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Abstract

The newly developed dominant-data matching method, which was the
research result supported by the U. S, Army Missile Research and De-
velopment Command under DAAK 40-78-C~0017, has been successfully
extended to design a digital pitch control system of a semiactive
terminal homing missile system. As a result, the designed digital
controller can be implemented on a microprocessor. Also, a direct-
decoupling method for multivariable control system designs has been
developed and modified. This newly developed simple and practical
method can be readily applied by a practicing control engineer for
coupled high-order multivariable control system designs. The fcasi-
bility of synthesizing a multi-port controller without using inte-
grators has been studied. As a result, a new matrix Sturm series
and block canonical form of a matrix transfer function has been de-
veloped. The practical applications of the newly developed results
on multi-port network synthesis are further investigated. Other new
findings of this research are reported in the appendix.
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ABSTRACT

,;

The newly developed dominant-data matching method(;which was the
e

research result supported by the U. S, Army Missile Research and Development

Command under DAAK 40—78-C—0017thas been successfully extended to design
a digital pitch control system of a semiactive terminal homing missile
system. As a result, the designed digital controller can be implemented
on a microprocessor. Also, a direct-decoupling method for multivariable
control system designs has been developed and modified. This newly de-
veloped simple and practical method can be readily applied by a practicing
control engineer for coupled high-order multivariable control system
designs. The feasibility of synthesizing a multi-port controller without
using integrators has been studied. As a result, a new matrix Sturm series
and block canonical form of a matrix transfer function has been developed.
The practical applications of the newly developed results on multi-port
network synthesis are further investigated. Other new findings of this

research are reported in the appendix.
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CHAPTER 1

INTRODUCTION

This report deals with the digital redesign of the pitch control system
of an unstable semi-active terminal homing missile system. It also concerns
with the design of a coupled high-order multivariable control system and
the realization of a multi-port controller.

In Chapter II we extend the newly developed dominant-data matching
method, which was the research result supported by the U. 5. Army Missile
R&D Command under DAAK 40-78-C-0017, to design the digital controller for
the pitch control system of an unstable semi-active terminal homing missile
system. In Chapter III, we introduce a new and simple method for coupled
high-order multivariable control system designs. In Chapter IV, we develop
a new block canonical form of a matrix transfer function for possible

realization of a multi-port controller without using integrators.

Other new findings of this research are reported in the appendix.




Chapter I

AND DIGITAL CONTROL SYSTEMS MODELING AND DESIGN

1

L. S. Shiehl, Y. F. chang!, and R. E. Yates?

ABSTRACT

i l . A DOMINANT-DATA MATCHING METHOD FOR DIGITAL FILTERS

A dominant-data matching method is presented for obtaining

a reduced-order discrete-data pulse-transfer function from either
l a high-order continuous-data transfer function or a high-order

discrete-data pulse-transfer function, and for identifying the
i pulse-transfer function of a system from available experimental
time and frequency response data. The method may also be applied
to the digital control systems design problem with various sampling
periods. The same method can be used for digital filter designs
if the filter specifications obtained by this method are viewed ’
as control specifications. The discrete~data system has the ?
exact dominant characteristic performance of the original con- f
tinuous-data or digital system. The relaxation of the sampling l
period requirement and the flexibility of our new method facilitate
the practical industrial implementation and application.

lL. S. Shieh and Y. F. Chang are with the Department of
Electrical Engineering, University of Houston, Houston, Texas
77004.

2

R. E. Yates is with the Guidance and Control Directorate,
' U.S. Army Missile Command, Redstone Arsenal, Alabama 35809.




I. INTRODUCTION

Most practical industrial circuits and control systems are
continuous-time systems for which analog filters and controllers
are employed to improve performance. The recent availability
of high performance, low cost microprocessors and associated
electronics has led to replacement of many continuous systems
with systems employing digital filters and controllers. Many
techniques have been developed for digital control systems design
[1]-[4]. Among them the w-domain bilinear transformation is
often applied to design industrial digital controllers. However,
this method is graphical and involves "cut-and-try" procedures.
Recently, Kuo [5] and others developed an optimal discrete-time
data matching method for the redesign of a continuous-~data system.
Constant controllers instead of dynamic digital controllers are
mainly employed in these designs. As a result, good performances
of redesigned systems can be achieved if the frequency of the
input signal is sufficiently lower than the sampling frequency.
As an alternate to Kuo's time-domain approach, Rattan and Yeh
(6] have given an elegant frequency-domain method for the redesign
of continuous-data systems. The method of weighted least-squares
complex-curve fitting due to Levy [7] and Sanathanan and Koerner
[8] has been successfully extended in the z-domain to determine
a dynamic digital controller. As a result of these efforts,
better performance of redesigned systems can be achieved. However,
this method is restricted to systems whose controllers are se-
lected in such a way that the linear solution of the unknown
constants in the controller is possible. On the other hand,
if both feed-forward and feedback dynamic digital controllers
are employed in the design, the closed-loop pulse-transfer function
may have nonlinear coefficients of the unknown constants of the
controllers. Therefore, the linear solution to their method
may not be valid. Furthermore, most often design goals are as-
signed by using a mixture of time-domain, frequency-domain and

complex-domain control specifications [9] rather than a set of

frequency-response requirements., Therefore, complex-curve fitting
2
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methods may not be applicable. 1In this paper, a computer-aided
method is proposed for matching the dominant data of a high-order
continuous-data system, or a discrete-data system, with the dominant
response of a low-order digital system replacement. Also, methods
are given for system identification and digital controller design
of these systems.

II. DOMINANT DATA AND DOMINANT-DATA MATCHING METHOD

The characteristics of a control system or a filter are
often expressed by either a time-response curve, or a frequency-
response curve or a set of poles and zeros in the complex plane,
or both. The quartitative description of the steady-state behavior
is characterized by its final value as t+o and by the value
of the steady-state frequency response as w+0. On the other
hand, the quantitative description of transient behavior is rep-
resented by its time-domain control specification [9] (for example,
the percentage overshoot and the rise time) and by the frequency-
domain control specifications (for example, the maximum value
of the closed-loop frequency response and the bandwidth). These

specifications which are defined for control systems can be con-

sidered specifications of analog or digital filters. This is
because a digital system (or a discrete-data system) can be viewed
as a continuous-data system in the frequency domain when z = eJmT

where T is a sampling period.

Some empirical observations or rules of thumb due to Axelby
[10] that link the specifications of the continuous-data systems

in both the time and frequency domains are as follows:

= = 1
1. M =My 2 g 5 (1a)
Mt: Maximum value of unit-step response
Mp: Maximum value of the closed-loop frequency response
¢m: Phase margin.
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Maximum value of the error of the unit-ramp function.

Gain-crossover frequency

W (1lc)

The peak value frequency or the frequency when Mp occurs.

W, (14d)

Maximum value of the unit-impulse response.

3
w_ (le)
c

The peak value time or the time when Mt occurs.

1.8 '
=2 (1f)
C

The time when the maximum error of the ramp function
with respect to its input occurs,

1
W ] (1g)
c .

The time when Mt occurs.

Other rules of thumb according to Truxal {[11] are:

0.6T to 0.97 : (1h)

n

The rise time or the time required for the response
to go from 10 to 90 percent of its final value.

The bandwidth in rad/sec.

(1i)

.
K
v

The delay time or the time required to reach 50
percent of its final value,

The velocity error constant.




The above rules can be verified by using the standard second

order transfer function:

w 2
Y{(s) _ n

R(s) g2, 2w s +

5 (2)
n .

where R(s) and Y(s) are the input and output functions, respec-
tively, £ is the damping ratio, and Wy is the undamped natural
angular frequency. The zero of the system is located at infinity,
and the finite poles are in the complex plane. The { and W

as used herein are defined as the complex-domain control specifi-

cations.

Recently Shieh et al. [12] have studied the relationships
between the complex-domain specifications (£ and wn) and the
time-domain and frequency-domain specifications by using a more

sophisticated model

s
2 if—y)y+1
Y(s) _ TWLS 4 Wy - (;n) - Ts* + 1
R(s) 52 + 2Ew_s + w 2 (§—>2 + 2&(5—) + 1 s"‘2 + 2Es* + 1
n n w w
n n
(3)
where s* = s/wn is a normalized complex variable and t indicates

the location of a finite zero. The relationships are as follows:

1. Mt’ tp, £, W and Tt

/ 2
<‘n + tan 1 _-r__I_L;E;_) (mn/l - 52) (4a)

tp = 78 - 1

M, =1+ e-&wntp(¥2 - 21E + 1)1/2 | (4b)
2. Mp, wp, £, W and T |

wp =01 - 287 if T=0 (4c)

M, = 1/ (2871 - £E2) if T =0

woe




and

= tan

"

=

W E, w

1/2
—?[1+f1 +1)2-415] if t #0

2 e -
V2

n’ and T

G e 0

1 - (26 - 1)1
1/2
wn[zgr - 262 4 ./(ng - 261)% 4+ l]

Mer & Yn

, and T

. -fw _t
[2§—T+/(1+12-2'r§)e nv]/nn

Mt’ £, W and T

2
1 -l [(1 - 26m)/1 - ]

2
wn/l 2 £ - 21E

Ew t
C/[E - 21 + 1

£, W and T

w
2 - if v < 2§

28

(4e)

-1
(<2 +1)+2522] /zifr;!o

(4f)'

(49)

(4h)

(41)

(43)

(4k)

(41)

(4m;




7. Wy £, W and Tt

W, = wn[KI + 12 - 252) + /?i + 12 - 252)2 + 1]1/2 (4n)
The above analytical expressions can be plotted by letting
w, = 1 and £ the variable. Once a specification is defined,
other corresponding specifications can then be determined. 1In
other words, if time-domain specifications are assigned, the
corresponding frequency-domain and complex-domain specifications
can be determined. The frequency-response data or the equivalent
data obtained from Egs. (1) and (4) at Wor Wor W7 W

m p
are the dominant data as used in this paper. Other important

’ (Dbr etc.,

data will be the frequency-response at s=jw=j0 because these

.

characterize steady-state behavior.

Our new dominant-data matching method matches the above
dominant data of a continuous-data or a discrete-data system
to those of the newly designed or modeled discrete-data system.

The steps involved are as follows:

Step 1: Determine a set of dominant frequency-response
data from the assigned time-domain and complex-
domain specifications by using the rules and results
in Egs. (1) and (4).

Step 2: Assume a fixed configuration digital system and
controllers with unknown constants. Determine
the open-loop and the overall pulse-transfer function
of the system. ~ .

Step 3: Formulate a set of linear/nonlinear equations
by matching the unknown constants of the pulse-
transfer function and the assigned dominant data.
Solve the egquations by using the multidimensional
Newton-Raphson method [13], available as a library
computer program package (called the Z system)

in many digital computers [14].




l Step 4: Estimate initial value for the numerical solution

of the Newton-Raphson method by constructing a
crude pulse-transfer function which can be obtained
by a complex-curve fitting method.

Step 5: Compare the results with the assigned specifications.

When the dominant data are obtained from either a high-order
continuous-data transfer function or a high-order discrete-data
pulse-transfer function and a low-order pulse-~transfer function
is required; this is a model reduction problem. If the dominant
data are determined from an experimental set of time and fre-~
quency data and the corresponding pulse~transfer function is
required, this is the identification problem. The order of the
identified pulse-transfer function dependz on the number of dominant
data parameters used. Therefore, the identified pulse-transfer
function could be the reduced-order model of the original high-
order system. The above two problems can be considered the modeling
problem. When the design goals are specified by a set of dominant
data and the digital controllers with unknown constants are designed
to match the desired dominant data, this is the design problem
for digital control systems. Applications of the above new method
4 will be described in the following sections. '

III. MODELING A REDUCED-ORDER PULSE~TRANSFER FUNCTION

We use a real stgbilized pitch control system of a semiactive
terminal homing missile [15] as an illustrative model to show
that the characteristics of the transient-state response of a
) system can be estimated from the dominant frequency-response
i data and the applications of the proposed method to the identifi-
. cation and model reduction problems. A block diagram of the

missile system is shown in Fig. 1. The closed-loop high-order

-

transfer function is

G.(s)G,(s) G_(s)
Y(s) _ c o - e A
R(s) 1+ G (s)G, (s)Hg (s) I +G_(s) Ty (s) (5a)




where

where

g

GC(S)

Gy (s)

Hg(s)

Gg (s)

! Te(S) =

RPN

= the stabilization filter
S S
_ L6(z5 + 1) (135 + 1) (5b)
s \2 0.6 s \2 /0.8
[(150) + (Ts5)s + l] [(200) +(Zo0) s + 1]
= The transfer function of the actuator and aerodynamics
of the missile system
) 324332.316(s + 0.1933) (s + 65) (s + 1500)
S(s = 2.921) (s + 3.175) (s + 87.9 + 395.5) (s + 112.5) (s + 138
(5¢)
= The transfer function of the gyro = 1 {54)
4 Gc(s)Go(s) = The unstable open-loop transfer function
of the existing stabilized system. (5e)
The closed-loop transfer function Te(s) becomes
10 9
bOS + bls + ... + bgs + b10
asll+a10+ + a s + a (6)
0 158 <o 10 11
1 by = 0
1.923554000 x 10° by = 0
9.316239040 x 10° b, = 0
2.976950696 x 108 by = 0
6.231675318 x 1010 by = 0
12 11
9.360329977 x 10 bs = 1.494523312 x 10
9.749923212 x 10%4 bg = 2.563396371 1014
6.667397031 x 101° b, = 5.017212044 101
2.420405431 x 1018 bg = 2.926344345 1018
2.911920560 x 1018 by = 4.610004670 x 101°
2.419047424 x 1012 by, = 8.802158509 1018
8.802158509 x 1018
9




The Nyquist plots of Ge(s) and Go(s) are shown in Fig. 2. The

dominant data of Ge(s) are:

1. Real and imaginary parts of Go(s) at s = jw = jO are

Re[?e(joﬂ = -2.103817 . (7a)
Im [Ge (jO)] =
2. Gain margin Gem of this system Ge(jw") is
1 1 ~ 1
G = ————— = . = —_—
em ]Ge(Jw“)l IRe[Ge(Jw“n l |-1.5I (7b)

where the phase-crossover frequency W, is given by

w = 1.9 rad/sec, such that fGe(jwu) = -180° C (7¢)

The equivalent real and imaginary parts of Ge(jm“) at w, = 1.9
rad/sec are

Re [Ge (Jm“)]
tn o, 30,
3. Phase margin ¢ . of the system Ge(jm).is

= ° i : = °
¢em = 180° + /G, (Jw.) = 5.7787 _ (7£)

where the gain crossover frequency W is given by W, = 3,2 rad/sec
so that,

JGg (Ju) | =1 | (79)
Equivalent real and imaginary parts of G, (jw.) are

Re [G, (ch)]

Im [Ge(jwc)]

It is required to determine a reduced-order pulse-transfer function

-1.507944 , (74)

-0.006490205 (7e)

-0.9939143 (7h)

-0.09547478 (71)

such that the characteristics of the identified discrete-data
model agree as closely as possible with those of the high-order

continuous~data system,

Let the required overall pulse-transfer function be

G, (2)
T2 = 55 = (8a)

10




where the open-loop pulse-transfer function G[(z) is

P p-1
Xgz® + Xz + ...+ Xp-12 * X

(z = 1) (yg2d + y;2

P (8b)

G (z) =
+ ... 4 yq_lz + yq)

qg-1
Gr(z) is assigned to be a type "1" system because Ge(s) in Eq.
(5e) is a type "1" system. To match the five dominant data in
Eq. (7) we choose q = 2, p = 2, and Yo = 1. Thus Gr(z) becomes

2
Xn2° + X,z + x
G (z) = Oyt 2 (9)
(z - 1) (z° + ylz + yz)

where Xy and Yo in Eq. (9) are unknown constants to be determined.

The goal is to determine the unknown constants x, and Yo in Gr(z)

. L
so that G _(z) as z = eJ¥T nmatches the dominant data in Eq. (7).
The sampling period T (=0.008 sec) and ms(=250ﬂ rad/sec) are

chosen to be synchronized with the 125 Hz pulse-width modulated

actuator [16]. Since G.(s) and G_(z) are type "1" systems and

0 in Eq.

we need to match the dominant data of Ge(jw) as w
JuT _
e =1

(7a) and the dominant data of Gr(z) as w = 0 or z =
in Egqs. (8b) or (9), the expression for Gr(z) in Eq. (8b) is
modified as follows:

Substituting z = z* + 1 into Eq. (8b) yields

x +x_ 204 + x z*P
G _(z*) = P p-i - 0
r z* ( oy oy z* + + y*z*q)
yq yq-l ces 0
_ *-] * *2
=e_,2 + e, + e,z -+ e,z + ... (10a)
h .
where p p q q
Y s I x x* = I ix y* = Iy y* = I iy
X = - 4= y = .y = e
P joo 1" "P7l oy PRt a7 faml 7 el

_ * * a _ * * * * * 2 ¢
e_; = xp/yq and eg = (yqxp—l - yq—lxp)/yq , etc.

Equating the respective real and imaginary parts of Gr(z) for

w = 0 and those of Gr(z*) for w = 0 gives

11




Re [Gr(z*)] L= e (10b)

Re[G, (2))] e 30

N
n

and

Im[G[(z*)] (10c)

Im [Gr(z)]

Egs. (10b) and (10c) imply that e, in Eq. (10b) is the asymptotic
line of the type "1" systems at low frequencies.

z-1

jo

z*

z 1+ 30

In the frequency domain, Eq. (9) can be expressed in an

alternative form as follows:
Let us define

o, T o A .
zZ = e = COSs wkT + 3 sin wkT s up + vy (lla)

and substituting z = u + jvk into Eq. (9), we have

2 _ 2 . .
(xouk XV + Xquy + x2) + J(Zxoukvk + xlvk) f;
2

G_(u,,v,)
r*"k’'’k
Buk —1)(uk = Yy + YU + y2) - vk(2ukvk + ylvkﬂ

+ 3 Buk -1)(2ukvk + ylvk) + vk(ukz - vk2 + yluk + yzﬂ

R, + j Ik (11b)
‘ where w, are specific frequencies and Ry 4 Re[?r(uk,vkﬂ e Iy 4 ;
, Im[?r(uk,vkﬂ . 1If Ry and I, are the known or assigned values at
i frequencies w,, we can obtain two linear equations. First, we

multiply both sides of Eq. (ilb) by the common denominator, then

——

we separate the real and imaginary parts and then equate the

respective real and imaginary parts. Thus we have

_— 2 2

£i(xgrX1eXp0¥10¥) = (Xgu™ = XV ™ + xjup + x,)

2 2
Ry [(uk - D - vty +yy)

vy (2u, v, + ylvk)] + I, l:(uk - 1) (20, v,

2 2 =
+ ylvk) + Vk(uk = Vi + yluk + yzﬂ = 0
12 (llc)




! and |
1
fi+l(x0,xl,x2,yl,y2) = (2x0ukvk + xlvk) 3
- - 2 _ 2
;‘ Rk Buk 1)(2ukvk + ylvk) + vk(uk Vi
' + yluk + yz)] -»Ik Buk - 1)(uk2 - vk2
+ Y4t y2) - vk(2ukvk + ylvk)] =0 o
(114)

Using the expressions in Egs., (10b), (llc), and (11d) and the _
assigned dominant data in Eg. (7) we can formulate one nonlinear
equation and four linear equations fi(xz,yz) =0 for i=11,2,...,5 .

as follows:

(i) The data in Eq. (7a), or Re[G,(jw)] = -2.103 for w= 0
and the relationship in Eq. (10b) gives a nonlinear equation:

fl(xz,yz) = (2x0 + xl)(l + Yy + yz) - (2 + yl)(x0 + Xy + xz)

+2.003(1 +y, + y2 =0 (12)
(ii) From Egs. (7d) and (7e), Re[G,(jw )] = -1.507944 and |
Im[pe(jm“ﬂ = -0.00649025 for w_ = 1.9 rad/sec. We define
R, 2 R, . = -1.507944, 1, & 1. . = -0.006490205 2 =w =1
k - T1,9 © "+ r Yk T t1.9 T 7Y P Wp T W9 T Wy F L
¢ = T = 0.99988448 d 4 = si T
u, = u; g = cos w; T = 0. and v, = vy g = sin w; 4
= 0.01519941 as T = 0.008 sec
Substituting the above data into Egs. (llc) and (11d) and letting
' i = 2 we have two linear equations EZ(XE'YE) = 0 and f3(x2,y2) =0
. as shown in Egs. (llc) and (1l1d).
(iii) From Egs. (7h) and (7i) we define W = W, = 3.2 & Wy o1
A - - A - i - ,
u, ; uy , = cos w3.2T = 0.9996;234, Ve = V3 5 = sin w3.2T = 0.025597204,
Rk = R3_2 = -0.9939143 and Ik = I3 9 = -0.09547478. Substituting
the above data and i = 4 into Egs. (llc) and (11d) yields two
more linear equations f4(x2,y£) = 0 and fs(xn,yl) = 0. Thus,
we have five simultancous equations fi(xg'yg) = 0 with five unknown
13




constants X, and Y, to be solved. Notice that if the data of

Egqs. (7b), (7¢c), (7f), and (7g9) are used to match the unknown

coefficients of Eq. (llb), the resulting equations fi(xm'yz) =0
in general are nonlinear. Therefore, we note that in general

the equations fi(xz,yl) = 0 are nonlinear. The Newton-Raphson
method available as a library computer program in most digital
computers [14] can be applied to solve these nonlinear equations.
However, as is well known, the Newton-Raphson method will converge
to a desired solution for a small range of starting values or
initial solution estimates. To improve the convergence and to
obtain the set of desired solutions, we offer the following method

for initial estimates.

Since fl(xl'yl) = 0 is nonlinear and fi(xn,yz) =0, 1i=2,...,5

are linear equations, we linearize fl(xz,yz) = 0 by choosing
a very low frequency. For example, if we choose W 0.01 8

then R, & Ry o) = -2.1, I, 2 15 o) = 40.17319, u 2 ug 01 °
= 0.99999950 and Ve = Vo.01 sin wy. 01T = 8 x 10 ~.
l'yl) = 0 and fi(xz'yg) =0, i=2,...,5 for the
unknown constants Xy (defined as xz*) angd Yy (defined as yz*)
we get xo* = 0.00679254, xl* = ~-0.0123359, x2* = 0.00554537,
yl* = ~1.9985417, and yz* = 0.99794573. Using these values as
initial estimates for the solutions of fi(xl’yl) = 0 using the
Newton-Raphson methqd we obtain the solution Xg = 0.00679259,
X, = -0.01233599, Xy = 0.00554531, Yy = -1.9985412, and Yy =

0.9979452 at the second iteration with error tolerance of 10-6.

fl

>
>

Yo.01’
cos m0.01T*

Solving fl (x

The desired open-loop pulse-transfer function is

_ 0.006792596z> - 0.012335992z + 0.0055453114
z3 - 2.9985412z% + 2.9964864z - 0.9979452

G, (2) (13)
A Nyquist plot of Gt(z) is shown in Fig. 2. The plot matches
closely that of G, (s) not only at the dominant frequencies but
also at others. The Gr(z) is seen to be a good reduced model

of the original unstable system Ge(s). This is the contribution

T




—

of our new method because there are no known effective model-
reduction methods for unstable systems. The resulting closed-
loop pulse-transfer function which is the reduced-order discrete-
data model of the original high-order continuous data system

is

2

Gr(z) 0.0067925962" ~ 0.012335992z + 0.0055453114

L+G.(2) ;3 _ 5.99174852422 + 2.9841504082 - 0.992399888¢

T, (2)

(14)

Since the assigned dominant data are the steady-state frequency
response, it is interesting to compare responses of Te(s) in

Eq. (6) and Tr(z) in Eq. (14) shown in Fig. 3. Observe that

both the transient response and steady-state response of the
reduced-order model Tr(z) are excellent matches of the original
high-order system. This indicates that the dynamic characteristics
of the system (for example, peak value time and overshoot, which
may not occur at the sampling time) are indirectly controlled

by the assignment of the gain-crossover frequency and the phase
margin. This is a major advantage of our new method. Also note
that the reduced-order model gives an excellent approximation

of the original system when driven by high-frequency input signals.

To determine the initial estimates xl* and'yl*, a general
formulation of a set of linear equations can be constructed from

the following complex~curve fitting method.

Consider the pulse-transfer function

x;zm + xiltzm_1 + ...+ x; '
Glz) = 4——F— A (15a)
yoz + ylz + ... + yn

* * *
where Yo = 1 and Xy and y, are unknown constants to be determined.
Substituting 2f = erwkT = COSs rka + j sin rwkT into Egq. (1l5a)

gives

15




mo, om,
Srw, T E xzcos(m - l)wkT + 3 E x251n(m - l)wkT
G k _ =0 =0
e -
n noy,
L y,cos(n - L)w, T+ j I vy,sin(n - Lw,T
- =0 % k =0 * k
= R(w) + jI(w,) = R + I, (15b)

where R, and Ik are the real and imaginary parts of the transfer
function at the experimental frequencies or the assigned frequencies
wy . After multiplying both sides of Eq. (15b) by the common
denominator and separating the real and imaginary parts, we eguate
the respective real and imaginary parts. This yields the following
matrix equation:

— T
(—cosmulr cos(m-l)ulr o 1 (-Rlcos(n-l)ulr + Jlsin(n-l)ulT) .« [(-RycosuT ¢ xlsinwlT) -R; F’o
L[]

sinnulr sin(m-l)wlT .. O (-Rlsin(n-l)ulT - chos(n-l)ulT) .. (-R13inu1T - IlcosulT) -Il x,
‘t

*m

»

cosnu‘r cos(m-l)uiT e 1 (-R‘cos(n-l)wiT + Iisin(n-l)uiT) .o (°Ri°°s“17 + IisinuiT) -R‘ Y1

*

sinmu‘T sin(m-l)uiT .. 0 (—Risln(n-l)wiT - !icos(n-l)uiT) .. (-RxsinwiT - IicosmiT) -Ii Y,
.t

Yn
- - —

— —
(RocosnuOT - IoslnnuoT)

(RoslnnuoT + IocosnuoT)

(15c)

- (Rlcosnulr - x‘slnnth)

(Rlslnnm1? + Ixcosnw‘T)

Substituting the selected (n + m + 1) frequency-response data
into Eq. (15c), we can solve for the required (n + m + 1) unknown
constants x; and y;.

16




IV. DIGITAL CONTROL SYSTEM DESIGN

Consider the pitch control transfer function of the missile.

