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ABSTRACT

Many image analysis tasks require the construction of a
boundary representation as a means of partitioning an image.
This paper develops a parallel relaxation algorithm for updating
initial heuristic estimates of the likelihood of edges so that
continuous boundaries are formed. Bayesian probability theory is
used to analyze the probability updating of a single edge based
upon the joint probabilities of the edges in its local
surrounding context. The relationships between edges, sometimes
referred to as compatibility coefficients in relaxation
algorithms, are embodied as conditional probabilities between the
central edge and the context of edges. The set of conditional
probabilities are theoretically derived from a model of desired
line drawings that satisfy basic notions oF boundary continuity.
The local updating function attempts to drive the likelihood of
each central edge into consistency with the surrounding context.

Experiments involving the iterative parallel application of
this non-linear Bayesian updating Function to all edge
probabilities demonstrates serious problems in the formulation.
A variety of heuristic modifications* guided by theoretical
considerations, are examined empirically. The final formulation
is an algorithm that performs in an effective manner on several
very complex images.
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I. INTRODUCTION

Many image processing tasks require construction of a

two-dimensional boundary representation of an image. The sensoru

data is usually presented as an array of Feature values. Each

array element, referred to as a "pixel* (For "picture element"),

is characterized by its spatial location within the array and by

the values of the sensory features at that point. For our

purposes it will be assumed that a pixel value represents a

measure of the amount of light which lands on a small area of

some imaging device. Typically* local edge operators

CDAV75aROS76oRXS773 are used to provide estimates of the local

strength of edges throughout the image, but the results produced

are almost always unreliable. The raw edge information requires

far more structural organization in order to be useful.

In this paper we seek methods for partitioning the image by

focussing on local edges between pixels and on the means by which

they may be organized into continuous boundaries. The primitive

element of a boundary is an edge element. A set of connected

edge elements, located relative to the array of sensory data from

which it was derived, forms a boundary. We sometimes will use

the term "line" synongmously with "boundary" because the result

of this form of segmentation is a "line drawing". The approach

~~Ji.jiiint -I



2

described here addresses the problem oF how to make use of local

contextual information to reduce local edge ambiguity while

producing a global organization of continuous boundaries. The

initial array represents sensory data while the final array

represents a boundary continuity interpretation of that data --

or controlled hallucination in imagining a line drawing

consistent with the sensory data!

1. 1 Rity-io IL Related Literiurt

Methods vary for dealing with the uncertainty which remains

after local edge operators have been applied. Marr EMARR763 uses

a set of edge detectors of varying size to determine the

appropriate width of an edge to be asserted in his primal sketch.

Ehrich EEHR79a3 has devised an edge detector whose output is not

just a local edge assertion, but a data structure containing

alternative interpretations of edge cross--sections.

Sequential edge tracking methods have benefited from current

techniques for dealing with uncertain or noisy data. Montonari

has embedded the properties of a curve in a figure of merit

CMON7IJ. A dynamic programming technique is used to determine

the optimal curve with respect to the given figure of merit.
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Martelli CMART763 has reformulated this method as a graph search

problem which finds a contour using an optimizing heuristic

search. Cooper models the sequence of edge elements in a contour

as a Markov process and uses maximum likelihood estimation to

generate the contour CC00793. Fischler et al. CFIS793 apply the

optimization paradigm to the specific problem of detecting roads

and linear structures in aerial imagery. They also introduce

mechanisms for combining local evidence and constraints into the

global optimization process.

Recently there has been a large amount of research in local

iterative processes called relaxation labelling problems

CROS76,ZUC78]. The fundamental idea of relaxation labelling is

to iteratively update the likelihood of local interpretations

based upon expected local relationships between these

interpretations. At each iteration the influence of a context of

nodes will spread indirectly through the influence of the nodes

which it affected. Ideally, the entire system will globally

organize to be locally consistent, and possibly even display

global characteristics which would have been very difficult to

achieve as a global function specified directly in terms of all

the data.
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Current approaches to relaxation labelling have employed

heuristic mechanisms for updating likelihoods. Much of this work

is based on the formalization provided in ERGS763, referred to as

the non-linear probabilistic rule. In these systems local

contextual information is embodied in compatibility coefficients

which parameterize the mutual effects of adjacent labellings.

Some possible interpretations of these coefficients are presented

in EPEL783 including measures of correlations and mutual

information. Nevertheless, these parameters are still heuristic.

Zucker has argued for an interpretation of these compatibility

coefficients as measures of dependency CZUC783. He has

reformulated the relaxation updating rule mentioned above into

one involving conditional probabilities. While intended as an

analysis of non-linear probabilistic updating* this formulation

is similar to the most successful of the updating rules we

present here. Peleg has also developed a probabilistic

relaxation labelling scheme which uses conditional probabilities

[PEL793. This work shares our intent of providing an analytical

basis for relaxation.

4
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I. 2 Comolexitu 2± bleamentaton

With rolatively unconstrained natural images, any approach

to segmentation which relies entirely on the sensory data, will

be prone to error. The complexity of the data is a function of a

variety of factors including the presence of highly textured

objects, shadows and highlights on smooth or irregular surfaces#

variation in surface reflectance# varied and uncontrolled

lighting, and noise introduced in the digitization process. Few

objects or surfaces in an image can be expected to exhibit

uniform visual features. In the images considered here, such as

the ones shown in Figure 1, it is very unclear exactly where some

of the boundaries should be placed in relation to the local array

of feature values.

Even human hand-drawn segmentations are inevitably prone to

errors and tend to reflect implicit biases and explicit goals of

the human perceiving the image. In any instances the boundaries

would be conjectured based on prior expectations in the form of

knowledge of objects and their shape, shadow effects, perspective

and occlusion cues# etc. EHAN78b3. In short, it is generally

accepted that a truly accurate segmentation is a Function of the

goals of the system and requires the application of "high-level*

knowledge which is not directly available as measurable features

*1



0

Figure j Representative Images. (a,10t Intensityj images of
128x128 por~tions of 256.x;'j4 color images. These
images of natural outdoor sc'-nes are represenvtative
of the input to the edge process developed in, this
paper. (c) 64x64 initenisityl tubimage derived from
(a). This data is used exttensivelyj throughout the
paper as a test image. (di) 14,x16 subimage showing
detail in the bush area.
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1 (d)

Figure 1 continued
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oF light. A discussion of the problems of and approaches to

evaluation appears in CNAO793.

1. 3 IlundaruI Eazmaimn

The edge/boundary process presented in this paper cannot be

expected to provide a perfect boundary segmentation of the image

because no such segmentation exists. Rather we look for

processes which can provide boundaries to a good first

approximation, where the feature data exhibits relatively large

and spatially consistent discontinuities. We will utilize the

notion of variation in sensitivity of the boundary formation

process so that it can be used to extract weaker and more

ambiguous boundaries if so desired. In particular we do not

expect this edge/boundary algorithm to distinguish between

texture elements and the boundary of textured objects. Thus,

strong texture will lead to boundaries around texture elements

and possibly a high density of edges within a textured region.

Our goals in the segmentation of an Image can be stated two

ways:
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1. to partition the image into (disjoint) sets of pixels,

called regions, which have gjolativelu invariant visual

features.

2. to form continuous boundaries by placing edges between

pixels which have rlativylu large differences in

feature values.

When the visual data is very simple (e.g., a cartoon image with

closed boundaries and without textural variation), these two

approaches are equivalent. However, when the data is more

complicated and has a high degree of ambiguity in certain places,

then these approaches almost certainly will produce different

segmentations and will use different analyses of the data to

achieve the goal.

The edge/boundary process developed in this paper is a

probabilistic edge labelling relaxation algorithm based on a

simplified edge representation and a notion of boundary

continuation in digital images. In this algorithm, information

in the context of a given edge element is used in an attempt to

drive the central edge into consistency with the surrounding

context. The edge/boundary process is initiall1 formulated in

Bayesian probability theory. A model of desired line drawings is
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used to determine theoretical estimates of the conditional

probabilities relating an edge to the joint probability of edges

in the context.

Some of the data used in this paper is shown in Figure 1.

In all cases the feature used is intensity , which was derived

from the original tre-stimulus color data. Our full images are

actually subimages which are extracted Prom data whose original

resolution was 256x256 pixels with at least 6 bits/color. In

order to give asense of our goals and methodology* the results

produced by the edge/boundary process which is developed

incrementally in the rest of the paper are previewed in Figures 2

and 3. The initial probability assigned to an edge is a function

of both the local edge strength determined by application of a

lx2 edge mask and the strength of other edges in the immediate

vicinity; this initial assignment is shown in Figure 2.

Beginning with this initial data, the edge/boundary process

updates every edge in the image simultaneously (in parallel) on

the basis of data contained in a small neighborhood around each

edge. This updating process is repeated until most of the edges

do not change from one iteration to the next. The results shown

in Figure 3(a)-(d) appear to be quite reasonable for most areas

of the image.



Figur.e 2. Transformation to Edge Probabilities. Edges derived
from the intensityj data are assigned a probabilityj as
a function of the total contraist and form of the
gradient data. This fornis the input data to the
relaxation process.
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iteration 2

Fiure3.~ Results of Edge Relaxaticit Pcw Boundaryj Continuityj.
Results from the final Pcomulation of the edge
relaxation process developed in Section IV. In most
cases the boundaries ilvr a very reasonable
representation of the underlying data and with minor
exceptions correspond quite well to visually apparent
boundaries.
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Iteration 10

Iteration 20

Figure 3 continued
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I. A BAYESIAN VIEW OF EDGE CONTINUITY

II. 1 rht Rtoresentation Rf dujsU

Our representation o edoge inforf ation is highly structured

with each edge having an unambiguous location and orientation.

In particular, a horizontal edge may be located between any pair

of vertically adjacent pixels, a vertical edge may be located

between any pair of horizontally adjacent pixels (refer to Figure

4). Edge presence at each horizontal and vertical edge location

is encoded with some numeric measure of edge strength or

likelihood. During the boundary formation process this

representation avoids the ambiguities in precise location and

orientation of edges that would occur if edge information

relative to pixel locations were not encoded. The issues

involved in this choice of this representation are discussed in

CHAN78a, PRASOO.

