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ABSTRACT

I The newly developed dominant-data matching methodwhich was the

research result supported by the U..S,. .Army Missile Research and Development

Command under DAAK 40-78-C-0017 has been successfully extended to design

a digital pitch control system of a semiactive terminal homing missile

system. As a result, the designed digital controller can be implemented

on a microprocessor. Also, a direct-decoupling method for multivariable

control system designs has been developed and modified. This newly de-

veloped simple and practical method can be readily applied by a practicing

control engineer for coupled high-order multivariable control system

designs. The feasibility of synthesizing a multi-port controller without

using integrators has been studied. As a result, a new matrix Sturm series

and block canonical form of a matrix transfer function has been developed.

The practical applications of the newly developed results on multi-port

network synthesis are further investigated. Other new findings of this

research are reported in the appendix.
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CHAPTER I

INTRODUCTION

This report deals with the digital redesign of the pitch control system

of an unstable semi-active terminal homing missile system. It also concerns

with the design of a coupled high-order multivariable control system and

the realization of a multi-port controller.

In Chapter II we extend the newly developed dominant-data matching

method, which was the research result supported by the U. S. Army Missile

R&D Command under DAAK 40-78-C-0017, to design the digital controller for

the pitch control system of an unstable semi-active terminal homing missile

system. In Chapter III, we introduce a new and simple method for coupled

high-order multivariable control system designs. In Chapter IV, we develop

a new block canonical form of a matrix transfer function for possible

realization of a multi-port controller without using integrators.

Other new findings of this research are reported in the appendix.
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Chapter]3

A DOMINANT-DATA MATCHING METHOD FOR DIGITAL FILTERS
AND DIGITAL CONTROL SYSTEMS MODELING AND DESIGN

L. S. Shieh ,Y. F. Chang ,and R. E. Yates 2

I ABSTRACT

j A dominant-data matching method is presented for obtaining

a reduced-order discrete-data pulse-transfer function from either

a high-order continuous-data transfer function or a high-order

discrete-data pulse-transfer function, and for identifying the

pulse-transfer function of a system from available experimental

time and frequency response data. The method may also be applied

to the digital control systems design problem with various sampling

periods. The same method can be used for digital filter designs

if the filter specifications obtained by this method are viewed

as control specifications. The discrete-data system has the

exact dominant characteristic performance of the original con-

tinuous-data or digital system. The relaxation of the sampling

period requirement and the flexibility of our new method facilitate

the practical industrial implementation and application.

1 L. S*. Shieh and Y. F. Chang are with the Department of
Electrical Engineering, University of Houston, Houston, Texas
77004.

2 .E. Yates is with the Guidance and Control Directorate,

U.S. Army Missile Command, Redstone Arsenal, Alabama 35809.



I. INTRODUCTION

Most practical industrial circuits and control systems are

continuous-time systems for which analog filters and controllers

are employed to improve performance. The recent availability

of high performance, low cost microprocessors and associated

electronics has led to replacement of many continuous systems

with systems employing digital filters and controllers. Many

techniques have been developed for digital control systems design

(l]-[4]. Among them the w-domain bilinear transformation is

often applied to design industrial digital controllers. However,

this method is graphical and involves "cut-and-try" procedures.

Recently, Kuo [5) and others developed an optimal discrete-time

data matching method for the redesign of a continuous-data system.

Constant controllers instead of dynamic digital controllers are

mainly employed in these designs. As a result, good performances

of redesigned systems can be achieved if the frequency of the

input signal is sufficiently lower than the sampling frequency.

As an alternate to Kuo's time-domain approach, Rattan and Yeh

(6] have given an elegant frequency-domain method for the redesign

of continuous-data systems. The method of weighted least-squares

complex-curve fitting due to Levy [7] and Sanathanan and Koerner

[8] has been successfully extended in the z-domain to determine

a dynamic digital controller. As a result of these efforts,

better performance of redesigned systems can be achieved. However,

this method is restricted to systems whose controllers are se-

lected in such a way that the linear solution of the unknown

constants in the controller is possible. On the other hand,

if both feed-forward and feedback dynamic digital controllers

are employed in the design, the closed-loop pulse-transfer function

may have nonlinear coefficients of the unknown constants of the

controllers. Therefore, the linear solution to their method

may not be valid. Furthermore, most often design goals are as-

signed by using a mixture of time-domain, frequency-domain and

complex-domain control specifications [9] rather than a set of

frequency-response requirements. Therefore, complex-curve fitting
2



methods may not be applicable. In this paper, a computer-aided

method is proposed for matching the dominant data of a high-order

continuous-data system, or a discrete-data system, with the dominant

response of a low-order digital system replacement. Also, methods

are given for system identification and digital controller design

of these systems.

II. DOMINANT DATA AND DOMINANT-DATA MATCHING METHOD

The characteristics of a control system or a filter are

often expressed by either a time-response curve, or a frequency-

response curve or a set of poles and zeros in the complex plane,

or both. The quantitative description of the steady-state behavior

is characterized by its final value as t-i- and by the value

of the steady-state frequency response as w-0. On the other

hand, the quantitative description of transient behavior is rep-

resented by its time-domain control specification [9] (for example,

the percentage overshoot and the rise time) and by the frequency-

domain control specifications (for example, the maximum value

of the closed-loop frequency response and the bandwidth). These

specifications which are defined for control systems can be con-

sidered specifications of analog or digital filters. This is

because a digital system (or a discrete-data system) can be viewed

as a continuous-data system in the frequency domain when z = e jwT

where T is a sampling period.

Some empirical observations or rules of thumb due to Axelby

[10] that link the specifications of the continuous-data systems

in both the time and frequency domains are as follows:

M = 1
1. Mt pM si- (la)

t : Maximum value of unit-step response

MpMaximum value of the closed-loop frequency response

m:Phase margin.

3



2. M _ (ib)e WwC

Me: Maximum value of the error of the unit-ramp function.

W C: Gain-crossover frequency

3. w p w c (ic)

W p: The peak value frequency or the frequency when Mp occurs.

4. Mt Z Wc (id)

M: Maximum value of the unit-impulse response.

5. t -3 (le)
p c

t p: The peak value time or the time when Mt occurs.

p" t

c

tv: The time when the maximum error of the ramp function
with respect to its input occurs.

7. tc w I (1g)
c

tc: The time when Mt occurs.

Other rules of thumb according to Truxal [ii] are:

8. trwb 0.6N to 0.9n (lh)

tr: The rise time or the time required for the response
to go from 10 to 90 percent of its final value.

Wb: The bandwidth in rad/sec.

td = (li)9" t
d v

td: The delay time or the time required to reach 50
percent of its final value.

Kv: The velocity error constant.

4



The above rules can be verified by using the standard second

order transfer function:

2
Y(s) 22 (2)
R(S) s 2 + 2E ns + W n

where R(s) and Y(s) are the input and output functions, respec-

tively, C is the damping ratio, and wn is the undamped natural

angular frequency. The zero of the system is located at infinity,

and the finite poles are in the complex plane. The E and w

as used herein are defined as the complex-domain control specifi-

cations.

Recently Shieh et al. [12] have studied the relationships

between the complex-domain specifications ( and w n) and the

time-domain and frequency-domain specifications by using a more

sophisticated model

TW(nl ns+WnS

Y(s) = WnS +Wn = = .s* + 1
R(s) s 2 + 2 wns + wn2 (j)2 + 2E( n)+ 1 s,2 + 2Es* + 1

(3)

where s* = s/w n is a normalized complex variable and T indicates

the location of a finite zero. The relationships are as follows:

1. Mt, tp,, n  and T

t= ( v +/ tan -n2) (4a)

Mp =1+ ean 1 2 \l/2l

Mt = 1 + e- ntp(T - 2TE + 1) 1 / 2  (4b)

2. M, p' W , nand T

p n' if T = 0 (4c)

Mp = /(2 /1- 2) if = 0 (4d)

5



and

= 
- if T / 0 (4e)

2!( 2 2 12 " 2ifr 0

Mp = 2 2 + 1) 2 4 2T - ( [ + 1) + 2 2 2 if 0

(4f)

.bm' c' n and t

nw(2 T)- c

(tan-1 - T (4g)

22 + 2 2 - 2rT) 2 4- ] 1/2 (4h)

4. tv ,  M e ,  C, tn ,  and T

I tan - I /1- (4i)
v e T

n

Me = [ - T + (1 + T 2 2 T ) e "Wnt Wn (4j)

5. tc' lt w' n' and T

tc ~ tan- 1[(1 - 2FT) 1 ..2  (4k

tc A - 2 C 2 2 + 
(

n

t ntc 2 x + 1 
(41)

6. KV' ' n' and r

Kv n if T < 2(

(4m)

6



4

7. w b ' W n and T

Wb= Wn[(i + T2 _ 22 CI + T2 2E 2)2 + 11/2 (4n)

The above analytical expressions can be plotted by letting

Wn = 1 and E the variable. Once a specification is defined,

other corresponding specifications can then be determined. In

other words, if time-domain specifications are assigned, the

corresponding frequency-domain and complex-domain specifications

can be determined. The frequency-response data or the equivalent

data obtained from Eqs. (1) and (4) at wn' Wc' W 1 1 p' wb' etc.,

are the dominant data as used in this paper. Other important

data will be the frequency-response at s=jw=jO because these

characterize steady-state behavior.

Our new dominant-data matching method matches the above

dominant data of a continuous-data or a discrete-data system

to those of the newly designed or modeled discrete-data system.

The steps involved are as follows:

Step 1: Determine a set of dominant frequency-response

data from the assigned time-domain and complex-

domain specifications by using the rules and results

in Eqs. (1) and (4).

Step 2: Assume a fixed configuration digital system and

controllers with unknown constants. Determine

the open-loop and the overall pulse-transfer function

of the system.

Step 3: Formulate a set of linear/nonlinear equations

by matching the unknown constants of the pulse-

transfer function and the assigned dominant data.

Solve the equations by using the multidimensional

Newton-Raphson method [13], available as a library

computer program package (called the Z system)

in many digital computers [14].

7



Step 4: Estimate initial value for the numerical solution
of the Newton-Raphson method by constructing a

crude pulse-transfer function which can be obtained

by a complex-curve fitting method.

Step 5: Compare the results with the assigned specifications.

When the dominant data are obtained from either a high-order

continuous-data transfer function or a high-order discrete-data

pulse-transfer function and a low-order pulse-transfer function

is required; this is a model reduction problem. If the dominant

data are determined from an experimental set of time and fre-

quency data and the corresponding pulse-transfer function is

required, this is the identification problem. The order of the

identified pulse-transfer function depend--. on the number of dominant

data parameters used. Therefore, the identified pulse-transfer

function could be the reduced-order model of the original high-

order system. The above two problems can be considered the modeling

problem. When the design goals are specified by a set of dominant

data and the digital controllers with unknown constants are designed

to match the desired dominant data, this is the design problem

for digital control systems. Applications of the above new method

will be described in the following sections.

III. MODELING A REDUCED-ORDER PULSE-TRANSFER FUNCTION

We use a real stabilized pitch control system of a semiactive

terminal homing missile [15] as an illustrative model to show

that the characteristics of the transient-state response of a

system can be estimated from the dominant frequency-response

data and the applications of the proposed method to the identifi-

* cation and model reduction problems. A block diagram of the

missile system is shown in Fig. 1. The closed-loop high-order
transfer function is

Y(s) G Gc (s)G0 o() - G e(s) A T()(a
R~) 1 + G c (s)G 0 (s)H 9(s) 1 + G C~s) e s)(a



where

Go (s) = the stabilization filter

.6( 5 + i) , + 1) (b)
[( 2 s + 1

G (s) = The transfer function of the actuator and aerodynamicsof the missile system

324332.316(s + 0.1933)(s + 65)(s + 1500)

s(s - 2.921)(s + 3.175)(s + 87.9 + j95.5)(s + 112.5)(s + 138

(5c)

H (s) = The transfer function of the gyro = 1 (5d)g

G e(s) G c(s)Go (s) = The unstable open-loop transfer function
of the existing stabilized system. (5e)

The closed-loop transfer function Te (s) becomes

T (S) b 0 + b1s9 + ... + b9 s + bl0  (6)
e a0s11 + as 1 0 + ... + a1 0 s + a1 1

where

a0 = 1 b0 =0

al = 1.923554000 x 103 bI = 0

a2 = 9.316239040 x 105 b2 = 0

a3 = 2.976950696 x 108 b3 = 0

a4 = 6.231675318 x 1010 b4 = 0

a = 9.360329977 x 1012 b5 = 1.494523312 x 10I I

a 9.749923212 x 1014 b = 2.563396371 x 1014

a7 = 6.667397031 x 1016 b = 5.017212044 x 1016

a8 = 2.420405431 x 1018 b8 = 2.926344345 x 1018

a9 = 2.911920560 x 1018 b9 = 4.610004670 x 1019

10 = 2.419047424 x 1019 b1 0 = 8.802158509 x 1018

a11  8.802158509 x 1018

9



The Nyquist plots of Ge (s) and G (s) are shown in Fig. 2. The
dominant data of Ge(s) are:

1. Real and imaginary parts of Ge(s) at s = jw jO are
Se[G2.103817 (7a)

Rem[G e (j0)] = 
I

2. Gain margin Gem of this system Ge(jw ) is

Gm= 'G (i) = I~ "II (7b)
G IG(jIRe [Ge((j) '-1.5'(b

Gem Ge (J7n[e J1)

where the phase-crossover frequency w is given by
W 1.9 rad/sec, such that /Ge (jW ) = 1BO (7c)

The equivalent real and imaginary parts of Ge (JW 7 ) at w 1.9

rad/sec are

Re[Ge(jw, )] = -1.507944 (7d)

Im[Ge (jw, )] = -0.006490205 (7e)

3. Phase margin 4 em of the system Ge (Jw)is

em = 1800 +/Ge(Jc) 5.77870 (7f)

where the gain crossover frequency wc is given by wc 3.2 rad/sec

so that,

IGe(jWc)I = 1 (7g)

Equivalent real and imaginary parts of Ge(juc) are

Re [G(jwc)] = -0.9939143 (7h)

Im[Ge (jwc )] = -0.09547478 (7i)

It is required to determine a reduced-order pulse-transfer function

such that the characteristics of the identified discrete-data

model agree as closely as possible with those of the high-order

continuous-data system.

Let the required overall pulse-transfer function be

T (Z) Gr  (8a)
r (z) 1 +G r (z) (8a

10
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where the open-loop pulse-transfer function Gr (z) is

rx0zP + xlzP- + p-l p (8b)
(z - l)(Y 0

zq  + + * + -z  + Yq)

G r(z) is assigned to be a type "1" system because Ge (s) in Eq.

(5e) is a type "1" system. To match the five dominant data in

Eq. (7) we choose q = 2, p = 2, and y0 
= 1. Thus Gr (z) becomes

x 0 Z2 + X1 Z + x2
r() (z - 1)(z 2 + ylz + y2 )

where xI and y in Eq. (9) are unknown constants to be determined.

The goal is to determine the unknown constants x k and yL in Gr(z)

so that Gr (z) as z = ejwT matches the dominant data in Eq. (7).

The sampling period T (=0.008 sec) and w s(=250n rad/sec) are

chosen to be synchronized with the 125 Hz pulse-width modulated

actuator [16]. Since Ge(s) and G r(z) are type "I" systems and

we need to match the dominant data of Ge (jw) as w = 0 in Eq.

(7a) and the dominant data of Gr (z) as w = 0 or z = ejwT = 1

in Eqs. (8b) or (9), the expression for Gr (z) in Eq. (8b) is

modified as follows:

Substituting z = z* + 1 into Eq. (8b) yields
* * * +*z*p

xp* + xp z* + ... + x *z*

Gr (z*) = . p * .. q0
*(yq + Yq-1 z + ... + y0 z)

ei-I * *2
= e_1 z + e0 + e1z + e2z + ... (10a)

where p P q q

xP = z xi, xp_1  Z ix ' Yq ., Yi' = E iyqi,
i=0 i p-i =0i=l

e_l x /y and e= (yxp-1 - y -x)/Yq ' etc.
1 p q 0 qp- q p q

Equating the respective real and imaginary parts of Gr (z) for

w = 0 and those of Gr(z*) for w =0 gives

11



r z = 1 + j0 r z = z-l = jO 0

and

Im[Gr(z)] I = 1 + jO Im[Gr (z*] IZ = z- = jo = c (10c)

Eqs. (10b) and (10c) imply that e0 in Eq. (10b) is the asymptotic

line of the type "1" systems at low frequencies.

In the frequency domain, Eq. (9) can be expressed in an

alternative form as follows:

Let us define

jWkT
z = e Cos Wk T t j sin wkT = k + jv k  (Ila)

and substituting z = uk + jv k into Eq. (9), we have

(X0U2 - X0Vk + xluk + x 2 ) + j(2X0UkV k + x1v)

r(kk [(uk -1) (uk - vk + YlUk + Y2 ) - vk( 2ukvk + Ylvk)]

+ j [cu k -1)(
2ukvk + YlVk + vk(uk2 - Vk 2 + YlUk + y2)]

=R k + j Ik  (llb)

where Wk are specific frequencies and Rk A Re[Gr(uk,vk)] I k A

Im[Gr(Uk,Vk)]. If Rk and Ik are the known or assigned values at

frequencies wk' we can obtain two linear equations. First, we

multiply both sides of Eq. (1ib) by the common denominator, then

we separate the real and imaginary parts and then equate the

respective real and imaginary parts. Thus we have

fi(x 0 ,xlfx 2 ,ylY 2 ) = (xOuk - xOvk + xluk + x2 )

Rk [(uk - (uk  vk + Yluk + y 2 )

- vk ( 2 ukvk + YlVk)] + Ik [(uk- 1)( 2 UkVk

+ Ylv) + vk(uk Vk2 + YlUk + y2)] = 0

12 (lic)



and

fi+lX 0 ,xlX 2 ,YlY 2 ) = (2 XOUkVk + XlVk)

- Rk [(Uk - 1)( 2 UkVk + YlVk) + vk(uk 2 -v k2

+ YlUk + Y2)] - Ik [(Uk - 1)(uk 2 - k2

+ YlUk + y2 ) - vk( 2ukvk + YlVk)] = 0

(lid)

Using the expressions in Eqs. (10b), (lic), and (lid) and the

assigned dominant data in Eq. (7) we can formulate one nonlinear

equation and four linear equations fi(xl,y£) = 0 for i = 1,2,...,5

as follows:

(i) The data in Eq. (7a), or Re[Ge(jw)]_ = -2.103 for w= 0

and the relationship in Eq. (10b) gives a nonlinear equation:

f(X ' (2+ X( ))x
ly (2x 0 + x1 ) (1 + Yl + Y2 ) - (2 + y) (x0 + 2)

2
+ 2.103(1 + Y + Y2 )  0 (12)

(ii) From Eqs. (7d) and (7e), Re[Ge(jwT)] = -1.507944 and

Im[Ge(jwn)] = -0.00649025 for w, = 1.9 rad/sec. We define

RkAR. 1574,I A A=1.507944, = 9 = -0.006490205, wk = 1.9 = = 1.

AA
uk = U. 9 = cos W1.9T = 0.99988448 and vk A Vl. 9 = sin w 1.9T

= 0.01519941 as T = 0.008 sec

Substituting the above data into Eqs. (llc) and (lid) and letting

i = 2 we have two linear equations f2 (x£,y£) = 0 and f3 (x£,y£) = 0

as shown in Eqs. (llc) and (lld).

(iii) From Eqs. (7h) and (7i) we define wk = WC = 3.2 =3,2'
A A

uk = U 3 2  cos W T = 0.99967234, vk = V3 2 = sin w3 2 T = 0.025597204,
k A3. 3.2 A k 3. 32

Rk R 3.2 = -0.9939143 and Ik = 13.2 = -0.09547478. Substituting

the above data and i = 4 into Eqs. (llc) and (lid) yields two

more linear equations f4 (x£,yR) = 0 and f5 (x£,y£) = 0. Thus,

we have five simultaneous equations fi(xL,y£) 0 with five unknown

13



constants x and y. to be solved. Notice that if the data of

Eqs. (7b), (7c), (7f), and (7g) are used to match the unknown

coefficients of Eq. (lib), the resulting equations fi(xi,y£) = 0

in general are nonlinear. Therefore, we note that in general

the equations fi(xi,yi) = 0 are nonlinear. The Newton-Raphson

method available as a library computer program in most digital

computers [14] can be applied to solve these nonlinear equations.

However, as is well known, the Newton-Raphson method will converge

to a desired solution for a small range of starting values or

initial solution estimates. To improve the convergence and to

obtain the set of desired solutions, we offer the following method

for initial estimates.

Since fl(x ,y£) = 0 is nonlinear and fi(xi,yi) = 0, i = 2,...,5

are linear equations, we linearize fl(xi,y ) = 0 by choosing

a very low frequency. For example, if we choose w k = 0.01
AA k A0.01' then Rk = R0. 0 1  -2.1, k 10.01 = 40.17319, uk = U0 01

cos W0 01 T,= 0.99999950 and vk =kv 0 .01 = sin 0.01 T = 8 x 10 - .

Solving fl (x£,y ) = 0 and fi(x ,y ) = 0, i = 2,...,5 for the

unknown constants x (defined as xZ*) and y, (defined as y.*)

we get x0 * = 0.00679254, x1 * = -0.0123359, x2 * = 0.00554537,

YI* = -1.9985417, and Y 2* = 0.99794573. Using these values as

initial estimates for the solutions of fi(x,,yZ) = 0 using the

Newton-Raphson method we obtain the solution x0 =0.00679259,

x = -0.01233599, x2 = 0.00554531, yl = -1.9985412, and Y2 =

0.9979452 at the second iteration with error tolerance of 106.

The desired open-loop pulse-transfer function is

Gr(z) = 0.006792596z 2 
- 0.012335992z + 0.0055453114 (13)

z 3 - 2.9985412z 2 + 2.9964864z - 0.9979452

A Nyquist plot of Gr (z) is shown in Fig. 2. The plot matches

closely that of Ge (s) not only at the dominant frequencies but

also at others. The Gr (z) is seen to be a good reduced model

of the original unstable system Ge(s). This is the contribution

14



of our new method because there are no known effective model-

reduction methods for unstable systems. The resulting closed-

loop pulse-transfer function which is the reduced-order discrete-

data model of the original high-order continuous data system

is

TrZ G r 0.006792596z 2 _O.012335992z + 0.0055453114
~~Gr (z) Gr z 3- 2.991748524z22 + 2.984150408z - 0.9923998886

(14)

Since the assigned dominant data are the steady-state frequency
response, it is interesting to compare responses of T e(s) in

Eq. (6) and Tr (z) in Eq. (14) shown in Fig. 3. Observe that

both the transient response and steady-state response of the

reduced-order model Tr (z) are excellent matches of the original

high-order system. This indicates that the dynamic characteristics

of the system (for example, peak value time and overshoot, which

may not occur at the sampling time) are indirectly controlled

by the assignment of the gain-crossover frequency and the phase

margin. This is a major advantage of our new method. Also note

that the reduced-order model gives an excellent approximation

of the original system when driven by high-frequency input signals.

To determine the initial estimates x i * and y,*, a general

formulation of a set of linear equations can be constructed from

the following complex-curve fitting method.

Consider the pulse-transfer function

x *z M+ x *z + +x*
G ~ 0 1 m(5a
G ) * n * n-l (1a

yoz + ylz + + n

where y0  1 and x~ and y.are unknown constants to be determined.

Sul)stiLuting z 0 - QrkT cos rw kT + jsnrw kT in to Eq.(1a

gives

15



m , m ,

(ej r k) Zxcos(m - )WkT + j , x~sin(m - )4WkT 

n n ,
E ycos(n - Z)wkT + j Z ysin(n - ')wkT2=0 2=0

= R(wk) + jI(Wk) = Rk + j1 k (15b)

where Rk and Ik are the real and imaginary parts of the transfer

function at the experimental frequencies or the assigned frequencies

Wk. After multiplying both sides of Eq. (15b) by the common

denominator and separating the real and imaginary parts, we equate

the respective real and imaginary parts. This yields the following

matrix equation:

--n T - X-
Cosahi~T Cos(m-l ) T .. 1 (-R cos(n-I)wT + ilsin(n-1)wjT) .. I-RIcOSW 1 T + 1 sin&,T) -11  0

SIn 1AlT sintm-1)wT .. 0 (-R sin(n-l)wT- Ilcos(n-1)wjT) .. (-RlsinwT- IlCOSwl
T
) -I1  xI

cosMW T cos(m-1)wiT .. 1 I-Rjcos(n-1)wiT + Ijsin(n-1)wiT) "" (-RicoswiT + lisinwiT) -R i Y1

sinma T sin(m-1)wiT 0 (-Risin~n-1)wiT - Iicos(n-1)wiT) "" (-Rjsinw1 T- IicoswiT) -Ii Y2

yn

(R0 cosnw 0 T - I 0 sinnw 0 T)

(R0sinnw 0 T + 10 cosnw 0T)

R icosnw _T I- i s i T)  (15c)

(RisinnwIT + I cosnw i T)

Substituting the selected (n + m + 1) frequency-response data

into Eq. (15c), we can solve for the required (n + m + 1) unknown

constants x£ and y£.
16



IV. DIGITAL CONTROL SYSTEM DESIGN

Consider the pitch control transfer function of the missile

system of Eq. (5a). The unity-feedback system without the sta-

bilization filter Gc (s) is unstable, and a rate gyro is not available

for this example system. It is required to design a digital
controller Gc (z) instead of an analog controller Gc (s) such

that the designed system has the exact control specifications

[9] of the original stabilized continuous-data system given in

Eq. (7). Furthermore, the response G (jw) at w = 140 rad/sec
e

14 is chosen as a dominant data constraint because the system
has an inherent high frequency noise component at w1 4 0 " This

is a digital redesign problem. The structure of the digital

control system is shown in Fig. 4. The closed-loop pulse-transfer
function of the desired digital system becomes

Y(z) = c (z)G G (z) T Gel(Z)
R(z) 1 + G (z)G G (z) el(Z) = 1 + G (Z) (16)

c n o el

whr bz 6 + bl5+ ... + b
wh r0 G (z) = (1 - Zl)Z F !. G (s l b 0 o b z 5 ++b 6no =l oS a0z 7 + alz 6 + ... + a7

b0 = 0.4095517916 x 10- 4  a0 = 1.0

bI = 0.2526111734 x 10- 3  aI = -4.120000127
i 2 -0.2575534058 x 10 -  a2 =6.894911119 |3

b3 = -0.254755340 x 10- a3 = -6.894911119

Sb 4 = 0.1096039580 x 10-3  a4 = 3.023078996

Sb 5 = 0.8808224830 x 10 -5  a5 = -0.83313251
b6 = -0.1358278543 x 10- 3 a6 = 0.09942985948

a7 = -0.1532773068 x 
10- 5

G el(z) G c (z)G nG o(z)

G (s) = - = the zero-order hold
n s

T = the sampling period = 0.008 sec.

