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GLOSSARY

ACM Association for Computing Machinery

Ada A DoD Computer Language

ADAPT ARPA Data Base Access and Presentation Terminal

ADCOM Aerospace Defense Command

ARPANET Defense Advanced Research Projects Agency Computer

Network

COINS Community On-Line Intelligence System

DAPLEX A Programming Language

DARPA Defense Advanced Research Projects Agency

DBMS Data Base Management System

DBTG Data Base Task Group

DCA Defense Communications Agency

DDL Data Definition Language

DIA Defense Intelligence Agency

DIAOLS Defense Intelligence Agency On-Line System

DTI Data Transmission, Inc.

EUFID End User Friendly Interface to Data Management Systems

FQL Functional Query Language

IDS Integrated Data Store

IP Internet Protocol

INTERLISP A Programming Language

LADDER Language Access to Distributed Data with Error Recovery

NL Network Language

NPIC National Photographic Interpretation Center

NSA National Security Agency
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PASCAL A Programming Language

PIRL Photographic Information Retrieval System (NPIC)

PMO Program Management Office

SOLIS SIGINT On-Line Information System

TAS Terminal Access System

TENEX Operating System for DEC PDP-10 Computer

TCP Transmission Control Protocol

TILE TIPS Interrogation Language (NSA)

UDL Uniform Data Language

UNIX Operating System for DEC PDP-11 Computer

WWDMS Worldwide Data Management System

WWMCCS Worldwide Military Command and Control System

XNDM Experimental Network Data Manager

More detailed descriptions of some of the terms frequently

used in this document are provided below:

DATA BASE

A set of physically or logically related data. The physi-

cal relationships include the data structures needed for effi-

cient access and storage; the logical relationships are those

that are perceived by the user. With the present state of data

base technology, the two relationships (physical and logical)

are closely tied. However, this may change if some of the re-

search efforts described in this report are successful, i.e.,

a user's logical data base may contain several physical data

bases. A data base may range in complexity from a single file

to an integrated collection of record structures in a "network"

data base.
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SCHEMA

A data structure that describes the (logical or physical)

relationships between data elements. A schema describes facts

about the data base that are independent of the data stored

therein.

DATA DICTIONARY

A data base or document that both describes the physical

structure of a data base and the effects of various applica-

tions programs that are used to maintain the data base and

generate reports. Data dictionaries are normally used as an

organizational aide to data base administrators and to applica-

tions programmers.

DATA MANIPULATION LANGUAGE (DML)

The language that enables the data base access routines

to be called from a programming language. The term "language"

is a nisnomer, for the DML is only the syntax of subroutine

calls embedded in a programming language such as COBOL or

FORTRAN, and is only of use in conjunction with such a Ian-

guage. This distinguishes it from a query language, which

can be used without reference to any other language.

DATA BASE MANAGEMENT SYSTEM (DBMS)

A set of programs that maintains a physical data base.

Such programs maintain the linked lists, index structures and

other physical structures that are required for efficient

access. They provide update and access programs as well as

programs for creating the physical data base schema. They

provide users with varying degrees of independence of the

physical structures of the data base. System R, DBMS 20,

IDMS, INGRES are all examples of data base management systems.
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The terms "relational," "network," etc., refer to classes of

DBMSs with similar property. ADABAS, CODASYL, SAFE, S2000,

IMS are other DBMSs referred to.

QUERY LANGUAGE

A language that is specifically designed for data base

queries. Unlike DML statements, a query language may be used

on its own. Good query languages also maintain an interactive

user environment that allows queries to be edited, filed and

that provides informative prompts and error messages.

DATA DEFINITION LANGUAGE (DDL)

The formal, machine interpretable, language that is used

to describe the physical structure (schema) of a data base.

DATA MODEL

A formal method of describing the logical structure of a

data base.

MULTIBASE

A new DARPA project to further distributed data base sys-

tems research.

x
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I. SUMMARY

In November 1978, IDA was requested by the Office of the

Director, Information Systems, ASD(C3 1), to study user inter-

faces in forthcoming DoD computer communications networks and

to continue an analysis of higher-level protocols that was

undertaken in a previous study (Ref. 1). The work reported

in Ref. 1, which emphasizes intelligence systems, was to be

continued, but attention was also to be turned toward hardware

and software developments within the Worldwide Military Command

and Control System (WWMCCS) community and other DoD systems.

The development of AUTODIN II continues, and since this

communication system will be utilized in many computer networks,

Nour study takes this system as an important factor to be con-

sidered.

This study places its primary interest on the user inter-

* face with the computer networks in existence and now being de-

veloped by DoD. Particular attention has been given to what is

called the multi-language retrieval problem. This problem arises

because a considerable number of data bases with different data

0 base management systems now exist in DoD. Using the computer

networks in existence and being formed, it will be possible for

intelligence analysts and other DoD users to access these data

bases. However, in order to use the information available in a

* given data base, it is necessary to learn the query language of

the DBMS and structure of the data base. As a result, to use

several data bases at different locations, it is necessary to

learn several different languages and systems. The problem goes

* even deeper. For instance, it is sometimes difficult even to

determine where data exist and in what form.
8.



The work on protocols has continued. In the report pub-

lished by IDA in April 1979 (op. cit.), some recommendations

concerning protocols were made along with a recommendation that

an agency be given control over certain areas of protocol de-

velopment for DoD computer communications systems. Since that

time, DCA has been tasked in the protocol standards area and a

users committee has been formed to give further guidance in

this area. As a result, our work has concentrated on several

aspects of the Transmission Control Protocol (TCP) and Internet

Protocol (IP), which were recommended in our previous report.

Because of information which has been gained in several tests,

we have included some comments on front-end processors for

DoD computer networks, a subject which was in our previous

report and concerning which data are now available and reported

herein.

A. OVERVIEW OF DATA BASE PROBLEMS IN A NETWORK ENVIRONMENT

Making information that is contained in a number of geo-

graphically dispersed file systems accessible is a problem on

the frontier of present computer technology. The management of

such systems must depend primarily upon technology that is pres-

ently available, and at the same time must sponsor and carefully

monitor technology that is under development. This study at-

tempts to point out areas where actions may now be taken that

can aid in network development and &lso minimize the probability

of certain problems arising as systems are developed. The man-

agement of systems must also be arranged so that it will be pos-

sible to incorporate new technological developments as they

appear.

The multi-language retrieval problem results from the de-

velopment of resource sharing computer networks in DoD that

will provide access to both data base and processor capabilities
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on computers at locations (and maintained by organizations) ex-

ternal to those of the user. Since these data bases have been

developed independently, the data retrieval languages required

to access the individual data bases have been chosen (and are

sometimes custom made) with the particular applications of the

data base and its local users in mind. As a result, a computer

network user is faced in some cases with several data retrieval

languages, and also computer systems resources that may be un-

familiar to the user. This represents a barrier to realization

of the potential benefits of the computer network.

In C31 systems, the computer networks that are being de-

veloped range from clusters of computers in a small area to

0 geographically distributed networks such as the WWMCCS. Early

computer-to-computer communications networks were developed for

specific communities, and the sponsoring agencies carefully

designed these networks to satisfy the particular requirements

P of the systems users. As time passed, it became apparent that

interconnection of these networks would be desirable and that

resources available on one network should be made available to

users on another network. However, this internetworking can

be utilized to the fullest extent only if the users on the

various networks are able to access the data bases in a reason-

able manner. The problems confronting the user range from dif-

ferent log-on and log-off procedures at the various facilities

to learning the data base management system language in each
data base in which information lies. In addition, there is a

problem confronting the user concerning where needed data base

information may reside. Managing C3 1 networks in such as way as

to develop a plan to deal with this problem is the primary moti-

vation behind this report.
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Since even local networks had already encountered this

problem, several developments have already been initiated in

this area. For example, the COINS network PMO recognized this

problem fairly early. In this network there are four possible

user languages that confront an analyst desiring to gain infor-

mation from the files and there are indications this number

might more than double in the reasonably near future. To alle-

viate this problem, the COINS Program Management office (PMO)

gave support to a project called ADAPT (the ARPA Data Base

Access and Presentation Terminal), which had previously been

funded by DARPA and which was in a developmental state. This

project is discussed in this report. Also, because of DCA's

early recognition of this problem, the EUFID project (the End-

User Friendly Interf ace to Data management system) has been

funded by DCA (among others). This system attempts to develop

a natural language interface to data base management systems

and our study includes some details and comments on this sys-

tem and its applicability for future systems. Other systems

studied included LADDER (Language Access to Distributed Data

with Error Recovery), a more general system developed by DARPA,

and MULTIBASE, a new project that DARPA is now undertaking at

the Computer Corporation of America.

In considering any existing approach to the multi-language

retrieval problem, it is necessary to evaluate the tradeoffs

that occur when a specific approach is taken. A particular

difficulty arises in making such an evaluation at this time.

This is because the systems being studied are either in develop-

mental or preliminary states (MULTIBASE, for example, has only

recently been funded; ADAPT is only in the second of four de-

velopmental phases; and EUFID is primarily an exploratory pro-

ject that is considered to be in the forefront of technology in

that area). As a result, difficulties in making specific com-

ments are often encountered because systems features that are

not present in current versions (or even in initial plans) may

4



well be incorporated in later versions. We have tried to take

this into consideration in our comments and conclusions.

When local networks are interconnected, there are bound to

be tradeoffs concerning local network features and global re-

* quirements. In an attempt to reconcile these system problems,

our previous study recommended that a Transmission Control Pro-

tocol called TCP 4, along with an Internet Protocol called IP,

be adopted as C31 standards. The protocol's were singled out

* as the ideal place to start standardization and as the lowest

point in the higher-level protocol hierarchy where standardiza-

tion was necessary for successful host-to-host communication.

Since that time both of these protocols have been tested by

0 DCA and some preliminary data concerning performance of these

protocols are now available.

Since these protocols are now DoD standards,* we have made

some comments in this report concerning their implementation,

IP and have included some details concerning implementation effi-

ciency when these protocols are used. In particular, we empha-

size material on TCPs implemented on 11/70s with UNIX operating

systems, a widely-used configuration in DoD.

B. CONCLUSIONS

e The state-of-the-art in data base management systems and

t in translation programs is such that it is now possible

to formulate a management strategy that will result in a

substantial improvement in C31 computer network data

base access characteristics.

While translation programs that perform "true" wide-range

natural language translations cannot be made, translators for

* the class of query languages that seem most desirable can be

*ASD (C31) letter dated 3 April 1980, subject: "Host-to-Host
Data Communications Protocols.
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made. Along with a highly desirable query language for the

user, however, a system strategy must also be developed to re-

duce development costs and produce good operating characteristics.

In order to alleviate the multi-language problem for com-

puter networks with several DBMSs, there are three broad general

approaches. The first is to provide a translator for each user

language into each and every DBMS. This requires NM translators,

however, where N is the number of different DBMS systems and M

is the number of query languages. Further, maintaining this

large number of translators would be a continuing problem and

many languages would not provide some of the desirable charac-

teristics to be found in some of the DBMSs to be used. As a

result, this strategy seems unrealistic and undesirable.

A second approach is to have a standard query language

that can be used anywhere in the system. Translation will then

be made from this language into each DBMS, requiring only N

translators, one for each different DBMS.

A third approach is to have a nietwork language that is

always used to transport queries across the network. This lan-

guage need not be a useful query language, but if it is, it can

be used as in the second approach. If, however, the network

language is chosen for its general system characteristics and

ease of translation, then users can fashion individual languages

and translators into the network language so that the individual

languages have the characteristics each user community finds

most desirable. N + M translators would be required, one for

each DBMS, plus one for each query language used.

e If a language can be found to satisfy C31 needs, then the

second approach appears preferable since (1) it is less

expensive, and (2) avoids another multi-language problem

* j which might ultimately result from the third approach.

Because the computational power of simple-to-use query

languages is usually limited, a combination of the second and

6



* third approaches may be the most effective solution. Technical

descriptions of the various types of languages are given in

Chapter III.

Following are some desirable characteristics of a query

S. language:

1. The user should have a clear notion of the logical

structure of the data, and the query language should

be consistent with this structure.

2. The syntax should be as natural as possible and appear

intuitively obvious to the user.

3. Multiple variant forms to achieve the same function

should be minimized. The syntax should be uniform

and consistent.

4. Selectable levels of guidance and system assistance

should be provided for users with different degrees

of expertise. Expert users should not be forced to

use conventions designed for occasional users. Occa-

sional users should be able to use the system comfort-

ably and achieve results comparable to experts, al-

though with more effort.

5. The end-user query language should not appear unpredict-

able or overly long and unwieldly. At the same time,

it should not appear terse or give an effect of being

overly clever and obscure in fashioning queries.

e A first step C3 1 should take in selecting such a language

from those available or producing a new language with

ideal characteristics is to obtain a profile of the system

users and to determine what is really needed.

It should be noted here that fashioning a query language

for a DBMS is not nearly as large a job as making a general-

* purpose programming language. The DBMS languages are much

simpler and the translators are also simpler. The benefits

7
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from a standard query language, however, might well be on

the order of those for COBOL, another DoD-developed language.

0 An attempt should be made to define a standard query lan-

guage with full support for occasional users; if possible,

this language should also serve as the network query lan-

guage. In any case, a network language should be developed.

This can be done in parallel with the query language

development, and there are existing models for such languages

that somewhat simplify this work. Also, the question of

whether this network language can be used as an "expert's"

query language needs to be reconciled. Again, our management

plan deals with this.

