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1 [ ABSTRACT

A high-order stabilization filter was formerly designed to

stabilize an unstable pitch control system of a terminal homing missile

system. In this report, a new dominant-data matching method is pre-

sented to redesign the high order stabilization filter. Using this new

method several reduced order filters are obtained. As a result, the

cost of implementation is reduced and the reliability is increased. An

algebraic method is also applied to redesign the stabilization filter

so that the performance of the redesigned pitch control system is im-

proved. In addition, the proposed dominant-data matching method can be

applied to determine a reduced order model of a high order system.

Unlike the reduced order models obtained by most existing model reduc-

tion methods, the reduced order model mentioned above has the exact

Iassigned frequency-domain specifications of the original system. The

Idominant-data matching method can also be applied to identify any

practical system.
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1.1
CHAPTER I

jINTRODUCTION

This report deals with the simplification and realization of a

stabilization filter designed to stabilize the pitch control system of

an unstable semi-active terminal homing missile system [1]. The block

diagram of the existing stabilized system is shown in Fig. 1.

I
R(s) + Y(s)

[. ' F~sta0(S' Go0 -.

j Figure 1. The Block Diagram of the Existing Control System

l
The overall transfer function of the existing system shown in Fig. 1

I is given by".. .. .I .. . .... > = > .. . .
F sabWTact (sTmiss(s

T e(s) (s)T (s)H s)
stab act ( Tmiss g

stab (s) G0 (s)

=+Fstab (s)Go(S)Hg (s)

G (s)

l+G (s)H (s)
e wg

: where

I



2
1.6 ('- +1(i--

F (S) 25 125
stab s 2 0 6 s 2.08(15) +(1-- s+1][(-O-) +( hs-O

460800(s+ 25)(s+125)
2 2 4.

(s +90s+22500)(s +160s+4x104)

460800(s+25)(s+125) (1.2)
(s+45±jl43.0908802)(s+80±j18

3.30302 78)

G (s) = The transfer function of the actuator and the air frame dynamics
0

of the missile system.

= The open loop transfer function of the original pitch control

system iff F Cs) = 1 and H (s) = 1.
stab g

= [T act(s)] [T miss(s)]

26937.9(s+65)(s+1500) 12.04(s+0.1933)

(S+-8"-.9-±j9-5.5)(s+112.5)(s+1385) s(s-2.921)(s+3.175)

324332.316(s+0.1933)(s+65)(s+1500) (1.3)

s(s-2.921)(s+3.175)(s+87.9±j95.5)(s+112.5)(s+1
38 5)I

C (s) = F stab(s) GO(S) H(S) (1.4)e sab 0

= The open loop transfer function of the existing stabilized system.

H (s) = Transfer function of the gyro.

= 1, as the rate gyro is not present in the system.I
After substituting Hg(S) = 1 and Eqn. (1.2) and (1.3) into Eqn. (1.1)

it becomes

i1



G (S) bs 10+bs9+...+b 1 
N(s) 3

T 1 0.10 9 D(s) (1.5)
e as +als +a2s +..+all

where

I
a0 =1 b0 = 0

a1 = 1.923554000x03 b, = 0

a2 = 9.316239040x10
5  b2 = 0

a3 = 2.976950696x108 b 3 = 0!3
a4 = 6.231675318x100 b4 = 0

a5 = 9.360329977x012 
b5 = 1.494523312x0

11

a = 9.749923212xi014 b = 2.563396371xi0
I4

6 97922206

a 7 = 6.667397031xi016 b7 = 5.017212044xi016

a8 = 2.42040 431xi018 b 8 = 2.926344345xI01
8

a9 = 2.911920560xi018 b9 = 4.610004670xlO
19

a10 = 2.419047424x1019 
b1 0 = 8.802158509xi018

a11 = 8.802158509xi018

I
From Fig. I as well as from Eqn. (1.2) it can be noticed that the exist-

ing stabilization filter F stab(s) is a fourth-order series compensator

with two pairs of complex poles. Fstab(S) is not a positive real function

and hence cannot be synthesized with passive elements. The objective of

I
I
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this report is to develop computer-aided design methods for redesigning

the stabilization filter in a simpler form so that the cost of imple-

mentation of the compensator can be reduced and at the same time the

performance of the redesigned pitch control system remains the same as

that of the existing pitch control system.

Nyquist plots of Ge (s) and G 0(s) are shown in Fig. 2. The

dominant frequency-response data of G (s) are given below:~e

i) The real and imaginary parts of G (s) at s = j= jO are~e

Re [Ge (jO) = -2.103817 and Im IGe(00)= (2.1)
e

or T (jo) = 1
e

1 ii) The gain margin C of this system G (jW) isem e

Gem = e I = 1RetGe (J e ) 1-- ' 51 (2.2)

where the phase-crossover frequency w is given by

w 1.9 rad/sec'such that /Ge-(jw ;) = -1800 " ( .3). -
ei e e

The equivalent real and imaginary parts of C (jue) at w = 1.9Ie en eli

rad/sec. areI
Re[Ce (J e ) = -1.507944 (2.4)

Im[Ge (j )] - -0.006490205 (2.5)

iii) The phase margin sem of the system G (w) isI eI
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em = 1800 + /G(Je) 5"7787 (2.6)

where the gain cross-over frequency w is given by w e 3.2ec ec

rad/sec so that

I e(JWec)I 1 (2.7)

I The equivalent real and imaginary parts of G Oiw) at w =
e ec

1 3.2 rad/sec. are

Re[G eOw ec) = -0.9939143 (2.8)

I In[Ge (j; e e c
) ] = -0.09547478 (2.9)

The frequency response data at w = 0 in (2.1) indirectly indi-

cates the steady-state value of the unit step response of the system

T (s). The data at w = w and w = w in Eqn. (2) represent two con-e eli ec

J trol specifications [21: gain margin and phase margin. These control

specifications characterize the relative stability and the transient re-

1 sponse of the existing stabilized system. The dominant frequency response

data of G (s), F stab(s) etc. are listed below:

0 1) The real and imaginary parts of Go(Jw) at w = 0 are

I Re[G0 (jO)]= -1.304841 and Im[CdJ0)J = (3.1)

I ii) The phase margin 0 of the original system Go(Jul) isI

!I
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Om = 1800 + -G(Jwo.) = 5.58' (3.2)

I
where the gain crossover frequency w is given byI
W0c 1 1.6 rad/sec. so that IGo(j0 0e) = 1. (3.3)

Other frequency response data at wer 1.9 rad/sec. and w 3.2en ec

rad/sec. areI
iii) Re[G0 (jWe)] = -0.9370766

Im[G0 (j w ) = 0.06716120 
(3.4)

iv) Re[G 0 e(jW) = -0.6181657

(3.5)
Im[G (jw)] = 0.01949691

IThe dominant frequency response data of the stabilization filter

Fstab(s) are

i) Re[Fstab(jO)] = 1.6 and Im[F stab(J0)] = 0 (4.1)

ii) Re[Fstab(JW ) = 1.600492 and Im[Fstab (Jer)] = 0.1216316

at w = 1.9 rad/sec. (4.2)

or

IFstab (W)I = 1.605107127 and /F.tab(jwen) = 4.3459181980

at w - 1.9 rad/sec. (4.3)

iii) Re[Fstab(J e) = 1.601402 and Im[Fstab (jWec)] f 0.2049554

at w - 3.2 rad/sec. (4.4)
ec



1 8
or

IFstab (jW ) = 1.614464333 and /Fstab(Wec) = 7.2933494930

I at w ec = 3.2 rad/sec. (4.5)

Now, analyzing the data we have from Eqn. (1.3) and (1.4), it is clear

that G (s) and C (s) are non-minimum phase functions and they are un-

stable because of the pole s = 2.821 which is in the right half plane

of the s-plane. Referring to the Nyquist plots in Fig. 2, and according to

Nyquist stability criterion the original missile system (without F stab(s))

is unstable whereas the existing stabilized system is asymptotically

stable. However, due to the small positive phase margin given in Eqn.

(2.5), the time response of the existing stabilized system is quite os-

cillatory.

I To redesign the pitch control systew or the stabilization filter

js that the cost of implementation is reduced and the flight control

performance of the missile system is improved, two computer-aided methods

have been developed. These two proposed methods will be discussed in

this report step by step. In Chapter II a transfer function (called a

standard transfer function T (s)) is obtained by using a dominant-data

I matching method. T r(s) matches the assigned specifications given inrr

Eqn. (2). Therefore, the standard transfer function Tr (s) mentioned

above is a reduced-order model of the existing stabilized system Te (s)

in Eqn. (1.5). The unit step response curves of T (s) and T (s)

Iwill be compared. This comparison will also verify that the data in Eqn.

(2) are dominant ones.

To solve the nonlinear equations obtained in Chapter II four

i
" i ..
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different methods of finding initial guesses are discussed in Chapter

III.

In Chapter IV two reduced order models of the stabilization fil-

ter F stab(s) are obtained. One of these two is obtained by using the

dominant-data matching method and the other by using a similar approach

to fit a low order model that satisfies the specifications shown in Eqn.

(4).

Chapter V consists of two parts, in the first part the dominant-

data matching method is used to obtain an unstable reduced order model

of the original high-order unstable system G.(s) shown in Eqn. (1.3).

This is done just to simplify the design procedure. In the second part

of Chapter V the algebraic method of Shieh [3] and Chen [4] is applied to re-

design the pitch control system. This is done by designing a series

filter in the feed forward path and a parallel filter in tbp fpadback

path. Thus, the advantages of feedback control structure have been fully

utilized.

I
I
I
I
I
I
I
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CHAPTER II

THE DOMINANT-DATA MATCHING METHOD

The design goals of a control system are often characterized by

a set of control specifications. These specifications can be classi-

fied as i) time-domain specifications such as rise time, setting time,

ii) frequency domain specifications such as phase margin, gain margin

and iii) complex domain specifications such as damping ratio, and natural

angular frequency. Empirical rules that link the specifications in the

time, frequency, and complex domains have been developed by Truxal

[51, Toro and Parker [6], Axelby [7] and Seshadri et. al. [8). From

these results, it is observed that most time-domain specifications and

complex-domain specifications can be approximately converted to fre-

quency-domain specifications. Some of these frequency-domain specifi-

cations are phase margin ( m), gain margin (Gm), maximum value of the

closed-loop frequency response (M ), phase crossover frequency (w),

gain-crossover frequency (wc), peak value frequency (wp), the bandwidth

(Wb), an6 the velocity error constant (1). Other important frequency re-

sponse data are:

(1) The real part and imaginary part of the closed-loop function

T(s) as well as the corresponding open-loop function G(s) at

s = jw = jO,

(2) the real part of the open-loop transfer function G(jw) at the

phase crossover frequency w which has been used to define the

gain margin (Gm),

10
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(3) the corner frequencies in the Bode plot of G(jw) in the regions

of w = w where 20 logIG(Jwcl)I - + 15 db and w - where

20 loglC(jWc2)I = -15 db.

Chen [91 has shown empirically that the open-loop poles and zeros of a

jsystem can be approximated by retaining the Bode plot in the regions of
the ± 15 db boundaries.

The data at w - 0 often indicate the final value and the type

of the system. More specifically, the value of T(JO) or real part of G(jO) indi-

cates the final value of the system, while the imaginary part of G(jO) indi-

cates the type of the system. For example, for a type '0' system, the

imaginary part of G(jO) is 0, and for any system other than type '0',

ffor example, say type 'I', it is infinity.

Depending on the problem one has, one can use any one or a com-

bination of the time domain, frequency domain and complex-domain speci-

f fications. However, in this case the original pitch control system that

is available is a high order transfer function with large coefficients

Eqn. (1.5). As a result the time response curve and the corresponding

time domain specifications of this practical system T (s) are difficulte

to obtain. On the other hand, with the help of a digital computer the

frequency response curve and hence the frequency domain specifications

of T (s) can be easily determined. Therefore, a frequency domain approache

or a dominant data matching method is proposed to construct a transfer

function Tr (s), a reduced order model of T (s), and to redesign the
r e

pitch control system. Several methods have been already proposed 110,

11,121 to obtain reduced order models by considering frequency domain

specifications. However, the only reduced order models that satisfy the
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assigned specifications exactly are the ones obtained by the proposed

method.

From the rules of thumb it is observed that the gain margin,

the phase margin, the gain cross-over frequency and the phase cross-

over frequency are the most important frequency response data. These

data are called the dominant frequency response data. Another impor-

J tant frequency response data is the steady state value of a closed-loop

system, which is indirectly given by the value of the real part of the

open loop transfer function G(jw) at w = 0. These dominant frequency

response data may be considered as the design goal. Let us assume that

the desired reduced order model of T (s) which may be called the standarde

model of T (s) is
e

b 0 +b s+b 2s

T =0r 2+ 3
a0+a s+a2 s +a3s

It is required that T (s) satisfies all the conditions given

j in Eqn. (2).

From the conditions in (2.1), it may be observed that the sys-

tem T (s) is a type 1 system. Therefore b0 = a . Also, to simplify the

equation we let a3 = 1. Thus, we have

a 0+b s+b2s G(S)
T (s) = 1 (51)
r 2 3 1+G 1 (s)ao+als+a s s r

I where the open-loop transfer function Gr(s) is given by

I (S) a 0+b1s+b2s 2  Kjl+c 1S+c2s
2

r s[(al1b )+(a2 _b2)s+s ] s[l+d s+d2 s 2

I
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a0  b b a2-b2where K =-al--b I  c1 =-, c 2 - ,d , d2 =

a-b 2 d 2a- 2 a-1 a0 a0 a1-bI  a1-b1

The unknown coefficients ai and bi are to be determined by us-

ing the conditions in Eqn. (2). Following the basic definitions and

substituting the assigned data in Eqn. (2) yields a set of nonlinear

equations fi (a0 ,a, a2 ,b1 ,b2) = 0 for i 1,2,..., 5 as follows:

2K[ l+jwcl+ (jW) 2c 2 I

i) G (jW) = 1  2
r rj [ l+j w d +(j 2) 2d 2

K (
S-- [l+jw( d)+()w) +

j [+jW((c1-d1)I

K
K(c-d) - j -

A-~M G (JW) = K(cld jW

[ ,imao bl a2-b2
Re[ Y-A Gr(J)] K(c -dl) a 0 b I  a_0 2- 2) (6.0)

ReV 0  r~) 11 a -b Ia 0 a -bI

Eqn. (2.1) gives Re[Gr (jO)] = -2.1

a0  b1  a2-b 2or -. __ - = -2.1
a1-b 1a a -b1

b1  a0 (a2 -b 2 )or - -2.1
a 1-b (a-b)2 2

1 2or f (aO,al,a2 ,blob 2) bl(al-bl)-ao(a2-b2 )+2.1(al-bl) 0

(6.1)



ii) The data in (2.2), or Re[G (J e )] = -1.5, at wen 1.9 rad/sec

gives

Re[G (jw) = Re[_2 (a-w b 2 )+jwb 2

e-f evor-~e(a-Wu # b^(a-w)+2 -b)+jwb(a-b-w)

or

f2 (a W 2 1) )(ab-b2)=w(2 2b(aob2

-b.1.1a-b)+a-l36) 2  62

ei e0 - 2 02 2+ a1 b We"al-b-w1 ) = 1.5

w (a0-b) 2 W (a(-b 2)2
o 2 2 eI 1 1 e.6

tan = 1.9

eii

or

f 2 (a 0 ,a 1 ,a 2 ,bl,b 2 ) = (a2-b2)(a0 -3.61b 2)-b I(a1 -b1 -33.661)

-1.5[3.61(a 2-b 2) 2+(a 1-b 1-3.61) 2 = 0 (6.2)

iii) The condition in (2.3), or / (rw ) = -180* where w 1.9

re 8°+ /rJe) 5"77'eldse

rad/sec, gives

-1w b1  - 80+a W (a -b -W

tan 1 t2 100+tnI r 2 11eT 1806
aOwe b 2W r (a 2-b)2

or

1.9b I a 1-b 1-3.61

tn-1 '3 0 361b 2  1.9(a 2-b 2) 0
tn1. 9b 1.(a -b 1-3.61) 0

-1. 9(a 0-3.61b 2 )(a 2-b 2

or

f 3 (a 0 ,a 1 ,a 2 b1 ,b 2 ) 3.61b 1(a 2-b 2 +(a 0-3.61b 2 )(a 1-b 1-3.61) 0

iv) The data in (2.6) or(63

Oem =1800 + /Gr(jPAec 5.77870% yields

ec=3.2 rad/sec1ec
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-1 3."2bl -1 al-b1 -10" 24

1800 + tan 2b 1800 + tan 1 5.77870
a0-10. 24b2 3.2(a 2-b2)

or 3.2b 1  a -b -10.24

-1 ao0O 22 3" 2(a2-b2)

tan - - 102b2 32a2- ) 5.77870
3.2b I (a1-b1-10.24)

1 - 3.2(a 2-b2 )(a 0- 10.24b2 )

or

10.24b (a2-b2 )+(a0 -10.24b2 )(a-bl-10.24)

3.2(a2b2)(a0-10.24b2 )-3.2b (a -b -10.24) - 0.10120072

or

f4 (a0,ala 2 9bl'b 2) = 10.24b l (a 2-b2)+(a0 -10.24b2)(a1-b1-1O.24)

- 0.3238423014[(a 2-b2 (a0 -10.24b2 )-bl(al-b I

- 10.24)1 = 0 (6.4)

v) The condition in (2.7) or

IG(i (ec) = I where ec = 3.2 rad/sec, gives

a 0 -10a.4b 24 2+j3.2b
1

1-10.24(a 2b2)+j3.2(a-bl_10.

or

f5(ao,a1,a2,bl,b2) = (a0-10.24b2+10.24b 2_ 104.8576(a2-b2

2
10.24(al -b -10.24) = 0 (6.5)

Eqn. (6) is a set of high order simultaneous nonlinear algebraic equa-

tions which are very difficult to solve. The Newton-Raphson method that

is available in most digital computersas a computer program packageI
I
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(called the z system [15])can be used to solve the nonlinear equations.

However, it is well known that the Newton-Raphson method will only con-

verge for a small range of starting values or the initial guesses. In

order to improve the speed of convergence of the method four different

methods of finding good initial guesses will be discussed in the next

chapter.

4

1
I
|
I

I
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CHAPTER III

ITHE INITIAL GUESS

In this report, the Newton-Raphson multidimensional method is

suggested for solving nonlinear equations. However, as it is well

known, high order nonlinear equations have many solutions and, depend-

ing on the starting values or the initial guesses, a solution may or

may not be obtained. Therefore, the solution and the speed of conver-

gence of a numerical method for solving nonlinear equations depend

heavilyon the initial guesses. In numerical mathematics, as well as

in other areas of science, finding an appropriate initial guess for a

set of nonlinear equations is itself a big problem to be solved. In

this report, the following methods are proposed for good initial guesses.

The applications of these methods depend on the type of problem one has.

(i) Initial guess by the synthesis method.

Suppose only the dominant frequency-response data in (2) are

available and an approximate transfer function T (s) of the desired

r

* * *2
T ao+b s+b2s 

(

I*r*** 2 3T *(s) 01 2(7)
r ao+a s+a 2 +s

0 1 2

I *
where a. and b. are the initial guesses of the numerical method. In1 1

the synthesis method Tr (s) in (7) is obtained as follows:

r*

S . In this step a second-order approximate transfer function T 2(s)

is obtained by using 4m = 5"70 and wc = 3.2 rad/sec. in (2.6) and (2.7).

17
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This T2(s) is

2 *
, mn G2(s)

T2 (s) n 2 (8.1)
s 2+2 w s+w2  1+G2 (s)

n n

where e = the damping ratio and w = the natural angular frequency.n

By following the basic definitions of w and *m the following equations

are obtained.

From (8.1)

2 2
=n fl

G s s2 n)- 2
2(s) s(s+2;n

)  s s2+2wn s

G2*(jw) n n =8*+a n

SnW-W +j24i w 4 2.22n w +4C W Wn

By definition IG2 (jw)L = 1, where w = 3.2 rad/sec.2 c

2

n =1

/W4+4C2 2 2c c n
4-40.96 2 W 2-104.8576 0 (8.2)

or, n 0

jNext, by definition

m /2 2 (iJ) + 1800 = 5.7 given

I- 24wn

570 = --80 + tan - + 180 °

W
c

2;n
or, 3.2 , tan 5.70

I



or .. . e -" -
•  

o-

0.1597012or W (8)

substituting (8.3) into (8.2) yields

4 = 0.0000061422

the square root of which is

2 0 = 0.0024783561

considering the positive root only

= 0.0497830911 we neglect the negative root

Substituting this in (8.3), yields

w = 3.207940617 rad/sec.
n

• 10.290883
T2 (s) = 2 10.290883 (8.4)s2+0. 3194024S+10.290883

The poles that can be considered as dominant poles of a system can be

determined from the characteristic equation in (8.1). As such dominant

poles areI
= -Jn 1-42  -0.1598±j3.2039

SI,

I
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Stej2. In this step a third-order transfer function T3 (s) is construct-

ed by inserting a pole (s = -p) in it and modifying the term in the

numerator of T2 (s) so that the steady state value of the T3 (s) is equal

to unity, or

2
, ~ PW

Tn(s) =1n0= I0. 290883pT3 2 22I
(s +2Cw s+W )(s+p) (s2 +0.3194024S+10.290883)(s+p)

- ,s (8.5)

1+C3(s)

The unknown constant p is determined by using the condition in (2.2),

or Re[G(Jue)] = -1.5, where w 1.9 rad/sec. Thus, from (8.5)
3 eT, eni

* ( 10.290883p (8.6)
s3+(p+0.3194024)s 2+(0.3194024p+10.290883)s

let s = jw, then

G (JQ) =l1 29 9883p 2 (8.7)
-w (p+0 .3194024)+jw(0.3194024p+10.290883-w 2 )

?2

*-10.290883p )2(p+0.3194024)
Re[G3 (J)] w 4(p+0.3194024) 2+W 2(0.3194024p+IO.290883-w 2)2

(8.8)

at w w = 1.9 rad/sec, RejG 3(jwf) = -1.5

-i0.290883(p+0.3194024) = -1.5 (8.9)I 23 .61(p+O.3194024) +(0.3194024p+6.b80883)!H
IAfter simplification, (8.9) becomes

1

I3
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p - 1.39 19 2 58 2 3p-14 .29 29 8 735 = 0

or p = 4.540095027, we neglect the negative root.

Thus (8.5) becomes

T* ()46.72158673 (.0

T3(s) = 23(8.10)
46.72158673+11.74100025S+4.859497427s 2+s 3

Step 3. In this step another third-order transfer function T 3 (s) is

constructed by inserting a zero in (8.10) as shown below.