1 system of Eq. (5a). The unity-feedback system without the sta-
bilization filter Gc(s) is unstable, and a rate gyro is not available :
for this example system. It is required to design a digital b
controller Gc(z) instead of an analog controller Gc(s) such
that the designed system has the exact control specifications
[9] of the original stabilized continuous-data system given in i
Eq. (7). Furthermore, the response Ge(jw) at ¢ = 140 rad/sécié i
Wyap0 is chosen as a dominant data constraint because the system
has an inherent high frequency noise component at Wj40° This
is a digital redesign problem. The structure of the digital
control system is shown in Fig. 4. The closed-loop pulse-transfer

function of the desired digital system becomes

Y(z) _ G.(2)G G, (2) - (z) = Gy (2) (16)
R(z) ~ T+ G_(2)6,6,(2) el T+ Gop(2)
where . 6 N 5 .
-1 1 ¢z t bz e + b6
GG (z) = (1 - 2 )Z[—G(S) =
n-o s ©° az7+azs+ + a
0 1 .- 7
by = 0.4095517916 x 1074 ay = 1.0
b, = 0.2526111734 x 1073 a; = -4.120000127
1 b, = -0.2575534058 x 1073 a, = 6.894911119
by = -0.1540502340 x 107> a; = -6.064285805
b, = 0.1096039580 x 1073 a, = 3.023078996
by = 0.8808224830 x 1072 ag = -0.83313251
' bg = -0.1358278543 x 1077 ag = 0.09942985948
a, = -0.1532773068 x 107°
A
i Gel(z) = Gc(z)GnGo(z)
1 - e—sT
Gn(s) = — = the zero-order hold 7
l T = the sampling period = 0.008 sec.
I 17




Gc(z) is the desired digital controller and is

2
Xg2~ t X;z + X,

Gol2) = — (17)

z +ylz+y2

where Xy and y, are unknown constants to be determined. Because

Gc(z) is a forward controller, the equations fi(x = 0 can

2!Y2)
be formulated from the following equations:
Ge(s)ls jwk

= eJw,T GnGo(z)[z = )9 T

G.(2)] (18)
z

where wg = 0, w) g = 1.9, Wy o = 3.2, and Wyg0 = 140. Notice

that GnGo(z) for z

unless T = 0. Using the dominant data of Egq. (7), the required

n

ejwkT is not equal to Go(s) for s = jwk

response at Wy40° and the relationships expressed in Egs. (10b)
and (18) yields a set of equations fi(xl,yz) =0 for i =1,2,...,5
as follows:

(i) Using Egs. (7a) and (10b) when y = wg = 0, yields a
nonlinear equation;

8

£)(x,,yy) = -4.557577105 x 107 (xg + %) + X)) (1 +y; +.y,)

-11
7.016133905 x 10 D2x0 + xl)(l + ¥yt Y2)
8

(2 + y)) (xg + x; + x)] + 2.1 x 3.505134712 x 10

2 .9 (19a)

(l + yl +YZ)
(ii) Using Egs. (7h), (7i), and (18) when w = wy , = 3.2

we get:

jw, 5T jw, T
Re[?c(e 3.2 )] = 1.5987861 and Im[Gc(e 3.2 )] = 0.23560917

The resulting lincar cquation is
g q

+ x,u + X

-— 2—
£y(xgoyg) = (xguy 7 = X5v3 5 1Y3.2 2)

2 2
1.5987861(uy ,° = vy ,° + yjug 5 + ¥,)

+

0.23560917 (2u; ,v5 5 + Y V3 ) = 0
18
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where uy 5, = 0.99967234 and V3 5 = 0.025597204

(iii) Using Egs. (18) and (19b) for w = w3y 5 = 3.2, obtain
a linear equation

- 1.5987861(2u

£3(xp0yy) = (2xguy vy 5 + X3V ) 3.293.2

2 2
+y vy o) - 0.23560917(uy ,° - vy ,

(19¢)

\
o

t Y U3 0t Y))

= 140 we have

(iv) From Eq. (18} for w “140

jwl40T jml40T
Re[?c(e ﬂ = 26.951878 and Im[?ch(e ﬂ = 19.196865
The resulting linear equation is
£, (x ) = (x/u 2 _ XV 2 + X,u + x.,)
4 XYy 0"140 07140 1%140 2

2 2
- 26.951878(u140 - Va0 + Y1Y340 + y2)

+ 19.196865(2u140v140 + ylvl40) = 0 (194)
where u140 = 0.43568245 and v140 = 0.90010044.

(v) From Egq. (19d) for w = Wyapr WE obtain another linear

equation
_ 2
Bo(xgryg) = (2XgUygq° *+ X1Vy4¢) = 26-951878(2uy,0v340 + Y1V140)

2 2 _
- 19.196865(u140 = V40 + YqUy40 * y2) = 0 (19e)

The above set of linear and nonlinear equations can be solved
using the Newton-Raphson method. The initial estimaves for the
Newton-Raphson solution may be determined from Eq. (15c). Another
linear equation fI(xn,yl) = 0, instead of fl(xz,yz) = 0 in Eq.
(19a), can be constructed to yield five linear equations with

five unknown constants (x; and y;). Ge(jw)'at w = 0.01 & W 01

is used in Fhis case. Substituting Re[pc(erO.OITﬂ = 1.5961120
and Im[pc(e3w0.01Tﬂ 6.409642 into Eq. (18) we get the linear
equation 19
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* _ 2 _
£y (xgoyy) = (xgu5 017 ~ %oVo.01 * *1Y.01 * X

2)

2 2
1.5961120(ug g;° = Vg.01~ * ¥1Yg.01 * Y3

+

6.409642(2u0.01v0.0l + ylv0.01) =0 (20)

where uy o, = 0.99999950 and v =8 x 1072,

0.01

Solving £, (x =0, i=2,...,5in Eq. (19) and £, (X,,y,) = O
i * x 1 278

1Yy)
iz Eq. (20) giv:s*a set of initial*values Xg and Yoi Xg : 2.9025918,
X, = 9.3580330, Xy = -10.066413, Yy = -0.42702018, and Yy, = 0.80224909.
Using these initial values and the Newton-Raphson method to solve
the equations in Eg. (19) we obtain the solution: Xg = 11.869083,
X, = -13.49237, x, = 3.0584008, y, = -0.75055299, and y, = 0.64699237
at the fifth iteration with the error tolerance of 10™%. The

required digital compensator is

2

_11.869083z° - 13.49237z + 3.0584008
Gc(z) 2

2 - 0.75055299z + 0.64699237

11.869083(z - 0.82408067) {(z - 0.31268533)
(z - 0.37527650 + j0.71144917) (z - 0.37527650 - J0.71144917)

(21a)

The Nyquist plot of G, (2) 4 Gc(zyGnGo(z) is shown in Fig. 2.
It closely matches the Nyquist plot of Ge(s). The closed-loop
pulse-transfer function is

~-3.8 -2.7 2.6

0.4861004207x10 ~z° + 0.2445680553x10 “z’ - 0.6339988815x10 “z

T,,(2) =
el 23 - 4.870067017z°% + 10.63662758z’ - 13.91123062°

2.5 2.4 2

+ 0.2419157047x10 27 + 0.2591699688x10 “z" - 0.1845418962x10 “»

3

~ 7.0230684352z% + 2.678803581z5 - 0.6134429209z2

3.2 4

+ 0.2163673922x10"°2z% + 0.2694091451x10 %z - 0.4154160183x10"
+0.6435845178x10 12 — 0.9921078960x10"©

9

(21Db)

20
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The unit-step responses of the existing stabilized continuous-

data system Te(s) in Eq. (6) and Tel(z) in Eq. (21b) are shown

for comparison in Fig. 3. The time-response of the newly designed

sample data system is very close to the existing stabilized system.
It is interesting to note that Gc(s) of Eq. (5b) is a fourth-

order analog controller whereas the Gc(z) of Eq. (2la) is a second-

order digital controller.

In a large control system it is often difficult to select
a minimum common sampling period among the various subsystems.
For example, the missile inner loop stability system with sampling
period T = 0.008 sec is used with a terminal guidance system.
The terminal guidance system is low-pass. Therefore, a larger
sampling period may be economically used in this system. If
we assign a larger sampling period Tl(=0.015 sec) for the outer
guidance loop, and we desire a single sample period, we must raise
the sampling period T(=0.008 sec) of the actuator and inner loop
from T(=0.008) to Tl(=0.015). Notice that the new sampling fre-
quency wgy (=2n/Tl = 418.88)>> 2w140(=280 rad/sec). The modified
open-loop pulse-transfer function with T, = 0.015 sec is

6 5

* a,z + a,z” + ... + a
G Gy(z) = — : 1 c 6 (22)
boz + blz + ... + b7
where
a, = 0.3733134407 x 1073 by = 1.0
a, = 0.1570750710 x 10”2 by = -3.257024652
a, = ~0.169231262 x 10”2 b, = 3.855486034
a, = -0.5827024448 x 1073 by = -2.039756267
a, = 0.3184265948 x 1073 b, = 0.5526488259
a, = 0.1895463329 x 10”4 bg = -0.1245437594
ag = 0.11354062 x 1072 bg = 0.1318981958 x 1071
b, = -0.1252480548 x 10”10

~J
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Since a larger sampling period Tl is used, we select a third

*
order digital controller Gc(z) rather than the second order digital
controller. Gc(z) of Eq. (2la) is

* x0z3 + Xlzz + x22 + x3
GC(Z) = 3 5 (23)
27+ ¥ 20t Y,z oy,

The Xy

and y, are seven unknown constants to be determined.
. A A
Ge(jw) at w = 0 = Wor W = 1.9 = W) gr W = 3.2 = Wy o and w = 140

ne>

Wy40 shown in Eq. (7) are used as the dominant data to determine
Xy and Yg- Using the above design procedure, we can determine

a set of equations fi(xz,yl) =0, 1i=1,2,...,7. These equations
can be solved by using the Newton-Raphson method, with the set

of initial estimates obtained from Eq. (15c). The data obtained

A
from Eq. (18) at w = 0.01 = Wo. 01’ wl.9' m3'2, anf Wy,40 are used

in Eq. (15c) to determine the initial estimates Xg = 13.177031,

* *
x; = -25.535836, Xy = 14.643983, Xq = -2.2787512, y; = -0.37332775,
y, = -0.32614954, and y3 = -0.296499004. Using these values

as initial values for the Newton-Raphson method, gives the desired

constants X and Yy at the 17th iteration with error tolerance
of 10_6. The newly designed digital controller G (z) 1is

3 _ 25.5314302z2 + 14.629635z - 2.2685451

* _13.170704z
Go(2) = 3 2
z° -~ 0.37424841z° - 0.32757047z - 0.29794756
(24)
The closed-loop pulse-transfer function is
9 8
Y (z) QT 2 - GeZ(Z) ) bOZ +,blz + ... 0+ b9 25)
R(z) ~ Te2 LG a0 220 4 a2 + L.+ ap
where '
* *
Gez(z) = Gc(z)GnGo(z)
ag = 1.0 by = 0.4916800827 x 1072
a; = -3.626356261 by = 0.1115666668 x 1071
a, = 4.758008528 b, = -0.5693102109 x 1071




ay = -2.77063927 by = 0.5766519111 x 107"
a, = 1.081168732 b, = -0.9250105745 x 1072
a; = -0.8211905469 bg = -0.1256587702 x 107"
a; = 0.4739432136 bg = 0.5496414235 x 1072
a, = -0.1233033662 b, = -0.4450686236 x 107>
'aa = 0.3234184521 x 10! bg = -0.4299777941 x 1074
ag = -0.3972872336 x 1072 by = -0.2575720172 x 107°
a), = -0.253840284 x 1072

The Nyquist plot of G, (2) shown in Fig. 2 matches very well

that ‘of Ge(s). The unit-step response for Y(z) in Eq. (25) is
shown in Fig. 3. The time response of Tez(z) very closely matches
that of the original system Te(s). The resulting design is seen

to be quite satisfactory.
V. CONCLUSION

A dominant-data matching method has been given for fitting
the coefficients of a pulse-transfer function from available i
time and frequency response data or from assigned design goals :
expressed by a set of control specifications. When the dominant
data are obtained fron a high-order continuous-data as well as
a discrete-data system, our new method has been used to determine
a reduced-order discrete-data system. If the data are experi-
mental time and frequency response data of a system to be identi-
fied, our method may be used to identify the pulse-transfer function.
Also, the method has been used for redesigns of a continuous
system using a digital filter with various sampling periods.
The pulse-transfer function obtained by our new method has the
exact dominant performance of the original or desired system.
We feel that the flexibility and accuracy of our new method will
have significant practical advantages for the design of digital

systems.
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i Hg(S) =1 <

Figure 1. Block Diagram of a Missile Pitch Control System
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Figure 4. Block Diagram of a Digital Pitch Control System
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Chapter TIT

A MODIFIED DIRECT-DECOUPLING METHOD FOR
MULTIVARIABLE CONTROL SYSTEM DESIGNS

L. S. Shiehl, v. J. weil, and R. E. vates?

ABSTRACT

A design method, which decouples an interactive system by
using a compensator obtained from the plant inverse matrix, which
is often called the direct-decoupling method is modified in this
paper. The modified direct-decoupling method uses the adjoint
matrix instead of the inverse of the plant matrix to construct
the compensator. The method uses a frequency-domain model-
reduction method to simplify the degree of the given plant transfer
function matrix and the obtained compensator. For an open-loop
stable multivariable system, the proposed method gives a simple,
practical and realizable controller without using an unstable

pole-zero cancellation approach.

lL. S. Shieh and Y. J. Wei are with the Department of Elec-
trical Engineering, University of Houston, Houston, Texas 77004.

2R. E. Yates is with the Guidance and Control Directorate,
U. S. Army Missile Research and Development Command, Redstone
Arsenal, Alabama 35809.
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I. INTRODUCTION

For the general multi-input-output control system, each
input affects several outputs and there are many degrees of free-
dom for system design. Therefore, it is difficult to control
and/o: Cesign such a system. The removal of the interactive con-
trol effects and the application of the well-developed classical
design techniques of a single-variable system to the decoupled
system is one popular design method. This method is often called
the decoupling method of multivariable system design.

In the time domain, the decoupling problem has been studied
via state-space techdiques by several authors [l1-5]. The con-
ditions for the existence of a decoupling system have been devel-
oped in these pioneering works [1-5]. The state-space techniques
are concerned with the internal structure of the multivariable
system. Thus, the limitations of the decoupling approach can be
derived, and a simple state feedback controller can be designed
to achieve an optimal result. However, for a real system, many
of the states aie'not accessible. As a result, a high degree
observer is often required for practical application of the state-
space technique.

In the frequency domain, decoupling via the use of transfer
function matrices has been investigated by several pioneers [6-10]
as long as twenty years ago. Since then, practicing engineers
have successfully extended the classical frequency-domain approach,
(for example, the Nyquist method {11-13] and the root-locus method
{14-15)) from single-variable system to multi-variablé systems.

Most existing frequency-domain design meihods for multivariable
systems either neglect the effects of weaxly interacting subsystems
or completely destroy the coupling effects of the original multi-~
variable system such that a simple classical single-variable method
can be applied to achieve reasonable design goals. The approach
that removes the interactions of the coupled system and designs

a controller for each decoupled system by using a compensator
obtained from the plant inverse matrix is called the direct-

decoupling method. This method is straight forward but the
2




following problems [16) arise:

a. The existence of the plant inverse matrix

b. The realizability of the obtained high-degree controller

C. The stability of the designed system when unstable
pole-zero cancellation has been used

d. The design procedures for a high-degree coupled system

is complex.

Since many practical systems [12,13,15,17] are invertible,
controllable, observable, and open-loop stable, the direct-
decoupling method is worthy of improvement and modification for
practical application. Recently, Peczkowski and Sain [17] have
improved the method via a time-domain model reduction method and
have successfully applied it to design the control system for a
F-100 engine. The direct-decoupling method is modified and im-
proved in this paper. Our method uses the adjoint matrix instead
of the inverse matrix of the plant matrix, and utilizes a fre-
quency~domain model-reduction method for a class of multivariable

control system design.

II. MODEL REDUCTION OF A MULTIVARIABLE SYSTEM

The usual procedures for designing high-order linearized
multivariable systems are cumbersome and computatibnally dif-
ficult. The controller obtained will usually be a high-degree
dynamic controller. To overcome these difficulties, a reduced-
order model of the original system is necessary. Recently,
various model reduction methods in the frequency domain [18-21]
have been proposed for determination of simplified models or for
estimation of location of the approximate dominant poles and
zeros of the original systems. Since each linearized model or
reducecd-order model is only an approximate model of the actual
system, we may use a reduced-order model as a reference for the
control system design. Thus, the design procedure is greatly
simplified, and a satisfactory lower-degree controller can be

obtained. 1In this paper, various mixed methods will be given
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for obtaining the reduced-order model of the original multi-
variable control system. The mixed methods are described in the
following paragraphs.

’ Consider a typical transfer function matrix of a multivariable
control system

.1 _ 1 )
So(s) = gay #(5) - 30_‘7"7{01'3‘(5), = ‘gi'j(s)] (1)

where each polynomial Qi'j(s) is the element at the ith-row and
jth-column in ¢ (s), and d,(s) is the least common denominator of
the elements of ¢ (s). The transfer function 9 (s), which is an
element in G (s), can be expanded into a contlnued fraction of the
Cauer second form [18] by using repeated long division of the two
polynomials to determine the various reduced-order models, that

is
¢i,j‘s) (b +bls+...+b s ) i,4

g. .(S) = = 2 !
1 do(s) ao+als+. ..+ansn (23) :

= 1 (2b)
h, + .
1 S
hy + : ;
‘. i,3 |
h
= 1l 2
- h. + .S hlh2+5 .‘ZC) .
1 h.|. . i,J
21i,j !
- 1 ~ h h3h4+(h2+h4)s
= S = 2
hy + — s hyhohshg+(hihythih +hah )s+s®|
2 h, o+ S K
3 h4 by ‘
i,] N
= ... (2d)




It has been shown that the first several h's are the dominant
quotients in the expansion if the steady-state response is of
interest. Bosley et al. [22] have linked the quotients hi and
the time moments (or the moments) of the original system. The
reduced-order models in Eq.(2)give good approximate steady-state
responses. The disadvantages of the above method is that the
reduced-degree models may not be stable even when the original
system is stable. To obtain the stable reduced-degree model

of each element in Go(s) and to have the same least common de-
nominator polynomial in the reduced-degree multivariable system,
we may use the following mixed methods.

Let the reduced model of the original system in Eq. (1) be

* 1 * 1 * *
Gots) = 2 o"(s) = —[o] i) = {9y, ]s)] (32)
a’(s) a(s) U ir ' |
where
* * * p_ll
. RO {bo+bls+...+bp_ls L4 e
93,59 N N 5 yay =1 (3b)
do(s) ao+als+...+aps

The relationships of the dominant quotients h; in Eg. (2) and
the coefficients a; and b: in Eq. (3b) can be expressed in the

following matrix equation [23] by
(bl = [H] [a) (4)
where |

T _ * *
- [ao,al,--.'ap_l]

[a)

L S b*
[b] = [bolbll'--l p_1]
= () "ting)

where T designates transpose, and

P




6 0 . 1 h 00 0 . 1 h

& el 12 p-1] 0 "1 |

—— e— e pre—— i
1 0 0 . 00 10 0 . 0 0 1 006 . 0 0|
© h, 0 . 0 0 01 0 .0 0 010 .00
0 1 hy . 0 O 00 h, . 0 0 601 .00

[ﬂll =

o 0 1 . 00 9 0 1 . 00 0 00 . 0 O

o 0 0 .2 hEJ 000 0 .1 o 000 . 0 by

The hi are obtéined from Eq. (2) and aI can be determined from the
dominant poles of do(s) [21] , or from the Routh table suggested by
Hutton and Friedland [20], or the Routh table of Gustafson [24].
Once hi and aI are known, the b; can be determined from Egqg. (4).

*

Thus the polynomial ¢i j(s) can be determined, and the equivalent
I 4

dominant zeros with the preassigned dominant poles obtained from

*
do(s) can also be determined., Since each subsystem in the reduced-
order model has the dominant quotients h; (or equivalent moments)
and the dominant poles of the subsystem in the original systenm,

the reduced-order model closely approximates the transient and
steady-state responses of the original system. It also has the

same tracking properties of the original system. Thus, the reduced-
order model G;(s) is a good approximation of the original system




®
Go(s). Using Go(s) as a design reference model, the design pro-

cess can be greatly simplified and a satisfactory low-degree
compensator obtained. This designed system retains the equivalent
transmission zeros [25-27]) of the original system. Our method
is described in the following section.

III. A MODIFIED DIRECT-DECOUPLING METHOD

Let the open-loop transfer function matrix Go(s) of a unit-
matrix feedback multivariable system be

= 1 v
G (s) = a_(s) ¢ (s) (5)

where Go(s) e R(s)™M js a proper transfer function matrix and
do(s) € R(s) is the least common denominator polynomial of

Go(s) with degree n. The expression ¢(s) € R[s]mxm is the numer-
ator matrix polynomial. Applying the first cascade precompensator
Kl(s) to the Go(s) yields

0 (8) = Go(S)K) () = g(zy ¢(S)K (3) = diag [%%} (62)
where

Ky (s) = adj ¢ (s) . (6b)
and

P(s) = det ¢(s) . (6c)

Note that p(s) is a numerator polynomial in Eq. (6a). If some
zeros of p(s) are in the right half-plane and all zeros of do(s)
in the left half-plane, a practical compensator can be designed
without using unstable pole-zero cancellation. On the other
hand, if the direct-decoupling method is applied, the p(s) will
be a denominator polynomial in Eq. (6a). Thus the decoupled

system is unstable and the impractical pole-zero cancellation




approach would be required to stabilize the system. Thus, an
obvious advantage of our method over the old method. Employing
the second cascade compensator Kz(s) to Ql(s), we have the diag-
onalized open-loop transfer function matrix

] p(s)k,n,(s) |

Gd(s) = Ql(s)KZ(S) = diag { do(s)di(s) (7a) %
where |
o [Rinits) . |

K,(s) = diag _EITET—] i =1,2,..0,m (7b) ;

Each k; is an undetermined gain at the ith diagonal element of ‘
Gd(s) for the use of the root-locus method. Each ni(s) and di(s)

is a scalar polynomial to be assigned in the design process. The
assignment of ni(s) and di(s) shall improve the performance of the

designed system with the constraint that the cascade compensator

K(s) = Kl(s)Kz(s) be realizable. The choice of ni(s) and di(s)

is a design freedom and experience is helpful. The total compen-

sator becomes

(8)

kini(s)]

K(s) = Kl(S)Kz(s) = adj ¢ (s)diag {Tiﬁ)—‘

Notice that Gd(s) in Eq. (7) retains some of the transmission
zeros of the original system. This can be shown as follows:

= - -1
Let G_(s) = o(s) = Ny(s)Dy(S) (9) | -;

1
d,(s)
where NY(S) € R[s]mxm and DY(S) € R[s]mxm are a pair of relatively

prime matrix polynomials. The characteristic poles of Go(s) are |
the zeros of det DY(S) = 0. The transmission zeros of Go(s) are

the zeros of det NY(S) = 0.

Eq. (9) can be written as

o(s) Ny(s)adj DL(S) (10a)

Gols) = d_(sy ~ A(5)

- -y




where

a(s) det DY(S)
the characteristic polynomial of Go(s)
the least common-denominator polynomial of all minors

of Go(s). (10b)

Taking the determinants of both sides of Eg. (l10a) yields

det [@(s) ] ) p(s) _ det NY(s)det[adj DY(S)]

dot=1l g "(s) A™(s)
aA™Y(s)det N_(s) det N_(s)
= T — = —5 (11)
Am(s) (s)
Rearranging Eq. (11) gives
p(s) _ _o
d(sy -~ T a(s et Ny (s) (12)
Substituting Eq. (12) into Eq. (7a) we have
-1
k.n:(s)d ™ " (s)det N_(s)
- A 171 o Y
Gd(s) = diag { di(s) 5(s) ] (13a)

and the closed-loop system is

‘m-1
kini(s)do (s)det NY(S)

Y(s) = diagl } R(s) (léb)

A(s)d (s) + kidom-l(s)ni(s)det N, (s)

where Y(s) and R(s) are the output and input vectors, respectively.

Since the transmission zeroes of the original system Go(s) in
Eq. (5) are the zeros of det NY(S) which appear in both Gd(s) in
Eq. (13a) and the designed closed-loop system in Egq. (13b), the
designed system retains some of the invariant transmission zeros
when A(s) and det NY(s) have no common factors. In general, there
may exist common factors between A(s) and det NY(S)' Therefore, %
Gd(s) may retain only a subset of the transmission zeros. For the




special case, when m=2, A (s) = doz(s), ni(s) = 1, and di(s) =
do(s) the compensated system Gy(s) = (diag{k;det Ny (s)/det Dy(s)})
in Eq. (l3a) has the exact transmission zeros as well as the char-
acteristic poles of the original system Go(s).

When the original system Go(s) has a Qigh-degree transfer
function matrix, the reduced-order model Go(s) in Eq. (3a) can
be used. Thus, the designed controller K(s) is low-degree and
the designed system retains a subset of equivalent transmission
zeros of the original system. Note that, even if A(s) and
dst NY(S) in Eq. (13a) have common factors, the A*(s) and det
Ny (s) obtained from the reduced-degree model G*(s) may have no

common factor.

IV. ILLUSTRATIVE EXAMPLES

-Example 1

To illustrate the design procedure, we use Mueller's two-
shaft aircraft gas turbine [28] example. The open-loop transfer
function matrix Go(s) of the example unit-matrix feedback system
is

¢11(8)  ¢1,(s)

1
G (s) = 5= ¢(8) = 3= (14)
° dO(s) 'do(s) ¢21(S) ¢22(S)

where

d(s) s? + 113.22553 + 1357.277s2 + 3502.95s + 2526.85
14.95% + 1506.472s + 2543.2

¢11(8) =

d15(s) = 95150s% + 1132094.7s + 1805947
8, (s) = 85.2s% + 8642.888s + 12268.8
by, (s) = 124000s? + 14925885 + 2525880

Notice that d,(s), the least common denominator polynomial, is
the characteristic polynomial of Go(s), or do(s) = Als). Also,
this system has no finite transmission zeros. McMorran {12}

10




designed a dynamic compensator for this system using Rosenbrock's
inverse Nyquist array method [1ll1]. His design goals are a weakly
coupled system and a fast response. The compensator obtained was

~26.847s (s+20.6) 46.272 (s+1.706) (s+11.6)
_ 1
Ke (8) = 5Ts+158.35)
0.018468s (S+146.3) —-0.00726(s+1.706) (s+101.4)

(15)
Unit-step responses are shown in Figure 1.
The goals of our design are:
(a) Two identical diagonal subsystems decoupled in the
closed-loop system
{(b) Unity final values of unit-step responses
(c) Less than 10 percent maximum overshoot
(d) The time required for the unit-step response to reach

the first peak of the overshoot tp is 0.01 sec.

