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ABSTRACT

Many image analysis tasks require the construction of a
boundary representation as a means of partitioning an image.
This paper develops a parallel relaxation algorithm for updating
initial bheuristic estimates of the likelihood of edges so that
continuous boundaries are formed. Bayesian probability theory is
used to analyze the probability updating of a single edge based
upon the joint probabilities of the edges in its local
surrounding context. The relationships between edges:. sometimes
referred to as compatibility coeffPicients in relaxation
algorithms. are embodied as conditional probabilities between the
central edge and the context of edges. The set of conditional
probabilities are theoretically derived From a model of desired
line drawings that satisfy basic notions of boundary continuity.
The 1local vupdating function attempts to drive the likelihood of
each central edge into consistency with the surrounding context.

.Ezperiments involving the iterative parallel application of
this non-linear Bayesian updating function ¢to all edge
probabilities demonstrates serious problems in the formulation.
A variety of heuvuristic modifications, guided by theoretical
considerations, are examined empirically. The final ¢formulation
is an algorithm that performs in an effective manner on several
very complex images.
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I. INTRODUCTION

Many image processing tasks require construction of a

two-dimensional boundary representation of an image. The sensory

data is vuvsually presented as an array of FPeature values. Each
array element, referred to as a "pixel”® (for "picture element”),
is characterized by its spatial location within the array and by
the values of the sensory features at that point. For our
purposes it will be assumed that a pixel value represents a
measure o0f the amount of light which iands on a small area of
some imaging device. Typically., local adge operators
[DAV7S, ROS76. RIS77]1 are used to provide estimates of the local
strength of edges throughout the image, but the results produced
are almost always unreliable. The raw edge information requires

far more structural organization in order to be useful.

In this paper we seek methods for partitioning the image by

focussing on local edges between pixels and on the means by which

they may be organized into continuous boundaries. The primitive

element of a boundary is an edge element. A set of connected
edge elements, located relative to the array of sensory data from

which it was derived, forms a boundary. We sometimes will use

the term "line" synonymously with "boundary” because the result

of this form of segmentation is & "line drawing”. The approach
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described here addresses the problem of how to make use of 1local
ctontextual information to reduce local edge ambiguity while
producing a global organization of continuvous boundaries. The
initial array Tepresents sensory data while the final array
represents a boundary continuity interpretation of that data --
or controlled hallucination in imagining a 1line drawing

consistent with the sensory data!

1.1 Review of Related Literature

Methods vary for dealing with the uncertainty which remains
after local edge operators have been applied. Marr [MARR74] uses
a set of edge detectors of varying size to determine the
appropriate width of an edge to be asserted in his primal sketch.
Ehrich [EHR79a] has devised an edge detector whose output is not
Just a local edge assertion, but a data structure containing

alternative interpretations of edge cross--sections.

Sequential edge tracking methods have benefited from current
techniques for dealing with uncertain or noisy data. Montonari
has embedded the properties of a curve in a figure of merit
[MON711. A dynamic programming technique is used to determine

the optimal curve with respect to the given figure of merit.

A e . ! ! . e ..;;m llatns.




Martelli ([MART761 has reformulated this method as a graph search
problem which finds a contour using oan optimizing heuristic
search. Cooper models the sequence of edge slements in a contour
as a Markov process and uses maximum likelihood estimation ¢to
generate the contour [CO0791. Fischler et al. fF18793 apply the
optimization paradigm to the specific problem of detecting roads
and linear structures in aerial imagery. They also introduce
mechanisms for combining local evidence and constraints into the

global optimization process.

Recently there has been a large amount of research in 1local
iterative processes called relaxation labelling problems
LROS76, ZUC781. The fundamental idea of relaxation labelling is

to iteratively update the likelihood of local interpretations

based upon expected local relationships between these
interpretations. At each iteration the influence of a8 context of

nodes will spread indirectly through the influence of the nodes

which it affected. Ideally, the entire system will globally

organize to be locally consistent, and possibly even display

global characteristics which would have been very difficult to

achieve as a global function specified directly in terms of all

the data.




Current approaches to relaxation labelling have employed

heuristic mechanisms for updating likelihoods. Much of this work
is based on the formalization provided in [ROS761. referred to as
the non-linear probabilistic rule. In these systems local
contextual information is embodied in compatibility coefficients
which parameterize <the mutual effects of adjacent labellings.
Some possible interpretations of these coefficients are presented
in fPEL78] including measures of correlations and mutual
information. Nevertheless, these parameters are still heuristic.
Zu:kor has argued #for an interpretation of these compatibility j
coefficients as measures of dependency LZuc7e1. He has
Teformulated the relaxation updating rule mentioned above into

one involving conditional probabilities. While intended as an

analysis of non-linear probabilistic updating, this formulation
is similar to the most successful of the updating rules we

present here. Pelaeag has alsoc developed a probabilistic

relaxation labelling scheme which uses conditional probabilities
CPEL791. This work shares our intent of providing an analytical

basis for relaxation.




1.2 Complexitu of Seamentation

With relatively unconstrained natural images. any approach
to segmentation which relies entirely on the sensory data, will
be prone to error. The complexity of the data is a function of a
variety of factors including the presence of highly textured
objects, shadows and highlights on smooth or irregular surfaces.
variation in surface reflectance, varied and uncontrolled
lighting, and noise introduced in the digitization process. Few
objects or surfaces in an image can be expected to exhibdit
uniform visual features. In the images considered here, such as
the ones shown in Figure 1, it is very unclear exactly where some
of the bdoundaries should be placed in relation to the local array
of feature values.

Even human hand-drawn segmentations are inevitably prone to
errors and tend to reflect implicit biases and explicit goals of
the human perceiving the image. In many instances the boundaries
would be conjectured based on prior expectations in the form of
knowledge of objects and their shape, shadow effects, perspective
and occlusion cues, etc. [HAN78b). In short, it is generally
accepted that & truly accurate segmentation is a function of the
goals of the system and requires the application of "high-level”

knowledge which is not directly available as measurable features




1(b)

Figure 1. Representative Images. (a, h) Intensity images of
| 128x128 portions oaf 255612U& coleor images. These
| images of natural outdoor scenes are representative

of the input to the edge process developed in this
paper, (c) 64xb4 intensity wubimage derived from
. (a). This data is used extensively throughout the
\ paper as a test image. (d) 14x16 subimage showing
detail in the bush area.
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Figure 1 continued




of light. A discussion of the problems of and approaches to

svaluation appears in [NAQG79].

1.3 Boundaru Eormstion

The edge/boundary process presented in this paper cannot be
expected to provide a perfect doundary segmentation of the image
because no such segmentstion exists. Rather we look for
processes which can provide boundaries to & good first
approximation, where the feature data exhibits relatively large
and spatially consistent discontinuvities. We will utilize the
notion of variation in sensitivity of ¢the boundary formation
process 30 that it can be vused ¢to extract weaker and more
ambiguous boundaries if so desired. In particular we do not
expect this edge/boundary algorithm to distinguish between
texture elements and the boundary of textured objects. Thus.,
strong tuxtufo will 1lead to boundaries arcund texture elements

and possibly a high density of edges within a textured region.

Our goals in the segmentation of an image can be stated <tuwo
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1. to partition the image into (disjoint) sets of pixels,
called rtegions, which have relativeluy invariant visval

features.

2. to form continuocus boundaries by placing edges between
pixels which have relatively large differences in

feature values.

When the visual data is very simple {(e.g., a cartoon image with
tlosed boundaries and without textural variation), these tweo
approaches are equivalent. However, when the data is more
complicated and has a high degree of ambiguity in certain places,
then these approaches almost certainly will produce different
segmentations and will use different analyses of the data to

achieve the goal.

The edge/boundary process developed in this paper is a
probabilistic edge 1labelling rtelaxation algorithm based on a
simplified edge Tepresentation and a notion of boundary
continvation in digital images. In this algorithm information

in the context of a given edge element is used in an attempt to

drive the central edge into consistency with the surrounding'

context. The edge/boundary process is initially formulated in

Bayesian probability theory. A model of desired line drawings is

PR T e
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used to determine <theoretical estimates of the conditional
probabilities relating an edge to the joint probability of edges

in the context.

Some of the data used in this paper is shown in Figure 1.
In all cases ¢the feature used is intensity, which was derived
from the original tri-stimulus color data. Our full images are
actually subimages which are extracted from data whose original
resolution was 256x256 pixels with at least &6 bits/color. In
order to give a sense of our goals and methodology, the results
produced by the edge/boundary process which is developed
incrementally in the rest of the paper are previewed in Figures 2
and 3. The initial probability assigned to an edge is a function
of both ¢the 1local edge strength determined by application of a
112 edge mask and the strength of other edges in the immediate
vicinity; this initial assignment is shown in Figure 2.
Beginning with this initial data, the edge/boundary process
vpdates every edge in the image simultaneously (in parallel) on
the basis of data contained in a small neighborhood araund each
edge. This updating process is repeated until most of the edges
do not change from one iteration to the neat. The results shoun
in Figure 3(a)-{(d) appear to be quite Teasonable for most areas

of the image.

A PN -




Figure

n

1

Transformation to Edge Probecbilities. Edges derived
from the intensity data are assigned a probability as
a function of the total <contrast and form of the
gradient data. This forme ¢the input data to the
relaxation process.
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Iteration 2

Iteration 5

Eigure 3 Results of Edge Relaxation for Boundary Continuity.
Results from the final formulation of the edge
relaxation process developed in Section IV. In most
; cases the boundaries are a very Treasonable
\ representation of the underluing data and with minor
exceptions correspond quite well to visvally apparent

boundaries.
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Iteration 10

Iteration 20

Figure 3 continued
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13. A BAYESIAN VIEW OF EDOE CONTINUITY

I1.1 The Representation of Edaes

Our representation of edge information is highly structured
with each edge having an unambdiguous location and orientation.
In particular, a horizontal sdge may be located between any pair
of vertically adjacent pixels, & vertical edge may be located
between any pair of horizontally adjacent pixels (refer to Figure
4). Edge presence at sach horizontal and vertical edge location
is encoded with some numeric wmeasure of edge strength or
likelihood. During the boundary formation process this
representation avoids the ambiguities in precise location and
orientation of edges that would occur if edge information

relative to pizxel locations wcio not encoded. The issuves

involved in ¢this choice of this representation are discussed in

[HAN78a, PRABO].

