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Section 1 {
INTRODUCTION

1.1 BACKGROUND

Increasing threat of global warfare has created a significant need for large space
platforms both for surveillance and for deployment of space based defensive weapon
systems. Because these systems may operate in optical or mm-wave regimes, the
structures must maintain accurate geometric shapes. The presence of active systems

onboard the spacecraft also may require the minimization of vibration from random

disturbances. Self-defense may demand that the platform be maneuvered without
structural damage or loss of performance.

Insuring that such performance can be met using passive techniques (e.g., struc-

tural stiffening, material selection) generally poses unacceptable weight penalties or
performance uncertainties even when such techniques may be feasible. For high
performance maneuvering, passive methods can totally fail to provide adequate per-
formance. Active control techniques, however, may be effectively used to create
so-called control configured spacecraft where the structural dynamic properties in-
cluding structural damping are strongly influenced by active closed-loop control
systems placed on the basic structure. In this way, requirements on passive stiff-
ness and damping may be considerably relaxed with potential savings in weight,
material costs, and payload subsystem complexity. The technology of active struc-

tural control however is still immature and poorly understood.

The performance potential for control configured spacecraft is the motivation for
the DARPA /ACOSS (Active control of Space Structures) program . This report,
covering the activities of the LMSC Phase I effort, summarizes the analytical

investigations, control synthesis methods, and experimental results (funded by
IRAD) achieved during this 1978 program. Contributions of individual team mem-
bers, including Lockheed, Palo Alto Research Lab, the LMSC Space Systems
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Division, Systems Control, ‘Inc., Synergistic Technology, Inc., and Prof.

R. E. Skelton (Purdue), were critical to the progress made during Phase I. To
keep this report to a reasonable length, many techniques are only summarized
or briefly discussed as indicated in the sections below.

1.2 OUTLINE OF REPORT

Section 2 is a brief exposition of the technical approach taken in Phase I of
ACOSS.

Section 3 deals with the important subject of modeling techniques for flexible
spacecraft and the relative merits and pitfalls of continuum or discrete models
and the effects of closed-loop controls.

Section 4 comprises the bulk of the control synthesis methodology in both low-
and high authority control techniques. Section 5 provides summaries of the
analytical designs for stability augmentation systems for the DARPA Strawmen
configurations studied under Phase I. Finally, experimental results developed
under IRAD which are relevant to Phase I objectives and, in particular, to
follow-on efforts are included in Section 6.




Section 2
APPROACH

2.1 INTRODUCTION AND METHODOLOGY

Stability augmentation or the addition of closed-loop damping to large flexible
space structures has been the subject of numerous recent papers (Refs [1-5]).
These publications have focused, for the most part, on single methodologies or
techniques for synthesizing a control law. This report is a synopsis of research
work performed over the past year and endeavors to match various synthesis
techniques and controller forms to specific system performance requirements. In
so doing, it evolves a general approach to structural stability augmentation. More-
over, this combination of techniques permits guarantees of system robustness,

if not performance, which would otherwise be unattainable. The methodology

advocated here requires several complex techniques indicated below.

The general requirements for stability augmentation are listed in Table 1. It
should be noted that shape control is a different process from removal of vibra-
tional energy from the structure as noted in the table. The first two categories
require large increases in structural damping at low frequency either because the
attitude control system is interacting with the structure or because maneuver in-
duced structural ringing must be removed to meet mission requirements. Modify-
ing structural admittance functions at specific low frequencies generally re-
quires substantial knowledge of mode shapes and frequency quantities which

‘ are known less accurately at higher frequency. The third category arises from
the need to control high frequency settling times and to suppress vibration prop-
agation from sources imbedded in the structure (e.g., coolers, CMG's, etc.).
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2.2 BASIC CONTROLLER FORMS

Two basic classes of controls emerge from these requirements. Low-Authority
Structural Controls (LASC) which provide limited (broadband) modal damping
may be synthesized using perturbation techniques as shown by Aubrun [Ref 2
and Section 4.1]. For systems restricted to collocated rate sensing and comple-
mentary actuation (decentralized, no cross-coupling), Aubrun shows that stability
is guaranteed over the system bandwidth and, with suitable precautions as dis-
cussed below, the system is always stable. High-Authority Structural Control
(HASC) which provides arbitrary damping ratios in low frequency modes by ex-
ploiting knowledge of system dynamics is generally synthesized as a multi-input/
multi-output (centralized) control. A direct application of standard control design
procedures leads to serious stability problems. Within the HASC bandwidth, spill-
over in modeled and unmodeled modes must be bounded by reduction of parameter
sensitivity or, ulfimately, by system identification prior to imposing the control.
Beyond the HASC bandwidth uncontrolled phase shifts introduced by lightly damped

modes can cause system instability. Synthesis of the HASC system which forces

rapid control effort roll-off with increasing frequency coupled with an overlapped
LASC system to lower modal q in the crossover region significantly increases sys- !
tem robustness. This relationship is illustrated in Fig. 1. The methods for guaran-

RTINS

teeing stability are summarized in Table 2. Fundamentally, HASC stability due to
interaction with high frequency modes is assured by limited high frequency HASC
authority and a decentralized LASC system for which critical modes at HASC cross-
over are controllable (fixed by LASC actuator placement).

The selection of a control law using a centralized form (LASC or HASC) may proceed
either by using perturbation techniques based on a formula by Jacobi or by mini- 1
mization of a quadratic cost functional with state and control weighting which are
frequency dependent. This frequency dependence forces a dynamic controller

form with an augmented state vector dictated by the frequency roll-off selected

by the designer.
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2.3 FEATURES OF THE CONTROL SYNTHESIS METHODOLOGY

The following features of the control design methodology provide a systematic
approach to meet system performance goals.

(a) The basic method consists of three steps, (i) model reduction,
(ii) filter /control law specification, and (iii) control law simplifi-
cation. This provides a good model in the control design stage.
The resulting controller may be further simplified in the last step.

(b) Specific attention is given to poles, zeros and residues in the model
reduction stage. This resulting reduced order model then provides
a good approximation of system behavior in the frequency range of
interest.

(c) For collocated systems (sensors and actuators at the same location),
a general control design approach is proposed based both on
modern control theory and root perturbation techniques.

(d) A unique linear quadratic — Gaussian design method is developed in
which the performance index is shaped with frequency. This results
in control laws which have minimum influence on high frequency modes.
This provides a mechanism to minimize the possibility of high frequency
modes going unstable.

e At 1 o

(e) The controller is treated as a dynamic model with specified inputs
and outputs. The model reduction methods are then used to simplify
the controller.

(f) Techniques for optimal actuator /sensor locations are studied.

2-5
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Section 3
STRUCTURAL MODELING TECHNIQUE

3.1 FINITE-ELEMENT MODELS i

A central issue in the active control of space structures is the development of
"correct” mathematical models for the open and closed loop dynamical plants. : 1
While a great deal of polemic has been generated in recent times against finite- o
element structural programs and their assorted pitfalls, programs such as
NASTRAN, SPAR, ASTRO, etc., are never-the-less the primary tools for
generating dynamical models of conceptual spacecraft whose structure cannot
be idealized by simple models of beams, plates, beams with lumped masses, and 4

soon, o

Finite-element structural programs were used extensively during Phase I of the : i
ACOSS Program in order to model the DARPA Strawmen dynamical plants ;
(HALO, MM WAVE, ADOPT's 5/4 and 12, CSDL example) to which various con- ]
trollers were applied. While this modeling was not heavily emphasized by the
contract requirements, it turned out to be an important activity in the sense
that insights were gained into the various aspects of the process and the emer-
gence of a general methodology was identified. The essential observation was
made that a si.ngle finite-element model of a structure, postulated in an a priori i
fashion, was not necessarily the best modal representation suitable for the closed-
loop model. After insight was gained into the control policy to be applied, and,

in particular, into the type of actuctors (and their locations) required to im-
plement it, it became very plausible that a more refined open-loop model would
improve modal convergence of the closed-loop model and hence alleviate the
difficulties of modal truncation. Implicit in this approach is the requirement that

a structure can be examined geometrically by computer-graphic animation tech- )
niques which clarify the physical interaction between actuators and the local ﬂ
structural deformations which they impose. In this sense, a structure-to-be-
controlled becomes much more than a set of constant coefficient matrices given

once and for all.
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The structural design iteration procedure identified at the end of Phase I of the
ACOSS program, could typically involve the following steps:

1. Design the global structure, and "tune" local substructures. In the
HALO design, for example, the tuning of the flexible mirror sub-
structures was to a large extent independent of the overall design
which would treat these mirrors, in a first approximation, as rigid
plates interconnected by elastic beams.