For this low-order system, use of the reduced-degree model is not
necessary. To simplify the controller in Eg. (8) let ni(s) = 1.
Then K(s) becomes

k

1
$22(8) ~12(8)| | 3 (5] 0
K(s) = adj ¢ (s) K,(s) = K (16a)
~651 () ¢11(s) 0 a—;—fé—)
The designed open-loop system is
klp (s)
dg(s)d, (s) 0
G,(s) =
d (16b)
kzp(s)
0 ———eee e
d (s)d,(s)

where p(s) = det ¢(s) = —625918060(5); ki and di(s) are to be deter-
mined. To circumvent a negative p(s) in the open-loop transfer
function, Gd(s), we apply a unit-matrix controller Ko to ¢(s)

before using the controller K(s) in Eg. (l6a). Our objective is

11




to interchange entries of ¢ (s) from the first column to the second
column such that the modified open-loop system ¢m(s) becomes

$y7(8) ¢y,5(s) b,,(8) ¢,4(s)
°m(s) - O(s)Ko - 11 12 0 1| _ 12 11 (16¢)
¢21(S) ¢22(5) 1 0 ¢22(S) ¢21(5)
Thus, the controller for ¢m(s) is
kq
21(8) =61, (81} 375) 0
Ry(s) = adj ¢_(s)K,(s) = 1 K, (164)
"¢22(S) ¢12(S) 0 dz(s)
and the modified controller for the original system Go(s) is
ki
—¢22(S) $12(s) EITET 0
Km(S) = Koadj ¢m(s)K2(s) = : . (16e)
2
¢21(S) -$y1 (s) 0 3;7;7
The designed open-loop system is
- klp(s) 6259180kl
—— ' 0 —_— 0
d_(s)d; (s) d, (s)
Cam(s) = k,p(s) |~ 6259180k, |(16F)
0 " q_1s7d,(8) 0 &, (=)

To satisfy the first specification, we let kl = k2 = k and dl(s) =
dz(s) = d(s), thereby reducing the multivariable design to a scalar
design problem. 1In other words, we design gd(s) = 6259180k/d(s),

a diagonal entry in de(s), to satisfy other assigned specifications.
To meet the requirement of unit-final value, we choose gd(s) to be
"Type 1"; and to meet the other two conditions, overshoot and the peak
time, we choose a second-order compensator

sats - B |




The characteristic polynomial of the designed closed-loop system is

bgls) = s + cs + 6259180k = s + 2w s + wn2 (17b)

where ¢ = ZEmn'and mnz = 6259180k. The parameters § (the damping

ratio) and Wy (the undamped natural frequency) are to be determined.
From a design rule of thumb [29] we can estimate Wy knowing tp
Tt 00T 300 rad/sec (17c)
P
Also, another rule of thumb [29] gives
z b7
Mp e
or
in M .
$.__P._4in0.1:
3 - 3714 0.75 (174)

Substituting § and Wy into Eq. (17b) we can solve for ¢ and k;
c = 28w = 450
and

k 0.01438 (17e)

The characteristic polynomial Ad(s) and its poles are

by(s) = s + 450s + 90000

and
5, 5 = ~fw, * jwn/1-£2 = =225 + j198.43 (17£)
’

The compensator in Eqg. (l6e) becomes
-1782.98s2-21461.745-36319.33 1368.1552416278.35+25967.5

1
Km‘s’_’ s(s+450)

1.22508s2

+124.2755+176.4116 ~0.21424552-21.661385-36.5684
(18a)

The decoupled closed-loop system is

Y(s) = diag 2 90000 R(s)

s + 450s + 90000

13
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The unit-step responses of the designed system are shown in Fig-
ure 1. The final values of the unit-step responses are unity,

and the maximum percentage overshoot is 1 percent. Also, the peak
time tp is 0.014 sec. Note that the designed system and the orig-
inal system have no finite transmission zeros. Comparing the pro-
posed compensator Km(s) in Eg. (l18a) and that of McMorran in Eq.
(15) we observe that both controllers are second order. However,
our controller satisfies more sophisticated control specifications
than McMorran's. The unit-step response curves show that our
design gives less overshoot and less oscillations and is completely

decoupled.

Example 2.

To illustrate our design procedure using a reduced-order model,
we use a paper-making machine [13] example. The open-loop transfer
function matrix Go(s) of the unit-matrix feedback system is

1 1 ¢11(5) ¢12(S)
So(8) = g7 * (=) = TGy (19)

SALES) g1 (8) 4,,(s)
where
dy(s) =s® + 34.9798s° + 565.584s% + 5016.37s% + 245175152
+ 55613.33s + 12868.37
®11(s) = -9.72727s(s? + 15.39326s + 112.3596)
®1,(s) = 173.386s(s? + 11.44444s + 55.55556)
¢,y (s) = 0.204545(s? + 15.39326s + 112.3596)
®,,(s) = 19.0s(s? + 11.44444s + 55.55556)

Sinha and Rutherford [13] have used Rosenbrock's inverse Nyquist
array technique [11l] to design a controller for this system. The

precontroller to Go(s) is

1 [-15(s+1) s52(s+1.11111)
Kyls) = 5 (20)
0 3.75(s+1.11111)
14
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The unit-step responses of the closed-loop system using Kp(s) are

shown in Figure 2.
In this problem, our design goals are:
(a) The designed closed-loop system must be weakly decoupled
and have two approximately identical diagonal subsystems

(b) The final values of the unit-step responses must be unity

{(c) The tracking error should decay at least as fast as e-IOt.

Go(s) is a high degree transfer-function matrix. To determine a low-
degree controller and to simplify the design procedures, a reduced-
order model will be used. The continued fraction mixed method [18]
and the Routh approximation method [20] may be used to determine the
reduced-order model G;(s). The procedures to apply the mixed method
are as follows: First, the reciprocal polynomial with respect to
dl(s) in Eg. (19) (that is, dl'(s) = %dl(%)) is arranged into the
Routh array ([20] to determine ay. The a; obtained is equal to
0.23139. Thus, the equivalent least common denominator polynomial
as(s) of the G,(s) is

d;(s) = s(s+a;) = s(s+0.23139) (21)

Then, various first dominant quotients (defined as {hi}i,j) of each

entry in Go(s) can be determined by performing the continued fraction

expansion on each L j(s) and do(s) as shown in Eq. (2). These values
’

are
{hl}l'1 = -11.68221
{hl}l'2 = 1.31079
{hl}z'2 = 11.962 (22a)

and the {hl}z'l for s¢,,(s) and d_(s) is

{h = 555.5556 (22b)

1}2,1

A
Substituting the q; value (=a;) in Eq. (21) and each {h;}, j in Egs.
(4

*
(22) into Eg. (4) yields each reduced-order polynomial ¢i j(s). Thus,

15




¢11*(5) ¢12*(5)

G;(s) = E;l_—¢*(s) = d*ll (23) j
) ofs! oSV L oy1% () 0,508 |
! where
' d*(s) = g(s+0.23139)

(o]

617(s) = -0.01981s 857 (s) = 0.0004165
* *

¢12(s) = 0.17653s ¢22(S) = 0.019344s

The unit-step response of Go(s) and G;(sl are shown in Figure 3.

The approximation is excellent. Using Go(s) as a plant and closely
following the procedures used in Example 1, we have the modified “
controller in the form of Egs. (16). The precontroller is

* * —-—
F klnl(s)¢22(s) k2n2(5)¢12(s)
- d, (s) d, (s) !
* *
Km(s) = Koadj ¢m(S)K2(S) = . R (24) |
klnl(s)¢21(s) _ k2n2(5)¢ll(s)
i d, (s) dz(S) J

The designed open-loop system is

[ -kip*(S)ni(S)]
diag —;
d (s) d,(s)

*
de(s)

1,2 (25)

0.0003832(s+0.191868) k;n, (s)
diag (5+0.23139) d,(s) for i

where p*(s) = det ®*(s) = -0.0003832s(s+0.191868) ‘

To simplify the design procedure, we let n;(s) = ny(s) =1
and to meet the first design goal we let k1 = k2 = k and dl(s)
dz(s) = d(s). Thus, we have a single open-loop transfer function

.
’

_ 0.0003832(s+0.191868)k
9gq(s) = (s+0.23139) d(s) (26)

16




From basic root-locus theory [30], we observe that there exists a

nearby open-loop pole, (po = -0.23139) and zero, (zo = -0,191868),
in gd(s). When gain k is increased, a pole of the closed-loop
system will migrate from Po to z, which is a closed-loop zero

also. Thus, the performance of the closed-loop system is heavily
dependent on the zeros of d(s). To satisfy the third specification
we choose d(s) = s+10 such that the tracking error of the designed
system will decay at least as fast as e710%,  The choice of gain k
is a design freedom which can ensure less influence of the nearby
Po and z,- In this example, we choose k = 40. The overall com-

pensator in Eg. (24) becomes

0.77376s 7.06125]

, -
K _(s) = =5 [ (27a)
m s+10 | 4.016667 0.7924s

Finally, to achieve the second design goal we add a forward-gain
matrix H as shown in Figure 4. The H is

gd (O) -1
W 0 787.786 (1]
H = = (27b)
0 9g(°) ;

The unit-step responses of the closed-loop designed systems using
the comgensators K;(s) and H in Egs. (27) and the reduced-order
model Go(s) in Eq. (23) are shown in Figure 2. Also, the unit-
step responses of the closed-loop systems using the same compen-

sators in Egs. (27) and the original system Go(s) in Eq. (19) are
shown in the same figure. The response curves show that the
designed system has less overshoot, is less oscillatory, and is
nearly completely decoupled. The discrepancy between the response
curves of the closed-loop designed systems using Go(s) and G;(s)
appecars in the transient regions. This is the result of the model
reduction method used. Both curves are seen to be practically
decoupled and unit-final values in the steady-state.
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V. CONCLUSION

A simple design technique has been given for the design
of multivariable control systems. The designed system retains
some or all of the invariant transmission zeros of the original
system. When the given multivariable control system has a high-
degree denominator and high-degree numerator, various mixed
methods have been illustrated for determining reduced-order models.
By using the obtained reduced-degree model as a reference model,
the design procedures are greatly simplified, and a satisfactory
low-degree compensator has been designed. The design technique
is simple and quite satisfactory as shown in the two illustrative
examples. However, when a multivariable control system has a
large number of inputs and outputs, the degree of the controller
obtained by our method may be large despite using a reduced-order
model. When the resulting controller dimension is large, model
reduction methods may be utilized to reduce the controller to
an acceptable order. Our method is suitable for multivariable
systems which have high-degree least common denominator polynomial
and low-degree numerator polynomials. Another advantage of our
modified method over the original direct-decoupling method is
that, for an open-loop stable multivariable system, our method
gives a simple, practical and realizable controller without using
the unstable pole-zero cancellation approach.
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Chapter | Sl
Some Propertics and Applications of a New Matrix Sturm Sericus
and a New Block Canonical Form of a Matrix Transfer Function
1
L. S. Shieh and A. Tajvari
Department of Electrical Engineering
University of Houston
Houston, Texas 77004
ABSTRACT
An algebraic method is developed to construct a new matrix Sturm series
and to establish a new block canonical form of a matrix transfer function.
1 The matrix Sturm sequence is then used to determine the number of real poles
f of a4 matrix transfer function that may not consist of a pair of relatively
3

prime matrix polynomials, and it can be used to determine whether an imped-

ance natrix can be realized by using RC elements. The block canonical form

is usced to construct a new block state cquation in the block tridiagonal

form and to obtain a pair of relatively left prime matrix polynomials of a

matrix transfer function.




L. Int roduction

The matrix translfer function T(s) of a multivariable system with an mxl

input vector R{s) and an mxl output vector y(s) is written as

y(s) = T(s) R(s) (1a)
and

T(s) = Dl(s)—lbz(s) (1b)
where

b (s) = Al+lsn+A sn_1+...+Azs+A1 = Dlls“+Dlzs““1+ Dy S

D, (s) = ann—1+Bn~1sn—2+...+B2s+B1 = 1)21s"’]+[)225“'2+...+Dz,n_1s+02’n

Ai(=bl,j) and Bi(=n2,j) are mxm matrix coefficients.
ln a single-input single-output system, the T(s) in Eq. (1) can be ob-
served as a scalar transfer function or a driving-point impedance function.
The 1(s) can be formulated into a sequence of polynomials (Sturm sequence)
to determine the common polynomial between Dl(s) and DZ(S) and the number of
re-l poles of T(s) by using Sturm's thcorem.1 When no common polynomial be-
tws o Dl(s) and Dz(s) exists, the T(s) is a function that consists of two
relatively prime polynomials, and the dynamie state equation constructed
using, Ul(s) and Dz(s) is completely controllable and obscervable, This im-
plics that the dynamic state equation is a minimal realization of T(s). An

cxcellent survey on the applications of the Sturm thecorem can be found in

i
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Barnett and Siljak's work.
; 3 L

Recently Bitmead and Anderson” have developed the matrix Cauchy theorem
and a matrix Sturm series for multivariable systems, and they have discussed
their applications to circuit theory. In this paper, an alternatec matrix
Sturm sericvs is developed and a block canonical form of a matrix transfer
function is also derived. Some properties and applications of the developed
Sturm series and canonical form to the analyses of multivariable systems are

discussed.

II. A MaLrix Sturm Series

The T(s) in Eq. (1) is a real rational matrix with left matrix fraction
decomposition Dl(s)_lbz(s). 1f Dz(s) is non singular, the inversion of T(s)

is expressced as

1 1 1

T(s) = = DZ(S)_ D, (s) = sKl+Dz(s)_ D,(s) (2a)
or

D (s) = D, (s)sK +D4(s) (2b)
where

K, = L ”2(”)_|”1(“) as §r®

an e nonsingular matrix quotient

and

T I SRR



H

03(5)

v n-j
= ) D, s
=1

i

The left remainder of Dl(s)

Dz(s) and ”l(s) have the same degree of (n-1).

inversion of DZ(S)—1D3(S) in Eq. (2a) becomes

DB(s)_luz(s) = u.+1)3(s)'1

) Da(s)

or
D.(s) = b (s)H--p (syn] !
3 277072 4 2
where
H, =D (s)“JD (s) as s>
2 3 2
= an mxm nonsingular matrix quotient
and

The matrix polynomial in s with degree (n-1)

1f D3(s) is nonsingular, the

(2¢)

(2d)

b,(s) = The matrix polynomial in s with degree (n-2)
s

n—1 .
LY, i

L hy

i1

Substituting Eq. (2d) into Lq. (2b) gives

i o 2




4

D.(s) = 0, (s)(sK +u‘l D) (-)u'1 .

() = Dy () (8K +1, =D, ()1, (2¢)

= D, (s)Q, ()-D, ()M
2 1 4 2
{
where

Q(s)=sK+u"l

1 12

[n the same fashion, we can use DZ(S) with degree of (n-1), and DA(S) with

degree of (n-2), to gencrate another wmatrix polynomial D6(s) as

b, () DA(S)QB(S)—Db(s)HZl (2£)
where

Q}(s) = sK.+Hi,

In general we have

-1 . .
b (s) = Do {500y, (s)-0, ) (SIH, L, i=0,2,h,...,2n-2 (3)

02n+2 (5) = Om

whoere

Dy () a b ()

. -1 o .
(s) = sK 4000, i=0,2,4,...,20=2

Qi1
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Om is an m<m null matrix. The matrix coefficients of the matrix polynomial

Di(s) are delined as l)i T j=1,2,... . The procedure to evaluate the
’

' matrix coefficients D, ., can be easily accomplished by using the newly de-

*
veloped block Routh array with block Routh algorithm that is different from

4 . .
the matrix Routh array with matrix Routh algorithm developed for expanding
»

matrix continued fractions.

The block Routh array is listed as follows.

SN

E
?




ctomug ﬁ.H+cNa 1tug T14uC

a -9
= CNx
Z-ug 7f1-uz,. Tfg-ug 1°ug

H a- ¢f m a
Z-u ‘u
< No 1 ND
.H'
- ~ur * —-uz alolCl- 4 -u7 ~ur
A T°1 T~ 1°¢ AQH 1 Hma =1 iy
-urs
v = [4 nm\
Co_u7 72U
¢ < ‘q ¢ No
b €C t t 7C &
cer PEESqlEYq . U9 102 = 9%
v v
C C +
N A PR X P €48742%q _ Tq 17,19 - Sy
v v 1-
MHHHHVV 5180 . ¥y
.ﬂ..l
- - - -
S O L T S A 2,202 - T7g
v v
- - - R L
e TS T T 122, 2l | g o 1% - &y
v v) I-
R pm\\\
ﬁ|
-u u r
e T muNND muAcD |/
1T ic, _ 1
\ Dﬁlo = '3
u < u
<uc~c 1+ v = ﬂaa




The procedure to construct the block Routh array

is described as follows.

Enter the matrix coefficients of Dl(s) and of DZ(S) respectively as row

I and row 2, and evaluate in succession by using the block Routh algorithm

(to be shown) to obtain row 3 from rows 1 and 2, and row 4 from rows 2 and

3.

Then rows 2 and 4 are used to generate row 5, also the rows 4 and 5 are

used to generate row 6. The above processes to generate row 4 [rom rows 2

and 3, and row 5 from rows 2

row (2n+l).

(i)

(ii)

From the block Routh array we can construct a sequence of matrix polynomials

b,(s), i = 0,1,2,..., and we shall gshow that the matrix sequence
i

The block Routh

K1 = ”2]“11' rank l)21 =m
“3,1 = D],j+1°“2,j+1K1’ i
}12 = D'—Hl)Zl’ rank l),“ =m
Vi T Vo017, M ]
K _— . rank D, :
i+l i+2,1 0,1 i+2,1
Vv T “i,j+1_ni+2,j+lki+l
H ST rank D
i+2 i+3,1 i+2,1° i+3, 1
Wivai = Pie, 01 Vi, g4 i
Do 7 %

algorithms is

and 4 arc repeated and continued to the last

e 2n-2

(4b)




{n“(s),DD(S),UA(S),...,U _z(s)} is a matrix Sturm series of T(s).

Zn
The matrix series in Eq. (3) can be modified and expressed in the form

L . . 3
of a matrix Sturm series developed by Bitmead and Anderson” as:

DL(S) = ui+2(s)qi+l(s)—ui+6(s), i=0,2,4,...,20-2 (5a)
I)Zl\+2(5) = Om
where
):‘< . - . - RN
[U(S) Do(s) l)1 's)
ot E
UZ(S) = Uz(s) %
b3 k -1
)= s = 2,3,...
nAk(s) UAk(s)(izl “Aj—zl s k = 1,2
b » k -1
)= 5 = 3,0, 1
Dy () DAk+2(s)1jL] “43] , k=1,2,3, (5b)
and
0, (s) = Q (s)
i 1 1
.i
; Q;(s) = 1,0, (%)
; g k k -1
. = & { = 929';9-..
Qg ) li!l HAJIQ&k+I(s)liE] “Aj-zl , k=1
3 . k ) k"l —l
| S s = 2,9, ..
Dy )~ L ”a;-)lQAk—l(“)',” HA]| . k 3,
,' [ il
-l . 9 . .
o = uk . = ) 4 e, _l . .
(\)l+|(v) I’I\l‘,"[’“l‘f‘z’ i ()’ Sy, 2n ()()
For cxample, when i = 4 in Bq. (5a), we have




|
|
|
I
l
!
!
I

9

w kS hi k3

“4(5) = Dﬁ(s)QS(s)—D8(s) (ba)
From Eqs. (5b) and (5¢) we have

b () = b, (s)H] !

4% AN

Do (s) = D (s)H L

6 %7 T VgiSlHy,

bo(s) = b () 7t (6b)

g ol T Vgtsitg By
and

Qe (s) = 1,Q (s)l2} (6c)

() = H,Q ()l ¢

Substituting Egqs. (6b) and (6¢) into Eq. (6a) and simplifying it yields

ua(s)u;1 = [D6(S)HZI][HAQS(S)HEI]—DB(S)H;lH;l (6d)
or
D,(s) = b (s)Q.(s)-D (s)n_L (6e)
4 6 5 8 6
Fqg o (be) is one of the matrix equations in Eq. (3). When i = 6, we have
H:(s) D;(H)Qj(u)—UTO(S) (61)

K E3
Substituting the corresponding Di(s) and Qi(s) in Eq. (5) into Eq. (6f) we




—

-

10
have
-1 -1 -1 -1 -1 -1
"6(“)"4 = 1u8(s)u6 i, llH2H6Q7(b)”4 ]-Dlo(s)Hg H, (by)
or
N - . Ny -1
D6(s) = D8(s)Q7(b) Dlo(S)H8 (6h)

Again, Eq. (0h) is a matrix equation in Eq. (3).
*
From Lgs. (5) and (6) we observe that each matrix polynomial Di(s) in
* *
the sequence of real matrix polynomials {Do(s), DZ(S)’ ceny Dzn_z(s)} in
Fq. (9) is different from the Di(s) in {DO(S)’DZ(S)""’DZn—Z(S)} in Eq. (3)
by various weighting constant matrices shown in Eq. (5b). Furthermore, both
B *

s) and O, (s) are matri ials, « 8) ¢ ;) are non-
Qj( ) and gi(s) ire matrix polynomials, and Di+2(s) ind Di+2(s) ire non
singular matrix polynomials with degree [det Di+&(s)] = degree [det Di+4(s)]
< degree [det D¥+2(s)] = degree [det Di+2(s)]. Using Bitmead and Anderson's

3 . .
theorem,” we can conclude that the scequence of real matrix polynomials

. ES %
{Do(s).Uz(H),...,D,l_z(s)} as well as the sequence {DO(S).DZ(S),...,D

21 Zn—Z(S)}

is a matrix Sturm sequence.

(1. vistribution of Real Roots

Lt is well known that the scalar Sturm sequence is often usced to deter-
mive the nunber of real roots of a scalar polynomial on the real axis in the

. 3 e .

complex plance. Bitmead and Anderson ™ have extended the scalar Sturm theorem
to the matrix Sturm theorem.  Since the matrix sequence {DO(S),DZ(S),----
l),)I ?(s)} in Lg. (3) is a matrix Sturm sequence, the matrix Sturm theorem
2n=2

can be appliced to determine the number of real poles of a matrix transfer
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function or a real roots of a matrix polynomial. A simple criterion using
the block quotients Ki and H,L in Eq. (4) is developed to determine the
. . . . . 6 Lo .
realization of an impedance matrix of RC networks. The matrix Cauchy in-
3 . : A . L .
dex™ of g symmetric real rational matrix T(s) with T (s) exists and

det T(0) # 0 can be written as

b, ] _ b o i -] . b % ) -1 * . b, * -] * ‘
lnl(b) = Au[Do(b) Dz(b)}+Aa[D2(b) Da(s)]+...+Aa[DZH_2(s) Dzn(s)]
b -1 b -1 -1 b A1 -1
= 0,0 (s) D, () 144 1D, (8) "D, ()H, T +A [HD, (s) D, ()M, 7]
+ Ab[H > (s)D oy st (7a)
a 4 6 v 8 = 6 2 e
o
where :
b b ~1 % ] . ) |
Aalni(s) Di+2(s)l = b[”(li(b))"u(ri(a))] ~

Half the total changes of signature of Ti(s) over

9 . . R -
o(T) is defined as the signature” of a matrix T and o(T) = dim V ~dim V

+ . : . .
where dim Vo is the largest possible dimension of any subspace on which T
is positive definite and dim V. is the largest dimension of any subspace on
whtich T is negative definite.
! . . .
The 10 T(s) in Lg. (7) can be expressed in terms of Ki and ”i obtainced
a
» >'( .
in hg. (4) as follows, Letting a = —wand b = « and substituting Di(s) in

Fa.o (9) intoe Eg. (7)) we have

gy .o =1 Y| coo-10-1 -1.-1
I“ I'(s) = u(kl) +U(H2k3) +u(H4|\5n2 ) +o(n2H6K7n4 ) G
2q—l -1
= ) (1(Mi ) (8a)




where
N =
.I] i\l
M} = llzl\,}
2 '] -1
Mysr = .l ”a;lhaa+1(_“ 143~2] R ¢ =1,2,3,
j=1 =1
L 2-1 -1
M =[un H, ,IK L "), L = 2,3,
S B ERE
when a = -« and b=0, we have
b 1 =1 -1, 1 * =1 -1
. = ~- 4 4 + - ’
Ln T(s) 2[o(l\l) +o(kl) ] 2[o(H2K3) +u(u2k3) ]
1 =1-1 -1,-1
+ 5lo(H,KH,0) o (H,KH, )7 I+
1 Zq—l i 2n-1 .
=5 { } o(M, ") + > Q(Mi )]
i=1,3,5, 1 i=1,13,5,
where
Hl = l\] = ”'_’,nn],n+l
woo ok =m0
37 M0 T T a1 2,
M* = | ;)l i 'K* [ ]QI H ]—l ¢ =1,2,3
4941 . 43" heHlt 43-2 ’ Syl
J=1 i=1
3 4 ¥ 2—} _]
Mooy ™ l.u ”Aj-ZIKAQ—]l,” Hajl . g = 2,3,
J=1 j=1
K1 -1 '
, =0 b s _ 3’ n-
Kyiat = Pagieny, -0 20, (1= D) i=1,2,3,...,001

M. are shown in Lq. (8b). When a=0 and b=, we have
i

(8b)
%_, 1
5
(8¢) 11
1
%
3

(8d)

il S A e g 0 s, s
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b ! ! =1 1 -1 * -1
1 T(s) = - K -0 (K - -
o T = lo(Ky) oo )) ]+ 5 1o (H, K ) o(HK.) )
1 ~-1,-1 * -1 =1
+ - ‘ -
2[0(H4k5H2 ) °(H4K5“2 ) 1+...
2n-1 2n-1
1 . -1 L.
-, o) - § a0t ) (8¢)
i=1,1,5, i=1,3,5,
M, and Mz are shown in Eqs. (8b) and (8d). é
The Cauchy Indices I: T(s) in Eq. (8) indicate the number by real poles j

*
of T¢(s) in (a,b). When 2r mxm block quotients Ki and Kj are obtained in the

block Routh array (that is cunstructed using an nth degree T(s) with T—l(s)
exists and det T(0) # 0) and the Cauchy index in Eq. (8¢) equals to rm (where
r-u), then T(s) is asymptotically stable and the multivariable system is an

S 7. . -1 .
aperiodic system. Furthermore, if all Di+ (s) Di(s) are symmetric real ]

2

rational matrices of an aperiodic system, then T(s) is relizable as the im-

pedance of an m-port RC nctwurk.3 This implies that, when r matrices Q:(s)
in Bq. (5¢) are symmetric and the Cauchy index in Eq. (8c¢) is equal to rm,
T{s) can be synthesized using RC elements.