Qur approach to boundary formation makes use of ¢two basic

assumptions:

1. the contrast assumption: the likelihood of a local edge

is directly proportional to its contrast:

, 4
iz,
S P U




Figure 4.

+

The Representation of Edges in VISIONS. This interpixel
representation of horizontal and vertical edges between
adjacent pixels allows the placement and orientation of
edges to be precise. The location of possible boundary
junctions and terminations follows from the edge positions.

represents a pixel location

represents an edge location

represents vertex locations
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the continuity assumption: boundaries in images are
continuous almost everywhere:; that 1is, every "real"
edge element is Jjoined to one or more adjacent edge

slements almost everywhere.

The contrast assumption allows us to compute the likelihood of a
local edge based solely on its contrast, while the continuity
assumption provides a mechanism for propagating information from

a "context” to the edge in question.

Our goal will be to define 1local, parallel mechanisms by
which initial probabilities of edges can be updated so that
uncertainty of edge presence is reduced while edges are
aggregated into continuous boundaries. The means by which this
will take place is based on the updating of an edge probability
via 8 Bayesian view of the joint probability of edges in the

local context surrounding that edge.

11.2 7The Probabilitu of an Edae

As we have already noted, tﬁc image data to be analyzed is
not very well-behaved. It is extremely difficult to make an
absolute decision about the presence or absence of a particular

edge element based purely on local information around that edge.
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Consequently, it is desirable to avoid such absolute
tlassification during the early stages of visval organization of
information [MARR7&,EHR791; otherwise, one must face the
computational burdens of wundoing erroneous decisions. One
plausible strategy would be to delay any decision at this point
and to carry forward all possible decisions so that contextual
data can be used in later stages to select the best choice. All
possible local decisions —— or labellings -— at a single location
are retained. The approach advocated here has some of this
flavor mixed with the notion of spreading of contextual

information via the parallel vpdating of edge likelihoods.

In our representation there are only ¢two decisions -- or
labellings -~ at a single location: "edge" and "no-edge”. A
probability or degree of confidence will be associated with each
label at each edge location. The term probability, rather than
some heuristic notion of “confidence”, will be used here because
we will be guided by a Bayesian view of edge presence. Only a
single value is required to store the probability of two 1labels
at each edge location if the label set is assumed to be mutually

exclusive and exhavustive.

Uncertainty in the existence of an edge can be expressed in

varigus ways. We will denote the probability that some edge E is
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present (true) or absent (false) with the random variable E,

which can take on values T or F. respectively. Then, we can
Tepresent the probability of adge precence as P(E=T) and of edge

absence as P(E=aF) = 1 - P(E=T).

Via the contrast assumption. the probability of an edge is
related to the difference in feature values of the pixels in the
vicinity of that edge. Let us leave aside, until the next
section, the problems of graduval feature changes over a sequence
of pixels, i.e., wide non-zero feature gradients. Thus, edge
contrast varies over the same range as the feature values and can

be scaled into a zero-one range to represent edge probability.

In this paper the conversion from edge <contrast values ¢to
edge probabilities is performed by normalizing the maximum
feature contrast over a large local neighborhood of an edge. The
strongest edge in each neighborhood can have a probability of one
and edges with z2ero feature difference will be mapped into
probability zero. For each edge location in the image, we
extract the maximum and minimum feature values, say Fmax and
Fmin, within a 1local 11211 window centered on the edge under

consideration. The edge probability is then determined by

P(edge) = MIN{1., E'|[R*(F,,, - Ry 1} (1)
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where E’ is the local edge obtained by differencing the adjacent
pizel wvalues (e.g3., 8 132 difference mask), and K is a local
scaling factor which allows the contrast velue which is

considered to have a probability of one to be varied.

There are two parameters that have been heuristically set at
intuitively reasonabdle, but arbitrary, constant values.
Variation of the size of the neighborhood would change the
locality of influence in setting initial probadbilities, while
variation of the scaling paraseter K nighg serve as an edge
sensitivity control. The effect of changing these parameters is
not explored in this paper. The contrast neiphborhood has been
fixed at 11211 and K has been set to .9 for all results presented
in this paper. Figure 5 1illustrates the conversion ot 'odgo
contrast to edge probability for a sudbimage of Figure 1(a).
Figure 3(a) represents the output of the 1x2 edge mash in which
brightness encodes edge strength. Note that there are many wealk
edges which are not evident in the figure as it has been
reproduced here. Figure 95(b) shows the edge probadilities
obtained by applying equation 1 at every horizontal and vertical
edge location. Note that the boundary on the left side of the
bush is more complete and stronger. Because the normalization is

performed locally over an 11211 window. non-linear scaling may

occur. A related effect, which can be seen in the wall area




—~

(a)

()

Fiqure 3. Conversion of Edge Strength to Edge Probability. (a)
Result from 1x2 edge mask applied to Figure 1(c).
Although it is not evident in the picture, there are
5 a large number of very wcak edges throughout the
‘ image. (b) Edge probahilities obtained by
normalizing edge strength over an 11x11 local window
centered on each edge. Compare the left side of the
i bush in the two images.

.
mﬁ y—. PURR
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above the roof line, is the relative increase in the strength of
weak edges in areas where there are only weak edges (and low

mazimum contrast).

11.3 @gradient Collection

One objection which may be raised against the use of a 1x2
edge operator is related to those situvations in which a boundary
is actually represented by a non—zero feature gradient that is
wide relative to the mask size. The highlight evident around the
Tim of the bush in Figure 6(a) is a function of the light source,
the surface properties of the bush and background, and the
relative orientations of the camera, the source, and the relevant
surfaces. It might be argued that a sophisticated model of
intensity changes is necessary, one perhaps in which the
relationships between the geometry of the imaging process and the
resulting image gradient are taken into a;count [HOR77, BAR781].
Although this approach may prove to be very effective, it has
only been explored in artificially constructed domains.
Extensions of <the approach to an analysis of the physics and
geometry of images containing foliage (for example) do not appear
to be immediately feasible. We will view the total change in

feature value across the width of a gradient as a single valuve to
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be used in determining the likelihood of an edge somewhere within
the gradient. This approach is described in more detail below

and it seems to work reasonably well in our test images.

In many cases a gradient edge is produced whenever an
environmental edge is not parallel to one of the axes of
digitization (Figure &(a,b)). The degree of "smearing” is a
function of the slope of the edge and the digitizer
characteristics (size of the active sensor, sampling rate, etc.).
An example of this effect is clearly seen in the sloping roof
edges of Figure 7{(a) where the actual Toof edge in the. original

photograph is a sharp edge.

In cases such as these, the mask will respond to only a
portion of the full contrast which is distributed over several
pixels. This has led to approaches in which a hierarchical set
of increasingly larger masks is employed
[ROS71, HAN74, MARR7 4, HANBO]. The approach suggested here -
referred to as "gradient collection” — is to extract the total
contrast of a3 boundary by collecting the 1local horizontal and
vertical components of the gradient (as obtained from the 122
mask) and to place the resultant value at a representative edge
location ([HAN78al. It is essentially an application of the

contrast assumption to edges where the non—2ero gradient is
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spatially distributed. The probability of the resulting edge may
then be determined using the method presented in the preceding
section. This is discussed more fully in Section IV. Note that
in effect this strategy is an avoidance of fixed mask sizes and
geometries; the effective mask size is determined dynamically as

a function of the local data.

Our gradient collection process involves selection of an
edge location within the midth of the gradient as the
representative canonical location of the entire gradient edge, as
well as the specification of the likelihood to be associated with
the gradient edge as @ function of the total contrast. In
general, edges will have to be placed at several representative
locations to minimize misalignment of adjacent edges. This
misalignment can occur if adjacent views of the gradient differ

due to noise or systematic changes in the extent of the gradient.

Gradient collection is performed during the assignment of
initial edge probabilities. All horizontal runs of consecutive
vertical edges and vertical runs of consecutive horizontal edges
across & non-zero gradient and with the same direction of
contrast are considered as gradient edges. As ;llustratid in

Figure &, three multiplicative factors determine the final

probability assignment to each constituent edge in the gradient:

ca AV o v s S
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1. the location factor - the center of gravity (c.g.) of

the edge strengths in a gradient is used as the point
about which an inverse distance weighting is computed;
the location factor will be assigned a value of 1.0 at
the c.g., & value of O for edges at a distance of 4
pixels or greater from the €. 9., and linear
interpolation for all edges at a distance from the <c¢.g.

between O and 4;

2. the relative adge strength factor -~ all edges in a
gradient are divided by the maximum edge so that the
places of strongest contrast change will receive a

greater weighting; and

3. the collected edge strength factor -~ the collected
strength of the gradient (i.e., the sum of all
constituent edges) is assigned a probability by
normalizing by the maximum local contrast, which is

scaled by a factor K and bound by a maximum value of .,

i. as in equation (1).

These three factors when multiplied give the ¢final edge

probabilities along a gradient. It is easy to verify that this
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method has several desirable properties. The inverse distance
weighting about the center of gravity focusses evidential weight
on a OOQ likely candidates. Normalization of individual edge
strengths maintains some information ..boot the relative edge
stroﬁ.th in & gradient, while the collected edge strengths over
the gradient allows ¢the #full contrast to influence the final

probability of edge presence.

Figure 7 illustrates the application of the gradient
collection process to actuoi data. For illustrative purposes: a
small portion of the roof trim (Figure 7a,b) was chosen because
of the horizontal and vertical gradients both above and below the
tris area. Figure 7(c) shows the result of applying 2 122 edge
mask to the intensity datas in this figure edge intensity
encodes edge strength. The picture clearly shows the
nultiplicitg of edges caused by the gredients. Figure 7(d) is
the results obtained from the gradient collection process
described above; here, brightness encodes edge probdadility.
Without changes in ¢the display scaling the effects of the
gradient collection process are hard to see. but there is more
consistency in the presence of one or two strong edge locations
down the entire length of the boundary. Otherwise any wesk spot,
particulerly in the vertical position, cauvse the bdoundary ¢to

break up during relaxation. It is difficult to evaluate the
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(c
Application of the Gradient Collection Process. (a)
Intensity image of houre showing location of rgoof
trim subimage. (b) 8x8 scction of roof; note wide
non—=zero gradients both aohove and Bbelow the reof
trim. (c) Results of 122 edge mask. (d)
Gradient~collected edgce probabilities; edge
brightness is a3 function of probability (0 = black, 1
= white). (e=i) Iteratious 1, 2, S, 10, and 20
(respectively) of ¢the edge relaxation process
developed in the paper based on  the initial
gradient~collected edge praobasbilities: the final

result is a reasonable boundary representation of the
roof trim subimage.

et s -
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effectiveness of the collection in isolation from the relaxation
process which will make use of the data. Figure 7{e~i) shows the
application of the edge relaxation process developed in the
remainder of the paper. It is apparent that by 20 iterations
{Figure 7i) the boundary obtained is a reasonable representation
of the visuval boundary in 7{(b). Note that the boundary in 7(i)
is composed only of horizontal and vertical edge elements. As a
result, there is no information locally available about global
characteristics of the boundary, such as the slope of the roof
trim. In our system, the final boundary results shown here are

processed further and relevant features extracted [YORBO].