2. Examine the elastic behavior (generally via the undamped, free/free
eigenmodes) using computer-graphic animation such as available on
the ADAGE computer in LMSC's STARLAB. What is required here is
the observation of the physical motions occurring locally in the neigh-
borhood of nodal and antinodal points of the dominant structural modes.

3. Infer from these geometrical motions (translations, rotations, and com-
binations of both) preliminary actuator locations and actuator types to
be used. These could consist of forces, force couples, torques, torque
couples, etc. Depending upon the structural design and the mission
requirements, trade-offs can be made between inertial and intra-
structural actuators. This step is particularly important for decentral-
ization colocated LAC sensor/actuator pairs, and serves indirectly to
corroborate the information derived from Aubrun's controller effective-
ness coefficients*

A R _
€an = ®an ®rn * (¢r)z

or, equivalently, from the Skelton-Hughes controllability maps when
these can be constructed.

4. Synthesize preliminary controls and test performance via closed-loop
eigenanalysis. Performance criteria may be derived from the insensitivity
of the zeroes of closed-loop transfer functions to modal truncation (see
next section), from convergence of phase and/or gain measures vs
number of modes, or from other measures. If performance is not satis-
factory, proceed to next step.

5. Modify the boundary conditons of the structure by introducing, at
actuator locations, "fictitious" inertias (translational or rotational)
whose D'Alembert reactions (forces or torques) will mimic the effect of
the corresponding actuators. In structural dynamics this procedure
is equivalent to the use of certain classes of quasi-static modes. For
example, a beam which is torque-controlled at one end is better repre-
sented by modes which correspond to the presence of a suitable rotary
inertia at the controlled end rather than by free-free modes, even if
a lumped mass is added at the controlled end to model the actuator.

*See eg (8) in Section 4.1, Low Authority Control Synthesis:
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6. Repeat eigenanalysis of the modified structure to generate faster con-
verging modes vis-a-vis performance criteria.

The above design iteration steps represent, in general, extensive work, but
experience gained in Phase I of the ACOSS program clearly indicates that the
integration between controls and structural dynamics expertise is far from com-
plete. The effectiveness of procedures such as outlined above can only be eval-

uated in detailed applications.




3.2 DISTRIBUTED MODELS

Such models may be obtained for structures that can be conveniently described
by partial differential equations (PDEs). Although it seems unlikely that a com-
plex space structure will ever fall into that category, interest in this type of
modeling is threefold: 1) for laboratory experiments, where the test structures
may be simple enough, an analytical model would be the most accurate and there-
fore of greater value for evaluating the experimental results; 2) PDEs may be
used directly for control synthesis; and 3) PDEs offer a direct way for evaluat-

ing the finite-element models and understand their deficiencies.

Distributed models may be used in two different ways, both starting with partial
differential equations which are assumed to be a complete description of the dy-

namical characteristics of the system.

The first method converts these PDEs and associated boundary conditions into an
infinite set of ordinary differential equations. A small subset of these ODEs is then
chosen as a model, and this is strictly equivalent to the finite-element approach,
except that a finite set of modes is obtained analytically and not via a numerical
eigensystem decomposition. This method was used in all the beams and

experiments described in Section 6 and were found to be very accurate and

useful.

The second method starts with the same PDEs but does not expend the solution
into modes. Better, it directly obtains an exact analytical transfer function which
can be used in classical control theory, or in the more elaborate — distributed op-

timal control theory if desired.*

Since approximate transfer functions can also be obtained from model expansion
of the first method, comparisons can be made between finite-element representa-
tions (identical to the first method) and the exact model (second method). The

*J, A. Breakwell, "Automatic Control of Flexible Spacecraft," Ph.D. Thesis,
Stanford University, to appear Dec 1979.
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particular problem of a free-free beam was treated using these two approaches
and analytical expressions obtained for the continuous and discrete (modal)
transfer functions are shown in Fig. 1. Two types of transfer function appear
in Fig. 1, i.e., displacement/force and rotation/torque at one end. All symbols
are defined in Fig. 1. The discrete transfer function T (B;n) is a function of
the number n of modes retained in the series expansion.

Figure 2 shows a graphical comparison of the exact rotation-to-torque transfer
function T c(B) (obtained from the continuous model) and the truncated (discrete)
transfer functions T d(ﬁ;n) when 7 terms or 20 terms are retained, i.e., the
beam is modeled by one rigid body mode and either 6 or 19 structural modes.
The graph clearly shows the error in the zero-crossings, while the other parts
of the curves are in excellent agreement. Because the zeroes of the open-loop
system play an important part in the closed-loop system, their insensitivity to
modal truncation is of prime importance to the control design. Zero crossing
errors can be reduced by increasing the number n of modeled modes, but a
satisfactory result will require a very large value for n. These curves indicate
that a much better approximation could be obtained by adding a constant bias

term (negative in this case) to the discrete transfer function.

A more systematic view of this problem can be seen in Fig. 3 which shows the
partitioning of the infinite series representing the exact transfer function for
the case of a general undamped structure. The ¢i's are the mode shapes at the
location where'the displacement-to-force ratio is measured (or rotation-to-torque,
etc.). The number of modes to be controlled is n,, the number of modes re-
tained in the model of the structure is n,..

In the straight truncstion case one has n, =n, and a substantial error is
committed in representing the zeroes of the system, leading to erroneous control
design. The expanded truncation uses a larger model, but still a significant
error may remain. The "rounded" transfer function approximates the remainder
of the infinite series by a constant bias term. (For these terms, s is indeed

much less than the w's, hence the approximation.)
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Because all these approximations depend on the convergence of the series, there

are open questions regarding the use of other kinds of mode shape functions
which may improve convergence. For instance mode shape derivatives (used to
express rotation and torque properties) converge much slower than the usual
displacement mode when free-free modes are used. However, using mode shapes
which reflect better the boundary conditions imposed by a torquer may drastically

improve convergence.

Figure 4 shows an example of a more general 6th order system transfer function
and three different ways to obtain reduced order transfer functions. Numerical

values are displayed in Fig. 5. The best results are obtained with the rounded-

off T.F. where not only the zeroes are well represented but also the residues of

the retained poles (which is not the case for the zero-retaining T.F.).
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Section 4 i
CONTROL SYNTHESIS TECHNIQUES

4,1 LOW AUTHORITY CONTROL SYNTHESIS

The following controller design synthesis is based on J. N, Aubrun's Low
Authority Control (LAC) Theory (Ref [*¥]). To describe the methodology, only
an outline of the required theory will be given; for proofs and additional details,
see Ref [*¥].

Consider the system described in state-space form by:

[ J
Dynamics: X = FX + Gu
o
Sensors: y = HX =X = (F+GCH) X (1)
Controls: u = Cy (Closed~Loop Dynamics)

For sufficiently "small" controls C (see Ref [*]), let

GCH = dF ‘ (2)

be considered as a perturbation of F, so that the closed-loop dynamics may be

written as
[ ]
X = (F + dF) X 3)

Let A n denote the n-th (complex) root of F, and denote by Ln R Rn respectively
the corresponding left and right eigenvectors of F, i.e.

(*] J. N. Aubrun, "Theory Of The Control Of Structures By Low Authority
Controllers”, AIAA Conference On Large Space Platforms: Future Needs And
Capabilities, Los Angeles, Calif/Sept 27-29, 1978, Page No. 78-1689; also,
AIAA J., Guidance and Control, revised version (in press), 1979.
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F"L = A

(9
F R

il
>

normalized so that L T R = 1.
n n

For "small" C, let d A denote the eigenvalue shift corresponding to dF.
Then, as shown in egs (19) and (27) of Ref [*], Jacobi's formula leads to the

fundamental LAC root shift formula

~ 17T
da, = L. dF R
_ T
= . L] GCH R (5)
- A R
= (on) e (o)
A T R .
where 9, = L n G and ¢n = HR n are generalized actuator and sensor

modes respectively. The fundamental LAC formula expresses then the eigenvalue
shifts by the bilinear form

A R
d>‘n = z: Car ¢an ¢rn (6)
a,r
where a =1, 2, ..., Na andr = 1, 2, ..., Nr are indices describing, re-

spectively, actuator and sensor locations (nodes).

Consider next the case where:

E 3
(i) sensors and actuators are physically colocated )

(ii) sensors and actuators are of "corresponding types" (i.e. translation/
force, rotation/torque)

(iii) sensors measure rates

*) This does not necessarily require that the sensor-to-actuator feedback is also
colocated.
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then it can be shown (Ref [*]) that H = cT. If, furthermore, there exists a
right and left eigenvector for root n, it can also be shown that

GL_ = HR N
and thus

= = = oF (=
= G'L HR = o (=9) (8)

which is an equivalent re-statement of the classical reciprocity relations between
actuators and sensors for colocated systems of the type considered above.