Our approach to boundary formation makes use of two basic

assumptions:

1. the contrast assumption: the likelihood of a local edge

is directly proportional to its contrasts

I
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[-!I -- Il I El
S+ -- + - - represents a pixel location

DID W] Drepresents an edge location
- - + represents vertex locations

El-I El I- Fl- I t-t

Figure 4. The Representation of Edges in VISIONS. This interoixel .....
representation of horizontal and vertical edges between
adjacent pixels allows the placement and orientation of
edges to be precise. The location of possible boundary
junctions and terminations follows from the edge positions.

/
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and 2. the continuity assumption: boundaries in images are

continuous almost everywhere; that is# every "real"

edge element is joined to one or more adjacent edge

elements almost everywhere.

The contrast assumption allows us to compute the likelihood of a

local edge based solely on its contrast# while the continuity

assumption provides a mechanism for propagating information from

a "context" to the edge in question.

Our goal will be to define local, parallel mechanisms by

which initial probabilities of edges can be updated so that

uncertainty of edge presence is reduced while edges are

aggregated into continuous boundaries. The means by which this

will take place is based on the updating of an edge probability

via a Bayesian view of the joint probability of edges in the

local context surrounding that edge.

11. 2 The Pr~baj ij ± it. Lij±

As we have already noted, the image data to be analyzed is

not very well-behaved. It is extremely difficult to make an

absolute decision about the presence or absence of a particular

edge element based purely on local information around that edge.

-I
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Consequently, it is desirable to avoid such absolute

classification during the early stages of visual organization of

information EMARR76,EHR793; otherwise, one must face the

computational burdens of undoing erroneous decisions. One

plausible strategy would be to delay any decision at this point

and to carry forward Sll possible decisions so that contextual

data can be used in later stages to select the best choice. All

possible local decisions -- or labellings -- at a single location

are retained. The approach advocated here has some of this

flavor mixed with the notion of spreading of contextual

information via the parallel updating of edge likelihoods.

In our representation there are only two decisions -- or

labellings -- at a single location: "edge" and "no-edge". A

probability or degree of confidence will be associated with each

label at each edge location. The term probability, rather than

some heuristic notion of "confidence", will be used here because

we will be guided by a Bayesian view of edge presence. Only a

single value is required to store the probability of two labels

at each edge location if the label set is assumed to be mutually

exclusive and exhaustive.

Uncertainty in the existence of an edge can be expressed in

various ways. We will denote the probability that some edge E is

*1
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present (true) or absent (false) with the random variable E,

which can take on values T or F, respectively. Then, we can

represent the probability of edge presence as P(E-T) and of edge

absence as P(E-F) a 1 - P(E-T).

Via the contrast assumption, the probability of an edge is

related to the difference in feature values of the pixels in the

vicinity of that edge. Let us leave aside, until the next

sections the problems of gradual feature changes over a sequence

of pixels, i.e., wide non-zero feature gradients. Thus, edge

contrast varies over the same range as the Feature values and can

be scaled into a zero-one range to represent edge probability.

In this paper the conversion from edge contrast values to

edge probabilities is performed by normalizing the maximum

feature contrast over a large local neighborhood of an edge. The

strongest edge in each neighborhood can have a probability of one

and edges with zero feature difference will be mapped into

probability zero. For each edge location in the image# we

extract the maximum and minimum feature values, say Fmax and

Fmin, within a local 11xil window centered on the edge under

consideration. The edge probability is then determined by

Pa(edge) - X14 11., E'I [K*(?MAX - IrMIN) (1)

16
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where E' is the local edge obtained by differencing the adjacent

pixel values (e.g.# a l2 difference mask), and K is a local

scaling factor which allows the contrast value which is

considered to have a probability of one to be varied.

There are two parameters that have been heuristically set at

intuitively reasonable, but arbitrary, constant values.

Variation of the size of the neighborhood would change the

locality of influence in setting initial probabilities, while

variation of the scaling parameter K might serve as an edge

sensitivity control. The effect of changing these parameters is

not explored in this paper. The contrast neighborhood has been

fixed at 1lx11 and K has been set to .5 for all results presented

in this paper. Figure 5 illustrates the conversion of edge

contrast to edge probability for a subimage of Figure 1(a).

Figure 5(a) represents the output of the 1x2 edge mash in which

brightness encodes edge strength. Note that there are many weak

edges which are not evident in the Figure as it has been

reproduced here. Figure 5(b) shows the edge probabilities

obtained by applying equation 1 at every horizontal and vertical

edge location. Note that the boundary on the left side of the

bush is more complete and stronger. Because the normalization is

performed locally over an 11xll window# non-linear scaling may

occur. A related effect# which can be seen in the wall area

SP
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Im

(a)

(b)

Figure . Conversion of Edge Strength to Edge Probability. (a)
Result from lx2 edge mvsk applied to Figure 1(c).
Although it is not evident in the picture, there are
a large number of very weak edges throughout the
image. (b) Edge probabilities obtained by
normalizing edge strength over an lIxil local window
centered on each edge. Cnnpare the left side of the
bush in the two images.
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above the roof line, is the relative increase in the strength of

weak edges in areas where there are only weak edges (and low

maximum contrast).

11.3 Gradient Collection

One objection which may be raised against the use of a 1x2

edge operator is related to those situations in which a boundary

is actually represented by a non-zero Feature gradient that is

wide relative to the mask size. The highlight evident around the

rim of the bush in Figure 6(a) is a function of the light source,

the surface properties of the bush and background, and the

relative orientations of the camera, the source, and the relevant

surfaces. It might be argued that a sophisticated model of

intensity changes is necessary, one perhaps in which the

relationships between the geometry of the imaging process and the

resulting image gradient are taken irto account [HOR77,BAR783.

Although this approach may prove to be very effective, it has

only been explored in artificially constructed domains.

Extensions of the approach to an analysis of the physics and

geometry of images containing foliage (for example) do not appear

to be immediately feasible. We will view the total change in

feature value across the width of a gradient as a single value to

*1Ji r -j . . . .. .
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be used in determining the likelihood of an edge somewhere within

the gradient. This approach is described in more detail below

and it seems to work reasonably well in our test images.

In many cases a gradient edge is produced whenever an

environmental edge is not parallel to one of the axes of

digitization (Figure 6(a,b)). The degree of "smearing" is a

function of the slope of the edge and the digitizer

characteristics (size of the active sensors sampling rate, etc. ).

An example of this effect is clearly seen in the sloping roof

edges of Figure 7(a) where the actual roof edge in the original

photograph is a sharp edge.

In cases such as these, the mask will respond to only a

portion of the full contrast which is distributed over several

pixels. This has led to approaches in which a hierarchical set

of increasingly larger masks is employed

[ROS71,HAN74,MARR76,HANSO3. The approach suggested here --

referred to as "gradient collection" -- is to extract the total

contrast of a boundary by collecting the local horizontal and

vertical components of the gradient (as obtained from the lx2

mask) and to place the resultant value at a representative edge

location CHAN78a3. It is essentially an application of the

contrast assumption to edges where the non-zero gradient is
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spatially distributed. The probability of the resulting edge may

then be determined using the method presented in the preceding

section. This is discussed more fully in Section IV. Note that

in effect this strategy is an avoidance of Fixed mask sizes and

geometrics; the effective mask size is determined dynamically as

a function of the local data.

Our gradient collection process involves selection of an

edge location within the width of the gradient as the

representative canonical location of the entire gradient edge, as

well as the specification of the likelihood to be associated with

the gradient edge as a function of the total contrast. In

general, edges will have to be placed at several representative

locations to minimize misalignment of adjacent edges. This

misalignment can occur if adjacent views of the gradient differ

due to noise or systematic changes in the extent of the gradient.

Gradient collection is performed during the assignment of

initial edge probabilities. All horizontal runs of consecutive

vertical edges and vertical runs of consecutive horizontal edges

across a non-zero gradient and with the same direction of

contrast are considered as gradient edges. As illustrated in

Figure &, three multiplicative factors determine the final

probability assignment to each constituent edge in the gradient:
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1. the location factor - the center of gravity (c. g.) of

the edge strengths in a gradient is used as the point

about which an inverse distance weighting is computed;

the location factor will be assigned a value of 1.0 at

the c.g., a value of 0 for edges at a distance of 4

pixels or greater from the c. g.. and linear

interpolation for all edges at a distance from the c.g.

between 0 and 4;

2. the relative edge strength factor - all edges in a

gradient are divided by the maximum edge so that the

places of strongest contrast change will receive a

greater weighting; and

3. the collected edge strength Factor - the collected

strength of the gradient (i.e., the sum of all

constituent edges) is assigned a probability by

normalizing by the maximum local contrast# which is

scaled by a factor K and bound by a maximum value of 1,

as in equation (1).

These three factors when multiplied give the final edge

probabilities along a gradient. It is easy to verify that this

..;M
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method has several desirable properties. The inverse distance

weighting about the center of gravity focusses evidential weight

on a toe likely candidates. Normalization of individual edge

strengths maintains some information about the relative edge

strength in a gradient# while the collected edge strengths over

the gradient allows the full contrast to influence the final

probability of edge presence.

Figure 7 illustrates the application of the gradient

collection process to actual data. For illustrative purposess a

small portion of the roof trim (Figure 7ab) was chosen because

of the horizontal and vertical gradients both above and below the

trim area. Figure 7(c) shows the result of applying a 1x2 edge

mosk to the intensity data; in this figure edge intensity

encodes edge strength. The picture clearly shows the

multiplicity of edges caused by the gradients. Figure 7(d) is

the results obtained from the gradient collection process

described abovej here, brightness encodes edge probability.