While we have presented a totally heuristic strategy for
assigning initial probabilities; the factors are all relevant to
edge placement and provide intuitively reasonable values. Better
models of gradient collection, perhaps guided by psychological

tonsiderations in boundary perception, are called for.

I1.4 A Bauesian View of the Loca] Context of an Edge

The simplest view of the boundary formation process involves
the vuse of the information contained in the context of a single

adge to affect the degree of belief in the existence of that edge
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23 part of a continuous boundary. &Given the horizontal/vertical
edge representation that we employ, the smallest neighborhood
which allows contextual information to propagate by means of
boundary continuity is shoun in Figure 8. Such a neighborhood
must include the three edge locations to either side of a given
edge where continuation of that edge can occur. Shortly, we will
expand the 1local context to include the adjacent parallel edges
so that competing alternate locations for the placement of wider
gradient changes can be handled in a local parallel organization
of the information. However, let us first examine the simpler
context of only the six potential continuation edges around any

given horizontal or vertical edge.

Civen the conditions of uncertainty in the presence of most
edges, the goal is to use the neighdorhood context to improve our
sstimate of the probability of the central edge. It is natural
to turn to Bayesian probability theory For the definition of the
relationship of the central edge to the neighborhood context.
Letting random variable H be associated with the central edge.
the probasbility that central edge H is present will be P{(H=T) and
can be determined as the sum of the joint probability of each of
the mutually exclusive 2#es = 64 ways that H can accur within the

context of the surrounding edges:




T
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Figure 8.

1 4
E, ! Eg
—_ + 71 4
E, Eg

Context of Edge H. The smallest neighborhood which allows
contextual information to propagate to H must include the
possible boundary continuations to the left (edges E;, E2,
and E3) and to the right (edges E4, E5, and Eg). Note that
+ represents vertex locations where horizontal and vertical
edges can meet.
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P(H=T) = P(H=T, El-T, EZ-T”"’E6-T)

+ P(H=T, El-F' EZ-T,...;E6-T)

" T

+.'l

+ P(H=T, EI-F, EZ-F,...,Es'F)

This can be shortened to:

P(H=T) =} ... ]  P(H=T, E;, Ep,...,Eq) (2>
E E
1 6
where the summation inveolving each Ei, i = 1,...,6, is enumerated
over Ei = {T.F). In effect the likelihood of the central edge

given a context of six local edges, where each edge Ei in the
context may be uncertain, is a linear interpolation of the
likelihood of the 464 six—tuples for which there is certainty

about the Jjoint presence and absence of each edge.

e

Using the standard definition of conditional probability the

Joint probability of the central edge and context can be

decomposed:

PE=T) = ] ... ]  PE=T[E;,...,Eg) P(E;,...,E)) (3)
E, Eg

The conditional probability of the central edge, given a state of
certainty in the context of six edges, will embody the semantics

of boundary continuity.
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11.5 Egquivalence Classes of Edqe Contexts

By taking into account natural symmetries in the 1local
neighborhood, the 64 cases which must be explicitly considered
can be significantly reduced [HAN7Ba,PRAB0]1. To accomplish this,
a2 labelling convention for the edge patterns that can appear in
the left and right contexts of the central edge is Ttequired.
With the generality of our continuity assumption, it is not
necessary to take into account the orientation of the extension
of the central edge into the context. Note that this would be
important if straight boundaries (or boundaries with some other
parameterized 2D curvature) were ¢to be extracted, but in this
paper no constraints on boundary curvature other than continuity

are considered,

Extensions of the central edge into the context can best be
ctategorized by labelling the two vertices of any given edge. A
vertex label will be a function of the number of edges present in
the three edge locations which can serve as the continvation of a
boundary which passes through the central edge. Thus, we will
Tepresent the four possible equivalence classes of vertices as
VO, Vi1, V2, and V3, where Vi Tepresents the case where there are
exactly i edges present at & vertex in the context. Thus, the

three possible single edge continuations at a vertex of the
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1 central edge are treated as an equivalence class, as shouwn in

P Figure 9.

The notation naturally extends to the full representation of
our context of six edges by considering jointly the vertices to
the right and left. Thus, Vi) will be wused ¢to represent a
context with a vertex labelled Vi to the left and a vertex
labelled V) to the right. For vertical central edges Vi) will
represent top and bottom vertices. Now, any of our 64 six—tuples
of edges which are present or absent can be represented by one of |
the 14 equivalence classes Viygy, 0 < i, J &£ 3. Thus, the
equivalence classes produced by symmetry of the number of edges
reduced the 64 contexts to 16 contexts. By the additional

left-right symmetry of vertices <(which does not, of course,

affect continuity considerations), we ctan further reduce the set

of equivalence classes to the ten Vi, 0 € i ¢ 3 € 3. Figure 10
is an enumeration of these ten classes in which an unfilled bar
Tepresents the central edge H, a3 s0lid line represents an edge in

the context which is present, and a dotted line represents an

pdge location where an edge is absent.

In summary, there has been & significant reduction in the
number of 1local contexts which must be considered for boundary

continvation. It was achieved by assuming left-right symmetry
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Equivalence

Class Class Members

vo g —

n o —

V2

Figure 9. Equivalence Classes of Vertex Types. Each type represents
an equivalence class of line continuations in which the
number of possible continuations is fixed. Note that by
symmetry a similar labelling convention holds when the
central edge is to the left of the vertex.
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L. X J g oo

Voo

soe [T = ses oo . ace [—T

Vol Vo2 Vo3

Vil V12 V13

Cs EEl @ @am — =

-ae f s | badded -ess

v22 V23 V33

Figure 10. Ten equivalence classes of edge contexts based on the number of
edges in each vertex and subject to left-right symmetry. i
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and counting only the number of edges within each half of the six

edge context while disregarding the actual edge orientation and

edge placement. As we have pointed out., orientation can be very
useful, and it is employed in our system at a later stage of
processing and at 3 different level of representation

[HAN78a, YORB01.

11.6 Determination of the Conditionals

Our primary purpose in updating the likelihoods of edges is
to reduce uncertainty in the presence of elemental edges by
relating them to their local contexts. The organization of edges
into boundaries can be viewed as the derivation of a likely "line

drewing” that is "close" to the initial edge estimates, and at

the same time is "consistent” with desired properties of the line

drawings.

The conditional probabilities in equation (3) provide the
theoretical basis for embodying the contextual information of
boundary continuity in the updating of edge probabilities. The
conditional « probabilities relate the Joint probability
distribution of the central edge with its surrounding context to

the distribution of the surrounding context; by definition
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P(H|E,...,E) = Pt EpseeesEg) /P(E), ... E (4)

6

These conditionals will be estimated from the class of all line
b~ drawings that are acceptable or desired; or in other words the
tlass of "likely"” line drawings that are expected to be derived
by the @edge process. Figure 11 is an example line drawing
demonstrating the characteristics of the boundaries that are
expected to appear in our desired line drawings -—— lines are
continuous and either terminate or meet at junctions with other
lines. One should notice that a primitive edge element can
appear in only a few types of local patterns in our class of edge
images. Isolated edges and lines with small gaps do not appear.
Any edge which appears as part of a boundary will have a boundary

continuation through at least one, and probably both, vertices of

that edge. Furthermore. an edge which participates in a boundary
continvation might take the form of either a single line
ctontinuation, or the edge may complete a line junction of tws or

more lines.

The conditional probabilities can be estimated from a large
sample of 1line drawings that are representative of the class of
desired line drawings. ' Mapping ¢these drawings onto the
rectilinear edge representation used in this paper provides a

large number of local contexts for estimating the jJoint
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probabilities of equation (4). Rather than actually collect such
a set of samples and exhaustively tabulate the statistics of the
ten equivalence classes, we can construct a general model of the
class of drawings and theoretically specify values of the

conditional probabilities from the model.

It is straightforward to tabulate how many times an edge or

no—edge occurs with each context Vi and then:

P(H|V; ) = P(H, Vg /P )

= P(H, Vij)/[P(H'T, vij) + P(H=F, vij)]

Figure 12 summarizeg the joint occurrence of H with Vi) for each
of the 10 equivalence classes based upon our model of desired

line drawings.

The squivalence class of VOO is fairly obvious in that we do
not expect (or want) to see "isolated” edges -— i.e., a single
edge with no continuation of edges in its context. Thus,
P(H=T|V00) is close to zero. The Vi1 case is also clear in that
the central edge should be present and, therefore, P(H-T|V11) is

close to one.

The case of VO1 is somewhat more subtle. If we consider a

boundary which terminates as a "line ending” (i.e., with no
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Figure 11.