17
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I r4
G (z) is the desired digital controller and is

2Xo + + x 2

G( = 0 X1z + 2  (17)

where x and y are unknown constants to be determined. Because

G (z) is a forward controller, the equations fi(xt,yl) = 0 can

be formulated from the following equations:

G e (s)Is = J k

Z = ejWkT G G(z)j = ejwkT

where w = 0, W1.9 = 1.9, W3.2 = 3.2, and w140 = 140. Notice
that Gn G o(z) for z = eJWkT is not equal to G0 (s) for s = Jwk

unless T = 0. Using the dominant data of Eq. (7), the required

response at w140' and the relationships expressed in Eqs. (10b)

and (18) yields a set of equations fi(xL,yZ) = 0 for i = 1,2,...,5

as follows:

(i) Using Eqs. (7a) and (10b) when w = w0 = 0, yields a

nonlinear equation;

fl(xL,y£) = -4.557577105 x 10-8(x 0 + x1 + x2 )(1 + yl +-Y2 )

- 7.016133905 x 10-11 [(2x 0 + xl)( + yl + Y2 )

-(2 + yl) (x 0 + xl + x2)] + 2.1 x 3.505134712 x 10- 8

2

(+ Yl + Y2 ) = 0 (19a)

(ii) Using Eqs. (7h), (7i), and (18) when w = w3.2 = 3.2

we get:

Re[Gc(e j 3 .2 T = 1.5987861 and Im[G c(e 'W 2  = 0.23560917

The resulting linear equation is
2 ~32~ + lU3 2

f2(x'Y£) = (x0u3 .2 - 3 .2  1 3.2 + x2)

2 2
- 1.5987861(u3. 2 - v3. 2 + ylu3.2 + Y 2 )

+ 0.23560917(2u 3 . 2 v 3 2 + yV 3 .2 ) = 0 (19b)

18



where u3 2 = 0.99967234 and v 3 2 = 0.025597204

(iii) Using Eqs. (18) and (19b) for w = w = 3.2, obtain

a linear equation

f 3 (x£,y) = (2x 0 u 3 . 2 v 3 . 2 + xlV3 2 ) - 1.5987861(2u3.2 v3 .2

YlV3.2 -0.23560917(u3. 2  - v3. 2

+ ylu3.2 + Y2 ) = 0 (19c)

(iv) From Eq. (18) for w = w140 = 140 we have

Re[G c(e1 140)] 26.951878 and Im[ReGc(e 140T)] 19.196865

The resulting linear equation is

f4 (x£,yL) = (x0 u1 4 0
2 - x0 1 4 0 2+ X1 U1 4 0 + x2 )

- 26.951878(u 1 4 0
2 - v 1 4 0

2 + YlU1 4 0 + Y2 )

+ 19.196865(2u 14 0 v1 4 0 + Ylvl 4 0 ) = 0 (19d)

where u1 4 0 = 0.43568245 and v1 4 0 = 0.90010044.

(v) From Eq. (19d) for w = w140' we obtain another linear

equation

fs(x£,y£)= (2x0U1 4 0 2 + x 1 v 1 4 0 ) 26.951878(2u 140 v140 + Ylvl 4 0 )

2 02++y2=0 (1e
- 19.196865(u 1 4 0  - v 1 4 0  + Ylul 4 0 + Y2) = 0 (19e)

The above set of linear and nonlinear equations can be solved

using the Newton-Raphson method. The initial estimaes for the

Newton-Raphson solution may be determined from Eq. (15c). Another

linear equation fl(x£,y ) = 0, instead of fl(x£,y ) = 0 in Eq.

(19a), can be constructed to yield five linear equations with

five unknown constants (x and y( G(j) at w = 0.01 A

is used in this case. Substituting Re[Gc(e 0.01) = 1.5961120

and Im[Gc(eJW0.01T) 6.409642 into Eq. (18) we get the linear
equation 19
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S2 2 +xu

f1(x,yt) = (x 0 u0 . 0 1  x0. 0 1  1 0.01 2

22
1.5961120(u 0 .0 1 - V0 0 1 + YlU0 0 1 + Y2 )

+ 6.409642(2u 0 0 1 v0 0 1 + YlV0 0 1 ) = 0 (20)

where u 0 0 1 = 0.99999950 and v 0 0 1 - 8 x 10- .

Solving fi(xL,yL) = 0, i = 2,...,5 in Eq. (19) and flx,y£) = 0

in Eq. (20) gives a set of initial values x and Y,; x 0  2.9025918,
xI = 9.3580336, 2 = -10.066413, yl = -0.42702018, and Y2 = 0.80224909.

Using these initial values and the Newton-Raphson method to solve

the equations in Eq. (19) we obtain the solution: x = 11.869083,

xI = -13.49237, x2 = 3.0584008, yl = -0.75055299, and Y2 = 0.64699Z37

at the fifth iteration with the error tolerance of 10-6. The

required digital compensator is

11.869083z 2 - 13.49237z + 3.0584008
G 2zCz - 0.75055299z + 0.64699237

11.869083(z - 0.82408067)(z - 0.31268533)

(z - 0.37527650 + jO.71144917)(z - 0.37527650 - jO.71144917)

(21a)

The Nyquist plot of Gel (Z) Gc (z)Gn G o(z) is shown in Fig. 2.

It closely matches the Nyquist plot of Ge (s). The closed-loop
pulse-transfer function is

T 0.4861004207x10-3z8 + 0 2445680553x10-
2z7 - 0.6339988815x10 -z 6

el z9 - 4.870067017z 8 + 10.63662758z 7 - 13.9112306z 6 + 12.03802088z

+ 0.2419157047x10- 2 z5 + 0.2591699688x10-2z 4 - 0.1845418962xl0-2v

- 7.023068435z4 + 2.678803581z3 - 0.6134429209z2

+ 0.2163673922x10-3z
2 + 0.2694091.451x10-4 z - 0.4154160183xi0 - 9

+0.6435845178x10-1 z - 0.9921078960x10- 6

(21b)
20
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The unit-step responses of the existing stabilized continuous-

data system T e (s) in Eq. (6) and T el(z) in Eq. (21b) are shown

for comparison in Fig. 3. The time-response of the newly designed

sample data system is very close to the existing stabilized system.

It is interesting to note that G c (s) of Eq. (5b) is a fourth-

order analog controller whereas the G c (z) of Eq. (21a) is a second-

order digital controller.

In a large control system it is often difficult to select

a minimum common sampling period among the various subsystems.

For example, the missile inner loop stability system with sampling

period T =0.008 sec is used with a terminal guidance system.

The terminal guidance system is low-pass. Therefore, a larger

sampling period may be economically used in this system. If

we assign a larger sampling period Tl(=0.015 sec) for the outer

guidance loop, and we desire a single sample period, we must raise

the sampling period T(=0.008 sec) of the actuator and inner loop

from T(=0.008) to T 1 (=0.015). Notice that the new sampling fre-

quency w sl (=27/T 1 = 418.88) > 2w 14 0 (=280 rad/sec). The modified

open-loop pulse-transfer function with T1  0.015 sec is

G G (Z 0z+ 1z+ + 6 (22)
n o bz b0 z7 + b 1 z6 + .+b 7

where
a 0 = 0.3733134407 x 10- b 0= 1.0

a1 =0.1570750710 x 10-2 b 1 =-3.257024652

a2 = -0.169231262 x 10- b 2 = 3.855486034

a3 = -0.5827024448 x 10- b 3= -2.039756267

a4=0.3184265948 x 10- b = 0.5526488259

a = 0.1895463329 x 10- b 5= -0.1245437594

a86 = 0.11354062 x 10- b 6 = 0.1318981958 x 10l

b -0.1252480548 x 10-10
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Since a larger sampling period T1 is used, we select a third

order digital controller Gc (z) rather than the second order digital

controller. Gc (z) of Eq. (21a) is

G, Z x0 z3 + Xl1z 2 + x 2z + x3  (3
S3(z) z+ Yl z 2 + y 2 z + Y3 (23)

The xi and y. are seven unknown constants to be determined.

G e(Jw) at w = 0 = W0 ' W = 1.9 = W1.9' w = 3.2 = w 3.2' and w = 140 A

W 140 shown in Eq. (7) are used as the dominant data to determine

x and y.. Using the above design procedure, we can determine

a set of equations fi(x£,,y£) = 0, i = 1,2,...,7. These equations

can be solved by using the Newton-Raphson method, with the set

of initial estimates obtained from Eq. (15c). The data obtained
A

from Eq. (18) at w = 0.01 w 0 .0 1 , ' 1.9' "3.2' and w140 are used

in Eq. (15c) to determine the initial estimates x0 = 13.177031,

x -25.535836, x2 = 14.643983, x3  -2.2787512, yl = -0.37332775,
2 3

= -0.32614954, and y3 = -0.296499004. Using these values

as initial values for the Newton-Raphson method, gives the desired

constants x and y£ at the 17th iteration with error tolerance

of 10- 6 . The newly designed digital controller Gc(Z) is

* 13.170704z 3 
- 25.531430z2 + 14.629635z - 2.2685451

c = 3  0.37424841z 2 
- 0.32757047z - 0.29794756

(24)

The closed-loop pulse-transfer function is

z AT Ge2(z) b0 z9 + blz8 + "'" + b(
R(z) e2Z) l+(z) 0 9=F( - T (25)

z) Te2(Z) 1 + Ge2(Z) a 0 z!0 + a1 z9 + ... + a0

where

Ge 2 (z) = Gc(Z)GnGo(z)

a 0 = 1.0 b 0 = 0.4916800827 x 102

aI = -3.626356261 b1 = 0.1115666668 x 10-1

a 2 = 4.758008528 b2 = -0.5693102109 x 10-1

I 22
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a 3 = -2.77063927 b 3= 0.5766519111 x lo-

a 4 = 1.081168732 b 4 = -0.9250105745 x lo-2

a 5 = -0.8211905469 b 5 = - 0.1256587702 x 10-1

a6 = 0.4739432136 b= 0.5496414235 x 10 2

a 7 = -0.1233033662 b7= -0.4450686236 x 10-

a 8= 0.3234184521 x 10-1 b 8= -0.4299777941 x 10-

a 9 = -0.3972872336 x 10 2 b 9= -0.2575720172 x109

a 10 = -0.253840284 x 10

The Nyquist plot of G e2(z) shown in Fig. 2 matches very well

that-of Ge (s). The unit-step response for Y(z) in Eq. (25) is

shown in Fig. 3. The time response of T e2 (z) very closely matches

that of the original system T e (s). The resulting design is seen

to be quite satisfactory.

V. CONCLUSION

A dominant-data matching method has been given for fitting

the coefficients of a pulse-transfer function from available

time and frequency response data or from assigned design goals

expressed by a set of control specifications. When the dominant

data are obtained frort a high-order continuous-data as well as

a discrete-data system, our new method has been used to determine

a reduced-order discrete-data system. If the data are experi-

mental time and frequency response data of a s ystem to be identi-

fied, our method may be used to identify the pulse-transfer function.

Also, the method has been used for redesigns of a continuous

system using a digital filter with various sampling periods.

The pulse-transfer function obtained by our new method has the

exact dominant performance of the original or desired system.

We feel that the flexibility and accuracy of our new method will

have significant practical advantages for the design of digital

systems.
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G (S) Y(S)

g

Figure 1. Block Diagram of a Missile P itch Control System

IES FA Z IC 717~1

T T
R~z) +Y(Z)

G (S) G~ (S) G0 (S)

Figure 4. Block Diagram of a Digital Pitch Control System
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Chapter

A MODIFIED DIRECT-DECOUPLING METHOD FOR
MULTIVARIABLE CONTROL SYSTEM DESIGNS

L. S. Shieh , Y. J. Wei , and R. E. Yates
2

ABSTRACT

A design method, which decouples an interactive system by

using a compensator obtained from the plant inverse matrix, which

is often called the direct-decoupling method is modified in this

paper. The modified direct-decoupling method uses the adjoint

matrix instead of the inverse of the plant matrix to construct

the compensator. The method uses a frequency-domain model-

reduction method to simplify the degree of the given plant transfer

function matrix and the obtained compensator. For an open-loop

stable multivariable system, the proposed method gives a simple,

practical and realizable controller without using an unstable

pole-zero cancellation approach.

L. S. Shieh and Y. J. Wei are with the Department of Elec-
trical Engineering, University of Houston, Houston, Texas 77004.

2 R. E. Yates is with the Guidance and Control Directorate,

U. S. Army Missile Research and Development Command, Redstone
Arsenal, Alabama 35809.
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I. INTRODUCTION

For the general multi-input-output control system, each

input affects several outputs and there are many degrees of free-

dom for system design. Therefore, it is difficult to control

and/oz Oesign such a system. The removal of the interactive con-

trol effects and the application of the well-developed classical

design techniques of a single-variable system to the decoupled

system is one popular design method. This method is often called

the decoupling method of multivariable system design.

In the time domain, the decoupling problem has been studied

via state-space techniques by several authors [1-5]. The con-

ditions for the existence of a decoupling system have been devel-

oped in these pioneering works [1-5]. The state-space techniques

are concerned with the internal structure of the multivariable

system. Thus, the limitations of the decoupling approach can be

derived, and a simple state feedback controller can be designed

to achieve an optimal result. However, for a real system, many

of the states are not accessible. As a result, a high degree

observer is often required for practical application of the state-

space technique.

In the frequency domain, decoupling via the use of transfer

function matrices has been investigated by several pioneers [6-10]

as long as twenty years ago. Since then, practicing engineers

have successfully extended the classical frequency-domain approach,

(for example, the Nyquist method [11-13] and the root-locus mcLhod

[14-15]) from single-variable system to multi-variable systems.

Most existing frequency-domain design methods for multivariable

systems either neglect the effects of weNkly interacting.pubsystems

or completely destroy the coupling effects of the original multi-

variable system such that a simple classical single-variable method

can be applied to achieve reasonable design goals. The approach

that removes the interactions of the coupled system and designs

a controller for each decoupled system by using a compensator

obtained from the plant inverse matrix is called the direct-

decoupling method. This method is straight forward but the

2
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following problems [16] arise:

a. The existence of the plant inverse matrix

b. The realizability of the obtained high-degree controller

c. The stability of the designed system when unstable

pole-zero cancellation has been used

d. The design procedures for a high-degree coupled system

is complex.

Since many practical systems [12,13,15,17] are invertible,

controllable, observable, and open-loop stable, the direct-

decoupling method is worthy of improvement and modification for

practical application. Recently, Peczkowski and Sain [17] have

improved the method via a time-domain model reduction method and

have successfully applied it to design the control system for a

F-100 engine. The direct-decoupling method is modified and im-

proved in this paper. Our method uses the adjoint matrix instead

of the inverse matrix of the plant matrix, and utilizes a fre-

quency-domain model-reduction method for a class of multivariable

control system design.

II. MODEL REDUCTION OF A MULTIVARIABLE SYSTEM

The usual procedures for designing high-order linearized

multivariable systems are cumbersome and computationally dif-

ficult. The controller obtained will usually be a high-degree

dynamic controller. To overcome these difficulties, a reduced-

order model of the original system is necessary. Recently,

various model reduction methods in the frequency domain [18-21]

have been proposed for determination of simplified models or for

estimation of location of the approximate dominant poles and

zeros of the original systems. Since each linearized model or

reduced-order model is only an approximate model of the actual

system, we may use a reduced-order model as a reference for the

control system design. Thus, the design procedure is greatly

simplified, and a satisfactory lower-degree controller can be

obtained. In this paper, various mixed methods will be given

3I
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for obtaining the reduced-order model of the original multi-

variable control system. The mixed methods are described in the

following paragraphs.

Consider a typical transfer function matrix of a multivariable

control system

Go(S) = d1 (s ) = do(s) i,j(s)l = jgi(s)) (1)

where each polynomial i,j(s) is the element at the ith-row and

jth-column in O(s), and do(s) is the least common denominator of

the elements of *(s). The transfer function gij(s), which is an

element in Go (s), can be expanded into a continued fraction of the

Cauer second form [18] by using repeated long division of the two

polynomials to determine the various reduced-order models, that

is

gi,j(s) $i'j(s) (b +bs+...+bmsm) (2a)

dO(S) ao+als+...+asn

1 (2b)

h 2 +

- .(2c)

h + lh 2  i j

1 h2h3 h4 +(h2 +h4 )s

h_ _Ss hl h2h3 h4 +(hlh 2 +hlh 4 +h3h4 )
s +s 2

h2 + h +
h3 h

4 iuj

= ... (2d)
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It has been shown that the first several h's are the dominant

quotients in the expansion if the steady-state response is of

interest. Bosley et al. [22] have linkud the quotients hi and

the time moments (or the moments) of the original system. The

reduced-order models in Eq.(2)give good approximate steady-state

responses. The disadvantages of the above method is that the

reduced-degree models may not be stable even when the original

system is stable. To obtain the stable reduced-degree model

of each element in Go(s) and to have the same least common de-

nominator polynomial in the reduced-degree multivariable system,

we may use the following mixed methods.

Let the reduced model of the original system in Eq. (1) be

Gls) = ( , l = gi js) (3a)
d O(S) dO(S),

where

* $i (s ) b +b s+...+b* 1  p- i *

g i, Sj = = * * , a = 1 (3b)
ljpo(' * a +a*s+...+a*sp

d O(s) 0o p

The relationships of the dominant quotients hi in Eq. (2) and

the coefficients ai and bi in Eq. (3b) can be expressed in the

following matrix equation [23] by

[b] = [HI [a] (4)

where

[a] T = [a*,a* a I

(bIT =- * * I

bao bl,..•., ,p I ]

-i
[I] = [H2 ] [H1 i ]

where T designates transpose, and

5



h 0 0 0 0 1 0 0 0 0 1 0 0

1 h2 0 .0 0 0 h1 0 .0 0 0 1 0 0 0

0 0 1 0 •0 0 0 1 0 0 000 0 0

00 0 1 lhj 0 0 0 1 1h 0 00 O h

Is212-

1 0 0 * 00 10 0 00 00 00

0 h 2 0 .0 0 0 1 0 .0 0 0 10 00

0 1 h3  00 00 h2 .0 0 001 00

0 0 1 0 0 0 0 1 0 0 000 0 0
0 1 h 0 1 h 2  0 0 0 h 2

o2 P- L!.o 0 o~ LO ._ ooo

-0 0 0 . 1 h -0 0 0 . 1 [p1 -0 0 0. O h 2

The h. are obtained from Eq. (2) and a. can be determined from the
1 1

dominant poles of d0 (s) [21], or from the Routh table suggested by

Hutton and Friedland [20], or the Routh table of Gustafson [24]

Once h. and a. are known, the b. can be determined from Eq. (4).
1 1* 1

Thus the polynomial ij (s) can be determined, and the equivalent

dominant zeros with the preassigned dominant poles obtained from
d0(s) can also be determined. Since each subsystem in the reduced-

order model has the dominant quotients hi (or equivalent moments)

and the dominant poles of the subsystem in the original system,

the reduced-order model closely approximates the transient and

steady-state responses of the original system. It also has the

same tracking properties of the original system. Thus, the reduced-,

order model G0 (s) is a good approximation of the original system

6
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Go(S). Using Go(s) as a design reference model, the design pro-

cess can be greatly simplified and a satisfactory low-degree

compensator obtained. This designed system retains the equivalent

transmission zeros [25-27] of the original system. Our method

is described in the following section.

III. A MODIFIED DIRECT-DECOUPLING METHOD

Let the open-loop transfer function matrix Go (s) of a unit-

matrix feedback multivariable system be

Go(S) = d((s) (5)

where Go (S) £ R(s)mxm is a proper transfer function matrix and

do(s) c R(s) is the least common denominator polynomial of

Go(s) with degree n. The expression 0(s) c R[s]mxm is the numer-

ator matrix polynomial. Applying the first cascade precompensator

K,(s) to the Go (s) yields

Q(s) = Go(s)Kl(s) = d1(s)Kl(s) = diag (S )  (6a)
1 od o(s) 1d od(s))

where

El(s) = adj 0(s) (6b)

and

P(s) = det 0(s) (6c)

Note that p(s) is a numerator polynomial in Eq. (6a). If some

zeros of p(s) are in the right half-plane and all zeros of d o(S)

in the left half-plane, a practical compensator can be designed

without using unstable pole-zero cancellation. On the other

hand, if the direct-decoupling method is applied, the p(s) will

be a denominator polynomial in Eq. (6a). Thus the decoupled

system is unstable and the impractical pole-zero cancellation

7



approach would be required to stabilize the system. Thus, an

obvious advantage of our method over the old method. Employing

the second cascade compensator K2 (s) to Ql(s), we have the diag-

onalized open-loop transfer function matrix

Gd(S) ( Q(S)K2 (s) = diag d 'i} (7a)

where

K2(s) = diag (ils) , i = 1,2,...,m (7b)

Each ki is an undetermined gain at the ith diagonal element of
1

Gd(s) for the use of the root-locus method. Each ni(s) and di(s)

is a scalar polynomial to be assigned in the design process. The

assignment of ni(s) and di(s) shall improve the performance of the

designed system with the constraint that the cascade compensator

K(s) = Kl (s)K2 (s) be realizable. The choice of ni(s) and di (s)

is a design freedom and experience is helpful. The total compen-

sator becomes

K(s) = Kl(s)K2 (s) = adj 0(s)diag dil(s) (8)

Notice that Gd(s) in Eq. (7) retains some of the transmission

zeros of the original system. This can be shown as follows:

Let GoS= do(S) ((s) = N (s)D (s) (9)0 d~s)Y Y

where Ny(s) £ R[s] mx m and D (s) I R[s]mxm are a pair of relatively

prime matrix polynomials. The characteristic poles of Go(s) are

the zeros of det Dy(s) = 0. The transmission zeros of G (s) are

the zeros of dot Ny(S) = 0.

Eq. (9) can be written as

GoOS) N = (s)adj D Y(s) (10a)
s dO(S) A(s)

8I



where

a(s) = det D (s)

= the characteristic polynomial of Go(s)

= the least common-denominator polynomial of all minors

of Go(s). (10b)

Taking the determinants of both sides of Eq. (10a) yields

p(s) det N Y(s)det[adj D(s)]
det d(s) I d m (s) AMls)

a m-(s)det N (s) det N (s)

Am(s) A(s)

Rearranging Eq. (11) gives

domn-ip~s) = (s)
d() A(s) det N (s) (12)
doS) AIs)Y

Substituting Eq. (12) into Eq. (7a) we have

kini(s)do -l(s)det N Y(s) (
Gd(s) = diag d i (s) A(s) (13a)

and the closed-loop system is

k ini(s)dom-l(s)det N (s)

Y(s) = diag ml1 R(s) (13b)

1A(s)di(s) + kido1(s)ni(s)det Ny(s)

where Y(s) and R(s) are the output and input vectors, respectively.

Since the transmission zeroes of the original system G o(s) in

Eq. (5) are the zeros of det N y(s) which appear in both Gd(s) in

Eq. (13a) and the designed closed-loop system in Eq. (13b), the

designed system retains some of the invariant transmission zeros

when A(s) and det N (s) have no common factors. In general, thereY

Gd(s ) may retain only a subset of the transmission zeros. For the

I
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'a 2(s) HIM asn 1add i s

special case, when m=2, A(s) = 0 (s), n(s) = 1, and d.(s)
do(s) the compensated system Gd(s) = (diag{kidet Ny(s)/det Dy(s)})

in Eq. (13a) has the exact transmission zeros as well as the char-

acteristic poles of the original system G0 (s).

When the original system Go(s) has a high-degree transfer

function matrix, the reduced-order model Go(s) in Eq. (3a) can
be used. Thus, the designed controller K(s) is low-degree and

the designed system retains a subset of equivalent transmission

zeros of the original system. Note that, even if A(s) and

det N (s) in Eq. (13a) have common factors, the A*(s) and det
Nt(s) obtained from the reduced-degree model G*(s) may have no

common factor.

IV. ILLUSTRATIVE EXAMPLES

Example 1

To illustrate the design procedure, we use Mueller's two-
shaft aircraft gas turbine [28] example. The open-loop transfer
function matrix G0 (s) of the example unit-matrix feedback system
is is= d1) = d1 ( l(s) )12(sl 

(14)0(S dO(S )  AO(s) o L4 21 (s )  22 ( s )

where

d0 (s) = s4 + 113.225s 3 + 1357.277s2 + 3502.95s + 2526.85

= 14.9s2 + 1506. 4 72s + 2543.2

12(s)= 95150s2 + l132094.7s + 1805947

*21(s) = 85.2s2 + 8642.888s + 12268.8

022(s) = 124000s 2 + 1492588s + 2525880

Notice that d0 (s), the least common denominator polynomial, is
the characteristic polynomial of Go(s), or do(s) = A(s). Also,

this system has no finite transmission zeros. McMorran (12]

10
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designed a dynamic compensator for this system using Rosenbrock's

inverse Nyquist array method [11]. His design goals are a weakly

coupled system and a fast response. The compensator obtained was

-26.847s(s+20.6) 46.272(s+l.706) (s+ll.6)

Ke ()=s(s+l58.5)[
S. 0.18468s(s+146.3) -0.00726(s+1.706) (s+l01.4)

(15)

Unit-step responses are shown in Figure 1.