A system consideration that arises here concerns whether

translation from the standard language or network language

should be into the local query languages of the DBMS or into

the subroutine calls for the DBMS. Generally, when the trans-

lation is into the query language, a new translator must be

made each time a new data base is added; however, there is

often more uniformity among the subroutines for the DBMS than

among query languages. The Data Base Task Group (DBTG)* com-

mittee, for example, has standardized subroutine calls but not

query languages. This is discussed in Chapters II and III.

An important conclusion concerning the development of a

query language or network language for C3, use concerns what

is called the "logical view of data" or "logical model" of data

in the system used. When a data base management system is de-

veloped there is always a logical or users' view of the data's

organization in the data base. At present, there are four

*The Data Base Task Group was organized by the ACM to develop a
standard DBMS. There is no standard query language for DBTG
systems, but working groups have approached this problem.

8



data organizations that are in general usage or development.

These are: (1) relational (or flat files), (2) hierarchical,

(3) network and (4) functional. An introduction to these or-

ganizations is presented in Chapter II.

The important fact concerning the logical data organiza-

tions is that the query language will heavily reflect the or-

ganization used. For example, the network organization is

used in what are called DBTG systems (Ref. 2), which include

WWDMS (IDS) and a number of commercial systems. The query lan-

guages for each of these systems are quite similar. Similarly,

the hierarchical systems include several commercial systems (IMS,

for example) and the query languages for these systems are also

quite similar. The same fact applies to relational systems,

including the recently developed IBM System R (Ref. 3). The

functional organization is reflected in CCA's language, FQL.

Now, in order to develop a standard query language , some

view of the logical structure of the data needs to be taken.

There is a problem here for C31, however, because, for example,

many systems are hierarchical, but WWDMS is a network system.

(There are also a number of flat file organizations, mostly in

locally developed systems, but these can easily be integrated

into either hierarchical or network systems.)

In the Community On-Line Intelligence System (COINS) de-

velopment of ADAPT, hierarchical systems are all that need be

accommodated, so there is no problem. However, attempts to ex-

tend ADAPT into WWMCCS and WWDMS could present certain problems.*

e Choosing the data organization model is the most important

step for C31 in developing a standard query language.

(Some technical aspects of this area and some further

considerations may be found in Chapter II.)

*The authors understand that some recently proposed extensions
to ADAPT may circumvent this incompatibility. They are un-
aware of the details, and the comments in this document refer
to the present implementation.

9
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Four projects now underway that are sponsored by DoD and

relate to the problem of accessing data in distributed systems

are described in Chapter V. These projects are: (1) ADAPT,

the COINS project, (2) EUFID, (3) LADDER, and (4) MULTIBASE.

ADAPT shows that a standard language can be used in a distributed

system with some success. The EUFID and LADDER Projects show

that "natural language" query systems can be produced, but leave

open some questions concerning their desirability, particularly

for expert use. In any case, our observation is that they do

not seem ready for adoption at this time. MULTIBASE is a new

DARPA project to further distributed data base systems research.

In an attempt to help with the multi-language problem at aI
different level, a query language, FOL, was described in Ref. 1.

This language is based upon a functional model of data, which

is described later. The purpose of this was to produce an

"intermediate" language that could operate as a network query

language against all DBMSs.

The language has since been implemented in PASCAL, and is

the interface language for two experimental Natural Language

Systems. Unlike query translators, FQL operates through direct

pceslsin inole ine intebsesurprtingsA a ueissustntallyto

prcallsin toole the datnbsesurutinsgA a rsuteamountlof

reduced. Also, for reasons described later in this report,

transportability problems may be substantially reduced.

The language is mathematical in nature and not suitable

for the occasional user. However, it may prove useful as an

example of what we 'have termed a network query language, and

should also prove useful as a method of building interfaces be-

tween new programming languages such as ADA and PASCAL, and

existing DBMSs.

Security and integrity are important issues in C3 1 net-

working and our studies in this area are in an early phase.

Some comments concerning the security issue can be found in

the sections on natural languages (Chapter IV). This deals

10



with a need for programmer interaction in constructing new

interfaces. Since most of the files are updated locally, or by

special purpose applications programs which are not generally

available, we have deferred further consideration of integrity

until some of the primary issues in networking have been re-

solved. For example, security measures such as access privi-

leges can only be rigorously defined after the data model has

been decided on.

The TCP and IP protocols are progressing through implemen-

tation and testing and many implementations are in regular use.

The standards have reached a stable level and results are en-

couraging. Some performance problems* have been noted for

UNIX-based TCPs but improvements in UNIX interprocess communi-

cation and context switching as well as development of front-

end options are potential means for achieving necessary per-

formance objectives.

e Users with smaller systems have need for a front end

smaller than that for WWMCCS and, in some cases, an effi-

cient TCP program that can be loaded on their present

computers.

The primary front-end project at DCA is WWMCCS-oriented,

however, and a relatively large 11/70 with 500 Kbytes of

memory is now the primary vehicle for front-end development.

While this large system may be necessary for future WWMCCS

syste% (this front end now supports 70-80 Kbits per second,

but even more will be necessary !or WWMCCS), it may not be

appropriate for smaller systems. This problem could impact

AUTODIN II users to a considerable extent unless it is dealt

with promptly.

*The first tests of TCP indicated an 11/70 was 80 percent occu-
pied at a 6-8 Kbit data rate. This has subsequently been im-
proved, but is a sobering figure. See Chapter V for details.
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*The need for a standard front-end-to-host protocol is

equally pressing.

Failure to provide such a protocol could lead to the de-

velopment of several different front ends and their host inter-

face packages such that the host interface packages are not

transportable across computer lines and this will lead to a

proliferation of interface software packages. Substantiating

material may be found in Chapter V, along with some status

material in this area.

A topic of considerable interest concerns protocols for

local cable bus networks. These are in the formative stages,

although a number are already operating successfully. This is

a very promising area for DoD and since these small networks

will in many cases be internetworked they must be developed

with care. A recommendation follows in the next section.

C. RECOMMENDATIONS

The primary recommendations concern a management strategy

for developing a language and translation system for C31 data

base management system usage. Following this is a recommenda-

tion concerning front ends and one on protocol development for

local cable bus networks. Amplification and justification are

to be found in the chapters following.

1. Query Languages for DBMS in Networks

a. Three steps need to be taken to determine a desirable

query language for C31 use. These steps can be taken concur-

rently.

(1) A committee should be formed to determine requirements

for a standard query language, and to evaluate exist-

ing candidates for this language.

(2) A study to determine a profile of C3 1 users of DBMSs

should be undertaken. This will facilitate the de-

sign or selection of a query language (or family of

languages) for C31 usage.

12



(3) The logical data model to be used in C31 systems

should be investigated by a study that will examine

present and future systems to try and find a data

model that can be used over a significant time period.

A working group should be instituted for this purpose.

b. A network language suitable for C31 usage should be

decided on and a standard developed. This language should be

based on a clean, logical data model that can be used to repre-

sent existing data base structures. The data model should be

examined. In this step, logical data dictionaries, based on

the model, must be defined for each existing DBMS, as this

will form an integral part of the translation process.

c. The general structure of the translator system to be

used in C3 1 should be studied to determine the desirability of

translating directly into DBMS subroutine calls versus trans-

lating into the query languages for the DBMSs. Since both

classes of systems exist, the study should include the advan-

tages and disadvantages of each (some of which are in Chapters

II and III) so that a system structure can be determined.

d. Both ADAPT and EUFID constitute attempts to solve the

multi-language problem. Funding for these should be continued.

The progress of MULDTIBASE and LADDER should also be monitored,

as both will provide information on this problem.

e. All efforts to solve the multi-language problem through

query translation technology must be examined with a view toward

security, and this subject is described later in this report.

Translation methods with respect to security problems should

be carefully evaluated by a working group formed by C31.

2. Front-End Development

It is crucial that a standard front end be developed for
Cusage in connection with AUTODIN II. This should be done

as soon as possible so that computer users do not suffer un-

reasonable losses in throughput when connecting to AUTODIN II.

13



Chapter V enlarges upon this problem. Equally important is

the adoption of a standard protocol for the front-end-to-host

interface. Justification for this recommendation can be found

in Chapter V.

3. Cable Bus Network Protocols

The development of cable bus networks will provide C31, and

in particular WWMCCS, with a considerable potential for improved

operations. The protocols used in these local networks should

be monitored carefully and, if possible, should be developed

around some standards framework. A leading question concerns

the use of TCP as a standard here, because it is fairly complex

and may provide local networks features not normally needed.

However, internetting will require its usage. Some coordina-

tion of cable bus nets in WWMCCS and other developing intel-

ligence networks is called for.

The use of TCP for local nets should be encouraged, first

because it unifies communication for intra- and internet commu-

nication and second because overhead such as 'header size is

often not important in a multi-megabit local net. Also, most

of the TCP error recovery mechanisms are needed due to packet

loss from errors and contention needs, sequencing, and flow

control. It is possible to make a case against IP for intra-

net, but to present a uniform interface for security systems

(regardless of traffic destination) it may be reasonable to

include IP for intranet traffic, too.

The following sections contain considerable technical

detail. Although we have included a glossary, the vocabulary

and concepts presuppose some knowledge in data base and com-

puter networks.
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II. DATA MODELS

Any successful solution to the multi-language problem must

be based upon a simple logical data model. In this chapter the

well-known models are reviewed and considerations are presented

toward their advisability as part of the solution of the multi-

language problem.

When a data base is constructed, the designer defines

structure among the data for two reasons. In the first place,

the data must be represented on the storage media in a way that

is economical in storage and that makes for efficient access

and update. Secondly, the structure should reflect "real-world"

relationships among the data. These two structures are called

the physical and logical schemas. While there is no reason

for these two schemas to be similar, in practice they are usually

closely related. Most data base management systems provide the

designer with a set of basic structures put of which the data

base schema, a more complicated structure, may be built. At

the logical level, these building blocks are called the logical

model. A very thorough description of data base models is to

be found in Date (Ref. 4); only the more important models and

their relationship to query languages are reviewed here. Also,

since we are concerned primarily with data base queries, we

emphasize logical models.

A. THE RELATIONAL MODEL

The relational model (Ref. 5) was designed to simplify

user access and transportation of data. It is strictly a logi-

cal model, and the underlying representation may involve linked
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lists, hash tables or other methods of improving efficiency.

Informally, a relation is a rectangular table whose entries

are "printable" objects; no internal pointers are permitted.

DEPARTMENT EMPLOYEE

DEPT# DNAME CITY EMP# DEPT# ENAME

23 Manuf. Boston 132 7 Jones

7 Sales Washington 456 7 Smith

890 23 Doe

VEICLE JOURNEY

V# DEPT# VTYPE EMP# V# TIME DISTANCE

84 7 Ford 890 96 040779 47

96 23 Mack 132 74 050979 78

FIGURE 1. A relational data base

Figure 1 shows an idealized relational data base contain-

ing information about departments, employees, vehicles and jour-

neys (that the employees take in company vehicles). Formally,

a relational data base consists of a set of domains [DI, D2 , .. )

and a set of relations [RI , R2 , .. ] each of which is a subset

of a cartesian product of domains. That is, R C DiI x Di2 x

Di3 .. In this example, the domains are EMP#, V#. DNAME, etc.,

and the relations are DEPARTMENT, EMPLOYEE, VEHICLE, JOURNEY.

The structure of this relational data base would normally be

described by:
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DEPARTMENT(DEPT#,DNAME,CITY)

EMPLOYEE(EMP#,DEPT#,ENAME)

VEHICLE(V#,DEPT#,VTYPE)

JOURNEY(EMP#,V#,TIME,DISTANCE)

Relational query languages provide a set of operations

that manufacture new relations out of existing ones. They are

relevant in this context because many of the existing C31 user

languages may be viewed as subsets of these operators. The

three most important operators are the following:

1. Restriction. Select a subset of the rows of a rela-

tion according to some predicate.

Restrict VEHICLE with VTYPE = 'Ford'

creates a new relation containing just those tuples

that contain 'Ford' as the VTYPE. This relation will

have the same number of columns as the original.

2. Projection. Select a subset of the columns; for

example:

Project JOURNEY on V#, DEPT#

which yields a relation containing two columns. Note

that this relation will, in general, also contain fewer

rows. A given V# and EMP# will appear at most once in

the result, even if employee EMP# has made several

journeys in vehicle V#.

3. Join. This allows the combination of two relations

into a new relation. For example, if we require find-

ing the name of the department in which an employee

works, we would first construct the new relation:

Join EMPLOYEE, DEPARTMENT on DEPT#

to obtain a new relation with domains (DEPT#,DNAME,

CITY, EMP#, EMPNAME). A suitable projection and re-

striction may then be used to provide the appropriate

result.
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The syntax used here is not representative of any particular

language; it is just meant to convey the basic relational opera-

tions. The relational languages will be covered in more detail

in a later section. It should be noted here though that many

simple query languages, especially those that operate on flat

files (ISS) provide a projection and restriction capability.

The user of these must therefore have a view of the data base

that approximates the relational model.

The relational model has been criticized (Ref. 6) for its

semantic weakness: there are simple constraints that cannot be

specified in the relational schema. For example, it would be

desirable to require that any DEPT# appearing in the VEHICLE

or EMPLOYEE relation should also appear in the DEPARTMENT rela-

tion. If this constraint is not enforced, there is a possibility

of employees being in "undefined" departments. Another drawback
lies in the implementation of most relational systems that do

not treat domains properly. In relational implementations it

is possible to join on any two columns which have the same type.

For example, joining DEPARTMENT to VEHICLE with DNAME=VTYPE

(both columns are character strings) is allowed, even though

such a join does not have any meaning. However, the relational

model is by far the simplest and has proved of great value in

describing problems associated with distributed data.