** 46.72158673+bIs G3 (S)
T3 2 3 - *

46.72158673+11.74100025s+4.859497427s 2+S3  I+G3 (s)

(8.11)

The unknown constant bI can be determined by using the condition in

(6.0) and (2.1), or Re[G (JO)] = -2.1 as shown below. From (8.11), we
e

get

b I s+46.72158673

G3 ( s s+4.859497427s 2+(11.74100025-b )s

bI

,* 46.72158673[1+ 1

or G ~ **( 46.721586731
or G(s) [1+ 4.859497427 +...1

S(ll.74100025-b1) 11.74100025-b I

According to Eq. (6.0)

9Am * 46.72158673 b1  4.859497427
-0 ReG 3 ( 11)] 11.74100025-b 146.72158673- 11.74100025-b III

Given Re[G 3 (jO)J = -2.1 in (2.1)I3
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46.72158673 b 4.859497427 =21

11.74100025-b 146.72158673 - 11.74100025-b = 
-.

or b -34.15563709b + 56.76713817 = 0

which gives bI = 32.4037687, since we are interested in the positive value

only.

Substituting this into (8.11), we have

** 46.7216+32.4038s

T3 S) 23(8.12)
46.7216+11.7 410s+4.8595s 2+s3

Equation (8.12) can be considered as an approximation of (7) by assuming

b2 = 0. Thus the initial guesses in (7) are a0 = 46.7216, a, = 11.7410,

a2 = 4.8595, b, = 32.4038, and b2 = 0. For solving Eq. (6.1)-(6.5) these

constants are used as initial guesses for the Newton-Raphson method [15].

It is found that the numerical method converges at the 9th iteration

with the error tolerance of 10- 6 . The solutionsof (6.1)-(6.5) are

a0 = 6.378070, a1 = 10.462220, a2 = 1.259008, bI = 20.55667 and

b2 = 0.243466. Therefore, the desired transfer function T (s) isr

T (s) 6.378070+20.55667s+0.243466s2
r 6.378070+10.462220s+1.259008s2+s3

The system represented by Eq. (9) has the exact frequency response data

speci fied in (2).

(2) Initial guess by complex-curve fitting and continued fraction

methods

In this part a simple method is presented to determine the ap-

!
I



23

proximate coefficients of a transfer function using the real parts and

imaginary parts of the limited number of frequency-response data that

are available. Using these data a low-order model is constructed.

The low-order model is then expanded into a continued fraction of the

second Cauer form to obtain a set of dominant quotients. Some non-

dominant quotients are then inserted into the continued fraction to

obtain an amplified-order model 116], which is the desired approximate

transfer function T (s) for the use of the initial guess.
r

Consider the transfer function

bo+b1s+b2s2+...+b sm
T (s) = m(10.1)

r l+a s+a2 s 2+...+a sn
1 2 n

where a. and b. are unknown coefficients to be determined. The problem of
1 1

finding unknown coefficients of a transfer function as a ratio of two

frequency-dependent polynomials has been investigated by Levy [17].

His method minimizes the sum of squares of the errors at arbitrary ex-

perimental points. However, for finding the unknown coefficients of a

transfer function the method presented next is comparatively simple and

:,traightforward.

Substituting s = Jwk into (10.1), we have

T bo+jkbl+(juk)2b2+.'.+(Jwk)mbm
Tr QWk) 2 - nl+jWkal+(jwk) a 2+...+(jw k)an

Separating the real partsand imaginary partsin the numerator and denom-

inator of T (J ) we have

I
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2 4 6 3 5 7
(bo-b2 wk+b4Wk-b6Wk+. )+j (b k-b3Wk+b5Wk-blwk+.

TJk 2 4 6 k 3k 5 7

(- 2 uk4k-awk+ .)+j(alWk-a 3 wktaSk-a7k
. .

= R(w k) + jI(L)k )

= Rk + Jlk (10.2)

where R and Ik are the given valuesof the real and imaginary parts of

the Tr (s) at the available frequencies wk* Multiplying both sides of

(10.2) by the common denominator and separating the real and imaginary

parts, we have

2 4 6 3 5 7
(bo-b2wk+b4Wk-b 6k •+..)j(b1wk-b 3 k +bk-b7 Wk+.•.)

2 4 6 3 5
= Rk-a 2Rkk+a4 kwk-a6 k+... -aI 3k +a5 k -a51 + - . .

3 5 7 2 4 6

+ ja 'kk a 3~ja Rwk- 7kb+--+k- 2 k k 4 1k Wk- 6 k k ..

Equating the real and imaginary parts from both sides, yields

Sbo~b- b w °+b4 -b6 "' Rk-a2 % +a4 % -a6 +I
a1 I k+a w-al (10.3)

b 1 k-b 3  Wk + b 5 ' k - b T k + ' =  a  IR k -a 3 Rkk +a 5Rk'-a 7Rko+ ''"

2 4 6
k-a2 Ikek+a 4Ik k-a Ikk... (10.4)

Eq. (10.3) and (10.4) can be written as
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" 4 6

b -bw+bWkbW. +al kt k+a 2  a  _a
2k 4k 6k k 2IRkk 3Ykk 4 4kwk+.Rk

(10.5)S 3 5_ 7 2 3 4_... . )
bIWk-b 3tok+b 5 Wk-b 7tk + . .. '-al k+ak2 Ikoj+a3kk-a4 k'k I k

(10.6)

In matrix form, (10.5) becomes

-2 W4 -6 1W R 2 1W3 _RW4 b R

2 4 6 2 3 _RIW4b
2 2 2 2 2 2 2 22 22 2

2 4 6 2 3 _R34 b R
3 3 3 33 3 33 333 4 3

a2

2 4 6 2 3 4
1 -W w -W I twI W -Rw a R

X x x x x X X X X n x

(10.7)

where x = n + ! + I if m is even
2

= +n-+ ,if m is odd2

Substituting a. obtained in (10.7) into (10.6), we have another matrix
1

equation to solve for bi, i 1,3,5,...

3 5 7 0 1 2
3 5 7 0 1 2 3

2  -W2 3 W 5 -W2 7. b ((a I W +a R WI)( aRW3).

2 2b23 02 2 12 2 )-(a2 1222  3R22

3 5 7W 3  - 3  3  w3 . b

i3 5 7 0 1 2 3
S -W W -W ... bk (aI w +aR w )-(a 2 w +a3Rw )+.2•

((a__J L 0  1 y y(aI
(10.8)
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0 m+l if=mwhere =1, a0  1; K m and y = - mis odd; K rn-i andy f

m is even.

In this pitch control system, the available data is given in

(2) from which the following data is obtained,

S= w0 =0, R1 = Te(JO) = 1 1 = 0

Ge(Ju) G(jw )
w2 = W =1.9 , R2 = le ee=2.968398,]

ie ) 2,2+68O8 121m1+ G (jW )]-0.02515098e eT e en
(11)

Ge (Jw c) Ge(jw c)

W3 = =3.2 , R = Re[tG e jw e  1=0.3350731, 13=1 -lGe(jwe ) ]= - 10 .4 315 9
3 cwc 3 1+0 (iwe) 3 m 1+0 (jW )]ed35

Data is available only at three frequencies, therefore the approximate

transfer T 2(s) is assumed to be

b bo+b Is
Ir (s) = (12.1)

1+a1 s+a 22

Substituting the data at w1, W2 and w3 in (11) into (10.7) yields

0 0 b0  1
1 -0.047786862 10.71591678 a 1 2.968398 (12.2)

1 -33.381088 3.431148544 al2  0.3350731

From (12.2), we get

1
b = 1

b0  0.047786862a I + 10.71591678a2 - 2.968398 (12.3)

b - 33.381088a + 3.431148544a 2 - 0.3350731 (12.4)

I
I1
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Substituting b= 1 into (12.3) and (12.4) yields

-0.047786862a1 + 10.71 5 91678a 2 - 1.968398

-33.381088a + 3 .4 31148 54 4a2 - -0.6649269

Solving these two equations, we get

a1 = 0.0388179596

a2 = 0.1838622891

Then substituting a. and the data at w into (10.8) yields

3.2b I = 9.250106342

.*.bI = 2.890658232

Substituting a. and b., into (12.1) givesi 1

T* ( 1+2 .890658232s (12.5)
1+0.03881 79596s+0.1838622891 s2

However, the desired approximate transfer function in (7) is a third-

order function. Therefore T2 (s) in (12.5) needs to be amplified. In

this case this is done by using the continued fraction method [16] as

follows.

T2 (s) is first expanded into a continued fraction of the second

Cauer form to obtain a set of dominant quotients. They are given as

I
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h1 , 2 = -0.3506507744, h = 0.9650474175 and h " 16.072551656.

Then the order of T2(s) is amplified by inserting two nondominant quo-

tients h 100 and h 0.1, orI
* ( 1+2.890658232S

2 2
T2(s ) = +0.0388179596S+0.1838622891s2

h +1 1 _ 1 1 1

s

h+." 3

h4
s

1 (12.6)

s
h+ 

h4  1
S

5 h 6
s

Substituting

h =1I
h1 1

h -0.3506507744

h 3 = -0.9650474175

h = 16.072516564
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h5 = 100

h6 = 0.1 into (12.6), it becomes

* * = * 54.3885+162.6914s+15.8219s2
2(3)r 54.3 8 85+7.5 839s+1O.2146s 2+s3

In solving (6.1)-(6.5) if we use the coefficients in (12.7) as initial

guesses; a0 = 54.3885, a1 = 7.5839, a2 = 10.2146, b1 = 162.6914 and

b2 = 15.8219, we have the desired coefficients in (9) at the 15th iter-

ation [15] with the error tolerance of 106. This proves once again

that if the inserted positive quotients h. >> 1 and h << 1 (i is an1 i+l

odd number) the amplified order model is a good approximation of the

original low-order model.

(3) Initial guess by continued fraction method [18]

Shieb [3] and Chen [10] have proposed a continued fraction method for

model reductions. In this case their method is utilized to find initial

guesses to solve Eq. (6.1)-(6.5). The numerator polynomial N(s) and

the denominator polynomial D(s) in Eq. (1.5) are arranged in ascending

order and expanded into the continued fraction of the second Cauer form

by performing repeated long divisions as follows.

T (S) = N(s) b 10b+b 9s+b8s2 +...+b 0s where a b are given
e D(s) a 11 +a0 s+a9s2+ .+a 0 a i

1(13.0)

113+

h4 _______

h ++
h h6+ .
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where h I = 1

j h2 = -0.401749

h3 = -0.475321

Sh 4 = 25.1998

h5 = -0.0322195 (13.1)

h6 = -24.1061

1 7..

h 22 ..

The reduced order models of Te (s) can be obtained by retaining the first

few dominant quotients, h. = 1,2,... The number of quotients used de-

pends on the order and form of the reduced model. This is explained be-

low

1 h

T (s) (13.2)
e 1 + s hh2+s

2

1 h 2h 3+s
1 _(13.3)

h h h +(hl+h 3 ) s
s 1 2 3 1 3

h + Sh2 h3

I h2 h 3h4+(h 2+h4 )s (13.4)
(13.4)

1 i hh 2 h 3 h4 +(hIh 2 +h Ih 4+h 3 h14 )s+s

s

2

3 h 
4

I
I

..... .I i .. . . . i l i .. . . . ..I , m i ,
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1 2 h3 h4 h5 +(h 2 3 +h2 5 +h4h5)s+s

1 s 1 2h3h4h+( 2h3 2+h5h h +h3h4h +hh 5)s+(h +h3+h5)s

h2+ sh + s 
(13.5)

h 3 +

h+

h +  s +(h2 +hh4h+hh5h)s 2

h4+S- +h 3 h4h 5h 6 )s+(hh 2 +hh 4 +h h 6 +h3 h 4 +h3 h 6+h5h6)s+s

h 6  (13.6)

Substituting the hips in (13.1) into (13.6) yields the third-order ap-

11

proximate model of T e(s) as follows:

3 7376+10.4692s+0.6920s 2

T3(s) = -* "(14)4 3.7376+hh.1661s+O.9488s2+s h2

Using the coefficients in (14.1) as the initial guesses: aa = 3.7376,

a, = 10.1661, a2 = 0.9488, b I = 19.4692 and b2  0.6920, the desired

solution(Tr(s) given in (9))of the set of nonlinear equation (6.1)-(6.5)

are obtained at the 9th iteration with tile error tolerance of 10 - 6 .

As it has just been shown in this particular case, tile continued

fraction method of fin ing the initial guess has worked out nicely.

0owever, this is not true always. For example, if the reduced order model

b1 2

souinTI)gvni 9)ftese fnniereuto 6l-65

... . .. . ... . . ... . .. .. . . .. ... . . . . .. . ; . . ... ... . . . ... ... . .. ..... ... . ..6
ar banda te8hieain ihteerr oeac f1

As i ha jut ben sownin his artculr cse, he ontnuc
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the coefficients of such a reduced order model cannot be used to solve a

set of nonlinear equations. Because, an unstable initial guess often

leads to solutions which will give rise to an unstable system only. In

such cases the following mixed method can be used to obtain a stable

reduced-order model for approximation.

(4) Initial guess by using the mixed method.

In this section of the report two mixed methods are discussed.

One has the advantages of both the continued fraction method [3,101 and

the dominant pole method [19]. The other has the advantages of the

continued fraction as well as the Routh table [11], from which the

equivalent dominant-poles can be obtained. The reduced-order models

obtained by the mixed method are stable and can be used as good initial

guesses.

The relationship between the quotients h. and the coefficientsI

a. and b, in (13.0) can be expressed by the following matrix Eq. [3,4]:1 1

b] = [HI] [a] (15)

T
where [a] = [a n-la . ,

[b]IT = [b n-l'bn- 2 .... b 29,bl~b 0 ]  ,

I[il] = [H 2I 11I 1 ,

here 'T designates transpose of a matrix

I
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h 0 0 .0 1 0 0 .00 1 00.0 0
1

1. 0 00 0Oh 0 0 0 0 10.0 0

0 1 h .00 01. 0 001.00

h, 0 0 0 00 0 01100 000.00

0 0 0 1h 0 0 0 '. n-1 0 0 0 h

1 0 0 00 10 0 .00 10 . 00

10 h20 .00 0 1 0 .00 0 10.0 0

0 1 h 0 0 0 0 h2 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 h 0 0 0 1 lh- 1  0 0 0 h2

jConsider the reduced-order model of the original system as

e 
- _+...+e 

S
0 1

T r(s) = ,- d r= 1 (16)
d 0 +d 1  s+. ..+d ns 0 r 0

I The denominator polynomial in (10) is approximated by the pro-

duct of the dominant poles of the original system Te (s). Thus d. is

known. Replacing a , and b.i in (15) by d.i and e.i in (16), respectively,

Eq. (15) can be solved for e. in (16). The T (s) obtained has the
1 r

dominant poles and the dominant quotients of T (s) and it is always

e

stable, therefore, .T r(s) can be used as a good initial guess in

r

solving (6.1)-(6.5).

In case the roots of D(s) in (13.0) are not available, the ap-

I

-r-
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proximate equivalent dominant poles and the resulting coefficients d.

can be determined from the Routh table as suggested by Hutton and

Friedland[91. The steps involved are explained below.

b n-s n-+b n-2s n-2+...+b2+bI+b0 n(s)
an sn+an- 2.1+a 2 +a+a)

is the original transfer function for which the reduced order model is

needed.

Step . Construct a Routh array [20] using the coefficients a. of the

d(s) above and the Routh algorithm. The Routh array is shown below.

To obtain a general algorithm a. is expressed double-subscripted nota-1

tion, for example, a.,.

A A A

11 an a12 an-2 a1 3 = an 4  ... a0

a
Y a21

A A A
a 2 1  an _]  22 an-3 a23 n-5  ...

a 21

a31 = a12 -ya22 a32 = a1 3-y1a2 2  a33  ...

a3 1

'3 a 1
A A

a 41 a 2 2 -" 2 a 3 2 a42 = " 2 3 -y 2 a 3 3

I
I

. !
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a n-2,1 a n-2,2

a n-2 
1 1

n-2 a

a n-ll a n-,2 a0

nnl,2

nn~l
a
n, 1

n -an+i,1

an ,l ao (17.2)

In general

a. *a. •-~ a i = 1,2,... = 3,4,..

,j a i-2 ,j+l-Yi-2 ai-l,j+l .......

a i/a i+l (17.3)S i, 1+,1

Stej_2. In this step various approximate low-order polynomials d.(s) arei

constructed from any two consecutive rows in the Routh array, for example,

say from the last row and the next to the last now and so on. This is

explained below.

The first order (i = 1) approximate equation is

d (s) = a ,s+an+ll anls+a0 = 0 (17.4)I
The second order (i = 2) approximate equation is

d (s) = ansl,lS2+an,lS+an l,2 = ansl,ls2+an,lS+a 0 = 0 (17.5)d2(s)l n~ -,2 nll ~
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The third order (i = 3) approximate equation is

d3(s) = a s3+an s 2+a S+a = 03 n-2,1 n-l,l n-2,2' n-1,2

= an.-2,1s3a n-l,l s2+an-2,2S+a0 = 0 (17.6)

and so on.

When the original system (17.1) is asymptotically stable, all Yiare posi-

tive values and the approximate polynomials d.(s) are the Hurwitz poly-
1

nomials. The d.(s) are normalized simply by dividing each coefficient
1

in d (s) by tile coefficient of the highest order term in s. These normalized d.(s1

are the denominator polynomials of the reduced-order models T.(s) of the? 1

original system. Then the numerator polynomials of T.(s) are determined
1

simply by substituting the coefficients of d.(s) in place of Ia) in (15)
1
norm

and then solving the matrix equation (15) for [b], which are the coeffi-

cients of the numerator polynomial of T i(s).
, n3(s)

The third-order reduced order model T (S) = 3 of the
d3(s)

original pitch control system in (1.5) obtained by using the

mixed method is explained below.

At first, the Routh array of the pitch control system in (1.5)

is obtained. From the Routh array the normalized approximate denominator

d 3(s) is found.

d3 (s) = s3 +0.9523822967s 2+l0.19241445s+3.745517989 (17.7)I3
* 3

To determine n 3(s) = b 2s + the coefficients of d3(s) are

Isubstituted into (15) as shown below.

I
I
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b 00.74524[] [H] 1 . (17.8)

b L0.9524

b" I , E" : 2] [H1]1 .1924Sbj [o.9524

or [b03l45

or B h1  0 1 0 0 1 0 0?j 01 0 i 0
1 2 0 0 0 1 0 , h 2  0 1 0

L01h2 3- h 200bAb2

i 3 h 0 J 1 0 0 3.45

0 1 0.19240 0 L°'9524

1 hlh 2  0b 1  0 h 2  010. 192 6. (17.9)

0 h1 +h3  h 1h2 h 3 b20 1 h 2h A .952 L.

where the h. 's are the quotients 
of T (s) in (1.5), which are given in

(13.1). Substituting the values of 
hi h2 and h3  from (13.1) into (17.9)

I
i
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and then simplifying, we get

b = 3.7455 (18.1)

b - 0.401749 bI = -4.094787

substituting (18.1) yields

b = 19.5154 (18.2)

and 0.524679 b + 0.19096 b = 10.37427

Substituting (18.2) yields

b2 = 0.7066 (18.3)

Therefore

T 0.70 66s2 +19.5154s+3.7455 (19)

s 3+0.9524s 2+l0.1924s+3.7455

In solving the nonlinear Eqs. (6.1)-(6.5) if the coefficient of T 3m(S)

* *

in (19) are used as starting values: a0 = 3.7455, a1 
= 10.1924,

a2 = 0.9524, h 1 19.5154 and b2 = 0.7066; the Newton-Raphson method

[15J converges to the desired solution in (9) or

6.37807+20.55661s+0.243466s
2  G r(S)

rS =6.37807+10.46222s+1.259008s2+S3  1+Gr(s)

-6
at the 8th Iteration with the error tolerance of 10

1 f
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From (9)

G (s) = The open-loop transfer function of the standard modelr

T (s).
r

6.37807+20.55661s+0.24346s2 
(2)

s(-10.09439+l.015542s+s

2 )

The Nyquist plot of Gr (s) is shown in Fig. 2 and the unit step

responses of Tr (s), T3 s), 3m and T (s) are compared in*Fig. 3. All

three reduced-order models T (s), T3,(s) and T3m(s) give very satisfactory

approximate time response curves. However, only the T r(s) in (9), which

uses the method of dominant frequency response data matching, has the

exact dominant-frequency response data as the original system T (s)

given in (2).

I
I
I
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CHAPTER IV

SIMPLIFICATION OF THE EXISTING STABILIZATION FILTER

As it appears from its name, the purpose of the stabilization

filter is to stabilize the original unstable system. The transfer

function of the existing stabilization filter Fstab(s) is known and is

given in (1.2). As it is mentioned in the introduction of this report,

the objective of this report is to redesign the stabilization filter

so that the cost of implementation can be reduced and at the same time

the performance of the redesigned pitch control system is the same as

that of the existing stabilized pitch control system.

In this chapter two different transfer functions are obtained

for the stabilization filter. Both of these transfer functions are ob-

tained by direct simplification of the available transfer function of

F stab(s) , and one of them is obtained by using the dominant data match-

ing method of Chapter II.

The F stab(s) in (1.2) can be considered as the closed-loop

transfer function of a control system as

N (s) G-stab(s) 460800s 2+69120000s+144xlO 7

Fstab = (s) = 4=32b( , (21.1)
s stab s +250s 3+76900s 2+72xO 5s+9xlO 8

where tile open-loop transfer function Gstab (s) is

I Gstab(S) = 460800s 2+69120000+144xlO7 (21.2)

s 4+250s 3-383900s 2619200OOs-5.4xlO8

I The dominant frequency-response data of this system are given below.

41
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1
i) Gs (0) - (22.1)

stab 0.375

ii) Re[Gstab(J sI)I = -1.032833 (22.2)

Im[G stab(Jws)] = 0.002017351 (22.3)

where Ws7 = The phase crossover frequency of the stabilization filter

= 140 rad/sec.

iii) Re[Gstab(Js)] = -1.002941 (22.4)

Im[Gstab (Wsc)= -0.03668759 (22.5)

where W = The gain crossover frequency of the stabilization filtersc

= 200 rad/sec.

Suppose the reduced-order model Fs(s) of the stabilization fil-

ter is

bo0+b1 s  G (s)
F (s) = - (23.1)a+s2 1+G (s)

a 0+a 1s+s si

where Gs(s) The open-loop transfer function of FsI(s)
bo+bS is

(23.2)

(a 0-b 0)+(a -b )s+s 2

The constants a and b are unknown constants to be determined. Using I.

the specifications given in (22) and following the basic definitions of

those specifications the unknown constants ai and bi are determined asI
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shown below.