The goals of our design are:

(a) Two identical diagonal subsystems decoupled in the
closed-loop system

(b) Unity final values of unit-step responses

(c) Less than 10 percent maximum overshoot

(d) The time required for the unit-step response to reach
the first peak of the overshoot t is 0.01 sec.

For this low-order system, use of the reduced-degree model is not

necessary. To simplify the controller in Eq. (8) let ni (s) = I.

Then K(s) becomes

22 (s) -112 (s d 1s 0[ dls)]
K(s) = adj O(s) K2 (s) = k2 (16a)

L-21 0 d (s}

The designed open-loop system is

k]p (s)
ki(pd(s) 0

Gd(s) do (Sj (16b)

0 do(s)d2(s)

where p(s) = det O(s) = -6259180do(S); ki and di(s) are to be deter-

mined. To circumvent a negative p(s) in the open-loop transfer

function, Gd(s), we apply a unit-matrix controller KO to O(s)

before using the controller K(s) in Eq. (16a). Our objective is

| 11



to interchange entries of O (s) from the first column to the second

column such that the modified open-loop system *m (s) becomes

=,Ol4s) = F1 F 1 12 s)1 (16c)
.0 M (s ) O s K 2 ( s ) l 1 1 [ 0 2  2 ( S ) * i2 1i (L*2, (s) 22 si[l L22 Cs) 2l s

Thus, the controller for m (S) is

21(S) -Ii() (S)1 0

K3 (s) = adj $m(S)K 2 (s) =L 21 -11 d ds) k2 (16d)

L-022 (s) 012 (s)j -0 d 2 (s)

and the modified controller for the original system Go(S) is

[kl- 2 ( S ) 11 sd I s

Kn(s) Koadj 4 m (S)K2(s) = 2 ( 12 (s) d (s) l (16e)
k 2K 2 1 (s) -11 (s)J d 2 (s)j

The designed open-loop system is

iF0 6259180k1  0
dd (s)l s 0d (S

G [oJl) k2P(s) 6259180k 2 (16f)
0 do(s~d cs  0 d J

To satisfy the first specification, we let kI = k2 = k and dl(s) =

d2 (s) = d(s), thereby reducing the multivariable design to a scalar

design problem. In other words, we design gd(s) = 6259180k/d(s),
a diagonal entry in Gdm(s), to satisfy other assigned specifications.

To meet the requirement of unit-final value, we choose gd(s) to be

"Type 1"; and to meet the other two conditions, overshoot and the peak

time, we choose a second-order compensator

6259180kgd(s) = s(s+c) (17a)

12



The characteristic polynomial of the designed closed-loop system is

2 22d() = s + cs + 6259180k = s + 2wns + w n2  (17b)

where c = 2 Wn and wn2 = 6259180k. The parameters E (the damping

ratio) and w n (the undamped natural frequency) are to be determined.

From a design rule of thumb [29] we can estimate w n knowing tp

W n - O -- 1 4 300 rad/sec (17c)t 0.01
p

Also, another rule of thumb [29] gives

M p

or
-- Mn 0.1 = 0.75 (17d)

iT 3.14

Substituting F and w n into Eq. (17b) we can solve for c and k;

c = 2 wn = 450

and

k = 0.01438 (17e)

The characteristic polynomial Ad(s) and its poles are

Ad(S) = 2 + 450s + 90000

and

S,2 = - n + J~nW I -  = -225 + j198.43 (17f)

The compensator in Eq. (16e) becomes

-1782.98s2-21461.74s-36319.33 1368.15s2+16278.3s+25967.S1
XM (5) " sTs+450)

Te1.2250sS2+124.275s+176.4116 -0.214245s2-21.66138s-36.56841
(18a)

The decoupled closed-loop system is

YIs) diag{ 90000 R(S) (18b)
Is + 450s + 90000,

13
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The unit-step responses of the designed system are shown in Fig-

ure 1. The final values of the unit-step responses are unity,
and the maximum percentage overshoot is 1 percent. Also, the peak

time t p is 0.014 sec. Note that the designed system and the orig-
inal system have no finite transmission zeros. Comparing the pro-

posed compensator KM(s) in Eq. (18a) and that of McMorran in Eq.
(15) we observe that both controllers are second order. However,

our controller satisfies more sophisticated control specifications

than McMorran's. The unit-step response curves show that our

design gives less overshoot and less oscillations and is completely

decoupled.

Example 2.

To illustrate our design procedure using a reduced-order model,

we use a paper-making machine [13] example. The open-loop transfer
function matrix G0 (s) of the unit-matrix feedback system is

G) 1 (S I  1(s) 12(119)
d (5) s) sd(s) L 2 1 (s) * 2 2 (s)J

where

dl(s) = s6 + 34.9798s 5 + 565.584s 4 + 5016.37s 3 + 24517.51s 2

+ 55613.33s + 12868.37

0l(s) = -9.72727s(s2 + 15.39326s + 112.3596)
2

012(s) = 173.386s(s + 11.44444s + 55.55556)

21(s = 0.204545(s 2 + 15.39326s + 112.3596)
21(s2

19.s(s 2 + 11.44444s + 55.55556)

Sinha and Rutherford [13] have used Rosenbrock's inverse Nyquist

array technique [11 to design a controller for this system. The

precontroller to G (s) is
K (S) [15 (s+l) 52 (s+. 1 (20)
Kps =s[ 0 3.75(s+1.1111] 20

14
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The unit-step responses of the closed-loop system using Kp(s) are

shown in Figure 2.

In this problem, our design goals are:

(a) The designed closed-loop system must be weakly decoupled
and have two approximately identical diagonal subsystems

(b) The final values of the unit-step responses must be unity

-lot
(c) The tracking error should decay at least as fast as e

Go (s) is a high degree transfer-function matrix. To determine a low-

degree controller and to simplify the design procedures, a reduced-

order model will be used. The continued fraction mixed method [18]

and the Routh approximation method [20] may be used to determine the

reduced-order model Go(s). The procedures to apply the mixed method

are as follows: First, the reciprocal polynomial with respect to1 1
dl(s) in Eq. (19) (that is, dI (s) = 1d 11 is arranged into the

Routh array [20] to determine a,. The aI obtained is equal to

0.23139. Thus, the equivalent least common denominator polynomial

d0 (s) of the G0(s) is

d0(s) = s(s+al) = s(s+0.23139) (21)

Then, various first dominant quotients (defined as {hlji, j ) of each

entry in Go(s) can be determined by performing the continued fraction

expansion on each 0i j(s) and do(s) as shown in Eq. (2). These values

are

{hl 1 l, 1 = -11.68221

{hll, 2 = 1.31079

{hl}2, 2 = 11.962 (22a)

and the [h1)2 ,1 for "21(s) and do(s) is

1hl1 2 ,1 = 555.5556 (22b)

Substituting the a1 value (=ao) in Eq. (21) and each {hl1 i,j in Eqs.
,

(22) into Eq. (4) yields each reduced-order polynomial ij (s). Thus,

15
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G* 1 *(S) = (S) (23)

d d(S) d (s)
0 0 L 21* (S) *22* (s)

where

d * (s) = s(s+0.23139)
0

ll(S) = -0.01981s 21(s) = 0.0004165

) = 0.17653s *22 (s) = 0.019344s

The unit-step response of G (s) and G (s) are shown in Figure 3.
0 0 *

The approximation is excellent. Using Go(s) as a plant and closely

following the procedures used in Example 1, we have the modified

controller in the form of Eqs. (16). The precontroller is

k1 nl(s) 2 2 (s) k2n2 (s)"1 2 (s)

d l (s) d 2 (s)Kin(s) K oadj 4m()(s) = (24)
klnl (s) * 2 (S) 212n2 (s) 11(s)

L dl(S) d 2(s) _

The designed open-loop system is

* ( kip*(s)ni (s)
Gdm(S) d(s) d I(S)

0.

= diag 0.0003832(s+0.191868)kin i (s)
(s+0.23139) di(s) for i = 1,2 (25)

where p*(s) = det 0*(s) = -0.0003832s(s+0.191868)

To simplify the design procedure, we let nl(s) = n2 (s) = I;

and to meet the first design goal we let k= k= k and dl(S) =

d2 (s) = d(s). Thus, we have a single open-loop transfer function

= 0. 0003832(s+0.191868)k (26)
d (s+0.23139) d(s)

16



From basic root-locus theory [30], we observe that there exists a

nearby open-loop pole, (po = -0.23139) and zero, (zo = -0.191868),

in gd(s). When gain k is increased, a pole of the closed-loop

system will migrate from po to zo which is a closed-loop zero

also. Thus, the performance of the closed-loop system is heavily

dependent on the zeros of d(s). To satisfy the third specification

we choose d(s) = s+10 such that the tracking error of the designed

system will decay at least as fast as el1 t. The choice of gain k

is a design freedom which can ensure less influence of the nearby

PO and z0. In this example, we choose k = 40. The overall com-

pensator in Eq. (24) becomes

K* 1 [-I0.77 376s 7.0612s (2a
m S+10 .016667 0.7924s ]

Finally, to achieve the second design goal we add a forward-gain

matrix H as shown in Figure 4. The H is

- gd(o) -1 7 l
Sl+g(o) 0 87.786 0

0 I = j = [87 77.61(27b)
0 g d (o)_ 0 787. 786

The unit-step responses of the closed-loop designed systems using.

the compensators Km (s) and H in Eqs. (27) and the reduced-order

model Go(s) in Eq. (23) are shown in Figure 2. Also, the unit-

step responses of the closed-loop systems using the same compen-

sators in Eqs. (27) and the original system G0 (s) in Eq. (19) are

shown in the same figure. The response curves show that the

designed system has less overshoot, is less oscillatory, and is

nearly completely decoupled. The discrepancy between the response

curves of the closed-loop designed systems using Go(s) and Go(s)

appears in the transient regions. This is the result of the model

reduction method used. Both curves are seen to be practically

decoupled and unit-final values in the steady-state.

17



V. CONCLUSION

A simple design technique has been given for the design

of multivariable control systems. The designed system retains

some or all of the invariant transmission zeros of the original

system. When the given multivariable control system has a high-

degree denominator and high-degree numerator, various mixed

methods have been illustrated for determining reduced-order models.

By using the obtained reduced-degree model as a reference model,

the design procedures are greatly simplified, and a satisfactory

low-degree compensator has been designed. The design technique

is simple and quite satisfactory as shown in the two illustrative

examples. However, when a multivariable control system has a

large number of inputs and outputs, the degree of the controller

obtained by our method may be large despite using a reduced-order

model. When the resulting controller dimension is large, model

reduction methods may be utilized to reduce the controller to

an acceptable order. Our method is suitable for multivariable

systems which have high-degree least common denominator polynomial

and low-degree numerator polynomials. Another advantage of our

modified method over the original direct-decoupling method is

that, for an open-loop stable multivariable system, our method

gives a simple, practical and realizable controller without using

the unstable pole-zero cancellation approach.
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Chapter ]T

Some I'ropert. is and AppLication of a New Matrix Sturm Series

and a New Block Canonical Form of a Matrix Transfer Funct ion

L. S. Shich and A. Tajvari

l)epartment of El leL rical Engineering
University of Houston
Houston, Texas 77004

ABSTRACT

An algebraic method is developed to construct a new matrix Sturm series

and to establish a new block canonical form of a matrix transfer function.

The matrix Sturm sequence is then used to determine the number of real poles

of a matrix transfer function that may not consist of a pair of relatively

prime matrix polynomials, and it can be used to determine whether an imped-

.inc. matrix ran be realized by using RC elements. The block canonical form

is t.ited to construct a new block state equation in the block tridiagonal

form and to obtain a pair of relatively left prime matrix polynomials of a

matrix transfer funt t ion.
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/1. liii rodu't ion

The matrix transfer function T(s) of a multivariable system with an mxl

=input vector R(s) and an mxl output vector y(s) is written asI
y(s) = T(s) R(s) (1a)

and

T(s) = ) (s) D 2Cs) (Ib)

where-

) 1(s) = A 1+ 1 s1+As-1. +...+A 2 s+A1 = D 11sn+D 1 2s  +.. .+D,ns+Dn+1

n1-1 ti- 2 n-] n-2D 2s) = B ns +B n-2+..+B 2s+B1 s +D 22s + .+D 2  s+D
2()=B" n-!P 2" D21s- 22 2,n-fS+2,n

i
A (=bl ) and Bi(=I) .) are mxm matrix coefficients.

In a single-input single-output system, the T(s) in E'q. (1) can be ob-

f served as a scalar transfer function or a driving-point impedance function.

The 1T(s) can be formulated into a sequence of polynomials (Sturm sequence)

to dLetermine the common polynomial between D (s) and D (s) and the number of
1 2

r-1 .poles of T(s) by using Sturm's theorem. When no common polynomial be-

tw, ,' ) 1(s) and ) 2(s) exists, the T(s) is a function that consists of two

rckI ty iv(y primie po lviiomi;ils, and the dynamic state equation constructed

usina I 2(() and is completely coot roll able and observable. This im-

I plies that the dynamic state equation is a minimal realization of T(s). An

excelI ent survey on the applications of the Sturm theorem can be found in

I I

I"
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Barnett and Siijak's work.

3
RecentLy Bitmead and Anderson have developed the matrix Cauchy theorem

and a matrix Sturm series for multivariable systems, and they have discussed

their applications to circuit theory. In this paper, an alternate matrix

StUrm series is developed and a block canonical form of a matrix transfer

function is also derived. Some properties and applications of the developed

Sturm series and canonical form to the analyses of multivariable systems are

discussed.

11. A MaLrix Sturm Series

The T(s) in Eq. (1) is a real rational matrix with left matrix fraction

decomposition D (s)-lD2(S). If ) 2(s) is non singular, the inversion of T(s)

is expressed as

T(s) = (s)- ID I (s) = SK+D2 (s)- D 3(s) (2a)

or

DI (s) D 2(s)sK +D3 (s) (2b)

wime re'

K 1) 2 (s) -I) 1(S) as

111 n mll l i: i a r lllilt I ix q t it ent

and

S-
11
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)3(S) The mat rix polynomial in s with degree (u-i)

3,j
iU

j=1 3,j

The left remainder of DI(0

)2 (s) and 1) (s) have the same degree of (n-i). If D3 (s) is nonsingular, the

inversion of D 2 (s)-ID 3 (s) in Eq. (2a) becomes

D (S)- D2(s) = 12+D 3 (s) D4 (s) (2

or

13(s) = D 2 (s) 4 21)(s) (2d)

where

Ht2 = ) 3(s)- D2 (S) as

= an mn nonsingular atrix quotient1
and

H1 (s) The matrix polynomial in s with degree (n-2)

A -I -i> 4,

SIIbsi ilut ill), Iq. (2d) into Eq. (2b) gives

I

1**
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D (s) = (S)(sK +[I- )--()1 (2)
1 2 t 2 )- 4 (s 2

= D2 (s)Q 1 (s)-D4 (s)1 2
1

whe re

I
(s) sK+2

In the same fashion, we can use D2 (s) with degree of (n-l), and D4 (s) with

degree of (n-2), to generate another matrix polynomial D6 (s) as

I) (s) = -)l( s ) Q ( s ) - D 6 ( s ) l I4 1  (2f)
2 D4 (s) 3 (s-6( 4

where

4 3(s) = sK 3 +If-
34

IIn geral we have

I).(s) = ai+2 (s)Q (S)- i (s) af l  i= 0,2,4,... ,2n-2 (3)
j +2' i+4 j""29

D1n+ (s) = 0 m
D2n+2 om

wlit- I.(

1) 0 AS ) (s)

) -I
( = sK+l+ i = 0,2,4,...,2n-2Qi~l i+]+ i+2

I-.
1_
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0) is an nm iniuI 1 mat rix. The imtrix coefficients of the matrix polynomialm

D.(s) are defined as D.., j = 1,2, . The procedure to evaluate the

matrix coefficients D. . can be easily accomplished by using the newly de-1,]

veloped block Routh array with block Routh algorithm that is different from

4
tle matrix Routlh array with matrix Routi algorithm developed for expanding

matrix continued fractions.
5' 6

The block Routh array is listed as follows.



* C+

11- -44

- Cli

CCI

-4i -4, -14 a~

cl

'-4 ClC'4 c.4

C14 C-1 4 4C4

vl vC-I

II-CjI ~ 7JI-r I )2!C -4

Ir II
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I he proC'dii re to c,,W;truct tile block RouLh array is described as follows.

lnter I I CIt r i x coefficients of 1) (s) and of 1)2 (s) respective Iy as row

I and row 2. and evaluate in succession by using the block Routh algorithm

(to he shown) to obta in row 3 from rows I and 2, and row 4 from rows 2 and

3. Then rows 2 and 4 are used to generate row 5, also the rows 4 and 5 are

used to gtnerate row 6. The above processes to generate row 4 from rows 2

and 3, and row 5 from rows 2 and 4 are repeated and continued to the last

row (2n+l). The block Routh algorithm:-; is

M K)1DII, 21rank D1 m
([ 1 ) I 1) -)ll Kk , .

D3,j 1 ),j+l-1 2,j+1 1 1,2,_n

= 1 ) 2 , rank 1) = 11
2 1 2[' 31

I} = 2,j+I-1)3,j+1I2' = 1,2,... ,n-1

(ii) K D- Di I rank D) m

14-1 i+2,1 iji+2,1

3 'i+l- 1) i+2 j+ lK i+l J = 1,2,3,...;
i = 2,4,6,..., 2n-2

11 = I)rank 1) i
1i+2 i+3,l+2,1' rn i+3,1

I i+4,j i+2, 1) i+3,j+l i +2 I/

SIi (I|
?. I ' , I ii

Iron tile hock Routh a rray we can construct a sequence of matrix polynomials

1). (s) , i =,1,2.... , ad we shall show that the matrix sequence

I "



8
II)1(s),12(s) , )(s).... ,D 21_2(s) is a maLrix Sturm series of T(s)

'The mii rix series in Eq . (3) can be modified and expressed in the Iorm

3
of a matrix Sturm series developed by Bitmead and Anderson as:

D.(s) = D (s)Q (s) - Di (s), i = 0,2,4,..., 2n-2 (5a)
L. i±2 1+1 i+4

D2n+2(S) 0 11

where

D (s) D O() = ,'s)0) 0 ~ 1

12(s) = 1)2 (s)

2 2

k

4k 4k( if I f 4j-2 k = 1,2,3 ....

k

l 24k+2 4k+2 (s) 1 II 114j k = 1,2,3 .... (5b)

and

Ql(s) = (s)

Q 3 (s) = ' 3 )

k k-I

I)4k (S)-=III II I) (s)II ] k1 = 1 2,1, .

4k~ l 4 . l 4k+l I H4j-2 k.2 3 ...

4 1-2 '~k- I j- =

" Ii+l i+2' i 0,2,4,... , 2n-2 ('w)

For exaimp Iv, when i 4 in Eq. (5a) , we have

I
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)4 (s1) 0 )(s) 5 (s)-D 8 (s) (6a)

From Eqs. (51)) and (5c) we have

1)4 (s) 1) (s) H21

1)8(S) = 1)8(S)II11 (6b)
8 8 6 2 (b

and

(s) = lIQ (s) I2I (6c)

Substitut ng Eqs. (6b) and (6c) into Eq. (6a) and simplifying it yields

) (s)- 1 ) '1 [11[Q1 (s)) 12 D (s)H 1 IF2 (6d)4 2 =4 l 4Q 5 ( 2  8 62

orI
D (s=) (s)Q (s)-D (S)I1I (6e)

6 0 5 8~ 6

j I'; (ho) i ( urT' of the matrix equlations in Eq. (1). When i = 6, we have

1 (s)I Q (61)

SubstiLuLing the corresponding D.(s) and Q (s) in Eq. (5) into Eq. (60f) we
L 1I

!I



10
have

.6 (s ) 1 l = D( 1 t21[it 2 I6Q7Wt'4 1 ]-D 1 0 (s)t '81141 (6g)

o r

D6(s) 8 (s)Q7 (s)-D (s)H 1  (6h)

6 8)=7 10 8 (h

Again, Eq. (bh) is a matrix equation in Eq. (3).

From 1.qs. (5) and (6) we observe that each matrix polynomial D (s) in

the sequence of real matrix polynomials {D(s), D 2(s), ... , D 2n2(s)} in

Iq. (5) is different from the D.(s) in (D0 (s),D 2 (s),..., D 2n 2 (s)) in Eq. (3)
1.-

by various weighting constant matrices shown in Eq. (5b). Furthermore, both

( ;) and Q.(s) are atrix polynomials, and D (s) and 1)+ (s) are non-
i+2 i+2

singular matrix polynomials with degree [det D i+4(s)] = degree [det D i+4(s)]

< degree [det D i+2(s)] = degree [det D +2(s)]. Using Bitmead and Anderson's

3theorem, we can conclude that the sequence of real matrix polynomials
+*

(s) , Cs) ... In_2(s)) as well as the sequeLce [Do(s),D 2 (s),. . .,D 2 n -2 (s))

is imaitrix Stijrm sequence.

I I I. s ' tt ihut ion of Real Roots

It is w. ll known that the scalar Sturm sequence is often used to deter-

I i'I IIC (h IIIIIbIIer (l ica l root,; of a scziJar polynoiullA on the real axis in tlie

, * 10.)1 imc. It ii 'mid ;mid Aill(I'o. Ii~v ' h xve ex telnded tthe scalar St ll-II thifllil

to tli' matLrix Sturmi theorem. Since t10 matrix sequence i) (s),1) (s),.
2

1) 2Cs) in Eq. (3) is a matrix Sturm sequence, the matrix Sturm theorem

c;n be app lied to determine the number of real poles of a matrix transfer

Io
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A;I

IuctL ion or a real roots of a matrix polynomial. A simple criterion using

the block quotients K. and If. in Eq. (4) is developed to determine the
I L

6
real izat ion of anl impedance matrix of RC networks. The matrix Cauchy in-

3 r-1(
dCx of a symnIetric real rational matrix T(s) with T (s) exists and

detL T(O) j 0 cati be written as

1) b * - I *1)1)1

I~~ ~ ztr ) A 1)0(S) )D (S)I+ Aa [1 2 (S) D 4(s) i+...+A a 1)2n -2(S) D 2n (S)]

b A T)) (s) 1 ,+ 1) D -1 ) - I]+A b. Ill) _ -1 -

a0 2 a2 4 2 a 24 6 s1 4

A 1 (s)1 (s).1 1  1 (7a)i 8t6 121)6

where

A 1) -(s I ' I
A i(S) +)(s) = [1(TF(b))-o(r. (a)) 1

11;i I f the total changes of signature of '. (s) over
(a,b) (7b)

(7b)

o(T) is defined as the signature of a matrix T and u((T) = dim V+-dim V

where dim V is the largest possible dimension of any subspace on which T

is positive definite and dim V is the largest dimension of any subspace on

w1i1 ich T is ciega t ive de f in i te.

h
The I 1'(s) iil Vq. (7) c:i be expressed in terms of K. and It. obtained

i,, L:q. (4) as follows. I.etLing a =... and b = -and substituting ).(s) in
L

cI': . ( 'c) iut , ' iq. (1) we" h;aw"

'I'(s) ci(K +)+ct(IIK3 ) -I+u(H 4 K IIl- + ( 6 74116 K II -

2n- I
-0 (8a)= )i c,(N )

irl,3,5, 1
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I

I i K
N3 = I 2K3

4+l = i 1 4 IK 4 + [l [= 1 4j-2 - 1,2,3,...j* 1

j£ -1i

N H4 2 1K4 £_I = H ]-, 9. = 2,3,... (Sb)
H4Z- 1  if -I4 - K4 1 If H j

j=1 iI4

whe, a = -w"and b=O, we have

h --~ o( 1- 1 * - -1]

f T(s) =-[i(K ) +ci(K + -- I(HK) +a(II K.)
a 2 1 1 223 23

+ I00 K )1 +c(HK 1..1 (I54 2 4K5 2

S 211-1 
2n-1

-  + o (M (8)
-1,3,5, i=1,3,5,

whe re

N K 1) I )
I I = ,n 1,n+1

3 2K3 =2 4,n-1 2,n

4 4 * :K I 4j-2 = 1 2,3,

j_-=IQ -, 1

4 - = 4 II. K * [ 1 H 9. = 2,3,...

K 
(8d)4.-

2i+ -1+I (-I) 2i(+-) = 1,2,3,... ,n-1 (Sd)K2i+l = 2(i+1),(11-0 2i,(n+I-i)

N. i-t shown ill 1"(I. (8h). When a=O and b=-, we have

V I _
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2 o ( K o ) - I + I2 ( tI 2 K 3 ) o ( 1 K 
1)

I) 2 2 3oi 2 3 -
F 1)-1 * -1 -1

+ 2 [o(H 4 K H2 - o0 K511 ) 1+...
2 45 2 45 2

2n-l 2n-1
IA ), U(M) -(M. )8

2
M. and M. are shown in Eqs. (8b) and (8d).

The Cauchy Indices 1 T(s) in Eq. (8) indicate the number by real poles
a

of T(s) in (a,b). When 2r mxm block quotients K. and K. are obtained in the
1 1

block Routh array (that is constructed using an nth degree T(s) with T- (s)

exists and det T(0) 1 0) and the Cauchy index in Eq. (8c) equals to rm (where

r'-n), then T(s) is asymptotically stable and the multivariable system is an

aperiodic system. Furthermore, if all D (s)- 1D(s) are symmetric real
i+2 I

rational atrices -f an aperiodic system, then T(s) is relizable as the im-

pedance of an n-port RC network. 3 This implies that, when r matrices Qi(s)

in P'(q. (5c) are symmetric and the Cauchy index in Eq. (8c) is equal to rm,

T(s) can be synthesized using RC elements.