From (8), the fundamental LAC formula (6) becomes then the following quadratic
form (for each n):

R

d)\n B E Car %an ®rn (9
The above formula is the basic LAC prediction formula for the root shifts (hence
closedvloop damping) produced by sufficiently "small" control gains C (see
Ref [*]) To synthesize the gains C , let (d An)P denote the predlcted root
shifts given by the above formula, and let (d An)D (given numbers) denote the
desired root shifts imposed by the LAC controller design. Then the gains Car
are chosen so as to minimize the weighted quadratic cost funetional

2
N 2
Jcs EZ W [(dxn)P - day)y ] +3° Cop (10)
a,r

in which the modal weights W help specify pole locations, and the termz C

improves robustness of the controller. Since the cost functional J(C) is quadratlc
in C, the gains can be obtained algebraically by solving the linear equations

" aJ _ "
2C - 0 for C .

| i g TR A Ry

hoids WVl (o oA B~ N
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RPN

In order to carry out this procedure, we need to (i) relabel the gain matrix C ar

(a=1, ..., Na’ r=1, ..., Nr) as a gain vector C, (@ = 11, 12, ...lNr,
21, 22, ..., .. .—NaNr) » (ii) relabel the multiply-indexed modal coefficients
¢an Ppp 85 8 modal coefficient matrix ‘I)r(lfx) » using the same correspondence

between the single index « and the pair of indices a, r as used in (i), and
finally (ii) define a diagonal weighting matrix W whose elements are Wn . For
simplicity, denote the desired root-shifts (d)xn)D by dn ,» considered as com-
ponents of a vector d.

With the above relabeling, the weighted quadratic cost functional (10) can be
rewritten as :

J(C) = Ewn[z: (I’r(li) Co - dn]2 + an Ca
n o

(11)

or in matrix form

T

scy=@Pc-aTwwePc-ay+cT ¢ (12)

From (11) we can calculate the partial derivatives (where B is an index having
the same range as «):

13d _ (2)
fa—g-zwn[z“’n ¢ -4 }q’nﬁ %% a9
n 7]
or equivalently in matrix form (I: identity matrix)
183 _ (2),T (2) _ (x(2)\T
'Z-’GPC"[((I’ )T We +I]C (#*77)" Wd (14)

Thus the condition

QJ|QJ

= 0 leads to the LAC gain synthesis formula
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ARG s e,

-1 T
C= I(Q(Z))T wa'? . 1] ‘%) wa (15)

The above LAC gain systhesis procedure was carried out for the CSDL

tetrahedral truss example, using rate-feedback only and an upper triangular
form for the gain matrix C. The CSDL example will be discussed in Section 5.1 ?
below. i
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4.2 HIGH-AUTHORITY CONTROL METHODS

4.2.1 Control Problem

Introduction

The application of advanced control design techniques requires the use of
models. Dynamics of continuous structures is, in general, described by a set
of partial differential equations of the wave type. These equations may be
derived for simple structures like beams and plates but are difficult for
practical structures used in space. In addition, even though control laws
can be designed for such structures, in concept, the solutions are too diffi-

cult for implementation.

A more practical approach for modeling the structures uses the modal
approach. In this approach the basic functions describing the dynamic
system behavior are written in terms of spatial expansions and the dynamics
of the basis function is described by a coupled ordinary differential equation.
This differential equation forms the basis of control design approaches.

4.2.1.1 Modal Representation. Finite order modal representations are obtained

either from simplification of partial differential equations representing the
dynamics of the structures or a direct derivation based on finite element analysis.
In the finite e'lement analysis, the structure is divided into a set of lumped
masses and the differential equations are derived with appropriate boundary
conditions at each lumped mass. The details of the finite element approach may

be found in other references.

A finite order lumped mass model for the structure is written as

MZ +Ct +Kt = Gu (1)




where ¢ are translational or rotational deflections and u is the input. M, C,
K and G are mass, damping, spring and input distribution matrices. This
model is typically of high order, depending upon the number of elements used
in finite element analysis or the grid size used to convert the partial differential
equation into an ordinary differential equation.

The model may be converted into a state space formulation by defining the state
vector as follows:

'S
={°> (2
X (§) )

R P
d}¢ ' s
T N P e 1 T e (3)
dt[g] [-M g mlclé M g

/2

The states maﬁr alternately be defined as follows, where M1 is a symmetric

square root of M.

_ 1\«11/25
X =% S
ML
The corresponding state equations are
4 _Ml_’_z.t_] _ [--__---_-_L-_____I_____] [I_W.l_’f-g] . [___o___] )
dt Mll?‘i ‘ _M—.1l2 KM—1/2 ! _M—1l2 CM—l/Z M1/2 ¢l M—IIZ G

With this selection of the state, the damping and the spring matrices are sym-
metric. These equations are written as:

s [l B




. -1 .. .
where T is any matrix which makes TAT diagonal. The state equations

then become

- |~z =]-=-1t-3-} |-=- + |-5- (8)
dt [g] [-AO : -Dg, £ B,
where Ao is a diagonal matrix.

Inertial devices measure absolute values of translational or rotational positions.
velocities or accelerations at several points on the structure. Optical devices
or other systems may measure relative position, velocity or acceleration at

two or more points on the structure. The measurements are written as

y PR S (3
position: y = CIE = ¢ 0][_5_]
velocity : y = C g =]0:C -g—.-
: 9 S
acceleration: y = C3E = —C3 A -C, DO] [-%-] + 03 Bou

In general, therefore, the measurements are expressed as:

o]

4.2.1.2 Control Problems and Requirements. The basic problem with many

structural dynamics problems is the low damping ratios of system modes. The
systems of interest to us must perform several tasks which require both model
following and stability augmentation.

The structure models are often known accurately at low frequencies. In addition,
the low frequency modes have large settling times. Therefore, control activity
is more efficiently utilized in controlling low frequency modes. A model reduction
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approach is required to reduce the partial differential equation model or high
order lumped parameter model into a low order model. These techniques must
not only represent low frequency behavior faithfully but must also include the

impact of high frequency behavior in low frequency models.

The control design problem is complicated because the model being lumped mass
and of low order, approximates the dynamic behavior of the structure. The
control design procedure must appreciate this limitation of the model. A direct
application of the linear-quadratic Gaussian methods produces the control and
observation spillover problem, where the control law adversely affects one

or more unmodeled modes. The control structure must avoid or minimize the
spillover problem.

The general control law resulting from the above developments is likely to be of
high order. Techniques are developed to reduce controller order without
compromizing closed loop performance, if possible.

Figure 1 shows the overall control design procedure. The overall procedure
consists of three major steps:

(1) Model Reduction: Development of control design models from
distributed parameter or finite element descriptions.

(2) Control Design: Design of a controller/filter or output feedback
logic to specify the control structure.

(3) Controller Simplification: Reduction of the controller obtained in
the previous step to simplify implementation and for rebustification.

The steps in the overall procedures must be carefully integrated to support
assumptions and approximations made in each of the steps. This integration
and the development of specific design methodologies which support this
integration is the basis of our approach for design of control system for space

structures.
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4.2.2 Model Reduction

4.2.2.1 Requirements. Partial differential operations describe the dynamics of

large space structures. Lumped mass approximation of this dynamics via finite
element analysis or direct discretization leads to high order ordinary differential
equation models. Though this model form is suitable for the application of many
well developed control design methods, the high order creates a problem both of
computation and of implementation. In addition, higher order modes in continuous
structures are more sensitive to microscopic changes in the physical structure
than low order modes. The description of high order modes, therefore, has large
errors resulting from the finitie element analysis and approximations in modeling
the physical structure. Lumping of two truss elements may have a minor effect

" on the first mode but may completely alter the mode shape of a high frequency

system mode.

Model reduction is required for robustness and to simplify control law computation
and implementation.

Criteria and computation procedures for model reduction are discussed in this
chapter. The reduced model must contain essential elements of the dynamies
such that the resulting control law is suitable for the continuous structure des-

cribed by partial differential equations. Roles of poles, zeros and residues of
transfer functions in closed loop control design are discussed first followed by
selection of specific criteria and numerical procedures.

4.2.2.2 Poles, Zeros and Residues. In linear systems, the closed loop behavior
is dictated significantly by several transfer function properties. Three of the
most significant properties are the poles, the zeros, and the residues.