B. THE NETWORK MODEL

The details of this model are described in the DBTG report

(Ref. 2). The model is often called CODASYL, after the committee

that developed it. The elements of the model are record classes,

attributes (sometimes called items) and sets. A record class

describes a set of records having the same set of attributes.

Informally, a record class resembles a relation. However,

records in different classes may be related through a set. A

set is nothing more than a many-one relationship between the

records of two distinct classes.
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DEPAR TMENT
(EPT#, DNAME, CITY)

/DE DV

EMPLOYEE VEHICLE

(EMP#, NAME) (V#, VTYPE)

EJ

JOURNEY
(TIME)

FIGURE 2. A network schema

The example in Fig. 2 describes the same data base that was

used in the relational example. At the top of this diagram,

there is a DEPARTMENT record class, with attributes DEPT#,

DNAME, CITY. Each record in this class "owns" (through the

set DE) a set of records in the EMPLOYEE class, and, through

DV, a set of vehicle records. The rules of set ownership spec-

ify that no two records in the "owning class" may have a common

record in the "owned" class. Thus, since no two departments

can own the same employee, an employee may be in at most one

department. Set ownership therefore specifies a many-one rela-

tionship between record classes. Note that, in contrast to the

relational model, many-record classes have fewer attributes

than their relational counterpart. The other fields may be

through owning records. Thus, the DEPT# of an employee is de-

termined by finding the owning record in the DE link.

It is also possible, in the CODASYL model, to ensure that

every record in an owned class has an owner in the owning class.

Thus, it is possible to enforce the constraint (lacking in the

relational model) that each employee must be in some department.

A criticism of CODASYL as a logical model is that logical

relationships in the data may be represented in more than one

way. Consider the two schemas

46
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PERSON DEPARTMENT
(EMP#, NAME, DEPT#) (DEPT(

EMPLOYEE
(EMP#, NAME)

Both schemas represent the same information; however, in one case

the department number of a field is represented as a field, while

in the other case, a set is used. The two representations will

make a crucial difference to the efficiency with which a given

query can be executed, but it is unlikely that an end user will

wish to be acquainted with such details unless absolutely necessary.

CODASYL systems require highly-trained personnel to design

and manage them. Even the degree of technical competence needed

to query the data base is quite high. There is a common practice

of keeping "stripped files," a flat-file representation of part of

the data base, which is periodically updated (FORSTAT is an ex-

ample). Such files simplify the problem of querying a selected

subset of the data base, and may also improve the efficiency.

However, the practice is sometimes unfortunate because it means

that the user can be provided with data that are out of date*

and because queries written against the flat file generally will

not run against the full file and vice versa.

C. OTHER MODELS

In this section we shall briefly review other data base

management systems and the logical models associated with them.

1. Hierarchical Systems

A hierarchical system may be viewed in the same terms as

a CODASYL system. There is a restriction that no class may

participate as an owned set in more than one set relationship.

*In some cases, the full file is updated continuously (as
changes come in) but the stripped file is only updated at
set times.
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This means that the schema of a hierarchical system is tree-like

and in the CODASYL example above, the JOURNEY record class would

not be allowed to participate in both the EJ and VJ sets. To

convert to a hierarchical schema, one of these links would have

to be broken, or the JOURNEY record class would have to be du-

plicated, and a key added to the two resulting record classes

in order to denote the correspondence.

IBM's IMS is a well-known example of a hierarchical DBMS.

The NSA-supported ADAPT system (see Chapter V) uses a hierar-

chical model. The criticisms that hold for the CODASYL data

model also hold for the hierarchical model.

2. Fixed Schema Models

A number of C3 1 data bases are designed for very specific

uses. In particular, the document retrieval systems such as

SOLIS, PIRL and DSRS are designed for the efficient storage and

retrieval of documents by name and subject matter. Such systems

provide the user with a fixed schema. Although a general-

purpose DBMS could in principle be used as a storage medium,

the resulting data base would be more cumbersome to manipulate

than that provided by the special purpose systems.

3. "Flat File" Systems

It was claimed in the discussion of the relational model

that a number of file manipulation programs could be viewed as

relational operators. This is not quite true. A number of

flat file systems (ISS for example) lie somewhere between the

relational and hierarchical view. Variable length records are

allowed and some of the fields may be repeating: this means

that the field may contain a sequence of similarly formatted

values. Such a file may be viewed as a two-level hierarchy.

The presence of repeating fields considerably complicates the

query languages that are commonly used against such files.

4. Inverted Systems

Inversion is an implementation technique and has nothing

to do with logical models of the data base. However, several
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DBMSs are advertised as "inverted" or "fully-inverted" (ADABAS

and a WWDMS supported sub-system). In practice, knowing which

fields are inverted is extremely important in the efficient

execution of queries.

D. THE FUNCTIONAL MODEL

The functional model was first discussed by Kerschberg and

Sibley (Ref. 7), and is important here because it has been pro-

posed independently as a method of producing a unified view of

all the data base management systems and data models that are

currently in use. One of these proposals was briefly described

in a previous report (Ref. 1). Another is contained in the

MULTIBASE project, which will be reviewed in this report.

While the query languages differ greatly in syntax, the under-

lying primitives are similar, and the data models, with minor

differences, are the same.

According to the functional model, a data base contains a

collection of types and functions. (In DAPLEX, the language

of MULTIBASE, the word "entity" is used instead of "type".)

Each function maps one type into another, and it is assumed

that there are a few primitive types that are common to all

systems. These are types such as STRING (character string),

NUMBER, BOOLEAN, etc. The types that the data base provide

usually correspond to our traditional notion of record class.

In this model, a department would be represented by a

DEPARTMENT entity, with the following functions:

DEPT#: DEPARTMENT - NUMBER

DNAME: DEPARTMENT - STRING

LOCATION: DEPARTMENT 4 STRING

or diagrammatically,
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STRING

Moreover, at least in the CODASYL representation of the data

base, we may view the relationship between EMPLOYEE and DEPART-

MENT as another function: DE, so that

DE: EMPLOYEE - DEPARTMENT

and if we represent other CODASYL sets in the same way, we may

construct a diagram of the whole data base as:

LOCA TI N 
AM

NUMBER DEPARTMENT

VNUM00

VEMPLOYEEjVEHICLE

/ENAME v

ISTANCE
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where functions have been, for simplicity, left with unspecified

ranges. Such diagrams can become unwieldy, and it may be that

the type of data definition language supplied by CODASYL (see

Chapter IIID) would be simpler to follow. Associated with each

function there may be an inverse. The inverse of a function

may be treated as another function whose range is a set or

sequence. Thus, DE-1 is a function on DEPARTMENT which produces

a set of EMPLOYEEs. (The set of employees in that department.)

Whether or not all the functions in the schema have inverses

depends upon the query language. In a low-level implementation,

the user would be aware that only some functions have inverses,

and would have to write code to determine the inverse himself.

In a higher-level system, the most efficient method of computing

the inverse could be determined automatically. Note that sets,

hash tables, etc., are all methods of representing the inverse

of a function.

The functional representation of the relational model would

be the following

DEPARTMENT EPOE

DEPT# LOCATION EP NMLONAMEDET

QETU STRING MSRN
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Note that the two representations of the same collection of data

are different. This is as it should be, for the two models re-

flect differing constraints on the data. In this sense, the

functional model is rather low-level, but for the purpose of

interfaces to heterogeneous data base systems it has two impor-

tant advantages.

1. It may be used to represent the logical models of all

commonly available DBMSs.

2. The translation from the schema of the data base to

the functional model may be performed automatically.

Therefore, a query language based on the functional

model should require no additional maintenance or pose

the threat to security mentioned in the introduction.

Although, in our example, the functional models for the

CODASYL and relational data bases are different, it is possible

to turn one model into the other by a process of function defi-

nition. In the CODASYL model, there is no direct function

DEPT# on EMPLOYEE, but it may be defined by the composition of

the functions DEPT# and D.

E. MAPPING BETWEEN MODELS

This subject has been extensively researched (Ref. 8). The

simplest models upon which a uniform query language can be based,

in our opinion, are the relational and functional models. We

have shown how the relational model may be mapped into the func-

tional model, and a general technique is described in (Refs. 9

and 10). Can a mapping in the other direction be constructed?

By answering this question, we would also provide an answer to

mapping CODASYL and hierarchical structures into relational struc-

tures, since there is a mapping from CODASYL, etc., into func-

tional.

The answer to the question is not simple. Roughly speak-

ing, it is true that a relational model can always be con-

structed from a functional model, but that the result is not
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unique. Practically, this means that the mapping cannot be

performed automatically: some intelligent intervention is re-

quired in order to decide which is the "best" set of relations

to represent the functional schema. The problem of producing

relations from a functional schema is the same as choosing a

set of "stripped" files that will fully represent the contents

of a CODASYL system.
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III. QUERY LANGUAGES

A. INTRODUCTION

Data base query languages are more varied than at first

seems reasonable: terms such as "high-level," "low-level,"

"procedural," "non-procedural" are often used to describe a

query language, but give very little idea of its power, con-

venience or efficiency. Some languages bear a close resemblance

to conventional programming languages and allow direct access

to the physical data manipulation procedures of the DBMS. Such

languages usually provide for arbitrary computations, i.e.,

they can be used as conventional programming languages, but

require a considerable investment of time and expertise to be

at all useful. Other languages provide a much simpler format

for queries, but almost invariably lack computational power.

In this chapter we review a representative selection of query

languages and attempt to draw some broad comparisons.

The discussion will concentrate on query languages. A

data base query is, by definition, a procedure that does not

modify the data base. Thus, in a query language, there is no

need to provide update mechanisms for the data base. By gen-

eralization, it can be argued that there is no need to provide

update mechanisms for any structure; that is, there is no need

for an assignment operator in the language. The assignment

operator is the operator that allows variables or structures

to be modified: "X := 1;" and "A[3) := 5;" are examples of

assignment statements. It is unfortunate that of the currently

used query languages, the only languages that allow full compu-

tational power are those that contain an assignment statement,

and these are the most difficult to learn. Languages without
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an assignment statement are usually much cleaner, at least at

a syntatic level, but lack some computational power. There

seems to be no reason why this should be the case.

Before looking at individual languages, it will be useful

to have some specific criteria to apply to query languages in

order to establish useful comparisons among them.

B. FEATURES OF QUERY LANGUAGES

The purpose of studying query languages in this document

is to try to answer two questions: Is there a query language,

or could one be built, that will serve as a uniform interface

method for all C31 data bases? What languages should be con-

sidered for the variety of C31 end users? The following sub-

sections will cover a number of related criteria that can be

applied to query languages, and the associated problems.

1. Computational Power

Many query languages, while providing a very simple for-

malism for data base access, are remarkably weak in other re-

spects. For example, in most relational* query languages it

is impossible to ask for a simple arithmetic expression to be

evaluated. This is a serious drawback in a number of practical

situations. For example, if an averaging function has not been

defined, it is impossible for the user to give a formal defini-

tion of how an average is to be computed. The computation of

simple statistics and of geographical distances present similar

problems.

*The term "relational completeness" is often used (Refs5. 11
and 12) to describe the power of a relational query language.
This is a technical term that describes the power of operations
on the data. It has little to do with its power as a general-
purpose programming language.
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Another weakness lies in the inability of languages to per-

form recursive traversals of the data (Ref. 13). Many problems

associated with a bill-of-materials processor are recursive, and

cannot be expressed in most simple languages. These difficulties

could, in part, be overcome by a good interface to some other

high-level, preferably interactive, programming language. How-

ever, embedding a high-level query language in an existing pro-

gramming language is a difficult task, and the result may be more

confusing to the user than having just the programming language

and the low-level data base access routines.

Some of the languages reviewed below may be used as general-

purpose programming languages. This is true of some of the

CODASYL-based languages. However, the programming constructs

(the ability to define new procedures and data types, etc.) are

quite weak. As a result, the statement of some simple queries

can be extremely complicated.

2. Transportability

Transportability is the ability of a data base query lan-

guage to work against different data base management systems.

None of the languages that work by directly calling the data

manipulation subroutines have been designed to be transportable.

However, some systems that work by query translation have been

used against more than one DBMS. These include ADAPT and some

of the Natural Language systems. Building an interface to a new

DBMS requires technical expertise, but even once the interface

for a DBMS is established, transporting the query language to a

new data base is not always straightforward. In fact, none of

the so-called "transportable" systems can be run against a new

data base without some programmer intervention. Two questions

are relevant to transportable systems:

1. What structures have to be created in order for the

query language to run against a new data base? In-

variably, a schema must be defined in the format re-

quired for the query language. In some cases, such

as NL systems, a lexicon must also be created.
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2. Who does the transporting? In the case of NL systems,

it cannot at present be done by the data base admini-

strator. An expert in the NL system itself is usually

required to spend several weeks, perhaps months, under-

standing both the structure and contents of the data

base, and the needs of the user community.

The need to redescribe the schema is in part a failure of

the DBMS. Very few DBMSs have the power to describe their own

structure. In other words, data base interface routines that

answer questions about the schema are usually absent.

3. Querying the Schema

The ability to query the schema is important for several

reasons. It is not uncommon for a technically competent user,

i.e., one who understands the query language and the DBMS, to

be confronted with a new data base about which he understands

very little. Even if he knows that certain items are available

(for example, VEHICLE and DEPARTMENT), he may not know how they

are structurally related. To find this out, the usual strategy

is to read the Data Definition Language (DDL) of the schema or

some relevent subschema. This is a laborious task and often

solved by making "hard" copies of the DDL available: this is

not an attractive idea in a network environment.