When the number of distinct real roots of dot D (s) is of interest, a

matrix polynomial 1)2(s)(A= d[DI(s)]/ds) is constructed. By using T(s)=D (S)-

)2(s) and tle above procedures, the number of distinct real roots of det D (s)

in (a,b) caln be determined.

1\ A Il ck ( nui ,'l l.form

When the total number (2r) of the block quotientis K .i and It. in Eq. (4)

4'(1u.1s to 2n, whet.n u is the degree of 0 (s) in the real rat ional mat rix
-11)

transfer function '(s)( D (s)(= D 2 (s)), the left matrix fraction decomposi-
-1

t ion I) (s) )2(s) in I'Aq. (1) consists or left coprime matrix polynomials,

which may contain non-symmetric matrix coefficients. The T(s) can be for-

F



tuil,ed iuLo a block c;aIonlical form as follows.

From E(I. (3) we have

D D2(s)- 1) ( S ) = QI (s)- 2(s)D (S)-1

2 1 1 2 4' 2

1 D4(s ) ID2 (s ) = Q3 (s)-L)4 (s)-ID6 (s)1 4
1

D )(s) _D4(S) = Q5(s)-D (s)- D (s)II1
6 4 6' 8 6

1) (s) l2n-2(S) = 2n-l(S)

2n+ I ) n (s) = 2n (9)

Successively substituting Eq. (9) into T(s) yields

I,() - I) - I ~ l -I
s) (s)-D2(S) [) (s) D (S) -

[Q 1 (s)-2 (s)-1 )4 (s)H2 21

S[Q(s)-11) 4 (s) -l )2 (S) - 2 I

-1 4- -] 2

[Q 1 (s)- q3(s)- [D6 (s) D4 (S) 1114 11121 1

I (s) - t  -11 1  1 -11 1 1-1

211-l 2n* 6 4 1 12
(p0)

Q l(s) = sK +l1I , i = 0,2,4,...
1++1 +Ij2

EIq. (10) is a block ainonicall form of T(s). The corresponding block diagram

4A V-
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is shIown it Fi)g. 1 and the block state equation obtained from the block dia-

gram can bei writtI as

Gz = + Lr

SY= it.(11)

wie re

-( 1) 1 (2n 3 11 2n2 0 0 0 0

K2n- I2-(K 2 H 2 0 0 0 0
2n12 2 2m in m mn

0 n- 1 0 0 0 0II 2n-3 0 0 0 0min n m m

0 0 -(K 7|Ht8)  (K 76) 0 011i HI 76 m m

0 0 K -(K i)1 (K H) 0m m 7 5 6 34 m
K -1I [ 14-1 -1

0 0 0 K -(K 11 (K 1112 )
o m 0 K 4 1H2-I

0n 0n 11m 1 m K -(K1 112 )]
I I-

z DI 2 " Inl i

" = [O0 ,(l2,....0 ,K'I

Tho T in E'q. ( I) h iL.,1; it vs trnlisp se. z, are m)(1 vectors, r Ls aII mx1 input

vlt r mid v is an m<1 otput v-ctor. G is a ilock tridiagonal ImatLrIrx wit h

block vi emen, const.ructed by usiug K and II.

_ M
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An alternate blo'k state equation that can be directly written from

r "(s) in Eq. (1) with D1 = I is#i m

x = Ax + Br

y = Cx, x(O) = 0nix1 (12)

wlto re

0 0 . 0 -D I) Iin n mn l,n+i 21 1

1 (0 0 -1)I122
II in in l,n 22 2

A= 0 I 0 -D1 ,n B= 1)23 I 3

In in In ,2 D2,-D n

c = 10 , 0 , , I i

0 nm. is an nmnl null vector and I is an mixm identity matrix. x are mxl

vect,rs. The block strate equation in Eq. (12) is an observable block Com-

panion form. It is interesting to notice that the block linear transforma-

(Ji- matrix between the block coordinates 7 in Eq. (11) and x in Eq. (12)

(-.,. be directly written from the block Routh array in Eq. (4) as

x R× (13)

l

I
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1) D I) I) 1)
2n,l I 2n-2,2 8,n-3 6,n-2 4,n-1 2,n

I .) 8  I) 6  D
0 D2n-2,1 1 8,n-4 6,n-3 4,n-2 D2,n-1

R 0D 81 )62 D43 D24

1 0 . 0 1)6  D42 D 23

0 0 0 0 D41 D22

0 0 .0 0 i 0 2- ni ni i 21

Substituting Eq. (13) into Eq. (11) and comparing the respective system ma-

trix, input vector and output vector of Eqs. (11) and (12), we have

A = RGR (14a)

= RF (14b)

C =R (14c)

When the toLal number (2r) of the block quotients K. and It. is equal to 2n,
1. 1

the block state equalions in Eqs. (11) and (12) are the minimal realizations

of T'(s).

When 2r-'2n, 'T(s) in Eq. (1) that does not consist of coprime matrix

p(l'n,'omials (in be written as:

Tos) = I (s)-11)2 (1) = 1) n+U 2 - + - n-+)2 n-2+ . . ]I S )2 ) 1 1s  +D12 S +'''+D 1,1+1 I  1) 21 S + 22S . .D2, n

-1

S(:(s)lI) (s)I IC (s) 1 2 (s) ]

P.C)=[ l 1 .r -i r-l1 22r-2+."P
Il )-l2(s ['IS +'' 1,r+i ]  [21 22 ,r

(15)

I 11P1..
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where

ii- r n- r- 1.

C(s) C n+-rs + Cn - r s .+C and

C(s) is it common vatrix polynomial and Pl (s) and P (s) are left coprime.

C~) sd Ofll~f atrx oynmal~fll1 2

The C(s) 'amin be construtited from the matrix coefficients in the last non-

vanishing row in the block Routh array. The maLrix coefficients P. in

Eq. (15) can be determined as follows: From Eq. (15) we have

I) (S) C(s)lP (S) (16a)

or

n n-+ n-r n-r-I
+- s s . .+D [c S +C +...+C

12 l,n+1 n+i-r n-r

r1, r- i.
i s1+P 12 S l%+P1'+1

I
Equating tie matrix coefficients of the successive power of s we thus re-

qu i r.

I) 11 C i+l-r I

12 n+i-r 12 n-r II
1) ' ( -C 1) -c, 1

I1 'n+ -r 13 i1-f" 12 1n-r-I I I
.. ( 161)

1 f C is not singular, the Pl can be determined. Also, the P1  (an

be ob ained in succession by Iq. (16b). In the same fashion, P ,j can be2,
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d'terini nd by comparing tle mat rix coe f fie Lents of the following matrix cq-

uaLt ion

2 (s) (s) 2(S) (16c)

I
or

I
sn- +22n-2 +  +) n-r n-r-1

1)21 ... 2,n (Cn+1-rs r+Cn-rS +...+C1 x

[21 s - + 2  r-2 " "+P2, r

It is noticed that thw block linear transformation matrix R in Eq. (13) can

be constructed usinxg the block elements in the new block Routh array that is

generated from T(s) = ('l) s- il (S) with P = I but not from those in the

block Routh irray generated from T(s) = D(S)-I D 2(s). it is also noted that,

R is an upper block triangular matrix, the inversion of R can be obtained by

an iterative method. For example, the inversion of an 3mx3m matrix R3,

which is obtained by partitioning the R in Eq. (13), is required. The pro-

d1't of R and N3  is written as

I) I) ) D x y 1 0 0
(1i 42 23 61 In m m

0 1) D 0 DI z 0 i 0
3 Im )41 22 m 41 m m m

0 1)21 0 0 0 0 I ( 7a)
11 I1 In In 21 In in in

x, y Inid z i'i' unknowii b1 oc k v I ement s to be de ter i itod . E xpan di ng Eq . ()

and solving the restult ing matrik equations gives
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1) =+ D 0 x -D -(17b)
, - 1 fit 61

61 42 1 i 61D42 41

1) =+D D 0 z - (17c)
41 22 21 m 41 22 21

1)+ l +) 1 = 0 Y = -D- I D 1 -1D+D -1( 7d

)61Y+D4 2  23 21 y [D6 1 42 41D 2 2 D2 1 D2 3D2 1] (17d)

IIlius, we can determine R .

When P (s) and P 2(s) are relatively prime, the characteristic poles of

this multivariable system T(s) are the zeros of det P (s) but not det D (s),

and the transmission zeroz of T(s) are the zeros of det P2 (s) but not

det D2(s).

V. An [1 lustrative lxaiiiAil

Given: A matrix transfer function of a multivariable system as

y(s) = '(s)R(s) (18)

where

T(s) = )1(s) l)(S) = [C(S)P (S)- I [C(s)P 2 (s)]

1 2 -l 2
= 11S +Dj'2 s +D 13 s+D 41 1)21 s+D22 S+D23

K i) 3  (1 00 7 2 + ( 383 191\ + (32 42]0 l 7(0 37 472 214/ 40 52

-2 5 ) ( S 16) 68 64

with n = 3 and m 2.

l Mt " ormn l s:

( i) 'The number of rea I poles of Ti(s).



(i) The real Lzability of T(s) using an ni-port RC network. 22

(iii) The comion matrix polynomial C(s).

(iv) The minimaL realization of T(s).

(v) A pair of left coprime matrix polynomials P (s) and P 2(s).

(vi) The characteristic poles and transmission zeros of this multi-
variable system.

To solve above problems we construct the block Routh array as

1 71 0 1 (166 71) 383 191 )32 42)

1I1 =( DI2 ) I I =

0 1 70 37 472 214 40 52

1) (1 i -2 1) 2 ( 1 9 35 ( 3 5 4 52 )

=1)22=

I l 2 5 8 16 23 68 64

1) 31 =(I D32 = /D 3 = 2 4 2

2 5 4 14 3 40 52

/10 4) (22 10)

) =( )42 = (

4 2 28 12

=/2# 22 (54 52

)t 10( 0 152 8 04

(19a)



I
23

5 (1 0
I = 112 D31)2 1  ( 1 23

3 / D4 0.6 -0.2)
=1 =, = D5141

3 121 - 14.5 -0.2 0.4

Becatuse 1)0 02, the block Routh array terminates prematurely, and we have

2r (r=2<n=4)=4 block quotients. From the array we can also determineI

1 23 14 ) 0 K3 =D42D23 ) (19)

I A

Substituting Ki, K. and I. into Eq. (8c) yields

) 1 1 '-1 (1 -1
= 2 0 ( -I)+O(m 3 +o( 1M)+o )] = 4 (19c)

whoe r-'

10.4 / 2K
M= K 1 

M 3  1

Mt 5 \ 2 M 3 ~ 3)K .5 -

SK ( 3  2 3 -6 14.5

1'1 Fq. (19c) we conclude that T(s) has four negative real poles in (-o,0).

ro det ermine the real.izab[1 ity of 'r(s) using passive RC network, we

have Lo te(st whether 'T(s) in Eq. (18) is a symmetric matrix. This can be

calSiIV accomplish iled by checking the matrices Ql(s) and Q3 (s) in Eq. (5c)

using K. and I. in Eq. (19a) as fo.l lows:
1 1

i,
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l(S)2 1 0K~l1

/5 q ()0sK-IiI 2  1 1

(2.5 -)/2 1
Q(s) = 11( ) =a

-6 14.5 1 3

Both Q (s) and Q, 3 (s) are symmetric, therefore T(s) is symmetric. Because

the number of the Cauchy index in Eq. (19c) equals to rm (=4) and T(s) is

symmetric, T(s) can be synthesized using passive RC eleme,.ts.

Since the block Routh array in Eq. (19a) terminates prematurely, we

can write the C(s) in Eq. (18) as

C(S) = C s+C 54 52 1 s+
C1) C 2  K10 10 68 64 0 1 2  2 10 10

(19e)

To determine the minimal realization of T(s), we construct the block

state e(UatiL" fn in Eq. (II) using the K. and Ii. in Eq. (19a) as

z = G;z + Er (19f)

y= Fz

whe re

-( FKI I (Kill) 1 F,14 58) (_ -2i
'3(KIll2 I \24 14/ - )2

'" - 1 = 58 22,K41 L -2i

i -----(K --- :1

12 2) J L 2 0 2 5

0 0
0 0(
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Eq. (19f) is the minimal rea Lization o ' T(s).

The left coprinm matrix polynomial, P (s) and P (s) can be obtained

from Eq. (16). The C(s) is modified to ensure that PII 1 2 as follows

iI cs) 12 + c2c511 22

C(S) s+C s+ (19g)
2 52 51 0122

The required P (s) and P 2(s) are

S0 s2+ 1568 s+ 14 18
(S)(0 ) 68 35 6 8(19h)

and

I,1 -2~ 22(1)
2 (S) =s+ 24(19 i)

-2 5 10 10

Note that the matrix coefficients in PI(s) and P2 (s) are not all symmetric

but T(s) 1 (s) I) (S) is a symmetric matrix.

The characteristic poles of this multivariable system are the zeros of

dot P I(S) = 0, or

s, = -0.02739, s2 -0.127864, s3 = -5.88774 and s4 = -193.957.

TI, t ransmission zeros of this multivariable system are the zeros of

d 'e 1",(S) = 0, or

s -0.10315 and s2 = -193.89685
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VI. Coe i1 Us loil

An algebraic method has been developed for constructing a matrix Sturm

series and for establishing a block canonical form of a matrix transfer

Sfunct ion. A simple and effective block Routh algorithm has been developed

to construct the block Routh array and the block quotients. The block quo-

tients have been used to determine the number of real roots of a matrix

polynomial, and to determine the realization of a driving-point RC impedance

matrix. The minimal realizations of a matrix transfer function have been

formulated to the block state equations in the block tridiagonal form and

in the observable block companion form. As a result, a pair of left coprime

matrix polynomials can be obtaind, and the characteristic poles as well as

the transmission zeros of a multivariable system can be determined.

iI
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CHAPTER V

CONCLUSION

The dominant-data matching method for analog pitch control system design

has been successfully extended to design digital controller for the semi-

active terminal homing missile system. Various digital filters have been

designed and successfully tested in the 6 Degree-of-Freedom Terminal Homing

Simulation Program at the MIRADCOM Laboratories.

The developed direct-decoupling method has been successfully applied

to design an analog multivariable gas turbine system and a multivariable

paper making machine. It is believed that this method can be further ex-

tended to digital redesign of the coupled row and yaw control system of the

semi-active terminal homing missile system.

The properties of the newly developed Sturm series and block canonical

form have been discussed. It is believed that the block canonical form

can be further extended to synthesizing a multi-port network function with-

out using integrators.

Other new findings of this research are reported in the appendix.
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Abstract-A recursive algorithm is developed for solving the inverse Laplace transform, linear and
nonlinear state equations using block-pulse functions. The relationships between the solution of the
continuous-time state equation using block-pulse functions and that of the equivalent discrete-time state
equation using trapezoidal rule are investigated. A complete computer program is presented for solving the
differential equations of linear and nonlinear state equations using block-pulse function%.

I. INTRODUCTION

An accurate description of a practical system (for example. a semiactive terminal homing
missile system[I]) often results in a high order transfer function with very large coefficients
and/or a high order linear and nonlinear time-invariant and/or time-varying state equation for
which the commonly used numerical integration methods (e.g. the Runge-Kutta method[21)
may fail to determine the time response. Recently, an alternate method[31 that uses the
block-pulse functions has been developed for solving the linear time-invariant state equations.
In this paper, the method due to Shieh[3] and others is reviewed and extended to solve the
inverse Laplace transform, linear and nonlinear state equations. Also, the relationships between

the solution of the continuous-time state equations using block-pulse functions and that of the
equivalent discrete-time state equations using the trapezoidal rule [3. 4] are further investigated.
A complete computer program based on the proposed method is presented to solve the inverse
Laplace transform, linear and nonlinear state equations using block-pulse functions. Several
illustrative numerical examples are included to demonstrate the superiority of the new method.

2. MAIN RESULTS

Consider a linear time-invariant state equation

I x(t) = Ax(t) + Bu(t) (1a)

and

x(O) =X (Ib)

where A is an n x n system matrix, B is an n x r input matrix, x(t) is a state vector of n
components, u(t) is a vector of r input functions, and x(O) is the initial state vector. The
piecewise-constant solution of (1) can be obtained by using the block-pulse functions o$t) for
j = 1,2..., m. Each block-pulse function Oj(t) is defined by O1 (t) = I for (i - I)T s t <jT,
and tk,(t) = 0 for other cases. The term T is a time increment oi a sampling period, and m is the
number of the discrete-time solutions of interest. The block-pulse functions O,(t) for j =
1. 2. 3. 4 are shown in Fig. 1.

3
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Fig. I. The block-puke functions and their integration%

The piecewise-constant solution and the discrete-time solution of (I) in the interval

i 1 T- t < jT are defined as the column vector C, and the x*(jT). respectively. The C, and

'I *jT) can he determined from the recursive algorithms shown in the following steps:

Step 1. Approximate the input vector u(t) that has r input functions using the trapezoidal

rule. The columns vectors L, in the r x m matrix L = [L,. L2 ... L,,I that is the approximate

input functions are

I., - Iu(jT) + u((j - I)T)I for j = 1. ..... in (2)

- average value of u(t) over the interval (j - I) T - t jT.

Step 2. Fvaluate an nt x m matrix K = [K,. K ... K,,I. The column vectors K, are

K, = .4.ri)t* BL, for j 1.2. .m,3)

Stp 3. Determine an n x in matrix D = ID,. D ... D,,[. The column vectors Di are:

SRK (4a)

Ol=(I,,+R,)D,+IR,(K,-K, ) for j=2.3 ..... m (4b)

'here

R,(= ( .- A) = T(,- AT) (4c)

R, = RA

I,,= an n x n identity matrix.

Step 4. Ohtain the n x rn required piecewise-constant solution matrix

C = [C. C ... C",1. The column vectors C, are

T

Ci=C, ,+ T (D ,4-Dj) for j=2.3. m. (5b)

lhe required piecewise-constant solution of (I) is

xMt COb (5c)
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where 0 = [ 4b. ,'. The prime designates the transpose, and the 44i is a block-pulse
function.

Step 5. Determine the required approximate discrete-time solution x*(t) using the reversed
process of the trapezoidal rule. The required solution x*(t) at discrete-time t = (j + I)T is

x*((j+ I)T) =-x*(jT)+ 2C((j I)T) for i = 0.1.2.... m -I

where

x*(0) =x(0) and C((j + I)T) =C,. (6)

The expression x*(jT) is the approximate discrete-time solution of the x(f) in (I). The
accuracy of the approximation depends heavily upon the chosen sampling period T. A complete
computer program, based on the algorithms in (2)-(6) is presented in this paper to obtain the
solution x*(jT) in (6).

Because the trapezoidal rule is applied to approximate the input function in (2). it is
interesting to investigate the relationships between the solution of the continuous-time state
equation using block-pulse functions and that of an equivalent discrete-time state equation
using the trapezoidal rule [4, 5].

When u(t) =0 in (I), Shieh et al.[3] have shown that the equivalent discrete-time state
equation of the continuous-time state equation in (1) is

x*((j + I)T) = Gx*(jT) (7a)

x*(0) = X0

where

G=I,+R,=I+ (I.-IAT) AT (7b)

= 1 +AT)(1 -AT)- '= (!. -IAT) '(I. + AT). (7c)

The discrete-time solution of (7) is

x*(jT) = G'x(O) for j = O. 12... (8)

In this paper. the derivation is extended to a more general case (Shieh et al. (31). that is. u(t) * 0.
To simplify the expression, the T in the following discrete-time state equations and difference
equations is dropped. Also. the vectors L i are expressed by L(j). K by K(j), Di by D(j) and C,
by C(j).

When u(t) * 0. (2) to (5) can be expressed by a set of difference equations

T T TDl R T~l= R,Ax(O)+-R,BL(I) (9a)

Dtj± 0l),, +R.)D(j) -fR,B[I.(j+ I)- L(j)] for j = 1.2-. m (9b)

and

C() = 1(21 + R2)x(O)+ - RBL(l) (10a)
2 2

C(j+ 1)= C(j)+T1 [D(j+ 1)+ D(j)] for j =1,2.... m. (10b)

2l.., ... ..
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Substituting (9) into (10) and using (6) will yield the required discrete-time solution xo(j). or

X*(j = O*(O() + .0*(i - i)RIBL(i)

= 4j*(j)+~ 4*(j~ -~ l )Hu*(i) for =1. 2,... (1 a)

where Lb*(jW The transition matrix of the discrete-time system

R,= T (I jAT)

H = RIB

UM= 1[j~j + 1) -+ U(i)] (I Ib)

T = sampling period.

From (I Ia) the approximate discrete-time state equation can be written for the continuous-time
state equation in (1) as

X*(j + 1) = Gx*(I) + Hu*(j) (12a)

x*(0) = x(0) (12b)

where

G = (1, - 'AT)(I. + 'AT)

H =T(L1 - 1 AT)'B

U*(j = f u(j +4-1) + u(j). (120)

It is believed that the modeling of the discrete-time state equation in (12) from the
continuous-time state equation using block-pulse function is new. If the Z transformation is
performed on both (1) and (12). we have the respective functions as

zX(z) - zX(O) = AXWz)+ BUWz (13)

and

zX*(z) - zX*(0) = GX*(z) + HU*(z) (14)

where

U*(Z) = zU(z) + U(z)J.

Substituting the G and H in (12) into (14) and simplifying yields

2 (z- 1) X*z) - I , (I. -!ATX*(),AX*(z) +BU(z) (15)
T (z + 1) T(z+1 2

where X*(0) =X(0).

~-, _A
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Comparing (13) and (15) and assuming that X*(z) is the approximate function of X(z), we
have

Z [,(t ), - (z -1) X * (z ) _ A T z( ) ( 1 6

(z + 1) T (z+ )/ (16)

Equation (16) is the approximate numerical differentiator that is often used to determine the
inverse Laplace transform of a continuous-time state equation [4, 51. Thus. the solution of a
linear time invariant state equation can be obtained from the recursive algorithms in (2)-(6). or
from the matrix equations in (11). For linear and nonlinear time-varying systems, the frozen-
time and frozen-state approach[61 is applied to solve the linear and nonlinear problems using
block-pulse functions, In other words, when an independent variable t and the time dependent
state variables xi(t) appear in the system matrix in (I) at stage j, the time variable t is
considered as a frozen time by letting t = jT. The state variables considered as frozen states
xi(jT) in the time intervals jT -t ! (j+ I)T. Substituting these constants t = iT and xi(t) =
xj(jT) into the system matrix in (I) and using x(jT) as the initial vector yields the time-invariant
state equation in the time interval jT s-t s (j + 1)T. Thus, the proposed method can be applied
to evaluate the solution x(t) at t = (j + I)T. Repeating the processes we have the required
discrete-time solutions for the linear and nonlinear state equations. A complete computer
program based upon the above approach is presented in this paper for solving the inverse
Laplace transform, linear and nonlinear state equations.

3. FORMULATIONS OF STATE EQUATIONS AND ILLUSTRATIVE
EXAMPLES

Consider that the impulse response of the following rational function is required:

Y(s) bls- '+ b~s"-2 + + • ,•(7.
U(s) s" + ais"- + a2s" 2 + .+a" (17)

Since the input function U(s) = 1, the required impulse response is the inverse Laplace
transform of Y(s). Also, the impulse function is a delta functioi. it cannot be realized because
of its infinite amplitude at t = 0. Therefore. it is convenient to convert (17) into a zero-input
state equation with initial conditions as

i(t) = Ax(t) + Bu(t) (18a)

y(t) = Cx(t) (18b)

x(0) = x (18c)

where

0o o 0 0 FXI(t)1 r0A 0L 0 1 [j L§2i [0
-a. - a.-, :aL.tJt = . B0 =

C = I,.

The output matrix C is chosen as an identity matrix so that the output functions are equal to the
state variables. The initial vector x(0) can be evaluated from the following matrix equation
[2, 71:

x(O)D-b (19a)
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or

x (0) 1 (0) 1I 0 00 1 bi
xr (0) x'(0) a~ I 00b,
k" (0) -x(0) a, al 1  (19b)

xn 1)(0) _X. (0)_ a.. I a.2 an, 1 .

h is a vector constructed from the coefficients of the numerator polynomial in (17). A recursive
algorithm121 has been proposed to determine the initial conditions without finding the inversion
of the square matrix D. An alternate method is proposed in this paper to determine the D
and the required initial vector.

To determine the D 'indirectly, we construct the following matrix equation:

z K(- a) (20a)

or

[1 0 0 0 0 0 al
I1 0 0 0 0 -a4= 2 1 0 0] a (2Ob)

2 Z2 ZI i 0 0 Z a4

2nL n 1 2 Z. In Z. -4 z-1 I i J•a

The vector a a) is constructed from the coefficients of the denominator polynomial in (17) with
negative signs. The .atrix K is a lower triangular matrix with each diagonal entry assigned as
unity, and other entries z, are determined from the vector z. In other words, from the
multiplication of the first row vector in K and the vector (- a) we have the numerical value z,.
Then, we immediately substitute the zj into the lower diagonal entries and solve for z, and so
on. The general algorithm is

70 = I

,- i jai i., for ji= .2.....n. (20c)

The matrix K is the inversion of the matrix D in (19). Thus the required initial vector x(0) can
be determined in (19). If the input vector u(t) in (17) can be expressed by analytical functions or
a set of finite values at sampling points. (17) can be converted to a zero initial-state time-
invariant state equation as

.M) = Ax(t) + Bu(t) (21a)

y() = Cx(t) (21b)

x(0) = 0 (21c)

where A is shown in (18): B=[0, .. 0. ,1]': C=[b,,b,_,,... b2, bd: and x(0)=
fo.0o. . '.