The roles of transfer function properties are best explained by considering a
‘ single input single output (SISO) system with output y and input u.

y(s) = T(s) u(s) (1)

The characteristic values Ay i=1, 2 --- nof the T(s) denominator are the open
loop system eigenvalues and indicate system stability properties. The transfer
function may be written in terms of zeros Zi’ i=1, 2 ... n or residues r;,

i
i=1, 2 --- n as follows

K(s—Zl) (s—Z2) cee (8-2)

_ m’ .
T(s) = s _7‘1) (s = AZ) (s - An) : Zeros Representation

| n I'i

: =y — : Residue Representation

Consider now a feedback matrix C(s) with gain «. The closed loop transfer

function is

T(s)
g T(8) = T5ac(s) T (3
which may be written as
T (s) K(s -_'El) _ (s —_Eﬁ) "
c (s - A (s—Az)'--(s-A—ﬁ)
3
It is easy to see that for smaller «,
a)\i
; pal, , C T (5)
Thus r, dictates the behavior of the pole for small gain. When « is large, the finite
closed loop poles are the zeros of C(s) and T(s).
4-12




To summarize, the residues of the transfer function describe the low gain proper-

ties and the zeros the high gain properties. Both zeros and residues are important
in closed loop control design.

4.2.2.3 Numerical Procedures. Consider a Nth order linear system with x,
input u and output y

X

y

Fx + Gu (6)
Hx + Du

The input-output transfer function is given by

y = (H(sI - )" 1G +D)u

N .
y(s) ___1 el
W) T Mo &y BWs

The eigenvalues of A(s) define system poles, while B(i) are matrices of numerator
polynomial. The zeros of Yk and u transfer function is

Ve 1 .
W@ - A® & Ba®ds

K1 (8 = Zyp) (8= Zggp) =or (8= gy
(s—Al) (s—)\i) -'-(s—AN)

[ >

N
A
i=1

r.
ikl

Different approaches are useful for maintaining zeros or residues in reduced
order models.




Maintaining Residues and Poles

A modal decomposition provides the framework for reducing arbitrary linear models
to design models with same residues and poles as the high order models. The pro-
cedures are well known [2] and their application to model reduction is described

below.

The linear Eqs. (6) and (7) can be transformed to block diagonal form assuming

the n x n dynamics matrix, F, has no repeated eigenvalues:

x = Tz & (11)
Z = Az+ u (12)
y = HTz + Du (13)

where A is an n x n block diagonal matrix, T is an n x n matrix composed of
the column eigenvectors of F, Z is an n x 1 modal coordinate vector, and = is

the n x m modal control distribution matrix. Also,

FT = TA (14)

The system of Egs. (11) through (13) can be partitioned into a set of q states

and q eigenvalues (time constants) and n-q states and eigenvalues as follows:

[}
B O I I E RS 1 | e . (15
X3 ) " L Te2t Taz)l 2%
z A, O z =
.-:1_. SO SN | N T _:l. u (16)
zy 0. Ay |2 P

where x, and z, are n x 1 vectors partitioning the states and modes and X, and

z, are (N-n) x 1 vectors partitioning the remaining states and modes.

In the representation of the above equation it is easy to verify that the residues
of the poles are appropriate products of terms in matrices HT and =. The residue

maintaining model reduction procedure is simply derived as in the following.
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N-n poles are eliminated by setting 22 = 0. This gives

-1 -

22 = —A2 = u (17
The reduced order model is
z1 = Alz1 + Equ (18)
Zy
Y = HT eIy + Du

—A2 =Uu

= H'Z1 + D'u (19)

Many model reduction procedures do not modify the coefficient of u in the measure-
ment equation. It is clear from the above equations and subsequent examples that
such a change is essential.

Maintaining Zeros and Poles

If the transfer function between output Yk and input u, is simplified to keep the
first w poles and m zeros, the following form is obtained.

If the first n poles and. m zeros the simplified transfer function is

N - -
Ykes)  Km T (=Z4yp) (8 = Zyyy) o- (8= 2y
- N .
Y (s) i=nn+1 (‘7\1) (s - Ai) e (s -y) (20)

Note that the gain has to be modified because high frequency poles and zeros

have steady state effects.
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The reduced model is obtained by performing a similar reduction on each transfer
function and then detaining a state space realization from the complete transfer
function. The process of obtaining the minimum state space realization is not
simple (except for single input multi output or multi input and single output sys-
tem). In fact in multi output systems, this procedure may even lead to an increase

in model order.

Model reduction procedures which maintain zeros have not been used extensively

except in single input single output systems.

4.2.2.4 Selections of Significant Poles. The procedures of the previous section

may be used once poles to be retained in the reduced order model are specified.

This specification has usually been based on two considerations:

1. Frequency separation

2. Performance evaluation

The frequency separation approach keeps poles in a prespecified frequency range
depending on the actuator/sensor bandwidth, control requirements and modeling
accuracy. In most large space structures control design problems, all these con-
siderations lead to retention of low frequency poles. One exception is the elimina-

tion of forced vibration at specified frequencies (e.g., motors).

The performance evaluation approach evaluates the effect of elimination of each
combinations of modes on the performance of the closed loop system. Significant
work has been done on this problem by Skelton [Sec. 5.1.6]. The concept of open
loop modal cost analysis provides an integrated framework for selecting modes
which will effect the feedback control law.

4-16
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The selection of the poles to be eliminated will consist of two steps. In the first
step, all poles and zeros not in the frequency range of interest will be eliminated.
In the second step, modal cost analysis will be used to selectively eliminate those
modes which have minimum effect on performance.

With the simplified model for large space structures, we are now ready for
control design.
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4,2.3 Control Design

4.2.3.1 Control Approach. Design of feedback control laws for large space

structures is dictated by the following considerations:

(i) Model: Because of modeling accuracy as well as computational consider-
ations, the model is of low order. The neglected modes have low damping
and can be unstable if not properly considered in control design.

(ii) Sensors and Actuators: Though structures have significant response

up to infinite frequency, physical actuators/sensors have finite bandwidth.

In addition actuators and sensors have dead zeros, hysterisis and
non-linearities.

(iii) Model Uncertainties: The behavior of structures is known only approxi-
mately at.high frequency. Therefore, it is difficult to assess the behavior

of high frequency poles.

(iv) Space Application: Because of weight and volume considerations in
space applications, optimization of sensors and actuators is critical in control
of space structures.

The control design approach developed addresses these issues in the feed-
back law specification. The integrated approach is based on an extension of the
work of Aubrun [sec 4.1] on collocated sensors/actuators and on frequency

shaping filter /controller design methods.

The collocated sensor /actuator based control design approach has been called the
low-authority structural control (LASC) because of the limited amount of structural
damping which it can produce. The LASC theory has been generalized to include

many sensor /actuator pairs with possible cross feedback among pairs.

The general feedback controller /filter design problem considers general sensor/
actuator location with general signal flow structure. The validity of the model

over a small frequency range is used directly in the control design approach.
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The resulting controller provides maximum robustness against truncated modes. 3
High damping ratios can be obtained in selected modes. The stability of unmodeled
modes cannot be guaranteed even with perfect actuators and sensors.

4.2.3.2 Generalization of Colocated Control. Collocated control is generalized

for multi-input multi-output systems. It is shown that the solution is closely
related to an inverse optimal control solution. A design procedure is discussed
followed by controller robustness properties.

Inverse Optimal Control Problem

This section considers the control problem with collocated actuators and sensors.

In addition, all sensor/actuator pairs are complimentary to each other (e.g.,

T e R M

velocity sensor /force actuator, rate sensor/moment actuator). The output vector,

y, is obtained then through

yt) = GT x(t), yeR™ (1)

Neglecting the low natural damping of the flexible system, the finite order* linear

oscillatory system is described through

%) = Fx(t) + G u(t), xeR™ , ueR™ (2)
where
0 | I
R R e 1 & -10_
= [t ¢ =5;]
0 (o]

and Ao is an n x n symmetric positive definite (p.d.) matrix, and Bo isannxm

matrix of full rank m (m<n).

*Refer to chapter 3 for further details on model derivation. |




The state vector, x, of the system described in (2) is defined by

>

[q, 4] (4

where q and § are generalized displacements and velocities respectively. Using
the output of (1) in implementing an output feedback control law will result in
a velocity (rate) feedback only due to the structure of G in (3). This is an im-
portant property of collocated controls for systems described as in (2); it will
be exploited in deriving the analytical foundations for the design procedure.

Consider now the case where the system in (1) and (2) is a single~input,
single-output (SISO) system. Then, it can be shown that the use of a collocated
reate feedback control will result in an eigenvalue shift to the left in the complex
plane (increased damping). The proof of this property is based on Jacobi's for-
mula for eigenvalues perturbations and the moa‘al structure of the system in (2)
and (3) (see Sec. 4.1).

Can collocated rate feedback control provide increased damping in multi-input,
multi-output (MIMO) systems too?

The answer is provided through the application of inverse optimal control theory.