Queries against the schema are also important for the

reasons suggested above: if it were possible, by some means,

to issue a query or call a subroutine, that returned informa-

tion about the structure of the data base, many of the problems

of translating between query languages could be solved automat-

ically. Some DBMSs now provide on-line data dictionaries that

describe both the physical structure of the data base and com-

ments about the logical structure. While these are largely

used to meet the organizational demands on data base admini-

strators, it is possible that they could be adopted for inter-

active use by users unacquainted with the data base.
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While "browsing" through the structure of a data base may

be undesirable in a classified environment, a good security

system should be able to control access to information about

the structure in much the same way that information about the

contents is presently controlled. The present situation, in

which schema mappings have to be created "by hand" in order to

create a new interface to a query language, may provide a greater

threat to security.

4. User Convenience

What constitutes a "convenient" query language is obviously

an extremely subjective matter. In particular, we reserve a

discussion of NL systems until later in this section. It is

worth briefly examining this issue in the more general area of

programmring languages. The following general points apply to

programming languages and should apply equally to query languages.

1. Interactive systems are desirable. In particular, a

system in which the user is always "talking to" the

same command set (such as BASIC, LISP, APL) (Refs. 14

and 15) is preferable to one in which the user must

jump between several systems, such as an editor, the

operating system executive, and the program loader.

This usually happens in a standard compile-load-and-go

programming environment.

2. Interpreters (or incremental compilers) provide an

ease of debugging that is not usually achieved with

standard compilers. In particular, such systems allow

a running program to be interrupted and the user to

examine what its state is. This is an invaluable de-

bugging aid. Although interpreters are usually slower

than compilers, the reduced debugging time often com-

pensates for the increased run time. Another observa-

tion relevant to query languages is that most elapsed

time is due to the delays in i/o. As far as the user
is concerned, delays in i/o will usually dominate all

other processing.
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3. A good "front end" is desirable. Languages such as

BASIC, APL, and some versions of LISP all have a set

of "system" or "work space" commands, which make the

incremental development of programs extremely simple.

As far as we know, data base query systems have done

little to emulate this. Other interactive support,

such as screen editors, speech understanding and touch

interfaces are beyond the scope of this report.

5. Semantic (and Syntactic) Simplicity

Given that NL is not to be the language of communication,

a simple syntax and semantics for the query language is desir-

able for many reasons. In the first place, a language that is

simple in this sense is easy to learn. Secondly, since much

data base querying is done by translation, the process of trans-

lation is greatly simplified if the syntax is reasonably simple.

The relational languages without exception have a very clean

structure because they are based upon the relational calculus,

which itself is very simple.

Unfortunately, the commonly used CODASYL-based languages

are extremely messy. Part of the problem lies with data cur-

rency, which is probably the most confusing issue in these lan-

guages. CODASYL, and a number of related DBMSs, communicate

with secondary storage through a common area known as working

storage. This storage contains room for precisely one instance

of each record type in the data base. In some languages (DMS-20,

for example) the user has to be aware of what record is current

(in working storage) in order to program a query. This means

that very simple queries that involve comparisons between two

records of the same type are extremely difficult to program.

The user must explicitly copy information from working storage

into some other area. Other languages, such as the WWDMS lan-

guage and ADAPT, manage to protect the user from worrying about

data currency for simple queries, but in a complex traversal of

the data base, it again creates problems.
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6. Report Generation

Ir A query language without a good method of producing a hard-

copy report is usually deemed useless. Why are reports useful?

Here are three reasons:

1. Reports provide a useful starting point for further

analysis.

2. One can browse through reports easily.

3. Reports provide useful back-up. (They are also more

transportable than terminals.

However, reports may be unnecessarily lengthy, or needlessly

generated, because the query language, or applications program,

is not sufficiently sophisticated to provide the required infor-

mation. With the increased use of display terminals, there is

likely to be a decrease in the demand for hard copy. However,

in the short term a report generator, especially for display

terminals, is essential.

C. RELATIONAL LANGUAGES

A good survey of relational languages is to he found in

Ullman (Ref. 16). Although no relational systems are currently

used within C31, it is possible that a relational system will

be used at a later date.* Moreover, several of the available

query languages may be better understood by comparing them to

relational languages.

The relational model and the operators of the relational

calculus were introduced in Chapter II. The operators: join,

projection and restriction, do not constitute a complete set;

set union and differences are also required. However, the major-

ity of queries can usually be accomplished using the first three.

This set of operators, originally devised by Codd (Ref. 5),

is called the relational calculus. Each operator takes one or

more relations as argument and produces a relation as a result;

*System R may soon be available commercially.
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a relational query is formed by composing these operators to

produce a relation that (by default) is printed. The user of

a relational system, in theory, need have no knowledge of what

computations are being performed to create the required results.

This is one example of a functional programming system, in which

programs are written simply by composing a set of predefined

functions (in this case, the relational operators).

1. SEQUEL

A number of relational languages have been im~plemented,

these include SQUARE (Ref. 17), ISBL, SEQUEL (Ref. 18) and

QBE. Of these, the most commonly used is probably the language

SEQUEL, which is the query language for INGRES (Ref. 19), and

the basis for the query language of System R (Ref. 3).

The basic form of a SEQUEL query is:

SELECT d FROM r WHERE p

In this, d is a list of one or more domains; r is a relation,

and p is a predicate which applies to each tuple (row) of the

relation. If the "WHERE p" clause is missing, all tuples from

r are selected.

For example, in the DEPARTMENT - EMPLOYEE -VEHICLE -

JOURNEY data base of Chapter II,

SELECT VTYPE FROM VEHICLE WHERE DEPT# 7

creates a one-column relation consisting of the vehicle types

of vehicles owned by department V7. This type of statement

gives the power to perform a projection (specified by d) and

a restriction (specified by p) on a relation (r). Compare this

with

SELECT V#, VTYPE FROM VEHICLE WHERE DEPT# - 7

This will produce a two-column relation of vehicle numbers and

vehicle types. Since there are, in general, more vehicles than

vehicle types, the second query should generate a relation with

more rows. However, in SEQUEL, the two relations produced are
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the same length; that is, duplicates are not removed from the

result of a SELECT operation, and strictly speaking, the result

of a SELECT operation is not a relation. In order to achieve

elimination of duplicates the keyword UNIQUE is used:

SELECT UNIQUE VTYPE FROM VEHICLE WHERE DEPT# = 7

There are two reasons for not eliminating duplicates auto-

matically: one is that it is computationaily expensive to do

so, and the other is that a pure set-based language makes cer-

tain useful operations awkward to incorporate into the language.

For example, suppose we wish to find the average distance for

trips that used vehicle with V# 96. We could create the sequence*

of distances with

SELECT DISTANCE FROM JOURNEY WHERE V# = 96

Had the keyword UNIQUE been used, we would only create the set

of distinct distances, which is not the appropriate argument

for an averaging function.

Joins, that is, queries that span more than one relation,

are achieved by suitably defining the predicate in the WHERE

clause. Suppose, for example, that we wish to find the names

of departments that own a Ford.

SELECT DNAME FROM DEPARTMENT

WHERE DEPT# IN

SELECT DEPT# FROM VEHICLE

WHERE VTYPE = FORD

*Strictly speaking, a bag is the correct mathematical struc-
ture: it may contain duplicates, but does not have an order-
ing.
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Again, note that this will produce a set of department names

with duplicates. In order to remove the duplicates, we would

write "SELECT UNIQUE DNAME..." If we do this, it makes no

difference whether a "UNIQUE" is inserted after the second SE-

LECT in this query. For reasons of (time) efficiency, one would

omit this.

It is frequently desirable to introduce variables into a

query. While this is not needed in the pure relational algebra,

it is needed when extensions to the algebra (such as the aggre-

gation operators sum and average) are introduced. Thus, to find

the names of employees who have driven more than 1000 miles, we

introduce a variable X, which ranges over tuples of the EMPLOYEE

relation:

SELECT NAME FROM EMPLOYEE X WHERE

1000 <

SELECT SUM(DISTANCE) FROM JOURNEY

WHERE EMP# = X.EMP#

The variable X ranges over tuples of the EMPLOYEE relation.

In addition to the operations described above, SEQUEL con-

tains a number of other operators that give it the same power

as the relational algebra.

2. Limitations of Relational Query Languages

We have described SEQUEL because it is a language that pro-

vides for a large range of data base queries. Also, its syntax

is remarkably similar to a number of non-relational languages

(query languages that work against data bases that are not in a

relational form). Other relational languages provide similar

extensions to the pure relational algebra. It is worth briefly

measuring SEQUEL against the yardsticks described at the begin-

ning of this chapter.
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1. Computational Power. The pure relational algebra is,

as we have noted, extremely limited. It does not con-

tain aggregation primitives, nor can simple arithmetic

expressions be defined or evaluated outside of a rela-

tional query. SEQUEL corrects this by introducing some

aggregation operators, but in doing so, must deviate

from the principles of relational algebra by operating

on sequences, or bags, rather than sets. Moreover, the

addition of these operators introduces a certain synta-

tic confusion: why do we say "SELECT SUM(DISTANCE)

FROM..." rather than "SUM (SELECT DISTANCE FROM...)"?

SEQUEL does not allow the user to define new functions.

For example, in a nautical data base, if the function

great-circle-distance is not defined, it would surely

be desirable to define it, and to keep it as "data".

In a similar fashion, it would be desirable to intro-

duce MILEAGE (the total number of miles a vehicle has

been driven) as a "virtual" domain of the VEHICLE rela-

tion. Some of these deficits are corrected in System R.

2. Transportability. SEQUEL, like other relational lan-

guages, is defined for a relational data base system.

It is not designed to be transportable across DBMSs.

However, some languages that are designed for this kind

of transportability (ADAPT, for example) have a syntax

that is not unlike that of SEQUEL. Thus, it is not un-

reasonable that a SEQUEL-like syntax could be used in

a heterogeneous environment.

3. Querying the Schema. This is not considered part of

the relational calculus. However, it is not hard to

imagine the schema being represented in a relation whose

definition is

SCHEMA(RELATION-NAME,DOMAIN-NAME,DOMAIN-TYPE)

or some equivalent construction. There Pre some more
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sophisticated schema-querying proposals by Smith and

Smith at CCA.

4. User Convenience and Simplicity. One of the advantages

of the relational algebra is that it is extremely simple.

This is reflected in the query languages that are based

upon it. No one would claim that the CODASYL-based lan-

guages are "simpler" than the relational languages. As

for user convenience, INGRES is provided with a good

user interface, as is System R.

5. Report Generation. In one sense, a relation is a re-

port: the rectangular display corresponding to the

relation. However, reports are usually hierarchical

in nature, and there are no facilities in relational

languages for describing hierarchies, let alone display-

ing them. Again, System R offers extensions that allow

the generation of more sophisticated reports.

In order to overcome these deficits in the relational lan-

guages there is a proposal (it may have been implemented) to em-

bed relational languages, specifically SEQUEL and System R in a

regular programming language, PL/l. Calls to the DBMS are made

through character strings containing SEQUEL statements. The
relation that is returned may be fed tuple-at-a-time into a

user-defined PL/l structure. The user of such a system will be

faced with learning two languages, a task that is probably more

difficult than learning the CODASYL systems of which we have

been so critical. A user with a working knowledge of PL/l and

SEQUEL would probably be as happy or happier with direct access

to the low-level primitives, hash tables, linked lists, etc.,

of the data base management system. Note that while SEQUEL is

based upon a functional programming system, PL/l is not. Any

clean syntactic merge of the two languages is therefore unlikely.
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* D. QUERY LANGUAGES FOR DBTG DATA BASES

1. DBTG Access Primitives

The DBTG data model was briefly described in the previous

V chapter. In order to understand how query languages for these

systems may be defined, a certain amount of knowledge concerning

the physical communication between the applications program (in

this case the query language) and the physical data is required.

The DBTG proposals do not specify a query language as such.

Instead, they define a set of statements or subroutines which

may be embedded in a "host" programming language such as COBOL

or FORTRAN. A user who is familiar with these languages, and

who understands the physical manipulation of DBTG structures,

can therefore program any given query. However, in most cases,

the resulting code is relatively cumbersome, and the query can,

in most cases, be more concisely represented in "higher-level"

languages. Some of these languages will be described in this

section.

A DBTG data base has a fixed schema, which must be defined

before a data base may be generated. To create the schema (here

we are referring to the data structure that described the physi-

cal layout of the data), a user composes statements in a Data

Definition Language (DDL). A preprocessor then compiles the

DDL into the appropriate physical structure. The DDL for the

VEHICLE data base of Chapter II would resemble the following:

39



RECORD DEPARTMENT
DEPT# INTEGER
DNAME CHAR(20)
CITY CHAR(1O)

RECORD EMPLOYEE
EMP# INTEGER
NAME CHAR(20)
LOCATION MODE IS CALO USING EMP

RECORD VEHICLE
V INTEGER
VTYPE CHAR(1O)

RECORD JOURNEY
TIME CHAR(6)
DISTANCE INTEGER

SET DE
OWNER DEPARTMENT
MEMBER EMPLOYEE

SET DV
OWNER DEPARTMENT
MEMBER VEHICLE

SET EJ
OWNER EMPLOYEE
MEMBER JOURNEY

SET VJ
OWNER VEHICLE
MEMBER JOURNEY

FIGURE 3. The DDL for the DBTG data base of
Chapter II. This example illus-
trates only a subset of the avail-
able structures. For example, it
is possible to specify that records
classes and sets should be ordered
by a given field.
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The DDL in Fig. 3 is a simplification of the actual DDLB used.