For F sl(s) in (23.1) to be a reduced order model of F stab(s),

Gsl(s) must satisfy all the specifications of Gstab (s) in (22). Apply-

ing the condition in (22.1) to the system Gsl(s) in (23.2) yields

at s = jO G(J0) b0  - 1.7
sl -a 0-b 0 0.375

or, b0 = 1.6a0  (24.1)

Substituting (24.1) into (23.1) and (23.2), respectively, we get

1.6a +b s
(s) 1 2 (24.2)

a0+als+s
0 1

and

1. 6a0+blS

Gsl(s) = 01 (24.3)
-0.6a +(a -bl)S+S

1. 6a 0 +J wbI

at s = jw Gs(JW) = -(0.6a 0 + 2)+j(al-bl)

(l.6a0 +jwb1)[-(O.6a0+w
2 )-jw(a1-b1)]

(0.6a0+w
2)2+w2 (a1-b1)

2

I _l,6a0(0.60+2) 2bla l

Re[G(JW)] = 0 .6a0+W2)+w b1(a1-b1) (24.4)
sl (0.6ao+ 2)2+ 2

I
-wb I(0. 6a 0+W2 )-l.6wa 0(a 1-b 1

lm[C, s(iW)1 = - 06 0+ 2 +W2 0a1 1 2 (24.5)

i) Specification in (22.2) yields
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Re[G sl(jl40)) -1.032833

Substituting (24.4) above gives

-1.6a 0(0.6a 0+19600)+19600b 1(a I- b I
0 2 1 1.032833

(0.6a 0+19600)2 2160a -

or f1 asa~ 1 -.6 (-a0 +19600)(a0b a1-b1

or~ ~ f ( 0 a, 1  1.032833(0.a +19600) +19600 (a -b ) 1 0
0 0 1 1

(25.1)

ii) The data in (22.3) when applied to (24.5) yields

ImIG (jl40)] = 0.002017351
sl

-140b (0.6a +19600)-224a (a -b)
or, 1960) 21 0.002017351

(.a0 190)2+19600(aI- b1 2

or f 2 (a 0,a1,b) -140b 1(0.6a 0+19600)-224a 0(a 1-b 1

-0.002O17351[(0.6a 0+19600 )
2+ 19600(a1 -b1 ) 

2J 0

(25.2)

iii) The data in (22.4) when applied to (24.4) gives

Re[G Sl(j200)] = -1.002941

or -1.6a 0(0.6a 0+40000)+40000b (a -b1) 1024

(0. 6a 0+40000) 2+40000(a 1-b1 2
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or f 3(aoal,b ) 0-.6a (0.6a +40000)+40000b (a -b )

+ l.002941[(0.6a0 +40000) 2+40000(a -b 1
2 ]  0

(25.3)

Equation (25) is a set of nonlinear equations. The unknown con-

stants a. and bi in (23.1) are determined by solving (25). However, to

solve equation (25' the proper initial guesses have to be determined first.

As discussed in Chapter III, the initial guesses can be determined from

the reduced-order model of the existing stabilization filter F stab(s)

in (1.2). Using the mixed method of the continued fraction approximation

and the Routh approximation, a reduced-order model F rl(s) is obtained as

follows. , ,
,bo+bls *

Assume F(s) - 0 1 n (s) (26.1)AseFrl'( = * * 2 = *
ao+a s+s d (s)

Routh's st Ilitv criterion for F (s) is
stab

s 1 76900 9xlO8

53 250 72xl05

2 8
s 48100 9X10

1
s I 2522245.322 I

s0 9X108

As discussed in the Section 4 of Chapter III, the d (s) in (26.1)

is a IUroximated from the Routh criterion shown above. Thus

d (s) = 48100s 2+2522245.322s+9K1O8  0

After normalization d (s) becomes

I
I
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*2
d (s) s +52.43 75s+18711.01871 (26.2)

Therefore, now (26.1) becomes

b s+b*0
Fr T(s) = 21 0(26.3)

s +52.4375s+18711.01871

The quotients h. of F (s) are obtained below
I stab

9xlO 8  72xi05 76900 250

hI = 0.625

144×107 69120000 460800
h2 = -40 ' 3x0

h 0 < -36xl0 -211100 2501

h3  -0.593315Z

"'0676000 470800 40

Using Eq. (15) b0 and b I in (26.1) are determined as follows.

h 1 0 0 0 187 11. 01871J

[I h2 h I b D 22 [52.84375

or 0.65 0 b01 0 18711.01871

1 -25 [b 1 0 -40 52.4375

i1

I
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18711.01871
or b 0.625 = 29937.62994 (26.4)

and b - 25b = -2097.5

* -2097.5-b 0  2097.5+29937.62994
or = -25 25

or b I = 1281.40525 (26.5)

Substituting (26.4) and (26.5) into (26.3) yields

* 1281.40525s+29937.62994 (26.6)Frl(s) =(66
s 2+52.4375s+18711.01871

Using the coefficients of F rl(s) in (26.6): a0 = 18711.01871,

aI = 52. ,, b I = 29937.62994 as initial guesses, the nonlinear equa-

tionsin (25) are solved by the Newton-Raphson method [15] and the fol-

lowing solutions are obtained at the 7th iteration with the error

tolerance of 10-6

a0 = 20917.459536

a, = 29.981293

b = 957.2600141

Since b1 = 1.6a 0 as in (24.1) b0 becomes

b 0 = 33467.93525
0

F Fs() the desired low-order stabilization filter in (23.1) is

I
I
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957.260014s+33467.93525F (s) = (27)
sI s2 +29.981293s+20917.459536

The unit step response of the existing stabilized pitch control system

in Eq. (1.5) and the redesigned pitch control system using Fsl(s) in

(27) and thie G0 (s) in (1.3) are shown in Fig. 4. The result is fairly

satisfactory.

An alternate approach for redesigning the stabilization filter

by direct simplification of the existing stabilization filter is pro-

posed as follows:

As it is mentioned at the beginning of this chapter, the function

of the stabilization filter is to convert the dominant data at w = 0,

= 1.9 rad/sec. and w = 3.2 rad/sec. of the original unstable sys-
e T ec

tem C (s) in (3) to the assigned dominant data of G (s) in (2). Taking0 e

advantage of this fact, we can directly apply the dominant-data matching

method to fit a low-order stabilization filter that satisfies the speci-

fications as-igned in Eqn. (4). Let us assume that the desired low-order

model of F stab(s) is

b 0+b1 s
F s2) = - (28.1)

ao+as1s+s

Applying the condition in (4.1) to F 2 (s) in (28.1) yields

Re[F 2 (JO)] = o = 1.6
s2 a 0

b 0 = 1.6o 0  (28.2)

Substituting (28.2) into (28.1) gives

I!
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F (S) = 26a0+bIs (28.3)

s2 2
a +aI s+s

At s = jw

1. 6ao+jwb I
Fs9 (jw) = 2

(a0-w ) +jwa1

2 2 2 2

IF s2 (Jw)I =  (28.4)

1F52iw ( = 22 22

(a -w ) +w a2
0 1

-1 1bl - wal

and Fs2 OW) = tan tana0  tan 2

-1 wbl (a0 -w 2)-l.6wa0 a1  (28.5)
tan 228.2

1.6a 0 (ao-W 2)+w2 a1b

At s = 1we = jl.9 the values of IFs2 (jw)I and /Fs2(jw) in (28.4) and

(28.5) respectively are matched to the corresponding values of IF stab(jl.9)l to-

gether and IFstab(il. 9) in (4.3). Thus, we have

2 2

IF (ji.9)1 - /.563+3. 61b 1.605107127

s2 2 2

V(a0o- 3.6 1) + . 1

or f(a,a,b) = 2.56a2+3.61b21-2.576368889[(a-3.
61)2

+ 3.61a21 = 0 (29.1)

-1 1.9b (aO-3.61)-3.04a~al
SF2 (j)9 1.6ao(a 0-3.

61)+3.61a b 4.34591898

I
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or f20(aoalb = 1.9b (aO-3.61)-3.04a0a 1

- O.0759963811[i.6a 0 (a 0 - 3.61)+3.61aIb ]=O (29.2)

When s = ec = j3.2 the value of /Fs2(Julec) in (28.5) is compared with

the value of /Fstab(j, ec) in (4.5). Thus, we have

-i 3.2b 1 (a0-O.24)-5.12a 0 aI/F s2(j3.2) = tan 1.6a (a -10.24)10.24a b . 7.2933494930
0 0 1 1

or f3(a,al,b) = 3.2b (a0-10.24)-5.12a a1

- 0.1279849782[l.6a0 (a0-10.24)+10.24aIbl]
=0 (29.3)

Using the initial guesses obtained in (26.6) the set of nonlinear equa-

tions in (29) is solved for the unknowns ao, aI and b1 by using the Newton-

Iaph.;on mecthod. The so]utions are obtained at the 9th iteration with

the error tolerance of 10- 6 . The solutions obtained are

a0 = 13301.999297

J a, = 3.318051

bI = 856.628596

Thus, the desired low-order model in (28.3) is

F 2(S) = 856.628596s+21283. 19886 (30)

2 s 2+3.318051s+13301.999297

The unit-step response of the existing stabilized pitch control

I
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system T (s) in (1.5) and the redesigned system that uses the low-ordere

filter Fs2 (s) in (30) and G 0(s) in (1.3) are shown in Fig. 4. The re-

suit is perfect. Comparing the unit-step response curves in Fig. 4, it

is clear that as far as the performance of the entire pitch control sys-

tem is concerned Fs2 (s) in (30) is a better filter than F sl(s) in (27).

This implies that the existing stabilization filter F stab(s) in (1.2)

might be overdesigned. Obviously, the implementation cost of the filter

F s2(s) is less than that of F stab(s) in (1.2).

I
I
I



CHAPTER V

REDESIGN OF THE STABILIZATION FILTER BY AN ALGEBRAIC METHOD

In Chapter IV of this report the original fourth-order stabi-

lization filter Fstab(s) has been simplified to two second-order

filters, Fsl(s) and Fs2 (s), using the dominant-data matching method

discussed in Chapter II. It is noticed that all three stabilization

filters, the original as well as its simplified models consist of com-

plex poles. It is also observed that all three filters mentioned above

are placed in the feed forward loop and as a result the system becomes

very sensitive to external disturbances. If alternate filters can be

designed and placed in both feed forward and feedback loops,i) the de-

signed filters may turn out to be simple transfer functions with posi-

tive real roots and because of this it may be possible to synthesize

the filters using passive elements, and ii) the performances of the

designed system can be greatly improved. The fact that the fixed

configuration of the compensators in the feedback loop enables the de-

signed system to be insensitive to the parameter variations and modeling

errors will reduce the effects of external disturbances and improve

the stability of the system. Thus the redesigned feedback system has

all the advantages [14] of feedback control systems.

In this chapter the algebraic method proposed by Shieh [3] and

Chen [4] is extended and modified to redesign the pitch control system

The step involved are summarized as follows.

Step I. Assign the design goals using frequency-domain specifications

and model a standard transfer function, known as the standard model,

53
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using the dominant data matching method discussed in Chapter 11 of this

thesis.

Step 2. Expand the standard model obtained in Step 1 into a standard

fraction expansion of the second Cauer form by performing repeated long

divisions as shown in (13.0) to obtain the dominant quotients. Using

these quotients obtain the matrix JH] in Equation (15).

Ste_3. Assume the fixed configuration of compensators with unknown

parameters and determine the overall transfer function of the system.

Thus, the overall transfer function of the system will consist of the

unknown parameters.

Step 4. Substitute the coefficients of the overall transfer function ob-

tained in Step 3 into the vectors [a] and [b] in Equation (15) and ex-

p;,& the, matrix equation (15) to obtain a set of equations.

Step 5. Solve the set of equations obtained in Step 4 to determine the

unknown constants assigned in the compensators.

The designed system obtained by using the algebraic method has

the exact dominant quotients of the standard model. In other words,

the designed system is a good approximation of the standard model that

has the exact assigned dominant data.

It is noticed that the original unstable system G0 (s) in (1.3)

jis a high order transfer function with large coefficients. Therefore,

in order to simplify the procedure, before proceeding to design the

pitch control system by using the algebraic method, a reduced-order

modeJ of G0 (s) is determined by using the dominant-data matching method.

kF6___
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The unstable transfer function G0 (s) in (1.3) can be decomposed0i

into a stable function and an unstable portion as follows:

1
Go ) = T0 s) (31.1)

where the stable portion T 0(s) is

T 324332.316(s+0.1933)(s+65)(s+1500) (31.2)
0(s) (s+3.175)(s+87.9±j95.5)(s+112.5)(s+1385)

The pole at the origin and the unstable pole at s - 2.921 are consider-

ed to be the dominant poles of the system. Therefore, they are retained

in the simplified model C 0(s) of G (s), or

* *
0(s) G0 (s) s(s-2.921) 0 (s) (31.3)

Where T0 (s) is the reduced-order model of T0 (s) obtained by us-

ing the dominant-data matching method. The frequency response data of

T0 (s) that are used as dominant data for the transfer function fitting

aregain margin, phase margin, phase-crossover frequency, gain-crossover

frequency, and the final value at w = 0. The T0 (s) obtained is

T* 496.854897s2 +192897.961011s+37103.333 75 (31.4)
s+117. 073733s 2+16552.300003s+50595.685093

The T0 (s) obtained is a low-order model of T0 (s) with smaller

coefficients. Thus, the design process can be greatly simplified.

There ForeoG* 496.854897s 2+192897.961011s+37103.33375

s 5+114.152733s 4+16210.32763s 3+2246.41679s 2-147789.9961s
(31.5)

I
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Following the steps proposed at the beginning of this chapter

the first step to design a system by the algebraic method is to determine

the standard model. In this case the standard model T (s) has been de-r

termined earlier in Chapter III and is given in (9). Writing Tr (s) once

again and expanding it in a continued fraction expansion yields

T (S) 6. 37807+20.55661s+0.243466s
2

6.37807+10.46222s+l.259008s 2+s 3

1

i
+  S

h+

4+

h5 +S

where

h = 1l1
112 = -0.631845015

h 3 = -0.476189214

h4 = 14.799589050 (31.6)

-= -0.102867450

h6 = -13.924278040I
In the next step a series compensator G1 (s) and a parallel compensator

G 2(s) are assigned as shown in the block diagram of Fig. 5-1. G1 (S)

1
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and G,(s) are assumed with unknown parameters x. i = 1,2,...,7 as

G (s) = .- +x7  (32.1)
1 6s+x 5

and

2x 3 s+x4 s+x 2G2(S) = +xs+x2  (32.2)

s +x 1s+x2

The overall transfer function Tf(s) of the feedback system shown

in Fig. 5-1 is

7b0+bS+ ... +b 7

Tf(s) = 80 1 7 (32.3)
a + IS+ +a 8sa0+als+ ... +8s

where

a 0 = 37103.33375x 2x7

aI = 192897.961011x2 x+37103.33375(x2x6+x4 x7 )-]47789.9961x2x5

a 2 = 496.854897x2 x +192897.961011(x 2x6+x4 x7)

+ 37103.33375(x4x6+x 3x7 )+2246.41679x2 x5

- 147789.9961(x2+xx x 5

a3 = 496.854897(x2 x6+x4 x7 )+192897.961011(x4 x6 +x3 x7)

+ 37 103.33375x 3x6-147789.9961(xI+x 5)

+ 2246.41679(x2 +xlx5 )+16210.32763x2x5

a4 = 496.8548 97(x 4 x6 +x3 x7 )+192897.961011x x -147789.99614 4 3 73 6

+ 2..6.41679(x +x )+16210.32763(x2+xIx 5 )+114.152733x2x 5

5 = 496.854897x 3x6+2246.41679+16210.32763(x1 +xS) (32.4)

+ 114.152733(x 2+x x 5)+x2 x5
a6 = 16210.32763+114.152733(x 1+x5 )+x2+xlx 5

I
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a7 = 114.152733+x +x
7 1i5

a, = I

b0 = 37103.33375x2 x7

b I = 1
9 28 97 .96 1011x2x7+37103.33375(x 2x6+x x 7)

b2 = 496. 854897x 2 x7+1
92897.961011(x

2 x6+xIx 7)

+ 37103.33375(x1x 6 +x 7 )

b3 = 496.
8 54897(x2x6+Ix7)+192897.961011(x x +x7)+37103.33375x6

b4 = 496.
8 54897(xlx6+X7 )+192897.96101ix 6

b5 = 496. 8 54897x
5 6

b6 = 0

b7 = 0

In order to match the seven unknown parameters, xi, i = 1,2,...,7

in (32) for this type '1' system we need eight quotients h., i=1,2 .... ,8
1

in (9). Therefore, the third order standard model in (9) with the quo-

tients h. given in (31.6) has to be amplified to a fourth-order system.1

This is done by inserting h7 % 100 and h8 = 0.1 as shown below.

728

T (s) = 6.37807+20.55661s+0.243466s2

6.37807+10.46222s+1.259008s +s3

s

I +

h 3+  si

5 + 
s h6

II
h+ hs+ h 6--

I
I
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S+ S
hl 3 s

h2+
3

h4+
5

h8

ST (s) =63.78098007+211.8989926s+22.87561717s

2+0. 34346s
3

a 63 .780 98007+110.9545225s+23.0091755is2 +11.30110515 s 3+s4

It 115] has been shown that T a(s) in (33) is a good approximation

of the original standard model T (s) in (9).r

Substituting the hi, i = 1,...,6 in (31.6) including h 7 = 100 and

h8 = 0.1, the Miatrices IIt1] and 11121 in (5) are obtained next.

I
I

I
I
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00 0
C C

c 0 0 C 00 0 0 0 c C> 0 c 00

0 c o' cc C> 0 0 0 0

oo cc co 'Z r-r
( C 0' ON .r 1

CD CIA -r. r- CN

0 C o N -c C 0 '0 00 '0 .

C 0 C1 c cna
C11 C1 Cr _4 C c C 0 0 o cq

.r r- T7 CI Cn

'0 c D c I N Nz '0 -4 CN00 C4 l

'0 Nl 00 Nn m 11 C
Ln ' -. Ln N 0T-

C No N' r- C -4

0 ~ cc C or, tr' -17 0'00 0 0 0 L 1
UC N '0 cn NN C- N '

r- C14
CIA CY 1 -4 VI-)-

NN CIN

-40 N '4 f

C C 4 Cc CD 0- C C C4 C C4 cc 0~ 0'

C '0 C C C

0 C 0~ C 0 0 0Lr4cc CD c D



62

Substituting the unknown constants a i = 0,1 ,...,7, bi, i =

and jI I and [H.1 obtained above into (15) yields a set of equations in
1

terms of a. and b. as follows.
I I

Lhi = [Hjta]

-1

[i 2 I2  [H1  [a]

or [H 2 [b] = [H 1][a]

or expanding the above matrix equation yields

f (aib i ) = ao-b 0 = 0

f 2(ai,b i) = b o-0.6318422396(b -a 1 0

f 3(aib i) = a +0.30087727(a 2-b 2)-O.52380951b = 0

f4 (ai,b i) = bI+7.1203141b2+4.4528546(b 3-a3)-14.167729a 2  0

f5 (ai,bi) = a2-1.1565286a 3-0.45805621(a4 -b4)-0.42094152b 2

+ 0.4315751b 3 = 0

f6(ai,bi) = b2+1.259011b 3+l0.462223b 4+6.378098(b5-a5

- 0.24346000a 3-20.55667a 4 = 0

f 7 (a,,b)= a 3+23.189471a 4 +
2055.2089a 5 +637.8098(a6-b6

1 O).42094b 3-125.4695b 4-1045.7642b 5 = 0

f f8(ai,bI) b 3+l.301105b 4+23.009176b 5+1l0.95452b 6

+ 63.78098(b -a )-O.34346a 4-22.875617a 5-211.89899a = 0

I where i = 0,1,... ,7.
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Now, substituting the values of ai and b. in terms of xi ,1

1 i = 1,2,... ,7 from (32.4) yields a set of nonlinear equations shown be-

low. It is noticed that as a0 = b0 the equation f (ai,b) = a o-b = 0

jgives no information. The rest of the equations are

I fl (xl ... ,x7 ) = x2x7+0.6318422396[x 7 (x4 -xl)-3.98319992x2 x5
] = 0

(33.1)
f2 (xl.. ,x7 ) = x7 (8.22822291x 2+8.522553136x 4-6.939879587x 1

+ x 3-1)+x 2(1.582676549x6-13.17
807554x 5)

+ x6 (x4-x1 )-3.983199922(x2+x1 x5) 0 (33.2)

I f3(x I... ,x7) = x2 (-12.71361621x6-x5)+x7(13.5
8 355291Xl1

+ 1.820964317x2-26.29716913x4 )+10.79844539(x x 6+x7)

- 13.31248704(x 4x6+x 3x7 )+6.327224282(xI+x5)

I + 1.588477708x 6 (1-x3)+20.03527143(x2+x1x5) = 0

(33.3)

I f4 (xl,...x 7) = x7 (x2+668.467007ix 4 -281.4809
4x1 )+x6 (38

6 .9 86 067 3x2

+ 362.767005-456.258273x 3)-647.2403649(x4 x6+x3x7 )

- 57.53603068x2x5-548.5188427(x 2+x1x 5 )

+ 235.861385(x1 x 6+X7 )+235.2945185+590.509
6 27 5 (x1

+ x5 ) = 0 (33.4)

f 5s(xI ....,x7) 2357.408023(x1x6+x7)+x6 (159
8 .83993x 2+17096.15228

- 32881.95043x 3)+x7(4.16745091x2+1599.839
9 3 lx r x4)

- 472.6735322(x 4x6+x3x7)+24996.98242-939.0287936(x]

+ x5)-2765.323026(x2+xIx5 )-52.07771943x2x5 = 0

(33.5)
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fx .. x7) = x6 (-99.4209415x2 +11132.91981x 3-57256.87822)

+ x7 (x4 -100.4209415x1 )+411.4274907(x4 x6+x3x 7)

+ 67006.93001(x 1+x5 )+1234.567433(x2+xlx 5 )

+ 42.69011171x 2x5 + 
2 320 3.53455-39112.69694(xx 6

+ x7) = 0 (33.6)

f 7x .... x) = 
4 96. 854897(x 2 x6+x1 x7 )+198512.9704(x1 x 6+x7 )

+ 222 8495.695x 6-170.6497831(x 4x6+x3x 7 )

- 77618 .59617x3 x 6-3442861.087-395845.4335(x +x )

- 8390.812346(x 2+X1x5 )-62.08251489x2x 5 = 0 (33.7)

Equation (33) is a set of high order nonlinear simultaneous equations

which is very difficult to solve. However, with proper initial guesses

the Newton-Raphson [15] method can be applied to solve it. Therefore,

the problem lies in finding an appropriate set of initial guesses. In

this case, the following method is suggested for estimating che initial

guesses.

As mentioned earlier, the block diagram of the structure of the

desired fixed configuration control s,,stem is shown in Fig. 5-1. With-

out affecting the overall transfer function of the system, this struc-

ture can be modified into a form as shown in Fig. 5-2. The overall

transfer function of this structure is

T (s) (341)
1 2 (s G() (34

where
Gl1(S)G 2(s)G0 (S)

. T2(s) =,

2 l+G (s)G2(S)Go(S)
1 2

I

II
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Where G0 (s), the approximate transfer function of G0 (S), is

given in (31.5).

The purpose is to determine C (S) and G2 (s) such that the re-

sponse of T (s) becomes close to that of the standard model T (s) in

(9). Replacing the series compensator 1(S)G 2(s) in Fig. (5-2) by the

designed stabilization filter F.2 (s) in (30) the resulting transfer

function T (s) in (34.1) is equated to the standard model T r(s) in (9)

as follows.

T (s) force T (s)
1r

or T (s) = T (s)
2 C (S) r

2

or G(s)=

r

* (S1_S G1(s)G2 (s)G0 (S)or G2(s) = G(s) = TS ) [ ,
2 2 T s) +G(S)G(S)G(s)

1 2+0

1 Fs2 (s)Go (s)

r ( l+F Cs)G (s)
s2 0

I 789677630.6+4137269440s
T (s) [789677630.6+2171367017s

ir

+175816571.ls 2+425620.112
8s3

+205208030.9s 2+215915050.5s3

+154492.684s 4+29891.09151s5

6 7] (34.2)
+117.470784s +sI

L _. | . ..... ..... .. .. . ..... ............ ............. ... 2 . . .. ,, ..... ,, , ... 1
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Substituting T (s) in (9) into (34.2) and simplifying, the appropriate
r

transfer function G 2(s) of G2(s) is obtained.