We consider an objective function quadratic in state and control over an infinite

time period, i.e.,

J(x, u) =/ [XT(t)QX(t) + uT(t)Ru(t)]dt (5)
()

and

Q20, R>0 (6)

The problem of inverse optimal control to be considered is the following. Given

a stabilizing output feedback control law described by




u(t) = Ky@t) = KGlx(t)

for what weighting matrices Q and R in (5) is this control also optimal?

Appendix A derives the solution to this problem; a summary of results is provided
in Table 1.

The solution to the inverse optimal control problem as formulated above will allow
us to generalize the stabilization properties of a collocated rate feedback control

to MIMO systems. This is discussed next.

Properties of Solution

The stabilization of a linear system by a state feedback control law requires the
system in (2) to be controllable* [5]. This is an important structural property

that will be assumed for the system under consideration.

It is well known [ 5] that if Q = LTL, where (F, L) is an observable pair, the
optimal control obtained through the solution of the ARE yields a stable closed-
loop system. In the case discussed in Appendix A we have

where the m x 2n matrix L is given by

! -1/2 T
L = [o_: oB / Bo] (9

It is simple to show that if (F, G) is a controllable pair, R and Ao are symmetric
p.d matrices and a»0, then (F, L) is an observable pair too. This shows that
selecting any symmetric negative definite matrix for the output feedback gain
matrix will result in a stabilizing collocated control. In addition, this control is
also optimal for a specific optimization problem as discussed in Appendix A. This
result provides the required generalization to MIMO systems.

*This requirement can be relaxed to that of stabilizability [ 5].
+Algebraic Ricatti Equation.
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Table 1
SUMMARY
Given
X(t) = Fx(t) + Gu(t) , xeR  yer™
u(t) = KGT x (t) (rate feedback)
K = K'<0 (agiven gain matrix)
0 1
0 T
F =t -, G =[x, A = a
I:—Ao 0 ] [Bo] (o) (o)
x £ 1q,a7, x(0 = x_
Problem:

For what Q and R matrices is u the optimal control for a
linear quadratic objective function given by

J* = min [® xT(H)Qx(1) + uL (HRu(t)) dt

ue¥%
Solution of ARE:!

P

]
ol
(=]
_1
1
=.-.'c
e

Input Penalty Matrix:

R

1]

|

R
~
R
v
o

State Penalty Matrix:

Q

1]
—T
[— ]
- |-

S

[
ol
O:U

1 19
-
Op—]'
R —

Optimal Cost:
T T 2
* =
J xono a(quoqo * llq(ll )

t .
Algebraic Riccati Equation
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The results presented in Table 1 can be used to yield a physical interpretation

of the solution to the inverse optimal control problem.

The optimal pe~formance is written as

]
J* = min[J1+J2] (10)
u 1
1
i
where é
2 f(®.T_ _-1.T
i = a/; a'BR'B_ q dt (11)
-
Iy = f u'Ru dt (12)

o

The interpretation suggested above is that the cost functional is the total energy
of the system. The term contributed by the state is the kinetic energy where

E = M4 (13)

and the "mass," M, is given by

T

M = «’B R 1B
(o] (o]

(14)

Also, the use of velocity feedback where the actuators and sensors are collocated
results in an LQ problem where only kinetic energy is weighted.

The solution of the inverse optimal control problem as presented above has a
theoretical and practical significance, On the theoretical side we have been able
to show that this solution results in a stable closed-loop system. This solution can
also be used to answer the question of control "spillover". The practical aspect

of the inverse optimal control problem lends itself to an implementable design

procedure discussed in the following section.




Design Procedure

It was shown above that the solution of the inverse optimal control problem results

in a state weighting matrix given by
|
Q = g"r‘if—-q:]fjf (15)
0|a™BR "B
o o

In practice, however, one starts the design procedure by specifying the weighting
matrices rather than obtaining them as an end result. This specification results
from the performance levels the system is required to achieve.

The use of low-authority controllers (collocated sensors and actuators) to-date
was concerned mainly with the question of stability. The results obtained above
allow us to extend the scope of these controllers beyond that of stability.
Let the state weighting matrix Q, be specified as
Q = E.g_é._%-.] (16)
1 o
where Qo is any n x n symmetric p.s.d matrix.

Given Q as in (16), the design is concerned with solving

T _
'aBoKBo = Q, (1D

for the symmetric gain matrix K.

If the n x m matrix Bo is square and nonsingular, i.e., n = m, then the required

gain is obtained from (17) as

x = (&) 5. q, (87) (19
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In practice, however, one finds that m<n in which case (18) will not be
available. A valid assumption that can still be made is that B o is of full rank

equal to m,

In this case we can solve (17), so that the solution is approximate in the least

squares sense.

Let
I = tr[(Qo +qBOKB;F) (Qo +aBOKB;r)T] (19)
then, setting
od
3Kl * 0 (20)
K=K *
we find
1 T -1 T T -1
K* = _%) (Bo Bo) B, QoBo<Bo BO) (21
Remarks:

1. Since Qo is p.d, and a>70, the gain matrix obtained in (21) is symmetric.
negative definite as required.

2. Since the objective function of (19) is convex, the gain matrix of (21)
is globally optimal.

) Using the gain as given in (21) for the control of the system in (2) through
the application of (7) will result in a solution of an inverse optimal control prob-
lem where the actual state weighting matrix is given by

, ¢ - [t
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and

- T -1.T T -1, T .
Q* = Bo(Bo Bo) BoQoBo(Bo Bo) Bo (23)

The actual weighting matrix Q* of (23) can be rewritten as

Q* = CQOC (24)
where
_ T, \-1,T _ AT
c = BO(BOBO) BT = ¢ (25)

The design procedure is concerned with specifying Q o SO that the resulting Q*

as given in (24) will approach a desired weighting structure i.e.,

Q* ~ Q4 (26)

The above discussion can be summarized into a numerical procedure.

The numerical procedure is motivated by equation (26). The matrix Q, is the
design matrix to be chosen in an iterative manner until system's closed-loop

performance is acceptable.

T ey

The procedure is as follows:
Step 1: Read: Ao’ Bo’ Qo, m, n,o
Step 2: Set: k=1

Qk = Qo .
_ T -1
D= l?'o(]?'o Bo)
C = DBg‘

Step 3: Q*=CQkC T
K1:=(1/oz) D QkD 0!

|1
PRE R

Find eigenvalues of
® -A'B K BT
o o ko
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Step 4: If eigenvalue distribution is acceptable (damping ratios, frequencies,
etc.) go to 5 , otherwise find the diagonal difference of Q* and Qk

.yi = Q*(iyi) —Qk (i,i), 1Sisn

then

k— k+1
goto 3.
Step 5: STOP.

Remark: The choice of the parameter ¢; can be varying depending present eigen-

value distribution.

This numerical procedure will be used in section 5 to design a controller for a

flexible structure (a pyramid).

Robustness Properties of Generalized Collocated Control

A problem associated with control design for large space structures is that of
truncated modes. The dimension of the model described in Eq. (2) depends on

the fineness of grid used in the application of the finite element method. Usually,
however, the dimension is quite large and some reduction in order will result

in modes that are truncated from the final model used for design. The effect of

the control derived from the reduced-order model on the truncated modes ("control
spillover,” Ref. 4 in sec. 2) is of extreme importance in the overall evaluation of

the control system.

Another problem to be considered is the effect of parameter variations (or uncer-
tanity) on performance quality. The solution to the inverse optimal control problem
will be used to demonstrate design robustness in regard to the following two }

specific problems.
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Problem 1:

To what extent, if any, is the solution to the inverse optimal control problem
sensitive to truncated modes?

Problem 2:

How are closed-loop stability properties affected by parameter variations
(or uncertainty) in system matrices?

The problem of truncated modes will be considered first. The matrix describing
the dynamics of the flexible system, given by Eq. (2) has eigenvalues distrib-
uted on the imaginary axis. The process of mode truncation is carried out by
ignoring eigenvalues that are far from the origin on the imaginary axis (high-
frequencies). Analytically, the problem of mode truncation is as follows. Let

the full-order finite linear system* be described by

|
. RS S I 0
2ty 2 [X(t)] - | -A, T 0 ! z(t) + [B_ | uct) (27)

where the subscript T stands for the part of the system to be truncated. The

output used for control is given by

cil 7L s

y(t) = B;rx(t) + B$xT(t),yéRm ' (28)

The matrix AT contributes to the full order system frequencies higher than those

contributed by A o and, therefore, can be truncated to yield the reduced order

0 i 0
x(t) = [:X':‘ﬁr'l'] x(t) + IE‘B“Zl u(t) (29)
|

model described by

(o}

*The real flexible system is described through a second order PDE (wave equation).
In linear form, the flexible system is of infinite dimension. Equation (1), there-
fore, considers only a finite number of these modes.