A practical system is the transfer function of the pitch control system of a semi-active terminal
homing missile system [1] which is shown as an illustrative example as follows:

Y(s) _ hos' + bs' + - • • + bqs + b,,
((s) s + as'° + 4a sq + .+ a0 s + a (22a)
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where

a, = 1.9235540 X 10' b. 0
a., = 9.3162391 x I0' b, = 0
a, = 2.9769507 x I08 b, = 0
a4 = 6.2316753 x 1010 b, = 0
a, = 9.3603299 x 10'2 b4 = 0
a, = 9.7499233 x I0" b, = 1.4945233 x 1011
a7 = 6.6673970 x 10" b, = 2.5633964 x 10'
a, = 2.4204054 x 10"' b7 = 5.0172120 x 10"
a, = 2.9119206 x 10" b, = 2.9263443 x 10"'
at, = 2.4190474 x i0'9 N, = 4.6100047 x 10'4
a1, = 8.8021585 x 10"' b 8.8021585 x 1019

It is desired to find the step response U(s) = (I1s).
Equation (22a) can be formulated either in the form on (18) or that of (21). Attemp t', to so c

this problem by the Runge-Kutta method[2] were unsuccessful even though the time increment
was chosen as small as 10' sec. This is because the practical system consits of large
coefficients in the transfer function. This normally results from large poles, for example, in (22a
there exists a smali a, (which is the sum of all poles) and a large a1, (which is the product of all
poles). This difficulty is overcome by the proposed method. Using the proposed computer
program with time increment DT = 0.2 sec yields the uiit step response curve shok n in Fig. 2
For comparing the results of the proposed method and the Runge-Kutta method we apply both
methods to the reduced third-order model of the original I lth-order system in (21a) (using the
method of Shieh and Chen18. 9]) to evaluate the unit-step responses:

Y1 (s) 0.6920s2 + 19.4692s + 3.7376
U(S) s3 +0.9488s 2 + 10.1661s + 3,7376" 21b

The response curves are shown in Fig. 2. From these results, we observe that the proposed
method is superior to the Runge-Kutta method if the system consists of extrernei large or
small coefficients or the response curve of the system has many stiff slopes.

When a linear or nonlinear time-varying equation is given and the numerical solution is

required, the given equation can be converted into a state equation in (1) with time-varying and

. The 3rd order system described in equation (22b1

(using the proposed method and Runge-Kutta method)

The 11 th order system described in equation (220)
30. (using the proposed method)

T: 02 sec

20-

0 2t

ii

t tsec)

Fig. 2. Time responses of the systems described in eqns (2201 and 122b'.

ILI
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10 L. S. SHIFH el al.

nonlinear entries in the system matrix. The proposed method, along with the frozen-time and
frozen-state method, can be applied to determine the solution. To illustrate the procedure we
use the following examples:

Given a nonlinear equation

d2z(t) - z(t) 2 ] dz(t) + Kz(t) = Qu(t) (23a)Qu t-f(t)[l

z(O) = a, and (O) = a 2

where f(t) is a time-varying function, and K. Q and aj are constants. Equation (23a) can be
converted into a state equation by defining the state variables x1(t) and x2(t) as

x,(t) = z(t)

x2(t) = (t). (23b)

The corresponding state equation is

[2(0) = [-(K f(t) IIX2(hil I + 0] H(t) (23c)

X2,O1 = r (21d)
x 2 (0)] a2 2

When f(t) = I, K = I and Q = 0, the nonlinear equation is the Van der Pol equationflO]. If the
output functions y,(t) and Y2(1) are assigned as x1(t) and x2t), then the state equation is

iq(t)_ 0 1 lrxI(t)lirOl(( r
12(t)J -I l-xI2(t)Jx 2()J+ [oJ (24a)

[YI(t)] [I 0] [xI(t)] (24b)
y2(0 r 1 Lx2(t)J

IX2(0)l a2"

The proposed method that uses the block-pulse functions and the frozen-time and frozen-state
approach can be used to solve (24) for determining the trajectories x1(t) and x2(I). In other
words, substituting x(O) in (24c) into the system matrix in (24a) results in a time-invariant state
equation in the form of (I). Thus, the developed recursive algorithm in (2)-(6) can be applied to
evaluate x*(T) that is the required discrete-time solution x(t) at t = T. Then, using the x*(T)

obtained as the new initial vector in (24c) and again substituting the x*(T) into the system matrix
in (24a) to obtain the new time-invariant system matrix for evaluating the new olution x*(T)
that is the required solution x(t) at t = 2 T, and so on. The trajectories of the nonlinear equation
as a result of different sets of initial conditions are shown in Fig. 3.

4. CONCLUSION
The recursive algorithm for solving linear time-invariant state equations using block-pulse

functions has been extended for solving the inverse Laplace transform, linear and nonlinear
time-invariant and time-varying state equations. The relationships between the solution of the
continuous-time state equations using block-pulse functions and that of the equivalent discrete-
time state equations using trapezoidal rule have been investigated. It is shown that the
discrete-time solutions of both methods are identical. An approximate numerical differentiator
has also been derived. A complete computer program, based on the derived recursive algorithm I
using block-pulse functions and the frozen-time and frozen-state approach, has been written for
solving the inverse Laplace transform, linear and nonlinear state equations. It has been shown
that the proposed method is superior to the Runge-Kutta method if the system consists of stiff
functions.

Acknowedgenwt-'this work was supported in part by U.S. Army Missile Research nd Development Command, DAAK40-78i-C-0017.
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X21t)

T'O.I sec

3

AK, , TT . 9X(t)

Fig. 3. Phase-plane diagram of the system described in eqn (124).
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APPENDIX
This program is used to solve the inverse Laplace transform, linear and nonlinear, time-invariant and time-varying state

equations. The details to prepare the input cards can be illustrated by the following examples.
Example I. For the following transfer function:

s2 g+s + 12y(s) = s-+3t 0 0 (AI1)

The discrete-time responses y(t) at I = iT for T = 0.25 sec and i = 0. I. 4 are required.
The input nomenclature follows:
The first data card:

KS-Type of problems to be solved. When KS = I, it is the inverse Laplace transform problem. For this example, KS = I.
N-Degree of transfer function. For this example, it is 3.

MT-Number of discrete time solutions required. In this case, it is 5.
DT-Time increment, o, npling period. For this example, it is 0.25 sec.
The second data card:
AAO, AA(l) ... AA(N)-Coefficlents of the denominator. For this example, they are 1, 3. - 10,0.
11(), .... BB(N)-Coefficients of the numerator. In this case, they are 1,8,12.

If the degree of the numerator is less than (N - I), zero coefficients are assigned in the numerator. The output data of
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this program are:

KS... I N... 3 MT... 5 DT... 0.250000

DENOMINATOR COEFFICIENT AAOAA(l)... AA(N) ARE
0.I000000E 01 0.30000000E 01 -0.10000000E 02 0.

NUMERATOR COEFFICIENT BB(I)...BB(N) ARE
0.10000000E 01 0.80000000E 01 0.12000000E 02
INITIAL CONDITIONS X(l) .. X(N) ARE
0.10000000E 01 0.50000000E 01 0.700000E 01

THE REQUIRED SOLUTION

T YI Y2 Y3 Y4

0. 0.10000E 01 0.50000E 01 0.70000E 01
0.25000E 00 0.25897E 01 0.77179E 01 0.14744E 02
0.50000E 00 0.51446E 01 0.12721E 02 0.25283E 02
0.75000E 00 0.93810E 01 0.21169E 02 0.42302E 02
0.10000E01 0.16436E 02 0.35275E 02 0.70541E 02

Note that YI = y(t) and Y2= y(t).
Example 2. Consider the following state equation:

jt(t) = Ax(t) + Bu(t)

y(tl = Cx(t) (A2)

x(0) = X0

where

A = the system matrix = [13 4]; B = the input matrix=[2 01]J

C = the output matrix = [ O]; u(t) = the input vector= [u(t) 

4(0) =the initial vector U yqj = the output vector = fYI(t)I l'y2(t)

The input functions u,(t) and u2(t) are unit-step functions. The responses y(t) at t = jT for T = 0.25 sec and j =0, I.. 4 are
required.
The input nomenclature follows:

The first data card:
KS-Type of problems to be solved. When KS = 2, it is the problem of solving linear time-invariant state equations; when

KS = 3. for solving linear time-varying and nonlinear state equations. In this example KS = 2.
N--Order of the state equation. For this case, it is 2.

MT-Number of discrete-time solution required. In this example, it is 5.
DT-Time increment or sampling period. For this example, it is 0.25 sec.
The second data card:
KU-Type of input functions. If KU = 1. the input functions uj(t) are continuous-time functions. All u1(t) can be inserted

in the main program using t as an independent variable. If KU = 2. the input functions are in the form of
discrete-time input data. For illustration, in this example. KU = 2.

NU-Number of the input functions. For this example, it is 2.
NP-Number of the output functions. In this case, it is 2.
The third data card:
A( I I). A( . 2). A( I. -N)-The entries of the first row vector in the system matrix A. For this example, they are I. 2.
The fourth data card:
A(2. 1). A(2. 2).... A(2. N)-The entries of the second row vector in the same matrix. In this case, they are 3. - 4.
The fifth data card:
B(I. I). B(I, 2),..... Bt I NU)-The entries of the first row vector in the input matrix B. For this example, they are 2, 0.
The sixth data card:
B(2. 1), B(2,2),..... B(2. NU)-The entries of the second row vector in the same matrix. In this case, they are 1. 1.
The seventh data card:
C(I. 1), C(l. 2),..... C(l. N)-The entries of the first row vector in the output matrix C. In this example, they are 1. 0.
The eighth data card:
C(2. I). C(2.2) ... C(2. N -The entries of the second row vector in the same matrix. For this example, they are 0. I.
The ninth data card:
x(l). x(N -The initial conditions. For this example, they are 1. 1.
The tenth data card:
u(. I), a(l. 2).... ,ml MT)-The discrete-time data of the first input function ul(t) evaluated at t = jT for T = 0.25 sec -.

and j = 0, 1 ..... (MT- I). In this example, u,(t)= I; therefore, the discrete-time input data are 1. 1. 1, 1. 1.
The eleventh data card:
u(2, 1). u(2,2),..... u(2, MT)-The discrete-time data of the second input function u2(t) evaluated at t = IT for T = 0.25
second and j =0, .. (MT - I). For this example, u2(t) = I; the discrete-time input data are I.. 1,1. 1, 1.
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Since the u1(t) and u2(t) are unit-step functions (continuous-time functions), we can choose KU =I. If we choose KU 1,I
we do not need the 10t and I 1th data cards. However, the statements

UT(I) = I.-
UT(2) = I.

should be inserted in the main program.
The output data of this program are:

KS ... 2 N... 2 MT ..S DT.. 0.250000
KU... .2 NU... .2 NP.. 2

SYSTEM MATRIX
0.10000000E 01 0.20000000E 01
0.30000000E 01 -0.40000000E 01

INPUT MATRIX
0.20000000E 01 0.
0.10000000E 01 0.10000000E 01

OUTPUT MATRIX
0.IOOOO000E 01 0.
0. 0.10000000E 01

INITIAL CONDITIONS X(l. ... X(N) ARE
0.10000000E 01 0.10000000E 01

DISCRETE INPUT DATA
1.000 1.000 1.000 1.000 L.000
1.000 1.000 1.000 1.000 1.000

THE REQUIRED SOLUTION

T YI Y2 Y3 Y4

0. 0.10000E 01 O.IOC0CE 01
0.25000E 00 0.25897E 01 0.15641E 01
0.50000E 00 0.51446E 01 0.27883E 01
0.75000E 00 0.93810E 01 0.48942E 01
0.10000E 01 0. 16436E 02 0.84191E 01

Example 3. Given a nonlinear state equation in (24) of the main paper ,or

[ ,t)i 0x(1)l0lt W)3
1i'('J[ - I I -X .(t) x,2(t)JLOJ1(

Jyi(t) 1 0l[x(t). ; xi(0)1=Fail
M0(f J10 1] x2(tj Jr Lx()La2J

where u(t) =0.
The procedures to prepare the input data cards are the same as those shown in Example 2. except the following:
(i) KS =3.
00i If KU = I is used, the statement of the input function UT(I) = 0 is inserted in the main program as shown in the list

of this program.
(iii) Any entries that consist of nonlinear or time-varying terms, or both, in the system matrix are first assumed to be

zeros in the input cards. thei the corresponding terms are recovered by the exact terms by substituting the state variables
xr1U) by x(j) and tby T in the main program. In this example. the system matrix in WA) is first assumed as

In other words, the entry A(2, 2) is a nonlinear term which is assumed to be zero in WA4. The term is recovered in a
statement A(2, 2) =I - x(l)ox(l) in the main program as shown in the list of this program. The outputs of this example are
plotted in Fig. 3 of the main paper. The complete computer program for solving the inverse Laplace transform, linear and
nonlinear state equations follows.

CAEE Vol. 6. No. 1-a
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Computer program
C A PROGRAM FOR SOLVING INVERSE LAPLACE TRANSFORM,

C LINEAR STATE EQUATIONS AND NONLINEAR STATE EQUATIONS USING

C PLOCK-PULSE FUNCTIONS.
C

C S-I INVERSE LAPLACE TRANSFORM
C S-2 LINEAR TINE-INVARIANT STATE EQUATIONS

C -C- NONLINEAR AND LINEAR TINE-VARYING STATE EQUATIONS

C
C WHEN KS-1,
C Y(S). (RAC1).S..(N-l)+ ...,AN tAOSNCI.HN1..
C *AA (4

C WHEN KS-.
C OX(T)/IAT.AX(T)+RU(T)
C Y(T)-CX(T)

C XCO).- INITIAL VECTOR

C WHEN KS-1,

C THE TINE-VARTINr, AND NONLINEAR ENTRIES IN THE M4ATRIX 'A' ARE
C ASSUMNED TO qF ZERO IN THE INPUT DATA CARDSeTHEN THE CORRESPONDING
C ENTRIES ARE RECOVERED Ry THE EXACT TERMS IN TIAE MAIN PROGRAP
C USING STATE VARIARLES XCI)..X(N) AND TINE VARIABLE 'T

C N- DfEOREE OF 7HE TRANSFFR FUINCTION
t ORDER OF THF STATE EQUATION

C MT- NO. OF T1HE KNOWN DISCRETE-TIME INPUT DATA

C xNO. OF THE OUTFPUT DATA REQUIRED
C OT- TINE INCREMENT OR THE SAMPLING PERIOD

C WH4EN KU-I,
C THE 14

0
'UT FlIICTIONS UT(J) %RE CONTINUOUS-TIME FUNCTIONS.

C WRITE ALL THE LUT(J) IN THE MAIN PROGRAM USING THE INDEPENDENT

C VARIARLF 'T.

C
C WHEN KU-7,

C THE 14PUT FUNCTIONS ARE XISCOETF-TI"E DATA.

C NICE NO. OF THE INPUT FUNACTIONS

C NP- qll. OF THE 'OUTP-JT FUNCT IONS

s01 FORMAT (%E16.9))
S1n EOSRT((RE1O.A))

6o0 FORAT(I~,HS*,24,H..I.4,HT.,3~XSD..IO6

601 tORMATT//4X* 1DENOHINATIR CnEFFTCIFNI AAO,AA(1) ... AACN) ARF')

A,',.' FOR-AT f(OX,bF16.8))

605 FORMAT( //4X,'N'l4ARATOR COEFFICIENT 19( 1 .4nP(N) AREI

6n4 FORMAT ( 6S.INITIAL CONNITIONS XT1(.I.X () ARE)

6n5 FMR-AT( (?X,,F16.2) )

604" FORMAT C/?XoSHKU...,I?,4X,SHNU.. .,I2.&X.SHNP...,!2)

6n7 FOERAAT(//5)X,'STFM -AT4I1-

6%OR F 1)RATf /',X 'IN'JT MATRIX-)

600Q F INSAT //'4XOUTItl -AT41X)
611 FORNlAT(//SX,'DtSCRETE INPUT OAT%')

611 fOQ*AAT (1/6X,*THA NEQIJIRE.D SO.LUJTTON" f5''1X.Y1DY

61? FOQ-ATI1x,QEII.%)

600 FOESATE((?W,AF1O,) I

, Ikl NS 11)4 AA (2f) ,15H(2),A CO,20),A1 .0,N0)X?)XS(1

-JAITE (4,6011C5,4T,DT

IF(vS.*J-.I1 AnTO 1001
WRITE(6,6T11I

READ(SS111 IAT,(lkA(L),L.1,N)
WRITE(-S,An?) A41,(AA(L).L-1,N)

WEITF(A..403)

wRITE(6,602)(na(L),L1l,l)

DO 101 L1l,N

R9CL)-NB(L)/ A IC
101l AA(L).-AACL)IRAI

NI .1
D O 10P L-1,N

1

DO 105 J-10N
100 A(LJ)-T.

On 10'. .J-,N
L-NA1 -J

I141 A(N,J)-AA(L)
D110 L-1,4
A120 J-I,N

t 2( t(L,J10'.
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~n U 6') J=I,L

D0 1A I JJ-LIN

JJL-JJ-aL
170 11( l ,L-

X 4 (L),~'

VN51 4~1 ILi) *RAIJ)I .0(L)i' 'i J's),
No1 24,11."

D1' 0 1

C1 I 11 L I ,

1 E 011 1 ? P5. 501) (' 11J .4 1 . 'I

W0 It (15"56 1 u NU, j

' 5 ? L l. 1

no,1 I CO.0')4

111 IT 1T A, '' 7)1 14 , I J 1

aNL. IL), ,

I 
L 

.

''1( I I I "

0( 1)C) J I N

7 1 N I LI'ILI

4 ' X IL) - 5I7

7 1 0JIAO60

0' ) ;61 L 1 0

111 1O 11 S I S ' H) E AI EL A OJ; I AS A 1 r' T4 0 ) NT V P

615 WQII(,070()IJL)41'T

r5 '1 2L2.J

n0 215 J.1,

?15 UL L,1II(.)lJLJ 1?

' j 'r?00 61 50IINA K~o - ,A

700 L(XL, Q'CC J ).IFVS )? ~ OD

II
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210P) CALL. AT(,.ING
00 216 L I.N

CALL DI 'V4 (41,R 'IN)

?Ps I (L.J WOICL,J)
I1 ( 34. 1 n) 40 1 4000
Io LI LN

CALL VAL PN 4R I.~?X

XON(L) AI(L) G(L)

10L).(
W1 CCL.IC)-XqA(L)
I F (C.F0.() no TO 50010

r,0 7.)100 -J1.

5n. 711KAI,N

712 P2CAL KK)-CJ),KS

0210' L)1t
0 0 230 J-1.

2 10 xCLJ)*A%(L)+1L (L.J)
", 2 ,1 J.,1M

IF (J.GT.1 ) f0 TO 301
Do 2 3; L. '

242 WK (L)-RSCCL,J)lflT
CALL ~L~NNA.X1X1
0 0 23 A L1,

2 3' I0(L , i ) I> (L)
r00 TO0 2!1

110 234 L=1,N
24 0( L) 1~K (L C 1IO1-WKL;.J,)10!T

CALL4 " 'ltT(.,1l (, b ?
CALL 4 ALT(.,2lXl0
n0 235 L-I 'i
xl)(LJ)=00(X J2)003(L)*00?(L)

215 01 ( L ) Xl3?LJ C

IF (J.GT.i1 0 TO 302

21-1 XC (L, J) mx0(LJ.jVT2.#XO(L)
r.0 T 0 2 40

1nO 24? L-1,I4

24.0 CO0.4T I J;

5njn yo i.()) LI , V
40 Or T(L.1)2 4 (L)

00 401 LI , M
n0 411 JC?,-T
j?-1-

401 XT(L..)--XT(L,J?)+?.-XC(L,J?)

40 720 KA1,4.~

S-S#C((L.IC).TT (t1,KJ)

,q TT (6.,671)

1 .T "

SUFAROUTN A ,ALTI (1.MA;KgBC
DP4dI ON S1 4 '0 I),RC'?).C(2 0

010 10 L*1,?J

0012 ,
SSS*AL,J)*R(J)

le C tL)S

SUIA0UIIWE 0NV"4 CAON)

f), 10 l1P
00 10 J21IN

It
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JJ.n~DO ;11 XCIS

LL:JJ

40 ., ( 'I (0(JJ,tCK) -1 .E-'.)so0,l6a

IO 0 4n'aa~'
6n I 0F L.)n~n7

In0 flCJJa'a*I t
DnTI"VO~.C

10 'a1.N

j.'a+l-LJ )/I

1(' JS) a"(j.a

2n CONTIN11

0 V"-?'
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Synthesis of optimal block controllers for multivariable
control systems and its inverse optimal-control problem
Y.J. Wei, M.Sc., and Prof. L.S. Shieh, M.Sc., Ph.D.

Indexing terms: Multivariable control systems, Control-system synthesis, Optimal control

Abstract

A new method is presented to synthesise optimal block controllers for a class of multivariable control systems
represented by the block companion form. The reverse process of obtaining the optimal block controller is used to
determine the block-weighting matrices of the quadratic perforniance index from prescribed control specifications.

1 Introduction C = C5  2 ... C,,] (4d)

The accurate description of linear time-invariant systems in Tise block elements Ai, O,, 1, and C are m x m constant matrices,
the time domain may result in m nth-degree coupled differential m x m null matrix, m x m identity matrix and m x m constant
equations, or an nth-degree matrix differential equation with m x m matrices, respectively. The vector X consists of n blocks (Xi,
matrix coefficients' as i = I, 2 . n.. n) and each m x I block Xi consists of m state variables.

"-I In this paper, we define the vector X as a block vector. Because the
AiDi-'x = u (]a) state equation in eqn. 4 is formulated in the phase-variable block

i form, the X is defined as a vector in the phase-variable block co-
xordinate. As a result, the X(O) is an initial block vector. From a

y = CiDix (lb) conventional viewpoint, the same vector X is viewed as a vector with

nm state variables in a general co-ordinate. Therefore, the same state
rid equation in eqn. 4 is viewed as a state equation in a general co-

Di-lx(0) = ai, i = 1,2,.....n ( c) ordinate. In this paper, all the derivations are based on the stateequation in the phase-variable block co-ordinate rather than a general

where y is an m x I output vector. u is an m x I input vector and x is co-ordinate.
an m x I state vector. A, and C are m x m matrix coefficients, and The objectives of this paper are described as follows:
the differential operator D = dldt. When each initial vector ai is an
m x I null vector, the corresponding frequency-domain representation (a) Obtain the optimal block-control law u =R BRTPX =KX

of eqn. I is an nth-degree matrix transfer function written as (where the feedback-gain matrix K = R -' BTP consists of m x m
block elements Ki, i = I,.,.) to minimise the quadratic per-

Y(s) = T(s)U(s) (2a) formance index

where Y(s) and U(s) are the m x I output vector and the m x I input I -
vector, respectively, and the matrix transfer function T(s) is J - I [XQ X + uTRu]dt (5a)

2-0
T(s) = N,(s)D,'(s) = Dt(s)N(s) (2b)

The matrix polynomials D,(s) and N,(s) with appropriate size are for the dynamic system formulated in the phase-variable block
right coprime, D1(s) and N5(s) left coprime. Let us define co-ordinate in eqn. 4. The T designates transpose, the weighting

matrix R is an assigned m x m positive-definite matrix, and theD,(s) =  
m5s' + As' + .. + A2 s + A 1  (3) block-weighting matrix Q is an assigned nm x nm nonnegative

Nr(s) =C,
-' + C-S- 2 

4- . .4- +C 2S + c, definite-symmetric matrix with m x nrtblock elements Qi- , T
or

where A, and C are m x m constant matrices. The corresponding first-
degree state equation in the controllable phase-variable block form or Q11  Q12 ... Ql-
in the controllable block companion form is Q Q22 -

X = AX +Bu (4a) Q QT (5h)

y CX:x(O) = Xo (4b) Q.s Q .. ..

where
O, "is O, 0m IX, The nm x nm matrix P is thle positive-definite solution of the
0. m m 0. 0 m  X 2  steady-state Riccati equation2

A -A, PA + ATP+ Q-PBR'I TP = O, (5c)

The same P can be also solved from the following canonical form:2

(4c)
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It is noted that, if the pair [A, Bis controllable and the pair Expanding eqn...

[A, L] is observable (where Q=LLT ), then the closed-loop *

system is not only optimal but stable. D, = 01i = Q1 + ATRA1
(b) Determine the block-weighting matrices Q and R of the quad- "'RAI -0 2 

ratic performance index in eqn. Sa if the optimal block controller D2 = Q12 Q = QJ2 +A I - A

K is assigned or if the closed-loop poles (or the equivalent control ......
specifications3 ) of the optimal controlled system are prescribed. D 2 ,, 1 = R ( 10 )'

2 Linear optimal-block-regulator problem Taking the wLaplace transform of eqn. lOa and neglecting the initial
conditions we have the matrix polynomial D(s):

In the conventional synthesis of the linear-regulator problem, D(s)XI (s) = [D2.1 S2 + D2ns
2

- +
the state equation in eqn. 4 is viewed as a state equation in a general
co-ordinate. An optimal control law is then derived by solving eqns. + D2 s + D1 I XI (s) = Om xi (1) II

P 5e or 5d. In this paper, the state equation in eqn. 4 is considered as a T

state equation in the phase-variable block co-ordinate. The optimal- where D2k+J = DOk~l, k = 0, 1. n and D2k =-Dk,

block-control law is derived as follows. k = 1, 2,..., n. It is well known that the poles of the state equation
Expanding eqn. 4 and adding a trivial identity yields in eqn. 5d are symmetrically distributed about the origin in the

s-plane, so are the roots of the determinant of the matrix polynomialX, X, D(s) in eqn. 11. Performing the spectral factorisationl ' 7 of the matrix
X, polynomial D(s) results in a stable matrix polynomial A(s) and an

unstable matrix polynomial A (-s), i.e.