* (s) 5.036619205×109+3.46495752x10 s+4.540060
393xl101s 2

S2(s) 10 10

5.036619205xlO9+3.008227329x10 s+4.613716606x101s
2

+7.840679235×10 9 s 3+4.363076841x109 s 4+1.763524302xlOSs5

+6.124169121l09 s 3+4.498497844x109 s 4+8.512494768x10 
7s5

+4.256201128i05 
s6

+9.985459768x105 s 6+9.698650697xlO3 s 7+49.1568119s 
8+0.243466s

9

(34.3)

A set of dominant quotients h. of G2 (s), given below, are de-

termined by expanding (34.3) into a continued fraction of the second

Cauer form

h =1I
I

h2 = -1.102755917

Ih = -0.1287948973

h = 5.593229805

h = 0.1338916858
5

h6  = .. (34.4)

h 1 8 = ..

Substituting the first five quotients hl,h 2 ,. .,h 5 into (13.5)

gives a second order approximate model G2(s) of the approximate parallel

filter G2 (s) in (34.3) as

I
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G s 0.994929057s 2+0.7394973923s 2+0.1058245527 (34.5)
s 2+0.643533679s+0.1058245527

G(s), the approximate model of G (s), is also an approximate model of

C,,(s) in (32.2).

The approximate model GC (s) of the series compensator G 1(s) in

Fig. 5.-1 can be obtained as follows

F F 2(s) 856.628596s 3 +21834.46821s 2+13787.1076s
G (s) = 4 3

1 G7 (s) 0.994929057s 4+4.0407227 45s3

+2252.284999 2(35.1)

+13237.10512s +9837.144919s+1407.678125

To obtain a set of dominant quotients Equation (35.1) is expanded into

a continued fraction of the second Cauer form. Some of the quotients

obtained are

11 0.625

h h2 = 1.845828612

h 3= 0.0839039052

h
4 ..

h= . (35.2)

The first three quotients h1,112 h h are substituted into (11.3),

which gives G 1 (s), an approximate model. of G1 (s) as well as of G (s)

in (32.1). G(s) obtained is
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**( 1.4106 28426s+0.2184671685

1 s+O.1365 4 19803

Comparing (32.2) with (34.5) and (32.1) with (35.2) we have a set of

I initial guesses to solve the set of high order nonlinear equations in

(33). Thus, the set of initial guesses is

1 *
x I = 0.643533679

* 2 = 0.1058245527

3 = 0.994929057
I * (36)

4 = 0.7394973923

x = 0.13o)419803

and x6 = 1.410628426

x 7 = 0.2184671685

Using these initial guesses the Newtcn-Raphson method 115) is

applied to solve the nonlinear equations in (33). It is found that the

Newton-Raphson method converges to the desired solutions, given below,

at the 14th iteration with the error tolerance of 10- 6 . The solutions

are

I
x, = 0.503850

Ix = 0.059928

x = 1.051503

x = 0.580016

I
i
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x5 = 4.831826

x6 = 1.885577

x7 = 6.744450

Therefore, the desired compensators Gl(s) and G2 (s) are

Gl(S ) =1.885577s+6.744450 = 1.
885577(s+3.57688) (37.1)

G s+4.831826 s+4.831826

and

2
1.051503s +0.580016s+0.059928 1.051503(s+0.13769)(s+0.41391)G (s)=

s2 +0.503850s+0.05992 8  (s+0.19244)(s+0.311405)

(37.2)

The unit step response curves of the existing stabilized system

T e(s) in (1.5) and the redesigned system using the compensators G (S)

and G2(s) in (37), and G0 (s) in (1.3), are compared in Fig. 4. The re-

suilt is satisfactory.

It is interesting to note that G (s) and G2(s) in Eq. (37) are

positive real functions with positive real poles and zeros, which makes

it possible to realize the compensators G2(s) and G2(s) using passive

elements, whereas, the existing stabilization filter stab(s) is a non-

positive real function and it is realized by using active elements.

I
S I ..



CHAPTER VI

I CONCLUSION

jThe existing stabilized pitch control system has been redesign-

ed by redesigning the existing stabilization filter. Two computer-

Ioriented methods, a dominant data matching method and an algebraic
method, have been presented to redesign the existing stabilization

filter. Thus, various low-order stabilization filters have been ob-

tained. As a result, the implementation cost of the missile system is

reduced.

The proposed dominant-data matching method can be used for

various purposes. For example, when the specifications or the design

goals of a control system are given, the proposed method can be used

to obtain a standard transfer function, which significantly simplifies

the design process in the frequency domain. When a high-order transfer

function is given, various low-order models can be obtained with the

help of the dominant-data matching method. The method can be used in

the problems of identification as well. The great advantage of this

method is that the transfer functions obtained by using this method have

the exact assigned frequency-domain specifications.

The algebraic method has been applied to achieve the advantages

of the feedback control system so that the performances of the redesign-

ed pitch control systenm can be gre atly improved.

The application of the dominant-data matching method always

gives rise to a set of nonlinear equations which can be solved if a set

of proper initial guesses is known. In this connection, various methods

I70
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have been discussed for estimating a set of proper initial guesses.

Finally, it is important to mention that the proposed computer-

afded design methods can be used to design general control systems.

I
I
I
!
I
I
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I
A matrix in the block Schwarz form and the stability of
matrix polynomials

LEANG-SAN SHIEHt and SHAILENDRA SACHETIt

i\ matrix which consists of block elements is established in the block Schwarz form
via a linear transformation. The transformation matrix constructed by Chen and
Chu is modified anti extended for transforming the block companion form to tie

3 block Schwarz form. A sufficient condition is derived for determining the stability
of a multivariable system whose characteristics are expressed by a matrix polynomial.
The matrix polynomial may or may not be symmetric.

1. Introduction
The properties and applications of the Schwarz matrix, which has scalar

elements, has been investigated by various authors (Schwarz 1956, Parks 1963,
Wall 1948, Anderson et al. 1976, Barnett and Storey 1970), and the transforma-
tion matrix, which relates various matrix forms and the Schwarz form, has
also been established by numerous authors (Butchart 1965, Chen and Chu
1966, 1967, Barnet and Storey 1967, Loo 1968, Power 1969, Datta 1974,
Sarma et al. 1968). Chen and Chu (1966, 1967) constructed a transformation
matrix which links the Schwarz form and the companion form by using the
Routh array elements (Routh 1877). However, all existing methods (Schwarz
1956, Parks 1963, Wall 1948, Anderson et al. 1976, Barnett and Storey 1967,
1970, Butchart 1965, Chen and Chu 1966, 1967, Loo 1968, Power 1969, Datta
1974, Sarma et al. 1968) deal only with the system matrix which has scalar
elements but not block elements. In this paper a matrix which consists of
block elements is constructed in the block Schwarz form and a linear transforma-
tion matrix which consists of block elements is established to transform the
matrix in the block companion form (Shieh 1975) (the block phase variable
form) to the block Schwarz form. A sufficient condition is then derived to
determine the stability of a multivariable system whose characteristics are
described by a matrix polynomial (Shich 1975, Shieh et al. 1976). The matrix
polynomial may or may not be symmetric.

2. A transformation for a matrix in the Schwarz block form
Consider a set of linear, time-invariant, ordinary differential equations in

the differential matrix polynomial form

SBjD-'X(t)=[0], B,+,=I (1 a)

Di-'X(0)=[a_], i = 1, 2, .. , n (I b)

where X(1) is the r-dimensional state of the system. The B i are n? x m real
constant matrices and the differential operator D is D=d/dt. The matrix I

Received 20 October 1976.
t Department of Electrical Engineering, University of Houston, Houston, Texas

77004, U.S.A.
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246 L. S. Shieh and S. Sacheli

is an identity matrix and [0] is a null matrix. The corresponding state equa-
tion of eqn. (1) in the block companion form is

[ ] = [B][x] (2 a)

[x()] = [a] (2 b)

where

0 1 0 0 0

0 0 1 0 0
[B] =

0 0 0 0 1

B -B4 -B2 -B3 -B4 -B n

The dimensions of the matrix [B], each block element in the [B], and the state
vector [x] are (n x m) x (n x m), m x m, and (n x m) x 1, respectively. The [B]
is the matrix in the block companion form or the block phase variable form
(Shieh 1975).

Equation (2) can be transformed into the block Schwarz form by using the
following linear transformation [K,] :

[y] = [K,][x] (3)

and

[f] = [K1][B][K1 ]-'[y]

= [A ][y] (4)

where

1 0 0 0 0 0 00

C_- Cn1,s 2 1 0 0 0 0 0 0

0 0 1 0 0 0 00

Cn-,,x- Cn-3,1 CI,-1 C, 0 1 0 0 0 0
[K 1 >=

0 0 C51-1 C52 0 1 0 0 0

C.-5.1-' C.-5,4 C41-
1 C43 0 C41-1 C42 0 1 0 0

0 0 C31-' C33  0 C31- C32 0 1 0

C21-1 C24 0 C21-' C23 0 C21-1 C12 0 1-
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and

0 1 0 0 0 0

-A, 0 1 0 0 0

[A]= 0 -A 2  0 1 0 0

0 0 0 0 0 1

0 0 0 0 -A_ -Aj

The dimension of each block element in the matrix [A] and the matrix [KI] is
m x m. The [A] is the matrix in the block Schwarz form. The linear trans-
formation matrix [K1 ], which relates the coordinates [x] and [y] in eqns. (2)
and (4), is constructed by following the approach proposed by Chen and Chu
(1966). The block elements Ci,, having dimension m x m in eqn. (3) can be
obtained from the following matrix Routh algorithm and the matrix Routh
array (Shieh and Gaudiano 1974, Shieh et al. 1976).

Before performing the matrix Routh array we define I = (n/2) + 1 if n is
an even number; otherwise, I = n + 1/2, and the double subscripted block
elements C,, and C2 ,J become

CI, j =Bn+3 _2 , j= 1,2,3 . ')

2, = B.+2-2 , j = 1, 2J ..... , (5 a)

The B i are the m x m real constant matrices shown in e In. (1). The matrix
Routh array and the matrix Routh algorithm are

H/ = lIC21 C1 C12 C13 C14
H 2 = C21C31-1 /C21 C22 023 024

H3 = C31C41-1 0 C31 C32 C33

H4 = C 41C51- £C41 C42 C43
-1 C51 C52  (5 b)H5 = C51C, - CG C62

H6 =C 61C71-l Z ~C71 0

ynCn, Cn _ -Cn+l,

where

C, 1=C 2 ,j+-Hj-2 C _1 1,J j= 1,2,..., i=3, 4,...

Hi=Ci, 0 (CiI1)-1 , i-1 ... ,n

det (C(+I,1) # 0

The matrices H i in eqn. (5 b) are called the matrix quotients. Performing a
new linear transformation

[z] = [K2 1](y] (6)

2F2
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ol eqn. (4) yields an alternative matrix [F] in the block Schwarz form as
follows

[i] = [K,][A ][K 2]-'1z]

= [F][z] (7 a)

where

-C,1 0 0 0

0 Cn. 0 ) 10

[K21= (7 b)
0 0 C21 0

0 0 0 Cl

and

0 H-I_-' 0 0 0 0 0

- Hn-' 0 H._ 2-
1  0 0 0 0

0 -Hn 1 -1 0 0 0 0 0

[F ] ---------------------.... ----------------------------------------... (7 c )

0 0 0 0 H3
- 1  0 0

0 0 0 H-41 0 H2- 1 0

0 0 0 0 H, -  0 H 1
-

o 0 0 0 0 -H 2 -1  -HI - 1

The [K 1 ] is a block diagonal matrix having the diagonal block elements ob-
tained from the block elements Ci, i = 1, 2, ... , which are in the first column
of the matrix Routh array in eqn. (5 b), while the matrix [F] is the required
matrix in the block Schwarz form which can be constructed by using the matrix
quotients H,, i= 1, 2, ... , obtained from the same matrix Routh array. A
similar matrix (Schwarz and Friedland 1965), which was formulated in the
Schwarz form but not in the block Schwarz form, was used to prove the
stability of a linear system by Parks (1963).

The linear transformation matrix [K], which links the coordinates [x] in the
block companion form and the coordinates [z] in the block Schwarz form, is

[z] = [K 2][KI][xj

=[K][x] (8 a)
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where

" I, n-0l 0 0 0 0 0

n 2'n-1.2 0 U 0 O 0

0 0 0 0 0 0

.K= H 3_a( ,3 ( HI('t 0 0 0 0 (81)

0 H4C5 0 0 0

, 6('n -5.4 0 13('4 0 ( 3(4! 0 

00 H,,: o 22 2('31  0

L 0 HI( 23  0 HC'22  1 21_

The matrix [K] is a block triangular matrix. All the block elements in eqn.
(8 b) can be directly obtained from the matrix Routh array in eqn. (5 b). For
example, the block elements in the main diagonal, which are shown by the first
dotted diagonal line, are obtained by the respective products of the matrix
quotients Hi and block elements C. in the first column of the matrix Routh
array. The block elements of the first lower diagonal in the [K] are null
matrices, and the block elements of the second lower diagonal in the [K], which
are shown by the second dotted diagonal line, are determined by the respective
products of the matrix quotients Hi and the block elements Cj, in the second
column of the same matrix Routh array, etc. The sizes of the matrices [F]
and [K] are determined by the degree of the matrix polynomial and the order
of the matrix coefficients in eqn. (1). For instance, when the degree of a
matrix polynomial is n = 4 and the dimension of each matrix coefficient is m,
the corresponding 4m x 4m square matrices [F] and [K] are taken from the
right-hand side lower corner of the matrices [F] and [K] in eqns. (7 c) and (8 b).

3. A sufficient condition for the stability of a matrix polynomial
In a single variable system the Routh criterion (Routh 1877) is applied to

the characteristic polynomial of a linear system for determining the absolute
stability. In other words, the scalar polynomial in the form of eqn. (1) is
arranged in the Routh array in eqn. (5 b), then the Routh criterion is applied.
If the scalars Ci,1 in the first column of the Routh array have no sign changes or
all elements Ci,,, i = l, 2, ... , are positive real, then the system is asymptotically
stable. Since the Routh algorithm and the Routh array have been successfully
extended to the matrix Routh algorithm and the matrix Routh array (Shieh
and Gaudiano 1974, Shieh et al. 1976), also a positive definite matrix (Bellman
1970) is commonly considered as a natural generalization of a positive number,
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it is interesting to ask whether or not a multivariable system whose charac-
teristic matrix polynomial shown in eqn. (1) is asymptotically stable if the
block elements Ci,1, i = 1, 2, ... , in the first column of the matrix Routh array
in eqn. (5 b) are positive definite matrices. In other words, can we directly
extend the Routh criterion (Routh 1877) to the matrix Routh criterion ?
This paper will partially answer this question.

Because the stability of a system is invariant under the transpose operation
of the system matrix, we consider the following system

[][F T ][q]
=[G][q] (9)

The matrix [F] in eqn. (9) is defined in eqn. (7) and the transpose of the matrix
[F] is defined as [G]. If the matrix quotients H i in eqn. (5 b) are positive-
definite symmetric and real matrices, then we can consider the following
quadratic equation (Kalman and Bertram 1960, Barnett 1971):

v=[qT ][P][q] (10 a)
wherewhre-H n  0 0 0

S0 H,_, 0 0

[P] = j
0 0 H 2  0

0 0 0 H,

The derivative function -b is

1= [qT][PG + GTP][q]

-[q T ][Q][q] (10 b)
where

0 -10 0 0 000-00

1 0 -I 0 0 0 0 0 -0 0

[P][G]= 0 I 0 0 0 [Q]= 0 0 0 0 0

0 0 0 0 -I 0 0 0 0 0

0 0 0 .1 -i 0 0 0 0 21

The v function in eqn. (10 a) is in a positive-definite quadratic form and the 1D
function in eqn. (10 b) is in a negative-semidefinite form. Therefore the system
in eqn. (9) or in eqn. (1) is asymptotically stable. From the above derivation
we obtain the sufficient condition that a multivariable system, whose charac-
teristic matrix polynomial has the form shown in eqn. (1), is asymptotically
stable if the matrix quotients Hi in eqn. (5 b) are real symmetric positive-
definite matrices. From eqns. (2 a) and (7 c) it can be observed that the
B (fH-1 C,,) must be symmetric and positive-definite for the sufficient
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condition to apply. It is also noted that this sufficient condition deals only
with H i and not Ci~j. This implies that, if a system is asymptotically stable,
the block elements Ci.1 , i = 1, 2, ... , in the first column of the matrix Routh
array and the Bi in eqn. (1) are not necessarily symmetric and positive-
definite matrices. In other words, a positive-definite matrix is not necessarily
a natural generalization of a positive number, and the necessary and sufficient
condition of the Routh criterion (Routh 1877) cannot be completely extended
to the matrix Routh criterion for general cases.

On the other hand, the necessary conditions for asymptotic stability due
to the Routh criterion (Routh 1877) can be partially extended to the ease of
matrix polynomials. The necessary conditions are described as follows:

(i) The determinant of B 1 in eqn. (1) is non-zero.
(ii) The determinants of B., 1 and B1 in eqn. (1) have the same sign if the

determinant of B.,,( = C11 ) is non-zero.

These conditions can be easily verified from the basic laws of algebra. Thus,
in this paper, we have partially extended the Routh criterion (Routh 1877) to
the matrix Routh criterion for determining the asymptotic stability of a class
of matrix polynomials.

Sometimes in applying the approach proposed in this paper difficulties may
be encountered in calculating the matrix quotients H i in eqn. (5 b). This
implies that if any C,, in eqn. (5 b) is singular, then the Hi cannot be obtained
to determine the stability of a matrix polynomial. This limitation can be
remedied by multiplying the original matrix polynomial, defined as T(s), by a
polynomial matrix defined as E(s), where the roots of the determinant E(s) have
negative real parts. Then we apply the matrix Routh procedure to the
modified matrix polynomial T(s)E(s) or E(s)T(8). It is noted that the stability
of the original system is reserved because the stability of a system is invariant
under this modification. An alternative way is to perform transformation
s--+l/s to the T(s) and then applying the matrix Routh procedure to the
modified matrix polynomial defined as T,(s)(= T(s)j ,j,). In other words,
the C1,j and C2 ,J in eqn. (5 a) are rewritten as follows

Ci, tfB~j_, for j= 1,2,3,...

C2,J = B 2J for j = 1, 2, 3, ...
Again, the stability of the original system is invariant to this modification and
the numerically ill-conditioned problem (i.e. C,,, is singular) can be solved.
Examples are established in this paper to show the procedure.

4. fllustrative examples
4.1. Example I

Consider the following differential matrix polynomial

n+1-5

BjD'-'X(t) = [0] (11)
i-1

or
(4) (3)

B5X(t) + BX(t) + B31(t) + B2X(t) + B1X(t)
(4) (3)

= C11X(t) + C21XQt) + C12X (t) + C22X(t) + C13X(t) -- [0]
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where

C11 =B, 1 0),

( 33 65 -_ -0"6

C21=B4=2 ) 22=B2= -43 1 -946)

A matrix in the block Schwarz form and the linear transformation matrix which
transforms the block companion form to the block Schwarz form are required
to be constructed, and the stability of the system is of interest.

Arranging the matrices B, in eqn. (11) in the matrix Routh array in eqn.
(5 b) results in the following

0 133 65/

HC fi(C13 -(

- 1 2-0-1 -0.6

1 1 2 = -6"05 -16.3/

H2( (
C3C1=( -0.6) (12)

-0")502=

/1-125 0-25) 
01 --

H3 = i

405 75

1
\c -10"5 -)

-0"1 -0.6

The matrix quotients Hj,i=1, 2, ..., 4, in eqn. (12) are positive-definite
symmetric real matrices; therefore the system is asymptotically stable. It is
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noted that the block elements Ciol, i = 1, ... , 5 in the first column of the matrix
Routh array in eqn. (12) are not all positive-definite symmetric real matrices.
The state equation in the block companion form is

[i] = [B][x] (13)

where

1 0 0 0)

0 0 0)( 0 )

and the state equation in the block Schwarz form is

where

00

( : ~ )(05 22)0 :)(: :)
0 0 0 0 - 1 0 0)

[F] =(1 2:) (0- 06) (0 7 ) ( -

0. ~ (1 0 0 63 -3 6 1 -

It is interesting to note that the characteristic equation

181-B1 II-FI =o

whr
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and the roots which have negative real parts are, respectively:

s8 + 387 + 28.9506 + 7 9.3 585 + 20684 + 458.875s

+ 221.0582+ 48.48+ 4 =0 (14b)

and

- 0.0239155 + j4.27199

- 0.0784809 + j2.95637

-0.189163 +j0.165319 (14c)

-0.177194

-2.23969

The linear transformation matrix between the [x] and [z] coordinates is

[z] = [K][x] (15)

where

(-1 -2 0 0 )(00)(0 )

40 0

[K] =

42-1 -926) 00 ) ( 21) ( 0 )
04 

. 0 3 -0 - 8 -) ( 0 0) 1 0 

4.2. Example 2

Consider the following transfer-function matrix [T(8)] which is expressed
by the product of two relatively prime polynomial matrices [N(s)] and [D(8)] - '
or

[T(s)] = [N(s)][D(8)]- (16)

The characteristic matrix polynomial [D(8)] is

[D(8)] = B8s8 + B 4s
8 + B3s' + Bs + B,

= C118s + C20's + C1 2' + C228 + C13
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where

C11 =B5=( 1 ), C12= B3=(3 ), C13 = B,=(2 0)

It is interesting to determine the stability of this system. Following eqn.
(5 b) yields the matrix Routh array as follows:

C0. 7") C32( 0 )

H ,! 1 -4 - 0-4 6 )

H2 :

observed that the block element C 3 2 in the first column of the matrix Routh

array is not symmetric.
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4.3. Example 3
('onsider the stability and the structure of the matrix Routh array of the

followiug matrix polynomial T(s) are of interest

T(s) = B,83 + Ba 2 + B + B,

= C11' s 3 + C2 ,1' 
82 + C12' 8 + C22'= 0 (18 a)

where

C21'=B 3=(1 1), C 2 2 'B 1 (l 0)

The determinant of B 4(=C 11')=-1 and that of B1(=C 22')=I. From the
derived necessary conditions for asymptotic stability we conclude that the
system is unstable because the determinants of B 4 and B1 have different sign.
Further study of the stability is not necessary. It might be interesting to see
the corresponding characteristic equation of this system which can be written
as follows

det T(s)= -s6-20 +3s2+2s+ 1 =0 (18 b)

Because the first and the last coefficients, which are the determinants of B4
and B1 respectively, have different sign, therefore the system is unstable.
In order to study the structure of the matrix Routh array of this unstable
system and the numerically ill-conditioned problem (i.e. C,, is singular) we
apply the matrix Routh algorithm in eqn. (5) and use the Ci ' in eqn. (18 a).
The matrix Routh array cannot be obtained because C21' is singular. This is a
numerically ill-conditioned case. Since the stability is invariant between the
original system T(s) and the modified system T,(s)(=T(s)1,11.), we can
construct the matrix Routh array for the Ti(s). The Ti(s) can be written as
follows

T(s) = T(s) 1, = C22' s + C12' s2 + C21' S + Cl'

=C183 +C2 s 2 +CI2S+C 22 =0 (18 C)

where

C21( 0), C22=(O 1)
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The corresponding matrix Routh array is

u1=c~c2~1=i ~K ,=(I 0) c22=J0  1)

(18 d)H2 C 2 iC1= ~C3=~0

Although the C12 is singular, we can determine all the He's. It is observed~that the H and 112 are symmetric and positive definite matrices, while the~H
3 is a symmetric and non-positive definite matrix.An alternative method can be described as follows. Let us construct a newmatrix polynomial T 2(s) by multiplying a matrix polynomial E(s) (s + 1 )1 tothe T(s) and then defining the matri% coefficients as C1,' and C2,'

T2(s)= (+ 1 )T(s) = 11 ' 4 + C21 ' s + C12 82 +022' s +0C' =0 (1 8 e)

where

= (0 1 012< 1 3<

owe wish to maitaint a r, the consistency of I we ma It i o s
* in the T 2(s) and define new matrix coefficients as C 1, and C2,,i:

T2 '(s) = Cs' + C2s' + C,1 2 + C22S + C 1 = 0 (18e)
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where

C21( ), C22=(0 2)
The corresponding matrix Routh array is

CIL ( 1K 021 ) C12=(1 2)9 3(

17 321: 
lg

32 17

HI ~ = + 6

No singular matrix appears in the matrix Routh array and all the/-He's can be
obtained. It is observed that only the //3 is a symmetric but non-positive
definite matrix.