22 33

23

114{c)

Boundary Characteristics Expected in Experimental Domain.
Example line drawing showing characteristics of boundaries
and vertices expected in the general class of line drawings.
(a) Edges expected to appear. The local edge contexts shown
around the V01, V11, V12, V13 contexts are the only ways,
subject to symmetry, that an edge can participate in a boundary
in our class of line drawings. (b) The edges marked V00, V02,
and VO3 clearly do not participate in closed boundaries and
should not appear in the line drawing. The absence of edges,
as shown by open rectangles, in the V11, V12, and V13 context
would result in a break in boundary continuity and these

cases also arenot expected to appear. (c) Contexts with
inherent ambiguity. There is some degree of ambiguity concern-
ing the need for the edges in the V22, V23, and V33 contexts.
None of them are required for boundary continuity, although
they may appear because they accurately reflect the underlying
data in the pixel perpendicular to the edge. One would also
expect these cases to occur in dense edge areas, such as
heavily textured portions of an image, or, as we have seen,
in gradients (cf. Figures 6 and 7).
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continuity to one side), then the last edge appearing in that
boundary will have a VOi context. However, for each such case
there are three edge locations forming the VO vertex of that last
edge, which, when considered as the central edge location
themselves, will contribute to the count of H=F and VO1; thus,
there are three times as many joint H=F and V0! occurrences as

Joint H=T and VOl occurrences,

The cases of Vi2 and Vi3 involve the edge locations leading
into the junction of boundaries, and they derive from the fact
that a boundary is not expected to terminate just before meeting
another boundary. Finally, the V22, V23, and V33 all involve
cases which are somewhat ambiguous. The absence of the central
edge does not really affect edge continvity in the neighborhood
since there are independent continutions to each side of the
edge. However, if the underlying data implies the presence o#f
the central edge, its survival should not be discouraged. Since
it is much more 1likely that two nearbdby baundaries are not
connected by "bridging"” edges (as in the case of the boundaries
associated with narrow horizontal or vertical stripes), a lou
value for P(H=T|V22) is arbitrarily chosen, say .1. The V23 and
V33 contexts have similar analyses. Note that the V22, V23, and
V33 contexts might be expected to be more frequent in textured

areas or in places of non—-zero gradients.
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Joint Occurrence Joint Occurrence Approximate
of H and Vij of H and Vij P(H|Vij)
low high 0
number of line three times number of] 25
endings line endings '
A V02 low high 0
Vo3 low high 0
' Vil high low 1
V12 high low 1
Vi3 high low 1
v22 number of times two mumber of times two or
v23 or more nearby lines re nearby lines and/| «< .5 72
! V33 1and/or line junc- F:linejunctionsdo : )
u itions have a bridge not bridge
oy (a)
vij P(H{Vi})
Voo 0
} Vol . «25
}‘ v02 0
‘ V1l 1
i V12 1
V22 .1
(b)

Figure 12. Estimation of the Conditional Probabilities from our Model of
| the Class of Line Drawings. (a) The ten equivalence classes.
{ (b) Reduction to six equivalence classes based upon identical
; semantics of the V2 and V3 vertices.
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The set of ten equivalence classes of 1local edge contexts
can be further Treduced. An examination of Figure 12(a) shous
that the conditionals associated with the V2 and V3 contexts are
the same. This reduces the set of equivalence classes to six,
namely Viy, 0 € i £ J £ 2, as shown in Figure 12(b), where the V2

vertex class now includes V3 also.

I11.7 3Ihe Patterns of Boundary Continuity

It may be helpful to briefly examine the semantics of these

six equivalence classes aover the 44 patterns of edge contexts:

P{H=T/VO0) = 0 -~ an "isolated edge” which does not appear
to participate in & continuous boundary;

P(H=T|V01) = .25 - an “"ambiguous boundary continuation”
where the line may terminate or else
continue in one or more of the three
possible directions;

P(H=T|V02) = O - a "spur® which is an edge whose absence
will not affect the boundary continuity
of the other edges which are present in
the context:

P(HaT|Vi1) = 1 = local "continuity” for a single boundary
is ensured through the central edge:;

P(H=T|V12) = i - boundary continuation via "junction
completion” is ensured through the
central edge;

P{H=T|V22) = .1 - "ambiguity of bridge” linking nearby
boundaries; the edge context provides
no information concerning the presence
of the central edge.
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Hopefully, these descriptions provide some insight into the
semantics of local patterns of continuity. Four of the patterns
-= V00, V02, Vii, Vi2 -— appear to be quite reasonable. However,
uncertainty in the VOl and V22 cases will give us some degree of
difficulty. In the VOi case the problem is immediately obvious
when ane considers that the abrupt termination of a boundary
composed of elemental edges with probability one will update the
probability of all three adjacent edges to a value of .25 This
appears to be a diffusion of information rather than a coherent

organizing process,

There is also a potential problem in <the use of <the V22
conditionals in the case of two lines which are close together.
For example, consider twoc strong parallel lines one pixel apart,
as in the case of a black stripe on a white background: the
probability of an edge linking the right and left boundary of the
stripe at each possible "bridging" 1location will be set to a
constant (say K), no matter what is implied by the wunderlying
data of the pizxels in the stripe. Thus, any value of K, high or

low, will be wrong in certain cases! These issues will be set

aside for the moment but will be addressed again later.
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I11.8 Relaxation Updatina as Bauesian Consistencu

The development, thus far, has focused on determining the
likelihood of a single central edge given its local context of
neighboring edges. and was based to & reasonable degree on a
Bayesian view of this relationship. Now we wish to embed this
relationship within an iterative updating scheme which is to be
applied simultanecusly to all edge locations in the image.
Tealizing full well <that this step takes us ovutside the
contraints imposed by Bayesian theory. This parallel updating
will be viewed as a relaxation labelling process whereby an’
inconsistent set of 1likelihoods are driven towards consistency
with their neighborhoods. The conditional probabilities serve as
compatibility coefficients in relating the neighborhood

influences of edges in the context.

Since the parallel wupdating scheme is to be repeatedly
applied, it will be convenient to extend the notation to reflect
the iterative progression of the computation by including the

notion of time in the updating function:
t+l t
Py = 7 T PRa|v, )RSy, ) (5)
25 137" My

Let us make the following important simplifying assumption: the

conditional oprobability distribution of H upon its context is
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?

given and is stationary. Consequently the conditionals in

equation (5) will not require @ superscript t. We now observe .

-~

that the wunary marginal probabilities of edges P(éﬁ) are L
determined a priori on the basis of external physical evidence, L
but the joint probability of edges P{E1l, E2, E3, E4, ES, Eb6) are
not available. This implies that the joint probability cannot be
computed without additional information or assumptions, the most
obvious being independence of the edges in the context. By vusing
the assumption of independence of left ond right vertices to
approximate the joint probability of edges, yielding i

Pt = E § P(Hlvij)Pt(Vi)Pt(Vj) (&)

We can further approximate the probability aof vertex types using

independence of edges in each vertex

P(Vy) = P(E,~F, E,=F, E3'F) = P(E,=F) P(E,=F) P(E,=F)

P(V

1) = P(El.T’ E,=F, E3’F)

2

b

+ P(E,~F, E,=T, E,=F)

2

+ P(El-F, EZ-F, E3-T)

2) = P(EI-T) P(EZ-T) P(Eaﬂf)

i

+ P(EI-T) P(EZ-F) P(EB'T)
+ P(El-F) P(EZ-T) P(E3-T)

P(V3) = P(El-T) P(EZ-T) P(ES-T)

The assumption of edge independence may cavse the careful reader
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some concern. We are using the dependencies between every edge
and its neighboring context to update edge probabilities, yet
portions of the context are assumed to be independent! In
particular when one of the edges, say El, is considered as the
central edge, then the vupdating function will be based on the
dependencies of E1 upon E2 and E3 and its other surrounding edges
in the context -— yet we have already assumed Ei, E2, and E3 are
independent. Thus, we have viclated theory here and have entered
the realm of heuristics. Even without ¢the assumption of
independence, our mechanism for parallel updating is still not
theoretically sound from a Bayesian viewpoint. While any single
context could be used to update an edge probability, that central
edge sﬁould not also be used to update the value of the other
edges which were in its context. Dtherwise, this allows ¢the
probability of an edge in equation (5) to have an effect upon
itself as closed loops of probability updates. An examination of
the theoretical issues in this approach to relaxation labelling
and the propagation of information in inference networks [DUD76]

is treated in detail in L[LOWSO].

Despite some of the theoretical difficulties, we will
oxaminc' the use of such an wupdating function. In general,
initial values of individual edge probabilities are consistent

with the underlying feature data which gave rise to them: but are
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not consistent with their surrounding contexts in terms of the
conditional probabilities derived from the class of ideal line
drawings. If the conditionals remain constant, then one can view
the wupdating process as a means by which the likelihood of a

central edge becomes consistent with its surround.

I# the array of edge probabilities ever reaches a state
where the updating function leaves every edge probability at its
current value, i.e., Pt+i(H) = Pt(H) for all H in the image, then
the system is at @ fixed point. Further iterative updating will
leave all values unchanged. Note also that at a fixed point all
edges are consistent with their local surrounding contexts
because the updated values implied by the contexts are the same
as their current values. Thus, fixed points are consistent in

this pseuvdo—~Bayesian sense.

11.9 Examination of Specific Cases

In this section we examine tuvo cases of initial
probabilities which demonstrate certain difficulties in our
formulation of edge relaxation, and then present some results
which confirm these .diFPiculties. One case demonstrates the

decay of edge patterns which should remain stable, while the

Ry
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other case demonstrates the growth of ‘noise’ which should

disappear.

Case 1: A closed loop of edges with praobebility q on a
background of zero probability edges.

Note that q@q = 0 and q = 1 are fixed points. However, if
0<q< i, a3 fixed point is approached in the wupdating process,
but there is total 1loss of ¢the starting information that
represented the boundary (refer to Figure 14). Let wus analyze
why this takes place by representing P(H=T|VO1) with variable W.
Then the updating equation for central edges in the «closed 1loop
{each with oprobability q) is given in Figure 13(a), while the
update for zero probability edges that ore touching the boundary

are given in Figure 13(b).

It is interesting to note here that @ value of W = .25, as
defined by our estimates in Figure 12, will cause the updated
value of edges H in the loop to decrease in probability if q < 1,

even if q is arbitrarily close to i; thus

P (H=T) < PE(H=T) when P (H=T) < 1.

At the same time, edges adjacent to the boundary of probability q

will change to & non—zero edge probability. As the updating
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process continues, the information is diffused, as shown in
}‘ Figure 14a, until it approaches a fixed point. All values of q
other than O and § will not allow the initial pattern to remain

stable.

Simple examination of the updating equation shows that a

valve of W = .35 will allow the edges in the loop to remain
constant. A value of W 2> .5 will allow edges in the 1loop to

t+l(H=T) > PE(H=T). In either case, however,

increase, that is, P
the zero probability edges hanging off the boundary will still
increase and eventually the information is diffused as shown in

Figure 14(b) and {(c).

Case 2: A uniform field of low equiprobability edges q.