Note that the "location mode" specifies an efficient (hashed)

mechanism for locating a given EMPLOYEE record in the data base.

If this statement were not present, sequential search would be

the only method of finding an employee given an EMP#. It is

also rossible to specify that two records with the same key may

not simultaneously reside in the data base.

Communication with the physical data base takes place

through a fixed area of working storage, which has space for

precisely one record of each record class. In the EMPLOYEE-

VEHICLE data base, the working storage would be able to hold

one record from each of the four classes. A record is located

in the data base by a currency pointer. These are usually physi-

cal data base addresses. Once a currency pointer for a record

has been established, the record is moved into working storage

by invoking a procedure GET. Thus, the main purpose of the DML

routines is to provide methods for creating currency pointers.

In the DBTG proposals there is a fixed set of currency pointers:

one for each record class, one for each data base set and a
ocurrent of the run unit,'' which is the currency pointer upon

which the procedure GET operates.

The procedures that establish currency pointers are named

by some variant of the word FIND. We shall adopt a slightly

different method of describing the various FINDs. We shall view

the FIND routines as functions that return currency pointers as

results; the fact that in a true DBTG system, the FINDs may only

modify one of the fixed set of currency pointers, is a complica-

tion that we may ignore for the purpose of describing the global

structure of DBTG programs.

The following notation will be useful in describing the

FIND routines.
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CPT: Anything that is a currency pointer. If a function

fails to establish a currency pointer, we shall as-

sume that it has the value 0. In other words, 0

represents the value NIL in conventional programming

languages.

RECID: An identifier; either a name, or an internal refer-

ence, to a record class.

SETID: An identifier for a set.

KEY: An identifier that is to be used as a key (i.e., for

which some indexing structure is provided).

Strictly speaking, these terms refer to data types. When, for

example, we describe the function FINDNC as

FINDNC: (RECID,CPT) - CPT

we mean that FINDNC is a function that takes a record class

identifier, and a currency pointer, and returns a currency

pointer. Using this notation, we can describe the various

FINDs that may be used to traverse DBTG structures.

1. Traversing a record class. Two functions are used:

FINDFC: (RECID) - CPT

This function takes a record class as argument, and

returns the currency pointer for the first record in

that class. If the class is empty, the result is 0.

FINDNC: (RECID,CPT) - CPT

Given a currency pointer to a record, FINDNC returns

the currency pointer for the next record in the class.

An error should be generated if the given currency

pointer does not reference a record in the given class.

Again, 0 is returned if there is no next record, i.e.,

the class has been traversed.
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2. Traversing a set requires three functions:

FINDFS(SETID,CPT) - CPT .

Given a set identifier, and a currency pointer to a

record R, find the first record owned by R in that set.

FINDNS(SETID,CPT) - CPT

Find the next member record in the set.

FINDOS(SETID,CPT) CPT

Given a set and a currency pointer for a member record,

find the owner record.

3. Hashing directly to a record.

FINDFK(RECID,KEY) ) CPT

Find a record in the given class with the given key.

FINDNK(RECID,KEY,CPT) - CPT .

Find another record, if any, with that key.

In all cases, when one of these functions is given inconsistent

arguments, an error should be generated.

Using this set of variants of the DBTG FIND commands, we

may now give some sample queries in an ALGOL-like language. The

simplest queries involve only one record class, and may be tra-

versed with the functions FINDFC and FINDNC. For example, to

print the names and cities of all departments, a proaram would

have the following form.

1. begin
2. C:=FINDFC(DEPARTMENT);
3. while C <> 0 do
40 eg n5 . GE ( );
6. PRINT(NAME,CITY);
7. C:=FINDNC(DEPARTMENT,C);
8. end;
9. enWF

a-3
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Line 2 of this program establishes C as a currency pointer for

the first DEPARTMENT record. Lines 5 and 7 now specify an itera-

tion over all the records in the DEPARTMENT class. C will take

on successive values that will reference all records in this

class. For each value, the procedure GET is called to bring the

record into working storage, and the procedure PRINT (line 6)

prints out the desired information.

As a more complicated example, we could ask for the names

of departments and the vehicle types owned by each. This query

involves a set traversal.

1. be in2. :INDFC(DEPARTMENT);

3. while C <> 0 do
4.
5. );
6. D:=FINDFS(DV,C);
70 while D 0 0 do
8. begin
9. GET(D);
10. PRINT(DNAMEVTYPE);
11. D:=FINDNS(DV,D);

12. end;
13. C:=FINDNC(DEPARTMENT,C);
14 end;
15. enTF_

This program should be contrasted with the corresponding

relational query. In the first place, a line is printed for

each vehicle. Thus, a (DNAME,VTYPE) pair may be repeated. In

contrast to SEQUEL, it is not an easy matter to remove duplicates.

In general, the way to remove duplicates is to perform a sort on

the appropriate field. If, for example, the member records of

the DV set were sorted by VTYPE, then it would be an easy matter

to cause the PRINT to be performed only when the VTYPE changed.

For the generation of reports, this program structure pro-

vides considerable flexibility. For example, it may be required
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for each DEPARTMENT to have the DNAME appear once only in the

left margin, and the VTYPES for that department indented, and

displayed in a column underneath.

As a final example, consider the problem of printing the

names of all employees who have driven a vehicle that does not

belong to their own department.

1. begin
2. E:=FINDFC(EMPLOYEE);
3. while E > 0 do
4. begin
5.- - i.=FINDOS(DE,E);
6. FLAG:=FALSE;
7. J:=FINDFS(EJ,E);
8. while FLAG = FALSE and J <> 0 do
9.bei
10. DT:=FINDOS(DV,FNDOS(VJ,J));
11. if D1 D2 then FLAG:±TRUE;
12. end
13. iT- FLAG t TRUE then
14. be
15.
16. PRINT(ENAME);
17. end
18. T.FINDNC(EMPLOYEE,E);
19. end
20. end

Again, it should be emphasized that we have represented the

FIND commands in a somewhat different fashion to the DBTG speci-

fications. In fact, in the DBTG proposals, a FIND involves an

intermediate GET. That is, a record must be brought into work-

ing storage before the next record (in its set or class) can be

found. This means that programs are often considerably more

cumbersome than the examples given above. For example, the

statement

FINDOS(DV,FINDOS,(VJ,J))

would expand to four statements in a conventional DBTG program.
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2. Interactive Query Languages for DBTG Structures

A number of "interactive" query languages have been imple-

mented that give the user direct access to the DML routines

(FINDs and GETs). Roughly speaking, these languages resemble

BASIC interpreters: the user may perform line-at-a-time editing,

and has a number of useful debugging aids. The programs them-

selves use a syntax that resembles (more or less) that of BASIC.

Thus, the control structures (while..do, begin..end) in the pro-

grams above, are replaced by GOTOs.

An example of such a language is the query language for

Digital Equipment Corporation's DMS-20, a DBTG-based system.

Programs in DMS-20 are approximately twice as long as the ex-

amples given above; this is in part due to the more primitive

control structures (GOTOs), and in part because the examples

above have used a more condensed notation for the FIND command.

3. WWDMS

The examples above indicate that a very common control

structure for DBTG structures is:

C:=FINDFC(<recid>);
while C> 0 do

"GET(C);

end

There are similar programs for traversing sets and records with

the same CALC key. A good query language should be able to pro-

vide this control structure as a primitive operator of the lan-

guage. The query language of WWDMS (Worldwide Data Management

System) is such a language. WWDMS, developed by Honeywell In-

formation Systems Inc., is a comprehensive data management sys-

tem that maintains not only DBTG-like structures, but a number

of other structures, in particular:
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1. Sequential Files

2. Indexed Sequential Processor (ISP) files. These are

similar to the familiar ISAM files on IBM systems.

3. Inverted Files. Physically, this is a file with cer-

tain keys inverted for efficient access. This is simi-

lar to ADABAS structures.

4. Integrated Data Store (IDS). This gives a "network"

structure. For most purposes, IDS structures can be

viewed as DBTG structures.

The WWDMS query language (often also called WWDMS) provides

access to all these file types. It has very sophisticated re-

port definition, and provides a degree of "non-procedurality"

for data base traversal. In expert hands, WWDMS is an extremely

powerful tool. However, it is generally regarded as being dif-

ficult to use, and there is a lack of WWDMS experts. We shall

try to suggest reasons for the unwieldiness of WWDMS, but first

let us examine a simple WWDMS query. We shall express in WWDMS,

the simplest of our DBTG queries, printing the names and cities

of all departments:

1. RLINE. LINE DNAME COL 1 PIC X(10),
2. CITY COL 11 PIC X(IO)
3. RI. RETRIEVE DREC FROM DEPARTMENT
4. WHEN RI.

5. PRINT RLINE

6. END

Lines 1 and 2 of this query define (in detail) what the format

of the output report is to be. Line 3 specifies that successive

DEPARTMENT records are to be retrieved. The retrieval of a

record "triggers" the event Rl; and lines 4 and 5 specify an

action to be taken when each such event occurs. Two important

headers have been omitted from this query: the specification

of the data base, and the device to which the report is to be

routed. WWDMS queries operate in a batch processing environment,

so these cannot be defaults set up at the start of a terminal

session.
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The second of our sample DBTG queries would be accomplished

by a "nesting" of RETRIEVE statements:

R1. RETRIEVE DREC FROM DEPARTMENT
WHEN RI.
R2. RETRIEVE VREC FROM VEHICLE IVIA DVI

WHEN R2.

(The VIA DV statement has been inserted by the authors to show

the difficulty in specifying which DBTG set is to be used in a

traversal when there is a choice.)*

These two queries illustrate that simple traversals can be

simply expressed in WWDMS. More complicated programs are also

possible, and WWDMS has a number of additional control struc-

tures to allow this. In particular, it is possible to define

subroutines in WWDMS. More complicated WWDMS queries, however,

do not seem to benefit. For example, the third of our sample

queries is considerably more complicated to express in WWDMS

than our original DBTG program. Since WWDMS includes the basic

variable definition statements and control structures of a simple

programming language, it is possible to write any program in

WWDMS.

WWDMS is probably one of the most powerful languages ever

designed specifically for data base manipulation, but it is only

useful in the hands of a well-trained expert, and learning the

intricacies of the language is not an easy task. Why is this?

The following reasons are, in part, the authors' value judgments

and are stated here not to denigrate WWDMS, but to provide some

insight into the requirements for a successor to the WWDMS query

language.

*It is possible that WWDMS data structures do not allow two
sets to have both the same owning class and the same member
class, in which case this ambiguity would not arise.
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* 1. WWDMS programs, although they can be interactively

edited and submitted, are designed primarily for a

batch processing environment. The operating system

(WWMCCS) under which WWDMS runs is not at all "friendly"

when used from a terminal. Debugging a WWDMS program

is therefore a difficult task, and unnecessary resources

are often wasted in repeatedly resubmitting a WWDMS

program, because incremental debugging of the program

is almost impossible. This criticism is, however, not

directed at the WWDMS language itself. It is more a

criticism of the environment in which it operates.

2. Simple control structures for WWDMS queries are, as we

have seen, extremely simple to program; but more com-

plicated flow of control demands a very much more "pro-

cedural" programming style. For example, if a program-

mer wants to terminate prematurely a RETRIEVE iteration,

the control statements are, if anything, more compli-

cated than those of a conventional programming language.

It is a pity that what starts out as a "non-procedural"

language has to be explained through the use of proce-

dural flow charts in the instruction manuals (Ref. 20).

The scope rules of WWDMS are also extremely confusing:

what lies inside the scope of a WHEN or RETRIEVE state-

ment cannot be determined by any simple syntactic rule.

3. There is a lack of any abstract data model. This seems

to be a flaw in a number of query languages. The no-

tion of a sequence of records is fundamental to under-

standing the action of a RETRIEVE, but to our knowledge,

there is no formal definition of sequences, or other

relationships among records. It is never clear whether

or not the user is expected to understand the physical

structure of the data base.
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E. QUERY LANGUAGES BASED UPON THE FUNCTIONAL MODEL

In a previous report (Ref. 1), a formalism was presented

for a query language based upon the functional model. This has

been implemented, and in a concurrent effort, DAPLEX, another

language based upon the functional model, has also been defined

but has not yet, to our knowledge, been implemented. We shall

briefly review the operators required in a functional query lan-

guage here, using the syntax of the Functional Query Language

(FQL). However, FQL, like the relational algebra, is not in-

tended as an ideal end-user query language. The queries given

here could be formulated in the DAPLEX language, or in some

system whose syntax matches that of SEQUEL. Our purpose here

is to set out some FQL queries for comparison with the previous

examples, and to define what we believe to be the correct

internal semantics for a query language against the functional

model. The following examples are not meant to be a complete

description of the language itself. That will be found in

(Refs. 1 and 9).

The first of our queries against the DBTG model was "The

NAMEs and CITYs of all DEPARTMENTs". In FQL, this is represented

by the query:

IDEPARTMENT.*[DNAMECITY]

Informally, this expression is equivalent to the SEQUEL query:

SELECT DNAME, CITY FROM DEPARTMENT .

However, its formal description in terms of functions is some-

what different than its expression as a relational query.

DEPARTMENT is a data type. IDEPARTMENT is a function that

generates all departments. Note that it is a function that

takes no arguments. DNAME and CITY are both functions from the

DEPARTMENT data type to the STRING data type. The expression

[DNAME, CITY] is a function from DEPARTMENT into pairs of

strings. The result of IDEPARTMENT is a sequence, or streamt, of

tThe term stream is used because of the technique used in its
implementation. This is not described here.
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* objects of type DEPARTMENT, but [DNAME, CITY] only applies to

a single DEPARTMENT. The function *[DNAME,CITY] extends this

function to operate over a stream of departments to produce a

stream of pairs of character strings. Finally, these two func-

* tions are "composed" by the "." operator to produce the final

query.