From the above illustrations we conclude that if any ill-conditioned problem
occurs in the calculation, then the above methods can be applied to solve the
problem.

5. Conclusion
The transformation matrix established by Chen and Chu (1966) for trans-

forming the companion form to the Schwarz form has been modified and
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extended to transform the companion block form to the block Schwarz form.
The new matrix in the block Schwarz form has been constructed by using the
matrix quotients obtained from the matrix Routh array which is constructed
from the characteristic matrix polynomial. When the matrix quotients in the
matrix Routh array are positive-definite symnietric real matrices, the suffi-

cient condition derived in this paper shows that the multivariable system is
asymptotically stable. Also, a set of necessary conditions has been derived

for the asymptotic stability. Thus, we have partially extended the Routh
criterion (Routh 1877) to the matrix Routh criterion for a class of matrix

polynomials. The direct extension of the necessary and sufficient condition
of the Routh criterion (Routh 1877) to a general matrix polynomials need

further studies.
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TRANSFER FUNCTION FITTING FROM
EXPERIMENTAL FREQUENCY-RESPONSE DATA
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Abstract-A simple method is proposed that will fit the coefficients of a transfer function from the real and
imaginary parts of experimental frequency-response data. An approximate logarithmic amplitude-frequency
plot is used to formulate an irrational transfer function which then estimates the interpolation data and the
degree of the final transfer function. The present method is applicable to either minimum or non-minimum
phase system identification.

1. INTRODUCTION

The problem of finding unknown coefficients of a transfer function as a ratio of two frequency-
dependent polynomials has been investigated by Levy[l], Kardashov and Karniushin[2], and
Sanathanan and Koerner[31. In general, they would evaluate the polynomial coefficients by
minimizing the weighted sum of squares of the errors in magnitude at arbitrary experimental
points. Ausman [4] proposed a graphical method to rapidly estimate the coefficients of a transfer
function; however, that procedure is only applicable for a minimum phase system.

In this paper a simple method is presented to approximate the coefficients of a transfer
function for minimum and non-minimum phase systems. The generalized Bode plot is used to
formulate an irrational transfer function from which we obtain interpolation frequency-
response data that will allow us to estimate the polynomial coefficients without minimizing the
weighted sum of squares of the errors in magnitude at arbitrary points.

2. THE DERIVATION

Consider the transfer function

G(s) + P s + p2s
2  + prs

m

I + qns + q2S2+ "  + "qns"(I

where pi and qj are unknown coefficients to be determined. Substituting s = j 1k we have

G(jwk) = (Po _ p206k
2 + p 4w. 4 p 6 A;6  .+ +j(p osk -p3 k3 + po,& 5 -poJk +. '2

( I - q20 2 + q40k' - q60)k +. .)+ j(qok - q 3 k' + qik' - qWI5 +" .) (2)

- R(sk) + jl(wk)

- R5 +1j4

where R and Ik are the real and imaginary parts of the transfer function at the experimental
frequencies wk. After we multiply both sides of eqn (2) by the common denominator, we
separate the real and imaginary parts and then equate the respective real and imaginary parts.
We now have

PO -P 2Wk
2 + P4t 4 - p6o + • • + q Itwk + q2Rk~k

2 - q3lk
3 -q4 Rk

4 +.... Rk (3)

and

PIWk - P310A3 + pw+.... qRwtk + q2lktW2 + q3Re 5
3 
- q41W

4 
+ .... I. (4)

205
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Combining eqns (3) and (4) results in

PO+PIDk -P2e0)k - P30k
3 

+ P,)k
4 + p -.... q(Rk - Ik)ok + q.(RA + Ik)ek2 + q 3(R* - I,)wk'

-q4(Rk + Il),Ak.. Rk + 4  (5)

The complete form of eqn (5) is

I tol - eo2- eol3eol tol . .- Tleol $seoj T~t
3 

_- $ &J
4 
- Tjeot

5  
SIW/16 .. 0 R" +o -,R .11"

I W2 - o2' _ W1 e .. _ T2eo). S2(02' T2to2 - S2e24 - T 2oW2 s2 ,W,6 
... P1 I R 2 + 12

tom . & .. .Ia,,,.-,. eo £L mo 4 0m'". . _Tmeomsmao"Tma, 3 
- smeom4 - Tm 5sm,.e ... pn = Rm +1,,,

l,1 - ,, - a,? o,. .. - T 2T,o - _ T.". - s.l ,,q J L R .+ q . .

(6)

where

sk = Rk + Ik; k = 1, 2....

Tk=Rk- I*; k=I,2...

x=m+n+l

By substituting the selected x sets of frequency response data into eqn (6), we can solve for the
required unknown coefficients pi and q.

3. ESTIMATION OF THE CORNER FREQUENCY AND THE ORDER
Bode[5) uses piecewise linear segments with integer slopes to approximate the logarithmic

amplitude-frequency characteristic of a function. Ausman[41 applies this characteristic to
evaluate the coefficients of a transfer function. Polonnikov[6,7] generalizes Bode's approach to
estimate the phase-frequency characteristic. We shall now obtain a logarithmic amplitude-
frequency characteristic by piecewise linear segments with accurate integer or fractional slopes.
The approximate transfer function is

k(I + -s y " s1 M's),I+ s ... (I+ Ts
\ a) +\ a2) \ a)!

where a and b, are corner frequencies, and where mr and nj may be integer or fractional
values. In general, eqn (7) is an irrational transfer function. Compared to an approximation
made by other methods[4, 5], this present analysis is much better because the slopes may be
precise fractional values. However, the worst errors caused by piecewise segment ap-
proximation occur at the corner frequencies a. and b1 ; therefore, these corner frequencies
provide the most important information of the frequency-response curve. If the interpolation
data in eqn (6) include these important corner frequencies, a good transfer-function fitting is
expected. In this paper these corner frequency-response data are chosen as main interpolation
points for determining the unknown coefficients in eqn (6). The difference of the order of two
polynomials in eqn (1) can be estimated from eqn (7). In other words

in m ." n1- rn. (8)
X-|

Based on eqn (8), the numbers of the unknown coefficients and the interpolation points may be
estimated.
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4. ILLUSTRATIVE EXAMPLES
Example 1. Consider Levy's non-minimum phase example. The frequency-response data

generated fromn the transfer function in eqn (9) is shown in Table I and the tog-amplitude plot
versus log-frequency is shown in Fig. 1.

T~s) (9)

The irrational transfer function approximated from the generalized Bode plot is

where the corner frequencies are

'f = 3 .5, (03 = 01' 10
W,2=(06=2 , 04 = (o I = 40

Given data Identified results

k 0 1 IT(Iua)I Z'1QwD Rx 1k IG(jakfl /Giuo

1 0.1 1.0064 -6.45 1.0000 -01130 1.0013 -6.26 0.9953 -0.1092
2 0.,2 20239 -12.41 1.0000 -0.2200 1.0160 -12.41 0.9923 -0.2183
3 0.5 1.1194 -29.43 0.975 -0.5500 1.1142 -29.34 0.9713 -0.5459
4 0.7 1.2393 -39.01 0.9630 -0.7800 1.2171 -38.91 0.9472 -0.7644
5 1.0 1.4399 -51.06 0.9050 -1.1200 1.4125 -50.66 0.8955 -1.0924
6 2.0 2.2772 -75.04 0.5880 -2.2000 2.2631 -75.15 0.579 -2.1875
7 4.0 4.4375 -102.0 -0.925 -4.3400 4.3954 -1201.50 -0.877 -4.3071
8 7.0 8A1751 -135.9 -5.870 -5.6900 %.%864 -136.08 -5.826 -5.608
9 10.0 10.05 -174.0 -10.00 -1.1050 9.9115 -174.67 -9.869 -0.9206

10 20.0 5.5541 -233.4 -3.310 4.460 5.4612 -233.4 -3.245 4.392
1 1 40.0 2.5451 -253.5 -0.7240 2.4400 2.5363 -253.5 -0.714 2.4338
12 70.0 1.4479 -261.0 -0.2270 1.4300 1.4205 -261.0 -0.225 1.4026
13 100 0.9994 -263.5 -0.1130 0.9930 1 0.9892 -263.6 -0.109 0.9832

20 log,.IFUj.). dB
20 logisIGUtj. dO

0.01 0.1 01 1.0 2.0 10. 40. 100.
30

Slopes at different parts .t response curve:

21.9 - , 2 1 0.54 -
20

21.9-6.5

82
X. 8 - =19 11 h original function

10 2D logj 12 r- -_

20 . tog, The identified tunction x.

Slope Of each segment:
m, - , -0.54 n, -I- 1-2.25

m:X - x3= 0 .15

second

The approximate function: T~s) -(t,

The identified function: O(i)- O.9N-O.931402#
1 0.100531 + 0,0101172s'

Fig. 1. Bode plot shows mamnitude/frequency response and piecewise segment approximations of F(s)
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The order of eqn (I) may be estimated from eqn (10), or

m -0.54+0.57+0.15-- I

n 2.25 2

n - m-.

Four frequency-response data (a,1, W2, W13, w4) are required in eqn (6) to fit the four unknown
coefficients po, p', q, and q2. The identified transfer function is

0.99628 - 0.991402sI + 0. 10053s + 0.0 10072s (II)

The corresponding frequency-response data of eqn (11) and that of eqn (9) are compared in
Table I. The results are very satisfactory.

Example 2. A set of frequency-response data generated by the following transfer function
is shown in Table 2 and the log-amplitude versus log-frequency plot is shown in Fig. 2.

Table 2.

Given data Identified results

k i, T(i.DX /T(L) R& 4 &Gj.) i~ak (

i o.1 .0o2 -0.28 .Oo2 -0.0048 1.0002 -0.28 i.0002 -o.O8
2 0.4 1.0029 -1.10 1.0027 -0.0193 1.0029 -1.10 1.0028 -0.0193
3 0.8 1.0117 -2.13 1.0110 -0.0375 1.0124 -2.18 1.0116 -0.0385
4 2.0 1.1113 -5.68 1.1058 -0.1101 1.1113 -5.69 1.1058 -0.1101
5 2.2 1.1470 -6.61 1.1394 -0.1321 1.1470 -6.62 1.1394 -0.1322
6 3.6 1.4936 -33.8 1.2418 -0.8299 1.4935 -33.8 1.2416 -0.8300
7 5.4 0.8425 -57.8 0.4485 -0.7132 0.8424 -57.8 0.4484 -0.7132
8 8.0 0.6123 -59.1 0.3147 -0.5253 0.6123 -59.1 0.3147 -0.5252
9 16 0.3730 -69.5 0.1309 -0.3493 0.3730 -69.S 0.1309 -0.3493

10 20 0.3091 -72.9 0.0906 -0.2955 0.3091 -72.9 0.09M3 -0.2955
II 100 0.0662 -86.3 0.0042 -0.0661 0.0662 -86.3 0.0042 -0.0661
12 110 0.0602 -86.7 0.0035 -0.0601 0.0602 -86.7 0.0035 -0.0601

20 too(ju.), dB

0.01 0.1 1.0 2.2 36 5.4 10. 16. 100.

0. ___--____"_,________ radians
Slopes at different pans of response curve: Slope of each segment second

-2.1 - 0.8-0 -.0 A_ M, = x, =0.0 n,=,,-x,:=242

ax-, 0.72 x, 1W.02 n.= 14- M.' = 004

,to 2 01__
I, m

4S2.l~ radiuns

20 og 'A second

-15~0)( a.-2.,) -
-3 .0 The approaimatetfuncton* t(e) - 2.2)"'( 5."),

-1.0 .L

The identified function s- 1 000029 - 0 2O64U -0 066s'
10 02S424 -0017791 Oils"

-23.s
-25 .

Fis. 2. Dod. pWo shows mu, hudereueny m ad Piecewise u ,eme, s oximm, of F(s)-
(6.6378s" + 22.9999s + I I I.2774)/('+ 927s+28.3706s + It 1.27974).
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T.s) = 6.6378918s 2 + 22.999878s + 111.27974
s3 +9.882741s 5 +2.37056s + 111.27974" (2)

The irrational transfer function approximated from the generalized Bode plot is

(s oeAJ 
s .41

T(s) ,. "' + oT.4 (13)( - s I + 0 I 29 Va

The comer frequencies are

o1 = 0.8, W3 =0i 6 = 3.6, ws=wD= 16

w2 &i; 2.2, w4 =0' 5.4, 06 = 0112 100. (14)

The order of Eqn (1) is estimated as follows:

m -0.09+ 0.63 + 1.02=2

n 2.42 + 0.28 + 0.04- 3

n-m --1.

At least six unknown coefficients are required to be identified. By substituting the corner
frequencies into eqn (6), we have the identified transfer function

1.000029 + 0.206648s + 0.05966s 2
G(s) = I + 0.254924s + 0.088779s2 + 0.008985s 3"  (I5)

The comparison of the frequency-response data of eqns (12) and (15) is shown in Table 2. These
results are also satisfactory.

5. CONCLUSION
A simple method has been presented for fitting a transfer function from experimental

frequency-response data. A logarithmic amplitude-frequency curve is first plotted from the
available frequency-response data, then it is smoothed and approximated by piecewise seg-
ments with integer or fractional slopes. As a result, the most important interpolation data and
the order of the transfer function may be obtained from the irrational transfer function. When
the slope at two consecutive low frequencies, w, and 02, is

x(slope) = IT(O i)ldk - 1TQj 2)6b

20 log I2

(In other words there exists x poles at the origin.), then the available frequency-response data
should be multiplied by (jo) so that eqn (6) may be applied. The method presented in this
paper is useful for digital computation and provides an additional tool for system identification.

A computer program, based on the approach discussed, has been written in the appendix.
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APPENDIX
This program is used to fit a transfer function using frequency-response data. The details to prepare the input cards can

be summarized as follows:
The first data card:

NDT-number of available frequency-response data
NP-number of different transfer function structures to be identified.

The second data card:
XK., j = I to NDT-a vector of the frequency values at which there is available data

The third data card:
XR,, j = I to NDT-a vector of the values of the real parts of the available data at XW.

The fourth data card:
Xj, j = I to NDT-a vector of the values of the imaginary parts of the available data at XW.

The fifth data card:
m-The number of the unknown constants in the numerator polynomial of the transfer function to be identified.
n-The number of the unknown constants in the denominator polynomial of the transfer function to be identified.

The sixth data card:
NA, j = I to NM-A subscript number is assigned to each set of frequency-response data. ND is the vector of those

subscript numbers which point to the frequency-response data set to be used to identify the
transfer function. NM = n + rn.

The numerical example in Example I is used to illustrate the procedure. For the given system, 13 (i.e. NDT = 13)
frequency-response data are available in Table 1. Various combinations of the structures of the numerator and
denominator polynomials may result in various kinds of transfer functions. If we are interested in only one (i.e. NP = I)
structure of the transfer function, then

T(s) = +qs+q2s (16)

The data on the first data card are NDT = 13 and NP = I. The values of the frequencies, real parts, and imaginary parts
of the available data are given in Table I. Therefore, the data on the subsequent input cards are

XWj =0.1. XW; = 0.2 .. XW,3= 100
XRI = 1.0000, XR2 1.0000 XR 1 = -0.1130
Xl, - -0.1130. X12 =-0.2200,.... Xl,3 = 0.9930

The data on the next card is the number of the unknowns in the numerator and denominator polynomials in eqn (16):

m=2 and n=2.

The corner frequencies (the most important data) occur at XW, = 0.5, XW 6 = 2, XW, = 10, and XW,, = 40; therefore,
the values of the selected subscript numbers (i.e., ND) are ND = 3. ND = 6, ND = 9, and ND4 = I . These data appear
on the last data card.

The output of this program is po=0.99628, p=-0.991402, ql=0.10053 and q2=0.010072. Also, the real pats,
imaginary parts. magnitudes, and phase angles at available frequencies of the identified transfer function in eqn (16) are
calculated and printed for comparison with the given data.

A listing of the computer program is as follows:

C A PROGRAM TO FIT TRANSFER FUNCTION USING FREQUENCY-RESPONSE DATA.
F)fUjtKi PoCCIs1nN .(50),Xv0SO),XItC(50),Xtl(S0).Xi12(bO).(301.

IA(30,S0),G( o,30).DfrTN,H( O),XS.X ,XW(50)
DlVF'NSClJ NOit))
J04PL~t CtCXx.Cxxx.Ct5)) rCxy

I o00 RFALV (5.01tt I )T.14P

WRITE (6,b0t) NDTkP

601 FfRPAT((2X,l615))

502 kO¢ A F,.J
,OFAII (S,5021 (Xk(.1),Jz1l ,, 1DT)

W .A(5,502) (XI(J),Jm .rnT)
D00 10 Jzl.mUT

10 WiITE (6,6021 JXW(JI.XR(J),Xt(Jl
,02 F-OsAT (.X,T5,5F20.8)

V0 941 tk,=t,NP
"HIS (fssi) P,N

w|T . ....j) M,



Transfer function fitg from expeimaltl frtqeacy-resposse data21

RE~AD (501) (HUfJ)vJxS1.WM)
v W RITE: (6,601) (N[D(J),JsI.NM)

LI0 NO J:1.NJm

w(J I ' ( JJ )

W iRITE (6,602) JJ,XW(JJ) ,XRCJJ) .XI(J).1ARTI (J)MXICJJ)-X1(JJ)
60 XR12(J)RXRCJJ)*XI(JJ)

Ila3 20 KaI'tiIS
SCK JuXRT2(K)

If (N.EQ..1 GO TO 21.

DO 30 J=2.'4

LK=LK4i

IFCLK.EQ.2) XSUC-I.)OXS
30 tT(LK.EQ.2) LI(U0
21 CONTINUE

L~zI

Du 40 JtJMiNM
IF (Kk.)XUXRIltK)
IF CLK.JO.2) EXXR12(K)
IV (LK.EU.2) WSzt-1.)*XS

LK=Ll+I
40 1P'(LK.GT.2) UK:)
20 CONTINUE

CALL TWVFR (A,NM,G,0,DFTN,BtN)

oO I FORIMAT (//2X1.215/(2X.SE20.0)//)
00 SO KzI.NDT
XXS:34(1)
CXzCmPLA C S,0. )
XXUXWCK)

IFC.EQi)GO 7T0 61
00 60 JZ2,m

CAxUHCJ)*CAY*Jil
60 CX=CA+CXA
hl CXXUCMPLX(1.,O.)

DO 7n jmjm,NA

CXXUM(J)*CAY*SJJm . . - . .~ . . . .

76 ~xcx~x
C(K )ZCX/CXJXX

'30 ORIT: (6,604) KXH(K).C(N)
604 FORMAT (2X, IS.F20.8,10X,.r2o.S,F20.l)

DO Of JmI.NDT
XCTmXR(J)
VC~xX! (J)
CX't.CmPLX (ACT, ICT)
AM lCA(S(CA '1
XTI=ATAN2(YCTXCT) OS7.2958

KM 22CAR8(CA I
XXCTxPEAL(CX)
YYCruAI4A(;(CX I
XT22A'AN2(YVCT,AXCT) *57.2950
WRITE 16,605) J,XP(J),XN(J),XI(J) ,XMI.XTI

at WRtITE (b,606) J,X%(J),C(J) oX*2,X72
605 FORMAT(/2X1, 5,F20.8.2x,F20.8,2X~r20.S.2X.I20.S,2XF20.g)
b0o roRMAT(2X*xST20.s.2X.F20.g,2X,r2..2X.12.S,2xIr2O.g,)
90 CONTINE

40o TO 1000

* SUBROUTtNE INVER (A,".8,MvOCTXCKD)
DOUBLE PRECrSInN A(30,30),BC30.30).IPVOT(30).1NDgA(3O,2).

* IPIVOT(1)vXC(3o),XtI(3O),DE?,T 38
FOUIVALKNCE (1NOW,JRUN),fCnCLsJCal,)

b0o FORMAT (12)
Sol rnRMAT (41 20.h.3
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601 FORMAT (///(2X,RFIS.61)
Mao

57 OETaI.
DOf 17 J=:1,

17 IPVOTrJ)()

DIU) IJS I= ~, N

DO0 9 Jzl,N

IF(PV?(KO).TI(ICO2.l)
43 IF (I)hOW-X DAR(A(JX3 73,,03,23
b3 IOWVJOE

'T=A( TA...)

12 A(ICULL)r vTTCb*

IIF('IRO 347.347,10

66 1O 2 bl,N

52 (ICOL,I.)=( ICUL,b)/PVT1

1A(L,CL)ZO.

1DO 29 Lx1,N

99 ALL!,L)(ICLA(ICL.)*

o9IN(FX 13,134.19W

134 CONINUPCO

LprvnT(I=(I:lICI,

66DO 549 Lz,M

IFq CONI"J 1,342

A3:0. O,)0

001 1 4,14.1

13S CNTNUE
22 O3 z,
LNT
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Solution of state-space equations via block-pulse functions

L. S. SHIEHt, C. K. YEUNGt and B. C. McINNISt

A recursive algorithm is developed for the piecewise-constant solution of dynamic
equations via block-pulse functions Oj(t), where j= 1, 2, ... m. For I < j-m (where

j and m are integers) and final time 7, each block-pulse function 4j(t) is defined

by o,(t) = I for (j - 1) Tlm < t < jT/m and 4kj(t)= 0 otherwise. Compared with Walsh

function approaches, the proposed method is simpler to compute, is more suitable
for computer programming, and provides the same accuracy. Also, a discrete-time
solution is derived for a zero-input state equation.