Without changes in the display scaling the effects of the

gradient collection process are hard to see, but there is more

consistency in the presence of one or two strong edge locations

down the entire length of the boundary. Otherwise any weak spot#

particularly in the vertical positions cause the boundary to

break up during relavation. It is difficult to evaluate the
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(b)

(a)7

lbm
(d)

(h)

Fi.gy 7. Application of the Gradient Cnllection Process. (a)
Intensity image of hour.e showing location of roof
trim subimage. (b) 8x8 section of roof; note wide
non-zero gradients both aLove and below the roof
trim. (c) Results of JxL? edge mask. (d)
Gradient-collected edge probabilities; edge
brightness is a function n, probability (0 M black, 1
= white). (0-i) Iteratini s 1, 2, 5, 10, and 20
(respectively) of the etlqe relaxation process
developed in the pac ' based on the initial
gradient-collected edge probabilities; the final
result is a reasonable boundi;ry representation of the
roof trim subimage.
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effectiveness of the collection in isolation from the relaxation

process which will make use of the data. Figure 7(e-i) shows the

application of the edge relaxation process developed in the

remainder of the paper. It is apparent that by 20 iterations

(Figure 71) the boundary obtained is a reasonable representation

of the visual boundary in 7(b). Note that the boundary in 7(i)

is composed only of horizontal and vertical edge elements. As a

result, there is no information locally available about global

characteristics of the boundary, such as the slope of the roof

trim. In our system, the final boundary results shown here are

processed further and relevant features extracted CYRBOJ.

While we have presented a totally heuristic strategy for

assigning initial probabilities; the factors are all relevant to

edge placement and provide intuitively reasonable values. Better

models of gradient collection, perhaps guided by psychological

considerations in boundary perception, are called for.

11. 4 Bauesian YjLX n± the Local Qgjntq nt In EA.U

The simplest view of the boundary formation process involves

the use of the information contained in the context of a single

edge to affect the degree of belief in the existence of that edge

- ,-..
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as part of a continuous boundary. Given the horizontal/vertical

edge representation that we *mployp the smallest neighborhood

which allows contextual information to propagate by means of

boundary continuity is shown in Figure 0. Such a neighborhood

must include the three edge locations to either side of a given

edge where continuation of that edge can occur. Shortly, we will

expand the local context to include the adjacent parallel edges

so that competing alternate locations For the placement of wider

gradient changes can be handled in a local parallel organization

of the information. However, let us First examine the simpler

context of only the six potential continuation edges around any

given horizontal or vertical edge.

Given the conditions of uncertainty in the presence of most

edges# the goal is to use the neighborhood context to improve our

estimate of the probability of the central edge. It is natural

to turn to Dayesien probability theory For the definition of the

relationship of the central edge to the neighborhood context.

Letting random variable H be associated with the central edge,

the probability that central edge H is present will be P(H-T) and

can be determined as the sum of the joint probability of each of

the mutually exclusive 2*16 - 64 ways that H can occur within the

context of the surrounding edges:

. . .
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E11 E4

E H E+ _ _ _ + 5

E3  E6

Figure 8. Context of Edge H. The smallest neighborhood which allows
contextual information to propagate to H must include the
possible boundary continuations to the left (edges El, E2,
and E3) and to the right (edges E4, ES, and E6). Note that
+ represents vertex locations where horizontal and vertical
edges can meet.
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P(H-T) - P(H-T, E WT, E2 =T,...,E 6 -T)

+ P(H-T, E1IF, E2 =T,...,E 6=T)

+ P(H-T, E 1 , E2 "F.,...,E 6 =F)

This can be shortened to:

P(H-T) " . P(H-T, E1, E2 ,...,E 6) (2)
E1  E

where the summation involving each Ei, i = 1,...,6, is enumerated

over Ei - {T,F}. In effect the likelihood of the central edge

given a context of six local edges, where each edge Ei in the

context may be uncertain, is a linear interpolation of the

likelihood of the 64 six-tuples for which there is certainty

about the joint presence and absence of each edge.

Using the standard definition of conditional probability the

joint probability of the central edge and context can be

decomposed:

P(H-T) " . P(H-TIE 1 ,...,E 6) P(E1 ,...,E 6) (3)
E 1  E 6

The conditional probability of the central edge, given a state of

certainty in the context of six edges# will embody the semantics

of boundary continuity.

.4
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11. 5 Enuivalence Classes g gAg& Contexts

By taking into account natural symmetries in the local

neighborhood, the b4 cases which must be explicitly considered

can be significantly reduced [HAN78a,.PRASOI. To accomplish this#

a labelling convention for the edge patterns that can appear in

the left and right contexts of the central edge is required.

With the generality of our continuity assumptions it is not

necessary to take into account the orientation of the extension

of the central edge into the context. Note that this would be

important if straight boundaries (or boundaries with some other

parameterized 2D curvature) were to be extracted, but in this

paper no constraints on boundary curvature other than continuity

are considered.

Extensions of the central edge into the context can best be

categorized by labelling the two vertices of any given edge. A

vertex label will be a function of the number of edges present in

the three edge locations which can serve as the continuation of a

boundary which passes through the central edge. Thus, we will

represent the four possible equivalence classes of vertices as

VO, V1, V2, and V3, where Vi represents the case where there are

exactly i edges present at a vertex in the context. Thus, the

three possible single edge continuations at a vertex of the
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central edge are treated as an equivalence class, as shown in

Figure 9.

The notation naturally extends to the full representation of

our context of six edges by considering jointly the vertices to

the right and left. Thus, Vij will be used to represent a

context with a vertex labelled Vi to the left and a vertex

labelled Vj to the right. For vertical central edges Vij will

represent top and bottom vertices. Now* any of our 64 six-tuples

of edges which are present or absent can be represented by one of

the 16 equivalence classes Vij, 0 : i, j . 3. Thus, the

equivalence classes produced by symmetry of the number of edges

reduced the 64 contexts to 16 contexts. By the additional

left-right symmetry of vertices (which does not, of course,

affect continuity considerations), we can further reduce the set

of equivalence classes to the ten Vij, 0 < i j ! 3. Figure 10

is an enumeration of these ten classes in which an unfilled bar

represents the central edge H, a solid line represents an edge in

the context which is present, and a dotted line represents an

edge location where an edge is absent.

In summary, there has been a significant reduction in the

number of local contexts which must be considered for boundary

continuation. It was achieved bU assuming left-right symmetry

r 6 9LII I I I I I i... -
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Equivalence Class Members
Class

H
VO +

H H H
Vl

H H H
V2 +

H
V3 +

Figure 9. Equivalence Classes of Vertex Types. Each type represents
an equivalence class of line continuations in which the
number of possible continuations is fixed. Note that by
symmetry a similar labelling convention holds when the
central edge is to the left of the vertex.
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I*l V1 1
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and counting only the number of edges within each half of the six

edge context while disregarding the actual edge orientation and

edge placement. As we have pointed out, orientation can be very

useful, and it is employed in our system at a later stage of

processing and at a different level of representation

[HAN78a, YOR80].

11.6 Determination of JU Conditionals

Our primary purpose in updating the likelihoods of edges is

to reduce uncertainty in the presence of elemental edges by

relating them to their local contexts. The organization of edges

into boundaries can be viewed as the derivation of a likely "line

drawing" that is "close" to the initial edge estimates# and at

the same time is "consistent" with desired properties of the line

drawings.

The conditional probabilities in equation (3) provide the

theoretical basis for embodying the contextual information of

boundary continuity in the updating of edge probabilities. The

conditional - probabilities relate the joint probability

distribution of the central edge with its surrounding context to

the distribution of the surrounding context; by definition

*1
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P(HJE , -. - ,E 6 )  - P(H, E1,...,E6)/P(EI,.. .9E 6 )  (4)

These conditionals will be estimated from the class of all line

drawings that are acceptable or desired; or in other words the

class of "likely" line drawings that are expected to be derived

by the edge process. Figure 11 is an example line drawing

demonstrating the characteristics of the boundaries that are

expected to appear in our desired line drawings -- lines are

continuous and either terminate or meet at junctions with other

lines. One should notice that a primitive edge element can

appear in only a few types of local patterns in our class of edge

images. Isolated edges and lines with small gaps do not appear.

Any edge which appears as part of a boundary will have a boundary

continuation through at least one, and probably both, vertices of

that edge. Furthermore, an edge which participates in a boundary

continuation might take the form of either a single line

continuation, or the edge may complete a line junction of two or

more lines.

The conditional probabilities can be estimated from a large

sample of line drawings that are representative of the class of

desired line drawings. Mapping these draudngs onto the

rectilinear edge representation used in this paper provides a

large number of local contexts for estimating the joint
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probabilities of equation (4). Rather than actually collect such

a set of samples and exhaustively tabulate the statistics of the

ten equivalence classes, we can construct a general model of the

class of drawings and theoretically specify values of the

conditional probabilities from the model.

It is straightforward to tabulate how many times an edge or

no-edge occurs with each context Vij and then:

P(HJvIJ) - P(H. V )/p(Vij )

- P(H, Vij)/[P(H-T, Vi) + P(H-P, V

Figure 12 summarizes the joint occurrence of H with Vij for each

of the 10 equivalence classes based upon our model of desired

line drawings.

The equivalence class of VOO is fairly obvious in that we do

not expect (or want) to see "isolated" edges -- i.e., a single

edge with no continuation of edges in its context. Thus,

P(H-TIVOO) is close to zero. The V11 case is also clear in that

the central edge should be present and, therefore, P(H-TIV1I) is

close to one.