When the number of distinct real roots of det Dl(s) is of interest, a
matrix polynomial 1)2(5)([-\-= d[Dl(s)J/ds) is constructed. By using '1“(5)=D1(s)_1

Uz(s) and the above procedures, the number of distinct real roots of det Dl(s)

in (a,b) can be determined.

A Block Canouical Form

When the total number (2rv) of the block quotients Ki and “i in Eq. (4)
equals to 2o, where nois the depree of Hl(s) in the real rational matrix
transfer function T(s) (= D](s)—]Dz(s)), the left matrix fraction decomposi-
tion Dl(s)_lnz(s) in Eq. (1) consists of left coprime matrix polynomials?

which may contain non-symmetric matrix coefficients. The T(s) can be for-

FCUUPPRF e CF . el e e e s S M s a5



mulated into a block canonical form as follows.

From Eq. (3) we have

1

uz(s>”‘nl(s) Q ()=, (5)” DA(S)HEL

Dh(s)—lDz(S) 1

Q(s)-D, ()™ Db(s)Hzl

It

-1 -1 -1
DG(S) DA(S) QS(S)—Db(s) DB(S)“ﬁ

- Q2n—1(s)

2n

Successively substituting Eq. (9) into T(s) yields

wi

Eq.

T(s) = Dl(s)_lDZ(s) . [nz(s)‘lol(s)J"l

) lql(S)'Uz(s)']na(s)ugl]'l
N [Q](S)-IDA(S)—XUZ(S)]_lﬁglj-l
- 10,()-10,- 10, () o, 17Ny
-1, -1 -1 <1.=1 =1.-1 -1.-1
= {Q[(S)‘\QB(S)—‘QS(S)-‘...-[an_l(s)) Hzn'--] H6 | “4 : “2 :
)
re
Qg (9 = SK ML i=0,2,4,...

(10) is a block canonical form of T(s). The corresponding block diagram
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is shown in VFig.

gram can be written as

z = G2 + bBr

15

I aud the bluck state equation obtained from the block dia-

! y = Fz an
)
where
e -1 . -1 . ,
_(an—IHZn) (LZn—3“2n-2) : Om 0m Om 0m i
=1 ) -1 ;
I\Zn—l “2n—3“2u-2) : ()m Om om 0m 1
-1
0 K . .
m 2n-3 Om 0m 0m 0m
G = . . . . .
0 0 SR SN 'O T M 0
m m ' 78 76 m m
- - - - = = - - - — —
-1 -1 . -1
Um Om Ky (KGR (KyH,) Om
I ‘ -1 4
O On On | K | TKg) T (Kl
'— _— e~
1 -1 e -1
0 0 0 | 0 Ky |~ (K Hy)
1 T T |
7 [zl,zz,....znl
o
b= N URPRRNIN
! _ -1
! IOm’()m""'()m’Kl ]
The T in Fq. (1) desipgnates lrnnspusv.zi are mx] vectors, r is an mxl input

vector and vy is oan wm<l output vector,

block elements constructed by using K, and Hi.
i

G is a block tridiagonal matrix with




!
]
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~mw.: 4
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3
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g-u, | I- :
9
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P N: k

¢ 7

-

A




17

An alternate block state equation that can be directly written from

T(s) in Eq. (1) with b, . =1 is
11 m

X = Ax + Br

y = (Cx, X(U) = ()nmxl (12)
whore
B 7] ™ h § ]
) . -D
“n 0m 0m l1,n+1 DZI x1
I % o % Py P22 *2
A0 Ta o % Py B Py | =g
0m 0m ) 1m _DI,Z D2,n *a
- . - - _ J

C=10, 0, . 0, I]
m m m m

0 el is an nmxl null vector and Im is an mxm identity matrix. x, are mx ]
nim>

vectors.  The block state equation in Eg. (12) is an observable block Com-

panion form. [t is intceresting to notice that the block lincar transforma-

tivn matrix between the block coordinates z in Eq. (11) and x in Eq. (12)

i be directly written from the block Routh array in Eq. (4) as




Substituting Eq. (13) into Eq. (11) and comparing the respective system ma-

input vector aud output vector of Egs. (11) and (12), we have

[}

(14a)
(14b)

(l4c)

When the total number (2r) of the block quotients Ki and “i is equal to 2n,

(11) and (12) are the minimal realizations

the block state equations in kgs.

When 2r-2n, 'T(s)

(1) that does not consist of coprime matrix

pol-nomials can be written as:

i

”1(5)—|“2(S) s s

O EIEOTNEY

i

_]) > r
3 s) = s +...+
lz(s) [lllq +




where

ki

[

C(s) . HC and

C(s) is a common matrix polynomial and Pl(s) and PZ(S) are left coprime.

The €(s) can be constructed from the matrix coelficients in the last non-

vanishing row in the block Routh array. The matrix coefficients P, |, in
’
Eq. (15) can be determined as follows: From Eq. (15) we have f
[ Dl(S) = C(s)Pl(s) (16a)
i
‘ or E
o
- n n-| n-r n-r-1|
’ s +b .8 4., 4D = ¥ 5 +C S +C x
- U118 ¥ Lot~ rior n-r- 1]
§ (b sT+p s" e 40 ]
, 11 12 L,vtl

Kquating the matrix coefficients of the successive power of s we thus re-

quire

¥

C i
ntl-r 11

- ¢ YO
12 n+l~r[12 (n—rlll
= { 4 B L X Y
137 St s e 2 e e Y
(l6b)

i« is not singular, the P can be determined. Also, the P, .| can

nti-r it

be obtained in succession by bBq. (l16b). In the same fashion, Pz | can be
*

— wems GENN U WNE O e
=
=
u
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determined by comparing the matrix coctificients of the following matrix cq-

uat ion:

nz(s) = C(S)Pz(s) (16¢)
or
-1 n-2 n-r n-r-1
) +D, s SR = [C 5 : s . HC
lZI Uzzq Dz,n | nbl-rS +(,n_rs + +cl] P
, r-1,,  r=2
(lzls +1225 + +P2,r]

{t is noticed that the block linear transformation matrix R in Eq. (13) can

be constructed using the block elements in the new block Routh array that is
generated from T(s) = P](s)-le(s) with Pll = ]m but not from those in the

block Routh array generated from T{s) = Dl(s)-lDz(s). It is also noted that,
R is an upper block triangular matrix, the inversion of R can be obtained by
an iterative method. For example, the inversion of an 3mx3m matrix R3,
which is obtained by partitioning the R in Eq. (13), is required. The pro-

| ~1
duct of R, and R, is written as

3 3
[~ aAr - ] B ]
) )
Per Paz Vo3 Do x Y T %n Un
R KD 0 ! D 0 ! 0 1 0
N \ = =
33 m )bl 22 m 41 2 m m m
0 0 . 0 0 o} 0 o 1 (17a)
m m 21 m m 21 m m m
L Ju ) - n

x,y amd 7z are unknown block clements to be determiued,  Expanding Eq. (15)

and solving the resulting matrix cquations gives

o ma—

S
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b x+D 1)"l =) »Xx = 'D D, - (17b)
0l 42741 m (1 42741
b 24D D =0 >z =-0tp pI! (17¢)
41 22721 m 41 22 21
) y+D /+D _1 = 0 »y = [D lD D 1+D D 1] (174d)
61 23 21 m 42 Al 22721 2321

Thus, we can determine R; .
When Pl(s) and Pz(s) are relatively prime, the characteristic poles of
this multivariable system T(s) are the zeros of det Pl(s) but not det Dl(s),

and the transmission zeros of T{s) are the zeros of det PZ(S) but not

det UZ(S)'

V. An [llustrative Example

Given: A matrix transfer function of a multivariable system as
v(s) = T(s)R(s) (18)

where

T(s) = nl<s>‘1n2<s) = [e)P ()17 C(s)P, (8]

3 2 ~1 2
D+ ; s+ 8 s+
[”11“ Ulzb +n]35 ”141 [Dzls +022s+123]

<l 4] ; (lhh 7l> 9 ( 383 ]9]) (32 42
- s+ s+ s + > x
0 1 ) 70 37 472 214 40 52
< 1 -2 ) 19 135 54 H2
AN SRR G
-2 5 ¥ 16 68 64

with n = 3 and m = 2.
Determine:
(i) The number of real poles of T(s).

i
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(ii) The realizability of T(s) using an m-port RC-network.
(iii) The common matrix polynomial C(s). i
(iv) The minimal realization of T(s).
(v) A pair of left coprime matrix polynomials Pl(s) and Pz(s).

(vi) The characteristic poles and transmission zceros of this multi-
variable system.

To solve above problems we construct the block Routh array as

< 1 0 166 71 ( 383 191) < 32 42
D = D = D = D =
o\ 12 70 37 13\ 472 214 14\ 40 s2

1)22 =

) ()
) e () e (2
) ()
(

D =

(10 4 22 10
b = .
41 42 42

<Z/o 22 )
b, = D, =
L\ 10 2

28 12

54 52 )
68 64

0 0
D (19a)
i 0 ()
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( 5 2 ) e ( 1 0
K.o=Dbh D = , H, =D, =
1 211 1 2 31721 0 1
< 2.5 -0 -1 0.6 -0.2
K, =D, D, = y H, = D_,D =
. L2l ~6 145 b AL\ g2 0.4
Because D =0 the block Routh array terminates prematurely, and we have

61

2r (r=2<n=4)=4 block quotients,

2!

From the array we can also determine

. . ((L& 0.2 . r <’2 1
K. =D D, ,6 = R K,=D,.D, . = (19b)
1 2314 0.2 0.6 3 42723 13
Substituting Ki’ Kz and Hi into Eq. (8c) yields
0 1 LR *-1 -1 -1
= + + = .
L 21o(n1 )+u(n3 ) o(Ml ) o(m3 Y] = 4 (19¢)

where

0.4 0.2 N N <’ 2 1 )
M, = K, = , M, = H K =
‘ ! 0.2 0.6 3 23 1 3
( 5 2 ) 2.5 -6
M, =K = , M, = HK, =
L1 s 323 -6 14.5

(19¢) we conclude that T(s) has four negative rcal poles in (-«,0).

To determine the realizability of T(s) using passive RC network, we

have to test whether T(s)

in Eq. (18) is a symmetric matrix. This can be

% *
casily accomplished by checking the matrices Ql(s) and Q3(S) in Eq. (5¢)

using Ki and Hi in Eq. (19a) as follows:

o sl
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s O 5 2 1 0
Q) = K hl T = s ) +
2 ) 0 1

. -1 2.5 -6 ( 2 1
Q,(s) = H.(sK.+H ') = s < + (194d)
} 23k -6 1&5) ] 3)

Both Qt(s) and Qj(s) are symmetric, therefore T(s) is symmetric. Because
the number of the Cauchy index in Eq. (19¢) equals to rm (=4) and T(s) is
symmetric, T(s) can be synthesized using passive RC elemeats.

Since the block Routh array in Eq. (19a) terminates prematurely, we

can write the C(s) in Eq. (18) as

2 22 54 52 1 0 1 3\ 24
Cls) = C_ s+C., = s+ )=( ) s+
1 10 10 68 64 0 1 2 2 N0

(19¢)

To determine the minimal realization of T(s), we construct the block

state equat fon in kg, (11) using the K_L and Hj in Eq. (19a) as

N
|

= Gz + Er (191)
y = Fz
whoere
o -1 (140 58 1 -2
(K1) (K1) “\130 5A) (-2 5)
G = =
-1 - 58 24y (1 - )
Ry - (k) (24 10 (-2 5

22

10

)
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Eq. (19f) is the minimal realization ol T(s).

The left coprime matrix polynomials Pl(s) and PZ(S) can be obtained

from Eq. (16). The C(s) is modified to ensure that Pll = 12 as follows
-1 ( 1 0 > ( 1 3 )
C(s) = 1. s+C_C_, = s+ (19g)
2 52751 0 1 2 2

The required Pl(s) and PZ(S) are

1 0 2 165 68 14 18
Pl(s) = > s+ s+ ( ) (19h)
0 1 68 35 6 8

and

1 -2 24 22
Pz(s) =< ) s+ ( ) (191)
=2 5 10 10

Note that the matrix coefficients in Pl(s) and PZ(S) are not all symmetric
but T(s) = P](s)_]Pz(s) is a symmetric matrix.

The characteristic poles of this multivariable system are the zeros of

dot Pl(s) = 0, or

S| = -0.027139, 5, = ~0.127864, 84 = ~-5.88774 and 5, = ~193.957.

Th, transmission zeros of this multivariable system are the zeros of

det V?(S) =0, or

s, = -0.10315 and s, = ~193.89685 .
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Vi. Conclusion

‘ An algebraic method has been developed for constructing a matrix Sturm

series and for establishing a block canonical form of a matrix transfer

! I function. A simple aud effective block Routh algorithm has been developed
to coustruct the block Routh array and the block quotients. The block quo-

l tients have been used to determine the number of real roots of a matrix i ]
polynomial, and to determine the realization of a driving-point RC impedance i
matrix. The minimal realizations of a matrix transfer function have been
formulated to the block state equations in the block tridiagonal form and ;

in the obscrvable block companion form, As a result, a pair of left coprime

matrix polynomials can be obtaind, and the characteristic poles as well as

the transmission zeros of a multivariable system can be determined.

-
i
i i
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CHAPTER V

CONCLUSION

The dominant-data matching method for analog pitch control system design

has been successfully extended to design digital controller for the semi-
active terminal homing missile system. Various digital filters have been
designed and successfully tested in the 6 Degree-of-Freedom Terminal Homing
Simulation Program at the MIRADCOM Laboratories.

The developed direct-decoupling method has been successfully applied
to design an analog multivariable gas turbine system and a multivariable
paper making machine. It is believed that this method can be further ex-
tended to digital redesign of the coupled row and yaw control system of the
semi-active terminal homing missile system.

The properties of the newly developed Sturm series and block canonical
form have been discussed. It is believed that the block canonical form
can be further extended to synthesizing a multi-port network function with-
out using integrators.

Other new findings of this research are reported in the appendix.
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Abstract—A recursive algorithm is developed for solving the inverse Laplace transform. linear and

i state equations using block-pulse functions. The relationships between the solution of the
continuous-time state equation using block-pulse functions and that of the cquivalent discrete-time state
equation using trapezoidal rule are investigated. A complete computer program is presented for solving the
differential equations of linear and nonlinear state equations using block-pulse functions.

1. INTRODUCTION
An accurate description of a practical system (for example. a semiactive terminal homing
missile system([1]) often results in a high order transfer function with very large coefficients
and/or a high order linear and nonlinear time-invariant and/or time-varying state equation for
which the commonly used numerical integration methods (e.g. the Runge-Kutta method[2])
may fail to determine the time response. Recently, an alternate method[3] that uses the
block-pulse functions has been developed for solving the linear time-invariant state equations.
In this paper, the method due to Shieh([3] and others is reviewed and extended to solve the
inverse Laplace transform, linear and nonlinear state equations. Also, the relationships between
the solution of the continuous-time state equations using block-pulse functions and that of the
equivalent discrete-time state equations using the trapezoidal rule[3. 4] are further investigated.
A complete computer program based on the proposed method is presented to solve the inverse
Laplace transform, linear and nonlinear state equations using block-pulse functions. Several
illustrative numerical examples are included to demonstrate the superiority of the new method.

2. MAIN RESULTS
Consider a linear time-invariant state equation

()= Ax(t)+ Bu(t) (1a)

X(o)': Xo “b)

where A is an n x n system matrix, B is an n X r input matrix, x(t) is a state vector of n
components, u(t) is a vector of r input functions, and x(0) is the initial state vector. The
piecewise-constant solution of (1) can be obtained by using the block-pulse functions ¢;(¢) for
j=1,2,...,m. Each block-pulse function ¢;(t) is defined by ¢(t)=1 for (j-1)T =t <|T,
‘ and ¢;(1) = 0 for other cases. The term T is a time increment o1 a sampling period, and m is the

number of the discrete-time solutions of interest. The block-pulse functions ¢;(¢) for j=
1.2.3.4 are shown in Fig. 1.
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! tl 1/4 fey dt
—e——ot t
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t —t et ; 5
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0 3/4 0 34

Fig. §. The block-pulse functions and their integrations

The piecewise-constant solution and the discrete-time solution of (1) in the interval
{j DT <1< T are defined as the column vector C, and the x*(jT). respectively. The C; and
A*(jT) can be determined from the recursive algorithms shown in the following steps:

Step 1. Approximate the input vector u(f) that has r input functions using the trapezoidal
rule. The columns vectors L, in the r x m matrix L =L, Ls...., La] that is the approximate
input functions are

L~ S uGT + ai- DTH for j=1.2....m )

= average value of u(f) over the interval (j - DT <1 = jT.

Step 2. Fyaluate an n x m matrix K = [K,. K. ... K..]. The column vectors K, are
K =Ad®+BL, for j=12.....m (3)
Step X, Determine an n x m matrix D=[Dy. D.. ... D, ). The column vectors D are:
1 .
l)l:TRII\I (43)
D,=(I,,+R3)D,-.+lTR,(K,~K, ) for j=23.....m (4b)
where
(L ta) = r(n-tar) 4
R.-(Tl"-iA) =7(t-34 (4c)
R} = R;4
I, = an n x n identity matrix.

Step 4. Ohtain the n x m required piecewise-constant solution matrix

C=[Ci.Cn.... C..). The column vectors C; are

(‘| = ‘E D| + ‘(0) (Sa)
= T j=2.3 sb

(i_CI'+—2_(DiI+Di) for J= e b m. (5b)

The required piecewise-constant solution of (1) is

x(N=Cdod
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where ¢ = (¢, b2, ..., dn]. The prime designates the transpose, and the ¢, is a block-pulse
function.

Step 5. Determine the required approximate discrete-time solution x*(f) using the reversed
process of the trapezoidal rule. The required solution x*(r) at discrete-time t = (j+ )T is

MG+ DT =-x*(GT)+2CWj+ DT) for j=0.1.2,....m-1
where
x*0)=x{0) and C((j+1)T)=C,.,. (6)

The expression x*(jT) is the approximate discrete-time solution of the x(r) in (1). The
accuracy of the approximation depends heavily upon the chosen sampling period T. A complete
computer program, based on the algorithms in (2)-(6) is presented in this paper to obtain the
solution x*(§T) in (6).

Because the trapezoidal rule is applied to approximate the input function in (2), it is
interesting to investigate the relationships between the solution of the continuous-time state
equation using block-pulse functions and that of an equivalent discrete-time state equation
using the trapezoidal rule[4. 5).

When u(t)=0 in (1), Shieh et al.[3] have shown that the equivalent discrete-time state
equation of the continuous-time state equation in (1) is

X*((j+ DT) = Gx*(jT) (Ta)
x*0) = x,
where
l -1
G=l,,+R3=I,,+(l,,—§AT) AT (b)
=(I+1AT)(I—1AT)4=(I —lAT)l(l+1AT) (T
n 2 n 2 n 2 n 2 - (')

The discrete-time solution of (7) is
x*(jTy=G'x(0) for j=0.1.2... ®)

In this paper. the derivation is extended to a more general case (Shieh et al.[3]). that is. u(t) # 0.
To simplify the expression, the T in the following discrete-time state equations and difference
equations is dropped. Also. the vectars L; are expressed by L(j). K; by K(j). D; by D(j) and C,
by C(j).

When u(t) # 0. (2) to (5) can be expressed by a set of difference equations

1 1 1
D(|)=7R.K(|)=-fR.Ax(0)+7R|BL(1) (9a)
D(j+l)=(l,,+R:)D(j)*ITR,B[L(HI)—L(j)] for j=12,....m (9b)
and
Cm=%<21n+R:)x(0)+%R,BLm (10a)
. o T, . .
C(}+I)=C(1)+3[D(1+I)+D(1)] for j=12....m (10b)
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Substituting (9) into (10) and using (6) will yield the required discrete-time solution x*(j). or
an=wumm+g¢wrﬂmnun
j— 1
= ¢"(j)x(0)+2 d*(f-i— DHu*(i) for j=1.2,... (11a)
i=0

where ¢*(j) = The transition matrix of the discrete-time system

[(1-347) (gar)]
R, = T(l,.—%AT)AI
H=RB

u‘(i)=%[u(i+ D)+ u(i)) (11b)
T = sampling period.

From (11a) the approximate discrete-time state equation can be written for the continuous-time
state equation in (1) as

x*(j+ D= Gx*()+ Hu*(j) (12a)
x*(0) = x(0) (12b)

where

G- (1" —%AT)_I(I,. +%AT)

_ L)
H—T(I,.— EAT) B
W)= 3G+ D+ UGl (12¢)

It is believed that the modeling of the discrete-time state equation in (12) from the
continuous-time state equation using block-pulse function is new. If the Z transformation is
performed on both (1) and (12). we have the respective functions as

2X(2)- z2X(0)= AX(2)+ BU(2) (13)

and
2X*(2) - z2X*(0) = GX*(2)+ HU*(2) (14)

where
U*2)= % (2U(2)+ U),

Substituting the G and H in (12) into (14) and simplifying yields

2@z-1)
Tz+D

_2_ 2 (1 = AX*
X*(2) T(z+l)(l" 2AT)X'(0) AX*(2)+ BU(2) 15

where X*(0) = X(0).
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Comparing (13) and (15) and assuming that X*(z) is the approximate function of X(z), we
have

z-1)

Z[’t(')]z%(:ﬂ)

A ]
X‘(z)-T(z—Jr—l—)(l,.—iAT)X(O). (16)

Equation (16) is the approximate numerical differentiator that is often used to determine the
inverse Laplace transform of a continuous-time state equation(4, S]. Thus, the solution of a
linear time invariant state equation can be obtained from the recursive algorithms in (2)-(6). or
from the matrix equations in (11). For linear and nonlinear time-varying systems, the frozen-
time and frozen-state approach(6] is applied to solve the linear and nonlinear problems using
block-pulse functions. In other words, when an independent variable ¢ and the time dependent
state variables x;(t) appear in the system matrix in (1) at stage j, the time variable ¢ is
considered as a frozen time by letting ¢ = jT. The state variables considered as frozen states
X;(jT) in the time intervals jT <t <(j+1)T. Substituting these constants t = jT and x;(f)=
x;(jT) into the system matrix in (1) and using x(jT) as the initial vector yields the time-invariant
state equation in the time interval jT <t =(j+ 1)T. Thus. the proposed method can be applied
to evaluate the solution x(f) at t =(j+ 1)T. Repeating the processes we have the required
discrete-time solutions for the linear and nonlinear state equations. A complete computer
program based upon the above approach is presented in this paper for solving the inverse
Laplace transform, linear and nonlinear state equations.

3. FORMULATIONS OF STATE EQUATIONS AND ILLUSTRATIVE
EXAMPLES

Consider that the impulse response of the following rational function is required:

Y(s) bys™ '+ bys" 4+ b,

(s) s"+as" "+aus" T+ +a,

an

Since the input function U(s)=1, the required impulse response is the inverse Laplace
transform of Y(s). Also. the impulse function is a delta functios. it cannot be realized because
of its infinite amplitude at ¢ = 0. Therefore. it is convenient to convert (17) into a zero-input
state equation with initial conditions as

x(1) = Ax(t) + Bu(t) (18a)
y(1)= Cx(2) (18b)
x(0) = xg (18¢c)
where
0 i 0 S x(t) 0
0 0 1 . 0 Xz“) N 0
A - . X(l)= B =
~an —Qp-r ‘ -4 x,(1) 0

Cc=1,.

The output matrix C is chosen as an identity matrix so that the output functions are equal to the
state variables. The initial vector x(0) can be evaluated from the following matrix equation
2.7

x(©0)=D"'b (19a)
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or

x(0) x;(0) l 0 0 -0l ! b,
X' x2(0) a, | 0 -0 b,
.l’”((” = X\(O) =l a» a, 1 0 bl (lgb)
0] RO (e @ @ br

b is a vector constructed from the coeflicients of the numerator polynomial in (17). A recursive
algorithm[2] has been proposed to determine the initial conditions without finding the inversion
of the square matrix D. An alternate method is proposed in this paper to determine the D'
and the required initial vector.

To determine the 1)’ indirectly, we construct the following matrix equation:

z=K(-a) (20a)
or
| 1 0 0 0 -0 0 —-a
2 T T 0 0} |-a
I =1 2 3 1 0 - 0 0 —az (20b)
24 e} 2 F4 1 -0 0 - Q4
<n In 202 <n-3 Zn-4 © 2y I — Qp

The vector (- a) is constructed from the coefficients of the denominator polynomial in (17) with
negative signs. The matrix K is a lower triangular matrix with each diagonal entry assigned as
unity, and other entries z; are determined from the vector z. In other words, from the
multiplication of the first row vector in K and the vector (- a) we have the numerical value z,.
Then. we immediately substitute the z, into the lower diagonal entries and solve for z.. and so
on. The general algorithm is

:,:_t:i 1 i for j=l.2...-‘". (20C)

The matrix K is the inversion of the matrix D in (19). Thus the required initial vector x(0) can
be determined in (19). If the input vector u(1) in (17) can be expressed by analytical functions or
a set of finite values at sampling points. (17) can be converted to a zero initial-state time-
invariant state equation as

X() = Ax(t) + Bu(t) (21a)
v(t)= Cx(1) 2ib}
x(0)=0 21¢)

where A is shown in (i8); B=[0.0,....0,1); C=[bnbs_y.....b2b]: and x(0)=
f0.0.....0.07.

A practical system is the transfer function of the pitch control system of a semi-active terminal
homing missile system{1] which is shown as an illustrative example as follows:

Y(S)_ hoslo+b|50+"'+bqs+bm

(22a)

Uf(s) B S“ + a,s' +as +:+apstay
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where
a, = 1.9235540 x 10° by=0
a. =9.3162391 x 10° b =0
ay = 2.9769507 x 10* hy=0
as=6.2316753 x 10" by=
as =9.3603299 x 10" bhy=0

e = 9.7499233 x 10"
ar = 6.6673970 x 10"
ay = 2.4204054 x 10"
ay = 2.9119206 x 10'*
Q= 2.4190474 x 10"

b= 14945233 » 10"
b = 2.5633964 x 10
by = 5.0172120 x 10'

=2.9263443 x 10"
by = 4.6100047 x 10"

ay = 8.8021585 x IOIH h|u = 8.8021585 x l()lk.

It is desired to find the step response U(s) = (1/s).