1. Introduction
Consider a linear time-invariant system described by the state equation

Si(t) = Ax(t) + Bu(t) (1 a)
and an initial vector -

x(0) =x (1 b)

where A is an n x n system matrix, B is an n x r constant matrix, x(t) is a state
vector of n components, i(t) is a rate vector, and u(t) is an r-component input

vector. It is often difficult to evaluate the integration 5 i(t) dr, which
e

is the solution x(t) in (i), by a numerical method (Carnahan et al. 1969). One
approach is to find a set of orthogonal functions #,(t) for the approximate
solution as follows:

t I

x(t) = x(O) + I i(t) dttP j t)dt - PQ(t) = W(t) (2)
o 0

where P, Q and W are n x m, m x m and n x m weighting matrices, respectively,
and '(t) is an m x 1 vector with m orthogonal functions Oj(t), which are both
suitable for approximation of i(t) and easy to integrate numerically.
Corrington (1973), Chen and Hsiao (1975), and Rao and Sivakumar (1975)
chose Walsh functions as the Oj(t) for the approximate solution in (2)
and reported that their piecewise-constant solution gives a satisfactory
result. However, their computational methods (Chen and Hsiao 1975, Rao
and Sivakumar 1975) either required the inversion of a large matrix or the
inversion of many small matrices. This results in computing time and storage
being wasted, and the truncation and round-off errors might be seriously
accumulated. Recently, Chen et al. (1976) and Gopalsami and Deekshatulu
(1976) introduced a set of ' block-pulse functions ' for the solutions of distri-
buted systems and identification problems. They pointed out that there is
a one-to-one relationship between Walsh functions and block-pulse functions.
For I : j < m, where j and m are integers, the block-pulse function #j(t) is

Received 6 April 1977.
t Department of Electrical Engineering, University of Houston, Houston, Texas

77004, U.S.A.
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re-defined and extended in the interval 0 < t < T (rather than in the interval
0 < t < I as in Chen et al. (1976), and Gopalsami and Deekshatulu (1976)) and
by I1 for(j-l)T/m<t<jT/m

j~t) =(3 a)
0 otherwise

T is the final time, and m is the number of subintervals between t=0 and
t = T as well as the number of block-pulse functions to be used. When m
block-pulse functions are used to approximate the integration of the original
block-pulse functions, we have

0(t dtTHjt 1 1 0 2(t) (3 b)
0 ~ ~ ~ 0 . .

where 0(t) is an m x 1 vector with m block-pulse functions. The constant
matrix (T/m)H, with the dimensions m x m, is the operational matrix (Chen
et al. 1976, Gopalsami and Deekshatulu 1976) for the block-pulse functions.
Sannuti (1976) discussed the properties of the 4,(t) and proposed a method
for the solutions of linear and non-linear problems. From (3 b) we observe
that the matrix H is an upper triangular matrix that consists of diagonal
elements being I and the other elements being 1. By taking advantage of
this peculiar arrangement of H and by choosing the block-pulse functions
0,(t) as the 0(t) in (2), an alternative method is proposed in this paper
to derive an effective algorithm for the piecewise-constant solution of
the state equation in (1). The computation in our algorithm involves the
inversion of only one matrix that has the same size as the system matrix.
Compared with Walsh function approaches (Corrington 1973, Chen and Hsiao
1975, Rao and Sivakumar 1975) the proposed method is simpler to compute,
is more suitable for computer programming, and provides the same accuracy.

2. Main result
Let x 1(I) be the ith component of the state vector x(t) that is the solution

of the state equation in (1). The xi(t) can be expressed approximately as

XCi,joj(t), where m is a large finite number, Oj(t) are block-pulse functions,

and C, are weighting constants to be determined. The state vector x(t) can
also be approximated as

weeXY) aCOMt (4 a)
where

C = I[CI, C2 ..... CI ]  (4 b)
and

00t) =f 101(t), 020), 00. ~)1' (4 C)

The prime designates the transpose, and the n x m matrix C consists of m
column vectors Cj to be determined. Our goal is to develop an effective



State-space equations 385

algorithm to determine Cj for every j so that the piecewise-constant solution
in (4 a) can be obtained.

We will now derive the recursive algorithm. Let the rate vector i(t) in
(1) be approximated as

i(t) - DO(t) (5 a)

by using m block-pulse functions, where

D= [d, d2.. ... din] (5 b)

The D is an n x m constant matrix with m column vectors dj of size n x 1 to
be determined. Integrating (5 a) and using the results of (3 b) and (4 a)
yields

x(t) =_D j (t) d +HG x(); (t) = CO)(6a
0 JM

where G = [x(O), x(O), ... , x(0)] = [g1 , 2 .... gI,] (6 b)
andT C= T DH+ G=[C1 , C2 .. ... C,,, 

(6 c)
m

The gi in (6 b) is the initial vector x(O), and the constant matrix (T/m)H is
shown in (3 b). The accuracy of an approximate solution in (6 a) depends
on the number of block-pulse functions and the time interval T/m used. The
r x 1 input vector u(t) in (1) can also be approximated as

u(t) =LO(t) (7 a)

using m block-pulse functions, where

L = [LI , L2 ..... Lm] (7 b)

The r x m matrix L consists of m column vectors L, to be determined. By
applying the orthogonal property of the block-pulse functions to (7 a), we
have

L : f-  f u(t) dt - [u(jT/m) +u((j - l)T/m)] (7 c)--T(j_ 1)Tlm

. equals averagQ v~lue of. u(t) over the interval (Q- 1)T/?n (t < j T/m!. The
accuracy of the approximation in (7 c) depends on the time interval T/m
used. Substituting (5 a), (6 a) and (7 a) into (1 a) yields

D= T ADH+AG+BL= T ADH+K (8 a)
m In

where K=AG+BL=[k 1, k.. ... km] (8 b)

The column vector kj is an n x 1 known vector. The unknown matrix D in
(8 a) and (5 a) can be determined from the matrix equation (Chen and Hsiao
1975)

I,,. - A T H'  d2 T-m- -  d, 
1

k2  (8 C)Ld. L k

dm d. k
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or
A, 0 .. di  - k

-A A, o .. d2  m k1 (/
' (8 d)

-A -A A, 0 d T k3

-A -A -A ... AJ d j L ,4J
where

M

A, 1,,- A(8 e)

The 1 in (8 c) is an nrn x nm identity matrix, and the ® in (8 c) represents
the Kronecker product. Each n x n block element 0 in (8 d) is a null matrix
and I, in (8 e) is ann x n identity matrix. It is known that, as more orthogonal
functions are used to approximate. x(t), a better approximate solution is
obtained. Therefore, m should be a large number and the matrix

[(m1T)l,.,, - A ®H'J

is large. The direct inversion of such a matrix for the solution of di in (8 c)
is not an effective method as far as the computing time and storage are
concerned. However, from the peculiar formulation of the square matrix
in (8 d), we can derive an effective algorithm for solving dj instead of invert-
ing the matrix directly. This effective algorithm is derived in the following
way. By pre-multiplying each block element on both sides of (8 d) by A,-'
and by rearranging the new matrix equation, we have an alternative form of
(8 d) as

d, -R 0 ... o d1  Rk 2 "

d, R, R ,2 o ... 0 d, R2 k,

d1 R2 R2 1R 2 ... i2 _d.- R lk .

_ ##R •.. R2  d

where

R2 =A,-' A A (9 b)

Equation (9 a) can be solved readily for di. After obtaining the matrices R,
and R2 and the vector d, in (9 b), we can immediately determine the vector
d. from the first equation in (9 a). Then we can substitute d, into the second
equation and solve for d3, etc. Note that. the m can be chosen so that
((m1T)!,,- (Q)A)- exists.
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The general algorithm is

d1 =~ T 1k,
d i = R dk ym- r d (lOa)

for j = 2, 3 ..... m

where

R,= T1.- JA ) = At~1 (10ob)

R, = A,-' A = RA

Consequently from (6 c) and (10) we have the required column vectors C1 , or

C= - d, + g,T " T T j(11)
Ci Id+--dj+gj= j-,+-(dj-,+dj) for j=2,3,.....m

m d=1  2m I
Substituting (11) into (4) yields the required piecewise-constant solution of
the state equation in (1). Note that the #j(t) differs from zero only in the
interval (j- l)T/m<t<jT/m; therefore, the jth column vector C, is the
required piecewise-constant solution in that interval. Another advantage of
the proposed method is that Cj involves only the vectors di, k, and gi, for
i= 1 ... j, whereas the Walsh-function approaches (Corrington 1973, Chen
and Hsiao 1975, Rao and Sivakumar 1975) require a whole matrix WV and a
whole vector b(t) in (2).

If u(t)=0 in (1), (10) and (11) can be expressed by a set of difference
equations

d(l) =T R2x(0) (12 a)

d(j + 1) = (I. + R)d(j) for j = 1, 2, ... , m - 1 (12 b)
and

c(1) = J(2I + R.)x(0) (13 a)

TcUj+ 1)= cU) +T-(21. + R2)d(j) for/j=l1, 2, ..... m -1 (13 b)
2rm

The solution of (12) is

d(j) = (I. + R 2)J-ld(l) = (I, + R,)J-'Rx(0) (14)

Substituting (14) into (13 b) yields

c(l) = J(21. + R2)x(O)  (15 a)

c(j + 1) = c(j) + J(2I + R 2)(I. + R 2)'-Rzx(O) (15 b)

I
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The solution of (15) is

j-l

c(j -: 1) =c(1) + J(21, + R2) (I n + R,)pR 2 x(O)
iO

=4(21,+R 2) I.+ (I,+R 2 )iRJ x(O) forj=1, 2,... (16)

Since the trapezoidal rule (as shown in (7)) is used as a base for the numerical
integration, or

x*(j + 1) + x*j) (17a

2

where x*(j) is the discrete-time solution, therefore

x*(j+ 1) -- x*(j)+2c(j+ 1) (17 b)

Substituting (16) into (17 b) we have the required discrete-time equations

x*(o) =x(O)

x*(1) = (I. + R 2)x(O) (18 a)

x*(j + 1)=- x*(j)+ (21n + R2) In+ . (I,+R)R x(O)

The solution of (18 a) is

x*(j) =(In+R 2)x(O) for j =0, 1,2 .... (18 b)

where A, T =the final time, and the sampling period--.
m

Equation (18 b) can be further analysed as

x*(j)=[In +R ]ix(O) =*(j)x(O) for j=0, 1,2,... (19a)

where

(D*(j) =the transition matrix of a discrete-time system

= [I. + R2 j]
T

=[I,,+(I,,-4AAT)-'AAT]
J for j=0, 1, 2, ... , and AT=--

m

= [(In- JA AT)-'(In + JA AT)]J

I 1
= [I,+ AAT+ (AAT) 2 +2 (A AT) 3 + (AAT)'+ .

I[I,+AAT+I(AAT)2+ E (AAT)l (19 b)

The exact solution of (1) (with u(t)f=fO) is

x(t) =exp (At)x(O) =(t)x(O) (20 a)
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where

0l(t) -exp (At)= the transition matrix of a continuous-time system

=[exp(AAT)]J for j=0, 1, 2, 3, ... , andt=jAT

= IAAT (AA)2+ (AAT) 3 +- (AAT 4 +'

= [,+AAT+I(AAT)2+ (AAT) i  20 b)i=s

Comparing (lD*(j) with ('(t) we observe that the first three terms of (19 b)
are equal to those of (20 b), while other terms differ in weighting factors
1/2 -1 in (19b) and 1/i!= l/i(i-1)(i-2)... 1 in (20 b). Therefore 4F*(j) is a
good approximation of (D)(t) if AT is small. Also, we observe that (D*(j) is
a finite matrix, while ')(t) is an infinite series of matrices, therefore it is more
convenient to evaluate (4*(j) than 4'(t).

It is believed that the derivation of the approximation of Il(t) in (20 b) by
(D)*(j) in (19 b) is new. When u(t) 0, the approximate discrete-time solution
x*(t) of x(t) in (1) can be obtained from (11) and (17 b).

3. An illustrative example
Consider the dynamic equation

i(t) = Ax(t) + Bu(t) J (21)
X(O) = X0

where

A=[I 2]~ [2 0], x()E]
and

u(t) - unit-step functions

f I d I
1 I 4.

1/44 . I
f14 rfodt -1 I 0

1/4 1/2 1 0 /it 1 f 1 1 dt / 0 2 2

1.43 I/d 3 dt 0 1 3

1/4 1*3 dt fTd
, _t .t f04, dt 0 0 0 'L 4

0 1/2 3/4 0 1/2 1LL
44' }4. dt

1 1/4

0/ 1 0 3/4 1

Figure 1. The block-pulse functions and their integrations.
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The piecewise-constant solution of the state equation is

x(t) -CO(t) (22)

The block-pulse functions Oj(t) and the integration of the Oj(t) are shown in
Fig. 1. The C is an unknown matrix to be determined. The steps to deter-
mine C can be listed as follows:

Step I
Choose T= I s and m =4. This means that four block-pulse functions

Oj(t), j = 1 ... , 4, are used in the interval 0 <t < 1, and the sampling period=
Tim = 0.25 s.

Step 2
Construct G in (6 b) and L in (7).

G = [x(O), x(O), x(O), x(O)] = [g1, g2, g3, g4 1 1 1]

andriii ]

L = [L1, L2, L3, Lj =

Step 3 1 1 1
Calculate K in (8 b).

K = AGO+ BL =[k,, k,,s, k,][ 5 :]

Step 4 1 5 5]

Determine D in (10).

where D = [d1 , d2, d3, d]

I=!1=[0 0.0510]

-0.0769 0.1795]

R2 = Rj [0-4616 0-41021
R2 = R1 A -

[0.6154 -05641J

6,35921
T1  R 1=[2-2560]

d2 = d + R 2d1 + R(k 2 - 1 ) [ 102200 ]

=d2+ R2d2 + MR(k 3-k2) = [16.9468]

dsd+R 2da+-- R 8.4233]

m [282240]
d4 -- d3 + R~ds +' R, (k4 - k) = [ 14.0999]
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Step 5

Evaluate the required C in (11).

C=[CI, C2, C3, Q4]
where

CI=T d [~ 1.79491
C -d -1.2820]

C = C+ T (d2 + dj) =

im- 12"1792J

- T  
[7"30381

C3 =0C2+- (d3 +d 2 ) = 13842m L3.8547 J
T ( [13"01251

C 4 =C3 + FM (d4 +d3) = I .632m L 6"6936]

The required piecewise-constant solution in (21) is

x,(t) =- 1-7949, 1 (t) + 38773# 2 (t) + 7-30380 3 (t) + 13012504(t)

x 2(t) 1.2820i 1 (t) + 217924 2(t) + 3854703 (t) + 6693604(t)

EXACT 
(t)

I0

APPROXIMATE X I(t)

8 /

EXACT X2 (t)

oPRO I MAT X 2 W
2

0 I/8 1/4 3/8 1/2 5/8 3/4 7/8 1

Figure 2. The exact solutions and the approximated solutions.

I
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The exact solution of (21) is

x_(t) = - exp (2t) - A exp (- 5t) -

x,(t) = ' exp (2t) + A exp ( - 5t) -

The response curves of the exact solution and the approximated solution are
shown in Fig. 2. The approximate discrete-time solution x*(1) of x(t) in (21)
can be obtained from the C in (22) and (17 b).

If u(t)=0 in (21), the exact solution of (21) is

x,(1) = s exp (2t) - + exp (-5))
(23)

x2(t) = I exp (2t) + # exp (-5t)J

From (23) and (18) we can evaluate the exact solution x(t) and the approxi-
mated solution x*(t) at samples j = 1, 2, 3, 4, and sampling period = T/m=
0.25. The results are tabulated as follows:

j t X10) xj(t) x2() x2 *(0)

0 0 1 1 1 1
1 0.25 1.843 1.872 1.065 1.051
2 0.50 3.095 3.167 1.589 1.610
3 0"75 5-119 5"289 2"571 2.651
4 1"00 8-444 8-818 4.225 4"411

It is interesting to observe that the solution obtained by the four-point
approximation is quite satisfactory.
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Ahuract--A method is given for optimally fitting parameter matrices of state equations from the real and

imaginary parts of noise free frequency-response data of a multi-input, multi-output, linear dynamic system.
It is assumed that all state variables are accessible for measurement. The obtained data may contain
measurement errors.

I. INTRODUCTION
Several authors[I-31 have considered the application of frequency response concepts for
identification of dynamic systems. The problems of predicting parametric error from frequency
response measurements have also been investigated [3-5]. A method is presented here to
determine the best estimate, in least mean square sense, of the parameter matrices of the
multi-input, multi-output, linear, time-invariant dynamic system equations if all the state
variables are accessible for measurement. The obtained data are noise free and contain
measurement errors.

2. DERIVATION

The state equations of an asymptotically stable, completely controllable and observable,
linear time-invariant system are given by:

(a)1' = L X (Ia)

X(O) = [0] (Ib)

where A is a constant n x n system matrix, 9 is an n x I state vector, B is a constant n x r input
matrix, C is a constant m X n output matrix, U is an r x I input vector, and V is an m x 1
output vector. Let us define,

(2)

d [I (2a)

/ [= 1 (2b)

where 6t is an n x I column vector and c r is an n x I row vector.

299
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The Laplace transformation of eqns (1) and (la) yields,

(si- A)X(s) = 60(s) (3)

and

i(s) = UX(s). (3a)

Successive choice of each of the scalars U,(s) in eqn (2b) as an input while the remaining
scalar components of [(s) are zero yields the following set of transfer functions from each of
the scalar inputs to the state variables.

(sI- A)1,(s) = (4)

where

T(s) =-, (s) and e=l,....r. (4a)

If the input functions of L(s) are sinusoidal functions with varying frequencies wk&, we
obtain the corresponding frequency response data t,(j,) as follows:

TA(.a,) = P,(w)+ j4.(w&), e = . r (5)

where P,(ft) and 4,(wi) are vectors of the real and the imaginary parts of t,(jw).
Multiplying the steady state portion of eqn (4a) by a normalization constant M (i.e. the

magnitude of a sinusoidal input functio-) we have

X.(j~k) = M, t. (jk) = MA (w)+ jM,(vi), e = I...r (5a)

and

X(J~d) = X.(a~&)(5b)
e- l

Substituting s = jwk and eqns (5) and (5a) into eqns (4) and (3a) yields

jijJ - ] + j4,(,*)] = 6, (6)

Y?,(jok) -- M.P1e(-,) + MWA(ok)] -= (ok) + jh(w,) (6a)

and
u(j ) = ?(jw,) (6b)

e-1

where I.("') and I,(w) are vectors of the real and imaginary parts of Y4,(jw). After we
separate the real and imaginary parts of eqns (6) and (6a) and equate the respective real and
imaginary parts, we have

A, o(,k) = 5,(ek) (7)

A•. ) + mw) = -6 (7a)

W() = (MA(. ) (7b)

and
h.(,,k)= ( ,,). (7c)

The parameter matrices A, 6. and CA can be obtained as follows:
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A = [Wi5,(,W,). (02 5,(, 2) .... ,.A,114.(,.). 4,60 2). 4,(,i.)' (8)
6,£ = -[ AA(,,)+ ,o,(,o,) (Ba)

[ and

an"= [ ( , o.)J[.P.(A),.P(i 2) . ()

= [h,( i,), -h(,) .. .(,)[M4(, ) ( .. MA(-

--1L= ,.(o,)r .~ ..(a~i[ M .o ..., +.( M tei]-

The data in eqns (8)-(8b) can be chosen so that the matrix inversions exist.

3. EVALUATION OF OPTIMAL PARAMETER MATRICS

If the frequency response data are noise free and measurement error free, then there exist
unique parameter matrices A, A and e. However, in practice, there exist measurement errors
even if the system is noise free. As a result, the evaluated parameter matrices have inaccuracies
due to the errors. In this paper, optimal parameter matrices are evaluated from the measure-
ment error contaminated data.

Consider i sets of parameter matrices A, ,k and 6, which are defined as A,, & and 6,, and
which are evaluated from i sets of data using one control input or r control inputs. If many sets
of experimental frequency response data can be obtained, then the optimal parameter matrices
A. ,, and C can be obtained from the matrix-mean values, or

A = ! A (9)
! t

it, 6. b (9a)
- Ik

,.Z (9b)

However, to obtain many sets of frequency response data is often not practical and sometimes
impossible. The following technique is proposed to obtain the optimal matrices with fewer sets
of frequency response data. Suppose that the system matrices A, i = I .... r can be evaluated
by r sets of frequency response data which are obtained from the controllable system by any
one input U, or by r sets of inputs, then we construct the following matrix equation,

A= (10)
where

A4 and ](1)
LA.-'J L ,J

in which A,-' are n X n inverse matrices of A, obtained by the use of eqn (8) and , are n x n
identity matrices. The desired optimal matrix(6,71 A which minimizes the sum of squares of
residuals 9 = ATA, where A = P- N, is given by

A = (git'&A.# (11)

By a similar approach the optimal matrices 6, and C can be obtained as follows:

p
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To obtain b, we construct the matrix equation

6A P (12)
where

=Lt?'IG, (12a)

in which ri' are n X n inverse matrices of 6, and the elements at ith row and kth column in di and
H~are:

GiO, k) -- ,,(j, 1) if j = k

=0 if jo k (12b)

fl(j, k) =,(j, 1) ifi=k

=0 ifj#k (12c)

j=..n i= . r

k . n, e . r.

It is interesting to note the fact that di(j, k) and /l.{j, k) are diagonal which greatly reduces the
practical problem of calculating /1.

The optimal matrix /, is

f, = (Gj/ )-' I0/A (13)

The optimal vector S, can be obtained from eqn (12c). To obtain the optimal row vector C2 T in
e we use the following matrix equation:

D = = (14)
where

in which t-e are n X n inverse matrices of A and the elements of the lth row and kth column
in A and . are

&j, k) = ,(l,j) ifi = k
= 0 ifj# k (14b)

S.(j, k) =Cr(l, j) ifj= k

=0 if j o k (14c)

S= l.....n, 1= l....r, z = I... m, k= l....n. Here again the structure ofA(j, k) is quite
favorable for performing the necessary inversions.