The case of VO is somewhat more subtle. If we consider a

boundary which terminates as a "line ending" (i.e., with no

I I
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Vol

11(a)

vo

11 (b)
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22 33

~~23

11(c)

Figure 11. Boundary Characteristics Expected in Experimental Domain.
Example line drawing showing characteristics of boundaries
and vertices expected in the general class of line drawings.
(a) Edges expected to appear. The local edge contexts shown
around the VO, Vll, V12, V13 contexts are the only ways,
subject to symmetry, that an edge can participate in a boundary
in our class of line drawings. (b) The edges marked VOO, V02,
and V03 clearly do not participate in closed boundaries and
should not appear in the line drawing. The absence of edges,
as shown by open rectangles, in the Vll, V12, and V13 context
would result in a break in boundary continuity and these
cases also are not expected to appear. (c) Contexts with
inherent ambiguity. There is some degree of ambiguity concern-
ing the need for the edges in the V22, V23, and V33 contexts.
None of them are required for boundary continuity, although
they may appear because they accurately reflect the underlying
data in the pixel perpendicular to the edge. One would also
expect these cases to occur in dense edge areas, such as
heavily textured portions of an image, or, as we have seen,
in gradients (cf. Figures 6 and 7).
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continuity to one side), then the last edge appearing in that

boundary will have a VOl context. However, for each such case

there are three edge locations forming the VO vertex of that last

edge, which, when considered as the central edge location

themselves, will contribute to the count of H=F and VOI; thus,

there are three times as many joint HF and VOl occurrences as

joint H-T and VO1 occurrences.

The cases of V12 and V13 involve the edge locations leading

into the junction of boundaries, and they derive from the fact

that a boundary is not expected to terminate just before meeting

another boundary. Finally, the V22, V23, and V33 all involve

cases which are somewhat ambiguous. The absence of the central

edge does not really affect edge continuity in the neighborhood

since there are independent continutions to each side of the

edge. However, if the underlying data implies the presence of

the central edge, its survival should not be discouraged. Since

it is much more likely that two nearby boundaries are not

connected by "bridging" edges (as in the case of the boundaries

associated with narrow horizontal or vertical stripes), a low

value for P(H-TIV22) is arbitrarily chosen, say .1. The V23 and

V33 contexts have similar analyses. Note that the V22, V23, and

V33 contexts might be expected to be more frequent in textured

areas or in places of non-zero gradients.
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VlJ Joint Occurrence Joint Occurrence Approximate
of H and Vij of H and Vij P(HIVij)

VOO low high 0

number of line three times number ofendings line endings

V02 low high 0

V03 low high 0

Vil high low 1

V12 high low

V13 high low 1

V22 umber of times two umber of times two or

V23 or more nearby lines ore nearby lines and/ << . ?
V33 and/or line junc- r line junctions dotions haveabridge not bridge

(a)

Vii P (HI i J )

V00 0

Vol .25
V02 0

V12 1
V22 .1

(b)

Figure 12. Estimation of the Conditional Probabilities from our Model of
the Class of Line Drawings. (a) The ten equivalence classes.
(b) Reduction to six equivalence classes based upon identical
semantics of the V2 and V3 vertices.

p
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The set of ten equivalence classes of local edge contexts

can be further reduced. An examination of Figure 12(a) shows

that the conditionals associated with the V2 and V3 contexts are

the same. This reduces the set of equivalence classes to six,

namely Vij, 0 ( i < j :. 2, as shown in Figure 12(b), where the V2

vertex class now includes V3 also.

II.7 Th Patterns a± Doundaru ContinuitNL

It may be helpful to briefly examine the semantics of these

six equivalence classes over the 64 patterns of edge contexts:

P(H-TPVOO) - 0 - an "isolated edge" which does not appear
to participate in a continuous boundary;

P(HTIV01) - .25 - an "ambiguous boundary continuation"
where the line may terminate or else
continue in one or more of the three
possible directions;

P(H-TpV02) - 0 a "spur" which is an edge whose absence
will not affect the boundary continuity
of the other edges which are present in
the context;

P(H-TI Vi) 1 - local "continuity" for a single boundary
is ensured through the central edge;

P(H-TIV12) I - boundary continuation via "junction
completion" is ensured through the
central edges

P(H-TIV22) - . I - "ambiguity of bridge" linking nearby
boundaries; the edge context provides
no information concerning the presence
of the central edge.

. . . . . .
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Hopefully, these descriptions provide some insight into the

semantics of local patterns of continuity. Four of the patterns

-- VOO, V02, Vll, V12 -- appear to be quite reasonable. However*

uncertainty in the VO1 and V22 cases will give us some degree of

difficulty. In the VO1 case the problem is immediately obvious

when one considers that the abrupt termination of a boundary

composed of elemental edges with probability one will update the

probability of all three adjacent edges to a value of .25. This

appears to be a diffusion of information rather than a coherent

organizing process.

There is also a potential problem in the use of the V22

conditionals in the case of two lines which are close together.

For example, consider two strong parallel lines one pixel apart,

as in the case of a black stripe on a white background; the

probability of an edge linking the right and left boundary of the

stripe at each possible "bridging" location will be set to a

constant (say K), no matter what is implied by the underlying

data of the pixels in the stripe. Thus, any value of K, high or

low, will be wrong in certain cases! These issues will be set

aside for the moment but will be addressed again later.

I El III I II I | III........-.. ....
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11.8 RJulaai Ln Updatin &I uia C nsjiLjj Jtg

The development, thus far, has focused on determining the

likelihood of a single central edge given its local context of

neighboring edges, and was based to a reasonable degree on a

Bayesian view of this relationship. Now we wish to embed this

relationship within an iterative updating scheme which is to be

applied simultaneously to all edge locations in the image,

realizing full well that this step takes us outside the

contraints imposed by Bayesian theory. This parallel updating

will be viewed as a relaxation labelling process whereby an

inconsistent set of likelihoods are driven towards consistency

with their neighborhoods. The conditional probabilities serve as

compatibility coefficients in relating the neighborhood

influences of edges in the context.

Since the parallel updating scheme is to be repeatedly

applied, it will be convenient to extend the notation to reflect

the iterative progression of the computation by including the

notion of time in the updating function:

Pt+1 (H) I X ( V )Pt(v

j i

Let us make the following important simpliPying assumption: the

conditional probability distribution of H upon its context is
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given and is stationary. Consequently the conditionals in

equation (5) will not require a superscript t. We now observe

that the unary marginal probabilities of edges P(Ei) are

determined a priori on the basis of external physical evidence,

but the joint probability of edges P(EIo E2, E3, E4, ES E&) are

not available. This implies that the joint probability cannot be

computed without additional information or assumptions, the most

obvious being independence of the edges in the context. By using

the assumption of independence of left auid right vertices to

approximate the joint probability of edges, yielding

p t+(H) I P(HIV)ij Pt(V i)Pt(V) (6)
- ii

We can further approximate the probability of vertex tqpes using

independence of edges in each vertex

P(Vo) - P(EI-F, E2-F, E3-F) - P(EI-F) P(E2-F) P(E3-F)

P(V1) - P(E1-T, E2'F, E3-F)

+ P(E1-F, E2-T, E3'F)

+ P(E1 F, E2=F, E3 -T)

P(V2) P(E 1 =T) P(E2=T) P(E3=F)

+ P(El-T) P(E 2 -F) P(E 3 -T)

+ P(E 1 =F) P(E 2 -T) P(E 3 =T)

P(V3) - P(E1-T) P(E2mT) P(E3=T)

The assumption of edge independence may cause the careful reader

LL~/
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some concern. We are using the dependencies between every edge

and its neighboring context to update edge probabilities, yet

portions of the context are assumed to be independent! In

particular when one of the edges, say El, is considered as the

central edges then the updating function will be based on the

dependencies of El upon E2 and E3 and it. other surrounding edges

in the context -- yet we have already assumed El, E2, and E3 are

independent. Thus, we have violated theory here and have entered

the realm of heuristics. Even without the assumption of

independence, our mechanism for parallel updating is still not

theoretically sound from a Bayesian viewpoint. While any single

context could be used to update an edge probability, that central

edge should not also be used to update the value of the other

edges which were in its context. Otherwise, this allows the

probability of an edge in equation (5) to have an effect upon

itself as closed loops of probability updates. An examination of

the theoretical issues in this approach to relaxation labelling

and the propagation of information in inference networks EDUD763

is treated in detail in CLOW80].

Despite some of the theoretical difficulties, we will

examine the use of such an updating function. In general,

initial values of individual edge prnbabilities are consistent

with the underlying feature data which gave rise to them# but are
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not consistent with their surrounding contexts in terms of the

conditional probabilities derived from the class of ideal line

drawings. If the conditionals remain constant, then one can view

the updating process as a means by which the likelihood of a

central edge becomes consistent with its surround.

If the array of edge probabilities ever reaches a state

where the updating function leaves every edge probability at its

current value, i.e., Pt+l(H) = Pt(H) for all H in the image, then

the system is at a fixed point. Further iterative updating will

leave all values unchanged. Note also that at a fixed point all

edges are consistent with their local surrounding contexts

because the updated values implied by the contexts are the same

as their current values. Thus# fixed points are consistent in

this pseudo-Bayesian sense.

11.9 Examination of Soecific Cases

In this section we examine two cases of initial

probabilities which demonstrate certain difficulties in our

formulation of edge relaxation, and then present some results

which confirm these difficulties. One case demonstrates the

decay of edge patterns which should remain stable, while the

- ] ,
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other case demonstrates the growth of 'noise' which should

disappear.

Case J: A closed loop of edges with probability q on a

background of zero probability edges.

Note that q = 0 and q = I are fixed points. However, if

O < q < 1, a fixed point is approached in the updating process,

but there is total loss of the starting information that

represented the boundary (refer to Figure 14). Let us analyze

why this takes place by representing P(H=TIV01) with variable W.

Then the updating equation for central edges in the closed loop

(each with probability q) is given in Figure 13(a), while the

update for zero probability edges that are touching the boundary

are given in Figure 13(b).

It is interesting to note here that a value of W = .25, as

defined by our estimates in Figure 12, will cause the updated

value of edges H in the loop to decrease in probability if q < 1,

even if q is arbitrarily close to 1; thus

P t+(H-T) < P t(H-T) when P t(H-T) < 1.

At the same time, edges adjacent to the boundary of probability q

will change to a non-zero edge probability. As the updating
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process continues, the information is diffused, as shown in

Figure 14a, until it approaches a fixed point. All values of q

other than 0 and I will not allow the initial pattern to remain

stable.

