tank wall. Plexiglas also proved to be a good material
since it allowed for complete visibility and easy particle de-
tection. A bulkhead fitting was installed in one wall of the
chamber to allow the specimen support rod to penetrate the cham-
ber. In this manner the specimen distance and exposed area could
be adjusted during particle production. In the opposite wall of
the chamber another bulkhead fitting was installed to handle the
specially designed supply tube and nozzle. This assembly also
allowed the nozzle distance from the specimen to be adjusted.
With the CONCAVZIR™ system, water was pumped at high pressure
through a nozzle specifically designed to produce a cavitating

water jet which impinged upon the specimen plate thereby eroding

particles. The water was discharged through a port in the top

of the chamber. The arrangement of the discharge port allowed
the particles to settle in the chamber and be collected.
Aluminum specimen plates were eroded using the particle col-
lection chamber. The test conditions used to generate aluminum
particles were: 1. a nozzle pressure of 13,000 psi, 2. a nozzle
distance of 2 inches, and 3. a nozzle diameter of 0.025 inches.

After the particles were generated, they were dried, mounted,
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and examined using the technique described in the previous sec-

tion.

~~ "
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3.0 DISCUSSION OF EXPERIMENTAL RESULTS

The analysis of the erosion particles generated during this
program has been accomplished through the use of:

l. metallurigical microscope with photographic capa-

bility;

2. scanning electron microscope analysis and photo-

graphy, and;

3. energy dispersive X-ray analyzer (for particle

identification).

The plastic flow of metal due to high speed cavitation bub-
ble collapse can be visualized from an anal&sis of Edgerton's
high speed milkdrop photograph (4) illustrated in Figure 8. This
plastic flow, described as one of spherical drops splashing out
of a liquid crater and then solidifying, is an accepted theory of
the mechanism of spheroid formation. Scanning electron photo-
micrographs taken of the erosion particles generated during this
program show evidence in support of the splash-spray theory.

3.1 Erosion of Monel

3.1.1 Particle Analysis of Monel Eroded in Distilled

Water

Figure 9 is the particle size distribution curve for monel
spherical particles generated from erosion in distilled water.
Approximately 120 spherical particles were observed, with the
majority of the spherical particles (43 percent of the total) be-

ing 6p in diameter. Figure 10 is a wide angle photomicrograph

-
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of monel particles. This figure reveals the power capability of

the microscope utilized in generating the particle distribution
curves that are incorporated into this report. Figure 1l is a
scanning electron photomicrograph of the specimen mount contain-
ing monel particles. The particles previously counted as perfect
spheroids (when viewed on the laboratory microscope) consisted

of partially formed, oblong, and plastically deformed spherical

particles in addition to perfect spheres. Figures 12, 13, and

14 are scanning electron microscope photographs of the typical
shape of spheroid particles found throughout the range of materi-
als analyzed. Figure 15 is a scanning election-photomicrograph
of a 6y diameter spherical particle with a concaver crater-like
deformation. Figure 16 is a scanning electron photomicrograph
of a 12y long, 4u diameter cylindrical rod identified as monel.

3.1.2 Particle Analysis of Monel Eroded in 10W 0il

Figure 17 is the particle distribution curve for monel spher-
ical particles generated from erosion in 10W nondetergent oil.
Approximately 120 spheres were observed, with the majority of
the spheres (32 percent of the total) being 3y in diameter. The
total time for the test cycle of eroding monel in 10W oil was
34.25 hours. Figure 18 is a scanning electron photomicrograph
of a 10y monel spheroid. This particle lacks the smooth surface

property found in the analysis of the monel/water combination.
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3.1.3 Comparison of Monel Tests

The physical appearance .between the monel particles genera-
ted in oil and in water was very similar. Upon close examination
of the particles, it was observed that the particles produced by
the erosion of the material in water were smoother in surface
texture than the particles produced in the o0il medium. The par-
ticles generated by erosion in o0il had a slight "orange peel"
texture.