The optimal matrix 9, can be obtained from

= (1 ryI A (15)
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The optimal row vector er can be obtained from eqn (14c). After obtaining the optimal vectors
b, and eT we have the optimal input matrix and output matrix, or

(16)
and F IT1

C =(17)

4. CONCLUSION

A method for the solution of the difficult problem of identifying a multi-input, multi-output,
linear system from measurement error contaminated data has been presented. The resultant
parameter matrices are optimal in the least mean square sense. The particular advantage of this
technique is the ability to utilize a relatively limited amount of experimental data to obtain the
systems dynamic equations. The identification process can be easily performed using digital
computers.
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APPENDIX
Illustrative example. For a known dynamic system described by the following state equation,

where
,A=[- -. = [ -1 and C=1 0'5]

the error contaminated frequency response of Table I was obtained.
Assuming a unity magnitude for the excitation function or M, and M. equal unity and by following eqns (8), (8a) and (Sb).
we have

= [-1.0180W7614 -0.%74046141 (9)

L 1.963824775 -3.934809232(
A2[-0.993028846 -1.0154166671

= [ 2.00528842 -4.00249999 J

Table I. Frequency response data

e = l. T,(jf) e = 2, T,(iw,) e= 1. Y,(akm) e = 2, Y.Uik)

0.2 0.658 -0.077 -0.821 0.104 0.82 -0.10 -0.91 0.13
0.326 -0.055 -0.158 0.060 0.65 -0.11 -0.32 0.12

2.0 0.269 -0.346 -0.288 0.442 0.29 -0.44 -0.20 0.51
_ 0.038 -0.192 0.173 0.135 0.08 -0.38 0.35 0.27
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for e 1, we have

1. .(0002732 [0..09=8233/9a)
0.00101593.0011505081J

and when e - 2. we have
[--1.0031125561 [0 1.00220058 (19b)

• 0.9697437 J' v" .9 0 55W04J

When z = I, we have

eT=(1.011006541. 0.474716861], C r=[1.007%1095, 0.5219236741 (19c)

and for z = 2, we obtain

Lr ,[0.022013007, 1.9494337221, Cr= 10.0003199367, 2.0236539991 (19d)

Applying eqns (1]). (13) and (15) we have the optimal parameter matrices

[ .3 -3.6 (20)

.1002] (20a)

and

C a1.009 0.4wi1 h wo.000 1.9. 1(3,h

Compared with eqn (11), the answer is quite satisfactory,
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An algebraic method to determine the common divisor,

poles and transmission zeros of matrix transfer functions

L. S. SHIEHt, Y. J. WElt and J. M. NAVARRO$

A purely algebraic method which uses the matrix Routh algorithm and its reverse
process of the algorithm is presented to decompose a matrix transfer function into a
pair of right co-prime polynomial matrices or left co-prime polynomial matrices.
The poles and transmission zeros of the matrix transfer function arc determined from
a pair of relatively prime polynomial matrices. Also, the commou divisor of two
matrix polynomials can be obtained by using the matrix Routh algorithm and the
matrix Routh array.

1. Introduction
The properties and applications of poles and transmission zeros of a multi-

variable system have been extensively studied in recent years by many
researchers (Desoer and Schulman 1974, Kwakernaak and Sivan 1972,
Rosenbrock 1970, Moore and Silverman 1972, Wolovich 1972, 1973, Davison
and Wang 1974, Francis and Wonham 1975, Sinswat et al. 1976, Kouvaritakis
and MacFarlane 1976, Wang and Desoer 1972). Desoer and Schulman (1974)
defined the poles as real or complex numbers for which the responses of a
circuit or system to a series of singular inputs are purely exponential. The
transmission zeros are also defined as real or complex numbers for which the
transmission of some particular signals is completely blocked. The role of
poles in the analysis and synthesis of circuits and systems is well known, and
in recent years the transmission zeros are found to be important in many
aspects of feedback control theory (Desoer and Schulman 1974, Kwakernaak
and Sivan 1972, Rosenbrock 1970, Moore and Silverman 1972, Wolovich
1972, 1973, Davison and Wang 1974, Francis and Wonham 1975, Sinswat et al.
1976, Kouvaritakis and MacFarlane 1976, Wang and Desoer 1972). Therefore,
it is useful and desirable to have an effective method to determine the locations
of these poles and transmission zeros. Several methods are available to locate
the positions of these poles and zeros (Kwakernaak and Sivan 1972, Rosenbrock
1970, Moore and Silverman 1972, Wolovich 1973, Davison and Wang 1974,
Francis and Wonham 1975, Sinswat et al. 1976, Kouvaritakis and MacFarlane
1976). However, most of the suggested approaches (Rosenbrock 1970,
Moore and Silverman 1972, Wolovich 1973, Davison and Wang 1974, Francis
and Wonham 1975, Sinswat et al. 1976, Kouvaritakis and MacFarlane 1976)
are derived for the systems which are represented by state equations in the
time domain. The major disadvantage of most time-domain approaches is
that the computation may not be very attractive if the dynamic systems are

Received 30 March 1977 ; revision received 11 October 1977.
t Department of Electrical Engineering, University of Houston, Houston, Texas
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of high order. When a given multivariable system is described by a matrix
transfer function that might have a high degree common divisor (the common
factor) of the numerator and denominator matrix polynomials, the order
of the corresponding state equations is in general very high. Therefore,
most time-domain approaches may be difficult to apply. In this paper, a
purely algebraic method is derived in the frequency domain for the determina-
tion of the poles and transmission zeros of a matrix transfer function. The
matrix Routh algorithm and the reverse process of the algorithm (Shieh and
Gaudiano 1974, Shieh 1975, Shieh et al. 1975) are used to decompose an n, x ni
rational matrix transfer function T(s) into D1 (s)-'N(s) and N,(s)D,(8)- 1,
where the polynomial matrices D1 (s) and N,(s) with appropriate size are left
co-prime and N,(8) and D7 (s) right co-prime. When no nj, the poles (the
transmission zeros) of the T(s) are determined from the zeros of the determinant
Do(s) or Dr(s) (N,(s) or N,(s)). When nhni, or the matrix Routh algorithm
is of ill-conditioned case, the determina,it of the rectangular polynomial
matrices N,(s) and N,(s) cannot be obtained. An n i x n, matrix transfer
function T+(s), which is the generalized inverse (Desoer and Schulman 1974)
of the modified T(s), is established and factored into D*(s)-1 N*(s) when
n. > ni or N,*(s)D?*(s)-1 when n, < n i . The transmission zeros of the T(s) are
determined from the invariant poles of the T+(s) or from the zeros of the
determinant D1 *(s) with size ni x n, or D,*(s) having size n. >- n0.

Along the same line, recently, several approaches have been proposed by
various authors (Kung et al. 1976, Anderson and Jury 1976, Emre and
Silverman 1976) to determine the relative primeness of two polynomial
matrices. The generalized resultant matrix (Barnett 1971) and the generalized
Bezoutian and Sylvester matrices are used in their works. When the degree
of the polynomial matrices that might have a high degree common divisor is
high, the dimension of the resultant matrix or the equivalent test matrix is
very high. As a result, the effectiveness of their approaches is less.

2. The matrix Routh algorithm and the matrix Routh array
In a single variable system it is well known that the poles and zeros of a

transfer function can be determined from the respective denominator and
numerator polynomials that are relatively prime. The Routh algorithm
and the Routh array (Fryer 1959) are often used to determine the common
factor of the two polynomials in order to determine the pair of relatively
prime polynomials. In this paper we extend the concept to a multivariable
system that is described by a matrix transfer function. Let us define that R
and C denote the field of real numbers and complex numbers, respectively,
and R[s] and R(s) the sets of all polynomials and rational functions in the field
of complex variables having real coefficients. We also define that R[s]nax×" ,

and R(s)o x" are the sets of all n, x n i matrices with elements in R[s] and
R(8), respectively.

Consider the following matrix transfer function T(s)ER(s)nox " , which is a
product of a polynomial matrix A 2(s)ER[s]nox"i and the inverse of another
polynominl matrix A,(s)eR[s]qxQ, where q =min (no, n :

T(8) = A 2(8)A(s)- = [A2, + A 22s+... + As.,s -1 ]

x [All + A12s+ ... + A1 ,.+, 1n] -a (1 a)
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T(s) = Al(s)-lA 2(s) = [A,, + A, 2s + + A,., 1 s"]-

x [A 21 + A 22s+ + A2,,s- 1 ] (I b)
where

A 2 (s)= A 2,s
i - I and Al(s)= Aisi- Ii, i

The matrix coefficients in the A 2(s) and A 1 (s) are expressed by the dutible
subscript notation as A 2. R,,oxli, and Al.jcRq-q for the use of the matrix
Routh algorithm. If the T(s) is expressed as follows

1

T(s) = D(s) (2)

then
n+1 n+l "+I

A )= . aisi- 1, A,(s) = ajsl i - 1 
= Y A,,j i -

l
i=1 ,=1 l

and

01(s) = D -1' = i'i-
i=1 i=1

where Ao(s)ER[s] is a polynormial and IqERqXq is an identity matrix. By
using the following matrix Routh algorithm and the reverse process of the
algorithm, the T(s) can be factored into D1(s)-lN1 (s) and Nr(s)D,(s)-1 , where
Dj(s), Nj(s), N(s) and D,(s) are polynomial matrices of appropriate size. The
matrix Routh algorithm (Shieh and Gaudiano 1974) and its reverse process
(Shieh et al. 1975) of the algorithm for a multivariable system (ni =no) are
expressed as follows:

H 1All A 12  A 13 ... AlnAl.n+l

A 22  A2 3 ...

A3 1AA 1 2 -HIA2 2 A32 -A 13 -HIA 23 A 33 ...
H3 =A.3 1 A 4 t --1 K(3 a)

A 41 -A 2 2 -H 2 A3 2 A 42 A-A2 3-H 2A33 (...

,A2nl

AQn 1,1

The Hj in eqn. (3 a) are the matrix quotients. The block elements of the first
and second rows of eqn. (3 a) are the matrix coefficients of eqn. (1 a). The
block elements of the subsequent rows are evaluated by the following matrix
Routh algorithm:

Hi=AiAi>+, 1-' for i=1,2,...,2k and k<n

rank Ai+, 1 =n i = n0  (3 b)

Aj.,=Ai_2,,+-H 2Aj- _ ,j+, for j= 1,2,...; i=3, 4,....

3T2
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When the two matrix polynomials A,(s) and A,(s) have no common factor, the
matrix Routh array will terminate normally (i.e. we have 2n matrix quotients).
When the two matrix polynomials have a common factor (the common
divisor), the matrix Routh array in eqn. (3 a) will terminate prematurely, and
the last non-vanishing row consists of the matrix coefficients of the common
factor B(s) in the original matrix polynomials A,(s) and A2 (s). If we have
2k matrix quotients H, we can construct a pair of relatively prime matrix
polynomials, N,(s) and Dr(s), by using the reverse process of the matrix Routh
algorithm in eqn. (3 b):

P, ,HjP,,t for if=2k,2k-1,...,2,1 (3c)

Pi_2.J+I=Pjj+Hi_2Pi_,J+1 for i=2k+1,2k, ... ,3; j=1, 2,.k

The T(s) in eqn. (1) is

T(s) = A2(8)Al(s) -1 =N,()B(8)[Dr(8)B(8) ]- 1 =N,(8)Dr(s) 1

= [P21 + P 238 +... + P2 .sk-J[P1 + P1s +... + P1.k+2.8k -  (4)

The procedure can be well illustrated by the following numerical example.

Example 1
Consider that the common divisor B(s) and a pair of relatively prime

matrix polynomials N,(s) and Dr(s) of the following matrix transfer function
T(s) are required :

T(8) = A 2(8)A 1 (s)- 1 = N(s)B(s)[D,(s)B(s)]-1 =Nr(8)Dr(s)- 1  (5)

where

A1(s) = All + A 1 g + A 13 8
2 + A 1 483

=(3 3 ( 5)+5 -) '9+( 1 -) 8

A 2 (8) = A 21 + A,2 + Angs

61, -2)+(, 61 -)8+(2 -4) 82
no=n=2 and n=3

The matrix Routh array is

.1
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The matrix Routh array terminates prematurely because the only one block
element AU1 in the sixth row is a null matrix ; therefore, the common divisor I
B(s) in T(s) is

B(8)= Ahi+ A528 '~+( 2) (6b)

By using the matrix quotients H1 ... H 4 in eqn. (6 a) and applying the algorithm
in eqn. (3 c) we have j

and N,(s) = P1 +P 2 + (,2 =) +( 4 3)+ (10)82 (6 c)

D,(s)=Pi+P~,(-+. 2-( 3 0)+(, O1'o

In order to show that the B(s) in eqn. (6 b) is a common divisor of A,(s) I
and A,(s) in eqn. (5) we replace Ai,1 in eqn. (3 b) by P,1 in eqn. (6 c) and apply
the algorithm in eqn. (3 b) to eqn. (6 c). Thus we have the following alternative
matrix Routh array that has the same matrix quotients H i as eqn. (6 a): i



U.U

II

+

IIII 0-'

! I II IIIII

- 0-

0 0
I 1 0 -

II II I I I I I
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The justification for the B(8) in eqn. (6 b), which is the common divisor of
the matrix polynomials in eqn. (5), can be proved by the following induction
method. Since the matrix Routh algorithm is developed from the repeated
process of long division of two polynomial matrices, the reverse process of the
algorithm can be applied to eqns. (6 a) and (6 d) to obtain the following
identities :

A51 + Ar2s = Pr1 (As1 + Arss) = PG1 B(,) = B(s)

A41 + A42s = H 4(A 51 + A52s) +sAI 1
= H4B(a)
= P 1B(s)

A 3 + A2 + A 3s2 2 = H(A 41 + A 40) + (A51 + Abs)
= H 3P 41B(s) + sP 5 ,B(8)
= (Pal + P2a2)B(s) (6 e)

A 21 + A 228 + A .2 = H2 (A31 + A, 2s + A 3 s8) +a(A 4, + A 4 2 )
= H2 (PI + P32s)B(s) + sP4,B(8)

= (P21 + P22s)B(8)

All + A12 8g + A1 3s + A1 4 
3 =H(A 21 + A2 28 + A 2s) +8(A 31 + A3 2 8 + A3 s2 )

= H1 (P21 + P228)B(s) +s(P 3 1 + P32s)B(s)
= (PI1 + P128 + P1 32s)B(s)

From the last two equations in eqn. (6 e) we observe that

A 2 (8) = N , (8)B(8))
(6/)

At(s ) -=D,(s)B(s) l

Therefore B(s) is the common divisor of the two polynomial matrices A1 (s)
and A (8).

When n i A n, and rank A,- 1 0 q in eqn. (3 b), the matrix Routh algorithm in
eqn. (3 b) cannot be directly applied. The matrix Routh algorithm and its
reverse process of the algorithm in eqn. (3) are modified and discussed by the
following case studies.

(1) T(s) = A2(8)A(8)-' (7)
where ft R+1

A 2(s)= A 2,j8" -  and A1(8)= Aldi - I

Case 1

no >n,, T(8)eR(s)"oxIo A2(8)C-R18]f.xN, A,(8)eR[8]"dx× t

T(8) = A 2(s)A,{s)- = N,(s)B(s)[D,(8)B(s)]-I = N,(8)D,(s) - ' (8 a)
where k

N,(8)eR[s]nxfl,× N,(8)= F. P2.8 -  ; D,(s)eR[]14x×,
J-1

k+I f-k+1

A,(8) E- P1,i-1, Pl.k+, =I, ; B()eR[8]*,x ",, B(8) = Big - '
I J.1
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The B(s) is the common right divisor of the A2(s) and A,(s). For the use of the
matrix Routh algorithm, the matrix coefficients in the N,(8) and D,(s) are
expressed by the double-subscript notation as P,, and P,,j which can be
obtained by the algorithms as follows.

The matrix Routh algorithm is

HiAi.A+ 1.1-
1 , i=l, 2, ..., 2k and k<n

rank Aj. --ns (8 b)

Aj,jAj_9,j+-H_ 2 Aj_,j+, j-1, 2,..., i = 3,4,...1

The constant matrices Hi with appropriate size are called the matrix quotients.
If n,> ni, the pseudo-inverse of A+t, =Ai+, -= [A+. 1 T A4 +. ] - A i+,. T is
the left inverse of Ai+l 1.

The reverse process of the matrix Routh algorithm is

P,1.=H 5 Pgz+Hj l=2k, 2k-1....2, 1/ c...,k )

Case 2

no < n i , T(s)eR(s) " x× ,, A 2(s)eB[snoxno, A,(s)eR[s3]fno

T(s) - A2 (s)A1 (s)-1 i D,(s)-B(s)[N,(s)-B(s)] - D D(s)-1N1 (s) (9 a)
where k

Na(s)eR[]o@ni, N,(s) = Q3.is- 1 ; Dj(s)eR[8jnoxft.

k+1 n-k+ 1

D1(s) 1 Ql Q,-' 1,k+-1..; B(s)eR[s]oxn*, B(s)-- Bisi-I

For the use of the matrix Routh algorithm, the matrix coefficients in the NJ(s)
and D(s) are expressed by the double-subscript notation as Q1. and Q2. which
can be obtained by the algorithms as follows.

The matrix Routh algorithm in eqn. (8 b) is applied to determine the matrix
quotients Hi :

Hf=AiAoAj+. 1 -1, i=,2, ..., 2k and k<n 1
rank Ai,, =n j (9 b)

A=ji A _2.+ - Hj_2Ajjj+ j 1,2, ... , i=3,4,...1

The new reverse algorithm is

Q +Q. Ik k 2j

Qj.jxfQj +~ Qj = jtj, 2k +.. 1, 2k, 3,j9,¢,)
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(2) T(s) = A1 (8) 1IA2(8) (10)
where"+

A,(8) = A..,esi- and A,(8)= E jj''

Case 1

n,<,n,, T(s)E-R(8)h9xfi, A 2(.s)eR[8]nxn4, A1 (8)ER~s]toxR.

T(s) =A 1 (8)-'A 2(8) = [B(8)D1(s)]-'B(8)N5 (8) = D5 (8)-1 N1 (8) (11 a)

where
N48GRa~e~dNi(s) = Q,i8''; D(8)e-R[])*.xao

k+1 k+

Dj=8 1()E[]-n,() B5=

The matrix coefficients in the D,(8) and N1 (s) are expressed by the double-
subscript notation as Q, and Q,. which can be determined by the following
algorithms.

The new matrix Routh algorithm is

Mi=Ai+,,f'A, 1 , i=1, 2, ... , 2k and k<n

rank A,,,= n, (11lb)

Aj= Ai-...3 +1 - Aj-...1 14 M1 2, j=1,2,..., i34..

The constant matrices M5 with appropriate size are called the matrix quotients.
If no<nj, A +,, =Ai+1,,T[A i. 1.1A ,,Tj-I is the right invesre of the A,,,

The reverse algorithm in (9 c) is applied to determine the Q1,, and Q2,i.

QRA+1. 1='w

Came 2

no >ni, T(8)ERJ(s)toxni, A,()E-R(8I"sxn., A()eR[]",xIO

T(8) =A 1(s)-lA 2(8)-=[B(8)N,(8)-]- 1 B(8)D,(8)- = N,(8)D,(8)-I (12 a)

where
N7(*)eR[8]nsxft,,Ne(8) = P%,'-; D,(8)eR[]"Ox'4

k+1 *h
Da P1.0"'-, P1,k.1 =131; B()=[1,K, B(8)- Bj(

The matrix coefficients in the D,(8) and N,(8) are expressed by the double-
subscript notation as P,,, and P,,j which can be obtained by the algorithms -

as follows.
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The matrix Routh algorithm in eqn. (11 b) is applied to determine the
matrix quotients M1 :

Mj=A1 +.,1 - 1 Aj.,, i=1,2, ..., 2k and k<n

rank A 1 .1 =nj/ (12 b)

A .j=Aj_2.j+,-Aj_,j+ 1Mi- 2, j=1, 2, .... i=3, 4,...

The reverse algorithm in eqn. (8 c) is applied to determine the PI. and P2. :

P2k+1. =In,

P1.f=MjP,+ 1, l=2k, 2k-, 1..., 2, 1 (12 c)

Pj_2.j+j=P .j+Mj_2Pj-d+t, i=2k+ 1,2k,..., 3, j= 1,2,...,k

By using Gilbert's theorem it has been shown (Shieh and Gaudiano 1975) that
the dynamic state equations, which are constructed by using 2k matrix
quotients Hi or Mi that are obtained from the matrix Routh algorithms,
are minimal realizations of the T(8). The minimal dimension of the system
matrix iskq xkq, where q=min (ni, n0 ) and kq = rank T(s) Ar. The rank T(s)
can be determined from the Hankel matrix (Ho and Kalman 1966). By
using the same 2k matrix quotients Hi or Mi and performing the reverse
process of the matrix Routh algorithm, the monic polynomial matrices D,(8)
and D1(s) are obtained and shown in eqns. (8), (9), (11) and (12). The highest
power of s in the D,(8) and D1(8) is k and the matrix coefficients of 8k (i.e.
P,.,+, and Ql. +1) are identity matrices having size q x q. Therefore

kq+l
det Dr(s) =det D(s) = d8'- 1 -d(8) (13)

i-i

The highest power of 8 in the monic polynomial d(s) is kq, which is the rank of
the T(8). As a result, the d(s) in eqn. (13) is the characteristic polynomial of
the T(8) and the polynomial matrices D,(8) and N,(8) are right co-prime and
the D(8) and Nj(s) are left co-prime.

From the above discussion we also note that the necessary condition for the
existence of the matrix Routh algorithm is that the ratio (denoted as k) of the
rank T(s) and the minimal dimension of the T(8), ro/q =k, is an integer. If
the ratio refq is not an integer or it is an integer but the condition (rank A,, = q)
in the matrix Routh algorithm in eqns. (8)-(12) is violated due to the ill-
conditioned matrix Ai, , then the original T(s) should be modified. T(8) is
modified by adding another transfer-function matrix T0 (s) =1/g(s)K whose
rank is of (kq-ro), where k is the nearest integer and the scalar polynomial
g(s) is not a factor of the A0(,) in eqn. (2). The K is a constant matrix with
appropriate dimension. The modified system Tl(s)R(s)oXh , is

T(s) = T(s) +- K (14)

where rank [(lg(s))K]=kq-r0 and rank TI(s)=kq. It is noted that the
addition of (I/g(a))K to the T(8) does not affect the locations of the poles of the
T(8).

I
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3. Determination of poles and transmission zeros
By using the matrix Routh algorithm the T(*) is factored into Dt(s)-NI(s)

and N,(s)D,(s)-1, where D(s) and N1(8) are left co-prime and N,(8) and D,(8)
are right co-prime. When n1 =n O=q, Desoer and Schulman (1974) have shown
that the transmission zeros of the T(8) are the zeros of the scalar polynomial
n(s), or n(s) = det N1(s) = det N,(8) = 0 (15)

where N(s), N,(s), Da(s) and D,(s) are polynomial matrices; N1(s) and N,(s)
are q x q ; D1(s) and D,(s) are q x q. The poles of the T(s) are the zeros of the
following characteristic equation:

A(s) =det D,(s) = det D,(s)=O (16)

When r,/qk (an integer), the matrix Routh algorithm cannot be applied.
The procedure shown in eqn. (14) can be applied to determine a pair of relatively
prime polynomial matrices D1

1(s) and N 1 (s) or N,1(s) and D,1(s) as follows:

T1(8) = Dj1(S)- 1 Nj1 (s) = N,'(s)D,'(s)- 1 (17 a)

The poles of the T'(s) can be determined from the following equations:

det D1
1(s) = det D,1(s) = {g(s))"-'.rP(s) = 0 (17 b)

where the g(s) is the polynomial used in eqn. (14). The poles of the T(s) are
the zeros of P(s) = 0.

When rq =k (an integer) and no#ni, the N5 (s) and N,(a) obtained from the
matrix Routh algorithm are not square polynomial matrices of size no x no and
n, x ni . Therefore the transmission zeros cannot be directly determined from
eqn. (15). The transmission zeros of the T(s) can be determined from the
invariant zeros of the determinants of all q x q minors of the N,(s) or N,(s) in
eqn. (15) where q =min (no, ni). However, when the ni is much larger than the
n. and vice versa, there exist many q x q minors which are expressed by poly-
nomial matrices.