Simple examination of the updating equation shows that a

value of W = .5 will allow the edges in the loop to remain

constant. A value of W > .5 will allow edges in the loop to

increase, that is, P t+l(H=T) > Pt(H=T). In either case# however#

the zero probability edges hanging off the boundary will still

increase and eventually the information is diffused as shown in

Figure 14(b) and (c).

Case &: A uniform field of low equiprobability edges q.

In this case all edge locations have an identical context in

the updating process. If q has a low value, one might consider

it desirable for all edge probabilities to converge to a fixed

point of 0. Unfortunately, our formulations which has been

guided by theoretical considerations, is not so well-behaved.

Given the analysis of Case 1, let us set the value of P(H-TIVOI)

to .5 and determine the updated value at all edges as a function

of q.

-
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o l iop(vo). 1-qo 0
P( O | Ifor left

- := P(VI) = '1q q 
and right edges

P(V2)=O Jol o

Vij P(Vij) P(HI Vii)

voo (l-q) 2  0

VOl 2q(l-q) w

V02 0 0

Vil q2  1

V12 0 1

V22 0.5

P(H) M Z P(HIVij)P(Vij) q2 (l-2w) + q(2w)
i j>-i

P(H) < i if w<.5

P(H) a q if w -. 5

P(H) > q if w> .5

13(a)
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left vertex right vertex

so PL(VO) - (1-q)2  PR(VO) - 1
SOPL(Vl) - 2ql-q RVl

qiPL(V2) - q2PR(V2) - 0

qJ 10

Vij P(Vij) P(HI Vij)

VOO (1-q) 2  0

Vol 2q(l-q)

V02 q 2  0

Vii 0 1

V12 0 1

V22 0 .5

P(H) -2wq1(1-q) > 0 for w>O and O<qcl

L1 (b)

Figure 13. Case 1 Analysis. (a) Update equation for a central edge
in a closed loop of edges with probability q. The vertex
probabilities are used to compute the probability of VOO,...,V22
edge contexts, from which the update equation can be obtained.
(b) Analysis similar to (a) but for the edges adjacent to
the closed loop.
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edge relaxation after iterations 2 (upper right), 5
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used other than P(H/VO1) un-ve those given in Figure
12(b).
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First, it is helpful to examine the probabilities of the

four vertex types VO, Vi, V2, and V3, given a set of three edges

each of probability q. Figure 15(a) lists the vertex likelihoods

for several low values of q. With a value of q = .2, the

likelihood of Vi is relatively high: .384. Interestingly, this

causes the updating of the central edge to be more heavily

weighted by V01 than VOO because P(VO1) > P(VOO). Figure 15(b)

depicts the relative contribution of each context Vij in updating

the central edge to .424. Thus, in a single iteration a uniform

field of edges with probability .2 would be raised to .424 and

then even higher on the next iteration. This process converges

to a fixed point about .65.

While this increase of low probability edges may disturb the

intuition of some, the reason is that P(VOO) = (1-q)**6 and for q

= .1, .2, and .3, P(VOO) equals .53, .26, and .12 respectively.

Thus, a context of six low probability edges can lead to a

relatively high likelihood of the V01 cases because it can become

quite unlikely that all six edges are absent. The updating

process increases the probability of the central edge in response

to the many uncertain, but possible, ways of extenrding the

boundary.
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q Iq P(VO) - (1-q)3

q Hq P(V1) - 3q(l-q)

-(2 -- 3q 2  -q

q q P(V3) - q3

q 0 q- .1 q = .2 q - .3

P(VO) 1 .729 .512 .343

P(V1) 0 .243 .384 .441

P(V2) 0 .027 .096 .189

P(V3) 0 .001 .008 .027

(a)

For q - .2

Vij P(ViJ) P(HIVij) P(HI Vij)P(HI ViJ)

2
Voo (.512) -.262 0 0

VOl 2(.512)(.384) - .393 .5 .197

V02 2(.512)(.104) -.106 0 0

Vil (.384) 2.147 1 .147

V12 2(.384)(.104) -.080 1 .080

V22 (.104) -.001 .5 0

P(H) - .424
(b)

Figure 15. Analysis of Case 2: A uniform field of edges of low probability
q. (a) Vertex probabilities as a function of q.
(b) Contributions of each context 17ij to the probability
update of the central edge, assuming q - .2.

I,
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In order to examine the impact of these problems on an

actual scene, the relaxation algorithm was applied to the bush

subimage (Figure Ib). This subimage was chosen because it

exhibits a range of characteristics including clear straight

lines at several orientations0 relatively weak edges in many

places, texture edges, house edges in the textured areas,

non-zero intensity gradients of several forms& etc.

The results of the edge update process after iterations 0,

1 2, and 5, using the conditionals described in Figure 12b, are

shown in Figure 16. The results are obviously poor, and

improvements were not achieved by variation in the conditionals.

Clear edge patterns immediately decay with diffusion into the

surround, while there is little control in the growth of low

values of edge probability - which for convenience we shall call

*noise* here even though the source of this data is varied.

Attempted remedies for controlling the low probability edges via

techniques involving fuziV probabilities and thresholding also

were not successful.

It is difficult to determine the source of the problems in

the formulation. Clearly, the most obvious theoretical problems

are the assumption of independence which allows the joint

probability of the context to be decomposed, and the simultaneous
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and iterative updating of all edges. Rather than question these

assumptions upon which our basic approach rests, in the next two

sections we incorporate additional forms of contextual

information and explore variations in the updating equation as we

seek to develop a formulation which performs as expected.
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III. PARALLEL EDGE SUPPRESSION AND CONTRAST DIRECTIONALITY

Up to this point, the definition of the local context to be

used in updating was based primarily on the requirements imposed

by the continuity assumption. The local context defined thus far

is the smallest meaningful neighborhood For an edge which permits

the translation of the continuity assumption into a set of

constraints defined over the neighborhood. However, the presence

of edges defined by non-zero feature gradients means that an

extension of the local context to include the two adjacent edges

parallel to the central edge (edges E7 and ES in Figure 17a) will

provide highly relevant information. These locations represent

alternative placements for the collected gradient edges (Section

11.3). Their absence makes it impossible to control the

selection of that edge location (within the set of alternative

choices of the gradient) which best supports continuity in the

local context.

Without the expanded local context, in the current system

all parallel edges could, and often do, find support in their

context and grow to their maximum strength. The overall effect

varies, depending . on the situation. In the worst cases most

non-zero edges in the image grow, resulting in a dense mesh of

edges over much of the image, as shown in Figure 16. Some form
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E
7

EE
5

+ + 5

(a)

G-ON G-OFF

S F S S 0 F F 0 0 F no-edge 4

E F S .S 0 S F O F S edge of same
r- FSdS 0 ' sign as

central edge
0 edge of opposite

(b) sign as
central edge

Figure 17. Extension of the Local Neighborhood. (a) The local neighborhood
is extended to include the two edges E7 and E8 parallel to the
central edge. This extension permits gradient information to
propagate into the context. (b) r.y maintaining contrast
directionality of the edges relative to the central edge, the
effects of parallel edges on the central edge are easily
decomposed into two classes G-ON and G-OFF. For case G-ON,
the effect is inhibitory and suppression is on; for case G-OFF,
the edges are parts of different boundary gradients and no
suppression takes place.

i1
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of aral l su*o@ession (or gradient suppression) via

lateral inhibition is necessary to remedy this. Adjacent

parallel edges can be structured to compete for survival, with

the outcome decided by the support Prom their respective local

contexts.

The process of parallel edge suppr'ession must take into

account the direction of contrast of parallel adjacent edges.

Otherwise a one-pixel wide black stripe on a white background,

for example, would cause the two distinct boundaries of the

stripe to compete until only a single boundary remained, a result

that is clearly undesirable. Consequently, parallel (and

adjacent) edges should compete to become the representative of a

given gradient edge, but this process should be deactivated if

the parallel edges represent different boundaries.

The contrast directionality of edges in the initial data

provides sufficient information for the decision of activation of

parallel edge suppression for every pair of parallel edges. In

fact it is precisely this feature of edges that is used in the

gradient collection algorithm to group contiguous parallel edges

(or equivalent runs of consecutive pixels) into units to be

considered as potential gradient edges. Thus, the direction of

feature contrast change will be maintained as a sign, "+" or "-"

- Il II I I •"-*.. .. . .1 ,
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The required properties of the edge suppression process are:

1. the central edge will be inhibited when edge E7 or ES

possesses the same sign of contrast change as the

central edge;

2. parallel suppression will be decoupled and there will be

no effect from edges E7 or E8 (or both) if they have a

different contrast sign; and

3. the degree of parallel suppression will be directly

proportional to the likelihood of the parallel competing

edge(s).

For simplicity the effect of parallel edge suppression will

be separated from the contextual influence of boundary continuity

by introducing a heuristic assumption of independence between the

parallel edges E7, ES, and the six continuing edges in Vij.

Thus,

P(H-T) - P(H-TIVii, E7, E8) p(v1j, E7, E8)

ij E7 E8

may be rewritten as:

P(H-T) " E P(H-TIVij E7, E8 ) P(ViJ) P(E 7 ) P(E S)
i j E 7 E8 798 j 7 8

tI
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The key problem remaining is the determination of the

conditionals relating the central edge to the eight edges in the

context. One approach is to enumerate the 256 cases of the joint

presence and absence of these edges and estimate the associated

conditionals from the model of desired line drawings. The

analysis is further complicated by the need to include the

contrast directionality for controlling suppression of parallel

edges, thereby significantly increasing the number of cases to be

considered. The approach employed here is simpler.

