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On November 7, 1979 the New York Times carried a front page story headlined

"SOVIET DISCOVERY i CCKS WORLD OF MATHEMATICS"

According to the story, which had been picked up from the magazine Science,
"apart from its profound theoretical interest, the discovery may be applicable

in weather prediction, complicated industrial processes, petroleum refining, the

scheduling of workers at large factories, secret codes and many other things".

The New York Times coverage generated substantial controversy concerning the

merits of the discovery, a new algorithm for doing linear programming. Near the

end of this article we will evaluate this algorithm.

The New York Times story concerned the "computational complexity" of the

linear programming problem. Although computational complexity does not always

make front page news, it is a very active and important research area. Its subject

is the determination of the intrinsic difficulty of mathematically posed problems

arising in many disciplines. The study of complexity has led to more efficient

algorithms than those previously known or suspected. We illustrate some of the

important ideas of computational complexity with the example of matrix multipli-

c:it I on.
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COMPUTATIONAL COMPLEXITY OF MATRIX MULTIPLICATION. We consider first the

multiplication of 2 x 2 matrices. T-t

a21 a 22 (21 b 22

C =fc11 c121

A( c21 b22

Given A, B, we seek C - AB.

The classical algorithm computes C by
ell= al b + a h etc.

* 1 1  11~ 11 12 b21 ' tc

at a cost of eight multiplications.

Until the late sixties no one seems to have been asked whether two matrices could

bc mulLiplied in tess than eight scalar multiplications. Then Strassen showed that 7

scalar multiplications are sufficient.

Consider next the multiplication of N x N matrices. The classical algorithm uses

N3 arithmetic operations. (In this article we disregard constants in giving the cost

of our algorithm.) By repeated partitioning of N by N matrices into 2 by 2 sub-

matrices, two matrices can be multiplied in Nlog2 7 
% N 2 .8 1 arithmetic operations.

After a decade during which there was practically no progress on decreasing the

number of arithmetic operations used in matrix multiplication, Schonhage and Pan

showed N2 .52 arithmetic operations are sufficient. The number 2.52 is just the

current state of our knowledge and researchers expect the exponent will be further

decreased.

We must emphasize that the above results are of theoretical rather than practical

value. The value of N has to be enormous before the new algorithm would be faster

than the classical one. On the other hand, there are some problems for which new

algorithms have had profound influence. A good example is provided by the finite

Fourier transform on N points. The fast Fourier transform uses only N log N arithmetl

operations compared to N for the classical algorithms. Since N log N is much smaller
2

than N for even moderate values of N and since the finite Fourier tranform is often

needed for a large number of points, the introduction of the fast Fourier transform

has revolutionized a number of scientific fields.
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Using the matrix multiplication example we introduce some basic terminology.

The minimal number of arithmetic operations is called the computational complexity

(or problem complexity) of the matrix multiplication problem. We often write complexity

for brevity.

The complexity of matrix multiplication is unknown. An upper bound is N2 52.
2

A lower bound is N2 . Since this lower bound is linear in the number of inputs and out-

puts we say it is trivial lower bound. No non-trivial lower bound is known.

Algorithm complexity is the cost of a particular algorithm. This should be con-

trasted with problem complexity which is the minimal cost over all possible algorithms.

People who do not work in complexity theory sometimes confuse these two terms.

*Fast Algorithm is a qualitative term meaning faster than a classical algorithm

or faster than previously known algorithms. An optimal algorithm is one whose com-

plexity equals the problem complexity.

Table I summarizes the present state of our knowledge concerning matrix multi-

plication.

qUMMARY OF MATRIX MULTIPILICATION

upper bound N

2
lower bound N

complexity unknown

optimal algorithm unknown

TABLE j
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COMPUTATIONAL COMPLEXITY IN GENERAL. We define a model of computation stating

which "operations" or "steps" are permissible and how much they cost. In the model

we can ask thc same questions as in the matrix multiplication example. For instance

we seek:

problem complexity

upper bounds

lower bounds

fast algorithms

optimal algorithms

Typically, an upper bound is the cost of an algorithm for solving the problem.

A lower bound must be established thru a theorem that states there does not exist an

algorithm whose cost is less than the lower bound. Not surprisingly, lower bounds

are far harder to establish than upper bounds. (An exception is provided by analytic

computational complexity where a very powerful adversary principle provides lover

bounds. See discussion below.)
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SOME MODELS OF COMPUTATION. Numerous models of computation have been studied.

In our matrix multiplication example we counted arithmetic operations. In the study

of combinatorial problems we count comparisons. Very significant results have been

obtained for space and time complexity in a Turing Machine model. Another important

modIl is a random access machine (RAM). Other models are appropriate for studying

parallel, asynchronous, or VLSI computation.