Equation (22a) can be formulated either in the form on (18) or that of (21). Attempts to sohe
this problem by the Runge-Kutta method [2] were unsuccessful even though the time increment
was chosen as small as 10 *sec. This is because the practical system consists of large
coefficients in the transfer function. This normally results from large poles, for example. in (224)
there exists a smaii g, (which is the sum of all poles) and a large a,, (which is the product of 4ll
poles). This difficulty ts overcome by the proposed method. Using the proposed computer
program with time increment DT = 0.2 sec yields the u:ut step response curve shown in Fig. 2
For comparing the results of the proposed method and the Runge-Kutta method we apply both
methods to the reduced third-order model of the original 11th-order system in (21a) (using the
method of Shieh and Chen[8.9]) to evaluate the unit-step responses:

Y (s) __ 0.6920s%+ 19.4692s + 3.7376
Uls)  s7+0.948857+ 10.1661s + 3.7376"

(22b)

The response curves are shown in Fig. 2. From these results, we observe that the proposed
method is superior to the Runge-Kutta method if the system consists of extremely lurge or
small coefficients or the response curve of the system has many stiff slopes.

When a linear or nonlinear time-varying equation is given and the numerical solutton s
required, the given equation can be converted into a state equation in (1) with time-varying and

.. The 3rd order system described in equation (22b)

(using the proposed method ond Runge-Kutta method)

The |1 th order system described in equation (22a)
30+ (using the proposed method)

T=02 sec
20+
¥ /\
/\ . U
o \V4 ~~
o T T T T T
o 2 4 6 8 10

t {sec)
Fig. 2. Time responses of the systems described in eqns (222) and (22b).
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nonlinear entries in the system matrix. The proposed method, along with the frozen-time and
frozen-state method, can be applied to determine the solution. To illustrate the procedure we
use the following examples:

Given a nonlinear equation

2
XD o1 - 201 B8+ Ka() = Quer (23a)

2(0) = a; and 2(0) = a>

where f(t) is a time-varying function, and K, Q and a; are constants. Equation (23a) can be
converted into a state equation by defining the state variables x,(¢) and x,(¢) as

x{f) = z(0)
Xo(8) = 2(¢). (23b)
The corresponding state equation is
HO]_[ 0 1 x(t) 0
[xz(t)] [ -K fol1- x.Z(:)]] [x,(,)] + [Q] u(t) (23¢)
X|(0) = a,
[x;(O) [az]' @3d)

When f(£) =1, K = 1 and Q = 0, the nonlinear equation is the Van der Pol equation[10]. If the
output functions y,(f) and y,(1) are assigned as x,(¢t) and x,(t), then the state equation is

[2:3]= i 1-:.’(:)][:;::;] +[o]ueo (24a)
Brol=[o (ol .
[:;:g;] i [Z;]- (24c)

The proposed method that uses the block-pulse functions and the frozen-time and frozen-state
approach can be used to solve (24) for determining the trajectories x,(¢) and x,(¢). In other
words, substituting x(0) in (24¢) into the system matrix in (24a) results in a time-invariant state
equation in the form of (1). Thus, the developed recursive algorithm in (2)-(6) can be applied to
evaluate x*(T) that is the required discrete-time solution x(¢) at t = T. Then, using the x*(T)
obtained as the new initial vector in (24c) and again substituting the x*(T) into the system matrix
in (24a) to obtain the new time-invariant system matrix for evaluating the new sulution x*(T)
that is the required solution x(¢) at ¢ = 27T, and so on. The trajectories of the nonlinear equation
as a result of different sets of initial conditions are shown in Fig. 3.

4. CONCLUSION

The recursive algorithm for solving linear time-invariant state equations using block-pulse
functions has been extended for solving the inverse Laplace transform, linear and nonlinear
time-invariant and time-varying state equations. The relationships between the solution of the
continuous-time state equations using block-pulse functions and that of the equivalent discrete-
time state equations using trapezoidal rule have been investigated. It is shown that the
discrete-time solutions of both methods are identical. An approximate numerical differentiator
has also been derived. A complete computer program, based on the derived recursive algorithm
using block-pulse functions and the frozen-time and frozen-state approach, has been written for
solving the inverse Laplace transform, linear and nonlinear state equations. It has been shown

that the proposed method is superior to the Runge-Kutta method if the system consists of stiff
functions.

AC%Wt—'ms work was supported in part by U.S. Army Missile Research and Development Command, DAAK
40 17.
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b Xo(1)

T20.1sec

34
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Fig. 3. Phase-plane diagram of the system described in egn (24).
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APPENDIX

This program is used to solve the inverse Laplace transform, linear and nonlinear, time-invariant and time-varying state
equations. The details to prepare the input cards can be illustrated by the following examples.
Example 1. For the following transfer function:

$2485+12
YO = T T s 40 (A

The discrete-time responses y(?) at t = jT for T =0.25sec and j=0,1,...,4 are required.
The input nomenclature follows:
The first data card:
KS—Type of problems to be solved. When KS = 1, it is the inverse Laplace transform problem. For this exampie, KS = |.
N—Degree of transfer function. For this example, it is 3.
MT—Number of discrete-time solutions required. In this case, it is 5.
DT—Time increment, 0. npling period. For this example, it is 0.25 sec.
The second data card:
AAD, AA(1), . .., AA(N)—Coefficients of the denominator. For this example, they are 1,3, - 10,0.
BB(1),....BB(N)—Coefficients of the numerator. In this case, they are 1,8, 12,
If the degree of the numerator is less than (N - 1), zero coefficients are assigned in the numerator. The output data of
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this program are:
KS...! N...3 MT...5 DT...0.250000

DENOMINATOR COEFFICIENT AA0.AA(1)...AA(N) ARE
0.10000000E 01 0.30000000E 01 - 0.10000000E 02 0.

NUMERATOR COEFFICIENT BB(1)...BB(N) ARE
0.10000000E 01 0.80000000E 01 0.12000000E 02
INITIAL CONDITIONS X(1).. . X(N) ARE

0.10000000E 01 0.50000000E 01 0.70000000E 01

THE REQUIRED SOLUTION

T Yl Y2 Y3 Y4

0. 0.10000E 01  0.50000E 01  0.70000E 01
0.25000E 00  0.25897E 01 0.77179E 01  0.14744E 02
0.50000E 00  0.51446E 01  0.12721E 02  0.25283E 02
0.75000E 00  0.93810E 01 0.21169E 02  0.42302E 02
0.10000E 01 0.16436E 02 0.35275E 02 0.70541E 02

Note that Y1 = y(t) and Y2 = y(¢).
Example 2. Consider the following state equation:

(1) = Ax()+ Bu(t)
y(1) = Cx(1) (A2)
x{0) = xq

where

A = the system matrix = [I _i]; B = the input matrix = [f (:]

3
_ o _re) o _[u)].
C = the output matrix = [0 l]‘ u(t) = the input vector [llz( o)
P 1 _ _ yi(t)
x(0) = the initial vector = ) . y(f) = the output vector = wn ]

The input functions u,(t) and u2(f) are unit-step functions. The responses y(¢)at t = jT for T =0.25secandj=0,1,...,4are
required.
The input nomenclature follows:
The first data card:
KS—Type of problems to be solved. When KS = 2, it is the problem of solving linear time-invariant state equations; when
KS =3, for solving linear time-varying and nonlinear state equations. In this example KS = 2.
N—Order of the state equation. For this case, it is 2.
MT—Number of discrete-time solution required. In this example, it is 5.
DT—Time increment or sampling period. For this example, it is 0.25 sec.
The second data card:
KU—Type of input functions. If KU = 1, the input functions «;(t) are continuous-time functions. All u;() can be inserted
in the main program using f as an independent variable. If KU =2, the input functions are in the form of
discrete-time input data. For illustration, in this example, KU =2.
NU—Number of the input functions. For this example, it is 2.
NP—Number of the output functions. In this case, it is 2.
The third data card:
AL 1), A(LD)..... A1, N)—The entries of the first row vector in the system matrix A. For this example, they are 1.2.
The fourth data card:
A2, 1), A2.2)..... A(2. N)—The entries of the second row vector in the same matrix. In this case, they are 3, - 4.
The fifth data card:
B(1. 1), B(1.2),....B(1, NU)—The entries of the first row vector in the input matrix B. For this example. they are 2,0.
The sixth data card:
B(2,1),B(2,2),....B(2. NU)—The entries of the second row vector in the same matrix. In this case, they are 1. 1.
The seventh data card:
C(1.1).C(1,2)....,C(1, N)—The entries of the first row vector in the output matrix C. In this example, they are 1.0.
The eighth data card:
C(2.1).C(2.2),....C{2. N)—The entries of the second row vector in the same matrix. For this example, they are 0, 1.
The ninth data card:
x(1)...., x(N)—The initia! conditions. For this example, they are 1, 1. -
The tenth data card:
(1, 1), w(1,2),....u(), MT)—The discrete-time data of the first input function u,(¢) evaluated at ¢ = jT for T = 0.25 sec .
and j=0,1,....(MT - 1). In this example, u,(¢) = 1; therefore, the discrete-time input data are 1,1.1,1. 1.
The eleventh data card:
(2, 1), u(2,2),....u(2, MT)—The discrete-time data of the second input function u,(t) evaluated at ¢ = jT for T =0.25
second and j=0,1,....(MT - 1). For this example, u,(¢) = 1; the discrete-time input data are 1,,1,1.1,1.
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Since the u,(t) and u,(1) are unit-step functions (continuous-time functions), we can choose KU = 1. If we choose KU = t
- we do not need the 10th and 1th data cards. However, the statements

Ut =1

JF' UTR)= 1.
A should be inserted in the main program.
The output data of this program are:

.

KS...2 N...2  MT...5 DT...0.250000
KU...2 NU...2 NP...2

SYSTEM MATRIX
0.10000000E 01  0.20000000E 0]
0.30000000E 01 - 0.40000000E 01

INPUT MATRIX
0.20000000E 01 0.
0.10000000E 01 0.10000000E 01

OUTPUT MATRIX
0.10000000E 01 0.
0. 0.10000000E 01

INITIAL CONDITIONS X(1)... X(N) ARE
0.10000000E 01 0.10000000E 01

DISCRETE INPUT DATA
1.000 1000 1000 1000 1.000
1000 1000 1000 1000 1.000

THE REQUIRED SOLUTION

T Y1 Y2 Y3 Y4

0. 0.10000E 01 0.10000E 01
0.25000E 00 0.25897E 01 0.15641E 01
0.50000E 00 0.31446E 01 0.27883E 01
0.75000E 00 0.93810E 01 0.48942E 01
0.10000E 01 0.16436E 02 0.84191E 01

Example 3. Given a nonlinear state equation in (24) of the main paper . or
(1) =[ o 1 ][x.m] [o] (A3
[x,m] -1 1-x0llem]*lo]*? )
[y,(n]=[| 0][x.(:)]_ [x.(o) =[a|]
y2(t) 0 Hlxn ! x2(0) a

where u(t)=0.

The procedures to prepare the input data cards are the same as those shown in Example 2. except the following:

(i) KS=3.

(ii) If KU = 1is used, the statement of the input function UT(1) = 0 is inserted in the main program as shown in the list
of this program.

{iii) Any entries that consist of nonlinear or time-varying terms, or both, in the system matrix are first assumed to be
zeros in the input cards, then the corresponding terms are recovered by the exact terms by substituting the state variables
X;(1) by x(j) and ¢ by T in the main program. In this example, the system matrix in (A3) is first assumed as

01
A=[_l o]' (A4)

In other words, the entry A(2,2) is a nonlinear term which is assumed to be zero in (A4). The term is recovered in a
statement A(2,2) = | — x(1)*x(!) in the main program as shown in the list of this program. The outputs of this example are
plotted in Fig. 3 of the main paper. The complete computer program for solving the inverse Laplace transform, linear and
nonlinear state equations follows.

CAEE Vol. 6, No. |-B
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Computer program

A PROGRAM FO® SOLVING INVERSE LAPLACE TRANSFORN,

LINEAR STATE EQUATIONS AND NONLINEAR STATE EQUATIONS USING
RLOCK~PULSE FUNCTIONS.

KS=1  INVERSE LAPLACE TRANSFORM
XS32 LINEAR TIME-INVARIANT STATE EAUATIONS
¥$23 NONLINFAR AND LINEAR TIME-VARYING STATE EQUATIONS

WHEN KS=1,
Y(S)z (AB(1)wSea(N=1)0, .  #RA(N)I/(AAD*SoeNeAA(T)eSna(N-T)0,,,
*AA(N))

WHEN XS=22,
OX(T)/OT=AX(TI+RY(T)
Y(YI=CX(TY)
X(N)s INITIAL VECTAR

WHEN KS=%,

THE TIME-VARYING AND NONLINEAR ENTRIES IN THE MATRIX 'A° ARF
ASSUMED TN 8F ZERO IN THE INPUT DATA CARDS,THEN THE CORRESPONDING
ENTRIES ARE RECIVERED BY THE EXACT TERMS IN THE MAIN PROGRAWM
USING STATE VARIABLES X{1)s..0sX(N) AND TIME VARIABLE 'T’

N= DERREE OF THE TRANSFFR FUNCTION
= ORDER NF THF STATE EQuUATION
MT= NN, OF THE KNOWN DISCRETE=~TIME [NPUT DATA
=NO. OF THE QUTPUT DATA REGUIRED
OT= TIME INCREMENT OR THE SAMPLING PFRIOD

WHEN KU=a1,

THE INOPUT FUNCTIONS UT(J) ARE CONTINUJUS-TIME FUNCTIONS.
WRITE ALL THE UT(J)) IN THE MAIN PROGRAM USING THE INDEPENDENT
VARTASLE *T’,

WHEN Ky=2,
THE INPUT FUNCTINNS ARE DISCPETF=TIME DATA,

Nis= NO, NF THE 149PUT FUNCTIONS
NP NA, NF THE AYTPUT FUNCTIONS

AR MAAmMARAAAARARNNAAAAAALOANAANAARNRNNNAANAAAAN

FORMAT(3IS5,F10.4)

FORMAT ((SE1A.R))

SN FNRMAT((RFIN, )Y

600 FORMAT( /I, SHKS 4o r 12/ 0% 4H N2 a ol 2, 0XoSHYT, L 13,0X,5HDT,,.,610.8)

601 EORMAT(//6X, *DENOMINATOR COEFFICIFNT  AAOLAA(T), . AAIND  ARF')

402 FNRMAT((24,6F16.R8))

6N% FORMAT( /76X, *NUMERATOR COEFFICIENT 33¢1) ., AIR(N)  ARF®)

6N4 FORMATC7HX, ' INITTAL CONNITIONS X(1)...X(N) ARE")

sNS FORMATC((2X,4F16.2))

6NA  FORMATC(/2XsSHXU, . s 12/6X,SHNUL . s 12,0X0SHNP . 4 12)

&n? FORMAT(//4%X,"SYSTEM “ATRIX')

h0R FARMAT(//AX," INPUT MATRIX')

402 FOARMAT (//A4X,°0UTPYT MATRIX®)

4517 FORMAT(//4X,"DISCRETE IYPUT DHATA')

a1 FORMAT(//hX,*THE QEQUIRED SOLUTION */IX,'T*,12¥,071°%,11x,°Y2",
XTI AN PR TR SRR PR ADERE PR APSRE PR RS

512 FORWAT(1X,Q€1%,5)

620 FORMAT( (2Y,R€10,3))

DIMENSINY A8(20),39(20),8(20,200,81€27,27),XNC27),X(20)4x5(20),
!aL(?3,1nﬂ),0(20.?0),c(20,20),u(?n.1nn)-UL(en.|00).As(?f).ur(?O),
'iKi(?ﬂ).xi(?ﬂ)ow1(ZO'ZO);w?(20:2"),XD(20,10P),!01(?O).l't?ﬁ;’ﬂﬁ)a
Tx02¢20),x03(20),XCC20,170),%T(20,100),Y(2N,100) #R3(20,21)

RV
>332
-0

C
[4
1099 QEAD (5,5NN,ENDST) KS,N,MT, AT
4 WRITE(A,400IKS»N,4T,DT
MzMT=1

IF(eS, NE_1) G0 T 1001
WRITE(K,571)
READ(S,571) 240, (AR(L),L=T1,N)
WRITE(S,402) AAT, (AACL) sL21,N)
WRITE(4,403)
PEAD(S, S (ARLLY,,LxT,N) - k
WRITEC6,802)(POCL),Lm1,1)
no 101 L=1,N
A9 (L)29A(L) /A0 -
101 AA(L)Y=-AA(LY/AR)
LRELLAI
nO 102 L3t ,NY .-
L1=L#
50 103 J=1,N
103 AlL,J)=0,
1 AlLoLY) Y,
DN 134 J=1,N
LaNe1=y
104 A(N I =ARCL)
00 110 L=1,N -
no 120 Js1,N
120 A1CL,J) 2,

Poeros 3
o

|

e ——— ———

a oy pos o e s ke i
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[REYCIRE 2 0%

N23N-1

00 147 31,82

<=,

nO 169 J=1,L
SEAVCL,J)eRA(Y) S

[REIRA

DO 170 jiai1,N

Jite)y-y

(RN PSRN E L

COMTINUE

RO 180 L=z1,N

XNL) s,

50 180 ysI,N

ANCL) S8V (L)) eRQ () +xXNIL)
Y(L)=AN(L)

XLz (L)

WRITE(S,604)

WRTTE(A,695) (x(L)sL=1,N)
nNO 190 L=V,

LA Rl IV ER P

ALlLeyd=n,

NezN

nO 20N Lx1,Ne

DO 201 gwi,N

“ltedr=n,

L=,

60 Y0 2109

QFAR(S,500) XUsNU,NP
WRITE(A,5T4) KU, NUSNP
WOITF(6,6N7)

NN 210 Lst,w
REANTS,SO1YC(ALLLU) 2 d=1,%)
WRITE(A,AT2ICACL ) puxtoN)
WRITELA,ANP)

hO 211 L=1,N
READ(5,SN1)((Ls s puz1 N
WARITE(K,8N2)CAL,3) 051080}
WRITE(%,679)

nA 212 L=t,Ne
REAN(S,SN1I(C(LLIYLI=1,N)
WRITE(AL,SN2Y (LAY 0021 ,N)
WRITEC(AhLNTE)
QEADIS,ST1XIX{IY o 821,N)
ARITECALSD2)I (X)) 0=1,0)
DA 214 L=t,.n

XN(LY=x (L)

XGLY=x(L)

IF(XU,EQ,2) G0 TO 251
T=0,

NN 267 y=1,M7

BN 743 L=ty

see IF x=7, INSERT ALL CONTINUOUS-TIVME [NPUT FUNCTIONS
UTC1) po00 »UTINY) HERE AND USE 'T' AS AN [NOEPENDENT VARIAOLE, sev

HTCT =T,
“re

N{LedIsyT (L)

reTenr

60 1H 252

ARITE(H.410)

09 21% L=1,nu
RERDC(SSIMILUHILL, D) 21 ,9T)
WATTE(4,520)CULAI)»a31,MT)
N0 215 L=, Ny

00 215 J=1,%

IRENE S

ULCL, Y CULoddenlladidd/2,
NO 70N KL21,N

nn 790 Kyxy,v

s=1,

80 731 KKk=t,qi
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Synthesis of optimal block controllers for multivariable
control systems and its inverse optimal-control problem

Y.J. Wei, M.Sc., and Prof. L.S. Shieh, M.Sc., Ph.D.

Indexing terms:  Multivariable control systems, Control-system synthesis, Optimal control

Abstract

A new method is presented to synthesise optimal block controllers for a class of multivariable control systems
represented by the block companion form. The reverse process of obtaining the optimal block controller is used to
determine the block-weighting matrices of the quadratic performance index from prescribed control specifications.

1 Introduction

The accurate description of linear time-invariant systems in
the time domain may result in m nth-degree coupled differential
equations, or an nth-degree matrix differential equation with m x m
matrix coefficients' as

n+t

S ADT'x =u (12)

i=i
n :

y=Y D' (16)
i=1

nd
Di'x(0) =«;, i=1,2....n (1c)

where y is an m x 1 output vector, # is an m x 1 input vector and x is
an m x 1 state vector. A; and C; are m x m matrix coefficients, and
the differential operator D = d/dt. When each initial vector «; is an
m x 1 null vector, the corresponding frequency-domain representation
of eqn. | is an nth-degree matrix transfer function written as

Y(s) = T(s)U(s) (2a)

where Y(s) and U(s) are the m x 1 output vector and the m x 1 input
vectot, respectively, and the matrix transfer function T'(s) is

T(s) = N(ID7'(s) = D' ()N (s) (2b)
The matrix polynomials D,(s) and N,(s) with appropriate size are
right coprime, Dy(s) and N,(s) left coprime. Let us define

D.(s) = Ips" +As" ' +.. .+ A5+ A, (3)

Ni(8) = Cus" ' +Cpys™ 2+ .. 4 Cos +C,
where A; and C; are m x m constant matrices. The corresponding first-

degree state equation in the controllable phase-variable block form or
in the controllable block companion form is

X = AX + Bu (4a)

y = CX:x(©0) = X, (4b)
where

0, I. 0, . O, On X,

4 = 0, O, I, . (),,,‘B=o,,,')(:,v(2

—A, —A; —A, —A, 1, Xn

(4¢c)
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Cc =[G C, ... G (4d)

The block elements A4;, O,,, I, and C; are m x m constant matrices,
m x m null matrix, m x m identity matrix and m x m constant
matrices, respectively. The vector X consists of n blocks (X,
i=1,2,....n)and each m x 1 block X; consists of m state variables.
In this paper, we define the vector X as a block vector. Because the
state equation in eqn. 4 is formulated in the phase-variable block
form, the X is defined as a vector in the phase-variable block co-
ordinate. As a result, the X(0) is an initial block vector. From a
conventional viewpoint, the same vector X is viewed as a vector with
nm state variables in a general co-ordinate. Therefore, the same state
equation in eqn. 4 is viewed as a state equation in a general co-
ordinate. {n this paper, all the derivations are based on the state
equation in the phase-variable block co-ordinate rather than a general
co-ordinate.

The objectives of this paper are described as follows:
(@) Obtain the optimal block-control law u = —R'BTPX = — KX
(where the feedback-gain matrix K = R™' BTP consists of m x m

block elements K;, i=1,.... »n) to minimise the quadratic per-
formance index

10
J = 5& [XTOX + u"Ru)dr (5a)
‘0

for the dynamic system formulated in the phase-variable block
co-ordinate in eqn. 4. The T designates transpose. the weighting
matrix R is an assigned m x m positive-definite matrix, and the
block-weighting matrix Q is an assigned nm x nm nonnegative
definite-symmetric matrix with m x nf block elements Q, ; = Q7 ;.
or

Qll QII e an

Q2l Q- Q2n T
Q= =0 (5h)

in an.‘-- an

The nm x nm matrix P is the positive-definite solution of the
steady-state Riccati equation?

PA+ATP+Q—PBR'BTP = O,,, o)
The same P can be also solved from the following canonical form:?
G -Q -4T Gl

G() = PX(®) = Opmx . X(0) = X, (5d)
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It is noted that, if the pair {4, B] is controllable and the pair
[4, L} is observable (where Q=LLT), then the closed-loop
system is not only optimal but stable.

(b) Determine the block-weighting matrices Q and R of the quad-
ratic performance index in eqn. 5g if the optimal block controller
K is assigned or if the closed-loop poles (or the equivalent control
specifications®) of the optimal controlled system are prescribed.

2 Linear optimal-block-regulator problem

In the conventional synthesis of the linear-regulator problem,
the state equation in eqn. 4 is viewed as a state equation in a general
co-ordinate. An optimal control law 1s then derived by solving eqns.
5¢ or 5d. In this paper, the state equation in egn. 4 is considered as a
state equation in the phase-variable block co-ordinate. The optimal-
block-control law is derived as follows.

Expanding eqn. 4 and adding a trivial identity yields

X1 = Xl

A‘;x =X3=X'2

X =X, = ~A X, —A X, —...—A, X, +u (6a)
Rewriting the last equation in eqn. 64 gives
uo= A Xy FAX ALKV + (6b)

Substituting eqn. 6 into eqn. Sa, we have an alternate form of the cost
function as

F(X,u) = FiX,, X, ..., X") = F(X™) = 1x"T0'x* N

where

oL 0 ... Q. AlR X,

on 0n ... O, AIR X,
Q' = . Q'T.x" =

O Qhn: ... Qnn ATR xm v

RA; RA; RA, R x

*
Qi; = Qi;+ATRA; = Q)

The (n+ 1)m x (n+ 1)n constant matrix Q* is a block weighting
matrix with m x m block elements. Applying the gradient matrix
operations* to the quadratic cost function in eqn. 7 yields

Fx, = [, O, onl0'x"
d -
—Fy = (1 I om]Q X
'
d'l
o Fxm = 10 0, [T e ®
Substituting eqn. 8 into the following Euler’s equation®
d d? dn
Fx, = 5B, +oaFe, =+ GO o Fxey = Omx, )
we have
DXy + DXy + D3XP 4 4 Dy X3 = Oy (10a)
where
Dy D, Dy ... Dypoy] = Um —fm I ... (=1)'I] x

)
0hQh0h...0 ATR O,
Om Q5 @2 .- Qiny G2n AR ...0, On O,
Op Op Q3 ... Qonz Qin-t @sn - Om Om O

» *

Op Op Onm ...Qn1 Qnz Qns -
|0y Opp O ... 0, RA; RA, ...

Expanding egn.

Dy, = Q) = 0 +ATRA4,

D, = Q1 — Q3 = Qi +ATRA; — 0y — ATRA,

Dypey = R (10c)
Taking the Laplace transform of eqn. 10a and neglecting the initial
conditions we have the matrix polynomial D(s):

D(5)X,(5) = [Dypess*" + Dy s®™ 4+ ...
+Dys+ D)) X (s) = Opxs an

where Dyppy =Diper, =0, 1,..., n and Dy =—D],
k=1,2,...,n. It is well known that the poles of the state equation
in eqn. 5d are symmetrically distributed about the origin in the
s-plane, so are the roots of the determinant of the matrix polynomial
D(s) in eqn. 11. Performing the spectral factorisation®” of the matrix
polynomial D(s) results in a stable matrix polynomial A(s) and an
unstable matrix polynomial A (—s), i.e.

D(s) = FTa(—5)TAG)F (12)
where

R = FTF = Dapay

A(G) = I,s"+ E " + ..+ E;s+ E,

and

The required optimal-block-control law is then obtained from eqns. 65
and 12 as

u=1[K, K;...K,)Jx (13)

where

When the given system is not in a phase-variable block form, a newly
developed algorithm shown in Appendix 8 can be applied to obtain a
block linear transformation that transforms a class of state equations
in a general co-ordinate into the phase-variable block co-ordinate.
Thus the proposed method can be applied to determine the optimal
block controller.