First, let us note that the edges E7 and ES can each be in

one of three possible states: 1) no edge, labelled "F", 2) an

edge of the same contrast direction as the central edge, labelled

"S", or 3) an edge of the opposite contrast as the central edge,

labelled "0". There are nine possible joint occurrences of the

states of E7 and ES. These are divided into two groups G-ON and

G-OFF, corresponding to the cases of parallel edge suppression

being activated or deactivated, respectively, as shown in Figure

17(b). The contrast signs of edges are fixed during initial

gradient collection, and consequently only some of these nine

cases are relevant; in particular only one of the pair of signs

(+., +), (+, -), (- +), and (- -) for any pair of edges can have

a non-zero probability, while P(E7-F) for example can be non-zero

no matter what the sign of edge E7. The probability of the nine



65

cases will vary depending upon the signs and magnitudes of P(E7)

and P(EB), and can be computed as a product of the presence or

absence of the two edges.

Inclusion of the parallel edges E7 and EB in the local

context of the central edge can be viewed in terms of G-ON and

G-OFF instead of E7 and ES:

P(H-T) = [ [P(IITIVij, G-OFF) * P(Vij , G-OFF)

ij
+ P(H-TIVij, G-ON) * P(Vij , G-ON)]

and by the independence of Vij, and E7 and ES

P(H=T) [P(H-TIVij G-OFF) * P(Vi ) * P(G-OFF)j

+ P(H-TV j, G-ON) P(Vi)* P(G-ON)J

The required effect of cases G-ON and G-OFF suggest a rather

simple means of integrating their effect into the conditionals.

Case G-OFF should have no effect on the updating; therefore

P(HIVij, G-OFF) - P(HI Vij)

For case G-ON an assumption of conditional independence of Vij

and G-ON given H-T leads to a simple embodiment of parallel

inhibition.

--.&..,
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P(V~., G-ONtH-T) * P(H-T)
P(H-TIV ~j G-ON) - ij G-ON)

P(Vij IH-T) * P(G-ONIH-T) * P(H-T)

P(V j) * P(G-ON)

P(H-TIVi 1 ) * P(H-TIG-ON)

P(H-T)

P(H-TV) P(H-TIG-ON)

ii P P(H-T)

If we let

CP(H-TI G-ON)
C - P(H-T) where 0 5 C -s 1

then, a setting of constant C to a value less than one has the

desired effect of parallel edge suppression using

P(H-T VJ, G-ON) - C * P(H-TI vi)

for all vertex classes Vij. This parameter will allow variable

control in the overall effect of the suppression mechanism.

Thus, we get

P(H-T) - [ [P(H-TIVij) C P(Vij) P(G-ON)
:j

+ p(H-TIVij) P(Vij) P(G-OFF)]

finally yielding

P(H-T) [C * P(G-ON) + P(G-OFF)]

I [ P(H-TIV)ij P(Vij)]
ii
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Note that the effect of parallel edge suppression and

boundary continuity have been decomposed into product terms. The

second term is exactly the update before parallel suppression was

considered, while the effects of parallel suppression have been

isolated in the first term. The required effects of gradient

suppression can now be attained. As condition Q-OFF becomes more

certains the value of the first term approaches 1.0 which is the

case without parallel suppression. Alternatively as condition

G-ON becomes dominant because of likely parallel competing edges,

the value of the first term goes to C. If C - 1, parallel

suppression is turned off; for C = O maximal suppression is

achieved. In practice a value of C = .5 appears reasonable given

the particular gradient collection algorithm in use.

- .
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IV. REFORMULATION OF THE LOCAL CONTEXT TO INCLUDE THE CENTRAL EDGE

In Section II of this paper the relaxation process for

updating the probability of edges was motivated and guided by

considering the Bayesian relationships of edges in a local

context. Empirical resultsp however, were quite disappointing.

One apparent difficulty to be explored in this section is the

lack of direct influence of the current central edge probability

on the updated central edge probability. While it is clear that

the current probability of a central edge will have an indirect

effect upon itself over successive iterations by influencing the

edges in its context which, in turn, influence it, the updating

process fails to capture meaningful information in a single

updating of a local context. For example in the case of a

boundary termination, the three edges which are absent, as well

as the last edge actually present in the boundary, will be

updated to similar values because all four of the edges see a V01

context. There is a lack of discrimination between the last edge

in the boundary and the adjacent absent edges. Much of the

relevant information that is being ignored is available in the

current probability of the central edge.

We will present two formulations that include the central

edge directly in the updating process. They are both heuristic

. p .
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as are most of the approaches in this paper when viewed from

strict theoretical grounds. The first is of some interest

because it is theoretically motivated by a loose

re-interpretation of the Bayesian formulation, but it still does

not produce effective results. The second formulation involves

updating of both edge and no-edge labels with normalization. It

retains the same values of conditional probabilities that were

originally suggested theoretically, while capturing the effect of

competition between labels via normalization. Highly effective

results are achieved in the second formulation.

Formulation A Edoes as Distinct Events Over Time

It is difficult to justify a Bayesian formulation which

includes the central edge in the context unless we modify our

basic definition of the events whose probability distributions

are being manipulated. Up to this point we have associated a

probability with each edge location, treating each edge as a

particular event on the spatial arraq of image points. The

problem then becomes one of updating the probability of these

events so that consistency with the set of fixed conditional

probabilities is achieved. Thus, one can view the updating

process as adjustment (over time or# equivalently, iteration
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number) of the original estimates of the probability of edge

presence.

A different interpretation of these events may be obtained

by viewing as distinct events edges which are in the same spatial

location, but are updated over time. Thus, edges at time t and

t+l in the same spatial location will be considered distinct

entities. However, local neighborhoods and conditional

probabilities will still be used to relate events in successive

iterations. The updating process becomes one of deriving a

probability distribution of gnother set of edges which has been

derived from the probability distribution of the original edge

array. In fact, it is natural to think of both the initial and

final probability distribution of edges to be available to

further processing; the initial array represents sensory data

while the final array represents a boundary continuity

interpretation of that data.

The superscript t is now related to the random variable of

the edges themselves instead of the probability of the random

variable. The relationship between the probability of the

central edge at time t+l and the sJyj.. edges in our local context

at time t is then:
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P(Ht+l T) X [p(Ht+lT, Ht-T, Vtij)

+ P(Ht+T HtMF, Vtij).

P(Ht T) + . (P(Ht+I.TIHt-T, Vtij) P(HtmT, Vti)

+ P(Ht+lTIHt-F, Vt j) P(Ht-F, V i)]

Note that the same theoretical difficulty in estimating the

joint probabilities of edges still persists. Only the unary

marginals are available, yet we know that the edges in the

context are not independent. Nonetheless, for lack of a better

solution, an assumption of independence gives us

P(Ht+l.T) - Y ' [P(Ht+=TIit"T, Vt1 ) P (Vt ) P(Ht-T)

ii+ P(It-T 1P Vt j) P(Vtij) P(Ht-F)l

P(Ht+lUT) - [ P(Vt j) [P(Ht+ 'TIVtii, Ht'T) * P(Ht-T)
lj +'P(Ht+l-TIVt j , H -F) * P(H -F)]

The key difference in this updating formula is that the

conditionals are based upon seven edges in the context; this

introduces a multiplicative factor involving the probability of

the central edge on the previous iteration.

Figure 18 summarizes the new set of conditionals based on

estimates from the desired line drawings discussed earlier. The

six equivalence classes Vij have now become 12 because the
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t t+l t
Vij P(H = TIVi, H= T) P(H Tii, Ht F)

t
VOO 0 0

t
VOl 1 0

tV02 0 0

t
VI2 1 1

t

V22 1 0

Figure 18. Estimation of Conditional Probabilities with Central Edge
in the Context (Formulation A). The conditionals are-derived
from the model of desired line drawings described in Figure 11.
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central edge may be present or absent with each. It is quite

interesting to note that all conditionals are 0 or I in the seven

edge context. It appears that inclusion of the central edge has

greatly clarified the desired states in the updating process.

In the case of the VOO, V02. V11, and V12 contexts, the

conditionals are the same whether the central edge is present or

absent. Thus, in these cases there is effectively no change in

the updating because the central edge will factor out of the new

updating formula. However, in the V22 case the values of I and 0

for P(Ht+I=TfHt=T, Vij) and P(Ht+IfHt=F, Vij), respectively,

cause a linear interpolation between the values for P(Ht-T) and

P(Ht=F). When P(Vt22) - 1 then

P(Ht I=T) - p(Ht-T)

which appears to be exactly what we want. The central edge will

stabilize at the current probability that was the best estimate

based on local evidence; if there was little evidence for a

bridging link between lines, the edge probability can remain low.

In the previous formulation, the VOl context also caused

some difficulty in defining the appropriate conditionals. This

was due to the symmetry in the cases where the central edge was

present and where it was absent; it was impossible to

-!-
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distinguish these cases, get it was clea-ly desirable to do so.

Inclusion of the central edge in the conditional allows the last

edge present in the boundary to be distinguished from the three

adjacent edges that are absent. Thus, a boundary termination in

terms of the four edge probabilities is stable in the updating

process when the boundary has probability one. There will be no

diffusion of the information in the case of a boundary with edges

of probability one that abruptly terminates.

Once again experimental results demonstrate that intuition

can be quite deceiving, particularly in the case of parallel

local updating of complex information. Figure 19 depicts several

iterations of the seven-edge context using the conditionals of

Figure 18 and no gradient suppression. ihe end result of this

process is the diffusion and growth of edges across much of the

image. Figure 20 depicts runs with moderate and strong parallel

edge suppression, and while this algorithm appears marginally

better than the basic approach of Section II and Figure 16, again

no effective results are achieved. The dependency of results on

particular values of conditionals was explored by varying several

values of conditionals, but this parameter diddling gielded no

significant improvement.

I
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Part of the problem of rapid growth of edges in Figure 19

suprisingly comes from the V12 case. Figure 21 is an analysis of

the effect of updating given that one uncertain boundary at a

probability of .5 is in the vicinity of a boundary whose

probability is one. Analysis shows that the central edge will be

updated to at least .5 no matter what the probability of the

central edge is, and that the problem is due to the context of

Ht=F and V12. The probability of the central edge is a factor in

one term, but the probability of the absence of the central edge

is the multiplicative factor in the other terms and therein lies

the difficulty. Again we have a prob em whereby the probability

of the central edge is changing rapidly with little relationship

to the value on the previous iteration.