In this case all edge locations have an identical context in
the updating process. I#f q has a low value, one might consider
it desirable for all edge probabilities to converge ¢to a fixed

~ point of O Unfortunately, our formulation, which has been
guided by theoretical considerations, is not so well-behaved.
Given the analysis of Case 1, let us set the value of P(H=T|VO1)

to .5 and determine the updated value at all edges as a function

of q.

< A d SN




52

|
. P(V0) = 1-q
- | for left
> == P(V1l) = q

] ] q and right edges
| \ P(V2) = 0
! |

Vij P(Vij) P(H|Vij)

2

V0o (1-q) 0

Vol 2q(1-q) W

V02 0 0

Vi1 Q 1

V12 0 1

v22 0 .5

P(H) =X I P(H|Vij)P(Vij) = q2(1-2w) + q(2w)

i 324

P(H) < 1 if w<.5

P(H) = q if w=.5

P(H) > q if w>.5

13(a)
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left vertex right vertex
ql io PL(VO) = (1-q)2 PR(VO) = 1
~——- —--o- PL(V1) = 2q(1-q) PR(V1) = O
0
l : PL(V2) = <12 PR(V2) = O
! 0 ,
Vij P(Vij) P(H|Vij)
2
V0O (1-9) 0
vol 2q(1-q) w
Vo2 q2 0
Vil 0 1
V12 0 1
V22 0 5
P(H) = 2wq(l-q) > O for w>0 and 0<q<1 ;
1:3(b)

Case 1 Analysis. (a) Update equation for a central edge

in a closed loop of edges with probability q. The vertex
probabilities are used to compute the probability of V00,...,V22
edge contexts, from which the update equation can be obtained.
(b) Analysis similar to (a) but for the edges adjacent to

the closed loop.




Figure
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Case 1: Closed Loop of Edgec. Each adge in the loop
has an initial probabilily of .8 while background

edges are of probability O. lrach image shows the
original data (upper left corner) followed by the
edge relaxation after iterations 2 (upper right), S

{lower left), and 10 (lower right). The parameters
used other than P(H/VO1) were those given in Figure
12(b).
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First, it is helpful to examine ¢the probabilities of ¢the
V four vertex types VO, Vi, V2, and V3, given a set of three edges
each of probability q. Figure 15{(a) lists the vertex likelihoods
for several low values of q. With a value of q = .2, the
likelihood of V1 is relatively high: .384. Interestingly, this
causes the wupdating of the central edge to be more heavily
weighted by VO1 than VOO because P(VO1) > P(V00). Figure 15(b)
depicts the relative contribution of each context Viy in updating
the central edge to .424. Thus, in a single iteration a uniform
field of edges with probability .2 would be raised to . 424 and
then even higher on the next iteration. This process converges

to a fixed point about . 65.

While this increase of low probability edges may disturb the
intuition of some; the reason is that P(VOO) = (i1-q)##é and for q

= .4, .2, and .3, P(VDO) equals .33, .26, and .12 respectively.

Thus, & context of six low probability edges can lead to a

“wp-

relatively high likelihood of the VO1 case, because it can become
? quite unlikely that all six edges are absent. The updating
process increases the probability of the central edge in Tesponse
to the many vuncertain, but possible, ways of extending the

boundary. !

e ~‘-&’*w- . 1
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P(VO) = (1-g)°
P(V1) = 3q(1-q)2
P(V2) = 3q2(1-9)
P(V3) = q3
q=0 q=.1 q=.2 q=.3
P(V0) 1 .729 .512 .343
‘_ P(V1) 0 .243 384 441
P(V2) 0 .027 .096 .189
P(V3) 0 .001 .008 .027
(a)
For q = .2
Vij P(Vij) P(H|Vij) P(H|Vij)P(H|Vi])
V00 (.512)2 = .262 0 0
Vo1 2(.512)(.384) = .393 .5 .197
v02 2(.512) (.104) = .106 0 0
vi1 (.384)% = 147 1 147
v12 2(.384) (.104) = .080 1 .080
v22 (.104)2 = .001 .5 0
P(H) = .424

()
l

Figure 15. Analysis of Case 2: A uniform field of edges of low probability
q. (a) Vertex probabilities as a function of gq.
(b) Contributions of each context Vij to the probability
update of the central edge, assuming q = .2.

{
!
\
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In order to examine the  impact of these problems on an

actusl scene, the relaxation algorithe was applied to the bush
subimage (Figure 1D). This subimage was chosen because it
exhibits o rongi of characteristics including clear straight
lines at several orientations, relatively weak edges in many
places. texture edges, house edges in the textured aress,

non—zero intensity gradients of several forms. etc.

The results of the edge update process after iterations O,
1, 2, and 3, using the conditionals described in Figure 12b, are
shown in Figure 16. The resuvlts are obviously poor., and
improvements were not achieved by variation in the conditionals.
Clear edge patterns immediately decay with éi#?usion into the

surround, while there §s 1little control in the growth of low

values of esdge probadility —— which for convenience we shall call
*noise™ here even though the source of this data is varied.
Attempted remedies for controlling the low prohobilitu edges via
techniques involving 'uz{g probabilities and thresholding also

were not successful. ’

It is difficult to determine the source of the prodblems in
the formulation. Clearly. the most obvious theoretical problems
are the assumption of independence which allows the joint

prodability of the context to be decomposed. and the simultaneous
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Figure 16
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(b)

(&)
Results from Edge Update [“rocess. (a) Initial
probabilities. (b) After 1 iteration. (c) 2
iterations. (d) 9 iterations, By the second
iteration, the diffusion of the original data is well
underway. The wuncontrolled growth continuves in
subsequent iterations uniil the original edge

information is gone.
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and iterative updating of all edges. Rather than question these
assumptions wupon which our basic approach rests, in the next two
sections we incorporate additional forms of contextual
information and explore variations in the updating equation as we

seek to develop @ formulation which performs as expected.
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I1I. PARALLEL EDGE SUPPRESSION AND CONTRAST DIRECTIONALITY

Up to this point, the definition of the local context to be
used in updating was based primarily on the requirements imposed
by the continuity assumption. The local context defined thus far
is the smallest meaningful neighborhood Ffor an edge which permits
the translation of the continuity assumption inte a set of
constraints defined over the neighborhocod. However., the presence
of edges defined by non-zero feature gradients means that an
extension of the local context to include the two adjacent edges
parallel to the central edge {(edges E7 and EB in Figure 17a) will
provide highly relevant information. These locations represent
alternative placements for the collected gradient edges (Section
11.3). Their absence makes it impossible ¢to control the
selection of that edge location (within the set of alternative
choices of the gradient) which best supports continuity in the

local context.

Without the expanded local context, in the current system
211 parallel edges could, and often do, find support in their
context and grow toﬂ¥hei; maximum strength. The overall effect
varies, depending . on the situation. In the mor;t case, most
non—zero edges in the image grow, resulting in a dense mesh of

wdges over much of the image, as shown in Figure 146. Some form
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central edge
0 = edge of opposite
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Figure 17. Extension of the Local Neighborhood. (a) The local neighborhood
is extended to include the two edges E7 and Eg§ parallel to the !
central edge. This extension permits gradient information to %
propagate into the context. (b) Py maintaining contrast
directionality of the edges relative to the central edge, the
effects of parallel edges on the central edge are easily
decomposed into two classes G-ON and G-OFF. For case G-ON,
the effect is inhibitory and suppression is on; for case G-OFF,
the edges are parts of different boundary gradients and no
suppression takes place.

v v lat A il

— N AN i s



!
1
\

of parallel edge syppression (or gradient suppression) via

lateral inhibition is necessary to remedy this. Ad jacent
parallel]l esdges can be structured to compete for survival, with
the ouvtcome decided by the support from their respective local

contexts.

The process of parallel edge suppression must take into
account the direction of contrast of parallel adjacent edges.
Otherwise a one-pixel wide black stripe on a white background,
for example, would cause ¢the two distinct boundaries of the
stripe to compete until only a single boundary remained. a result
that is clearly undesirable. Consequently, parallel (and
ad jacent) edges should compete to become the representative of a
given gradient edge, but this process shouvld be deactivated if

the parallel]l edges represent different boundaries.

The contrast directionality of edges in the initial data
provides sufficient information for the decision of activation of
parallel edge suppression for every pair of parallel edges. In
fact it is precisely this feature of edges that is used in the
gradient collection algorithm to group contiguous parallel edges
{or equivalent runs of consecutive pixels) into units to be
considered as potential gradient edges. Thus, the direction of

feature contrast change will be maintained as a sign, "+" or "-",
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The required properties of the edge suppression process are:
1. the central edge will be inhibited when edge E7 or EB

possesses the same sign of contrast change as the

central edge;

2. parallel suppression will be decoupled and there will be
no effect From edges E7 or EB (or both) if they have a
different contrast sign; and

3. the degree of parallel suppression will be directly é
proportional to the likelihood of the parallel competing

edge(s).

For simplicity the effect of parallel edge suppression will
be separated from the contextual influence of boundary continuity
by introducing @ heuristic assumption of independence between the
parallel edges E7, EB8, and the six continuing edges in Vij. 1

Thus,

P(HeT) = ] } ¥ P(H-Tlvij, E;» Eg) P(Vyy, B,y E
E

)
13 E; Eg 8

may be rewritten as:

P(H=T) = -
Y= 11T L raeTlvyy, B, ) BV, PG RCE

) )
J E; Eg 8
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The key problem remaining is the determination of the
conditionals relating the central edge to the eight edges in the
context. One approach is to enumerate the 256 cases of the joint
presence and absence of these edges and estimate the associated
conditionals from the model of desired line drawings. The
analysis is further complicated by the need ¢to include the
contrast directionality for controlling suppression of parallel
edges, thereby significantly increasing the number of cases to be

considered. The approach employed hevre is simpler.

First, let us note that the edges E7 and EB can each be in
one of three possible states: 1) no edge. labelled "F", 2) an
edge of the same contrast direction as the central edge, labelled
ngn, or 3) an edge of the opposite contrast as the central edge.
labelled "0O". There are nine possible joint occurrences of the
states of E7 and EB. These are divided into two groups G—-ON and
G-0OFF, corresponding to the cases of parallel edge suppression
being activated or deactivated, respectively, as shown in Figure
17{(db). The contrast signs of edges are fixed during initial
gradient collection, and consequently only some of these nine
ctases are relevant; in particular only one of the pair of signs
(+, +), (+, =), (-.u+). and (-, =) for any pair of edges can have

a non-zero probability, while P(E7=F) for example can be non-2ero

no matter what the sign of edge E7. The probability of the nine
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cases will vary depending upon the signs and magnitudes of P(E7)
and P{EB), and can be computed as & product of the presence or

absence of the two edges.