The second of our DBTG examples was: "The NAMEs of

DEPARTMENTs, and the VTYPES in each." In FQL, this is

!DEPARTMENT.*[DNAME, !DV.*VTYPE]

This query is not unlike the previous query except that the

second term in the square bracket has been changed. DV is a

function from VEHICLE to DEPARTMENT (refer to the functional

diagram of the previous chapter). !DV is the inverse of DV,

and given a DEPARTMENT, returns a sequence of all VEHICLEs in

that department. The function !DV.*VTYPE, therefore takes a

DEPARTMENT as argument and produces a stream of character strings,

one for each VTYPE. The whole query therefore produces a simple

"hierarchical" report consisting of a sequence of DNAMES and for

each DNAME, a sequence of VTYPEs.

The last example was "The NAMEs of EMPLOYEEs who have driven

a VEHICLE that did not belong to their own DEPARTMENT."

!EMPLOYEE.IP.*ENAME

where P = [DE, !EJ.*(VJ.DV)].MEMBER.NOT;

The term IP is a restriction. As in the relational calculus,

it restricts the stream of EMPLOYEEs to those that satisfy the

predicate P. That is, JP is a function that takes a stream of

employees as argument, and produces a stream of EMPLOYEEs as a

result. *ENAME produces the names of those employees.

FQL allows function definition, and the second line of

this query defines the predicate P. Within the brackets, the

first term, DE, is simply the DEPARTMENT of the EMPLOYEE. The

second term is the stream of all DEPARTMENTs that own vehicles
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driven by that EMPLOYEE. The remainder of the definition is

constructed out of a number of built-in functions, and tests

whether the second term (the sequence of DEPARTMENTS) contains

any member that is not equal to the first term. The details

are not given here, but are to be found in FQL (Ref. 9).

The semantics of a functional language must be based upon

a notion of data types. Our data base has seven types: DEPART-

MENT, VEHICLE, JOURNEY, EMPLOYEE, CHAR, NUM and BOOL. Of these,

the EMPLOYEE, VEHICLE, JOURNEY and DEPARTMENT types are specific

to the data base, the others are standard (BOOL is also a stand-

ard data type denoting Boolean variables.) We shall use Greek

letters, a, $, y ... to denote arbitrary types. If a is a type,

then *a denotes the type of a sequence or stream of objects of

type a. Thus, the functions ENAME and IENAME may be formally

described by

ENAME: EMPLOYEE - CHAR

IENAME: CHAR - *EMPLOYEE

Given types a1 ' a2 ' a 3 ... we may wish to discuss tuples of these

types. This is denoted by [al, a 2 ' a 3 "-'] so that, for example,

[STRING, NUM] denotes the data type of character string-number

pairs.

The purpose of an FOL query is to combine existing functions

to create new functions. This is done through four operators,

all of which have been explicitly used in the above examples.

1. Composition. If f:a - a and g:8 - y then the composi-

tion of f and g, denoted by f.g maps a to y. The re-

sult of f.g is the result of applying first f and then

g. Note that this is "reverse Polish" order for func-

tion composition. It will be seen that this is a more

natural order, as the left-to-right order of the func-

tions describes a corresponding path through the data

base schema. Example: DE.DNAME is a function from

EMPLOYEE to STRING, and gives the DEPARTMENT DNAME of

an EMPLOYEE.
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2. Restriction. If P is a predicate on the type a, i.e,

P: a - BOOL then IP:*a *a. That is, I P takes a

stream of objects of type and selects from it just

those objects for which P is true. The result is

another stream of objects of type.

3. Construction. In order to create functions from a

given type into tuples of other types the notation

[f1 ' f2, ...] is used. Thus if fl:a - 61, f2 :a -* a2

then [fl, f2 ' "'']:a - [1' a2' ... ]. Example,

[DNAME, CITY] maps a DEPARTMENT into a pair of STRINGS.

4. Extension. If f is a function from a to 6, then *f

maps *a to "6. Example *ENAME maps any stream of

EMPLOYEES (*EMPLOYEE) into a stream of STRINGs (*STRING).

Finally, it should be noted that 'JONES' is, like 10000, a

constant function. Also IEMPLOYEE denotes another "constant"

function. It is a function of no arguments that returns a

stream of EMPLOYEEs. This function, unlike 10000 and 'JONES'

can, and probably will, change over time.
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IV. NATURAL LANGUAGE INTERFACES FOR DATA BASE SYSTEMS

The prospect of using natural language to interrogate a

date base is always appealing initially. A number of NL systems

are under development, and there is one, ROBOT (Ref. 21), that

has recently been made available commercially. The arguments

in favor of NL systems are familiar: the user need know nothing

about a query language nor is an understanding of the data

base required. However, these "obvious" assumptions need to

be examined in more detail to determine what impact the devel-

opment of NL systems will have on the C 31 community within

the next few years.

There are many research projects involving NL systems and

data bases; however, three systems stand out as being robust

enough to be in frequent use:

1. LADDER (Ref. 22) (Language Access to Distributed Data

with Error Recovery). This system is funded by DARPA,

and is currently interfaced to the "Blue File" data

base on CCA's DATACOMPUTER system. For a comprehensive

description of the LADDER system, see Ref. 22. LADDER

has a sophisticated set of routines which are not part

of the data base: for example, it can compute the

shortest sea routes between given points, taking geo-

graphical considerations into account. A different

DBMS system (DBMS-20) has been connected to LADDER,

but this contains the same data. To our knowledge, no

substantial interface to a data base representing a

different domain has been built. The data base inter-

face of LADDER (Ref. 1) has the ability to switch data

bases in the event that one system should fail.
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2. EUFID (Ref. 23) (End-User Friendly Interfaces to Data)

is being developed for DCA. Versions have been con-

structed for two data base systems: one supported by

INGRES, the other by WWDMS. It operates by translat-

ing into the query languages for those two systems

(SEQUEL and the WWDMS language). EUFID is implemented

in FORTRAN and is "table driven": to generate a new

version of EUFID requires, in theory, only that a new

set of tables be built. In practice, transportation

of EUFID is a little more complicated, but it shows

promise of becoming one of the easier systems to

transport.

3. ROBOT (Ref. 21), developed by Artificial Intelligence

Corporation, is the only commercially available sys-

tem. At least ten ROBOT systems have been built for

a variety of data base management systems, including

ADABAS and IDMS. ROBOT is written in PL/l, but details

of the system are not available.*

Since the last of these has had some commercial usage, it

is worth asking what kinds of users have benefitted from this

NL system. It is the authors' understanding that the ROBOT

system is marketable when

1. The queries are simple.

2. The data base has a simple structure.

3. The users understand the data base.

Note that the last point does not support our initial contention

that NL systems are useful when the users do not understand the

structure of the data base. We shall give reasons for this

below; however, it is our belief that, within the next few years,

NL systems will only be effective if these three criteria are

met.

*Among the purchasers of ROBOT is Cullinane, manufacturers of

IDMS, a CODASYL system written in PL/I.
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While NL systems may in the future play an important role

in C3 , operations, they probably will not entirely supplant the

more "formal" query languages. There are a number of reasons

for this. In the first place, there are a number of processes

that are difficult or impossible to specify in~ NL. The format

of a data base report is not something that can readily be de-

scribed in English (not surprisingly, since English did not

"evolve" for that purpose). Complex arithmetic operations are

also hard to specify, as are programs: ior example, recursive

functions with a complicated structure. The query of the pre-

vious chapter: "The names of employees who drove a vehicle

that does not belong to their own department", is already rather

clumsy and somewhat ambiguous. It may be that such queries

could be more concisely formulated in some structured query

language.

Another serious deficit in most query systems is a failure

to give adequate responses, especially when queries fail, and a

further problem arises when a response generated by one inter-

pretation of the schema is misinterpreted by the user. These

are complicated topics, and it is not appropriate to deal with

them in any detail here; however, the following examples (taken

from actual query systems) may illustrate some of the problems.

A data base containing information about ships and ports

is asked, "Is there a doctor in Philadelphia?". The answer

returned is, "No." The NL system has interpreted "Philadelphia"

as the name of a ship, which it is. But the user has taken

"Philadelphia" to refer to a port, which is reasonable, since

Philadelphia is a port, and the date base contains information

about (some) ports. Had the response been, "There is no doctor

on the ship Philadelphia", the user, while not getting the re-

quired inZormation, would not have been actively misinformed.

A university data base containing information about students

is asked, "What are the names of undergraduates in the Computer

Science Department?". The question is reasonable in the context
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of a European university, but does not make sense for an American

university, for students are not affiliated to departments. A

NL system responds with a set of names. Although there is no

direct link in the schema between DEPARTMENT and UNDERGRADUATE,

the NL system has found an indirect link and has used that. The

indirect link corresponds to "taking courses i" or "being super-

vised by a faculty member in". The user is unaware that this

is how the query has been interpreted, and his misconceptions

about American universities are confirmed. A more helpful re-

sponse would have been: "I do not understand the question. It

could mean 'What undergraduates are taking courses in Computer

Science?' or it could mean... ." Had this response been given,

the user would have been enlightened about the structure of

the data base.

A distributor keeps information on the stock levels of its

customers in order to know when to suggest a new delivery. A

user asks, "How many Xs does Y have in stock?" and the NL sys-

tem responds with a single number. in fact, inf~ormation on

stock levels is notoriously unreliable, and the data base con-

tains a set of reports on stock levels, containing information

about when the information was obtained, and who made it. The

single number returned to the user may be the most recently

reported level, but is may nevertheless be hopelessly out of

date and come from an unreliable source. The user, in this

case, has misunderstood the whole information system used by

the company. Had the response been: "The stock level reports

on company X for item Y are: ... ."t the user might have been

able to understand how the company's information system operates.

The second and third of these examples indicate that there

is a danger in a NL system being too "smart". It is a danger

that may be pacticularly serious in the C3 , community, where

there is a great deal of unreliable information and where,

once the C3 1 network is established, there will be many users

with an incomplete knowledge of the data bases they are using.

58

'I



The developers of NL systems are well aware of these prob-

lems. Better response generation is a topic of active research

(Ref. 24), and the problems described above will ultimately be

corrected. Also, a great deal of the stimulus to develop better

formal query languages comes from the desire to build better

interfaces for ML systems. However, with the state-of-the-

art ML systems, it would be very unwise to make natural lan-

guage the only method of access to a data base.

It was indicated in the introduction that a drawback of

NL systems is that they usually have to duplicate substantial

portions of the data base. The lexicon, for example, contains

the set of all names that could refer to some object (record,

record class, etc.) in the data base. While this information

is, in some way, encoded in the data base, it is often diffi-

cult or impossible to use it. Most ML systems, therefore, keep

an internal lexicon, which may contain tens of thousands of

entries--moritly information which is already in the data base.

Not only may this duplication prove a problem for reasons of

security, it is also difficult to keep the two sets of informa-

tion consistent. For example, if a new record (a ship record,

say) is added to the data base, it will require that a new name

be inserted in the lexicon. Seldom, if ever, does this update

happen automatically. At best, updates, when they are performed

automatically, are only done periodically, and the NL system

will "lag behind" the data base.

NL systems, and more generally, query translation systems,

such as ADAPT (Refs. 25 and 26) require that a copy of the data

base schema also be maintained. This again is a form of dupli-

cation; in this case of structural data. Again, these schemas

cannot usually be generated automatically, either because of

the incompatibility of data models, or, in the case of NL sys-

tems, because further semantic indicators must be added. Such

schemas must be updated whenever the data base is restructured--

an operation that is becoming increasingly frequent with modern,
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modern, flexible, DBMS. Unfortunately, the task of building

the duplicate schema is still the province of the implementators

of the NL system. It cannot be performed automatically, nor

can it be simplified to the point where it can be performed by

the data base administrator, or someone else who is familiar

with the structure of the data base. A figure of one man-month

is sometimes quoted as a minimum time needed to interface the

simple NL systems to an existing data base, once the general

purpose translation routines have been built. This appears

very optimistic when compared to actual bids for such work.
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c V. PROJECT SUMMARIES AND PROTOCOL IMPLEMENTATION

Several research and development projects are under way

which directly address the problem of access to heterogeneous

data base management systems (Refs. 25, 26, 27, and 28). other

projects, in particular the natural language systems (Refs. 22

and 23), address this problem indirectly and incorporate par-

tial solutions to it. There is also an important data base

project, SAFE, whose development should be closely tied to any

effort to develop a uniform data base access system within C3 1.

This chapter contains reviews of these projects in developmen-

tal stages.

A. MULTIBASE

1. Introduction

Of the projects reviewed in this report, there are two

substantively-funded efforts that have as their stated goal a

system that provides access to heterogeneous data base manage-

ment systems. One of these is ADAPT, and the other is MULTI-

BASE, which, although it has only recently received funding

from DARPA, will require serious consideration as it pro-

gresses. The MULTIBASE proposal comes from the Computer Cor-

poration of America, a software company that has assumed a

leading role in data base research, and which developed the

distributed data base system, SDD-l (Ref. 29), which was

briefly described in a previous report (Ref. 1).

MULTIBASE attacks the problem of a multiple data base user

interface at a significantly higher level than ADAPT in that it

allows for user-defined updates and extensions to the data base
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structures and exploits a number of recent developments in data

base research. of special note are the following advantages:

1. A global schema is maintained which represents the

structure of all the data bases to which a user has

access. The user need not, initially, be aware of

which data base(s) are being used to answer a query.