Often we assign a "size" N to a problem. If the number of operations or steps

required to solve a problem is an exponential function of N we say the problem has

exponential time complexity. If the problem requires a number of operations which

is a polynomial function of N we say the problem has polynomial time complexity.

An elegant theory for an abstract complexity model is based on two axioms. One

result in this abstract setting is the famous "Speed-up Theorem" which implies there

cannot be a fastest algorithm for a computable function.
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TYPICAL APPLICATIONS OF COMPUTATIONAL COMPLEXITY. The complexity of numerous pro-

blems has been studied. To illustrate the variety of problems we exhibit a dozen

drawn from various areas.

1. Compute the finite Fourier transform at N points.

2. Determine if an N digit integer is prime; if not determine the factors.

3. Solve an elliptic partial differential equation to within c

4. Compute the Kendall rank correlation at N points.

5. Generate a funtion to error less than c from values of the function at N
points.

6. Multiply two polynomials of degree N.

7. Prove ail theorems of length less than N in a certain axiom system.

8. Solve the traveling salesman problem on N cities.

9. Solve to within , a large sparse linear system of order N whose matrix is
positive, definite, and has condition number bounded by M.

10. Find the closest neighbor of P points in K dimensions.

11. ComputO the first N terms of the Qth composite of a power series.

F 12. Compute the first N digits of n (for, say, N = 20,000,000).

-6-



REDUCIBILITY AMONG PROBLEMS. There are many problems for which the best algorithm

known costs exponential time. Such problems occur in operations research, computer

design, data manipulation, graph theory and mathematical logic. Do there exist faster

aLgorithms which solve these problems in polynomial time? We don't know. What we do

know is that there is a large class of problems which are equivalent in that if one

of them can be solved in polynomial time, they all can.

For technical reasons this class of problems is said to be NP-complete . Because

no one has succeeded in devising a polynomial time algorithm for any of these problems,

many researchers believe that NP-complete problems are exponentially hard. There is

no proof of ihis and settling this question is one of the most important open problems

in computational complexity.
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ANALYTIC COMPUTATIONAL COMPLEXITY. Many problems can be only approximately

solved. Examples are optimal estimation, search for an extremum, calculation of

fixed points, and solution of partial differential equations. Indeed, most problems

occuring in mathematics, science, engineering, and economics can be only approximately

solved. On the other hand, to lower the cost we may choose to approximately solve

problems which could be exactly solved. Important examples are provided by the app-

roximate solution of NP-complete problems and the iterative solution of large sparse

liunk-r systems. Analytic Computational Complexity is the study of optimal algorithms

tor problems which are solved approximately.

A central notion in Analytic Complexity is that of "information". The optimality

properties of a class of algorithms depend only on the information used by the algorithms.

Tils permits an enormous simplification in the theory of optimal algorithms.

Often, but not always, only artial information is available. Partial information

means the problem is not uniquely specified by the information. Partial information is

inpor talit becaiuse

I. it is typical of "real world" problems

2. ilgorithms often utilize only partial information

We list some of the questions studied in analytic complexity.

1. Given certain information and a positive number cis the information "strong"
enough to solvL' the problem to within E ?

2. Is "adaptive information" more powerful than "non-adaptive information"?

3. Given a problem, what is the "optimal information" for its solution?

4. (iven a problem, what is the optimal algorithm for its solution?

. V;ir a probl,,m, what is its compl1exity?(i :1ua lyttI complexity this is
often kiown to within very tight bounds.)

h. Gi ven two prob tm- which is Intrinsically mor, difficult?

AL. -



EVALUATION OF THE SOVIET ALGORITHM FOR LINEAR PROGRAMMING. We evaluate the new

algorithm mentioned at the beginning of this article. The following summarizes the

views of most researchers

1. The algorithm is of theoretical interest since it proves that linear programing

can be performed in polynomial time.

2. The algorithm is not currently competitive with the simplex method for linear

programming problems of the size which occur in practice. There is a possibility
that an improved algorithm would be competitive.

3. Statements in the New York Times and the magazine Science rel ing linear
programming to the traveling salesman problem are incorrect.

4. The new algorithm uses an iterative approach that might be useful in solving

combinatorial problems which are harder than linear programming.

5. The algorithm has been erroneously ascribed solely to Khachian. Suitable

names are "Soviet" or "ellipsoidal" algorithm.
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CONCLUSIONS. Computational complexity deals with thefundamental issues of deter-

nining the intrinsic difficulty of mathematically posed problems. Through the study

of complexity it has been established that certain problems are intrinsically hard.

On the other hand, for some problem areas new algorithms have been introduced which

arc, far superior to any previously known. Problems occuring in a rich diversity of

discip).irtes will be subjected to complexity analysi'-;.
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