Formulation IL ULdating daje and No-Edge Labels with
Normalization

The failure of Formulation A to produce acceptable results

is discouraging. The probability of the central edge appears to

change, almost independently of the actual data. Let us-consider

the second updating formulation obtained by treating the central

edge and its context as two separate, independent sources of

information. From this perspective, the information in the
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.1 PL (VO) = 0 PR(VO) - .25

0PL(V1) = 0 PR(Vl) = .5

1 1.5 PL(V2) = 1 PR(V2) =.25

(a)

Vij P(Vij) P(Ht 2TlVij,Ht=T) P(Ht'l=TIViIjH =F) P(Ht =T Vij)
*P(H ) *PH F)*P(Vij)

voo 0 0 0 0

Vol 0 q 0 0

V02 .25 0 0 0

vii 0 q 1-q 0

V12 .5 q l-q .5

V22 .25 q 0 .25q

(b)

Figure 21. Formulation A: Analysis of the update to an edge of probability
q between two parallel lines, one of probability 1 and the
other of probability .5. (a) Neighborhood of central edge
and vertex probabilities. (b) Contributions of each context
Vij to the probability update of the central edge; note that
the central edge is updated to at least .5, independently of
its initial value.
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surrounding context is combined in a multiplicative way with the

information contained in the central edge itself. In this

formulation it is difficult for either pi.ce of information to

completely override the other. The growth of week edges is

slower because the update increments are smaller; they receive

only a portion of the support availab)e from the context. Strong

edges, on the other hand, for which there is evidence of support

in the context, grow relatively faster. The conjecture is that

the growth of edges will be more controlled and, where necessary#

slow enough to allow evidence of support (or non-support) to

propagate from "islands of reliability" ELES773 to local

contexts.

Thus, Formulation B weights the contextual evidence by the

current central edge probability to produce updated values

P't+I(H):

p,t+l (H-T) - pt(H-T) <XPt(H= IVi ) Pt(V )

and
p',t+l (H-F) - pt(H-F) <[ I Pt(H-FIV ij) pt(vij)

i J

For clarity, we let

f i Pt(humTIV ) Pt(V )

e-d then rewrite the equations as
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P' t+1 (H-T) - Pt(H-T) * f (7)

and P t+1(H-F) - [l-Pt(H-T)] * [1-f0

Clearly, these equations are not well-founded in probability

theory and represent a different heuristic departure from the

earlier formulation. In particular, since the updated central

edge values P't+I(H) do not sum to 1, renormalization is

necessary to obtain the final updated values:

pt+l (HT) p t+I (H-T)! [P t t+(H-T) + ptt+I (H=F)]

and

P t+I (H-F) 1 - Pt+l (H=T)

There is an interesting symmetry in the update equations

(7). The current central edge probability and the contextual

evidence really "weight" each other equally. Neither is favored

by the formulation. This formulation is not subject to the

problem noted in Figure 21 of Formulation A: edges between

parallel edges are updated to a value which is a function of the

probability of the central edge. Figure 22 summarizes the

analysis of updating two parallel lines, one of probability

1. and the other of probability .5, one pixel apart. Figure

22(d) shows that the central edge update in this case is very

*11
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close ti initial probability and is much more reasonable than the

results of Figure 21.

These results from Formulation B are encouraging and

application to natural images shows the algorithm is effective.

Figure 3 and Figures 23-26 summarize various aspects of these

results. Figure 23 shows the necessity for gradient collection

and suppression; 23(a) is the result of applying Formulation B

in the absence of gradient collection/suppression. The failure

of the edge process is most obvious in the roof trim and bush

boundary. The gradients associated with the boundaries result in

a series of "squares" or "rectangles" connected by single edges.

Thus, the boundaries consist of nny V22 vertices and as the

iterations proceed, the edges surrounded by the V22 vertices

eventually disappear, until by 20 iterations the boundaries are

highly fragmented. Figure 23(b) shows the same edge process

applied to the same image but in this case gradient suppression

was included. The boundaries are quite good, although not all of

the bush boundary and shadow boundary have been found.

The VO conditional determines the amount of support the

central edge gets from the context when continuation of the

central edge occurs to one side only. Variation of this

parameter has the effect of a "sensitivity" control over the
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1 .5 0

1 .5

22 (a)

vij P, (Vij) PCH=TIVij) P(H-TiVij)*Pt (Vij) P(H=FlVij) P(H-FIVij)*Pt(Vij)

VOO 0 0 0 1 0

Vol 0 .25 0 .75 0

V02 .25 0 0 1 .25

vii 0 1 0 0 0

V12 .5 1 .5 0 0

V2 .25 .1 .025 .9 .225

u=.525 u =.475

22(b)
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P'(Ht+l) = p(Ht)*u - .525q

PI (Ht+l) =P(-Ht)iu .475(1-q)

+) P'(Ht+l) .525q
P(11 P,(Ht+l) + P'(H t+) .475 + .05q

22(c)

q P(Ht+ )

0 0
.03 .033
.25 .269
.5 .525
.75 .768
.97 .973
1.0 1.0

22(d)

Figure 22. Formulation B: Analysis of the update to an edge of probability
q between two parallel lines, one of probability 1. and the
other of probability .5. (a) Neighborhood of edge of probability
q. (b) Contributions of each context Vij to the probability
update of the central edge. (c) Probability of central edge
at next iteration expressed as a function of q. (d) Table
of P(Ht+l) as a function of q; note that the update is much
more reasonable than that shown in Figure 21.
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Iteration 2

Iteration 5 Iteration 10

Figure 23. Results from Formation B aPter 2, 5, and 10
Iterations. (a) No gradient suppression. (b) With
gradient suppression. In each case, the conditionals
used are those shown in Figure 12(b).

7
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Iteration 2

Iteration 5 Iteration 10

Figure 23(b)
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continuation edges which will eventually survive into the final

boundary images. The effect is shown in Figure 24; note that

for P(HIVOI) - .67, the bush boundary is completed but other

*noisy" kinds of edges are also evident, notably in the tree area

to the left oF the windows, in the shrubs under the window, and

in the right side of the bush.

The left boundary oF the bush, particularly where it crosses

the window trim uoundary. is an interesting area and it

highlights some lingering problems with the edge process, as

shown in Figure 25. The intensity close-up in 25(b) clearly

shows that the placement of the bush boundary is not at all

obvious. The underlying problem with this area is that a

gradient exists between the (white) trim and the interior oF the

bush (dark). Within this gradient are two real boundaries one

pixel apart: the boundary between the trim and wall and the

boundary between the wall and bush. Furthermore, the sign oF the

contrast of both boundaries is the same; both can be seen in

Figure 254d), which represents the initial edge probabilities.

Figure 25(o-h) show the results after 1, 2, 5, and 20 iterations,

respectively. The wall/bush boundary is suppressed by the

wall/trim boundary because it is a much weaker boundary and is oF

the same direction. Once this possible connection is gone, the
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(a) b

Figure 2_4. Results from Fqrmation B of the Edge Process Using
the Vol Conditional as a Boundaryj Sensitivityj
Control. (a) Original image. (b) P(H/VOI) =.25.

(c) P(H/VOl) - .5. (d) ',(H/VOl) - .67. All results
are obtained after 20 iterations of relaxation
updating using the conditionals from Figure 12(b)
(except for Vol).
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(d)

(g)

Figure 25. Results from Formulatioi, 13 for Bush/wall/trim
Closeup. (a) Intensity image of house showing
location of bush/wall/trim Sub image. (b ) 8xS bl1owup
of bush area; note the gradient between
trim/wall/bush in lower le-Pt qUadrant. (c) Result of
1x2 mask; very weak edges, although not visible, are
present. (d) Gradient collected edge probabilities.
(c-h) Iterations 1, 2, 5 z:nd PO( (respectively) of the
edge relaxation process, 1he junction of the bush
boundary with the trim/wall re~presents a situation in
which two parallel boundaries of the same sign and
one pixel apart should be maintained, but are not.
The final results al'Ll still a reasonable
approximation to the bound Lry.
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context of the missing edge in Figure 25(g) switches primarilg to

V21 and the connection edge giows in (Figure 25h).

The loss of the wall/bush boundary is inevitable given the

conditions in the image (parallel edges of same signs one pixel

apart) and the current version of the giadient

collection/suppiession mechanisms. These mechanisms assume that

any non-zero gradient gives rise to at most one Final boundary.

The edge process then attempts to find the best placement of the

individual edges making up the boundarg. In this case it is

doubtful whether ang purely local process could do much better.

Figure 26 shows results From Formulation 3 on the second

house Image (Figure ib). Two sequences are given, one For VO -

.25 and one for VO - .671 within each sequences results after

1. 5# and 10 iterations are shown. Again, the results art quite

reasonable given the starting data. For the First time. an

undesirable effect of local normalization over the 11x11 window

is evident. There are many Fairly weak edges within the left

wall area to the right oF the rightmost large window. Edges

within the influence of the strong boundaries in this area (e.g.&

the right window edges) are assigned a low value because of the

domination by the strong boundary. Edges in the central part of

this &oe onlV see other weak edges and hence are assigned Fairly
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Iteraton 1

iteration 5 Iteration 10

Figuro 26. Results from Formulation Jj "ov' Second House Image.
(a) Iterations 1 , 5, ~iad 10 for V01 .25. (b)
Iterations 1, 5, and 10 for VO.I .67.
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Iteration 1

Iteration 5 Iteration 10

Figure 26(.b)
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high values. This non-linear scaling gives rise to the vertical

strip of edges in the center oF the wall which can be seen in all

the images. A similar, though less pronounced, effect can be

seen in the roof.

There is a problem in extracting continuous boundaries for

the dark stripe which forms the upper border of the roof. The

stripe is fragmented into pieces, but this difficulty appears to

be related to the coarse resolution rather than the quality oF

the algorithm. Any very narrow diagonal region can be expected

to fragment.