Inclusion of the parallel edges E7 and EB in the local
context of the central edge can be viewed in terms of G—ON and
6-0FF instead of E7 and EB:

P(H=T) = | § [P(H=T|Vij, G-OFF) * P(V,,, G-OFF)

i3
+ P(H-Tlvij, G-ON) * P(Vij, G-ON) ]

and by the independence of Vij, and E7 and EB

P(H=T) = ) § [P(8=T|V,., G-OFF) * P(V, ) * P(G-CFF)
i i i

+ P(H-vaij, G-ON) * P(V,,) * P(G-ON)]

1j

The required effect of cases 6-ON and G-0OFF suggest a rather

simple means of integrating their effect into the conditionals.

Case G-OFF should have no effect on the updating; therefore

P(H|V, ,, G-OFF) = P(H|V

i3’ ij)

For case C~ON an assumption of conditional independence of Vi

and G-ON given H=T 1lgads to a simple embodiment of parallel

inhibition.
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P(V,., G-ON|H=T) * P(H=T)

P(H T|Vij, G-ON) P(vij’ )
_ P(viily-r) * P(G~ON|H=T) * P(H=T)
P(Vyy) * P(G-ON)

P(H-T|Vij) * P(H=T|G~ON)

= P(H=T)

. e P (H=T|G-ON)
PA=T|V, ) * =55

If we let
C= 2£%%%£%§9!l where 0 < C <1 j

then, a setting of constant C to a value less than one has the

desired effect of parallel edge suppression using

P(H-T‘Vij, G-ON) = C * P(u-rfvij)

for all vertex classes Viyj. This parameter will allow variable
controel in the overall effect of the suppression mechanism.

Thus, we get

P(H=T) = | | [p(n-r|vij) C P(V,,) P(G-ON)

i} 4

+ P(H-T|Vij) p(vij) P(G-OFF) ]
finally yielding

P(H=T) = [C * P(G~ON) + P(G-OFF)]

* (1 ] p=T|V, ) P(V,))]
E g ‘ ij 1j

-

e o gl
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Note that the effect of parallel edge suppression and
boundary continuity have been decomposed into product terms. The
second term is exactly the update before parallel suppression was
considered, while the effects of parallel suppression have been
isolated in the first term. The required effects of gradient
suppression can now be attained. As condition G—-OFF becomes more
certain, the value of the first term approaches 1.0 which is the
case without parallel suppression. Alternatively as condition
G-ON becomes dominant because of likely parallel competing edges,
the value of the first term goes to C. I# C = 3, parallel
suppression is turned off; for C = 0O, maximal suppression is
achieved. 1In practice a3 value of C = .5 appears reasonable given

the particular gradient collection algorithm in use.
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IV. REFORMULATION OF THE LOCAL CONTEXT TO INCLUDE THE CENTRAL EDGE

In Section II of this paper the relaxation process for
updating the probability of edges was motivated and guided by
considering the Bayesian relationships of edges in a local
context. Empirical results, however., were quite disappointing.
One apparent difficulty to be explored in this section is the
lack of direct influence of the current central edge probability
on the updated central edge probability. While it is clear that
the current probability of a central edge will have an indirect
effect upon itself over successive iterations by influencing the
edges in its context which, in turn, influence it, the updating
process fails to capture meaningful information in a single
updating of a 1local context. For example in the case of a
boundary termination, the three edges which are absent. as well
as the 1last edge actually present in the boundary, will be
uvpdated to similar values because all four of the edges see a VO
context. There is a lack of discrimination between the last edge
in the boundary and the adjacent asbsent edges. Much of the
relevant informatioan that is being ignored is available in the

current probability of the central edge.

We will present two formulations that include the central

edge directly in the updating process. They are both heuristic

I-. l, -— ‘_
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as are most of the approaches in this paper when viewed from
strict theoretical grounds. The first is of some interest
because it is theoretically motivated by a loose
re—interpretation of the Bayesian formulation, but it still does
not produce effective results. The second formulation involves
updating of both edge and no-edge labels with normalization. It
retains the same values of conditional probabilities that were
originally suggested theoretically, while capturing the effect of
competition between labels via normalization. Highly effective

results are achieved in the second formulation.

For ti A; Edges as Distinct Events Over Time

It is difficult to Justify a Bayesian formulation which
includes the central edge in the context unless we modify our
basic definition of the events whose probability distributions
are being manipulated. Up to this point we have associated a
probability with each edge location. treating each edge as a
particular event on the spatial array of image points. The
problem then becomes one of updating the probability of these
events so that consistency with the set of fixed conditional
probabilities is achieved. Thus, one can view the wupdating

process as adjustment (over ¢time or, equivalently, iteration
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number) of the original estimates of the probability of edge

presance.

A different interpretation of these events may be obtained
by viewing as gistinct events edges which are in the same spa£131
location, but are updated over time. Thus, edges at time ¢t and
t+t in_ the same spatial 1location will be considered distinct
entities. However, local neighborhoods and conditional
probabilities will still be used to relate events in successive
iterations. The updating process becomes one of deriving a
probability distribution of gnpther set of edges which has been
derived from the probability distribution of <the original edge
array. In fact, it is natural to think of both the initial and
final probability distridbution of edges to be available ¢to
further processing; the initial array represents sensory data
while the final array Tepresents a boundary continuity

interpretation of that data.

The superscript ¢t is now related to the random variable of
the edges themselves instead of the probability of the random
variable. The telationship between the probability of the
central edge af time t+i and the ggven edges in our local context

at time ¢t is then:




Pty = 7 ] [P(u“’1 =T, Ho=T, v‘ij)
1]

+ p™at, wteF, V& )]

1)

' t t
g9 PST, VE )

t
1-1) P(H"=F, vij)]

t+l

p™ar) + 7 7 (p@t*lar|utat, v¢
ij]

t+l

+ P at|ut=F, v*

Note that the same theoretical difficulty in estimating the
joint probabilities of edges still persists. Only the unary
marginals are available, yet we know that <the edges in the
context are not independent. Nonetheless, for lack of a better

soclution, an assumption of independence gives us

p@tar) = 7§ (p@tar|utet, v° j) p(v » P(H"=T)
1 j t+l t t
+ P(H. =T{H =F, V j) p(V j) P(H =F)]
Py = ] ) ROVE, ) (PHE*LaT(VE , HOwT) % PHSST)
i3
+ P Lar|vE 4 H taF) * p(ut=F)]

The key difference in this vupdating formula is that the
conditionals are based vupon seven edges in the context: this
introduces @ muvltiplicative factor involving the probability of

the central edge on the previous iteration.

Figurc-IB summarizes the new set of conditionals based on
estimates from the desired line drawings discussed earlier. The

six equivalence classes Vi) have now become 12 because the
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t t
b vij ptt = Tivig, B* = D) pE™t = T|vis, wE = B)
?
€
V00 0 0
t
vo1 1 0
t
V02 0 0
t
Vil 1 1
ﬁ t
V12 1 1
i t
;i v22 1 0
f

Figure 18. Estimation of Conditional Probabilities with Central Edge
in the Context (Formulation A). The conditionals are-derived

from the model of desired line drawings described in Figure 1l.

{
Y
\
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central edge may be present or absent with each. It is quite
interesting to note that all conditionals are O or 1 in the seven
edge context. It appears that inclusion of the central edge has

greatly clarified the desired states in the updating process.

In the case of the VOO, V02, Vi1, and VI2 contexts, the
conditionals are the same whether the central edge is present or
absent. Thus, in these cases there is effectively no change in
the updating because the central edge will factor out of the new
updating formula. However, in the V22 cose the values of 1 and O
for P(Ht+1=T|Ht=T, Vi) and P(Ht+1| Ht=F, Vij), respectively,
cause a linear interpolation between the values for P(Ht=T) and

P(Ht=F). When P(Vt22) = 1 then
pata1) = put=1)

which appears to be exactly what we want. The central edge will
stabilize at the current probability that was the best estimate
based on local evidence; if there wos little evidence for a

bridging link between lines, the edge probability can remain low.

In the previcus formulation, the VO1 context alsc caused
some difficulty in defining the appropriate conditionals. This
was due to the symmetry in the cases where the central edge was

present and where it was absent; it was impossible ¢to
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distinguish these cases, yet it was clearly desirable to do so.
Inclusion of the central edge in the conditional allows the last
edge present in the boundary to be distinguished from the three
ad jacent edges that are absent. Thus, a boundary termination in
terms of the four edge probabilities is stable in the wupdating
process when the boundary has probability one. There will be no
diffusion of the information in the case of a boundary with edges

of probability one that abruptly terminates.

Once again experimental results demonstrate that intuition
can be quite deceiving.‘ particularly in the case of parallel
local updating of complex information. Figure 19 depicts several
iterations of the seven—edge context using the conditionals of
Figure 18 and no gradient suppression. 7The end result of this
process is the diffusion and grouwth of edges across much of the
image. Figure 20 depicts runs with moderate and strong parallel
edge suppression, and while this algorithm appears marginally
better than the basic approach of Section Il and Figure 14, again
no effective results are achieved. The dependency of results on
particular values of conditionals was explored by varying several

values of conditionals, but this parameter diddling yielded no

significant improvement.




Figure 19. Edge Results for Formulation A: Inclusion of Central é
Edge. For these results the conditionals showm in
Figure 18 were used and no gradient suppression was
performed. The results are discouraging,

particularly when compared to i-igure 16

a . p— R ; N




Figure 29.

(a)

(b)

Edge Results for Formulation A: Inclusion of Central
Edge. Results for (a) moderate and (b) strong
parallel edge suppression after 10 iterations exhibit
a similarity to those in Figure 19. Evidently the
poor results are not sensitive to the degree of
parallel edge suppression. Oimilar explorations of
the dependency of the rtesults on other parameter

settings yielded no significant change in their
quality.