In the water medium tests, the largest number of particles
occurred at a particle size of 6u. This size accounted for 43
percent of the total number of particles produced. The group of
particles smaller than 6p accounted for 21 percent of the total.
The remaining group of particles, those above 6y, contained 36
percent of the total number of particles.

The greatest number of particles produced in oil occurred
at a smaller particle size, 3y, than the size of the most numer-
ous particles produced in water. The 3u particles produced in
0il accounted for 32 percent of the total. Forty-nine percent
of the particles were greater in size than 3y and 19 percent of
the particles were less than 3yu.

3.2 Erosion of Lead

3.2.1 Particle Analysis of Lead Eroded in Distilled

Water
Figure 19 is the particle size histogram for lead spherical
particles generated from erosion in distilled water. Approxi-

mately 70 spheres were observed with the majority of the spheres

W~—T. v
. .




-

DAEDALEAN ASSOCIATES, Incorporated 12

(63 percent of the total) ranging in diameter from 100u to 200y.
Figure 20 is a scanning electron photomicrograph of a 40y dia-
meter lead spheriod. Figure 21 is a scanning electron photomi-
crograph of a lead, rod shaped, particle 257y long and 123y in
diameter. A lateral crack, located to the right of center of
the rod, suggests that this is a spheroid solidified during the
process of separation,.

3.2.2 Particle Analysis of Lead Eroded in 10W 0il

Figure 22 is the particle size histogram for lead spherical
particles generated from erosion in 10W nondetergent oil. Ap-
proximately 47 spheres were observed with the majority of the
spheres (49 percent of the total) ranging in diameter from 80u
to 170u. The lead particles analyzed were considerably larger
than the other particles analyzed. Figure 23 is a scanning elec-
tron photomicrograph of a 390y leéd sphere. This particle has
surface abrasions caused by the effects of formation. Figure
24 is a scanning electron photomicrograph of a rod-shaped lead
particle 350u long and 70y in diameter. Figure 25 is a scanning
electron photomicrograph of a 35u lead spherical particle solid-
ified during formation.

3.2.3 Comparison of Results of Lead Tests

The physical appearance of the particles generated in oil
and water was very similar. They all exhibited rather rough
surfaces and surface abrasions were quite evident.

The particle size distributions for particles eroded inboth

the o0il and water media was also similar. In both cases, the
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110y size graph contained the greatest number of particles.

3.3 Particle Analysis of Aluminum Eroded in 10W 0il

Figure 26 is the particle distribution curve for aluminum
spherical particles generated from erosion in 10W nondetergent
o0il., Approximately 70 spheres were observed, with the majority
of the spheres (31 percent of the total) being 6p in diameter.
Figure 27 is a scanning electron photomicrograph of a 65y dia-
meter aluminum spheroid. It should be observed in this photo
that the sphere is connected to a rod shaped particle. Closer
examination, Figure 28, reveals that the particle is indeed at-

tached to the rod. The length of the contact point is 9u. Plas-

tic deformation along the edge of the rod is evident.

3.4 Particle Analysis of Nickel Eroded in Distilled Water

. Figure 29 is the particle size distribution curve for nick-~
el spherical particles generated from erosion in distilled water.
Approximately 100 spheres were observed with the majority of the

3 spheres (42 percent of the total) being 5p in diameter. Figure
30 is a scanning electron photomicrograph of an 8u diameter nick-
el spherical particle. This sphere, surrounded by irregularly
shaped erosion debris, has one flat side. Figure 31 is a scan-

ning electron photomicrograph of a 7u diameter spherical parti-

cle. Figure 32 is a scanning electron photomicrograph of the
nickel button eroded in distilled water. The face of this but-
ton is pitted and cratered. Figure 33 is a scanning electron
photomicrographic close-up of the nickel button of Figure 32.