The textural lines that form in the roof in 26(b) are

reasonable in -that they derive From the visual data. Other

processes would be required to suppress this detail, although

some of that effect takes place by running the algorithm to

extract only the stronger boundaries as in Figure 26(a).

However, that would not solve the problem of removing lines in a

strong contrast brick wall. We leave that for higher levels of

organization and processing rHAN78b3.

Finally# if one examines results in close details there are

strange effects which occur in some cases as boundaries approach

each other. Other related problems might be the result of
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attempts to extend incomplete boundaries after the initial weak

contextual information has disappeared during relaxation. There

are a number of plausible extensions to the current sstem which

would provide improved edge fidelityi these are discussed in the

conclusions.

I

*1



94

V. MEASURES OF PERFORMANCE

V.1 Fixed Points, Entronu, Ind ConsistjL

The implication oF our assumption that the conditionals

remain constant is that any fixed point in the relaxation process

is a state in which all edges are consistent with their contexts;

i.e., all fixed points are consistent. It is of theoretical and

practical interest to understand which states are Fixed points

and whether any given set of initial probabilities will converge

to a Fixed point. Rosenfeld at. al ERCS763 demonstrated that

iterative linear updating functions will converge to a Fixed

point that is independent of the initial probabilities, a

characteristic that obviously makes that form of processing

useless. One solution is to replace the linear Function with a

non-linear one, although this requires a normalization process to

restore the condition that P t(H) + P (H) = 1.

The updating Function, defined in equation 6, is linear in

its combination oF the conditional edge probability with its

context. However, the classical relaxation process as described

above treats each label in the context independently, that is

each of the labels enters into a linear update of the central

label. In the process described here, the labels in the context
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are jointly used in the update function via the vertex

probabilities. Viewed from the vantage of the individual labels

at the various edge locations in the context, this is a highly

non-linear process.

While we do not have a clear theoretical understanding of

the properties of the relaxation process described here# it is

obvious that there are a very large number of fixed points given

the set of conditionals already defined. Consider any array of

edge probabilities where all are zero except for closed loops of

edges with probability one. The only edge contexts with non-zero

probability are VOO, VOl (for edge locations adjacent to the

probability one boundary), and Vii. The updating conditionals

defined in Figure 12(b) will leave each edge unchanged; hence

any array with only sets of closed loops of certain edges is a

fixed point.

The array of probabilities has zero entropy when the

probability of each edge in the array is 0 or 1. The closed-loop

boundary examples just given are zero-entropy arrays which are

fixed points in the updating process. However, not all

zero-entropy arrays are fixed points, as in the case of a closed

loop of probability one edges with one edge missing. Conversely,

there are fixed points which do not have zero-entropy. It is

Ii

L_ /
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also easy to show that sets of conditionals exist which produce

oscillation of zero-entropy arrays.

One can view the goal of the updating process to be the

transformation of an array of edge likelihoods with non-zero

entropy into a zero-entropy fixed poiret which is by some measure

"closest" to the initial values. There are a variety of possible

measures of closeness, such as the mean square difference between

the initial and final arrays.

V. 2 Global easju£jUl gj Uncertaintu, DrijftL InconsisteLncu

One of the key concerns of those interested in relaxation

labelling algorithms is the lack of any criteria for global

optimization. The problem of finding the minimum distance fixed

point with zero entropy could be formulated as a linear

programming problem on the set of edge values, but it does not

appear computationally feasible when the number of such edges is

of the order of 500, 00. Instead we have chosen parallel

mechanisms for organizing local contexts in a goal-oriented way

in order to achieve a global organization of this information.

This heuristic approach allows efficient local processing at the

risk of producing a non-optimal global result. Therefore, it is
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useful to have empirical measures of the global performance of

the iterative updating process over time. The following measures

defined across the W4 edges in our array will hopefully land some

empirical understanding of the processing.

The first measurep entropy# characterizes the degree of

ambiguity or uncertainty in the edge array:

-j . < Pt(Hj)1oSPt(Hj)J

i-i

This measure is zero only when each edge in the array has

probability zero or one. Although minimization of entropy is

desirable in most cases, one must remember that most of the huge

number of possible global zero-entropy cases will entirely

violate the desired relationships embodied in the conditionals.

A more important measure is inconsistency:

-i (Pt.(H 1 ) (H)-

L-I

This measure is the only one related to the conditionals which

embodies the femantics of the domain. It is a function of the

degree to which likelihoods of local edges are knconsistent with

their context. Due to the nature of our updating formula, this

measure follows directly from the change in the distribution of

MU1O
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likelihoods From one iteration to the next. Consequently, it is

a measure of stability of the relaxation process, since it will

reFlect convergence of the distributions to a Fixed point, as

well as oscillatory behavior.

Finally we define "drift*, a measure oF the divergence From

the initial distribution of edge probabilities:€ W
W " P (I) P ( H )]** 2

While one may choose the goal to be a set of likelihoods which is

consistent throughout the networks the result should be a

Function of the initial data. It is desirable that the Final

result be close "almost everywhere' to the initial probabilities

from which the updating has been driven.

Each of the three measures appears to Focus upon a different

aspect of the relaxation labelling process. Ideally, one would

like the system to converge to a Fixed point which simultaneously

minimizes some Function of entropy and drift. The manner in

which this can be globally achieved via local updating processes

is an open question., and in Fact may only be possible in

restricted situations.

Ii
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VI. CONCLUSION

The theoretical Bayesian formulation which is valid for a

single edge and its context was expanded into * heuristic process

for iteratively updating in parallel the array of edge

probabilities. Unfortunately, experimental results demonstrated

the ineffectiveness of this formulation. A variety oF heuristic

modifications, often suggested by theoretical considerations,

were explored, finally resulting in an algorithm that performs inr

an effective manner on a number of very complex images. It is

interesting that the process effectiveness was dependent upon a

process of normalization which introduced competition between

alternative labels.

VI. 1 TToogt.l- Specification 2± Conditionals

It is worthy of note that in all algorithms explored the

values of the set of conditional probabilities that were derived

from the model of desired line drawings has remained basically

fixed. It has not been necessary to "tune" a set of weights for

different images. or even for application of the algorithm to the

first image. The theoretical estimates have worked very well

once an effective form of the algorithm was developed, and at the
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same time results were consistently bad for all variations in the

parameters with the ineffective algorithms. Variation of one

conditional probability in the final algorithm provides a

mechanism for varying the contrast sensitivity of the boundaries

extracted.

V1. 2 Model. frz Graient flundaru

Another key aspect of our edge-boundary algorithm is the use

of a model for the gradient of boundaries. The representative

strength and location of an edge must be derived from a wide

non-zero gradient across the feature values of pixels. Such

gradient boundaries are typical in images and in many cases

results which match human perception and intuition are dependent

upon the extraction of the total contrast and placement of that

edge strength within the gradient width. Further studies have

been initiated to improve this model by using factors of boundary

contrast, boundary width, and values of the first and second

derivatives of the changes in the feature values.

'II
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VX.3 US& f BoundauWi

The algorithm presented in this paper can be extended by

employing additional local contextual information beyond the

joint probabilities which reflect the likelihood of edge presence

in the context. Local support via boundary continuity can be

dependent upon the continuing edges having similar

characteristics of edge width# with support decoupled to the

degree that edge width of a pair of edges differs. This avoids

the problem of labelling edge types, yet still takes advantage oF

edge widths without violation of Marr's principle oF least

commitment) it just requires the parametorization of width as a

feature instead of classification into a small number of types of

edge widths CMARR763.

It may be possible to take full advantage oF all the

information in a gradient, by integrating the boundary gradient

model more fully into the updating process. Ehrich EEHR79b] and

Guam [QUA783 have both employed measures of similarity of the

intensity profiles of adjacent scan lines in the grouping of

edges into boundaries.

I
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VI. 4 Utilitug MIJ InitialF~l Sesou 11

There are other potentially useful mechanisms by which the

local context can serve to further guide the boundaryj formation

process. The characteristics of adjacent pixels to either side

of a pair of edges can be compared so that similar region

properties will lend further support. In this way the initial

sensory data maintains an influence throughout the updating

process.

Another problem is that by the time that contextual

information propagates in from surrounding and less ambiguous

areas, it is quite possible that ambiguous data will have

disappeared during relaxation updating# leaving no trace of the

original information. The initial sensory data can be used to

alleviate this problem by restarting the iterative updating

process after N iterations with a value at each edge H4 of

MAX(PO(H), PN(H)). The effect is to allow boundaries, which

have been organized by N iterations of relaxation updating, to

influence the further organization of ambiguous edges without the

problem of properly timing the propagation of this contextual

information. Some initial experiments in this direction have

shown this technique to be promising.
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VI. 5 Variation S2± Contlrast Seitivit~.y.

An important aspect of the algorithm is the ability to vary

the sensitivity of the edge contrast in forming boundaries. For

example, the boundary of an object in the image may lie partially

in shade causing reduced contrast between object and background,

yet the continuity and consistency of that boundary make the

boundary obvious. The algorithm must vary its sensitivity to

edge strength. The conditional probability P(H-T/VO1) has been

used to extend boundary terminations in an effort to extract less

certain boundaries, and has yielded encouraging results. An

alternative which ought to be explored is variation of the

initial probabilities accomplished by means of changes in the

value of K in equation 1. Reducing K has the effect of

increasing the initial edge probabilities.

VI. 6 Larae Local Context

Finally, the use of a local larger context than the

eight-edge context developed here would allow more effective

patterns of boundary continuity to be employed. There would be

more extensive overlap of adjacent local contexts, thereby giving

a better perspective of the relationship between contiguous edges

*1
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in the consistent organization of continuous boundaries. The

computational overhead, however, increases exponentially with the

number of edges in the context and may not be feasible even for a

context of edges of length two to either side. This would

involve conditionals based upon 22 edges around the central edges

which is already beyond consideration via the approach developed

in this paper.

.1
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