= XD (s) = FTA(-s)TA(s)F (12)

Xn)= = -AX, -A 2X 2 -. -- AnX. +u (6a) where

Rewriting the last equation in eqn. 6a gives and R = FTF =

u = AIX, +A2iX + . .. +A.AX( " -' ) + XJ) (6b) A(S) = I.s" + E.sn
-
I + .+ 2 s +E I

Substituting eqn. 6 into eqn. Sa, we have an alternate form of the cost The required optimal-block-control law is then obtained from eqns. 6b

function as and 12 as

F(X, ) = F(X 1 ,XI . .In) = F(X*) = X*TQ*X* (7) u = [K I K 2 ... KnlX (13)

where where

Qf ~ --- Q,, ATR' = K A1-E, i = 1,2,. .. n

Q2*, QI -- Q2*. A TR

Q * = Q*T X* , When the given system is not in a phase-variable block form, a newly
... =developed algorithm shown in Appendix 8 can be applied to obtain a

Qi. Q:I ... Q%, ATR X'(n-I) block linear transformation that transforms a class of state equations
in a general co-ordinate into the phase-variable block co-ordinate.

RAI RA 2  --- RAn R j I Thus the proposed method can be applied to determine the optimal
block controller.

Q.j = Q,. + ATRAj = .

The (n + l)m x (n + I)m constant matrix Q* is a block weighting 3 Inverse optimal control problem
matrix with m x m block elements. Applying the gradient matrix
operations4 to the quadratic cost function in eqn. 7 yields Given a set of prescribed closed-loop poles, or equivalent

control specifications,3 we wish to determine the weighting matrices
X,= [in m "' . OmQ*X* Q and R of the quadratic performance index in eqn. Sa by which

the controlled feedback system has prescribed closed-loop poles and
d AF, = [o. 1. 0 1 "* the feedback-control law is optimal. This is an inverse optimal-control

dt problem. Kalman s initiated the inverse problem for a linear time- 1
invariant single-input system. Chang.9 Tyler and Tuteur' ° have

...... studied the problem via the root-locus method, while Molinari,i

d" and Anderson and Shannon 2 have investigated the problem for a
[Om lyre Om . l1 Q*X*(") (8) multivariable system. All the developed methods are based on the

system equation formulated in a general co-ordinate rather than ina

Substituting eqn. 8 into the following Euler's equations phase-variable block co-ordinate. Since the multivariable dynamic
system is formulated in a matrix differential equation, it is more

d d 2 _l ,=dFn natural to investigate the problem in the phase-variable block co-
-+ - = Ox i (9) ordinate than that in the general co-ordinate.

it is well known that a feedback-gain matrix can always be ob-
we have tained to give a system with prescribed closed-loop poles if a system
DIX, +D2i. + D3X' 21 + • + D2 .I Xl n)  0-m x I (lOa) is controllable. However. the feedback controller may not be optimal.

DX " In this paper we determine the block-weighting matrices Q and R of

where the quadratic performance index by which the feedback controller
not only provides the controlled system with prescribed closed-loop

[0 2 03 0S ... D 2snI] = lira -'ma lm ... (--In,] X poles but also performs optimally. The steps involved are described as

follows:

Q, Q, Qi % -. QTn ATR Om ... 0,,, O, Step I
O * * *"'' ,-t Q*, A0R O 

0
m Om Define a characteristic matrix polynomial A(s) of the desired closed-

0. Q;I 0. Q- I d2, -Q ... loop system whose matrix coefficients consist of some unknown

0
m Om Qi ... 03,Q-n.-2 t -I QZ. ... Om O 

0 m parameters (for example, the damping ratio t and the undamped
natural angular frequency w, etc.) to be adjusted. TheA(s) is

o 0 .m 0 . * . Q .n ATR 0m A(s) = I s" + EnS
- i +... + E 2s + E, (14a)

0 , Om Om ... 
0 . RAI RA 2 .. RA., RA. R If the desired characteristic polynomial of the closed-loop svem is

(10b) [d(s)r" = (s" +dsi . . . +d 2 s +d) (14b)
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- l--7 d(s) is a polynomial whose coefficients consist of adjustable and X is in the phase-variable block co-ordinate and consists of two
parameters. Tie characteristic matrix polynomial becomes block vectors (Xi, i = 1, 2) and each vector X, consists of two state

variables (xj, i = I, 2, i = I, 2). The state equation in the phase-
A (s) = d(s)l, 1," + dlns-' + ... + d2 i1 ,s + d, !. variable block co-ordinate is

(14c)

where i 10 0 10 XI'

= im20 0 0 1 1.2

Step 2
Construct a matrix polynomial D(s) using A(s) in eqn. 14 i2,1 18.5671 2622-1 - 11.8567 262.21 x 2 .1

D(s) =D2n", n+D2.s2 - ' +.+D 2 s+ D, i2, 2  0-005214 136-829 0 - 101-368, x 2.2

= FTAT(- s)A(s)F 00 0
= ,'s " + (E. - E"t')s " -

00
- E E E ' ) S n -2 + + E E , F ( 1 5 +5 1 0 U 2+(g+_ - EnnE + 1  1 0 u11

where D ,,., = F'F = R is a weighting matrix to be determined. 1 l1
9 al

wheeE~n 1  -E'E FE~)s~ 0 . EE 1 F(S 1 0 9a)

Sftep 3
Solve the block weighting matrices Q and R from eqns. 10 andl5 [ 0
in terms ot'adjustable parameters, or [y2I= 14-98 95150 0 0 x,.,

D2, FFY2 85"2 124000 0 0 X1l.2

D , . = RA .,- A ,,'R = F ( ,, - E '.JF x2 1

X2, 2  (19b)

D2  = Q12 +A, RA 2 -0 1 -A.RA, where

.1'EE,-EEI 18-5671 -2622-1 1 186 -262-21

,r A= Q +A 2 =
1  (16) - 0-005214 136-829 0 101-368

Step 4 (19c)
Determine the required block weighting matrices Q and R by ad- 11
justing the assigned unknown parameters such that R is positive 1498 95150, C = 0]
definite and Q is nonnegative definite symmetric. C . 85-2 124000J 0 0 (19d)

The procedures can be well illustrated by the following gas-turbine
example. It is required to determine two optimal block controllers for the gas-

turbine system by using

4 An illustrative example (a) assigned weighting matrices Q and R of the quadratic performance
index

Consider the following linearised two-shaft gas-turbine (b) assigned control specifications.
model: '3-s

The procedures are described as follows:
Z= 1-268 -0-04528 1-498 951-5 1 (a) Optimal-block-controller design via assigned weighting matrices
12 1.002 -1.957 8-52 1240 z2 The cost function of the state equation in the original co-ordinate

13 0 0 -o 0 Z in eqn. 17 is

1, 0 0 0 -10 4 = 2. IZO +"uTRu] dt (20)
0 0[ 0 -0 where Q=14 and R=12 that were suggested by Tiwari et al.'5

The corresponding cost function in the phase-variable block co-

+ o 0 [u ordinate is
10 0 u2 1

0 100 (17a) J= 2 XTQX +uTRuldt (21)
2 Jo

and

[YJ = [1 0 0 01 Z: 
where R =12 and

Y2 1 0 01 2 TT QT= ' . Q12

Z3 tQ I2 Q221

Z4 (17b) 7828-1776 11941461-5 1 185-671 -- 521389

The state equation in eqn. 17 is a system formulated in a general 11941461-5 24436416630 -26221 13682-9
co-ordinate. To apply the proposed method, a block-linear- -
transformation matrix T is determined from the newly developed 185-671 -26221 100 0
method shown in Appendix 8. The block linear transformation is -521389 13682-9 0 10000 -

z =TX (18)
From eqn. 10 we have

where

F14-98 95150 I0 01 [DI D2 ... D5 1 [12 -12 121 Q11 Q12 ATIR 02 021

85-2 124000 0 0 (02 Q.* Q,*, Afrt 02f

T 18-5671 -2622-1 I 10 0Oa 0 2 RA I RAI R
-04005214 136.829 t 0 100 (22)
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By expanding eqn. 22. D(s) in eqn. I I becomes The choices Incqn.Z Mpw R=1ckaA ow-10111

D(s) Dss 4 + D4 s3 + ... + D, assigned at

Rs4 + IRA 2 -A!R)s 3  s,. = - u.,-+±toVi- -225 ±- IRW-43 (27c)

- IRA, + A 'R - Q,2 - A fRAI W From eqn. 26 D(s) can be determined as

DWe 'A'(-s)A(s)F
"- (Qi, + A 'RA 2 - 021- A,RA, i)s

+ (QI -A'RAI ) = 02 (23) -- FFs4 + (2w2 4 2  rw,,)F'2 + j,, P'

where - Rs4 + (RA 2 - A2*R)s

262,21 + (RA I+ AIR - Q22 -A RA2 )s
2

126221.D4 " +(Q 2 +A, RA2 -QL-A RA,)s,D 2602'21 0 
"R,(8

+ (Q,, +ARAJ) (28)

D3  203447 486-84 For simplicity, let QI.- Q21 02. Equating the matrix coefficients
486-84 -- 88755-96] of the same power of eqn. 28, we obtain the following matrix

equations:

D 0 52440.9241 (a) R - FrF (29a)

-52440-924 0 (b) RA2 - A2"R 0, (29b)

I872 11976(c) RA I + A R -Q~ -A,RA2 ( 2w -4e'W2 )F*'F
D, = 187-2 182?7 00 29c1S11892776 244433 x 101(

(d)A'RA - A RA 02 (29d)
Performing the spectral factorisation 7 ol tle D(s) gives (e) Q,1 + A' RA, ~4F (2rc
A(SW = 12

$
S
2 
+E2s + E, (24) R is an m x m symmetric and positive-definite matrix which has

where rn(m + 1)/2 unknown elements to be determined. The left-hand-
side matrices in eqns. 29b and 29d are skew-symmetric matrices.

13 -2619061 [46925 -3929922 Expanding the matrix equations in eqns. 29b and 29d results in

0-30451 576-845 77-27215 156294-2 n(m - 1) simultaneous equations with m(m + 1)/2 unknown vari-
ables in R. In general, there are an infinite number of solutions.

From eqn. 13 we have the optimal block controllers in the block However, if k independent simultaneous equations exist, and
co-ordinate and original co-ordinate as k < m(m + 1)/2, then we can assume Im(m + 1)/2 - k] Instants

to solve k unknown variables in R. The choice of the assigned con-
" [AI - l , - E2JX stants in R is a design freedom and a certain amount of experience

is helpful. In this example, we assume RII, which is the first leading
28-3576 - 1307.82 5.3829 0.30451 diagonal element, is unity. Thus we can solve for R and Fin eqn. 29a

177-2774 156157-4 0.304513 475-476
(25a) [ 1 2-929341

[A I -El A 
A 2 

-E21 T"Iz R 1= 9F2F(30
2-92934 51058-01562(

-0-36296 0-279346 0"53829 0"003045] where

0-598572 0-795425 0-0304513 4-75476 ( 10-999916 5-737 x 10-si

10-0129466 225-96
(b) The optimal-block-controller design Wa assigned control specifi-

cations Note that R is a positive-definite matrix. From eqns. 30, 29c and
The design goals are specified as follows: 29e we can solve for Q, and Q22 as

(i) static decoupling
(ii) final values of the unit-step responses are unity n[ - 345-55808 2.929341,4, + 77629-05 1

(iii) peak time tv that is the time required for the unit-step res-/ [2.929341w4, + 77629-05 5 1058-0156w - 76070451 X 1011
ponse to reach the first peak of the overshoot is near 0-01 s

(iv) maximum percentage overshoot is less than 10%. (31a)

To reach the first design goal, the characteristic matrix polynomial is [ C - 24 - 140-58 3

defined as ~=
Adsef-inesd ass -Q(26) =2-929341(4t'wl, - 2wn) -2844916(s) =12s 2 + E2s + El (26)n

where
2[28 0 20 2"9293414t4,1 - 2w,') - 2844-916 1

0 2 j j 51058'0156(4t -2) - 5245613174b

t (damping ratio) and w., (undamped natural frequency) are unknown Substituting ,, = 300 and t = 0-75 into eqn. 31 yields positive-
parameters to be determined. To satisfy the third design goal we can definite matrices Q,, and Q22. Thus the optimal block controlers
estimate o,, from the following rule of thumb in designsiG as

can be easily found in the block co-ordinate and in the original
rn 3-14 300 rad/s (27a) co-ordinate as

t, 0-01 u [At -EI A2 -E2]X

Aiso, from another rule of thumb,"i we can estimate to meet the
fourth design goal as [89981"4329 2622-1 1 438-1433 262-211

_ n - 98 X (32a)
-in MP n-.1 0-75 (27b) 10-00521

4  89863-17, 0 348-632J
4V 3-141
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= [A, -E1 A2 -E 2 ] T-Z To achieve the first and second desgn goalweadd forwardvin
I matrix 1a as shown in Fig. 1. The H can be iolved from the block Ct

[-1767.7 1357.37 43.8143 2'6221 ] ineqn. 19dor=[ I 1: (32b)

12182 -021391 0 348632 14-98 95150 1-1 198-42349 152-258

The block-weighting matrix Q in the block co-ordinate and the 82 0-13633
weighting matrix Q in the original co-ordinate are (34)

8-1 X 109 2-37277 x IWO 1 0 0 Thus the design system is

2.37277 x IO 4-13569 x 1014 0 0(

------- - - - 01703-42 [3 0] [ I(
1173-2 385-2y

2 (s) s +ws +Wn 0 1 R (s)
0 0 31850"2 80169820 J R

(33a) 90000 0 0[ R,(s)]

andS
2 + 450s+ 90000 1 R (s)J

3253160 - 2454610 1 47-2383 - 2-91217 For this real nontrivial system the designed system is not only static
S23 -decoupling but also complete noninteracting, and the final values of

- 2454610 1878440 --33.808 - 5.9383 (3 the unit-step responses are unity. The peak time is 0-014s and the
Q - -7.-383 -- 33.8-8 - - 342 - - -- - (33b) maximum percentage overshoot is 1%. The simulation curves for unit-

3 -step input are shown in Figs. 2 and 3. Comparing the design results
- 2-91217 - 5-9383 31-8502 8016-982 of the proposed method with those of McMorran 4 and Tiwari et

al.," the present result gives less overshoot and less oscillatory res-

It is noticed that2 any arbitrarily prescribed closed-loop poles or ponses.
control specifications may not result in a positive-definite matrix R
and nonnegative-definite matrix Q. The constraints suggested by
Anderson' should be satisfied. In addition, some realistic constraints
to the amplitudes of the control signals, for example the limitations 1
of the actuator amplitude and rate change of amplitude, should be
also examined.

Yi/ proposed method and McMororanwsmethod

rU0101 0.05 010 015 020.

Fig. 1
Structure of designed system

Y2

0101 0.05 010 015 020

0 01 0 - 0-100-20 Responses of various designed systems to a unit step in r2
0 I =

McMorran's method
Sproposed method: t - 0-75; w, = 300

--- proposed method:Q = I.; R = 1,
Tiwari's method: Q = 1,; R = 1,

5 Conclusion

A new method, based on a state equation in the phase-
0 0 -0Y 05- 0-10 p 015 0-20 variable block co-ordinate, has been presented to determine the

proposed method s optimal block controllers for a class of multivariable systems. The
b reverse process of obtaining the optimal block controllers has been

used to determine the weighting matrices of the quadratic perfor-
mance index.

Fig. 2 When a multivariable dynamic system is formulated in a matrix
. earous designed sstems to a unit step in r differential equation, the proposed method is more suitable for the

Responses of adetermination of the optimal controllers than the conventional
= approach. Also, it is simpler to determine the weighting matrices than

0 the conventional approaches. However, the proposed method is limited
-- McMorrsn's method:
- --- proposed method: C = 0-75; wn = 300 to a class of muftivariable systems whose state equations can be
. proposed method: 4 = I_ R = 1, formulated into matrix differential equations or the state equations

Tiwori's method: Q = 1,; R = 1, in the block companion form.
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6 ck oIdmnib matrices, respectvl aing matrix transfu tinmOttor
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8 Appendix A422 E R m x m.

Block linear transformation To obtain the required state equation in eqn. 38, we perform the
second linear transformation

Consider a class of completely controllable, linear, time-
ivariant, multi-input, multi-output system x 1 IQ) =K 2z I (t) (42aVl

.i5 (t) =A 0xO(f) -+ BO u (t) (36a) whsere

Atr) =COXOWt (36b) K2=r Q' Or X m K2 x Ql =" [' r (42b)
where Alp E R'n n BO E R nm, Co E R 1Xn", xo () G R nX I, K =[ -Q Q I sm 1Q, 4e n X r
yt) E Rl x , u(t) GRm x I Assume that 1,mnt< n and n/m =k (an an
integer) and define r = n - s. By a linear transformation [T QI=[ ... q , "(2

XO(r = TZ I Q (37) 1 - [q .' rt,-- ,I 4c
T designates the transpose of the matrix. The unknown miatrices

We wish to construct a state equation in the controllable block QT E R' x (with r column vectors qi) and QTj E R' x m (with rn
companion form column vectors q,) can be evaluated as follows.

il~t) =4 Azt(t) +B, uQ) (38a) From eqn. 42a, 4 Ia and 38c we have the matrix equation

y~t C~,(r (3b) K2", = AK' (43a)

where or

OM In. OMn OM ... O [Q: Or XmJ [All At:2 [Aru Ai 0Q: Or Xm]

On OM 'm Or"'r ... Or, Q n m i 2t '422 '421 2 Q mX M

A2 = TAI ,T, On,:c On 0... In, Expanding eqn. 43b yields(4)

- - - -- - -- -- -- -Qt-4 tt = '4,QI +A, 2Q2

(380) and

T O-LB = rXM C oT [I 2 l] Q2AI1 +A21t A2,QI +A22Q 2  I
T lB0= NN 2 ,,lN I Q21412 + 22 = '422 (43d)

(3&d) Performing a transpose operation on eqn. 43c and substituting eqns.

A, ERrSX rA, E Rrx m, 2 , E R" x r and A22 E Rm m. 3&,'and 42c into it, we have the following recursive formulas:
The constant matrices Di E R"' )S I" and N, ER' x '" are called block jT qi qm ,j for i = 1, 2,.,r (44a)
elements and the matrix In, = In "'X E R" x "I is an identity matrix, 1

Themarice~m~inmERn an2xErmreul .i~q, 0
mOnSx for i = 1,2,...,r-m (44b)
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and and

," A2 =r-M~i for i = 1,2,....m (44c) I 0 1 0 0

whereel is them x I unit column vector whose ith element is unity, [IBr 5 ii 0 1 0 0
and all other elements are zeros. Eqn. 44 can be further simplified as K, - I - 0 - 0 0
follows: Om X r B 2 1  0 0 10 0

(i) Ifk =2 then 0 0 0 100

and qj = (.ITD-le' for i = 1, 2. m (45a) Applying the recursive algorithm in eqn. 45a, we have

= qm j .4 ,'1qj for i = 1,2 .. m (45b) [14.98 852 - 1 1

(ii) lfk>2, then q = ("A -'e' = 195150 1240001

j T (A 1T)' X 1 -98423 X10.12 11 ) 0. x -5 1 8 x1=
q L 1 (,,Th-j Omx fori= 1,2. m (45c) 1-52258× 0- 1  0

q2 (111-2 195150 1240001

and
AT lfr i= !,2, ,mandi 1 1 36336x 10 - 1

1 1q0i A I~-)m+i o ,.. nd

= 1,2 .k-I (45d) -2.39708 x 10
-6

When the square matrices in eqns. 45a and 45c are not singular, the and
q, in eqn. 42 can be obtained. Note that the determination ofqj in 10-1268 [2 1.
eqn. 45 only involves one inversion of a' matrix. Thus the transform- q = , Iq
ation matrix T, in eqn. 37. which links the co-ordinates xo(t) in I -0-04528 -1.957 1-52258 x 10-2
eqn. 36 and the required co-ordinates z, (t) in eqn. 38, is

xo(t) = KIK 2z,(t) = Tz,(t) (46) = 404164 x 10-21

It is believed that the block linear transformation T, is new. -88984 x 10-2

An illustrative example _ 1-268 1-0021 [ 1.36336× 10-51

Consider the dynamic equation of an actual gas-turbine system13  q4  A,1lq 2 =-0-04528 -1-957] [-2-39708× 10- 6

which is completely controllable and observable.

io(t) = Aoxo(t)+Bou(t) = [-1-96893 x 10-s 4

Y(t) = CoXo(t) (47) 4-073763 x 10-6  (

where The transformation matrix K2 in eqn. 42b is

-1-268 -0-04528 1498 951-5 O , 1m

o 1-002 -1-957 8-52 1240 K2  -I I.A0 =[Q
0 0 -10 0

0 0 -100 -- 98423x 10-2 1-52258 x 10-6 0 0
_|1-36336 x 10- s  -- 39708 X 10

- 6  
0

0 0- 4-04164x 10-2 -2"88984 x 10-' 1 0

IB 0 0 80 0 10-s 4073763x 10-6 0
021 100 1 The block linear transformation T, in eqn. 46 is

0 100 xo(t) = KIK 2zI(t) = TIzI(t) (50)

n=4, I=m=2, r=n-m =2, and k=n/m = 2. The block com-
panion form in eqn. 38, the corresponding matri transfer function, where
of this system are required.

Applying the linear transformation in eqn. 40 yields the state 14.98 95150 0 0
equation in eqn. 41 85.2 124000 0 0

, I (t) j ,x (t) u (t) T 18-5671 -2622-1 10 0
y(t) = .ex,(t) (48) -5-21389 x 10-' 136"829 0 100

where

- 1268 -0-04528 1498 95150 The required block companion form in eqn. 38 is

I il(t) = Ajzt(t)+Bju(t) (51)
= [ A,, 1 ",2 1-002 -1-957 85.2 124000 = CZ I (t)li yQt)=Cz1 (t)

LA21 'A22J 0 0 -10 0

0 0 0 -100 where0! 0' :10 0 o
0=0 00 0

- - -18.5671 2622-1 -11.8567 262.21

0 A 5-214 x I0-3  -136.83 1 0 -101-368
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0 0 where

S0 , 9515010 01 [ 1498 95150 ] o=

0852 124000 0 0 852 124000 0

[ 18"5671 -2622" 1

The corresponding matrix transfer function in eqn. 39 is -5-214 x 10" 3  136.831'

Y(s) =[NJ + NAs ID, +D 2s + 12 s
2

' U(s) (52) f118567 - 26221 1 1 0] 1D 0 101.3681' 12 [

41
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Determination of Equivalent Dominant Poles and
Zeros Using Industrial Specifications

LEANG-SAN SHIEH, MEMBER, IEEE, YING-JYI PAUL WEI, MEMBER, IEEE. HSI-ZEN CHOW, AND ROBERT E. YATES

Abstruet-A graphical method and an analytical method ans presented of a group of clustery poles and zeros. This implies that the
to determine the equivalent dominant poles and zeros of a system using poles and zeros which are not near the 1w axis may dominate
snigned industrial qmieciflcatioua. A secomd-oeder transfer function tecaatrsiso h ytmrsos.Teeoe h

with two poles and one finite zero ia used to investigate the rot t heaatritcofthn-tmrepne heeoe h
ships between industrial secifications and the two poles and one finite equivalent dominant poles and zeros, rather than the dominant
zero. Also, It is used to veril the rule of the thumb obtained from poles and zeros obtained from the geometric locations in the
Axelby's empirical results. A frequency response data matching method s plane, become significant in the analysis and synthesis of a
is proposed for fitting a low-order transfer function using the assigned high-order system. Furthermore, the design goals and the
industrial specifications that are obtained from a given high-order
transfer function. Thus the equivalent dominant poles and zeros of nature of a high -order system are often characterized by a set
a hNo-order system can be determined from the identified low-order of control specifications 121 (called the industrial specifica-
model. tions) that are commonly classified as 1) the time-domain spec-

ifications, for example, the rise time and the overshoot, 2) the
frequency-domain specifications, for example, the bandwidth

1. INTRODUCTION and the phase margin, 3) the complex-domain specifications,IN the filter and compensator designs it is necessary and use- for example, the damping ratio and the undamped natural
ful to have a rapid method or a simple graphical method to angular frequency or the equivalent poles and zeros in the s

determine the poles and zeros that dominate the characteris- plane. If the relationships among the time-domain, frequency-
tics of the transient response. These poles and zeros are called domain specifications, and the equivalent poles and zeros (the
the dominant poles and zeros that can be used to estimate the complex-domain specifications) can be simply determined
dynamic behavior of the system response. In the literature, from a simple equation or a working graph, then the selected
the definitions of the dominant poles and zeros are ambiguous. poles and zeros in the design of filters and compensators be-
For example, the dominant poles are commonly defined as the come meaningful, and the design Processes can be greatly
poles which are located near the imaginary axis (the fw axis) simplified.
or the poles which have the smallest absolute value when no In this paper, a graphical method and an analytical method
significant zeros appear. Sometimes a pole P1 is defined as the are proposed to determine the equivalent dominant poles and
dominant pole [11 if IP, > 61P11 where Pi are other system zeros using assigned industrial specifications. First, relation-
poles. The roles of dominant zeros that are often neglected ships among various industrial specifications will be studied.
in the literature become significant if the precise dynamic A second-order transfer function having two poles and one
characteristics of a system in the transient state are required. finite zero is used as a basis for the investigation. Several
The zeros not only contribute to the initial conditions of the working graphs and mathematical expressions are developed
transient response but also increase the bandwidth in the fre- for the determination of the two dominant poles and one
quency domain; therefore, the roles of the zeros are as im- dominant zero using the assigned industrial specifications. Then
portant as those of the polee s t h e equivalent dominant poles and zeros of a high-order sys-