Robustness Property 1:

The full order system described in Eq. (27) under the control

u(t) = Ky(), -K = -KL > 0 (30)

and y given by Eq. (28) will remain stable for every A provided that
(Ao, B, (Aq, B,) are controllable pairs.

The proof of this property is by using the control as derived from the reduced
order system and noting that the full order system assumes the form given by

Appendix B indicates that this system will be asymptotically stable provided
(Ao’ Bo) and (AT, BT) form controllable pairs.

This result shows how the inverse optimal control solution can be put to use to

answer the question of control spillover (Ref. 4 in sec. 2).
Observing the proof of Appendix B we can arrive at the second robustness result.
This result shows how stability properties of the closed-loop system are affected

by parameter variations in the system matrix A o

Robustness Property 2:

Consider the dynamic system described in Eq. (28) and where the n x n matrix
Ao can have uncertain parameters that belong to certain set. Applying the output
feedback control of Eq. (4) will result in a stable closed-loop system for every
A _ in the give range of possible parameter variation provided A o is always

o
symmetric and p.d. over its entire range.

s me 27 %
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Remark: In the case when Ao is a diagonal n x n matrix, the above result
guarantees stability of the closed-loop system provided the diagonal of A o

remains positive over all possible variations.

4.2.3.3 General Controller/Filter Design. With collocated sensors and actuators

output feedback may be used to increase the damping ratio of all modes up to a
certain level. In many systems it is not possible to place actuators and sensors
at the same place. Often also higher damping ratio is desired in certain

selected modes. General controller/filter design theory is the desired.

Design Procedure

Since the models are of high order with multi-inputs and -outputs,Linear-Quadratic-
Gaussian LQG-techniques are useful. LQG methods must be modified such that
they account for the following factors.

(i) Model unvalidity at high frequencies
(ii) Bandlimited actuators/sensors, and

(ili) Control requirements at low frequency

This section describes a completely new theoretical development to extend LQG

methods for large space structure applications.

LQG techniques are based on state description models of

1t

Fx + Gu
= Hx

(31)

The function to be optimized is quadratic in states x and input u. A direct optimi-
zation of the performance index gives the desired control law. These methods

require many assumptions.
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1. The model is valid for all values of inputs and states. In addition, the
dynamics is well described at all input and state frequencies.

2. The filter uses values of F, G and H matrices explicitly in the implementa- 1
tion stage (in addition to the gain K which also depends on the state |
definition matrices). The filter design also assumes that the dynamics is
known equally accurately at all frequencies. This may make the combina-
tion of the filter and the control law extremely sensitive to errors, see
also Doyle [2].

3. The optimality of the filter is strongly dependent on the accuracy of
noise statistics.

Classical control design methods are based on frequency domain descriptions of
systems and account for model uncertainty at high frequencies by the use of gain
and phase margin comcepts. Gain and phase margins provide a measure of uncer-

tainty in the model at high frequency for which stability can be guaranteed.

It has been shown by Anderson and Moore [5] and Athans and Safonov [6] that
the LQG controller has a 60° phase margin and 50% to infinite gain margin. The
phase and gain margin properties provide for a constant phase error in all chan-
nels and for individual variations in gain. The system may be extremely sensitive
if two gains change in opposite directions. In general, the phase and gain margin
property does not relate directly to parameter sensitivity. The performance of
the LQG controllers degrades further when a filter is used for state estimation.
The gain and phase margin properties are no longer valid. In addition, the filter
dynamics, dictated by specified noise characteristics, may be too fast, leading to

interaction with unmodeled terms.

To understand the concept of frequency shaping, it is necessary to write the
standard LQG cost functional in the frequency domain. With inifinte time horizon
and no weighting on the final state, the cost functional may be written as:

J = 1/2«{00 [X*(GWAX (W + u*(jwBul(jw)]dw (32)

where * implies complex conjugate. Clearly, in this formulation, the weighting
matrices are not functions of frequency, i.e., the state and control excursions
at all frequencies are equally unacceptable. In many systems, on the other hand,
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inputs in the neighborhood of a particular frequency are not desirable because
of poor sensor or actuator characteristics at that frequency. Historically, this
constraint of constant weighting at all frequencies has resulted because of the
difficulty of shaping the weighting functional with frequency in the conventional
time domain LQG formulation. Representation of the cost functional, Eq. (32),
provides a clue to the frequency domain approach for using frequency shaping
ideas in modern control theory techniques. Matrices A and B in Eq. (32) may be

made functions of frequency to give a generalized cost function of the form

oo
J = 1/2 o{ [(x*(WA (Wx() + u*(wB(w u(jw)ldw (32)
A(jw) and B(jw) are Hermitian matrices at all frequencies.
A design procedure based on this weighting is given in Appendix C.

The frequency shaped weighting matrices are used in large space structure control
as follows. Maximum control activity is desired at low frequency with minimum on no
control activity at high frequency. This may be achieved, for example, by select-
ing B(jw) small at low frequency and large at high frequencies. If the model is not
valid at high frequency, we may also want to minimize state excursions in that region.
This may require large state weighting at high frequency. Table 2 gives a set

of weighting functions which may be useful in space structure control. As shown

in Appendix C and with examples in Section 5, such weighting functions lead to

general compensation structures in the feedback loop.

Filter Design

States required for feedback control are often not measured directly. Reliable
estimators should then be designed to extract the state time history from the meas-

ured data. In general states corresponding to the modes retained in the model must

be estimated with minimium contamination from high frequency model states.
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Skelton has developed an orthogonal filter approach for state estimation in systems
with unknown non-white noise. Consider the dyanmic system

x = Fx + Gu + w (34)

where w is a vector of nonwhite and nonstationary noise. The concept involves

ety s iy —

approximating w by a vector of onthogonal functions, E

w = +E (35)

Chekychev polynomials could be selected as the set of approximating orthogonal

function.

In Kalman filter or observer formulation, it is advantageous to select approximat-
ing functions which can be generated by a set of differential equations. Fourier
series and orthogonal polynomials both satisfy this requirement, E then follows

a differential equation

E =FE + W (36)

EPWEEN

where W is white noise source introduced to account for changes in the error terms.

A nonwhite error term may also be introduced in the measurement equation

Ay A N e

y = Hx + v ‘ a7

and v may be approximated by the same set of orthogonal functions and a pure g |

white noise term 'v'

v = DE + V (38)

Equations (34) through (38) may be formulated into a Kalman filter for estimat-
ing the states. As a by product, the orthogonal error knows E will also be estimated.
If necessary I' and D may also be estimated in realtime. This method is described
later in greater detail.

4-34




Another approach for state estimation is based on frequency shaping of state and
measurement noise. In Eq. (34) , for example, noise W is primary high frequency
corresponding to truncated modes. The noise spectrum is then selected to be a
function which is small in the model frequency range and high in regions of trun-

cated modes. The measurement noise is treated in a similar manner.

The negative log likelihood function for state estimation becomes

o0
NLLF = f (w* QlGww + v* R‘l(jw)v) dw
- ]
Much work has been done on guidelines for selecting the weighting functions.
Once appropriate shaping functions have been selected, the filter design procedure

is similar to the control design procedure outlined in Appendix C.

Relationship Between Orthogonal Filter and Frequency Shaping Methods

Orthogonal filters and frequency shaping state estimation methods try to correct
for inadequacy of the model in certain frequency ranges. The orthogonal filter
approach models the error by a series of orthogonal functions in time domain
while the frequency shaping approach approximates the error by a series of
functions in the frequency domain. Both methods require additional states to
model the nonwhite error. If the set of orthogonal functions and the frequency
shaped weights are appropriately selected, the two methods should give identical
results. Figure 2 compares the frequency domain and time domain algorithms.

4.2.3.4 Robustness Properties. In analyzing the effect of control on unmodeled

modes we need to look at their motion in the complex plane. Let us introduce a
scaling parameter 7 in the feedback loop. For small ¥, a pole at o, moves from

open loop value at the rate
iD C(—o:i)
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where Ri is the residue of the pole in the open loop system. If the reduced model

maintains residues of the modeled modes, the small gain behavior of retained modes
is not affected by model reduction. The behavior of the unmodeled modes is dictated
by the residue at the pole (a property of the system and actuator /sensor locations)
and the controller transfer function at the pole (a property of the controller). The
sign of the residue is often not known precisely but its magnitude can be bounded.
This provides a bound on the rate at which each eigenvalue moves for small gains.

The high gain properties of the closed loop system are difficult to analyze. All
poles will ultimately move into a zero or ‘go to infinity. The closed-loop behavior
is extremely sensitive to zero locations whose computed position depends, in a

sensitive way, on the modal functions selected for the truncated model.