L - e . e p—
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Part of the problem of rapid growth of edges in Figure 19
suprisingly comes from the V12 case. Figure 21 is an analysis of
the effect of updating given that one wuncertain boundary at a
probability of .5 is in the vicinity of a boundary whose
probability is one. Analysis shows that the central edge will be
vpdated to at 1least .35 no matter what the probability of the
central edge is, and that the problem is due to the context of
Ht=F and V12. The probability of the central edge is a factor in
one term, but the probability of the absence of the central edge
is the multiplicative factor in the other term, and therein lies
the difficulty. Again we have a problem whereby the probability
of the central edge is changing rapidly with little relationship

to the value on the previous iteration.

Eormuylation B:. Updating Edge and No-Edge Labels with
Normalizatign

The failure of Formulation A to produce acceptable results
is discouraging. The probability of the central edge appears to
change:, almost independently of the actual data. Let vs -consider
iho second updating formulation obtained by treating the central
sdge and its context as two separate, independen& sources of

information. From this perspective, the information in the
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1 | | .3 PL(VO) = 0 PR(VQ) = .25
0 li—l 0 PL(VL) = 0 PR(V1) = .5
{ 1! ‘ 5 PL(V2) = 1 PR(V2) = .25
(a)
Vi P(Vii) palar(viy,uter) | p@t*lar|vij,uter) pat*lor|viy)
*p(HtaT) *P(Ht=F) *P(ng)
V00 0 0 0 0
Vo1 0 q 0 0
v02 .25 0 0 0
Vil 0 q 1-q 0
V12 .5 q 1-q »3
v22 .25 q 0 .25q
(®)

Figure 21. Formulation A: Analysis of the update to an edge of probability
q between two parallel lines, one of probability 1 and the
other of probability .5. (a) Neighborhood of central edge
i and vertex probabilities. (b) Contributions of each context
| Vij to the probability update of the central edge; note that
the central edge is updated to at least .5, independently of
its initial value.

,
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surrounding context is combined in a multiplicative way with the
information contained in the central edge itsel#f. In this
formulation it is difficult for either piece of information to
completely override the other. The growth of weak edges is
slower because the update increments are smaller; they receive
only a portion of the support available from the context. Strong
edges, on the other hand, for which there is evidence of support
in the context, grow relatively faster. The conjecture is that
the growth of edges will be more controlled and, where necessary,
slow enough to allow evidence of support (or non—-support) to
propagate from "islands of reliability” [LES771 to local

contexts.

Thus:, Formulation B weights the contextual evidence by the
current central edge probability to produce wupdated values

P’t+1{H):

P (gaT) = PE(=T) *[ ] PE(ueT|V, ) PV, )]
1]

and

P.t+1 )

= - t = ) t - t
(H=F) = P"(H=F) *[E § PE(B=F|V, ) POV, !

For clarity, we let

£ = P (i=T|V t
; § (HT|V, ) POV )

enrd then rewrite the equations as
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P St (het) = P (H-T) * £ (7

and P (hmF) = [1-PT(H=T)] * [1-f]

Clearly., these equations are not well-founded in probability
theory and represent a different heuristic departure from the
earlier formulation. In particular, since the wupdated central
edge values P‘t+i(H) do not sum ¢to 1§, renormalization is

necessary to obtain the final updated values:

P (e) = P =) [ 12 T (ae1) 4+ 2t (e ]
and

+
PP (=F) = 1 - Pt (gar)

There is an interesting symmetry in the wupdate equations
(7). The current central edge probability and the contextual
evidence really "weight” each other equally. Neither is favored
by the ¢formulation. This formulation is not subject to the
problem noted in Figure 21 of Formulation A: edges between
parallel edges are vpdated to a value which is a function of the
probability of the central edge. Figure 22 summarizes the
analysis of wupdating two parallel 1lines, one of probability
1. and the other of probability .85, one pixel apart. Figure

22{(d) shows that the central edge update in this case is very
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ctlose t» initial probability and is much more reasonable than the

Tesults of Figure 21.

These results from Formulation B are encouraging and
application to natural images shows the algorithm is effective.
Figure 3 and Figures 23-26 summarize various aspects of these
Tesults. Figure 23 shows the necessity for gradient collection
and suppression; 23(a) is the result of applying Formulation B
in the absence of gradient collection/suppression. The failure
of the edge process is most obvious in the rvoof trim and bush
boundary. The gradients associated with the boundaries tesult in
a8 series of "squares" or "rectangles" connected by ;ingle edges
Thus, the boundaries consist of many V22 vertices and as the
iterations proceed. the edges surrounded by the V22 vertices
eventually disappear, wuntil by 20 iterations the boundaries are
highly fragmented. Figure 23(b) shows the same edge process
applied to the same image but in this case gradient suppression
was included. The boundaries are quite good, although not all of

the bush boundary and shadow boundary have been found.

The VOi conditional determines the amount of support the
central edge gets from the context when continuation of the
central wedge occurs to one side only. Variation of this

parameter has the effect of a "sensitivity” control over the
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22(b)

vij | pS(vi) | p@a=T|Vii) | PCu=T|vii)*et(vi3) | P(m=F|vij) | P(H=F|Vij)*P"(Vij)
V00 0 0 0 1 0
Vol 0 .25 0 .75 0
Vo2 .25 0 0 1 .25
V1l 0 1 0 0 0
V12 .5 1 .5 0 0
v22 .25 .1 .025 .9 .225
u = ,525 u = 475
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t+l

P'H"T) = P@E%)*u = .525q

pr @Yy = p@E%)*u = .475(1-q)

pt*hy pr @t L .525
et + pr @y 475 + L05q
22(e)
+
q 3¢ i)
) 0
.03 .033
.25 .269
.5 .525
.75 .768
.97 .973
1.0 1.0
22(d)

Formulation B: Analysis of the update to an edge of probability
q between two parallel lines, one of probability 1. and the

other of probability .5. (a) Neighborhood of edge of probability
q. (b) Contributions of each context Vij to the probability
update of the central edge. (c) Probability of central edge

at next iteration expressed as a function of q. (d) Table

of P(Ht+l) as a function of q; note that the update is much

more reasonable than that shown in Figure 21.

B




Iteration 5

Iteration 10

Results from Formation I aslter 2, S and 10
Iterations, (a) No gradiecnt suppression. (b) With
gradient suppressiaon. In each case, the conditionals

used are those shown in Figure

12(b).




Iteration 5

Iteration 2

Iteration 10

Figure 23(b)
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continvation edges which will eventually survive into the ¢final
boundary images. The effect is shown in Figure 24; note that
for P(H|VO1) = . 47, the bush boundary is completed but other
*noisy” kinds of edges are also evident, notably in the tree area
to the left of the windows, in the shrubs under the window. and

in the right side of the bush.

The left boundary of the bush, particularly where it crosses
the window ¢trim cJoundary, is an ihteresting area and it
highlights some lingering problems with ¢the edge process, as
shown in Figure 25 The intensity close-up in 25(b) clearly
shows that the placement of the bush boundary is not at all
obvicus. The wunderlying prodblem with ¢this area is thet a
gradient exists between the (white) trim and the interior of the
bush (dark). Within this gradient are two real boundaries one
pixel apart: the doundary between the ¢trim and wall and the
boundary between the wall and bush. Furthermore. the sign of the
contrast of both boundaries is the same; both can be seen in
Figure 25(d), which represents the initial edge probabilities.
Figure 25(e~h) show the results after 1, 2, 5 and 20 iterations,
respectively. The wall/bush bDoundary is suppressed by the
wall/trim boundary because it is & much weaker boundary and is of

the same direction. Once this possible connection is gone., the

T IR W g, MRS P, XA em s pponghr




Figure 24. Results from Faqrmation B of the Edg
the voi Conditional as a Boun
Control. (a) Original image. {b)
(c) P{(H/VO1) = .5 (d) P(H/VO1) =
, are obtained after 20 iterations
| vpdating using the conditionals
{(except for VOI1).

e Process Using
dary Sensitivity
P{H/VO}) = .25
. &67. All results

cf relaxation
from Figure 12(b)




| (d)
|
|
(8)
Fiqure 25. Results from Formulation B for Bush/wall/trim
Closeup. (a) Intensity image of house showing
location of bush/wall/trim subimage. (b) 8x8 blowup
of bush area; note the gradient between
trim/wall/bush in lower left quadrant. {c) Result of
ix2 mask; very weak edgecs, allhough not visible, are
present. (d) Gradient collected edge oprobabilities.
(e=h) Iterations 1, 2, 5 &nd &0 (respectively) of the
edge relaxation process. The Junction of the bush

boundary with the trim/wall rcpresents a situation in
which two parallel boundaries of the same sign and
one pixel apart should be maintained, but are not.
The final results are still a reasonable
approximation to the boundury.
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‘context of the missing edge in Figure 25(g) switches primarily to

V21 and the connection edge grows in (Figure 20h).

The loss of the wall/dbush boundary is inevitable given the
conditions in the image (parallel edges of same sign, one piael
apart) and the current version of the gradient
collection/suppression mechanisms. These mechsnisms assume that
any non-iero gradient gives rise to at most one ¢final bdoundary.
The edge process then attempts to find the best placement of the
individual edges making up the boundary. In ¢this case it is

doubtful whether any purely local process could do much better.

Figure 26 ihous results from Foroulation' B on the second
house image (Figure xsi. Two sequences are given, one for VO1I =
.25 and one for VO1 = . 47; within each sequence, resvlts after
1, 9 and 10 iterations are shown. Again, the results are quite
reasonable given the starting data. For the ¢first time, an
undesirable effect of local normalization over the 11x11 window
is evident. There are meny fairly weal cdgés within the lett
wall area to the right of the rightmost large window Edges
within the influence of the strong boundaries in this ares le.g..
she right window edges) are assigned a low value becavse of the

domination by the strong boundary. Edges in the central part of

this ares only see othor weak sdges and hence are asssigned fairly
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Iteration 5 Iteration 10
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Figqure 26. Results from Formulation li Ffouy» Second House Image.
(a) 1lterations 1, %, &ud 10 for VO1 = 20, (b)
Iterations 1, S, and 10 for YO| = &7,
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Figure 26(b)
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high values. This non-linear scaling gives rise to the vertical
strip of edges in the center of the wall which can be seen in all
the images. A similar, though less pronounced, effect can be

seen in the rooéf.