It is a cumbersome task to find the determinants of these q x q minors and
to determine the roots of many polynomials. This difficulty can be overcome
by applying Desoer and Schulman's (1974) theorem. The transmission zeros
of the T(a) are obtained from the invariant poles of two generalized inverses
of the modified T(s). In this paper we present a procedure to obtain the
generalized inverses of the modified T(s) so that the transmission zeros of the
T(8) can be determined. The steps are shown as follows. I
Step 1. Modify the T(8) and formulate the generalized inverses Tj*(s),
i = 1, 2 of the modified T(s), or I

T*(s)[m()T()]-= A,(s)[mj(s)A,(s)]- 1, no> na1  (18 a)

= [m()T(s)]- =[m()A()]-1A,(s), %0 < n,  (18 b)

where Tj*(e)R(s)tx×sO, Aj()eR[8]9x7, A2()ER[]Iexu, mj(e)eR[a]. The monic
polynomials m(s)eR[8], i = 1, 2, should not be the factors of the A,(8) in eqn. (2)
and of the g(8) in eqn. (14), but are chosen in such a way that the power of the T
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a in the polynomial matrices m1(s)A 2(s) in eqn. (18) is 1 higher than that of
the A,(8). This modification does not affect the transmission zeros of the
T(8) but it makes the matrix Routh algorithm applicable.

Step 2. Modify the Tj*(8) when r/qok (an integer).

The process of this modification is shown in eqn. (14). The additions of
(l/g(s))K, i = 1, 2 to the Tj*(s), i = 1, 2, do not affect the locations of the poles
of the T1*(s) or the transmission zeros of the T(8). After performing some
matrix operations we have the generalized inverses of the modified T(s)
denoted as Tj+(8), i = 1, 2:

Ti+(8)-[gi(s)A1(s)+m,(s)KA2 (8)][gi(s)mi(s)A 2(s)]-', n> nj (19 a)

-[gi(s)mi(s)A2(s)]- 1 [gi(8)A1 (a)+m(s)A,(s)K], non0  (19 b)

Step 3. Determine two pairs of relatively prime polynomial matrices.

The algorithms in eqns. (9) and (12) can be applied to obtain two pairs of
left co-prime polynomial matrices denoted as D11*(8) and Nli*(s), i = 1, 2 or
right co-prime polynomial matrices N,*(s) and D,*(8), i = 1, 2:

Tj+(s)=D,*(s )- Njj*(8), no> n, (20 a)

-N,*(s)Dr *(s)-l, n*<-ni (20 b)

Step 4. Select the required transmission zeros.

The poles of the Tj+(s), i = 1, 2, are

det D*(s) = {mi(s)}Qn(s)k1(s) = 0, no > ni (21 a)

det D*(s) = {mj(s))Qn(s)k (8) =0, no < nj (21 b)

The required transmission zeros of the T(s) are the invariant poles of the
Tj+(8), i = 1, 2. They are the zeros of polynomial n(s) in eqn. (21), or

n(s). =0 (21 c)

When the T(s) is not a strictly proper rational matrix transfer function, eqn.
(19) can also be used to determine the poles and transmission zeros of the T(s).

Example 2

Consider that the poles and transmission zeros of the following matrix
transfer function T(s) are required to be determined.

T(a) = A 2(8)A(s)-  (22)
where

'8 + 6s2+ 118 +12 81+98+20 ]
Aj(s)f s2+48-5 s0+38-78+15

L'+682+138+10 382+5e+26 j
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and
()_s + 3 + lls2+ 13 8+ 6 s3+882+17+8+1]

83s+282-8-2 84 +83-s2+ 58+ 6

no=3 and n i =2

It is difficult to apply most time-domain approaches to this problem. By
using the proposed algorithms in eqn. (8), the T(8) can be factored into a pair
of relatively prime polynomial matrices N,(8) and D,(8):

T(s) = A2(8)A(s)-' =N,(8)B(8)[D,(8)B(8)] -1 =N,(s)D,(a) -  (23)

where

[8+4 0+ and D 8( +3 8+2 0 1N',(,)= 0 85 an[,8

s+4 2 0 [+38+2

Following eqn. (16) we have the required poles of the T(8):

A(s) = det D,(8) = (8 + 1)2(8 + 2)2 = 0 (24 a)

or

81=82=-1 and 83=84=-2 (24b)

It is interesting to note that the common factor B(8) in eqn. (23) is

8+28+3 8+5 ]
B(8) = (25)

L 8- 1 82-28- 2]

Since n, > ni and the determination of the transmission zeros of the T(8) are
required, we construct the generalized inverses Tj*(s) in eqn. (18) from the
modified T(s) in eqn. (23), and apply the proposed algorithm in eqn. (9) to
decompose the Tj*(s) into two pairs of left co-prime polynomial matrices
Dji*(8) and Ni*(8), i = 1, 2 in eqn. (20 a) as follows:

)= A1 (s)[m(s)A~()] - 
= D,(s)[m(8)N,(s)]-1 = D1 *( )-lNn*(8) (26 a)

where M1(8) = + 8 + 1 is not a factor of the A(8) in eqn. (24 a)

[83+582+58+4 1.19650 + 2.16498 + 081525 1
0 s + 5.8807382 + 5.880738 + 4.88073J

r 0.427582+1.329.+0.981 0.0177o+0.057 0"57382+1'6718+1'02 1

=0.0797e2 + 014078 - 0574 8 + 3.048 + 1.72 -0 .088 2-0 143e + 0.5741J

T2*(s)= A 1(s)[ms(s)A(s)]-1
= D,(8)[m$(e)N,(8))-1 = Dl*(s)-lN,*() (26 b)
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where m2 (s) =s2- 10 is not a factor of the A(8) in eqn. (24 a) :

8'3 + 482 - 10s - 40 - 3.85467282 + 38.54672
D1*(s) I

L 0 ss + 0.443869482 - 10s - 4.438694]

N 12*(s) = [22482 + 4-458 + 141 - 1388 - 178 - 1.2482- 1-458 +059

1.0282 - 0368 - 004 82 + 0.498 + 016 - 1.0282 + 0368+ 0"038]

Following eqn. (21 a) yields

det D11*(8) = (82 + s + 1)2(8 + 4)(s + 4"88073) = m12 (s)n(s)kj(s) = 0 (27 a)

det D,1 *(8) = (82 - 10)2(8 + 4)(s + 0.44386943) = m2
2(s)n(s)k2 (s) = 0 (27 b)

The common divisor n(s) of the det D,1 *(s) and det D 12*(s) is the common
factor n(s)eR[s] in eqns. (27 a) and (27 b). The transmission zeros of the T(s)
which are the invariant poles of the Ti*(s) in eqn. (26) are the zeros of the
polynomial n(s), or

n(s) = s + 4 = 0 (28)

The transmission zero is s= -4.
The computation involves only arithmetic operations of small-size matrices.

Therefore, it is believed that the proposed method is computationally superior
to most time-domain approaches if the system is given in the frequency domain.

4. Conclusion
A purely algebraic method has been presented for factorizing a rational

matrix transfer function into a pair of relatively prime polynomial matrices
and for determining the poles and transmission zeros of a multivariable system.
Also, the common divisor of two matrix polynomials can be determined from
the matrix Routh algorithm and the matrix Routh array. When a matrix
transfer function that might have a high degree common divisor is given, the
method proposed in this paper is computationally superior to most time-
domaia methods because the proposed algorithm only deals with arithmetic
operations of small-size matrices. The matrix Routh algorithm has been
extended for general cases (ni 6 no and ni = no).
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Hi 'uston, Texas 77004 Multivara l y t mo, =oo,""' M ltiariable Systems
R. E. YATES So,,e s,.tfirient and some necessary conditions for the stability of a class of multi-

Research Aerospace Engineer, variable systems represented by matrix polyomiials are derived. A new linear block
Guidance and Control Directorate transformation is also established for transforming an observable block companion

U.S. Army Missile Research and form to the block Schwarz form.
Development Command,

Redstone Arsenal, Ala. 35809

I Introduction n

The accurate description of most practical systems, for ex-neven

ample both a small semiactive teninal homing missile system where a d f m

(If and an aircraft system [21, result in high order coupled mlti- !_- n odd
variable differential equations. Linear representations of these 2

systems are by a set of coupled high-order differential equations Cj = B42-j j = i, 2, 3, ... ,l
or a matrix differential equation. A primary concern in the design
of these multivariable systems is the stability problem. One con- oi = I

ventional approach is to formulate the system into a high dimen- Ci.j = C-2.j+1 -i2Cl.j+ i = 1, 2, . j = 3, 4, ...

sional state equation, then to determine the stability by either i = ci.(c,+1.)- i = 1, 2, n
directly evaluating the roots of the scalar characteristic poly-
nomial, indirectly applying the Routh criterion [31, or applica- det (C,+l,) 9 0 (1)
tion of Jury's inner theory 141 on the characteristic polynomial. A sufficient condition for stability of the det [B(s)]is that all
However, the determination of a characteristic polynomial for the "iittrix (qutotients" It, be real, symmetric, positive definite
a large dimensional system is tedious. Moreover, if a system is matrices. Note that this sufficient condition deals only with Hi
modeled as a matrix differential equation, it is more natural to and not Cj., (the block elements in the first column of the matrix
determine the stability directly from the matrix polynomial than Routh array). Liapunov theory with the state equation in the
indirectly from a scalar polynomial. Some approaches have been controllable block companion (controllable phase-variable) form
proposed to determine the stability of a multivariable system was used to derive their reult.
directly from the matrix polynomial. Papaconstantinou [51 In this paper, we develop two approaches for determining the
suggested a scheme for testing stability of polynomial matrices, stability of a class of niultivarialle sysle s. one approach use-
In his work, a recursive algorithm was developed to compare the the "matrix quotients" .llj that are developed from an alternate
normalized largest eigenvalues with unity. H,)wever, the method matrix itth aIgorilhm and a state equation in the observable
requires the calculation of the eigenvalues of largest moduli for block companion form [7]. The other approach uses the block ele-
indirectly determining the stability of polynomial matrices. Re- mnls in the first omltii of tie matrix Routh array. Two suf-
cently, Shieh and Sacheti [6] partially extended the scalar Routh ficient conditions and three necessary conditions are derived
criterion [3! to the matrix case. In this work, it is shown that, if for the stibility of matrix polynomials, thereby partially ex-
a matrix polynomial B(s) = Isn + B s"-l + . .. + B, is given, a tending the scalar Routh criterion to the matrix Routh criterion.
matrix Routh array can be constructed by using the following
matrix Routh algorithm: 11 Sufficient Conditions

Ci.1 - B.+-j j - 1, 2, 3, .. I The objective of this paper is to establish the criteria for the
stability of the following matrix differential equations.

Contributed by the Dynarmic Systems and Control Division for publication B. BD'z(t) - [01, B.+1 - I (2a)
in the JO AL OF DYNAMIC SIMSMS, MEASURM.I T, ANFD CONTROL. Msnu-

aript osived at AME lHeadquirtm, July 17, 1978.
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and algroithm and alternate matrix Routh array which are different
front those in equation (1).

J-Ix(0) = [os] i = 1, 2, 3, ... , n (2b) Let us define I = n12 + 1 if n is an even number, otherwise

where x(t) is the ta-dimensional state vector. I, 1, and 10] are I = (n + 1)/2, and D,., as follows:
m X m real constant matrix, identity matrix and null matrix, , 2
respectively. For the scalar case, it is well known that a system D j = 1, 2, 3.
is asymptotically stable if and only if the Routh array elements Dt., = B,+2-, j 1, 2, 3, ... ,
in the first column are all positive. Shieh and Sacheti [6i] partially
extended the Routh criteria 131 to the matrix case and derived Do = I (5a)
a sufficient condition for the stability of a multivariable system
in equation (2) from the controllable block companion form. In The alternate matrix Routh array and the matrix Routh algo-
this paper we derive some ultlicient and some necessary condi- rithm are:
tions for the system in equation (2) from the observable block
companion form.

Let us rewrite the system in equation (2) into the following
observable block companion form: D,1 - B.+, D., -B_-

[1] - [B][x] (3a) MA, -D,-'D, <

[(0)j -[a] (3b) D - B. o - .B....

where M, D,-'D, <

0 0 0 0 - B 1  
Do Q D u- D M , D. & D. - , Din. 4

I 0 0 0 -B, M& <

SB = 0 1 0 0 -B, D, Q Du - DOM D, s Du - DM D".

1 . . . . . .M 4 - D a-D , <

L0 0 0 -B D, Q Da - DaMs Do

The dimensions of the matrix [B], the block elements B,, and
state vector [x] are (am) X (nm), m X m, and (am) ) 1, re- D.,
spectively. Equation (3) can be transformed into the block
Schwarz form by using the following linear transformation: M. D.+j,,-D..j <

[xi = [KII[y] (4a) D..... (5b)
and where

[] = [K,]-'[B][Kil[yl = [AI[y] (4b)

where

D._. ._. I D .D .- I 0 D._6.4._s.j-1

0 IDD,-l 0 DaD-l 0 DuD-1

0 • 0 0 DuDu-' 0 D,5Ds-i 0
0 0 I 0 DaD 1- 0 DD,-t

[K- fi-- ------------ (4c)0 0 0 1 0 DAD- 0

0 0 0 0 I 0 DaD,-

0 0 0 0 0 , I 0

0 0 0 0 0 : 0 1

and
00D , .j - D j_ j .j + j - D j t.j + jM j .4j - 1 , 2 , . . i -3 , 4 , . .

1 0 -A2 0 0 M - D.+,.-1Ds.j i - 1,2,..., n

0 1 0 0 0 det [D,+4 ,1 F 0 (5)

A] The construction of the matrix Routh array in equation (515) is
0 0 0 0 -A.-t m follows. Arrange the matrix coefficients of the given matrix
0 0 0 f -A. polynomial in equation (2a) in the first two rows of the array

shown in equation (5b). A new matrix H, is obtained by theThe dimension of each block element in IA] and [K,] is "t X m. matrix multiplication D-I, where Do and , are the block
The block elements D,.j, having dimension m X m, in equat io elements in the first column of the array. The block elements in
(4c) can be obtained from the following alternate matrix Routh the third row are generated from the Mt and the block elements
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in the first two rows aws follows- First, each block element in the where
second row is postinultiplied by .111, then, subtract each resulting
matrix from each block element in the first row, finally, shift M
each block element so obtained one column left and drop the M.-, 0 0I zero-first block element to form the third row. The second and P = (8b)
the obtained third row are then used as starting rows to generate 0 M2 0
the new matrix M, and the lock elements in the fourth row. Ile- 0 0 M,
peating the processes to the it + I row yields the complete matrix
louth array. When any ),+,.l matrices other than D,, or D.. 1  and T in equation (8a) designates transpose.
in equatiott (5c) are singular, another set of D,,j.j can be chosen Since I M4i are positive definite which implies that P is posi-
from the new matrix polynomial that is the product of the tive definite, V is positive definite. The derivative of V is
original matrix polynomial and an asymptotically stable matrix
polynomial. Thus a new matrix Routh array can be obtained V - [z]r[PF + FrPJ[z]
and the stability of the original matrix polynomial is preserved - [z]'[Q][z] = - [z][RR][z] (ga)
because the stability of the original matrix polynomial is in-
variant under this transformation. Shieh and Sacheti [61 have where
(1) are positive definite, then the system in equation (2) is stable.

Here, we show similar results when replacing H, by M,. Note 0 0 0 0
that a positive definite matrix means a matrix is real, symmetric IQ] . ..... IR] = • (9b)
and positive definite. 0  0 0 0 0

Theorm. If I{A j i =f 1, 2, .. ,n in equation (5) are posi- L0  0• 0 211, /21
tive definite, then the system in equation (2) is stable, rank [Q] = rank [R] = m. From equations (8) and (9) we can

Proot. Performing the following new transformation see that V is a Liapunov function. Hence, we conclude that the
system in equation (2) is stable.

[y] - [K2][z] (6) From the result obtained in Theorem 1, we establish another
sufficient condition for the stability of the system in equation

on equation (4) yields (2) by using the block elements D,,, in the matrix Routh array
in equation (5) instead of the Mi in equation (5).

[*1 = [{I[1[A][KIzJ
Theorem 2. If ID.1.I i = 2, 4, 6, ., are positive definite, the

= [F][z] (7a) eigenvalues of Dij I i = 1, 3, 5, ... , are positive and real, and
where ID,.,Di,+,.,j i = 1, 3, 5, .. 1D Di+,.,D., I i = 2, 4, 6, . are

Hermitian, the system [equation (2)] is stable.

D.., 0 0 0 In order to prove Theorem 2, we need the following lemma

0 D,.- • 0 0 which is due to KyFan [9] [p. 137].

[K2] (7b) Lemma 1. Let K be positive definite and Ks such that KIK,

0 D21 0 is Hermitian. Then KKt is positive definite if and only if the
0 • 0 Du eigenvalues of K, are positive and real. In the following lemma,

we switch the conditions on K, and K2 yielding the same result.
and

0 -M. 1  0 0 0 0 0

M._,- 1  0 -M1.-1 0 0 0 0

0 M...-i 0 0 0 0 0

[IF- 0 0 0 0 -M41- 0 0 (7c)

0 0 0 M,-1 0 -M.-i 0

0 0 0 0 M -  0 1M1-t

0 0 0 0 0 AMi-t -M,-'

It is noticed that, if each block element in the matri< [F] in
equation (7c) were a scalar, then the matrix [F] would be a Lemma Let K, be positive definite and K, such that KK
matrix of the Schwarz form 19I. Since the elements are blocks, is Hermitian. The KKi is positive definite if and only if the
the matrix IF] in equation (7r) is a block Sehwarz form matrix eigenvalues of K, are positive and real.

The linear transformation matrix [K] between z coordinates
and z coordinates is Proof. Since K, is positive definite which implies Ki r is posi-

- (KI~z] - 7K,1IKlul (7d) tive definite, where T designates transpose, it is seen from lemma
I] - - ]I that KrKtr is positive definite if and only if the eigenvalues

Now, consider the following quadratic equation: of K r are positive and real. But KrK r - (KKs)r; i.e.,
KlKi is positive definite if and only if the eigenvalues of K, are

V - [sJriP][2] (8a) positive and real.
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Lemima 3. If K2 is positive definite and RKK is symmetric, -i1 2.11

then KI-'K2 is symmetric. Dil - Ci Dil - i
Proof. Since (KIKI)r = K2TKi r = K2Ki7 = KiK2 which In Bellman [91], [p. 67, p. 101 it is shown that, if Aj, BI, and C,

imiplies KIT = K2-IKIK..
,  ilence (K -IK )r K ,,r(K -) r  are positive definite, then the roots of dot [A Is2 + B ig + C 11 =f 0

f K -IK,-IK, = KrIK 2 ; i.e., K-IK2 is symmetrie. have negative real parts. But in this example, no conclusion can

Proof of Theorem 2. By lemma 3, we know that I) be made from Bellman's results. However, we know that

issymmetric for i = 1,2 .... By leminma 2 or 3, we know that [25.77 13.7]
Ml, = D,+.- 1D. 1 is positive definite. Hence, the system inD,•D =As•B

equation (2) is stable following the results of Theorem 1.
In order to show an application of Theorem I and Theorem 2, and

let us consider the following matrix characteristic equation:

As3 +1 Ba +I C -f 0 (10a) Dili• D. - U.' B. -3 '63] (1lib) 7
1[3 0.9

where which are symmetric, B, is positive definite, and the eigenvalues

10
11 of At and (', are positive and real. Therefore, from Theorem 2

A = I , B= II ad C = we conclude that the system in equation (ila) is stable. AlthoughLA IJ B Lnd C = 'I only second order matrix polynomials with 2 X 2 matrix coef-
ficients are illustrated in the examples, the theory is valid for

If we arrange the imatrice. A, H, and C in equation (0a) by high order matrix polynomials.

following the matrix Routh algorithm of equation (I), we obtain

I 0

H, A- 1 ]<
8 13131

C',, B- 3i ]

C. C [ 3 (10b)

In this ease, no conclusion can be drawn from the sufficient con-
dition established by Shieh and Sacheti 161. However, if we ar-
ranged the matrices A, B, and C according to equation (5), we
have

DI-A=[ I0 ] D12= C = [I ]

D1 -- 
11

02]

From Theorem 1, we see that the system is stable.
This example shows the application of Theorem 2. Let us con-

sider the following matrix characteristic equation:

At82 + Bts + C, - 0 (la) III Necessary Conditions

where In this section we establish some necessary conditions for the

10 [25.77 13.7 stability of multivariable systems. The failure to satisfy the
i , - ] , - A, - , necessary conditions for stability is equivalent to the sufficient

10 113.7 7.3j' conditions for the instability of the same systems; i.e.,
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Theorem 3. If .lMd i - 1, 2, .. , n are symmetric such that, Hence, the system is unstable.
there exists one 1.M1I i - 1, 2,., it which is negative definite, The next criteria is another necessary condition which we
negative semi-definite, or indefinite, then the system in equation state as follows.

(2) is nstable Theorm . If det Dit > 0 and det Di.. < 0, or det Du < 0

Proof. Suppose the system is asymptotically stable and one and det Di,. > 0, and Dii, D.,. aredefined in equation (14), then
of 13l,) is negative definite, negative semi-definite, or indefinite, the system in equation (2) is unstable.
Since the stability is invariant under the linear transformation
and the matrix F in equation (7) is a stable matrix. Let us con- Proof. Since the system in equation (2) has the matrix ha-
sider the following equation: acteristic equation [D(s)] in equation (14), then we expand the

det [D(s)]. We find the constant term is equal to d:et B, - dd
XF + FTX - - Q (12) D,. If det D, > 0 and dot Di., <0, this implies that the coef-

where Q is a matrix defined in equation (9b). By Thoeren) 4 in ficient of the polynomial det 1D(s)] has a negative sign. We can
Bellman 191 [p. 239j and the theorems in Anderson [10 and then conclude that the det [D(s) = 0 has a solution with a

Barnett [111 [p. 861, we know that equation (12) has a unique positive real part. Hence the system is unstable.
solution. Since Q is positive semi-definite and rank [QI = rank
[RI - m, we conclude that the solution X of equation (12) is IV Conlusion
also positive semidefinite. Furthermore, X is positive definite Some necessary and some sufficient conditions have been de-
if the pair IF, Rrj is observable. It is easy to verify that the veloped for the stability of a class of multivariable systems. A
matrix P which was defined in equation (8b) satisfies equation linear block transformation has been derived for transforming
(12). Therefore N - P is positive semidefinite or positive def- the coordinates of an observable block companion form to the
inite. This implies that at least one of the I.MilI is positive semi- coordinates of a block Schwarz form. The new method has

definite and others positive definite or all positive definite. This partially extended the scalar Routh criterion to the matrix Routh
contradicts our assumption that one of the 0.Mi) is negative criterion to a class of multivariable systems.
definite, negative semidefinite, or indefinite. Hence the system
in equation (2) is unstable if one of the I M.I is negative definite, Acknowledgments
negative semidefinite, or indefinite.
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