Frequency shaping approach ensures robustness of unmodeled modes by designing
control laws such that the rate of movement of unmodeled modes is much smaller
compared to the rate at which modeled poles move. This is ackieved by designing
controllers such that Tc(s) is high at low frequency and small in the high fre-
quency region. This is realized by frequency-shaped weighting functions in which
the weights increase with frequency. If, in addition, the low frequency poles do
not move in the high frequency region, the residues Ri on unmodeled modes will
not change significantly. If the residue of the ith mode is of magnitude smaller
than |R,|, the closed-loop pole @; will be contained within a circle with center at

a; and radius |Ri| abs (TC(-ai)) . To guarantee stability, this circle must lie
in the left half plane.
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4.2.4 Orthogonal Filters

Introduction

The orthogunal filter seeks to compensate for errors in the mathematical model
of the structure in the state estimation problem. The potential of the method
lies in the fact that the total model error is estimated rather than just the para-
meter errors available in present parameter adaptive and identification methods.
First we show that modeling errors can always be decomposed into (1) parameter
errors, (2) truncated modes, (3) disturbances, and (4) nonlinearities. Then

the idea of the orthogonal filter is presented.

Model Errors for Matrix-Second-Order Systems

Let the nonlinear evaluation model of the structure be described by

Mg, + (D, +Gpq, +Kjq; = Buurilqy, qp u, H+ w,

=P +R.q. +A_Q eRNl ueR™ 1)
Yy 19 TR YA 9 , (

- . .. . !
z Plag * Ry * A9, *80q, q, 1) +vy, 2, eR

where q1 has dimension N_, and g(ql, a, t) represents any nonlinearities

in the measurement equationé. Parameters of the matrices Pl’ Rl’ and A1

are fixed by the location of displacement sensors, rate sensors, and accelerometers,
respectively. vy € Rk represents the k variables we wish to control. For
example, if we wish to control the entire state vector then y 1 becomes

T
¥y, = (ql, ql) by appropriate choice of Pl’ Rl’ A1

S A R
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The performance objectives might be stated in terms of yl(t) and u(t), as

in Ref 2, or they might be stated in terms of closed loop eigenvalue locations,
as in Ref 3. This report is not specifically concerned with the control policy.
Instead, it is concerned with the question of whether the model error vectors

eq(t), ey(t), or ez(t) associated with any design model 82

Ny

quz+(1)2+(;2)c,12+K2q2 = B2u+eq, qzeR

m

y1 = P2q2+R2q2+A2q +ey , UeR

B . y K 2
= Pyd, * Ry, + Agiy+e, .y R,z ER

can be reconstructed on-line at the same time the state vector xg = (qg, q’;)

is reconstructed from the measurements zl(t) . (By definition of the evaluation
model (1) it is assumed throughout that Zl(t) represents the actual measure-
ments sufficiently accurately for controller evaluation purposes.)
Ny k J] :

R ey(t) eR, ez(t) € R* exist such that the
output vectors yl(t), and zl(t) of the reduced order model (3) are identically

Model error vectors eq(t) €ER

equal to the corresponding output vectors yl(t) and z 1(t) of the higher order

model (1). The model error vectors are

where e N is that contribution to the total model errors due to parameter errors

in (MZ’ D2, G2, K2, P2, R2, AZ’ P2, R2, Az), e, is that contribution to the
total model errors due to errors in model order (truncated modes), eW is that
contribution due to erroneously modeled disturbances, and eNL is that con-
tribution to the total model errors due to neglected nonlinearities. Furthermore,

€p s et, ew, and eNL have the explicit expressions
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q2 + 0 u (5a)

=4

e = A Q,4, + Rl 2,9, * P1 2,9, (5b)

e = 0 (5¢)

eyr = 0 (5d)

where qt(t) is a (N1 - N2)-vector which satisfies

Tq .. T— .
2 9 2y 9
oT Myfa, 9,0 |+ T Dy +Gple Q1 | [+
2 | 9 2 9
) 9
Qf kD) QI
ol K e, = (Bju+ W, + 1) (6) 1
9 110 M oT :
2 | t 1 !
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The transformation matrix Q=[Q

% Q 2] may be any nonsingular matrix, and the
parameter errors (AM AD2, AG

9’ 9’ AK,, AB2, AP2, ARz’ AAZ’ AP, » ARy AAZ)
associated with the reduced model (3) will be defined by

ap, = P 9 -P,
APy = P 9 - P,
AR, = R, 9 - R,
ARy = Ry 9, - Ry
AA, = A 9 - A,
Ady = AR - A, )
AM, = QTMIQI-MZ
aD, = QTDIQI—DZ
AG, = chlnl-ez
AK, = QTKIQI—Kz
AB, = QTBI - B,

Selection of Orthogonal Functions for Model Error Approximation

Under these conditions:

L

k

(k+)7 T
e (t)e(t)dt <= , 7>0, k=0,1, 2, ... (8)

T

for any set of functions satisfying

(k+1)T
d

2. f Y () yT(t) g(t) dt = A, Y € R 9
ky : - . -

- s

where A is nonsingular and g(t) is a positive scalar weighting, ‘
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there exists, during any interval 7 >0, a set of coefficients Fij such that

convergence in the mean squared sense is guaranteed.

d
lim || () - Z Fy v =0, telkr, k+17] (10)
Wi oy 1
d-c =
Furthermore, the functions ‘Y].(t), j=1, 2, ... dcan be generated by
y =D (11)

for some choice of D . Thus, by augmenting the model

e
i}

A A
Ax + Bu +te e = FY
X X

zZ = Mx +v

with the model error system

y= DY, QX=F7 (12)

the estimator can be constructed

B2 21 - [

which produces estimates of the state x and the model error vector e where

A A
e =FY.
X

The difference between the construction of the orthogonal filter and the construction
of the estimator using frequency weighted costs is that the former requires selection

of a set of basis functions in the time domain, whereas the latter requires selection
of a set of basis functions in the frequency domain. Further research into the

equivalence of the two points of view is required.
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4.2.5 Controller Simplification

4.2.5.1 Problem Motivation. The modeling process for a large flexible structure
can result in a dynamic system of prohibitive dimensions. Model order reduction
is performed in two stages. The first stage, discussing earlier, consists of model
reduction prior to control design. Further reduction in controller complexity is
obtained by a direct simplification of the dynamic controller itself. This section
discusses methods for control law simplification.

There are two aspects of controller reduction, (a) numerical procedure, and

(b) criteria function. It is shown below that control laws resulting from modern
control theory can be perceived as dynamic systems. Numerical procedures for
reduction are, therefore, similar to those for model reduction. Criteria functions
which may be used for controller simplification are given subsequently.

4,2.5.2 Controller as a Dynamic System. The controller can be viewed as a

dynamic system to which model reduction techniques can be applied. When a
state estimator is used in implementing the control law the controller is de-
scribed by the following dynamic equations:

£ < FR+Gu+K@ - 1D (1)
u = CX (2)
which can be rewritten as
§=(F+Gc—KH)§+Ky 3)
u = Cc% (4)
4-45




This shows that the controller can be viewed as a dynamic system whose inputs
are the (output) measurements and whose outputs are the control to be applied
to the system.

This dynamic system is of the same order as the original system used in control
design. One of the two methods may be used for reducing control law complexity

(a) reduced order observers, or (b) dynamic system reduction.

Reduced Order Observers

The system described in (1) is a full-order Kalman filter on Luenberger
observer. Therefore, one simple way to alleviate the possible dimensionality
problem mentioned above is to use a reduced-order observer. This is described
by:

o
Z -Foz+Koy+Gou (5)
where
z = Tx (6)
TA-F T = K H n
o o
G, = TB | (8)

and z is an (n-m) dimensional vector (y is m-dimensional).

- L

the state estimate is given by
A
x = Py +Qz (10)

Defining
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Therefore, the reduced-order controller is given by

9 (F, + G,CQz + (K, + CP)y (11)

CPy + CQz (12)

=
1}

F o may be chosen arbitrarily

The reduction of complexity was possible since the information available through
the output, y , is not reconstructed in the reduced-order observer. The order

of the system cannot be reduced by more than the number of outputs.

Controller Simplification

Let us consider the controller through the following general dynamic equation

£ = F* + Ky (13)

cR (14)

It

This dynamic system may have real on complex poles.

A simple structure for a reduced controller is offered by

u = Flu + Gly (15)

This, however, requires that
CF* = Flc (16)
G1 = CB (17

Equation (17) presents no special problems but (16) is not always solvable. It
can be shown that a necessary and sufficient conditon for (16) to be solvable
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is that the gain matrix C be the left eigenvectors of the full order observer
matrix F* in (13). This condition could perhaps be met approximately in many
systems. The benefits in doing so are clear but how to actually carry it out is

still an open question.

4.2.5.3 Criteria for Model Reduction. In general, controller simplification

should be such that the resulting control will yield satisfactory performance
with not much degradation compared to the following criteria are available to

minimize loss in performance because of controller simplifications.