3 Inverse optimal control problem

Given a set of prescribed closed-loop poles, or equivalent
control specifications,® we wish to determine the weighting matrices
@ and R of the quadratic performance index in eqn. 5S¢ by which
the controlled feedback system has prescribed closed-loop poles and
the feedback-~control law is optimal. This is an inverse optimal-control
problem. Kalman® initiated the inverse problem for a linear time-
invariant single-input system. Chang’ Tyler and Tuteur'® have
studied the problem via the root-locus method, while Molinari,'!
and Anderson and Shannon'? have investigated the problem for a
multivariable system. All the developed methods are based on the
system equation formulated in a general co-ordinate rather than in a
phase-variable block co-ordinate. Since the multivariable dynamic
system is formulated in a matrix differential equation, it is more
natural to investigate the problem in the phase-variable block co-
ordinate than that in the general co-ordinate.

it is well known that a feedback-gain matrix can always be ob-
tained to give a system with prescribed closed-loop poles if a system
is controllable. However. the feedback controller may not be optimal.
In this paper we determine the block-weighting matrices Q and R of
the quadratic performance index by which the feedback controller
not only provides the controlled system with prescribed closed-loop
poles but also performs optimally. The steps involved are described as
follows:

Step 1

Define a characteristic matrix polynomial A(s) of the desired closed-
loop system whose matrix coefficients consist of some unknown
parameters (for example, the damping ratio ¥ and the undamped
natural angular frequency w, etc.) to be adjusted. The A(s) is

A(s) = I,s" +Es"' +...+E;s + E, (14a)

If the desired characteristic polynomial of the closed-loop svetem is
[d)I™ = (" +dps" +. . +dys +d)™ (14b)
PROC. IEE, Vol. 126, No. 5, MAY 1979
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"’“"’"’%ﬁ;r’-e’d(s) is a polynomial whose coefficients consist of adjustable

parameters. The characteristic matrix polynomial becomes
A(s)= d(sMy, = Ips" +dplps"™ + .. +dyl,s+di 1,
(14¢)
where
E; = dil,

Step 2
Construct a matrix polynomial D(s) using A(s) in eqn. 14

D(s) =Dy e 5"+ Dyps?™ "V + .+ Dys + D,

FTAT(— 9)A(s)F

FY{l,s*" + (E, —El)g2nt

+(En., —ETE, +EL )s* 2 + . +ETE\]F (15)

where D,,,., = F'F = R is a weighting matrix to be determined.

]

Step 3
Solve the block weighting matrices Q and R from egns. 10 and 15
in terms of adjustable parameters, or

Dznol = F F

D;, = RA, AR = FNE, —ENF
D, = Qi +ATRA, -Qy —ATRA,
= FYEJE, —EIEF
D, =0, +A'RA, = F'EVE\F (16)
Step 4

Determine the required block weighting matrices Q and R by ad-
justing the assigned unknown parameters such that R is positive
definite and Q is nonnegative definite symmetric.

The procedures can be well illustrated by the following gas-turbine
example.

4 An illustrative example

Consider the following linearised two-shaft gas-turbine
model: 1>~

2, —1-268 —0-04528 1498 951'5{| z,
2 1-002 —1957 8:52 1240 z,
2 - 0 0 —-10 0 z3
Z4 0 0 0 —100 24
o 0
N 0 [u,]
10 0] |u
| 0 100 (17a)
and
N 1 000 z,
[y,] - [0 10 0] 23
Z3
Z,a (176)

The state equation in eqn. 17 is a system formulated in a general
co-ordinate. To apply the proposed method, a block-linear-
transformation matrix T is determined from the newly developed
method shown in Appendix 8. The block linear transformation is

=TX (18)
where
14-98 95150 : 0o 0
| 852 124000 : o 0©
18:5671 —262211 10 0

— 0005214 136-829

and X is in the phase-variable block co-ordinate and consists of two

block vectors (X, i = 1, 2) and each vector X; consists of two state
variables (x;;, =1, 2, 7= 1, 2). The state equation in the phase-
variable block co-ordinate is

1

X)) 0 0 ‘ 1 Xy,
X1 0 o . 0 X1
%2 ~ 185671 2622-17 - 11-8567 262 X34
X2, 0-005214 — 136 ’9‘ 0 - 101-3685 | x, ,
[0 0
00 u,
+] - =
l] 0 [u;l
01 (19a)
) 1498 95150 O 0] Xy
[y; 852 124000 0 O Xy,
X2,1
X3,2 (195h)

where

[ 185671 —2622-1] [11-8567 ~ 26221 ]

— 0005214 136829 0 101-368
(19¢)
14-98 95150 0 0
C = , C o=
852 124000 00 (194d)

It is required to determine two optimal block controllers for the gas-
turbine system by using

(a) assigned weighting matrices Q and R of the quadratic performance
index
(b) assigned control specifications.

The procedures are described as follows:

(a) Optimal-block-controller design via assigned weighting matrices
The cost function of the state equation in the original co-ordinate

ineqn. 17 is
J = %[ [270z + uTRu) d1 (20)
]

where @ =1, and R = I, that were suggested by Tiwari et al.'®

The corresponding cost function in the phase-variable block co-
ordinate is

Jf [XTOX + uTRu] dt (e3))

M['—'

where R = I, and

7828:1776 119414615 185-671 —-521389
|
11941461-5 24436416630 | — 26221 136829

185-671 —26221 ' 100 0
—-521389 136829

From eqn. 10 we have
[Dy Dy...Ds] = I, -1 Ll|@) O ATR O, 0,
0. ¢ 0h AlRO,
0, O; RA, RA; R
@2
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By expanding eqn. 22, D(s) in eqn. | | becomes
# D(s) = Dgs* +Dys* + ..+ D,
= Rs* +(RA; — AT R)s?
F(RA, + AR — Q0 —ALRA, )
+(Qiy + A{RA,— Q3 — ATRA s

+(Qu +ARA) = 0, (23)
L' where
! 0 — 26221
1 Ds = 'z.D.; =
262°21 0

—203447 48684 }
486-84 — 8875596
0 52440-924
Dz =
— 52440924 0
\8]7}92 11892776 ]
111892776 2-44433 x 10%°
Performing the spectral factorisation” on the D(s) gives
A(s) = I;s® +E,s +E, (24)

where

E;, =

and t =

0-30451  576-845

[17~2396 ~261-906
7727215 1562942

[46~925 -~ 3929-922]

From eqn. 13 we have the optimal block controllers in the block
co-ordinate and original co-ordinate as

« = (4, —E | A —E]X
28:3576 —1307-82 ' 53829 0-3045)
B _|77~2774 156157-4t 0304513 475476
(25a)
. = (4, —E, ‘A, —E|T 'z
‘ - —0-36296 0-279346;0-53829 0-003045]2
0-598572 0795425 | 0-0204513 4:75476 |
(25b)
(b) Thg optimal-block-controller design via assigned control specifi-
cations

The design goals are specified as follows:
(i) static decoupling
(ii) final values of the unit-step responses are unity
(iii) peak time #,, that is the time required for the unit-step res-
ponse to reach the first peak of the overshoot is near 0-01s
(iv) maximum percentage overshoot is less than [0%.

To reach the first design goal, the characteristic matrix polynomial is

defined as
Als) = I;5* +E;s+E, (26)
where
2w 0 wl 0
E, = " ] and E, = [ ]
0 2tw, 0 w?

¢ (damping ratio) and w, (undamped natural frequency) are unknown
parameters to be determined. To satisfy the third design goal we can
estimate w,, from the following rule of thumb in designs'® as

314
Wp :é 20—_0—] = 300 rad/s (27a)
Also, from another rule of thumb,'® we can estimate § to meet the
fourth design goal as
InM, In0-1
= —-—F=- =075 27b
b= 318 0 @7%)

The choices in eqn. TP Rt the closed-1oop pOIs

assigned at
$12 = —Ewy tjw,VT —EF = — 2251519843 27¢)

From eqn. 26 D(s) can be determined as
D(s) = FUAT(—s)A(s)F
= FUF® + (202 — 4822 F TR + WAFTF
= Rs* + (RA, — AlR)s?
+(RA, + ATR — Q5 —AJRA,)S
+(Qn +ATRA; —Q1, —ATRA,)s
+(Qi +ATRA)) (28)

For simplicity, let 0y, = @,; = 0,. Equating the matrix coefficients
of the same power of eqn. 28, we obtain the following matrix
equations:

@ R = F'F (29a)
(b) R4, — AJR - 0, 295)
(¢) RA, + ATR - Qs —AIRA, = (20} — 482 W2)F'F
(29¢)
() ATRA, —ATRA, = 0, (29d)
(e) Qu +ATRA, = WL F'F (29¢)

R is an m x m symmetric and positive-definite matrix which has
m(m + 1)/2 unknown elements to be determined. The left-hand-
side matrices in eqns. 294 and 29d are skew-symmetric matrices.
Expanding the matrix equations in eqns. 295 and 29d results in
m(m — 1) simultaneous equations with m(m + 1)/2 unknown vari-
ables in R. In general, there are an infinite number of solutions.
However, if k independent simultaneous equations exist, and
k <m(m + 1)/2, then we can assume {m(m + 1)/2 —k] constants
to solve k unknown variables in R. The choice of the assigned con-
stants in R is a design freedom and a certain amount of experience
is helpful. In this example, we assume Ry, , which is the first leading
diagonal element, is unity. Thus we can solve for R and F in eqn. 294
as

R

I

1 292934 i
= FTF (30)

292934 51058:01562

where

[0-999916 5-737x10'5]
00129466 22596

Note that R is a positive-definite matrix. From eqns. 30, 29¢ and
29¢ we can solve for @y, and @5, as

[

[ w} — 345-55808 2929341} + 77629-05 ]

2929341y}, + 77629:05  51058-0156 wp, — 7-6070451 x 10*

(31a)
[ 4wl — 2w} — 140-5813
O = 292934142 w} — 2w}) — 2844-916
2929341 (48w} - 2w}) — 2844916
31b)

51058:0156(4¢*wh — 2wh) — 5245613174

Substituting w, =300 and =075 into eqn. 31 yields positive-
definite matrices Q,, and Q,,. Thus the optimal block controllers
can be easily found in the block co-ordinate and in the original
co-ordinate as

u=[4,—E A, ~E])X

89981-4329 2622'1 ! 4381433 26221
- |
0005214  89863-17, 0 348632

X (32q9)
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To achjeve the fisst and second design goals we add a forward-gain
matrix M as shown in Fig. 1. The H can be solved from the block C;

[4, —E, E A, —E)T 'z

—17677 135737 ' 43.8143 26221

47.2383 —33-808 ' 1170342 31-8502
|
— 291217 — 59383, 31-8502 8016982

It is noticed that? any arbitrarily prescribed closed-loop poles or
control specifications may not result in a positive-definite matrix R
and nonnegative-definite matrix Q. The constraints suggested by
Anderson? should be satisfied. In addition, some realistic constraints
to the amplitudes of the control signals, for example the limitations
of the actuator amplitude and rate change of amplitude, should be
also examined.

Y2

0 o-ok / E 305? L) f 0 020
proposed method s

b

Fig. 2
Responses of various designed systems to a unit step in r,

=1

=0

McMorran's method:

— — — proposed method: £ = 0-75; w, = 300

~~ - proposed method: @ = I,.R =1,
Tiwsri's method: @ = I, R =1,
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in eqn. 194 or

= 12182 . ! z (32b)
282 —020391, 0 348632 _[ra98 9s150 ~19842349  152:258
The block-weighting matrix Q in the block co-ordinate and the 852 124000 - 0:136336 — 0023971
weighting matrix Qin the original co-ordinate are (34)
I
. 9 . 10
8:1x 10 2:371277 x 10 l 0 0 Thus the design system is
237277 x 10" 413569 x 10", @ 0
Tl 0T T T T T T T T iesar dissoz [y""] T [ [ o
i - yas) 2 + 2kw,s + w? Ra(s)
0 0 I! 318502 80169820 -
(332) _ 90000 1 0] [ R,(s) 35)
2
3 and s* + 4505+ 90000} o R:(s)
3253160 —2454610' 472383 — 291217 For this real nontrivial systeni the designed system is not only static
s I decoupling but also complete noninteracting, and the final values of
g - - :45_4610_ _1578_‘f4(_)|_" 33;80_8_ T 5_'93_83_ (33b) the unit-step responses are unity. The peak time is 0-014s and the

maximum percentage overshoot is 1%. The simulation curves for unit-
step input are shown in Figs. 2 and 3. Comparing the design results
of the proposed method with those of McMorran'® and Tiwari er
al.,'s the present result gives less overshoot and less oscillatory res-
ponses.

I
I3

" / proposed method and McMorran's method

i Y] _ X, % %o 005 010 015 020
gas-turbine system Y, s
o
Fig. 1
Structure of designed system
Y2
1 7 N\ o
Y, h
T} 0
[oL0]] 005 010 015 020
s
b
Fig. 3 ?
‘ 0 001 00— —- '010 —_— _Q.‘§_ _— 030 . Responses of various designed systems 10 a unit step in r,
y a B r=0
4 r,=1
! McMorran’s method

—— - — proposed method: § = 0-75; wy, = 300
— — — proposed method: Q = I,; R =1,
Tiwari’s method: Q=71 R=1I,

5 Conclusion

A new method, based on a state equation in the phase-
variable block co-ordinate, has been presented to determine the
optimal block controllers for a class of multivariable systems. The
reverse process of obtaining the optimal block controllers has been
used to determine the weighting matrices of the quadratic perfor-
mance index.

When a multivariable dynamic system is formulated in a matrix
differential equation, the proposed method is more suitable for the
determination of the optimal controllers than the conventional
approach. Also, it is simpler to determine the weighting matrices than
the conventional approaches. However, the proposed method is limited
to a class of multivariable systems whose state equations can be
formulated into matrix differential equations or the state equations
in the block companion form.
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8 Appendix
Block linear transformation

Consider a class of completely controllable, linear, time-
mvariant. multi-input, multi-output system

Xo(r) = Agxo(t) + Bou(t) (36a)
y(t) = Coxolt) 36b)

where 4o ER" X" By ER"X™ (o € R'X™ x,(1) € R** !,
y@OER ur)e R"‘ X1 Assume that I, m <n and n/m =k (an
integer) and def ne r = n —m. By a linear transformation

xo(t) = Tyz,(t) (€1)]

We wish to construct a state equation in the controllable block
companion form

matrices, respectiv

2,(t) = A,z,(t) + Byu(r) (384)
y(t) = Cyz,(1) (38b)
where
Om Im Om Om-..' On
|
Om Om Im Om..., On
A|IIIAII !
A,=T;'A°T|=-——|—A = =
ArAn Om Om Om Om ... in
ST
| -p, -b, =D, D, ... —Ds
(38¢)
0, x
B, = T;'B, :[ r m]‘(_‘, = CoTy = [N, N3,... Ny,
mXm
(384)

AW ER T AL ER ™ Ay ER™ X" and A, ER™ XM,

The constant matrices D; € R"' Xm and N;€ER'* ™ are called block

a7 = | = il
elements and the matrix I, )?. R"' Xmisan |denmy matrix. ’i"q' Imei for i=1,2,....r (44a0)
The matrices O, -Omx,,,GR'” ™ and O,X,,.ER' ™ are nult qu, = Oyt for i=12....r—m (44b)
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eqn. 38 can be dlrec.tli/ formulaled as
Y(s) = [Ny + Nos+ ...+ Ns®* ' [D, +Dys + ...
+Dys* Y +H 1% UGs)
= Ms)D ' (s)U(s) = T(s)U(s) (39)

where U(s) and Y(s) are Laptace transforms of u(t) and p(1). and T,(s)
is a matrix transfer function.

The objective is to derive the linear-transformation matrix T, in
eqn. 37. Because T, transforms a state equation in eqn. 36 to a block
companion form in eqn. 38, T is called as a block linear transform-
ation. We further assume that the matrix B, in eqn. 36 can be

B
partitioned into the form of U where By ER™X™ s a non-

21
singular matrix. This can be accomplished by rearranging the sequence
of the elements in the state vector x,(7) in egn. 36. By applying the
first linear transformation

xo (1) = Ky x,(t) (40)
where
K - [lrx, B..l i KT = [err —BHB;.']
Opxr By O xr B3
we have
X, (1) = Ayx (0) + Byu(r) (41a)
y() = Cix, (1) 41»)
where
A, =K7'A.K, =['_4" A_"], B, =Ki'B, =[0"""]_
An  An, m X m
Ci=CoK, Ay ER*T A, €ERT*™ 4, €™ X" and
Ap ERMX™,

To obtain the required state equation in egn. 38, we perform the
second linear transformation

x (1) = Kz, (D) (42)’
where
2 =|'Q.' O,X,,.}. Kt = [Q: Or)(m] (426)
—0:Q07" Inxm Q: lnxm
and
07 071 = [91.---.4r ! Grerso- @l (420)

T desng,natcs the transpose of the matrix. The unknown matrices
QT €R™ X" (with r column vectors ¢;) and QT ER™*™ (with m
column vectors ;) can be evaluated as follows.

From eqn. 424, 41a and 38¢ we have the matrix equation

Ki'4, = A.K3! (43a)
or
(Q1 Oy xm Ay Ay _[An An Q1 Oxm
Q. lme] ['4_21 'Zzz] - [421 Azz] [Qz 'me]

(43h)

Expanding eqn. 43b yields

0,4, = 4,0, +4,,0,

QiA;;, = An (43¢)
and

QA + Ay = AnQ, +AnQ:

QA +An = An (43d)

Performing a transposc operation on eqn. 43¢ and substituting eqgns.
38¢ and 42c¢ into it, we have the following recursive formulas:

e

-

e Y

|



and

AlGrome; = ¢! for i=1,2,....,m (44¢)
where e is the m x | unit column vector whose ith element is unity,
and all other elements are zeros. Eqn. 44 can be further simplified as

follows:

1 (i) If k = 2 then
F. . and @ =AD" for i=1,2,...,m (45q)
Imei = Al q; for i=1,2...,m (45b)
3 1 (ii) If k > 2, then
L Z‘Tz -t Om X1
AT @hH' [
3 g =| . - Smx fori=12,...,m (45¢)
A5 @ant Om x 1
A7 @anH+? e
and
Qim+i A—llq(] Vm+i Jor i=12,... ., mandj
=1.,2,...,k—1. (45d)
When the square matrices in eqns. 452 and 45¢ are not singular, the
q; in eqn. 42 can be obtained. Note that the determination of ¢; in
eqn. 45 only involves one inversion of a matrix. Thus the transform-
ation matrix 7, in eqn. 37. which links the co-ordinates x,(r) in
eqn. 36 and the required co-ordinates z, (¢) in eqn. 38, is
xo(t) = K\Kyz,(1) = Tyz, (1) (46)
It is believed that the block linear transformation T is new.
An illustrative example
Consider the dynamic equation of an actual gas-turbine system'?
which is completely controllable and observable.
Xo(t) = Aoxo(t) + Bou(r)
y(1) = Coxo(2) (CY))
. where
> —1-268 —0-04528 1498 9515
1002 —1957 8:52 1240
Ay =
0 0 -10 0
0 0 0 —100
0 0
} By 00 1 0 0O
By, = = —e—— 0 =
By 10 0 01 00
0 100
n=4,l=m=2,r=n—m=2, and k =n/m =2, The block com-
panion form in eqn. 38, the corresponding matrix transfer function,
of this system are required.
Applying the linear transformation in eqn. 40 yields the state
equation in eqn. 41
%1(0) = Ayx, (t) + Biu(0)
y(©y = Cix, (9 (48)
where
—1-268 —0-04528 ' 1498 95150
|
Ay A 1002 —1957 | 852 124000
A =l-=-=-—-|=}|-—-—-"=-"=-"=-"=—=—== == -~
VA A 0 o 1 -10 o0
- |
0 0 , 0 —100
o 0| _ 1 0'0 o
Bl BRI c‘ - [ l ]
1 0 o 1,00
0 1
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and

| 1

1 0:0 0
K, = [’:X:,'.”L'] l 100 *
o,,,x,lsz. 0'10 0 1
0, 0 100

©c O o

Applying the recursive algorithm in eqn. 454, we have
85-2 ]" [ I ]
124000 0
—1-98423 X |0'2]
1-52258 x 1072

14-98
95150

@ =40 =

ey, 1498 827 o
q: = (A2) 'e° =
95150 124000 I

1-36336 x |0'5] ;
—2-39708 x 107°

and
- —1:268 1-002 —1-98423 x 10 i
Q3=/1|1|‘q|=l__ Y ]l -] .
0-04528 1957 1-52258 x 107 :
404164 x 1072 :
- | —2-88984 x 10"]
o = ATq, = [—1-268 100*] [ 1-36336 x 10'»‘]
—0-04528 —1957 —2-39708 x 107¢
—196893 x 10‘5]
= (49)
4073763 x 10°¢
The transformation matrix K, in eqn. 425 is
o (@ e
Q. : I x m
—198423 x 1072 1:52258 x 107% : 0 0
1-36336 x 107%  —2:39708 x 107¢ I 0 0
| 404164 x 107 —288984 x 107 11 0
|— 196893 x 1078 4073763 x 107 : 0 1
The block linear transformation 7T, in eqn. 46 is
xo() = K\ Kp2,(t) = Thz, (1) (50)
where
1498 95150 0 0
85:2 124000
18:5671 ~26221 10 O
—521389x 107° 136829 0 100
The required block companion form in egn. 38 is
() = Az () + B () N
(0 = Cizy ()
where ‘
0 0 1 0
0 0 : 0 1 ;
AT Tigsen T T 2620 Toneser 26221 i
5214x 10" —136-83 : 0 —101-368 b
455 | i
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where

00 1498 95150 1 0 0 1498 95150 00
By=|-—1 C = I N = N =
1 0 852 124000 1 0 O 852 124000 0 0
0 18:5671 ~26221 ] '
The corresponding matrix transfer function in eqn. 39 is ! —5-214 x 107° 136:83)°
= + + 15! i
Y6 = [Ny + Nas] [Dy + Das + L") UG 62) R [11-8567 —262:21 ] [ 1 o] i
\ : 0 101368 )" 0 1
' |
)
4
]
-e |
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Determination of Equivalent Dominant Poles and
Zeros Using Industrial Specifications

LEANG-SAN SHIEH, MEMBER, IEEE, YING-JYI PAUL WEI, MEMBER, [EEE, HSI-ZEN CHOW, aAND ROBERT E. YATES

Abstrect- A graphical method and an analytical method are presented
to determine the equivalent dominant poles and zeros of a system using
amigned industrial specifications. A second-order transfer function
with two poles and one finite zero is used to investigate the relation-
ships between industrial specifications and the two poles and one finite
zero. Algo, it is used to verify the rule of the thumb obtained from
Axelby’s empirical results. A frequency response data matching method
is proposed for fitting a low-order transfer function using the assigned
industrial specifications that are obtained from a given high-order
transfer function. Thus the equivalent dominant poles and zeros of
s high-order system can be determined from the identified low-order
model.

1. INTRODUCTION

N the filter and compensator designs it is necessary and use-

ful to have a rapid method or a simple graphical method to
determine the poles and zeros that dominate the characteris-
tics of the transient response. These poles and zeros are called
the dominant poles and zeros that can be used to estimate the
dynamic behavior of the system response. In the literature,
the definitions of the dominant poles and zeros are ambiguous.
For example, the dominant poles are commonly defined as the
poles which are located near the imaginary axis (the jw axis})
or the poles which have the smallest absolute value when no
significant zeros appear. Sometimes a pole P, is defined as the
dominant pole [1] if 1P1> 6P, where P, are other system
poles. The roles of dominant zeros that are often neglected
in the literature become signiticant if the precise dynamic
characteristics of a system in the transient state are required.
The zeros not only contribute to the initial conditions of the
transient response but also increase the bandwidth in the fre-
quency domain; therefore, the roles of the zeros are as im-
portant as those of the poles.

As the technologies are progressing, the accurate description
of many physical systems results in a high-order transfer func-
tion that consists of many clustery poles and zeros in the s
plane. The poles near the jw axis may not be dominant poles
because the dominant effects on the transient response be-
havior of the poles are cancelled by the nearby zeros, and the
system response may be characterized by the collective efforts

Manuscript received July 13, 1978; revised January 25, 1979. This
work was supported in part by U.S. Army Missile Command, Redstone
Arsenal, AL. DAAK 00-79-C-0061, and U.S. Army Research Office
DAAG29-77-G-0143.

L. S. Shieh, Y. J. Wei, and H. Z. Chow are with the Department of
Electrical Engineering, University of Houston, Houston, TX 77004.

R. E. Yates is with the Guidance and Control Directorate, U.S. Army
Missile Research and Development Command, Redstone Arsenal, AL
35809.

0018-9421/79/0800-0125$00.75 © 1979 1EEE

of a group of clustery poles and zeros. This implies that the
poles and zeros which are not near the jw axis may dominate
the characteristics of the system response. Therefore, the
equivalent dominant poles and zeros, rather than the dominant
poles and zeros obtained from the geometric locations in the
s plane, become significant in the analysis and synthesis of a
high-order system. Furthermore, the design goals and the
nature of a high-order system are often characterized by a set
of control specifications [2] (called the industrial specifica-
tions) that are commonly classified as 1) the time-domain spec-
ifications, for example, the rise time and the overshoot, 2) the
frequency-domain specifications, for example, the bandwidth
and the phase margin, 3) the complex-domain specifications,
for example, the damping ratio and the undamped natural
angular frequency or the equivalent poles and zeros in the s
plane. If the relationships among the time-domain, frequency-
domain specifications, and the equivalent poles and zeros (the
complex-domain specifications) can be simply determined
from a simple equation or a working graph, then the selected
poles and zeros in the design of filters and compensators be-
come meaningful, and the design processes can be greatly
simplified.

In this paper, a graphical method and an analytical method
are proposed to determine the equivalent dominant poles and
zeros using assigned industrial specifications. First, relation-
ships among various industrial specifications will be studied.
A second-order transfer function having two poles and one
finite zero is used as a basis for the investigation. Several
working graphs and mathematical expressions are developed
for the determination of the two dominant poles and one
dominant zero using the assigned industrial specifications. Then
the equivalent dominant poles and zeros of a high-order sys-
tem are determined by a new dominant frequency-response
data matching method. The equivalent dominant poles and
zeros thus obtained satisfy the exact assigned industrial
specifications.