There is & problem in extracting continuous boundaries for
the dark stripe Mmhich forms the upper border of the roof. The
stripe is fragmented into pieces, but this difficulty appears to
be related to the coarse fcsolution rather than the quality of
the algorithm. Any very narrow diagonal region can be expected

to fragment.

The textural lines that form in ¢the *oo# in 26(b) are
reasonable in .that they derive from the visuval data. Other
processes would be required to suppress this detail, although
some of that effect takes place by running the algorithm to
extract only the stronger boundaries as in Figure 26(a).
However, that would not solve the problem of removing lines in a
strong controit brick wall. We leave that for higher levels of

organization and processing [HAN78b].

Finally, if one examines results in close detail, there are
strange effects which occur in some cases as boundaries approach

each other. Other related problems wmight be the result of
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attempts to extend incomplete boundaries after the initial weak

contextual information has disappeared during relaxation. There
are & number of plausible extensions to the current system which
would provide improved edge fidelity: these are discussed in the

conclusions.
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V. MEASURES OF PERFORMANCE

V.1 Eixed Points, Entvopy. and Consjstency

The implication of our assumption that the conditionals
remain constant is that any fixed point in the relaxation process
is a state in which all edges are consistent with their contexts;
i.e., all fixed points are consistent. It is of theoretical and
practical interest to understand which states are fixed points
and whether any given set of initial probabilities will converge
to a fixed point. Rosenfeld et. al [ROS74) demonstrated that
iterative linear updating functions will converge to a fixed
point that is independent of the initial probabilities, a
characteristic that obviocusly makes that form of processing
useless. One solution is to replace the linear function with a
non—-linear one, although this requires a normalization process to

restore the condition that Pt(H) + Pt(H) = 1.

The updating function, defined in equation &4, is linear in
its combination of the conditional edge probability with its
context. However, the classical relaxation process as described
above tr;ats each 1label in the context independently, that is

each of the labels enters into 8 linear wupdate of the central

label. In the process described here, the labels in the context




-
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are Jointly wvused in the wupdate function via the vertex
probabilities. Viewed from the vantage of the individual labsls
at the various edge locations in the context, this is a highly

non—linear process.

While we do not have a clear theoretical understanding of
the properties of <the relaxation process described here, it is
obvious that there are a very large number of fixed points given
the set of conditionals already defined. Consider any array of
edge probabilities where all are zero except for closed loops of
edges with probability one. The only edge contexts with non-zero
probability are VOO, VO1 (for edge locations adjacent ¢to the
probability one bdoundary), and Vil. The updating conditionals
defined in Figure 12(d) will leave sach edge vunchanged; hence
any array with only sets of closed loops of certain edges is a

fixed point.

The array of probabilities has zero entropy when the
probadility of each edge in the array is O or 1. The closed-loop
boundary examples just given are zero—entropy arrays which are
fixed points in the updating process. However, not all
zero—entropy arrays are firxed points, as in the case of & closed
loop of probability one edges with one edge missing. Conversely,

there are firxed points which do not have zero-entropy. It is
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also easy to show that sets of conditionals exist which produce

oscillation of zero-entropy arrays.

One can view the goal of the updating process to be the
transformation of an array of edge likelihoods with non-zero
entropy into a zero~entropy fixed point which is by some measure
"closest” to the initial values. There arc a variety of possible
measures of closeness, such as the mean square difference between

the initial and final arrays.

V.2 Qilobal Measures of Uncertaintu. Drift. and Inconsistency

One of the key concerns of those interested in relaxation

labelling algorithms is the lack of any criteria for global
optimization. The problem of Pinding the minimum distance +Ffixed

point with zero entropy could be formulated as a linesar

programming probdlem on the set of edge values, but it does not

appear computationally feasidble when the number of such edges is

of the order of 9500,000. Instead we have chosen parallel
mechanisms for orgenizing local contexts in a goal-oriented way

in order to achieve a glodal organization of this information.

This heuristic aspproach allows efficient local processing at the

risk of producing a non—-optimal global result. Therefore, it is
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useful to have empirical measures of the global performance of
the iterative updating process over time. The following measures
defined across the W edges in our array will hopefully lend some

empirical understanding of the processing.

The first measure, entropy, characterizes the degree of

ambiguity or uncertainty in the edge array:

W
qf - - P" (H,) 1ogP* (,)]

This measure is zero only when each edge in the array bhas
probability zeroc or one. Although minimization of entropy is
desirable in most cases., one must remember that most of the huge
number of possible global zero-entropy cases will entirely

violate the desired relationships embodied in the conditionals.

A more important measure is inconsistency:

e ot £-1
Q, = 121 [P° (1)) - PET0(H)) J*%2

This measure is the only one related to the conditionals which
embodies the semantics of the domain. It is a function of the
degree to which likelihoods of local edges are inconsistent with
their context. Due to the nature of our updating formula, this

measure follows directly from the change in the distridution of
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likelihoods from one iteration to the next. Consequently, it is
a measure of stability of the relaxation process, since it will
reflect convergence of the distributions to a fixed point, as

well as oscillatory behavior.

Finally we define "drift”, a measure of the divergence #from

the initial distribution of edge probabilities:

t H t 0
Qg = 121 [P (H,) ~ PUCH,)1%%2

While one may choose the goal to be a set of likelihoods which is
tonsistent throughout ¢the network, ¢the result should bde a
function of the initial data. It is desirable that ¢the final
result be close "almost everywhere" to the initial probabilities

from which the updating has been driven.

Each of the three measures appears to focus upon a different
aspect of the relaxation labelling process. Ideally., one would
like the system to converge to a fixed point which simultaneously
minimizes some function of entropy and drift. The manner in
which this can be globally achieved via local updating processes
-is an open question. and in fact may only JS. p;ssibln in

Testricted situations. -
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VI. CONCLUSION

The theoretical Bayesian formulation which is valid for a
single edge and its context was expanded into & heuristic process
for iteratively vupdating in parallel the array of edge
probabilities. Un?oftunatclg. experimental results demonstrated
the ineffectiveness of this formulation. A variety of heuristic
modifications, often suggested by theoretical considerations,
were explored, finally resulting in an algorithm that performs in
an effective manner on a number of very complex images. It is
interesting that the process effectiveness was dependent upon a
process of normalization which introduced competition between

alternative labels.

VI.1 TIbeoretical Spcecification of Conditionals

It is worthy of note that in all algorithms explored the
values of the set of conditional probabilities that were derived
from the model of desired line drawings has remained basi;allq
fixed. It has not been necessary to "tune” a set of weights for
different images, or even for application of the algorithm to the

first image. The theoretical estimates have worked very well

once an effective form of the algorithm was developed, and at the

A Pt tA 2 0

i it 2k




100

same time resuvlts were consistently bad for all variations in the
parameters with the ineffective algorithams. Variation of one
conditional probability in the ¢final algorithm provides a
mechanism for varying the contrast sensitivity of the boundaries

extracted.

Vi.2 Mode)] for Cradient Boundary

Another key aspect of our edge—boundary algorithm is the use
of a model for the gradient of boundaries. The representative
strength and location of an edge must be derived ¢from a wide
non—-zero gradient across the feature valves of pixels. Such
gradient boundaries are typical in images and in many cases
results which match human perception and intuition are dependent
vpon the extraction of the total contrast and placement of that
edge strength within the gradient width. Further studies have
been initiated to improve this model by using factors of boundary
contrast, Dboundary width, and values of the first and second

derivatives of the changes in the feature values.
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V.3 Use of Boundary Width

The algorithm presented in this paper can be extended by
employing additional 1local contextual information beyond the
Joint probabilities which reflect the likelihood of edge presence
in the context. Local support via boundary continuity can be
dependent upon the continuing edges having similar
characteristics of edge width, with support decoupled to the
degree that edge width of a pair of edges differs. This avoids
the problem of labelling edge types, yet still takes advantage of
edge widths without vioclation of Marr’s principle of least
commitment; it jJust requires the parameterization of width as a
feature instead of classification into a small number of types of

edge widths [MARR761].

It may be possible to take ¢full advantage of all the
information in a gradient. by integrating the bdoundary gradient
model more fully into the updating process. Ehrich C(EHR79b] and
Quam ([GQUA78) have both employed measures of similarity of the
intensity profiles of adjacent scan lines in the grouping of

sdges into boundaries.
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VI.4 ytility of Initia] Sensory Dats

There are other potentially useful mechanisms by which the
local context can serve to further guide the boundary formation
process. The characteristics of adjacent pixels to either side
of @ pair of edges can be compared soc that similar region
properties will lend further support. In this way the initial
sensory data maintains an influence throughout the updating

process.

Another problem is that by the time that contextual
information propagates in from surrounding and less ambiguous
areas, it is quite possible that ambiguocus data will have
disappeared during relaxation updating. leaving-no trace of the
original information. The initial sensory data can be used to
alleviate ¢this problem by restarting the iterative updating
process after N iterations with a velue at each edge H of

MAX{PO{H), PN{(H)). The effect is to 2llow boundaries, which
have been organized by N iterations of reclaxation vupdating., to
influence the Purther organization of ambiguous edges without the
problem of properly timing the propagation of this contextual
information. Some initial experiments in this direction have

shown this technique to be promising.




VI.5 Variation of Contrast Sensjitivity

An important aspect of the algorithm is the ability to vary
the sensitivity of the edge contrast in forming boundaries. For
example, the boundary of an object in the image may lie partially
in shade causing reduced contrast between object and background.
yet the continuity and consistency of that boundary make the
boundary obvious. The algorithm must vary its sensitivity to
edge strength. The conditional probability P(H=T/V0i) bhas been
vsed to extend boundary terminations in an effort to extract less
certain boundaries, and has yielded encouraging results. An
alternative which ought to be explored is variation of the
initial probabilities accomplished by means of changes in the
value of K in equation 1. Reducing &K has the effect of

increasing the initial edge probabilities.

VI.6 Larger Local Context

Finally, the use of a local larger context than the
eight—edge context developed here would allow more effective
pattcrﬁﬁ of boundary continuity to be employed. There would be
more extensive overlap of adjacent local contexts, therobé giving

a better perspective of the relationship between contiguous edges
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in the consistent organization of continuous boundaries. The
computational overhead, however., increases exponentially with the
number of edges in the context and may not be feasible even for a
context of edges of length two to either side. This would
involve conditionals based upon 22 edges around the central edge,
which is already beyond consideration via the approach developed

in this paper.
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