The crater shown is 9p in diameter. The edges of this and other
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craters viewed on this button reveal the kind of melted texture
that would accompany the plastic flow produced by extremely high
rates of deformation and associated high localized temperatures,

3.5 Comparative Analysis of Spherical Particles Generated

from the Four Specimen Materials

Spherical erosion particles were produced from all four spec-
imen materials. The spheroid particles produced in monel, alu-
minum and nickel all averaged a particle diameter of 5u. The
spherical particles from these materials ranged in size between
lu and 20u. The lead spheres, produced by the method described
in Section 2.1.2, were much larger. The lead spheres ranged in
size from 60p to 360p in diameter. The majority of the lead
spheres were between 100y and 200y in diameter.

3.6 Analysis of Erosion Particles Produced by the CONCAVER

System

Aluminum test samples were eroded using a cavitating water
jet. The erosion particles were examined and very few sphevi-
cal particles were found. Many of the irregularly shaped parti-
cles had rounded, smooth edges. However, there were not many
perfect spheres.

One of the problems involved with examination of erosion
debris produced with a cavitating water jet is the separation of
the particles from the water. Large quantities of water are

used to produce a small number of particles. 1In 10 gallons of

water there will be less than 0.5 grams of eroded material.
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Filter paper will sepearate the particles from the water, but the
particles are then trapped in the filter paper. For future tests,
a centrifuge could be utilized to separate the small amount of

particles from the large amounts of water.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

The

successful completion of the tasks of this program has

yielded sufficient engineering data to justify the following con-

clusions

4.1

and recormendations.

Conclusions

1.

The spheroid particles produced in monel, aluminum, and
nickel all averaged a mean diameter of 5u. The spheri-
cal particles from these materials all ranged in size
between luy and 20p.

The particles resulting from erosion in the 10W nonde-
tergent oil, on an average, took 15 times longer to
generate than did the particles produced from erosion
in distilled water.

Testing utilizing the CONCAVER system to produce spher-
ical particles proved to be an inefficient technique
and the particles were extremely difficult to isolate.
The ASTM vibratory apparatus develops an erosion inten-
sity of 2 w/m?. The CONCAVER system develops erosion
intensities from 2,000 w/m? to 20,000 w/m?. Spheroids
were produced in greater quantities utilizing the ASTM

vibratory apparatus than the CONCAVER system. Therefore,

particle formation is not a linear function of erosion
intensity.
All particles analyzed revealed a characteristic melted

texture that accompanies the plastic flow of metals.
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4,2 TRecommendations

1.

To expedite identification and analysis of eroded par-
ticles a system such as Chemical Particulate Pattern
Recognition should be utilized. This computerized sys-
tem is offered as an integral part of the scanning elec-
tron microscope analysis service utilized in this pro-
gram. The system can be programmed to automatically
conduct a search for predefined (in this case) spheri- :
cal particles. 1In addition to recording dimensions,
inorganic material identification, spheroid count and
a plot of particle distribution, it is also possible

to obtain projected area, volume, perimeter, and mass

percent values,.

A centrifuge apparatus should be utilized to separate
particles from the large quantities of water obtained
from the CONCAVER system.

Further investigations into the optimization of the
parameters governing the spheroid generation tests uti-
lizing the CONCAVER technique ghgglq‘be conducted. It
is felt, due to the higher erosiovr;l. pg:::??r:&?:xsg"

the CONCAVER technique, that greater numbers of spheri-

cal particles should be produced than what was actually

realized., Refinement of operating parameters, particle
collection techniques and nozzle designs should yield

larger numbers of particles.
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FIGURE 16 SCANNING ELECTRON PHOTOMICROGRAPH OF A 12 4 LONG, 4 u DIAMETER CYLINDRICAL

MONEL ROD GENERATED FROM EROSION IN DISTILLED WATER
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FIGURE 30 SCANNING ELECTRON PHOTOMICROGRAPH OF AN 8 u NICKEL SPHERICAL
PARTICLE GENERATED FROM EROSION IN DISTILLED WATER
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