II. THE RELATIONSHIPS AMONG VARIOUS INDUSTRIAL
SPECIFICATIONS

In control system design, the design goals are usually ex-
pressed in terms of a set of industrial specifications. The place-
ment of poles and zeros based upon the assigned specifications
needs certain experiences. If the relationships among various
industrial specifications can be determined, then nonconflict-
ing industrial specifications can be assigned as design goals, and
the meaningful dominant poles and zeros can be selected for
filter and compensator designs. Thus an effective design
method may be developed.
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An empirical study on the relationships among various in-
dustrial specifications has been conducted by Axelby [3].
The empirical rules or the rule of the thumb, which link the
specifications in both time and frequency domains, are listed
as follows:

(1a)

where M, is the maximum value of unit-step response, M, is
the maximum value of the closed-loop frequency response,
and ¢y, is the phase margin;

M, ~—
wt‘

(1b)

where M, is the maximum value of the error of the unit-ramp
function and w, is the gain crossover frequency

(ic)

where w,, is the peak value frequency or the frequency when
M, occurs;

wWp X W,

M, =~ w, (1d)
where M, is the maximum value of the unit-impulse response;
- (1e)
>~ —- e
P,

where ¢, is the peak value time or the time when M, occurs;

18

t,~—
w,

(1f)

where 1, is the time when the maximum error of the ramp
function with respect to its input occurs;
1

w(‘

.=

(1g)

where ¢, is the time when M, occurs.

Other rules of the thumb according to Truxal (4] are listed
as follows:

t,wp ~0.6mto 097 (1h)

where ¢, is the rise time or the time required for the response
to go from 10 to 90 percent of its final value and wy is the
bandwidth in rad/s;

1
ta = (1i)
v

where t; is the delay time or the time required to reach 50
percent of its final value and K, is the velocity error constant.

Some other analytical results that represent the relationships
between the time-domain specifications (but not the frequency-
domain specifications) and the complex-domain specifications
have been developed and can be found in standard textbooks
{5], [6]. The most commonly used function for investigating
the relationships is

Yo wn

R B (2)
R(s) s+ 2kw,s+w;

where Y(s) and R(s) are the output and input functions,
respectively, and £ is the damping ratio and w, is the un-
damped natural angular frequency. From (2) we observe that
the zero of the system is located at infinity, and is not a
significant zero. Since the time-domain specifications are of-
ten used to define the characteristics of the transient behavior,
the roles of zeros become significant. Therefore, a better
model than that of (2) should be used to study the relation-
ships among the industrial specifications. The transfer func-
tion of a unit-feedback system that has two poles and one
finite zero is used as a basis for the investigation. The pro-

posed closed-loop transfer function is then,
Y bisth B(s
——(22 = T(S) = it 2 = L

TW,s + Wi
R(s) sPtaistay, A(s)

s2+ 28w, s + W

s
T{—]+1
_ (w,,) Ts* + 1

= *2+3<t+
(i)ﬂ (s*)° + 28s* + 1
\add

where s* is a normalized complex variable. a; and b; are con-
stants, and A(s) and B(s) are two polynomials. The normalized
poles and the original poles are at

st=-t+jV1- 8 5= fw, tjw, V- £

3)

s3=-% le’EZ 5= Ewn'jwnvlfgz (4a)
and the normalized zero and the original zero are at
1
sp=-— g=-n (4b)
T T

The open-loop transfer function G(s) of the system in (3) is

s

K.[1+ -
= Twys + wy . __l ( b)
G(S) _SIS"'(:swn N T(a)n)] ) s(] + £> (S)

a

where K, = w,, /(25 1) is the velocity error constant if 7 < 2§

a=2t T, and b=w,/T.

Comparing (2) and (3) we observe that a finite zero has been
inserted in (3). The zero contributes the initial condition at
the transient state. and it reduces the velocity error at the
steady state. Also it provides an additional bandwidth in the
frequency domain. which increases the phase margin and im-
proves the stability of a system.

The derivations of the relationships among the industrial
specifications are shown as the following seven relationships.

1) The Relationships Among M,. tp,. £. w,,.and 7. The unit-
step response of the system in (3) gives

TW,S + W2
Y(s) = ——0-__ 1 - i
) s(s? + Awys + w'z‘l) (62)
The inverse Laplace transtorm ot Y(s) results in
Y()=1 e tont [cos wy V1t
+ E 7 . \/_—2
\/l .{2 sinw, V1 £ (6b)
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Differentiating y(r) with respect to ¢ and setting the result
equal to zero yields

= (n +tan™? '—:/;_—-73—) / (w,, 1- z’). (6¢)

Substituting (6¢) into (6b) and simplifying it gives the maxi-
mum value of the unit-step response

M, =1+e tnfp(s? - 275 + 1)V2, (6d)

2) The Relationships Among My, w,, §, Wy, and 1: Apply-
ing Higgins and Siegel's complex variable differentiation
method [7], we can solve the peak value frequency w, from
the following equation:

R |
Thus we have
@p = 1—25’} ifr=0 ()
M =1eV- 8|’
and

wp =‘_%'L -1 +‘/(1.2+ 1)2 n 472£2]l/2

2 s
M,=\1/_;[\/W_(,,H) ., fT#0.
+2%7) 12, -

3) The Relationships Among §p,, w,, &, wy,, and 1: Using
the definitions of ¢,, and w,,

O =/G(S)]s- fup +180° (8a)
and

G5 o, =1 (8b)
we have

(“:’-T‘) T+QE- 1) (%)

”"'“""[ T c] )
and

W = W [287 - 2687 + V28T - 280) + 1] V2, (8d)

4) The Relationships Among t,, M., &, w,, and 1: The er-
ror signal e(r), which is the difference between the ramp in-
put 7(?) and the time response )(¢) of the same input to the
system in (3), is
%-7 1

byt Y]
wn Aw,,e [Bcosw,V1-E't

- Csin wy V1 - £31) )

«)=

where
A -(l - E’),B'(zf - f)(l - Ez)'
C=(1-28%+1p)VI - E’.

|
!
|
1
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|
1

uy =
T
£+1.0

0 0.25 0.5 0.75
Fig. 1. Relationships among My, &, w,, and + shown in (6d).

Differentiating e(z) with respect to ¢ and setting the result
equal to zero we have

t,= : tan”! [ﬂ]
waV1- 8 T-&
Substituting the ¢, into (9a) and simplifying it we have
M. = [28- 1+ V(1 + 77 - 2rH)e n0] foop. (9¢)

5) The Relationships Among t,, M,, ¢, w,, and 1: Dif-
ferentiating the unit-impulse response y(f) of the system in
(3), y(1), and setting the result equal to zero, we have the time
t. at which the maximum value occurs, or

S S [(1 - 2%1)V1 - g’]
wy V1 - -2t 47 [

Substituting 1, into J}(¢) yields the maximum value of the unit-
impulse response M,, or

M, =wpe nle /77 - 27 + 1., (10b)

6) The Relationships Among K, §, w,, and 7: The velocity
error constant K, can be derived from the basic definition as

(9b)

t (102)

Wn
2% -

7) The Relationships Among wy, £, w,, and 7: The defini-
tion of the bandwidth of a system is

K.,=£in;s-G(s)= > if r <2t 1)
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Fig. 2. Relationships amony Mp. £, wy. and 7 shown in (7).

P:;

Fig. 3. Rclationships among 1, £, wy,. and 7 shown in (6¢).

The analytical expression is

265+ + 72 )P+ 11V (13)
Most important time-domain and frequency-domain speciti-

cations have been analytically expressed in terms of £, w,,, und

wp = w1+ 72

_ s i An

IFig. 4. Relationships among 1/sin ¢,,,. £. w,,. and 7 shown in (8¢).

T T

n, U8 Joh JLois -1,

Fig. 5. Relationships among we., £, wy,. and 7 shown in (8d).

7 which are the specitications in the complex domain. These
expressions are normalized and graphically shown in Figs. 1-
11. If an industrial specification is assigned, the corresponding
£ and 7 or the equivalent poles and zero in (4) can be deter-
mined from the plotted curves. Also the curves in Figs. 12-
IS can be used to verify the rules of the thumb proposed by
Axelby [3]. It is observed that the accuracy of the rules de-

2.k - o oo - kT i
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Fig. 6. Relationships among wp, £, wy, and r shown in (7).
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Y

0.75

T T

0. 0.25 0.5

Fig. 7. Relationships among ?, ¢, w,, and r shown in (9b).

pends upon the range of the damping ratio and the zero loca-
tion. Furthermore, from the developed working graphs, a set
of meaningful and nonconflicting specifications can be as-
signed for the design goals of a control system.

111. DETERMINATION OF EQUIVALENT DOMINANT POLES
AND ZEROS FROM A HIGH-ORDER MODEL

In the design of high performance control systems, quite
often several specifications are assigned as design goals, and the
corresponding dominant poles and zeros are required. This is

129

¥ R T
0. 0.25 0.5 1.0

Fig. 8. Relationships among M,, £, wy,, and 7 shown in (9¢).
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0. 0.25 0.5 0.75 1.0

Fig. 9. Relationships among )ff,, §, wp, and 7 shown in (10b).

a problem of a high-order transfer function fitting using indus-
trial specifications. Shieh et al. [8], {9] have developed an
original synthesis technique to fit a second-order transfer func-
tion based on three industrial specifications. The Newton-
Raphson multidimensional method [10] was applied to solve
the resulting nonlinear simultaneous equations that can be
converted to a single variable quadratic equation. However, it
is well known that the Newton-Raphson method will only con-




130 1EEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, VOL. 1EC1-26, NO. 3, AUGUST 1979

e,

1
1

T R I T

0 0.25 0.5 0.75 el

Fig. 10. Relationships among 1., £, wy,. and r shown in (10a).

verge for a small range of starting values or the initial guesses.
It is also known that high-order nonlinear equations have
many solutions that depend heavily on the initial guess used.
For general nonlinear equations that cannot be converted to a
single variable equation, the Newton-Raphson numerical
method may not converge to the desired solution using arbi-
trary initial guesses. In this paper, the original synthesis method
[8), [ 9] is extended for modeling a high-order transfer func-
tion using many industrial specifications; and an analytical
method is proposed for the estimation of the good starting
values. Thus the desired dominant poles and zeros can be de-
termined from the identified transfer function. The method
can be well iltustrated using the following example.

Suppose that the poles and zeros that represent the follow-
ing given industrial specifications are required to be determined.

Type “1” system (14a)
w, the gain crossover frequency = 4.7 rad/s (14b)
@ the phase margin = 45.6° (14¢)

M, the maximum value of the closed-loop frequency

response = 1.5 (14d)
wp the peak value frequency = 3.5 rad/s (14de)
wp the bandwidth of the closed-loop frequency

response = 6.5 rad/s. (14f)

The assignments of the specifications in (14) closely follow the
rules shown in (1). Therefore, the conflicted assignments can
be avoided. The first two are the open-loop specifications,
while the others are the closed-loop ones. Three equivalent
poles and two equivalent zeros that represent the assigned

“b

T T T

g. 0.25 0.5 0.75

-
f+1.0

Fig. 11. Relationships among wy, §, w,, and 7 shown in (13).

specifications in (14) can be determined. The third-order
model is

Y(s) _ _ K(s +z, (s + z,)
RE) T ™+ 2kcns + a2)s + )

R(s)
" blsz + bzs + b3
sPta;s? tasta;

(15a)

where K, p, &, w,, 2y, and z; or the corresponding a; and b,
are unknown constants to be determined. Because the system
is a type “‘1” system, the final value of the unit-step response
of the system in (15a) is unity or

Y(0)|ron = lim 5 RES)Y(s)

1 bis*+bys+b b
=lims‘(—)(—_~_—"3 Lo )=—1=1
540 SI\S" ta s tasta, [ £}

(1sb)
or a3 =b,. (15¢)
As a result, (15a) can be simplified as

Y(S) - _ b|$2 + b;s + dy
R(s) RS) 5P+ ﬂ]Sz +a;s +ay ) (|Sd)
The open-loop transfer function G(s) is
bis +bysta
G(@s) = L (15¢)

s[s® +(a, - by)s+(a;- b))
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Following the definitions shown in (14), we can construct

o ww a set of nonlinear equations f;(a,, a3, a3, by, b;) = 0 for i =
S‘Mm pot 1,2,-+,5.
The definition of w,. is
\ IG(jw, )l = 1. (16a)

The corresponding nonlinear equation is
f1@y,a3,a3, by, by) = (a, - by)’wi + [w) - (@, - by)w,)?
- (@ - byw?)? - biw2=0. (16b)
The definition of ¢,,, can be expressed as
Om = 180° + fG(jw,) . (17a)
The nonlinear equation is
f2(@1. 2,83, by, by) = byl (ay ~by)
- (@3 - bywiNwl - a; +by)
- tan ¢, [(@3 - by1wl)a, - by)w,
+bhywe(w? - a; +b)] =0.  (17b)

The definition of w,, is known as

. 1
IT(]w,,)I=\7-,,—. (18a)
w =]
' . L The corresponding nonlinear equation is

9. C.75 B 0.75 10 \ ,
2 2
. = - +
Fig. 12. Relationships among Mp, M,, and 1/sin ¢, shown in (1). f3(@1.a3.83. b1, b) = (a5 - bywp) b3wy
i 2
- 2l(as - a1w})? + (W} - ayw,)?)

Mo, =0, (18b)

~ 4

The definition of w, gives

e d\T(jw)!

w=wp

=0. (19a)

Following Higgins and Siegel's complex variable differential
6 technique [7], we have the following nonlinear equation:

fa(ay, a3, a5, by, b,) = [2a,a300, - Zafwf,

L} ) s
:
|
|
|
i
)
-

5 - (a3 - 3wp)(- wp + aywp)] [(as
' - bl‘*’fn)2 +(bzwp)2] + [-2a3b,w),
+2b%w) + bw,] [(a3 - a,w})?
+(-w) +a,w,)%] =0. (19b)
The definition of M,, is
T eom s = M. (202)

The nonlinear equation is
fs(ay,@3,a3, by, by) =(a; - bl“’pz))z + b%w,z,
- M3 ((as - q,})?

+ (W) - @w,)*] = 0. (20b)

0. 0.25 0.5 0.75 210

Equations (16)-(20) are a set of high-order nonlinear simulta-
neous equations which are very difficult to solve. The Newton-
Raphson method, which is available in most digital computers

Fig. 13. Relationships among M,, ¢, and 1/w, shown in (1).
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o

Fig. 14. Relationships among w . wp. and M, shown in (1)

[11]. is used to solve the nonlinear equations. To obtain the
desired solution. and to improve the speed of convergence of
the numerical method. we have to establish a set of good start-
ing values. From the developed analytical expressions of vari-
ous specifications or the working curves in this paper. we can
determine the corresponding two poles and :ne zero using
M, = 1.5 and w, = 3.5. From the rule of the thumb in (1) we
observe that the M, and w,, have indirectly included the ap-
proximated respective ¢,,, and w,.. The procedures are shown
in the following steps.

Step 1: Determine the normalized dominant poles or the £ in
(4a) using the curve drawn in Fig. 2. having 7 =0. From the
curve (7 = 0) we read the damping ratio £ = 0.35. The normal-
ized dominant poles and the dominant poles with w, = w,, =

3.5 are
s¥= 0.35+0.9368 5,= 1225+/3.27%6
s3=-0.35 j09368 s,= 1.225 j3.2786. (21a)
The second-order model is
2 12.25
TH(s) = ==t (21b)

s+ 2w st wl sPr 2455+ 1225
Step 2: Determine a dominant zero using the specification
wy, = 6.5 in (14f). The modified second-order model becomes
bys + w3l bys+12.25
534 2kw,s +w) sT 42455+ 1225

Ty(s)** = (210)

The b, can be easily determined by using the definition of

wy in (18a):

b, =3.1781. (21d)

Fig 15 Relationshipsamong Vw1, L8 and 1,3 showniin (1)

Thus a low-order dominant model is determined. However, a
third-order model is required. An extra pole and a nearby
sero are nserted into the second-order model in (21¢) to ob-
tain an approximate third-order model, or

T(s) = (008 F@idL1s + 108w,).
(55 + 28w, s+ wils + 10¢w,,)

3.4?5"15‘2 + 524067255 + 150.0625

= e - : (21e)
$ 4 14.75% +42.26255 + 1500025

Using the coetticients in (21¢) as initial guesses: af =14.7.a% =
42.2625, a¥ = 150.0625. b} = 3.49591. and b¥* = 52.406725.
and applying the Newton-Raphson method [11] to solve the
nonlinear equations in (16} through (20) yields the desired
solutions: @, =4.267162. 2, = 20.58799.4; =29.806197.b, =
3.188355. and b, = 15.561058. at 10th iteration with the er-
ror tolerance of 107%. The desired transfer function is

31883555 + 15.561058s + 29.806197

Ty(s) = = o .
) 3 4 3671625% + 20.557995 + 29.806197

The dominant poles and zeros. which represent the assigned in-
dustrial specifications, are determined from the poles P; and
seros s, in(22):

22)

Py = 1849412756

Py = 1.208824622 +73.828226318

Py= 1208824622 j3.828226318 (23a)
and

1= 4880591402 +/3.08424378

;= 4880591402 /3.68424378. (23b)

* am—
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When the distribution of the poles and zeros of a high-order
transfer function is known and the reduced-order transfer
function that consists of equivalent dominant poles and zeros
is required, it is a model reduction problem. Recently, various
model reduction methods [12]-[15] have been proposed in
the frequency domain. However, their reduced models [12}-
[15], do not keep the assigned industrial specifications, which
are obtained from the original system. The preservation of the
exact frequency-domain specifications is essential in the de-
sign of filters and compensators using frequency-domain meth-
ods [S], 6], such as the Nyquist, Bode, and Nichols chart
methods. This proposed method can overcome the short-
comings of the existing model reduction methods. The
frequency-response data at wp, Wy, w,, and w, (the phase
crossover frequency of the open-loop system for the use of the
gain margin [5], [6] are considered as the dominant frequency-
response data. If some of these data are assigned to determine
the corresponding reduced-order model, the equivalent domi-
nant poles and zeros can be determined from the reduced-
order model that consists of the exact industrial specifications
assigned.

IV. CONCLUSION

A second-order transfer function with two poles and oue
finite zero has been used to derive the analytical and graphical
expressions of various industrial specifications. For a few as-
signed industrial specifications, the corresponding two domi-
nant poles and one dominant zero can be determined from
the identified transfer function. The generalized second-
order model has been used to verify the rule of the thumb
proposed by Axelby. It has been obs2rved that the accuracy
of the rule of the thumb depends on the range of the damping
ratio and the zero location. From the developed graphical
expressions, a set of meaningful industrial specifications can
be chosen and assigned as the design goals for the filter and
compensator designs. A dominant frequency-response data
matching method has been developed to construct a low-
order transfer function using the assigned industrial specifica-
tions that are obtained from a given high-order system. Thus
the equivalent dominant poles and zeros of a high-order sys-
tem can be determined from the identified low-order transfer
function that has the exact industrial specifications assigned.

133

More over, the proposed method in this paper has been
successfully applied to redesign the compensators of a stabi-
lized pitch control system of a real semiactive terminal homing
missile [16]. The overall system characteristics of the rede-
signed missile [17]) match those of the lower ordered model
obtained from assigned industrial specifications.
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A method for modelling transfer functions using dominant
frequency-response data and its applications

L. S. SHIEHt, M. DATTA-BARUAY, and R. E. YATES}

This paper presents a fundamental method for modelling transfer functions using the
basic performance specifications and frequency-response dai . at the dominant
frequencies. A set of non-linear equations is constructed from the definitions of the
basic performance specifications, the dominant frequency-resporn- data and the
unknown coefficicnts of a transfer function. A Newton-Raphson multidimensional
method is applied to solve the non-linear equations. }. ir methods are given to
construct approximate representations of the desired transfer functions for the
estimation of guod starting values to ensure rapid convergence of the numerical
method. The applications of the proposed method are: (1) developing & standard
model and/or a transfer function of a filter or a compensator using the specified
dominant frequency-response data ; (2) identifying the transfer function of a system
from available experimental frequency-response data; and (3) reducing high-order
transfer functions to low-order models using dominant frequency-response data.

1. Introduction

The nature of the transient response of a system is often characterized by a
set of performance specifications in the time domain such as the settling time
and the rising time. In the frequency domain, another set of performance
specifications (Gibson and Rekasius 1961) is used to represent the charac-
teristics of the system performance. The bandwidth and the phase margin
are typical examples of the frequency domain specifications. In designing
compensators and filters, and in predicting the nature of time response of a
system, practicing engineers are often interested in the dominant poles. These
can be converted to a damping ratio and a natural angular frequency specified
in the complex plane. These specifications are often called the complex-domain
specifications. The engineer is also interested in various error constants (for
example, the velocity-error constant), which represent the characteristics of
system performance in both time and frequency domains (Truxal 1955). The
frequency-response data at the frequencies of the frequency-domain specifica-
tion are considered as the dominant frequency-response data in this paper
because these data characterize the nature of the system responses. For
example, the phase margin (¢,,) of a system at the gain-crossover frequency
(w,) is often used as a measure of additional phase lag required to bring the
system to the verge of instability. Also, if the phase angle of the open-loop
system at the w, is near — 180°, then the response of the closed-loop system will
be oscillatory.
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1098 L. 8. Shieh et al.

In the design of a control system in the frequency domain, the specifications
discussed above or the dominant frequency -response data are usually considered
as design goals. Various frequency-domain or complex-domain approaches
(Nyquist 1932, Evans 1953, Bode 1954, Thaler 1973) have been developed and
widely applied in industry for compensator designs to achieve desired perfor-
mance. The most popular design methods are those based on the Nyquist
(1932) plot, the Bode (1954) design, and the root-locus method (Evans 1953,
Thaler 1973). To improve the efficiency of the design tiethods, it is advan-
tageous to have the design gouals expressed as muathematical functions or
transfer functions (defined as the standard models). Once standard models
have been ascertained, the corresponding time-domain specifications and
temporal responses can be determined from digital or analogue simulations of
the standard models. Also, the frequency-response data of the desired com-
pensator can be determined from Nyquist plots or Bode diagrams by comparing
the frequency-response curves of the original and the desired response models.
The required filters and compensators (Del Toro and Parker 1960, Thaler 1973)
can then be easily determined.

Empirical rules or rules of the thumb that link the specifications in the
time, frequency, and complex domains have been developed by Truxal (1955),
Del Toro and Parker (1960), Axelby (1960), and Seshadri (1969) et al. From
these results, it is observed that most time-domain specifications and complex-
domain specifications can be approximately converted to frequency-domain
specifications. Some of these frequency-domain specifications are phase
margin (¢,), maximum value of the closed-loop frequency response (M),
gain-crossover frequency (w.), peak value frequency (w,), the bandwidth (cw,,),
and velocity-error constant (K,). Other important frequency-response data
are : (1) the real part of the open-loop transfer function G(jw) at the phase-
crossover frequency (w,) which has been used to define the gain margin (G )
(2) the real part and imaginary part of the closed-loop function (7'(s)) and the
open-loop function G(s) at s = jw £ jwy=j0. The data at w =0 often indicate
the final value and the type of the system. In a type 1 system, I_[G(j0)] has
an infinite value, while Re [G(j0)] has a finite value from which an asymptotic
line (Del Toro and Parker 1960) van be drawn in a Nyquist plot ; (3) the corner
frequencies in the Bode plot of G(jw) in the regions of w=w, where
20 log |G(jwn)|=+15dB, and w=w, where 20log |G(jw.)|=—15dB.
Chen (1957) has shown empirically that the open-loop poles and zeros of a
system can be approximated by retaining the Bode plot in the regions of the
1 15 dB boundaries. Some dominant frequency-response data are indicated
in Fig. 1.

Through use of the above dominant frequency -response data, a basic method
is proposed in this paper for modelling various transfer functions. First, a set of
simultaneous non-linear algebraic equations, based on basic definitions of the
dominant frequency-response data and the unknown coefficients of a desired
transfer function, is constructed. Then the Newton-Raphson method
(Carnahan et al. 1969, IBM 1977) is used to solve the non-linear equations.
However, as is well known, the Newton-Raphson method will often only
converge for a small range of starting values; therefore, four methods are
developed in this paper for estimating good starting values so that the numerical
method (IBM 1977) will converge rapidly to the desired solution.
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Figure 1. Nyquist plot of an open-loop system G(s).

The applications of this method can be classified as follows.

(1) When the design goals are predescribed by the dominant frequency-
response data, which may be obtained from the frequency-domain

1955, Del Toro and Parker 1960, Axelby 1960, Seshadzi ef al. 1969),
and a standard transfer function is desired, this is a design problem.
Chen and Shieh (1970) and Wakeland (1976) have proposed analytical
methods for the compensator fitting. However, their methods are
limited to filters and compensators in which the unknown coefficients
can be solved by a quadratic equation. The method of this paper

overcomes this difficulty.
(2

~—

The transfer function obtained in this paper is the function of the original

|
1
|
j
specifications (Gibson and Rekasius 1961) or equivalent ones (Truxal f
i
system. When dominant frequency-response data can be obtained 4

from experimental data of a practical system and the mathematical “

function of the system is desired, this is an identification problem.

3

~—

When the dominant frequency-response data are obtained from a given :
high-order transfer function and various low-order approximate models |

are required, this is the model reduction problem. The reduced models
obtained in this paper have the same selected dominant frequency- i
response data as the original system. Thus, the design processes in the :

frequency domain can be greatly simplified.
4E2
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2. Modelling non-linear equations
Given a transfer function 7'(s) of a unity ratio feedback closed-loop system

bo+b,8+by82+ ... +b,8™ m(s)  Gs)

T(8)=ao+013+a282+ +a"8”—d_(8_)_ 1+Gs)

(La)

where n(s) and d(s) are the numerator and denominator polynomials, res-
pectively, and a; and b; are constants. If the system is a type I system, the
open-loop transfer function G(s) is
K(l4+c,8+co82+ ... +c,87) p(8)
G(s)= = 1b
(¢) s(l+dis+dys®+ ... +d?) q(s) (1)
where p(s) and g(s) are the numerator and denominator polynomials. K, I, ¢,,
and d; are constants. K is a velocity-error constant (K,) if I=1.
The equations for dominant frequency-response data are :

(1) System type is determined from

G(jwo) =Re [G(jwg)] + L pn[G(jwe)] at wy=0 (2a)
or
G(j0)=Re [G(j0)]

b for a type O system (2b)
T(j0)=_
%y
Re [G(j0)]=K(c,—d,)
IalG(50)]=~ 0 for a type 1 system 2¢)
. by
T(j0) =1
(2) Phase margin gives
Pn= 180°+ L G(jw) (3a)
where
|G(jwe) =1 (3d)
w, is the gain crossover-frequency.
" (3) Gain margin yields
Gp= ! (4 a)
® | Re[G(jw,)]
where
LQ(jw,)= —180° (4b)

w, is the phase crossover frequency.