As the technologies are progressing, the accurate description tem are determined by a new dominant frequency-response
of many physical systems results in a high-order transfer func- data matching method. The equivalent dominant poles and
tion that consists of many clustery poles and zeros in the s zeros thus obtained satisfy the exact assigned industrial
plane. The poles near the jw axis may not be dominant poles specifications.
because the dominant effects on the transient response be-
havior of the poles are cancelled by the nearby zeros, and the II. THE RELATIONSHIPS AMONG VARIOUS INDUSTRIAL
system response may be characterized by the collective efforts SPECIFICATIONS

In control system design, the design goals are usually ex-
pressed in terms of a set of industrial specifications. The place-

Manuscript received July 13, 1978; revised January 25, 1979. This ment of poles and zeros based upon the assigned specifications
work was supported in part by U.S. Army Missile Command, Redstone needs certain experiences. If the reainhps among various
Arsenal, AL. DAAK 00-79-C-0061, and U.S. Army Research Office idsra pcfctoscnb eemnd hnnnofit
DAAG29-77-G-0143. idsra pcfctoscnb eemnd hnnnofit

L.S. Shieh, Y. J. Wei, and H. Z. Chow are with the Department of ing industrial specifications can be assigned as design goals, and
ElcrclEngineering, University of Houston, Houston, TX 77004. the meaningful dominant poles and zeros can be selected for

R.E. Yates is with the Guidance and Control Directorate, U.S. Army
Missile Research and Development Command, Redstone AreaAL fiter and compensator designs. Thus an effective design
35809. method may be developed.
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An empirical study on the relationships among various in- where Y(s) and R(s) are the output and input functions,
dustrial specifications has been conducted by Axelby [3]. respectively, and t is the damping ratio and w,, is the un-
The empirical rules or the rule of the thumb, which link the damped natural angular frequency. From (2) we observe that
specifications in both time and frequency domains, are listed the zero of the system is located at infinity, and is not a
as follows: significant zero. Since the time-domain specifications are of-

ten used to define the characteristics of the transient behavior,
M, S=-MP-sin m (Ia) the roles of zeros become significant. Therefore, a better

model than that of (2) should be used to study the relation-
where M, is the maximum value of unit-step response, Mr, is ships among the industrial specifications. The transfer func-
the maximum value of the closed-loop frequency response, tion of a unit-feedback system that has two poles and one
and 0m is the phase margin; finite zero is used as a basis for the investigation. The pro-

I posed closed-loop transfer function is then,
Me - (lb) Y(s) rtw,,s + to2 b1s + b2  B(s)

Wo R(s) T(S) 2 + 2 w,,s + w sw 2  + as + a2  A(s)

where M, is the maximum value of the error of the unit-ramp
function and o, is the gain crossover frequency; ] . + I

=: WTS* + I
PI) s\ (s*)2 + +1 (3)

where ca, is the peak value frequency or the frequency when + 2 + (s*) + s*

Mp occurs; where s* is a normalized complex variable. a, and bi are con-

Xit w tC (Id) stants, and A(s) and B(s) are two polynomials. The normalized

where Mr is the maximum value of the unit-impulse response: poles and the original poles are at

3 s= +i/1-e s= t. +/ . x,-
tp ""-- (le)

Where I )l S2= jto to y t' (4a)

where t, is the peak value time or the time when M, occurs; and the normalized zero and the original zero are at

tn=1.8 1* S W, 4b

where t o, is the time when the maximum error of the ramp The open-loop transfer function G(s) of the system in (3) is

function with respect to its input occurs; K l~1 G~s) = r ,,s + Wo: K,. )
tc I (l G(s) = (5)

WoC sls(2go, St.) ts + .'w -7-?)

where tc is the time when Ai, occurs. S )
where K, = w,,/(2 ) is the velocity error constant if T < 2

Other rules of the thumb according to Truxal 141 are listed
as follows: a = (2 •w and b =  ",Ir.

t,wb = 0.6r to 0.9r (Ih) Comparing (2) and (3) we observe that a finite zero has been
inserted in (3). The zero contributes the initial condition at

where tr is the rise time or the time required for the response the transient state, and it reduces the velocity error at the
to go from 10 to 90 percent of its final value and 'wtb is the steady state. Also it provides an additional bandwidth in the
bandwidth in rad/s; frequency domain, which increases the phase margin and im-

proves the stability of a system.
t d- (li) The derivations of the relationships among the industrialspecifications are shown as the following seven relationships.

where td is the delay time or the time required to reach 50 1) The Relationships Among Al, tp,. . W,,. an1d 7. The unit-
percent of its final value and K, is the velocity error constant, step response of the system in (3) gives

Some other analytical results that represent the relationships Ys) s + W2

between the time-domain specifications(but not the frequency- Y(s + + ) (6a)
domain specifications) and the complex-domain specifications TcY
have been developed and can be found in standard textbooks The inverse Laplace transform of Y(s) results i
[51, [6). The most commonly used function for investigating Y(t) I - t wnt [cos W,, Iq Jl
the relationships is [

Y(s) (2) + T v/i- t] b

R(s) s2 + 2tWns + )/- 2 sin (bb)

.. ..
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Differentiating yQ) with respect to t and setting the result Mt

equal to etro yields,. .(W + , ,ro- t
Substituting (6c) into (6b) and simplifying it gives the maxi-

mum value of the unit-step response

M, - I + ew1-ntP(i2 - 2rt + 1)1/2. (6d)

2) The Relationships Among M., wp, t, w., and r: Apply-
ing Higgins and Siegel's complex variable differentiation
method [7], we can solve the peak value frequency w(p from
the following equation:

B(s) ds A(s) ds j SI.p

Thus we have ~T 0

anP = /(2 if- 2t)J' ifr=0 (7b) T

and 2

(Ap = [-I + (7 + 1)2 - 4,22j1/2 w'

0.25 0.5 0.75 C-1.0

MP Z2 + 1)2 .2 (r2 + I ifTO 0. Fig. 1. Relationships among Mt, t wn,, and r shown in (6d).

+ 2t2721 -1/2J (7c) Differentiating e(t) with respect to t and setting the result
equal to zero we have

3) The Relationships Among m, w, ' w, and : Using I_.
the definitions of 0 m and w, tv = 1 tan_ (9b)

0m + 1800 (82) F! !2 1

and Substituting the tv into (9a) and simplifying it we have

IG(sA#./, = I (8b) Me = [2t - r + N/(l + T2 - 2rt)e- wn" rvI/ wn. (90)

we have 5) The Relationships Among t., M. , t, w., and r: Dif-
ferentiating the unit-impulse response y(t) of the system in

r(o 7 + (2 t - r) ( n)1 (3), j,(t), and setting the result equal to zero, we have the time

0m = tan-I (8c) t, at which the maximum value occurs, or
- (2 t - r)r Jc= tan - 2 t) N/ _4'- e 0011

and tC 2 t - 27tane2 L(- .. 2 r/2 ]

S (2/r - 2[2 + 1(2[ a 
- 2[)2 + l]1/2. (8d) Substituting tc into .j(t) yields the maximum value of the unit-

4) The Relationships Among t,, M,, w,, andr: The er- impulse response M, orI rotrinlet, srm n Mt o e  ¢ / a -2"+1 lb

signal e(t), which is the difference between the ramp in- = w72 - 2t +1. (l0b)
put ,(t) and the time response y(t) of the same input to thesystem in (3), is 6) The Relationships Among K0, 4, wn, and : The velocity

e ierror constant Kv can be derived from the basic definition as

Wt-''-I, AWI, 1Bow.s_1-~ WI,w. Ao. K = 0im s G(s) - if r < 2. (11)
C3i w- V -nW, 71- t) (9a) 42t-r

3 7) The Relationships Among Wb, , ,,, and r: The deflni-
where tion of the bandwidth of a system is

A - (1 - t 2), B -.(21 - rXl - t2), 1

C!- (_ - 2_ _ _,r1),-- IT(s)l
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I0I

Fig. 4. Relationships ainong I/sin 0M. w 1 n hvni s

Fig. 2. Relationships amiong Milp w. n, and 7 shown in (7) C

3-I

___________________________________ ___ Fie. 5. Relationships amiong w., ~.w, and r shown in (8d).

Fig. 3. Relationships among fp. t, w,. and r shown in (60). r which are thle specifications in the complex domain. These

expressions are normalized and graphically showni in Figs. I -

The analytical expression is 11. If anl industrial specification is assigncd, tile corresponding
t and 7- or the equivalent poles and zero in (4) can be deter-

Wb= Wn VI + 7' 2t') + V( I + -r2  2ti2)2 + I 1/ 2 (13) mined from the plotted curves. Also the curves in Figs. 12-
Most important time-domnain and frequency-domain speciti- 15 canl he used to verify the rules of the thumb proposed by

cations have been analytically expressed in terms of . w, and Axclby 131. It is observed that the accuracy of the rules de-
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P Me

2-

r 2

1.0-

S2

o. 0.'25 0.5 0.75 '1.0

0 0.25 0.5 0.175 - 1.0 Fig. 8. Relationships among Me , t, w., and r shown in (9c).

Fig. 6. Relationships among Wp, wn3 , and shown in (7).

t Vt

10-

2-

6-

- 0

r.
0  

1

3-

0. 0.25 0.5 0.75 "1.0

Fig. 7. Relationships among tu, t, wn, and 7 shown in (9b). n

0. 0.25 0.5 0.75 E-1.0

pends upon the range of the damping ratio and the zero loca-

tion. Furthermore, from the developed working graphs, a set
of meaningful and nonconflicting specifications can be as- a problem of a high-order transfer function fitting using indus-
signed for the design goals of a control system. trial specifications. Shieh er al. (81, (9] have developed an

original synthesis technique to fit a second-order transfer func-
III. DETERMINATION OF EQUIVALENT DOMINANT POLES tion based on three industrial specifications. The Newton-

AND ZEROS FROM A HIGH-ORDER MODEL Raphson multidimensional method [101 was applied to solve

In the design of high performance control systems, quite the resulting nonlinear simultaneous equations that can be
often several specifications are assigned as design goals, and the converted to a single variable quadratic equation. However, it
corresponding dominant poles and zeros are required. This is is well known that the Newton-Raphson method will only con-

-
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t ' b

II
3- 2

= 1 I'

:=2'I2-,-

0 0.25 0.5 0.75 . 1
Fig. 10. Relationships among tc , C. w n , and 7 shown in (1Oa). n =1

0. 0.25 0.5 0.'75 . 1.0

verge for a small range of starting values or the initial guesses. Fig. 11. Relationships among wb, t. w., and r shown in (13).
It is also known that high-order nonlinear equations have
many solutions that depend heavily on the initial guess used.
For general nonlinear equations that cannot be converted to a specifications in (14) can be determined. The third-order
single variable equation, the Newton-Raphson numerical model is
method may not converge to the desired solution using arbi-
trary initial guesses. In this paper, the original synthesis method Y(s As) = K(s + z Xs + z 2 )

[8], [ 9] is extended for modeling a high-order transfer func- R(s) (s 2 + 2wons + cwn)(s + p) I
tion using many industrial specifications; and an analytical bls2 + b2s + b3
method is proposed for the estimation of the good starting (5+ as 2  a2s + (15a) I
values. Thus the desired dominant poles and zeros can be de-
termined from the identified transfer function. The method where K, p, t, w n, zI, and z 2 or the corresponding aj and bi
can be well illustrated using the following example. are unknown constants to be determined. Because the system 3

Suppose that the poles and zeros that represent the follow- is a type "I" system, the final value of the unit-step response |
ing given industrial specifications are required to be determined, of the system in (15a) is unity or

Type "1" system (14a) Y(t)e..- = lim s R(s)Y(s) I
w, the gain crossover frequency = 4.7 rad/s (14b)

.. the phase margin = 45.60 (14c) = lim s s+bas+bs) + 3 b

Mr the maximum value of the closed-loop frequency S-0o ( S3 +a 2 +a a3

response = 1.5 (14d) (15b)

WP the peak value frequency = 3.5 rad/s (14e) or a3 = b3. (15c) J
owb the bandwidth of the closed-loop frequency As a result, (1 5a) can be simplified as

response = 6.5 rad/s. (14f) Y(s) =S) = b 2 
+ b2s + a3 (15d)

The assignments of the specifications in (14) closely follow the R(s) s= +as2+a2s+a"
rules shown in (1). Therefore, the conflicted assignments can The open-loop transfer function G(s) is
be avoided. The first two are the open-loop specifications, bIs +b 2 s-a 3while the others are the closed-loop ones. Three equivalent G(s) ssa + bes (a
poles and two equivalent zeros that represent the assigned s[s( + (a,- bI)s+(a2- b2)e)

r
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Following the definitions shown in (14), we can construct
M M a set of nonlinear equations ]j(al, a 2 , a 3 , bl, b2) = 0 for i=1,2,'",S .

The definition of wo,. isSit, (I6aS gnm IG (jc o.)I= 1. ( 1 6a)

I p - The corresponding nonlinear equation is

l f(al, a2 , a 3 , bi, b2) = (a, - bt)24c + [w - (a2  b 2)coi 2

I (a - bIoC - b2= 0. (16b)

The definition of 0, can be expressed as

Ii @Pm = 1800 (i) (17a)

=0, 1. 2 The nonlinear equation is

2 f 2(aia2,a3, b, b2 ) = b2we(a1 -bl)

-(a 3 - btwc)(2 - a2 + b2)

tan 0,,, I(a3 - bWG. )(a, - bl)w,.

+ b 2c(W2 - a 2 + b2)] = 0. (1 7b)

3 / The definition of Wb is known as

"ITO b)I = 2 .(18a)

The corresponding nonlinear equation is

Fig. 12. Relationships among Mp, M,, and I/sin 0. shown in (1). f(a,.a 2. a3 , b, b2)=(a3 - b)+bG

me , tc, 1 =0. (18b)

T e o1iThe definition of w gives

me... d17jjw :,1 p 0. (19a)
tc du W =

iI Following Higgins and Siegel's complex variable differential
6- 1technique [7], we have the following nonlinear equation:

f 4(a1 , a2 , a3 , b1, b2 ) [2ala3WP  2a P

5- - (a3 - 3wX- WP + a2Wop)] [(a 3

-bw) 2 + (b2 .p) 2J + [-2asbtwp
4- + 2b2W3 + b2W~][a

I +(-'4+a 2 Wp)2 1 0. (19b)
3 2 = The definition of Mp is

17T,,.)I . ,,p = Mp. (20a)
The nonlinear equation is

-- fs(al, a2,a43, b1 ,b2 ) = (a3 - b~w 2)
2 +b 2w2

-M2 [(a,, -a ,2,I
_____"___ = 1+ (W' - a:P)21 = 0. (20b)

0. 0.25 0.5 0.75 1'. nEquations (16)-(20) are a set of high-order nonlinear simulta-
Fig. 13. Relationships among Me, tc . and l/wc shown in (1). neous equations which are very difficult to solve. The Newton-

Raphson method, which is available in most digital computers
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tC t I

q 1.8 /

F-ig. 14. Relationships am ong w, w,,.n Iu t shot% n in 1I hI 15 Relationship aniony 1 w, l- 18. andP3 hon in 1J

[Il I is used to solve the nonlinear equations. To obtain the Tihus a low- order dominant model is determined. However, a
desired solution. and to improve the spced of convergence of third- order model is reqluired. Ani extra pole and a nearby
the numerical method, we have to establish a set of good start- zero are inserted into tile second-order model in (21 c) to ob-
ing values. From the developed analytical expressions of vari- tail) an ap~proximate third-order mlodel, or
ous specifications or the working curves in this paper. we can (b Is + I~) I.s + I O w,,)
determine the corresponding two poles and tvn-e zero Isjig T3*S) = -- - +.+ O -~

Mp1.5I and L.p= 3.5. From the rule of' the thumb in ( I) we W _ ,sOW
observe that the AfP and Lphave indirectly included the ap- 3.4959Is' + 52.40672is + 150.0625 (1

proximated respective 0,,, and w, The procedures are shtown S+ 14,7s., + 42.262s +7150.06j25
in the following steps. Using the coefficients in (2 le) as initial guesses: a* = l4.7.at

Step 1: Determine the normalized dominant poles or tile i 42.2625. a3 150.0625;. b* = 3.49591. and b* 52.406725.
(4a) using the curve drawn in Fig. 2. having 7- = 0. From th and applying the Newton-Raphson method 1111I to solve the
curve (7- = 0) we read the damping ratio = 0.35. The nri nniereutin n(6 hruh(0 ild h eie
ized dominant poles and the dominant poles with wp= n olnaeutions in = 4. 160 thog (058 290) yields17.b = eie

3.5 arc ouin:a .612 2=2.89,3=2.0)7b
3.188355. and 1), = 15.561058. at 10th iteration with the er-

s 0.35 +/0.9368 sl = 1.225 +i3.2786 ror tolerance of 10'. Thle desired transfer function is
s* 0.35 10.9368 S2 =1.225 j3.2786. (21j1 3.188355.v2 + l5.5t61058s + 29.806197

The second-order model is S+ 4.267162s' + 20.58799s + 29.806197

122 The dominant poles and zeros. which represent the assigned in-

Tiis 2t s + - (21 b) dustrial specifications, are determined from the poles Pi and
+2ws ,, s2 - 2.45 s + 12.25 zeros, in (22):

Step 2: Determine a dominant zero using the specification P3  1.849412756I
w,= 6.5 in 0140. The modified second-order model becomes P2 108462+i88238

T2(s* * - b~s+ 1225 '3 1.20F8824622 +13.828226318(2a

S+ 2ts+ w' s' + 2.45s + 12.25 *1 .08422 /.2261

The b, can be easily determined by using the definition of and

wb in(18a): z, 4.880591402 +j3.08424378

b, 13.178 1. (21d) :2 4.880591402 i3.68424378. (23b)

______ 61- ~I
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A method for modelling transfer functions using dominant
frequency-response data and its applications

L. S. SHIEHt, M. DATTA-BARUAt, and R. E. YATESI

This paper presents a fundamental method for modelling transfer functions using the
basic performance specifications and frequency-response dai . at the dominant
frequencies. A set of non-linear equations is constructed from the definitions of the
basic performance specifications, the dominant frequency-respo., data and the
unknown coefficients of a transfer function. A Newton-Raphson multidimensional
method is applied to solve the non-linear equations. F, ir m,-thods are given to
construct approximate representations of the desired transfer functions for the
estimation of guod starting values to ensure rapid convergence of the numerical
method. The applications of the proposed method are : (1) developing a standard
model and/or a transfer function of a filter or a compensator using the specified
dominant frequency-response data ; (2) identifying the transfer function of a system
from available experimental frequency,response data; and (3) reducing high-order
transfer functions to low-order models using dominant frequency-response data.

1. Introduction
The nature of the transient response of a system is often characterized by a

set of performance specifications in the time domain such as the settling time
and the rising time. In the frequency domain, another set of performance
specifications (Gibson and Rekasius 1961) is used to represent the charac-
teristics of the system performance. The bandwidth and the phase margin
are typical examples of the frequency domain specifications. In designing
compensators and filters, and in predicting the nature of time response of a
system, practicing engineers are often interested in the dominant poles. These
can be converted to a damping ratio and a natural angular frequency specified
in the complex plane. These specifications are often called the complex-domain
specifications. The engineer is also interested in various error constants (for
example, the velocity-error constant), which represent. the characteristics of
system performance in both time and frequency domains (Truxal 1955). The
frequency-response data at the frequencies of the frequency-domain specifica-
tion are considered as the dominant frequency-response data in this paper
because these data characterize the nature of the system responses. For
example, the phase margin (0,) of a system at the gain-crossover frequency
(wc) is often used as a measure of additional phase lag required to bring the
system to the verge of instability. Also, if the phase angle of the open-loop
system at the wc is near - 1800, then the response of the closed-loop system will
be oscillatory.

Received 5 July 1978.
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In the design of a control system in the frequency domain, the specifications
discussed above or the dominant frequency-response data are usually considered
as design goals. Various frequency-domain or complex-domain approaches
(Nyquist 1932, Evans 1953, Bode 1954, Thaler 1973) have been developed and
widely applied in industry for compensator designs to achieve desired perfor-
mance. The most popular design methods are those based on the Nyquist
(1932) plot, the Bode (1954) design, and the root-locus method (Evans 1953,
Thaler 1973). To improve the efficiency of the design !aetho(ls, it is advan-
tageous to have the design goals expressed as mathematical functions or
transfer functions (defined as the standard models). Once standard models
have been ascertained, the corresponding time-domain specifications and
temporal responses can be determined from digital or analogue simulations of
the standard models. Also, the frequency-response data of the desired com-
pensator can be determined from Nyquist plots or Bode diagrams by comparing
the frequency-response curves of the original and the desired response models.
The required filters and compensators (Del Toro and Parker 1960, Thaler 1973)
can then be easily determined.

Empirical rules or rules of the thumb that link the specifications in the
time, frequency, and complex domains have been developed by Truxal (1955),
Del Toro and Parker (1960), Axelby (1960), and Seshadri (1969) et al. From
these results, it is observed that most time-domain specifications and complex-
domain specifications can be approximately converted to frequency-domain
specifications. Some of these frequency-domain specifications are phase
margin (0m), maximum value of the closed-loop frequency response (Mp),
gain-crossover frequency (owe), peak value frequency (wp), the bandwidth (wb),
and velocity-error constant (K,). Other important frequency-response data
are : (1) the real part of the open-loop transfer function G(jw) at the phase-
crossover frequency (w,,) which has been used to define the gain margin (Gm) ;
(2) the real part and imaginary part of the closed-loop function (T(8)) and the
open-loop function G(s) at s = jw -Jwo = jO. The data at w = 0 often indicate
the final value and the type of the system. In a type I system, I.[G(jO)] has
an infinite value, while Re [G(j0)] has a finite value from which an asymptotic
line (Del Toro and Parker 1960) ,an be drawn in a Nyquist plot; (3) the corner
frequencies in the Bode plot of G(jw) in the regions of w = w, where
20 log IG(jwo) I = + 15dB, and w = w, where 20log IG(jW2)I= -15dB.
Chen (1957) has shown empirically that the open-loop poles and zeros of a
system can be approximated by retaining the Bode plot in the regions of the
+ 15 dB boundaries. Some dominant frequency-response data are indicated
in Fig. 1.

Through use of the above dominant frequency-response data, a basic method
is proposed in this paper for modelling various transfer functions. First, a set of
simultaneous non-linear algebraic equations, based on basic definitions of the
dominant frequency-response data and the unknown coefficients of a desired
transfer function, is constructed. Then the Newton-Raphson method
(Carnahan et al. 1969, IBM 1977) is used to solve the non-linear equations.
However, as is well known, the Newton-Raphson method will often only
converge for a small range of starting values; therefore, four methods are
developed in this paper for estimating good startinig values so that the numerical
method (IBM 1977) will converge rapidly to the desired solution.
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Figure 1. Nyquist plot of an open-loop system 0(s).

The applications of this method can be classified as follows.

(I) When the design goals are predeseribed by the dominant frequency-
response data, which may be obtained from the frequency-domain
specifications (Gibson and Rekasius 1961) or equivalent ones (Truxal
1955, Del Toro and Parker 1960, Axelby 1960, Seshadzi et al. 1969),
and a standard transfer function is desired, this is a design problem.
Chen and Shieh (1970) and Wakeland (1976) have proposed analytical
methods for the compensator fitting. However, their methods are
limited to filters and compensators in which the unknown coefficients
can be solved by a quadratic equation. The method of this paper
overcomes this difficulty.

(2) The transfer function obtained in this peris the function of the original
system. When dominant frequency-response data can be obtained

from experimental data of a practical system and the mathematical

Ifunction of the system is desired, this is an identification problem.

1 (3) When the dominant frequency-response data are obtained from a given

high-order transfer function and various low-order approximate models
J are required, this is the model reduction problem. The reduced models1 obtained in this paper have the same selected dominant frequency-

response data as the original system. Thus, the design processes in the
i frequency domain can be greatly simplified.

I G
_ _
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2. Modelling non-linear equations
Given a transfer function T(8) of a unity ratio feedback closed-loop system

T(8) = b , + b,8 + b282 + "" + b ms m  n(8) G(8) a

ao+a,8+a282 + ... +a.8 d(8) 1+G(s) (1a)

where n(s) and d(s) are the numerator and denominator polynomials, res-
pectively, and aj and bi are constants. If the system is a type I system, the
open-loop transfer function G(8) is

0(8) = K(I + cs + c2s2 +... +C 8P) - p(8) (I b)

s(1 +ds+d 2
2+ ... +d^ )q(s)

where p(s) and q(s) are the numerator and denominator polynomials. K, 1, c',
and di are constants. K is a velocity-error constant (K,) if I= 1.

The equations for dominant frequency-response data are:

(1) System type is determined from

G(jo 0)=Re [G(j-)]+jI.[G(jo)] at w0=0 (2 a)
or

G(jO) =Re [G(j0)]

T(jO) = b --  for a type 0 system (2 b)
a.

Re [G(jO)] - K(c I - dj)

Im[G(jO)] oo for a type I system (2 c)

T(jO) 1 o= I

ao

(2) Phase margin gives
Om -1800+ LG (jwc0 ) (3 a)

where
IG(jw)I = 1 (3 b)

w 0 is the gain crossover-frequency.