2. The schema exploits a simple, but powerful, functional

model of data similar to that described in Ref. 1.

This permits a natural representation of other (rela-

tional, network, hierarchical) schemata.

3. A query language, DAPLEX, has been developed in order

to allow more complex queries. It is proposed to embed

DAPLEX in an existing programming language, such as

PASCAL, thereby providing the capability for resolving

any query.

4. Some sophisticated optimization techniques, especially

for a CODASYL interface, are proposed.

5. The MULTIBP.SE proposal recognizes that data may be

redundantly represented in more than one data base and

that the data may be inconsistent. For this, a logic

of "fuzzy queries" has been formulated. A user is in-

formed when there is inadequate or inconsistent data

in the resolution of a query and may, when there is a

conflict, select the more reliable source.

The purpose here is to describe the MUL.TIBASE proposal in

more detail and to provide some critical comments on its use-

fulness to the C31 community.

2. The Structure of MULTIBASE

In order to provide information on how data are distributed

among the various data bases, MULTIBASE provides a global schema.

This is a data structure that describes all known entities and

relationships in the data base system as a whole. Before any

query may be interpreted, it must first be resolved against this

schema. The global schema completely describes the structure
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* of the data base as it is seen by a user of MULTIBASE. Although

the structure of this schema is described by a functional model,

it may be thought of in conventional terms.

Each data base in the collection understood by a multibase

* system has its own schema that will be defined in an existing

Data Definition Language (DDL). This schema is termed the

Local Host Schema and the mapping between the global schema and

the local host schema is accomplished in two stages. First, a

second MULTIBASE schema is constructed that is, in a logical

sense, "close to" the local host schema. This is called the

local schema. (In fact, the generation of the local schema

could, for most existing data base systems, be accomplished

automatically, but for other reasons this may not be desirable.)

The translation of a query expressed against the local schema

and the local host schema must be accomplished by a module that

will be specific to the local data base system. The translation

between the global schema and the local schema, which may be

very different in structure, is specified in the MULTIBASE query

language, DAPLEX. The advantage of this method is that the com-

plex structural modifications that may be needed to make the

local data base mesh with the global user view may be specified

in a high-level language and do not require new application

programs to be constructed within the confines of the local

data base system.

3. The MULTIBASE Data Model and Data Definition Language

As stated earlier, MULTIBASE employs a functional data

model not unlike that described in a previous report (Ref. 1).

The MULTIBASE language, DAPLEX, has data definition facilities

through which a schema may be defined. The two construct used

in the MULTIBASE data model are entities and functions.

DECLARE Employee() ==>> ENTITY

defines a niladic function Employee that returns a set of en-

tities. Any niladic function defines an entity type and the
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term "Employee" may be thought of as ambiguously referring both

to a data type and as a function which, when applied, returns

all objects of that type.

DECLARE Name (Employee) => STRING

creates a function Name which maps the type Employee into the

(predefined) type STRING.

DECLARE Driver ==>> Employee

again defines both a function and data type Driver that is a

sub-type of Employee. This means that every function that may

be applied to Employee may also be applied to Driver. However,

DECLARE License#(Driver) => NUMBER

defines a function that applies only to the data type DRIVER.

The possibility of defining types as sub-types of other

types is an extension to data base semantics that captures, in

part, the Aggregation-Generalization model of Smith & Smith

(Ref. 30). This will surely prove a convenience in user inter-

action. No other commonly used data base system has this capa-

bility although the idea has existed in programming languages

(Ref. 31) for many years. A formal translation method from

existing data models to the functional model has been described

(Ref. 9) and the automatic translation of existing DDLs into

the DAPLEX DDL should pose no problems. However, since data

base systems cannot directly represent the concept of sub-type,

it is often found necessary to resort to special data structures

or special constraints on applications programs to represent

it indirectly. In such cases, the automatic translation to the

DAPLEX model will not produce a semantically correct schema and,

as described in the previous chapter, a further translation will

have to be specified by someone who is an expert in the seman-

tics of the particular data base.
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4. The DAPLEX Query Language

Although update facilities have been proposed (Ref. 10)

for DAPLEX, this report will examine only the uses of DAPLEX

as a query language. In form, DAPLEX resembles an applicative

language (Refs. 14 and 32), and while it fails, in any sense, to

be a full programming language, it offers substantially more

power than most commonly used query languages. Simple DAPLEX

queries consist of an iteration over the set of elements of

some type.

FOR EACH Employee

SUCH THAT Salary(Employee) < 10,000

PRINT Name(Employee)

This provides a simple iteration and selection mechanism common

to most query languages. Note, however, that the functional

notation may be used to great advantage in queries such as

Salary(Manager(Employee)). An expression such as this is

usually extremely cumbersome to manipulate in most query lan-

guages designed for CODASYL-like systems, while the data itself

is trivial to represent in such systems. Predicates and other

functions over sets are provided by the constructs FOR ALL,

FOR SOME, etc., and functions such as AVERAGE, MIN, MAX, etc.

Thus:

FOR EACH Department SUCH THAT

FOR SOME Employee(Department)

Salary(Employee) < 10,000

PRINT Name(Manager(Department))

However,
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FOR EACH Department SUCH THAT

AVERAGE(Salary(Employee(Department)) < 10,000

PRINT...

will not give the intended result as a function of a given type,

when applied to a set of that type produces the set (not sequence)

of results. Thus, Salary(Employee(Department)) produces the set

of distinct salaries of employees in the given department. To

correct for this, an AVERAGE... OVER.. construct is introduced.

In addition to the simple query types illustrated here,

DAPLEX also allows the definition of new functions in terms of

existing functions. This is nct only of use in helping the user

to decompose complicated queries, it plays a key role in provid-

ing a method of defining one DAPLEX schema in terms of another.

It is proposed that DAPLEX should be embedded in a general-

purpose programming language and that one of the ALGOL-like

languages would be suitable. At present, there are no details

for this part of the proposal.

5. Optimization in MULTIBASE

In many data base systems, especially network systems, there

are several methods of accessing a given set of data. For ex-

ample, access to a given record class may be gained by direct

addressing, sequential scan, or through links with other record

classes. The problem is compounded when, for reasons of effi-

ciency, data have been redundantly represented within a partic-

ular data base. The various access methods are represented in

MULTIBASE by an access path family and some good heuristics have

been designed to find the appropriate paths needed to resolve

a particular query. It should also be possible to perform a

certain amount of optimization on high-level queries within

DAPLEX itself. Since some of the set processing operations used

by DAPLEX are known to be intrinsically costly, it may be pos-

sible to eliminate some from the given query.
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6. The Treatment of Redundant Data

MULTIBASE is designed for access to multiple data bases and

it may be the case that the same data are represented in two dis-

tinct data bases. Methods have been proposed for dealing with

the various kinds of conflicts that could occur as a result.

For example, using DAPLEX notation, an object x and function f

may be represented in each of two data bases, but the data bases

may be inconsistent because (a) f(x) is de fined in one and not

in the other or (b) f(x) is defined in both but yields different

values in the two data bases. In such an event there are various

possibilities.

1. Report all conflicts to the user and allow the user to

assess the reliability of each data base.

2. Report whatever is defined in case (a) and use a "pre-

ferred" data base in case (b) according to some pre-

defined criterion (this may be a procedure defined on

the data type of x).

3. Use a general heuristic for determining which is cor-

rect in case (b).

Provisions have been made for both cases (1) and (2) above.

Also a formalism akin to modal logic has been exploited to

develop more general heuristics that cope with these and other

kinds of conflicts.

B. XNDM

XNDM (Ref. 28), Experimental Network Data Manager, is a

research project at the National Bureau of Standards (NBS).

It bears some relation to MULTIBASE, though details are not

available at this time. Unlike MULTIBASE, the query language

is based upon SEQUEL, giving the end user a relational view of

the data. This information is based upon a project summary

report and metnswith the system developers.
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The Network Data Manager maintains a global schema and

translation programs for a variety of data base management

systems. Some common basis for the translation is obtained

by using techniques in transformational grammar to transform

an initial tree structure representing the user (SEQUEL) query

into the target language. It appears that the target language

is assumed powerful enough to represent the source query, al-

though this may not be required if the processing power of the

data manager is increased to allow some local processing.

XNDM maintains a global schema and mappings into a rela-

tional system, Multics Relational Data Store, and Honeywell's

Integrated Data Store (a component of WWDMS) have been con-

structed. The latter is a network system based upon the DBTG

proposals. Like ADAPT, the schema translation does not appear

to support non-hierarchical structures. It is not clear whether

or not this is a fundamental limitation.

The implementation to date will support only projection

and restriction. In terms of SEQUEL, this means that SELECT

statements may not be nested. Also, it means that queries

across data bases are, at present, impossible.

XNDM appears somewhat similar to ADAPT in its overall

power. However, the simplicity of the relational model may con-

fer certain advantages upon it. It is, to our knowledge, the

only attempt to build a network user interface based upon the

relational model. Provided a local (to the user) data manage-

ment system is incorporated, it should be possible to issue any

SEQUEL query. A major problem remains in defining schema map-

pings from network systems into a relational model. It is often

undesirable, and difficult, to do this by hand and there is no

canonical translation method. Some automatic aids appear to be

desirable.
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C. PROJECT SAFE

SAFE is a substantial development project funded by DIA and

CIA, and currently contracted to TRW with a view to producing

a prototype within three years. The purpose is to integrate a

number of data bases containing both structured and textural data.

The system will contain redundantly distributed data, and will

replace some ten of DIA's existing data bases. The data base

system to support this has yet to be chosen, and the user inter-

face has yet to be designed, although we have received prelim-

inary specifications to date to be analyzed for this report.

D. EUFID

The EUFID (Ref. 23) system provides natural language access

to data associated with a single applications area on a single

data management system. EUFID is being developed by Systems

Development Corporation (SDC), DCA funding and interoperates

with INGRES and WWDMS. The basic motivation of EUFID is to

provide a natural language interface powerful enough to accept

English language expression of queries against specific data

bases without requiring the user to understand the full range

of syntactic constructions. The natural language it uses is

therefore limited to the language that is natural to a specific

application area as opposed to the most general idea of natural

language. The original EUFID implementation was with a rela-

tional data management system called INGRES and the WWDMS data

management system followed immediately thereafter. (The WWDMS

system is an example of a DBTG system and is not relational.)

The translator module for each version of EUFID interfaces

with only a single data management system (the parser is

common in all systems); however, EUFID might be usable with

specific data bases, for which an English language query would

be natural to the analyst or other users. EUFID has been

sponsored by two different agencies. There are presently two

a6
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versions of EUFID; however, these are essentially the same in

operating characteristics.

At present, construction of the user tables in a EUFID im-

plementation requires the skills of a trained system designer.

In the future, there is hope that much of this process could be

automated. User access is controlled by use of a profile table

that identifies the legal users and the data base accessible to

each user. This table is constructed by the data base admini-

strator. Each new table area describing both the data base and

the user terminology must be established. The process of set-

ting up a new data base requires an expert in both the EUFID

language representation technique as well as someone who knows

and understands the application area.

EUFID provides a facility that allows users to define pri-

vate synonyms for terms already in the terminology tables. The

synonym editor also provides for altering or changing these pri-

vate definitions and removing terms from each application dic-

tionary. The synonym editor sometimes finds possible ambiguities

and problems introduced by such changes and announces these

problems to the user. If EUFID cannot process a question, it

attempts to correct the query.

EUJFID deserves special mention in that it is one of the

few NL systems that has been successfully transported both

across data bases and across data base management systems.

Prototypes have been built that interface with two different

WWDMS data bases, and with an INGRES data base. One of the

reasons for this transportability is that it uses a table

driven parser, and while these tables may be redefined only by

an expert in the EUFID system itself, there is some hope that

the task could be partly automated, and partly performed by

the data base user. The reference mappings are also represented

by tables, and the system operates by translation into the

existing query language (WWDMS) or SEQUEL.

EUFID is written in FORTRAN and C, which makes it trans-

portable across computer systems.
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E. ADAPT

The COINS is a digital communications network that provides

Intelligence Community access to data bases on COINS computers

operated by the Defense Intelligence Agency (DIA), the National

Photographic Interpretation Center (NPIC), the National Security

Agency (NSA), and the Aerospace Defense Command (ADCOM). At

present, four different data retrieval languages are required

to use the systems on the COINS II network and it is possible

in the near future that up to ten different retrieval languages

may be required to utilize completely the COINS system computers.

To deal with this problem, the COINS PMO is funding a pro-

ject called ADAPT, and Logicon is the prime contractor. The

ADAPT approach to the multi-language retrieval problem is to

provide a single network retrieval query language and then to

translate from this language to each of the other query lan-

guages associated with data bases in the network. The ADAPT I

system demonstrated the feasibility of this approach. by per-

forming the necessary translation functions for the COINS net-

work. It is possible to approach the system from two view-

points: (1) how does the ADAPT system fulfill the requirements

of Pystem users and (2) is the general approach of ADAPT ade-

quate for other systems and for more widespread use.

With regard to the first question, ADAPT provides a con-

siderable facility to the COIN system users and should even-

tually provide an improvement to the system. At the same

time, ADAPT will require future enhancement in order to make

it powerful enough for more sophisticated users by providing

several facilities that are not presently in the system.

Nevertheless, it should be stated that ADAPT is an excellent

first step forward for the COINS system.

Among the recommended enhancements for ADAPT are some addi-
tional capabilities that are needed for more sophisticated users
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* a uniform data language, a data definition language and a trans-

formation definition language that is available'only to the

ADAPT system personnel for building and maintaining the ADAPT

system itself.