(4) M,= IT(jwp)'[=ma.ximum value of the closed-loop frequency
response (5a)
where
a|T(jw)|
dw

w,, i8 the peak value frequency.

=0 (6b)
Vwp
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®) |T ()| = ®)
V2
where w,, is the bandwidth.
(6) ]G(jwcl)] =656 (7Ta)
or
20 log |G(jw)|=+15dB at w=wg (7b)
and
|G(joeg)| =018 (7¢)
or
20 log |G(jw)|=—15dB at w=w (74d)

A set of non-linear equations can be formulated from the basic definitions
of the assigned dominant frequency-response data in (2)-(7). The procedures
can be illustrated by using the following example. The dominant frequency-
response data in (2 ¢), (3}, and (4) are shown in Fig. 1, which are marked as
A, B, and C and given as follows :

(1) Re [Q(jwy)]=—21 and I [G(jws)]=c0 ab w,=0rad/s

or T{jwe)=1 at wy=0radfs (8 a)
(2) Re [Q(jw,)]= — 16 at w,=1-9rad(s (8d)
(3) LG(jw,)=—180° at w,=1-9rad/s (8 ¢)
(4) ¢ =180°+ L G(jw,) =57 at w,=3-2radfs (8d)
) |6(jwe)| =1 at w,=3-2radjs (8e)

Five conditions are given in (8). Therefore, various transfer functions with
five unknown coefficients can be constructed. Assume that the desired
transfer function T'y(s) is

bo+by8 + bys?
Qg+ 2,8 +2g8% + g8

Td(8 ) = (9 a)
From the conditions in (8 a), it may be observed that the system is a type 1

system. Therefore b,=a, Also, to simplify the equation wo let a,=1.
Thus, we have

l Gy + by + bys®
T (8)=—"2 X 78 9
a(®) Gy +a,8+ay8t +8° (08)
l The corresponding open-loop transfer function Gy(s) is
K(1 +c,8+ce8%)
= —— T 1
Gal®) 8(1 +d\8+dgs?) (10)
l where
ao bl b, a. ‘—b' l
K==———-, Cy=—, Cg=-—, dy=—"—" and by=
‘ a,-b’ e’ " a’ ' a-b e -b
mm———— T
PO

| SR
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Following the basic definitions and the assigned data in (8) yields a set of
non-linear equations :

(1) The assignment in (8 @), or Re {G(j0)]= — 21, gives
f1(@g, ay, @y, by, by) =ayby — b2 —aga,+agh, +2:1(a; ~b,)2=0 (11 a)
(2) The specification in eqn. (8 b), or Re [G(jw,)]= — 15 at w, = 1-9, yields

fal@or @y, @y, by, by) = (@, — by)(@g — 3-61b,) — b (a, — b, — 3-61)
—1-5[3-61(ay— by)® + (@, ~ b, — 3-61)2] =0 (11b)

(3) The condition in (8 ¢}, or £ G(jw,)= —180° at w,= 19, gives

f3(@o; @y, @3, by, by) =3-61b,(ay—b,)
+(ag—3-61by)(ay — b, —361)=0  (I1c)

(4) The specification in (8 d), or ¢, =5'7° at w,.=3-2, yields

fi(@0» @y, @y, by, by) = 10-24b,(ay —by) + (@9 — 10-24b,)(a, — b, — 10-24)
—0-319 402 24[(a, — b,)(a, — 10-24b,)
—by(a,—b,—10-24)]=0  (11d)

(5) The assignment in (8 ¢), or |G(jw,)] =1 at w,=3-2, gives

fs(ag, ay, ay, by, by) = (@g — 10-24b,)% + 10-24b,2
— 104-8576(ay — by)2— 10-24(a, ~ b, — 10-24)2=0 (11 ¢)

Equation (11) is a set of high-order simultaneous non-linear algebraic equations

which are very difficult to solve. Considering the availability of the computer i
program package (IBM 1977) (called the Z systems) in many digital computers
for the solution of non-linear equations, the Newton—Raphson multidimensional
method is suggested for solving these equations. However, it is well known
that the Newton-Raphson method will only converge for a small range of
starting values or the initial guesses. A set of good initial guesses must be
determined for rapid convergence of the numerical method. Four methods
are proposed for these good initial guesses.

3. The initial guess

It is well known that high-order non-linear equations have many solutions.
The solution and the speed of convergence of a numerical method depend ‘
heavily on the initial guesses or the starting values. In this paper, the Newton-
Raphson method is suggested for solving the non-linear equations. The
following methods, depending on the applications of interest, are proposed for
good initial guesses.

3.1. Initial guess by a synthesis method

Suppose only the dominant frequency-response data in (8) are available
and an approximate transfer function 7'3*(s) of the desired 7T'4(s) in (9 b) is
required. The 7'3*(s) is

ao* +b,* 8 +by* 82

To*e)= (12)

ay* +a,* s+ a* st +¢° -
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where a;* and b;* are the starting values of the numerical method. The steps
to obtain (12) are summarized as follows :

Step 1. Determine a second-order approximate transfer function 7',*(s)
using ¢, =57° and w.=3-2rad/s in (8d) and (8 ¢). This T,* (s) is

S S— 13a
82+ 2fw 8+ w,? (13a)

w

T,*(s)=

where ¢=the damping ratio and w,=the natural angular frequency. Two
non-linear equations, which are constructed from the basic definitions of w,
and ¢, can be obtained. These non-linear equations can be converted into a
single variable (¢ or w,) high-order equation from which the roots can be
determined. Using this approach, we have £=0-0498 and o, =3-2079. The
poles that can be considered as the dominant poles of a system can be deter-
mined from the characteristic equation in (13 a). The dominant poles are

8y.9= ~ Ewp + jwg /(1 — £2) = —0-1598 + j3-2039 (13 b)
Thus, (13 a) becomes
10-2909
* =
Te"®)= 37531945 7 10-2909 (13 ¢)

Step 2. Construct a third-order approximate transfer function T'g*(s) by
inserting in it a pole (3= ~p) and modifying the term in the numerator of
T,*(s) so that the final value of the T3*(s} equals to unity, or

Puw,? : 10-2909 P
(8242w, s+ w,B) s+ P) (s2+0-31943 4 10-2909)(s + P)

To*(s) = (13 4d)

The unknown constant P can be easily determined by using the condition in
(8 b), or Re [G(jw,)}= — 15 where w,=1-9. Thus, we have
P =14-5401 (13 ¢)

Step 3. Establish another third-order approximate function Tg**(s) by
inserting a zero in (13 d) with an unknown constant &,*.
b,* s+ Pw,? B by* s +46-7216
(82 + 28w s +w )3+ P) (8% +0-3194s + 10-2909)(s + 4-5401)

Ty**(s)= (13 f)

The b,* can be determined by using the condition in (2¢) and (84a), or
Re {G(jO)]= —2-1. The b*is
b,* = 32:4038 (13 g)
Hence, we have
46-7216 + 32-4038s

Ty**(s)=
46:7216 + 11-74108 + 4-85955% + 83

(13 k)

Equation (13 k) can be considered as an approximate function of (12) by
assuming b,*=0. The initial guesses in (12) are q,*=46-7216, a,*=11-7410,
a,* =4-8595, b*= " :4038, and b,*=0. Using these constants as starting
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values for the numerical method yields the desired coefficients in (9 b), or

5’" g =6-378 070, a, = 10-462 220, a, = 1259 008, b, = 20-556 61, and b, = 0-243 466.
_ The desired transfer function is
i
6-378 070 + 20-556 61s +0-243 46652
L Ty(s) = (14)

6-378 070 + 10-462 220s + 1-259 00852 + 83

e ——

The Newton-Raphson method (IBM 1977) converges at the 9th iteration with
the error tolerance of 10-8. Equation (14) has the exact frequency-response
data specified in (8).

3.2. Initial guess by complex-curve fitting and continued fraction methods

The problem of finding unknown coefficients of a transfer function as a
ratio of two frequency-dependent polynomials has been investigated by Levy
(1959). His method minimizes the sum of squares of the errors at arbitrary
experimental points. We present a simple method to determine the approxi-
mate coefficients of a transfer function using the real parts and imaginary parts
of available limited frequency-response data. A low-order model is often
determined because of data limitation. The low-order model is then expanded
into a continued fraction of the Cauer second form to obtain a set of dominant
quotients. Then some non-dominant quotients are inserted into the continued
fraction to obtain an amplified-order model (Huang and Shieh 1976) which is
the desired approximate transfer function for the use of the initial guess.

Consider the transfer function

be+bs+bys+ ... +b, 8™

T*(s)=
(#) 1+a,8+a,82+ ... +a,s"

(15 a)

where a; and b; are unknown coefficients to be determined. Substituting
&= juw, into (15 a) we have

(bo - bzwkg + b“wk4 - bewkc ."" ves )

+ J (blwk b bswk"’ + bswk5 - b7wk7 <+ ... )
(1 —-azwk2+a‘wk4—a°wk°‘+ o)

+ (@ ywp — 8wy ® + age — ayw, 7+ )

T*(juwy) =

= R(wy) + jl{wy) = By + j1, (15)

when R, and I, are the given real and imaginary parts of the 7*(s) at the
available frequencies w,. Multiplying both sides of (155) by the common
denominator and separating the real and imaginary parts, and also equating the
respective real and imaginary parts, yields

bo—byw* + by —bew; b+ ... + ey +ayRiwy?
—ayl w2 —a R i+ ... =R, (15 ¢)
and
by — by +-byw, S — by’ + ...~ Rpwp +agl
+ag Ry B —a w4 ... =1, (15d)
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In matrix form, (15 ¢) becomes

. . (l —w? ot —wyt . L, Bl —-Lw® —-Rwt b1 [R]
I —wg® wy' —wg® . Lwy, Bywy® —lgw® —Ruwt . || b, R,
4 1 —wg? wyt —wyt Iywy Ryws® —Iywg® — Rywgt . || b, 3
. a (15 ¢)
a;
|1 —w,? w?! -0} . Lo, Bw?! -lLw® -Rw!'.]llae, | |R,]

where x=n+m|2+1 if m is even and 2=n+ (m +1)/2 if m is odd.
Substituting a; obtained in (15¢) into (15d), we have another matrix
equation to solve for b;, =1, 3,5, ... .

w ~w? @b e’ b,

wy, —wd  wyb —w,’ .. by

wy —wg®  wgh — wy? .. by
—- 3 5 - ki

w, w, w, w, .. b,

((ay] 1 0,® + 2 Riw?) — (4] 0,2 + a3 Ry ) + ...)
(@ gwg® + @ Rywp!) — (@o] 300® + ag Rows®) + ...)

(15 1)

((@od yw,* + @) Byw)!) — (@] jw 2 + @3 By ) + ...)

where w’=1, @y=1; k=m and y=(m+1)/2 if m=o0dd; k=m~-1 and y=
m(2 if m=even. In this example, the available data are

wy=wy=0, R =T({0)=1, I,=0 1
o _ Gjw,) 1_
w,—w,,-l9, R'—Re[ﬁm]_2 9684,
G(jw,)
= 1 ————” = - 0'
Ie=1n [1+G(jw,,)] 0252 { (16)
Gljw,)
= =3 R = —w =(0-3351
wy=w,=32, R, Re[l+G(jwc)] 3351,
G(j"’c)
Ig=1_| ——=— = —-10-4316
37 m [1 +G( on)] ]
Since only three values are available, the approximate function 73*(s) is

bo+bys

*(g)= 028
Ti*e)=1 +a,8 + ags?

(17a)

Substituting the data at w,, and w,, and w, in (16) into (15 e) yields by=1,
a,=0-0388, and a,=0-1839. Then substituting a; and the data at w, into
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(15 f) gives b, =2-8907. Because the desired approximate function in (12) is a
third-order function, 7'y*(s) should be amplified by using the continued fraction
method (Huang and Shieh 1976) as follows.

T,*(s) is first expanded into a continued fraction of the Cauer second form
to obtain a set of dominant quotients : h; =1, hy= —0-3507, h;= — 0-9651, and
hy=16-0725. Then the order of T,*(s) is amplified to the third order by
inserting non-dominant quotients k=100 and %g=0-1, or

Toe) 1 +2:8907s _ 1 N 1
2 ) = 003885 + 0- 183952 PR P
hy+ ——— b+
8 8
hy+ hy+
8 ‘ 8
hy+ - hy+
h, 8
hy+
he+ =
5 h.
54-3885 + 162-6014s + 15-8219s?
= Ty (s) = e i (17b)

54-3885+ 7-5839s + 10-2146s2 + 83

Huang and Shieh (1976) have shown that the amplified-order model is a
good approximation of the original low-order model if the inserted positive
quotients ;> 1 and b, ; <1 where 7 is an odd number. Using the coefficients
in (17 b) as initial guesses we have the desired coefficients in (14) at the 15th
iteration (IBM 1977) with the error tolerance of 10-8.

If much experimental frequency-response data, including the dominant
data of a system, is available and the transfer function of the original system is
required, this is an identification problem. In this case, a set of non-linear
equations, based on the basic definitions of the dominant data, can be con-
structed and can be solved by the Newton-Raphson method. The initial guess
can be determined by using the dominant data and others in (15). Since many
data are available, a high-order approximate transfer function can be deter-
mined. Therefore, the use of the continued fraction method (Huang and
Shieh 1976) is not necessary.

When a high-order transfer function of a system is given and various
reduced-order transfer functions are required, this is a model reduction problem.
In the frequency domain, numerous methods (Chen and Shieh 1969, Shich
and Goldman 1974, Hutton and Friedland 1975, Sharnash 1975, Lal and Van
Valkenburg 1976) have been proposed for model reduction. The continued
fraction methods (Chen and Shieh 1969, Shieh and Goldman 1974), the Routh
approximation method (Hutton and Friedland 1975), the time-moment
matching method (Shamash 1975), and the frequency-moment matching
method (Lal and Van Valkenburg 1976) are the typical examples. These
methods have been critically compared by Decoster and Cauwenberghe (1976).
The new method presented in this paper can be used to obtain the reduced-
order models which have the exact dominant frequency-response data as those
of the original one. This method can be called a dominant frequency-response
data matching method. The procedure is as follows.

rew 28 L » _ -

LY
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Step 1. Plot the frequency-response curves to determine the data at the
dominant frequencies wy, w,, w., w., weg, w,, and w,,.

Step 2. Formulate a low-order model with unknown coefficients, and
write a set of non-linear equations based on the basic definitions of the data
at dominant frequencies.

Step 3. Determine a set of good starting values by using the synthesis
method or the complex curve fitting method, and solve the non-linear equation
by using the Newton-Raphson method. Thus, reduced-order models can be
determined. Comparing the reduced-order models obtained from the proposed
method with those of the existing methods (Chen and Shieh 1969, Shieh and
Goldman 1974, Hutton and Friedman 1975, Shamash 1975, Lal and Van
Valkenburg 1976), we observe that the model obtained in this paper is superior
to existing methods in that the reduced model has the exact dominant frequency
response as the original. As a result, an engineer can design a control system
more efficiently in the frequency domain.

Since the original high-order transfer function is available, an existing
method (Chen and Shieh 1969) can be applied and modified to obtain an
approximate transfer function for the determination of the initial guess. Two
additional methods for initial guess determination are as follows.

(3) Initial guess by a continued fraction method (Chen and Shieh 1969).

Consider the high-order transfer function in (1 a). The function can be
expanded into a continued fraction and various reduced models obtained by
discarding some of the quotients, or

by+bis+ ... +b,8™ n(s)

T(J)=ao+a18+ +an8n—d'—(—s) (18 a)
_ 1
hy+ — (18 b)
h2+—‘—
1 “hy
= 1
h + 8 hlhg"‘s ( 86)
1 hz
- 1 - hohshe+ (hy + hy)s (18 d)
- b+ 8 hikohshy+ (Ryky + hik g+ hgho)s + s°
S —
hy+—
hy+ o
3 h‘

~

Using the coefficients of the approximate model in (18) as the initial guess for
the numerical method, we have the desired reduced model. However, the




1108 L. 8. Shieh et al.

approximate model in (18) may be unstable even if the original system is stable.
The continued fraction method (Chen and Shieh 1969) can be modified by the
following new method.

(4) Initial guess by a mixed method of the continued fraction approach and
Gustafson’s (1965) method.
Assume the reduced model of the original system in (18 a) is

bo*+b,* 8+ ... +b,_,*sP1 n¥s)

T *(s)=—1 21 = =1 19
»"(#) *+a,* s+ ... +a*s?  d¥(s) % (19 a)

A matrix equation (Chen and Shieh 1970) can be constructed from the dominant

quotients h;, i=1, 2, ..., p, obtained in (18 b) and the unknown coefficients a,*

and b;* in (19 @) as

(b}=[H][a] (19 b)
where
[a’]T = [a’o*s al*’ neey ap—l*] (19 G)
[B]T =[bg*, by*, ..., by y*) (19.4d)
(H]l=[H,]'[H,] (19¢)
where T designates transpose,
[ hy 0 O 0o 071 0 0 0o o071 [1 00 0 0
1 b, O 0 0 0 R O 0 0 o1 0 0 0
Hol= 0 1 bk 0 0 0 1 b 0 o0 0 0 1 0 0
[Hy)= 0 0 1 0 0 0 0 1} 0 0 0 0 0 0 0
[ 0 0 0 1 h,jJL0 00 1 h,, | L0000 0 hy |
(l 0 0 0 0'(1 0 0 0 0 1 0 0 00
0 hy O 0 0 0 1 0 0 o 01 0 0 0
Hol= 0 1 by 00 0 0 h, 0o o0 0 0 1 0 0
[H,]= 0 1 0 0 0 0 1 0 O 0 0 0 0 0
000 . 1hf[000 . 1h,| L0000 . 0h

The a;* in (19 ¢) can be determined from the coefficients of the polynomial that
is obtained from the product of the dominant eigenvalues of the d(s) in (18 a).
When the dominant poles of d(s) cannot be clearly identified or the poles of
d(s) are not available, the paper and pencil method suggested by Gustafson
(1965) can be applied to construct the d*(s) or to determine a;* in (19¢). Then,
substituting the a,* into (19 b) yields the required n*(s) or b,* in (19a). The
steps determine the d*(s) are shown as follows.




——— v - - R COU PR healidiuarits hii SN oo

Method for modelling transfer functions 1109

Step 1. Construct a Routh (1877) array using the coefficients a, of d(s)
and the Routh algorithm. The a, are expressed by double-subscripted notation
a, ; for obtaining the general algorithm. The Routh array is

-y &
<u 4a, 13 =0y 01380, ... a0
L &
_<a21 da,_, Aoy =0qy_3 Aoy =qy_g ---
aq Yilgs AgeBay3— Y105 @
31 12~ Y12 32 13— Y1%23 33
_-_3
a,

ALy —yalyy A Lay— s

gli‘

(20 a)
On-21 Cps s
Yn-2= Zn-21
g =
an—l,l
Ap1,1 Qy_y,0= a,
Yno1= dn, 1/ ,
n—-1- : :
an.l\ !
§ Lo
Y= Qp, 1 L H
n
an+l,1
Ay sy,1=% |
In general a; ;=a,_y ;.. ~ 71 8 15m =12, .., j=3,4, ...
Yi=4a, l/a¢+l. 1 (20 b)

Step 2. Construct various approximate low-order polynomials d;*(s) from
the last row and the next to last row, and so on in the Routh array.
For example, the ith order approximate equations are

2,*(8) =018+ G 1,1 =0y 18+0=0 wheni=1 (20 ¢)

de*(8)=a, ;.88 +a, ,8+a, ,,=0, ;5% +a, 8+a;=0 wheni=2 (204d)
and

dy*(8) =0, 5182+ @y 118+ 0y 998+, 9

=a, 5 18+80, 1152+, 4 8+8=0 wheni=3 (20 ¢)

Since the original system is asymptotically stable, all y, are positive values.
The approximate polynomials d;*(s) are always the Hurwitz polynomials.
Moreover, Gustafson (1965) has shown that relationships exist between the
coefficients of d;*(s) and the time-domain moments. The normalized poly-
nomials can be determined by dividing each coefficient in d;*(s) by the coeffi-
cient of the highest order term in s. The approximate transfer function 7',*(s)
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- in (19 a) can be considered as a reduced-order model of the original high-order
1 system. In this paper, we use it as the initial guess for the numerical method

for determining the reduced order model that has the exact dominant frequency-
response data as the original system.

4. An illustrative example
Consider the unit ratio feedback closed-loop transfer function of a stabilized
real missile system (Bosley 1977)

Ko+t s+ ... +6'558%
Ay+a; s+ ... +a;s1

T(s)= (21 a)

where

ay=8-802 158 509 x 1018,
a,=2-911 920 56 x 108,
a, = 6-667 397 031 x 1018,
ag=9-360 329 977 x 102,
ag=2-976 950 696 x 103,

4, =2-419 047 424 x 101°
ag = 2420 405 431 x 1018
@ =9-749 923 212 x 1014
a,=6-231 675 318 x 1010
ay=9-316 239 04 x 10

ayo=1-923 554 x 109, ayy =1
and
k' =1-494 523 312 x 101
b'g=5-889 609 375 x 107, b’ =3-084 598 703 x 108

b'y=1-958 045 209 x 107, &', =3-357 065 095 x 108
b,=1-715 193 3 x 103, by=1

The second order and the third order reduced-order models which have some
of the dominant frequency-response data of the original system are required.
The open-loop transfer function G(s) of the system is

_ klegt+es+ ... +egst)

Gle)= S(gQo+ 18+ ... +71051) (218)

where

Jo= — 2190 952 724 6 x 101, g, = — 1-442 378 55 x 1016

g2 = 2-370 233 311 x 1018, g3 =06-641 763 067 x 106

o= 9-748 428 689 x 1014, gs=9-360 329 977 x 1012

ge=6-231 675 318 x 109, g;=2-976 950 696 x 108

gs=9-316 239 04 x 105, ge=1:923 554 x 10%

Jr0=1
and

k=1-494 523 312 x 101!

ey = 5-889 609 375 x 107, e, =3-084 598 703 x 108
ey =1-958 045 299 x 107, e3=3-357 065 095 x 10®
e,=1-715 193 3 x 103, ey=1

.
!
i

M
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Note that (/(s) is « non-minimum phase function ; its Nyquist plot is shown in

Fig. 1. The dominant frequency-response data are chosen and given in (8).

The set of non-linear equations are shown im (11),  The initial guesses show

in (13 k) and (17 b) vields the required third-order reduced model in (14), or
0:243 46652 + 20:556 Gls + 6-378 07

T.¥(s)= 22a
a"(%) 534+ 1:239 0852 + 10-462 225 + 6-378 07 ( )

If the continued fraction method ((‘hen and Shieh 1969) in (18) is used, the
approximate reduced model is

0692082 + 1946925 + 3-7376

’I‘St‘*(s) = ) P . .
83+ 0-94885% + 10- 16615 4 3-7376

(22 4)

Using the coefficients in (22 b) as starting values for solving the non-linear
equations in (11) yields the desired coefficients in (22 ) at the eighth iteration
(IBM 1977) with the error tolerance of 10~ . If the mixed method in (19)
and (20) is used, the normalized approximate denominator in (20 ¢) is

da*(8) =% + 0-95245% + 10-19245 + 3-74535 (22 ¢)
The ny*(s) obtained from (19} is
' ng*(s) = 0-T0665% + 19-5155 + 3-7455 (22 d)
The approximate transfer function by the mixed method is

- 0-70668% + 19-5155s + 3-7455 >
7311\ (#)= 3 FEYI - - YT (22 ¢)
s34+ 0952452+ 10-19245 4+ 3-7455

If the coefficients in (22 ¢) are used as starting values, the Newton-Raphson
method (IBM 1977) will converge to the desired solution in (22 @) at the eighth
iteration with the error tolerance of 10-¢. The unit step response curves of
various reduced models and the original system are compared in Fig. 2. All
three reduced-order models give very satisfactory approximate time response
curves. However, only the T,*(s) in (22 «), which uses the method of dominant
frequency-response data matching, has the exact dominant frequency-response
data as the original system.

If w,=32radfs, ¢, =57" and Re [(/(jO)|= — 2-1 are chosen as the domi-
nant data, the second-order reduced model obtained by the proposed method is

3-339 517s + 9-224 24
T 82+ 0-302 806s + 9-224 24

T,*(s) (23 a)
The approximate reduced models by the continued fraction method and the
mixed method are :

24: 70813 + 4-8122

T, *(s)=
=) = T Ra0ts T 1R122

(23 b)

and
16-3618s + 3-0328
*s) = 23 ¢
Tan™ ) = G 557265 + 39328 (23 ¢)
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QuTPUT

e QRIGINAL 11TH ORDER SYSTEM: T(s)

THIRD OROER REDUCED MODELS BY THE CONTINVED FRACTION METHOD
AND THE MIXED METHOD: ,lc(s) and Yh(s)

Dy — ==\ THIRD GRDER REDUCED MODEL BY THE PROPOSED METHOD 13'(5)

O—=—0

1,%(s)
T(s)

2.0 M
T3cd8)s Typls)

T T ! T T (SEc) -t
0

Figure 2. Time responses or original and third-order reduced models.

The unit-step time response curves of various reduced-order models T'y*(s),
T,*(s), Tyo*(s), and T, *(s) are compared in Fig. 3. It is observed that 7,*(s)
gives better approximation in the transient response than T, *(s) and T, *(s).

.
3.01 TJ (s): === THIRD ORDER REDUCED MODEL BY THE PROPOSED METHOD

.
TZC(S)ZO~--O SECOND ORDER REDUCED MODEL By THE CONTINUED FRACTION METHOD
TZ.(S) Tz'(s):A——A SECONO ORDER REDUCED MODEL BY THE PROPGSED METHGD

TZ;‘(S)‘.D-—-D SECOND ORDER REDUCED MODEL BY THE MIXED METHOD

-t

T ¥ ¥ R — 1 Ll i
6 8 10 12 12 16 18 (SEC)

-

Figure 3. Time responses of third- and second-order reduced models.
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S. Conclusion
‘ : A basic method has been developed for modelling transfer function using
i dominant frequency-response data. When the specifications of the design

i \ goals of a control system are assigned, the proposed method gives the standard
| transfer function. Thus, the design processes in the frequency domain can be

significantly simplified. When the experimental frequency-response data of a
system are available, the proposed method can be used to identify the transfer
function of the original system. Also, if a high-order transfer function is
given, various low-order models can be determined. The reduced models have
the same dominant characteristics of the original system. Four methods have
been proposed for estimating the good starting values for the solution of non-
linear equations. The new dominant frequency-response data matching
i method, and the new mixed method that has the advantages of both continued
fraction method of Chen and Shieh (1969) and the paper and pencil method of
Q Justafson (1963) have been developed for model reduction.
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