(3) Gain margin yields

Re [o(jw.)] I  4a

where
L G(jw,)= -180 (4 b)

w, is the phase crossover frequency.

(4) M, = IT(jw; I = maximum value of the closed-loop frequency
response (5 a)

where
dIT(jw)lI 0 (5b)

dw

OJP is the peak value frequency.



Method /or modelling transfer functions 1101

(5) I T(jib)I = -- (6)

where tb is the bandwidth.

(6) 1G(jwa)I = 5-6 (7 a)

or
20 log IG(jw) I= + 15 dB at cu =wc (7 b)

and

I G(jcA)I = 0"18 (7 c)
or

20 log IG(jw)= - 15 dB at w = w,, (7 d)

A set of non-linear equations can be formulated from the basic definitions
of the assigned dominant frequency-response data in (2)-(7). The procedures
can be illustrated by using the following example. The dominant frequency-
response data in (2 c), (3), and (4) are shown in Fig. 1, which are marked as
A, B, and C and given as follows:

(1) Re [G(j-o)I= -2"1 and Im[G(jwo)]= cc at w =0 rad/s

or T(jwo) = I at w, = 0 rad/s (8 a)

(2) Re[G(jwf,)]= -15 ato,=1-9rad/s (86)

(3) L G(jw,)= - 180 ° at w,,- 1.9 radfs (8 c)

(4) m= 1800+ LG(jw0 )=5"7° at w,=3-2 rad/s (8 d)

(5) IG(jw,)} = 1 at w- = 32 rad/s (8 e)

Five conditions are given in (8). Therefore, various transfer functions with
five unknown coefficients can be constructed. Assume that the desired
transfer function Td(s) is

Td(s ) b, + b, + bS(9a)ao + a.8 + a2sO + a343( a

From the conditions in (8 a), it may be observed that the system is a type 1
system. Therefore b = a. Also, to simplify the equation we let a 3 = 1.
Thus, we have

"0a + bla + b,.'

Td(8) = ao + a.s + as+ (9 b)

The corresponding open-loop transfer function Gd(8) is

O d(s) =K( 1 + c1,s + c282)
8( 1 + d+d)(10)

where

a. b b s, -b
K a,_-b-,  a--. sao dza-b andb ---__

3
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Following the basic definitions and the assigned data in (8) yields a set of
non-linear equations:

(1) The assignment in (8 a), or Re [G(jO)]= - 21, gives

/1(a0 , al, a., b1, b2)-=alb-b 1
2 -aoa 2 +aob, + 2.1(a,-b,) 2 =0 (11 a)

(2) The specification in eqn. (8 b), or Re [G(jw1 )] = - 1.5 at w, = 1.9, yields

/ 2(ao, al, a2, b1, b2) = (a2 - b,)(ao - 3.61bg) -bl(a, - b, - 3.61)
-l'-5[3"61(a. -b2 )2+(a, -b, -3.61)21] O (11 b)

(3) The condition in (8 c), or LG(jw,)= -180 at w, = 1.9, gives

ts(ao, al, a2 , b1, b2) = 3.61bl(a 2 - b2 )

+(ao-3"61b2 )(a1 -bl-3.61)=O (11 c)

(4) The specification in (8 d), or 0., = 5.70 at w, = 3.2, yields

4(ao, al, a2, bl, b2)= 10.24b1(a2 - b2)+ (ao- 10.24b2)(al -b 1- 10.24)
- 0319 402 24[(a2 - b2)(a, - 10-24b2 )

-b,(a 1-b1- 10.24)] =0 (11 d)

(5) The assignment in (8 e), or I G(jw) = I at wt - 3.2, gives

M5(ao, al, a2 , b1, b2 ) = (a0 - 10.24b2)2 + 1024b,2

- 104"8576(a, - b2)2 - 1024(a, - b - 10.24)2 -0 (11 e)

Equation (11) is a set of high-order simultaneous non-linear algebraic equations
which are very difficult to solve. Considering the availability of the computer
program package (IBM 1977) (called the Z systems) in many digital computers
for the solution of non-linear equations, the Newton-Raphson multidimensional
method is suggested for solving these equations. However, it is well known
that the Newton-Raphson method will only converge for a small range of
starting values or the initial guesses. A set of good initial guesses must be
determined for rapid convergence of the numerical method. Four methods
are proposed for these good initial guesses.

3. The initial guess
It is well known that high-order non-linear equations have many solutions.

The solution and the speed of convergence of a numerical method depend
heavily on the initial guesses or the starting values. In this paper, the Newton-
Raphson method is suggested for solving the non-linear equations. The
following methods, depending on the applications of interest, are proposed for
good initial guesses.

3.1. Initial guess by a 8ynthesis method
Suppose only the dominant frequency-response data in (8) are available

and an approximate transfer function Td*(S) of the desired Td(s) in (9 b) is
required. The Td*(s) is

Td,(8)_.a*+b,* s +b* 82 (12)
a,* + a,* 8 + a,* 82 + 8..
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where ai* and bj* are the starting values of the numerical method. The steps
to obtain (12) are summarized as follows

Step 1. Determine a second-order approximate transfer function T2*(S)

using m = 5.7' and w . = 3.2 rad/s in (8 d) and (8 e). This T2* (s) is

T*(s) = Wn (13 a)
s

2
+ 2 w 8 +w,

where =the damping ratio and Wn =the natural angular frequency. Two
non-linear equations, which are constructed from the basic definitions of to,
and 0m, can be obtained. These non-linear equations can be converted into a
single variable (e or wn) high-order equation from which the roots can be
determined. Using this approach, we have f= 0-0498 and w n = 3-2079. The
poles that can be considered as the dominant poles of a system can be deter-
mined from the characteristic equation in (13 a). The dominant poles are

si.,= - own(l -' ) = - 01598 ± j32039 (13 b)

Thus, (13 a) becomes

10.2909
82 + 0.3194s + 10.2909 (13 c)

Step 2. Construct a third-order approximate transfer function T,*(s) by
inserting in it a pole (8= -p) and modifying the term in the numerator of
T,*(s) so that the final value of the T,*(s) equals to unity, or

=PoWn2 10"2909P
Ta*(s) (8 + 2w,s + wj2)(s + P) = (82 + 0.3194s + 10"2909)(s + P) (13 d)

The unknown constant P can be easily determined by using the condition in

(8b), or Re [G(jw)]= - 1.5 where o,= 19. Thus, we have

P =4.5401 (13 e)

Step 3. Establish another third-order approximate function Ts**(s) by
inserting a zero in (13 d) with an unknown constant b,*.

T,*(a) = b1* 8 + PW" bl* 8 + 46-7216 (13
(82 + 2 wns +wn')(, + P) (sz +0"3194s + 10"2909)(s + 4.5401)

The b,* can be determined by using the condition in (2 c) and (8 a), or
Re [G(jO) = -2.1. The b6* is

b = 32"4038 (13 g)

Hence, we have
46.7216 + 32.4038s (13 k)

46.7216 + 11.74108 + 4.859582+83(

Equation (13h) can be considered as an approximate function of (12) by
assuming b,*=0. TI'e initial guesses in (12) are a0"=46-7216, a,*=11'7410,
asv=4.8595, b,*= "'.4038, and b,*=0. Using these constants as starting

- - - - -. -
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values for the numerical method yields the desired coefficients in (9 b), or
ao= 6.378 070, a,= 10.462 220, a. = 1.259 008, b1 = 20-556 61, and b 2 = 0.243 466.
The desired transfer function is

6378 070 + 20-556 61s +0-243 46682

6.378 070 + 10.462 2208 + 1.259 00882 4-s 3  (14)

The Newton-Raphson method (IBM 1977) converges at the 9th iteration with
the error tolerance of 10- 6. Equation (14) has the exact frequency-response
data specified in (8).

3.2. Initial guess by complex-curve fitting and continued fraction method8

The problem of finding unknown coefficients of a transfer function as a
ratio of two frequency-dependent polynomials has been investigated by Levy
(1959). His method minimizes the sum of squares of the errors at arbitrary
experimental points. We present a simple method to determine the approxi-
mate coefficients of a transfer function using the real parts and imaginary parts
of available limited frequency-response data. A low-order model is often
determined because of data limitation. The low-order model is then expanded
into a continued fraction of the Cauer second form to obtain a set of dominant
quotients. Then some non-dominant quotients are inserted into the continued
fraction to obtain an amplified-order model (Huang and Shieh 1976) which is
the desired approximate transfer function for the use of the initial guess.

Consider the transfer function

T*() = b, + b s + b O + "" + bms  (15 a)
I + als + a2

2 + + a.. s

where aj and bi are unknown coefficients to be determined. Substituting
s=jwk into (15 a) we have

(bO - b2 k2 + b4wk4 
-- be-k + ... )

T*(jw- ) = 4 +j(blwk -bwk 3 +b 6 k-b7k 7 + "')
(1-a 2wk 2 +a*ok -aS-k

6
+ ... )

+ ... )

= R(-k) + j(k) Rk + jIk (15 b)

when Rk and Ik are the given real and imaginary parts of the T*(s) at the
available frequencies Wk. Multiplying both sides of (15 b) by the common
denominator and separating the real and imaginary parts, and also equating the
respective real and imaginary parts, yields

bo - b2W" + b4wk - b6 k6 + ... + allkwk + a2 RkWk 2

- alkWk 3 -a 4RkWk4+ ... =Rk (15 c)
and

blj tw - boawk + baiWk" - b7 .k 7 + ... - a1 Rk Wk + a2IkW2k

+asRkwk3 - alk0 44+ ...+ I (15 d)
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In matrix form, (15 c) becomes

1 - W, 2  wi 4  - . I ~w1  Rlw1
2 

- I11 - R .wl4 bo  -R, "
1 -o04 w24  - W' 1W 2  R2 - 2

2  -1 2 - 2 1 -R 2 - 2 ' b2 Rs
1- W3

2 W3 4 - w3
6  low, R 3 ,w

2  
- 13WS 3  - Rsca 4  

b4. R
* - (l.5e)

a,

a 2

.1- &- ,4 - wx 6 
.xwx Rzcox2  - ]zo - Rxwx4 . a _R.

where x=n+m/2+1 if m is even and x=n+(m+1)/2 if mis odd.
Substituting ai obtained in (15 e) into (15d), we have another matrix

equation to solve for b,, i = 1, 3, 5 ....

w1 - W13 W15  - W 7  1b
W2 - 2 C2 &27 . . . b,

WL3 - W033 C'035 - &'3 7 b5

.WY W V3 WY5 - oy 7bkr(o~, +a~l - (a21 &j,
2 + a3 R~w, 3) + ..

_((a,2-20 + aR 2W2
1 ) - (a212- 2 + aR 2.) + . 115/)

((al,,.,o + a,,Rw1 ) - (a2lW, 12 + a3 R_ 3 ) +

where wk0
= 1, a0 =1 ; k=m and y=(m+l)/2 if m=odd; k=m-1 and y=

m/2 if m = even. In this example, the available data are

W1=wO= 0, R, = T(jO) = 1, 11 0

WsfW,-- 1"9, RiRe [1G(j-,) 1

+ G(jw) =9684,

I2=l1 G(jw,) 0 -0-0252
I I + G(jw.)J (16)

-- L32' R e 1+G( ) J 0-3351,

.=In G(jw.) ] -10-4316
- 1 + G(jw.) = -

Since only three values are available, the approximate function T 2 *(e) is

T *(i) f b, + b1 8
+ +a +(17 a)

Substituting the data at w1 , and W2, and w. in (16) into (15 e) yields bff 1,
a,1 =0-0388, and a9 = 0-1839. Then substituting aj and the data at w. into
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(15 /) gives b, 2.8907. Because the desired approximate function in (12) is a
third-order function, T2*(s) should be amplified by using the continued fraction
method (Huang and Shieh 1976) as follows.

T2*(s) is first expanded into a continued fraction of the Cauer second form
to obtain a set of dominant quotients : h, = 1, h2 = -0.3507, h,= -0.9651, and
h4= 16.0725. Then the order of T,*(8) is amplified to the third order by
inserting non-dominant quotients A, 5 100 and h6 = 0.1, or

T2*(S) 1 + 2-89078 1 1
I + 0.0388s + 0.1839s92 hl+ - h,+

8 8h + - h3

h4 +-

A, +8

54.3885 + 162"6914s + 15.821982
54.3885 + 7.58398 + 10.2146s2 + s(

Huang and Shieh (1976) have shown that the amplified-order model is a
good approximation of the original low-order model if the inserted positive
quotients hj> I and hj. < I where i is an odd number. Using the coefficients
in (17 b) as initial guesses we have the desired coefficients in (14) at the 15th
iteration (IBM 1977) with the error tolerance of 10- -6.

If much experimental frequeney-response data, including the dominant
data of a system, is available and the transfer function of the original system is
required, this is an identification problem. In this case, a set of non-linear
equations, based on the basic definitions of the dominant data, can be con-
structed and can be solved by the Newton-Raphson method. The initial guess
can be determined by using the dominant data and others in (15). Since many

data are available, a high-order approximate transfer function can be deter-
mined. Therefore, the use of the continued fraction method (Huang and
Shieh 1976) is not necessary.

When a high-order transfer function of a system is given and various

reduced-order transfer functions are required, this is a model reduction problem.
In the frequency domain, numerous methods (('hen and Shieh 1969, Shieh
and Goldman 1974, Hutton and Friedland 1975, Sharnash 1975, Lal and Van
Valkenburg 1976) have been proposed for model reduction. The continued
fraction methods (Chen and Shieh 1969, Shieh and Goldman 1974), the Routh
approximation method (Hutton and Friedland 1975), the time-moment
matching method (Shamash 1975), and the frequency-moment matching
method (Lal and Van Valkenhurg 1976) are the typical examples. These
methods have been critically compared by l)ecoster and Cauwenberghe (1976).
The new method presented in this paper can be used to obtain the reduced-
order models which have the exact dominant frequency-response data as those
of the original one. This method can be called a dominant frequency-response
data matching method. The procedure is as follows.
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Step 1. Plot the frequency-response curves to determine the data at the
dominant frequencies w0, w(, wc,, c t, (0,.2, (OP, and wt,.

Step 2. Formulate a low-order model with unknown coefficients, and
write a set of non-linear equations based on the basic definitions of the data

dominant frequencies.

Step 3. Determine a set of good starting values by using the synthesis
method or the complex curve fitting nmthod, kind solve the non-linear equation
by using the Newton-Raphson method. Thus, reduced-order models can be
determined. Comparing the reduced-order mo(lels obtained from the proposed
method with those of the existing methods (Chen and Shieh 1969, Shieh and
Goldman 1974, Hutton and Friedman 1975, Shaniash 1975, Lal and Van
Valkenburg 1976), we observe that the model obtained in this paper is superior
to existing methods in that the reduced model has the exact dominant frequency
response as the original. As a result, an engineer can design a control system
more efficiently in the frequency domain.

Since the original high-order transfer function is available, an existing
method (Chen and Shieh 1969) can be applied and modified to obtain an
approximate transfer function for the determination of the initial guess. Two
additional methods for initial guess determination are as follows.

(3) Initial guess by a continued fraction method (Chen and Shieh 1969).
Consider the high-order transfer function in (1 a). The function can be

expanded into a continued fraction and various reduced models obtained by
discarding some of the quotients, or

T(8)=b,+b~s+ ... +b- n(' 1)ao+ais+ ... +a4=W(_8) (18a)

1

8
h, + - (18 b)

8

h2 +

(18 c)
8 hth 2 +h, + -

I1=_ _ h 2h3 h4 + (h 2 + h 4)8

h + 8 hjhh 3h 4 + (hlh + hh 4 + hlh4)8+2
8

h$ + 8

Using the coefficients of the epproximate model in (18) as the initial guess for
the numerical method, we have the desired reduced model. However, the

_ --- - -._-.7- - -_
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approximate model in (18) may be unstable even if the original system is stable.
The continued fraction method (Chen and Shieh 1969) can be modified by the
following new method.

(4) Initial guess by a mixed method of the continued fraction approach and
Gustafson's (1965) method.

Assume the reduced model of the original system in (18 a) is

T,*(8): bo*+bl*s+ ... +bP-,*eP-' n*(8) (
a,* +a,*s+ ... +a,*sP d*(8) = (19a)

A matrix equation (Chen and Shieh 1970) can be constructed from the dominant
quotients A,, i = 1, 2,... p, obtained in (18 b) and the unknown coefficients ai*
and bj* in (19 a) as

[b] = [H][a] (19 b)

where

[a]T--- [a,* , al*,... a,-,* ]  (19 C)

[b]T=[bO*, bl*,..., bp,*] (19 d)

[H] = [H2]-'[HI] (19 e)

where T designates transpose,

1,0 0.00 1 00.0 0] 100
1 h, 0 0 0 0 h i 0 0 0 0 1 0 0 0

[H2]1 0 1 h, 0 0 0 1 h, 0 0 .. 0 0 1 0 0
0 0 ! 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 ! h l 0 0 1 hp-l 0 0 0 0 h

1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 010 0 0 0 0 0

[H]= 0 00 00 0 .l. 0 0 1 0 0
0 0 1 h0 0 0 0 1 .00 0 0 0 0

The aj* in (19 c) can be determined from the coefficients of the polynomial that
is obtained from the product of the dominant eigenvalues of the d(s) in (18 a).
When the dominant poles of d(s) cannot be clearly identified or the poles of
d(s) are not available, the paper and pencil method suggested by Gustafson
(1965) can be applied to construct the d*(s) or to determine aj* in (19 c). Then,
substituting the aj* into (19 b) yields the required n*(s) or bj* in (19 a). The
steps determine the d*(s) are shown as follows.
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Step 1. Construct a Routh (1877) array using the coefficients aj of d(s)

and the Routh algorithm. The ai are expressed by double-subscripted notation
ai. j for obtaining the general algorithm. The Routh array is

allAa n  a,2- a.- 2  a 3 -aR_ 4 1..a o
all

a2  a- 1  a2 A an 5

a2,1<
a3

3 1 a1 2 - Yla 22 a. a1 3 - y 1a23. .."

a.,
Y3 a4,

4 l A a.2 - Y~~2 32 a42 A a2, - Y2a33 ..

(20 a)
!a

1 In-2,2

Ian-1,2

."-. . .a- , l ...... ...... ............. .....................

Ia
- a

1 an-" ,1 --- a -a 0an,1 .................

In general a,, f aaj+-- jaj_,j+i ; i= 1, 2, ... j =3, 4,

yj = a,/aj+j, (20 b)

Step 2. Construct various approximate low-order polynomials d1 *(s) from
the last row and the next to last row, and so on in the Routh array.

For example, the ith order approximate equations are

d,*(8)=a,,s+a,+ ,i=a,18s+a=O when i= 1 (20 c)

ds*(s)=a,_.1 8,+at,1s+an_1,2 =afia ,Is 2 +ats+ao=O when i=2 (20d)

and

d3*(s) = a.-,, as + a.,, 1 2 + a.2, 2 s + an-1 ,2

=a _ ,1 a3 +a,-_,8s2 +a,,_ S+ao=O when i=3 (20 e)

Since the original system is asymptotically stable, all yj are positive values.
The approximate polynomials dj*(a) are always the Hurwitz polynomials.
Moreover, Gustafson (1965) has shown that relationships exist between the
coefficients of d,*(s) and the time-domain moments. The normalized poly-
nomials can be determined by dividing each coefficient in di*(s) by the coeffi-
cient of the highest order term in s. The approximate transfer function T,*(s)



1110 L. S. Shieh et al.

in (19 a) can be considered as a reduced-order model of the original high-order
system. In this paper, we use it as the initial guess for the numerical method
for determining the reduced order model that has the exact dominant frequency-
response data as the original system.

4. An illustrative example
Consider the unit ratio feedback closed-loop transfer function of a stabilized

real missile system (Bosley 1977)

k'(b', + b' s + ... + b' 5 ) (21 a)
a o +als+ ... -au 8 11

where

ao = 8-802 158 509 x 1018, a, = 2.419 047 424 x 1019
a 2 = 2.911 920 56 x 101s, a.=2.420 405 431 x 1018

a4 = 6667 397 031 X 1016, a.= 9749 923 212 x 1014

a.=9.360 329 977 x 1012, a 7 =6.231 675 318 x 1010

a.= 2.976 950 696 x 108, a9 = 9.316 239 04 x 105

al 0 = 1.923 554 x 103,  1

and

k'= 1494 523 312 x l0

b'o= 5.889 609 375 x 107, b' 1 = 3084 598 703x 108
b 2 = 1.958 045 299 x l07, b'3 = 3357 065 095 x 105
b'4 = 1.715 193 3 x 103, b'8 = 1

The second order and the third order reduced-order models which have some
of the dominant frequency-response data of the original system are required.
The open-loop transfer function G(s) of the system is

G(8)= k(e°+es+ + e.85) (21 b)
8s(go + g1 + ... +goS 1 0 )

where

go=- 2"190 952 724 6 x 1019, =- 1442 378 55 x 1016

9 2 = 2370 233 311 x 10(', g= 6641 763 067 x 1016

g4 = 9-748 428 689x 1014, 9= 9360 329 977 x 1012

go= 6"231 675 318 x 1010, g7 =2.976 950 696 x 108
gs-= 9.316 239 04 x 105, g9 = 1923 554 x 10 3

g1 0 = 1

and

k= 1494 523 312 x 1011

e0 = 5.889 609 375 x 107, e= 3.084 598 703 x 108
e2 = 1.958 045 299 x 107, e= 3,357 065 095 x 106
e4 =1,715 193 3x 103, e8=1
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Note that ('(s) is a no-niinimutn phase function its Nyquist plot is shown in

Fig. 1. The dominant frcquicy-rsonse data are chosen and given in (8).
'The set of non-linear equations are shown im (11). The initial guesses sho%%:,
in (13 I) and (17 b) yiehls the required tlird-order reduced model in (14), or

T(s) 0243 4iffjS2 + 20.5563 6ls + i378 07 (22 a)

3+ 1,259 10"-4 + 10"462 22s + (.378 07

If the continued fraction method ('hen and Shieh 19369) in (18) is used, the
approximate reduced model is

0.(920s + I 9-49 2 s + 3-7376(
s + 0-94 S&. + 10 1. 61s + 3.737(6 (22 b)

Using the coefficients in (22 b) as starting values for solving the non-linear
equations in (1 1) yields the desired coefficients in (22 a) at the eighth iteration
(IBM 1977) with the error tolerance of 10- . If the mixed method in (19)
and (20) is used, the normalized approximate denominator in (20 e) is

d3*(8) = 3 + 0-9524s"2 + 10-1 9 24s + 3.7455 (22 c)

The n,*(s) obtained from (19) is

11 3*(s) = (J-7(j(js
2 + I 95155s + 3-7455 (22 d)

The approximate transfer function by the mixed method is

0.706(82 + 19.5155s + 37455
s+ 0.9524s2 + 10-1924s + 3.]7455

If the coefficients in (22 e) are used as starting values, the Newton-Raphson
tmethod (IBM 1977) will converge to the (esired solution in (22 t) at the eighth
iteration with the error tolerance of 10 -6. The unit step response curves of
various reduced models and the original system are compared in Fig. 2. All
three reduced-order models give very satisfactory approximate time response
curves. However, only the T,*(q) in (22 a), which uses the method of dominant
frequency-response data matching, has the exa(t dominant frequency-response
data as the original system.

If w, = 32 rad/s, #m= 5"7 and Re I ((JO) - 21 are. chosen as the domi-

nant data, the second-order reduced model obtained by the proposed method is

3339 517s + 9-224 24
T,()(23 a)

+ 0.302 806s + 9.224 24

The approximate reduced models by the continued fraction method and the3 mixed method are :
S=24-7981s + 4.8122

) 2+ 12.82(o1s + 4.8122 (23 b)

andT21 s) = 10.3619s + 3.9328 23 c)
s 2+ 6.5726s + 3.9328

I



1112 L. SShieh et al.

OUTPUT

- ORIGINAL 11TH ORDER SYSTEM: T( )

3.0-. -_ THIRD ORDER REDUCED MODEL RR YTHE PROPOSED FRTO THOD

D~c - - .--oTHIRD ORDER REDUCED MODEL~ BY THE PROPOSRE RRIR METHOD W

10

Figure 2. Time responses or original and third-order reduced models.

The unit-step time response curves of v-arious reduced-order models T 3 *(8),
T 2 *(,), T,,*(s), and T21.*(8) are compared in Fig. 3. It is observed that T,*(8)
gives better approximation in the transient response than T2,*(8) and T2~1*(s).

3.0- T 3 (s): - THIRD ORDER REDUCED MODEL RY THE PROPOSED M4ETHOD

T !s"O- SECOND ORDER REDUCED MODEL BY THE CONTINUED FACTIDN METHOD
T03 Ws O

T2*s) 0 2 (SI).-. __6 SECOND ORDER REDUCED MODEL ER THE PROPOSED ME TROD

T2 (01O- -0 SECOND ORDER REDUCED MODEL RY THE MIRED METHOD

T .0)

Figur 3.T m epne ftid n ecn-re eue oes
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5. Conclusion
A basic miethod has been developed for- modelling transfer function using

dominant frequenc.Y-response (data. Wh'len the specifications of thc design
goals of a control system are assigned, the proposed method gives the standard
transfer function. Thus, the design processes in the frequency domain can be
significantly Simplified. W~hen the experimental f requtency -response data of a
sN'stemi are available, thle prop~osed method can be used to identify the transfer
function of the original system. Also, if a high-order transfer function is
given, various low-order models can be determined. 'rte reduced models have
thle Same domlinant cha11racteristics of the original system. Four methods have
been proposed for estimating the good starting values for the solution of non-
linear equations. rhe new dlominant frequency-response data matching
method, andl the new mixed method that has the advantages of both continued
fraction method of Chen and Shich (1969) and the paper and pencil method of
Gustafson (1965) have been developed for model reduction.
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