ADAPT software checks the TAS authorization list in order

to see if a user is cleared to access a file before opening that

file. The effort required to make a translation into a new data

base is a function of the number of fields in the file and the

adequacy of the documentation in the file.

The ADAPT UDL is syntactically rigid, having a single set

of query entry forms. At present, the UDL does not allow for

abbreviations for shortened input command forms nor does it

allow buzz words or the omission of redundant constructions.

The UDL also does not allow for DON'T CARE characters in for-

matting queries, which can be a problem since several of the

systems in COINS already contain this facility. The structure

of a file and the status of a query can be displayed by ADAPT.

Entire queries cannot be edited at present and an entire new

query must be entered. However, files of commands constructed

using the UNIX edit packets can be utilized. This requires in-

teraction between UNIX and the user who must switch into the

UNIX system and then back into ADAPT to make use of the facility.

It should be noted that some of ADAPT facilities are usable

against one data base and not against another. We have de-

scribed ADAPT in some detail in Ref. 1.

F. LADDER

The LADDER (Ref. 22) system is implemented on the DARPA

computer network. It is, like EUFID, an implementation of the

results of natural language research and is oriented toward de-

velopment of a natural language system. The idea here is to

use natural language and thereby eliminate the requirement that

the system user know the representation of the data in the com-

puter environment and to have learned a data base management

73

LL.



system user language. The LADDER system originally operated on

the DARPA computer network and accessed only the relational data

base management system data computer, which was developed by the

Computer Corporation of America. LADDER is programmed in INTER-

LISP and operates under the TENEX and TOPS-20 operating systems

on the DEC 10 computers. If the first file interrogated does

not contain a specific data needed for a query, the system will

address another file and will continue looking for alternate

sources until all possibilities are exhausted (in the ideal sys-

tem). The input system utilizes a set of generalized called

language interface facilities with ellipses and recursion, which

includes a parser and a set of capabilities for defining an

application.

The LADDER system has been very popular from a demonstra-

tion viewpoint and many users of the ARPANET are familiar with

the LADDER system, having fashioned queries in this system

against the Naval data base, which is currently the primary

demonstration vehicle.

Major components of LADDER are capable of operating

independently and could be used in other systems. At present,

each time a new data base is placed on the LADDER system, sub-

stantial development is required, and this includes development

of or addition to word categories, development of translation

rules, development of protocol queries pamphlets and a number

of other operations such that perhaps two man-years might be

required for a typical data base. (This was the estimate for

interfacing LADDER to one of the data bases used by EUFID.)

We understand that research is being undertaken to reduce

this time.

LADDER contains a number of features that make for consid-

erable ease of use by the inexperienced user. Synonyms are

liberally used in LADDER so that abbreviations for ships, etc.,

can be used in fashioning queries. Natural sentence limita-

tions can be somewhat overcome by the paraphrase capability of
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the system in processing ambiguities. The ability to use el-

lipses in LADDER is a well-known feature. For example, the

results of one query can be used in the following query. If

we ask, "Who is the captain of the Kennedy?", and follow this

* with a question, "Of the Missouri?", the system will assume we

are asking, "Who is the captain on the Missouri?".

LADDER does some work on spelling, trying to correct spell-

ing and find close words (LADDER informs the user when it has

done this). There are few training aids in LADDER and the user

is left pretty much on his own in fashioning queries and in

writing alternate queries in case of a problem. LADDER in ef-

fect uses the full range of relational operators. Good compu-

tational capabilities for the kind of questions concerned with

the Naval data base for which it is now used are provided, in-

cluding circle searches. LADDER can also find the fastest,

slowest, newest, etc.

G. SECURITY CONSIDERATIONS

It should be pointed out that all the above solutions to

the multi-language problem should be viewed with some caution

in the Intelligence Community, because in most cases they in-

volve duplication of the data to an extent that may pose a

threat to security. An example may be found in state-of-the-

art implementations of natural language (NL) systems. The pur-

pose of such systems is to translate the user's query, phrased

in the user's natural language, into a query understood by the

appropriate DBMS. In order to accomplish this, the translator

needs:

1. A lexicon. An internal set of definitions of all terms

associated with the data base. In most cases, every

name appearing in the data base must be duplicated in

the lexicon.
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2. A schema. This is a structure that describes the struc-

ture of the data base to the NL system. In most cases,

this schema closely resembles the data base's own

schema.

Not only does this mean that there must be substantial du-

plication of the data base, possibly on remote machines; it also

requires the intervention of expert personnel to perform this

duplication. In the present state of these systems this can

neither be performed automatically, nor by the existing data

base administrators. In any case, there are also substantial

problems involved in keeping the duplicated data consistent

with that in the data base.

It is not our intention to say the NL interfaces are inap-

propriate for the Intelligence Community's needs. We simply

wish to point out that there are problems associated with using

"high-level" interfaces in an environment in which security is

important, and that this should be taken into consideration in

deciding where such interfaces be used.

With regard to the suitability of ADAPT for other systems,

a fundamental problem with ADAPT (and with other systems such

as EUFID and LADDER) is that each time a new data base (file in

the case of ADAPT) is added to the DBMS that ADAPT is interfaced

to, it is necessary for programmers to prepare a new translator.

of course, each new translator is made simpler to prepare

because of previous translators that have been instituted.

Nevertheless, new programs must be added to the system as a

whole.

It is possible to make a translator that goes into the DBMS

subroutines directly. In this case, a translator from the user

language would be written, which translates directly into a data

base management system such as WWDMS, and then data bases could

be added without adding new translators. This approach is tech-

nically feasible and such systems have been made. This approach,
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a general translator from the user language to data base manage-

ment system, also appears to have security advantages. The pre-

parer of the translator need not have knowledge of the particular

data bases in the system but only of the DBMS and its rules.

H. PROTOCOL IMPLEMENTATION

This section is in two parts. The first discusses some of

the implementation to date in the TCP-IP area and the second

part discusses certain problems which have arisen and which are

being dealt with in TCP-IP implementations. Communication sys-

tem development is a treacherous area and great care must be

taken in contracting and monitoring systems and parts of systems.

The virtue of having well defined and understood protocols ex-

tends to the business of contracting and developing the imple-

mentations of these protocols. Also, the expertise of the

developer is an important factor in accommodating system prob-

lems which arise. Fortunately, TCP-IP now appear to be pro-

gressing satisfactorily and DoD's standardization program

appears to be moving forward in a reasonable manner.

As examples of TCP-IP usage, the TCP and IP protocols are

now in operational use on ARPANET, packet radio net (PRNET) and

the Atlantic Packet Satellite Net (SATNET). On ARPANET, Digi-

tal Equipment Corporation TOPS-20 machines supply services to

the U.S. Army XVIIIth Airborne Corp at Fort Bragg and the UK

Royal Signals and Radar Establishment (RSRE) through gateways

to the Fort Bragg packet radio network and to the RSRE pilot

packet switching network. These users depend on TCP and IP

for reliable, daily access to network services.

TCP-IP is also in daily use to support development of

packet radio software, monitoring of gateway and satellite

IMP performance, and the development of a mixed media (text,

fax, voice, graphics) electronic message handling system. Im-

plementations exist for TOPS-20, TENEX, ELF, MOS, UNIX, OS/MVT

and MULTICS. User and server TELNETs have been implemented
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and file transfer protocol is in progress. Development of

TELNET-TCP.IP for the ARPANET TIP is to be completed in spring

1981.

In performance testing of TCP-IP, it has become clear

that operating system interprocess communication mechanisms

and context switching capacity can have a significant impact on

the performance of any particular TCP-IP implementation. For

example, an early implementation of TCP in 1976 supported only

20 kb/s running under ELF (virtual memory version) but the same

software supported 50 kb/s running under MOS (no virtual memory).

These particular tests were conducted on a PDP-11/20 connected

by Very Distant Host interface to the ARPANET.

More recently, tests have been conducted on TCP-IP for the

UNIX operating system. The PDP-11/70 using UNIX is a popular

support system in DoD, and it seems appealing to add a TCP-IP

program package to this operating system to support host-host

communication for packet network users. In performing a study

of cable bus applications in command centers (Ref. 33) it was

found that the TCP that had been developed by BBN, used in con-

junction with UNIX on an 11/70, required 80 percent of total

computer time to run at a 6-Kbit rate. The computer was essen-

tially "bare," running only data from a buffer through TCP.

BBN, in performing tests on TCP for DCA, found the 11/70-

UNIX combination would handle data at only a 6 to l0-Kbit rate.

In order to better assess the question of whether it is

the complexity of TCP or the UNIX interprocess communications

problem that causes these low rates, we note that an ARPANET

NCP on an 11/70 with UNIX, and alsowith part of the NCP in

the kernel, a definite advantage with regard to speed, gives

a 23-Kbit rate and that already by means of some program im-

provements BBN has produced a TCP running at 20 Kbits on an

11/70-UNIX combination.
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Further, in performance tests for DCA/CCTC, Digital Tech-

nology Incorporated (DTI) compared the performance of a UNIX-

based Network Front End for WWMCCS against a HUB-based version.

HUB is a proprietary development of DTI. All tests were con-

ducted on PDP-11/70 computers. DTI reported bandwidths on the

order of 80-90 kb/s with its (modified) UNIX version of TCP-IP

and 200-240 kb/s using HUB (all these figures are process-to-

process). The major differences between the two systems is

memory-shared interprocess communication and very fast context

switching in HUB compared to UNIX, even with the RAND and BBN

port modifications. BBN obtained similar results with its

TCP-IP version after improvement to the program modules, get-

ting 50-60 kb/s throughput (process-to-process) using a modi-

fication of UNIX interprocess communication based on memory

sharing. It is believed that additional improvements may be

obtained through a speedup of UNIX context switching.

As a further comparison, an LSI-11 with byte-at-a-time

interrupt driven I/O was able to achieve 25-30 kb/s through

TCP-IP operating under MOB which does not support virtual

memory and therefore uses shared memory for interprocess com-

munication. Our evaluation of the situation is based on per-

formance probes of the BBN-TCP-UNIX combination which indicate

that 80-90 percent of the time the program is in the operating

system. DTI's results are comparable. We also note that com-

munications protocol programs typically execute in 100 micro-

second "strips" while UNIX interprocess communication takes on

the order of one millisecond. This makes it clear that inter-

process communication and context switching in the 11/70-UNIX

need to be improved to support higher TCP-IP throughput.

Concerning front-end development, in order for a front end

to really help, the interface between the front end and the

host needs to be more efficient ("cleaner," with less overhead)

than would be the case if the network protocols resided in the

mainframe. TCP performs many of the functions which are needed
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in a host-to-front-end protocol, but for direct attachment of a

front end to the mainframe, some of these functions can be made

simpler. For example, an HDLC interface could handle local flow

control, error control and sequencing between the front end and

mainframe. A procedure for signaling the setting up and clear-

ing of TCP connections or the transmission of pure datagrams

would thus be needed in the host-to-front-end protocols above

the HDLC layer, as well as error reporting, status reporting,

and so on. Reduction in overhead from embedded TCP to front

end TCP by perhaps 25 percent could be expected in such a con-

figuration.

The DoD situation concerning front-end development appears

as follows. There are some large system users such as the

WWMCCS computers that will require throughput of 100 kb/s (or

more) in the near future. There are also a number of smaller

systems (Intelligence systems provide good examples) where

throughput demands are lower. The requirements of WWMCCS

appear to be driving the front-end developments at DTI, where

the present INFE (UNIX-based) provides 80 kb/s throughput, but

which uses an 11/70 with 500 Kbytes of memory. INFE also sup-

ports up to 20 terminal users which makes it a large front end

for a small user. Future plans include a version based on a

communications operating system (COS) using the DTI HUB secure

operating system which can operate at several hundred kilobits

throughput. This system will be comparable in size and cost

to the existing INFE.

A small front-end system has been developed by SRI Inter-

national based on LSI-ll's using the MOS operating system.

Roughly 3000 words of memory are devoted to TCP-IP, and through-

put in excess of 25 kb/s is achievable. Higher speeds should

be possible with DMA I/O devices now being added. This sys-

tem implements full TCP-IP but does not incorporate a host-to-

front-end protocol which would probably be needed to make a

standard interface for use of the system as a general front end.
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At present, it is used as a terminal interface unit for 4-16

terminals or as a special purpose front end for Army and Navy

tactical computer systems operating on packet radio nets and

the ARPANET.

When AUTODIN II is introduced, small computer users may

be faced with the choices of obtaining a larger front end than

necessary, developing a standard front end based on LSI-lI/MOS

technology, or implementing a TCP-IP individual system, possibly

risking loss of throughput or difficulty in responding to peak

loads. If front-end TCPs are developed independently by system

users, then there is likely to be some duplication of effort.

Furthermore, if the interfaces and host-to-front-end protocols

are not the same, users will not be free to move to larger or

better front ends or mainframes without new program investment.

Without a standard front-end protocol, bids for front-end

development will be very hard to compare. Actual gains offered

to the host in using a front end are a function of the host-to-

front-end protocol. If this protocol were identical to TCP,

only buffering improvement would be provided by the front end.

Therefore, the "goodness" of the system is largely determined

by the differences between TCP-IP and the front-end protocol.

If several front-end protocols are offered on different sys-

tems at different prices and each requires software development

on individual mainframes, a real procurement problem could arise.

Consequently, we recommend that a host-to-front-end protocol

standards effort be put into motion by C31. The DTE INFE

front-end protocol used by the PLATFORM network at NSA is a

possible starting point. This protocol standard development

can proceed in parallel with front-end development program(s)

intended to provide users with reasonable alternatives for

future usage without severe system penalties.
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