(a) Residues: Elimate controller poles with small residues

(b) Pole-Zero Cancellation: Eliminate poles which approximately cancel
controller zeros

(c) Frequency Range: Approximate controller poles and zeros outside the
frequency range of interest

(d) Modal Cost Analysis: Discard controller poles which have minimal effects
on system performance. This methodology has been firmalized by modal
cost analysis, developed by Skelton [ ]. This method considers a cost
functional given by

' R 2 Y
v = zim B llg + Hully }:Evi
i=1

the simplification is based on eliminating modes whose contribution to
the over all cost (V,) is small compared to others. This is the most
sophisticated contrdller simplification method.

Summary

This section shows methods for controller simplification. Since the controller can

be treated as a dynamic system, controller simplification is very similar to model ]

reduction.




4.3 SELECTION OF ACTUATOR LOCATIONS

4.3.1 Introduction

The problem of actuator/sensor locations in dynamic systems has received little
attention, despite its importance. Often, actuator locations are selected before
the control design or, are specified based on other considerations. In these cases
the designer is faced with the problem of constructing an acceptable control law
to best satisfy a predetermined objective, with the constraints of actuator/sensor
locations. '

As increasing demands are placed on feedback control, it is necessary to manipulate

actuator locations to meet design requirements.

The large space structure has a low natural damping and behaves almost like a
pure oscillatory system. The actuators on this system are required to increase the
damping of the naturally flexible structure. It is up to the designer to determine
actuator /sensor locations that best meet the design objective.

This section considers the problem of optimal actuator locations for an oscillatory
dynamic system. It will be shown that closed-form expressions concerning the modal
structure of the dynamic system can be obtained. This modal information can then
be used in developing the design ISrocedure of this report.

4.3.2 Problem Statement

The oscillatory dynamic system to be considered in this section is described by

X(1) = F_ x(t) + G u(t), xe R | ueR™ (1)
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where

01 0
[} n _ .
- fwre] o - 5]

and A is a symmetric, positive-definite (p.d) n x n matrix In is the n x n identity

matrix, and B is an n x m matrix.

The system matirx, F, is determined by the physics of the problem, but the input
matrix, G, can be selected subject to some criteria and the structure given by
Eq. (2). The next section will describe a particular criterion to be employed as a
measure of optimality in actuator location, i.e., the specification of G. The pro-
blem of sensor location, even though not treated here, can be similarly defined

and solved by duality.
4.3.3 Optimality Criteria

The state vector of the oscillatory system given in Eq. (1) contains the displace-
ments and velocities at various nodes of the system. In placing the actuators, it
is desirable that control energy will be such that after some finite time both dis-

placements and velocities will be zero, i.e.,

x(T) = 0 for some finite T > 0 (3)

An additional requirement is that the control energy exerted by the actuators will

be minimal.
Kalman, Ho, and Narendra [1] have shown that the minimal energy control'r is
given by

uk(t) = GT(t) o (t,OW Lt ,T) [0 (1, TIX(T)-x )

o]

where ¢(.) is the transition matrix and W(.) is the controllability matrix defined

by

TFor details. see Appendix D
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Wet_,T) = ff t_, 16 GToT(t ,mydr 5
o’ = to ] O’T ® (097 (5)

If the final desired state is the origin, the minimal control energy will be given by

T
* 2 min [ ||umll%ar = oW L, Tx (6)

u to
Since the controllability matrix, W depends on the actuator locations, the control
energy can be affected by properly choosing these locations.

The general measure of optimality to be used in selecting the actuator locations
is given by
1/k

_ . -k
Jk = m;;an [tr(MoW ] (7)

where the weighting matrix Mo is used to eliminate the effect of initial conditions

: on the performance index.

F For Mo =1 we get the following special cases

k = 0: J, = max [det(W)] (8)
B

k = 1: 3, = max [n/t (W D)] (9)

r

B

kK =%: J, = max [Amin(W)] (10)
B

4.3.4 General Form For The Controllability Matrix

The n x n matrix A in Eq. (2) is a symmetric p.d. matrix. As will be demonstrated

shortly, the transition matrix as well as the controllability matrix can be written




rather easily in closed form if A is a diagonal matrix. Therefore, the first step
in the analysis will be to define a transformation that will result in an equivalent
system with this property. Let

A
= Tx (11)

where

-1
T = [P___E____O.i.] (12)
0 : U

and U is the n x n matrix of eigenvectors of A, i.e.

AU = UA (13)

Ap diag (al, cees an) » (14)

Then the equivalent system is given by

z = Foz + Gou (15)
where
F =TAT! g =TB = [-O-»J (16)
o o ' Yo o GJ ]
and
-1
G = U'B (1n
Furthermore, if
F(t-t )
Py (Lt ) &, N (18)
F (t-t )
9,(t:t) 40 o (19)
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¢x(t.to)

T 9, (t,t )T

If

T T T
W, (0,T) = J 9,(0,1G G” 97 (0,m)dr
(o]

and

- T T
W0,T) = [ ,(0,MG, G, ¢ (0,ndr

then, using Eqs. (15) and (20)

- -1,T

The measure of optimality will now be given by

-k 1/k
J,. = min [tr MWz ]

k

where

M = 1K MO(TT)k

(20)

(21)

(22)

(23)

(24)

(25)

The modal structure for the system described by (15) is derived in Appendix A.
This structure results in a closed form expresssion for the transition matrix given

by
¢ -
r.Oll\ 0 ! Bl\\ 0
RN | N
0 N 0 ‘B
= |- T n_____1n
'I’z(o’t) - R 0 -!al\ 0
™\ | ~
~, | ~
L 0 *ni 0 an.

Tr A PRV S T

(26)

it




where

o,

i cos J;li t

IS S i =
By = T, sin Ja; t i=1,2...,n

a; = \[éi sin Ja; t

Using the definition for the controllability matrix as given in Eq. (22), th

expression for the transition matrix as given in Eqs. (26) and (27) and, in

addition, the following definition

Gyg=""Gyp

we obtain the following expression for WZ(O,T) ,

|
Wu: w
§

]
125 22

w

WZ(O,T) =

The four n x n symmetric blocks are described as follows:

-, - _
G118 GioPify G1nP1Pn
T 2
_ G,,B
Wy, = / 2272 dt
(o] \\\
~
. Gnan -
- L _
Gy1P Gyofyay “G1nf1%
T
- G, ,B,, .
W, of 2072 dt = Wy,

Ry )

(27)

(28)

(29)




22

O“'I-g

dt

Using the expression for the controllability matrix we obtain the main result,

Theorem 1: For terminal time, T, large enough ( 10 sec) the controllability matrix

given in Eq. (29) becomes diagonally dominant and can be approximated by

Proof: The diagonal elements of Wz(o,T) are given by

Wii(O,T)

sin 2T Ja

sin2T \/_ai

2 Ja;

(30)

n<i<2n

for T large enough the second term becomes negligible and hence we get Eq. (30).

The off-diagonal elements are a product of sine and cosine functions only without

the additive term of the terminal time as found for the diagonal terms. Therefore,

for T large enough the matrix W becomes diagonally dominant with terms given by

Eq. (30).

With this expression for the controllability matrix we can turn now toward the

numerical problem of solving for the actuator locations Eq. (7) or Eq. (24).
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4.3.5 Numerical Procedure

The optimal location of actuators will be established through the solution of

X 1/k
Jk = min [tr(MWz )]

The steps of the algorithm are as follows:(also see enclosed flow chart, Fig. 1):

Step 1: Read A, Mo’ n,m, k,e, T

Step 2: Find U, AA such that

AU=UA

Step 3: Construct T as in Eq. (12) and find M as in Eq. (25)
Step 4: Make an initial guess for the parameters vector 9.

Step 5: Find the matrix B from known analytical relationship with 4,
tables, etc.

Step 6: Find the diagonal terms of

G, = u'BB" (U H!
Step 7: Construct the diagonal of the controlletility matrix W_, via Eq. (30)
X 1/k

) to find an update to the parameters vectors 6.

Steg 8: min(tr MWZ

Step 9: If the update Afis small, i.e., ||agl|<e STOP; otherwise, GO TO
Step 5. '

Remark: In step 3 only the diagonal terms of M have to be found.
4.3.6 Conclusion

The problem of actuator location for oscillatory system was considered. It was

shown that through the controllability matrix one can arrive at an actuator location

that is derived via the solution of the minimum energy control.

A similar approach can be used for the solution of the sensor location problem.
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READ A, M_,n, m, k, ¢, T
1
FIND U, A

A

AU = UAA

CONSTRUCT:
T, M

CONSTRUCT:
W, = W_(6)

z
-k
MIN (trMW )
2] Z

1

| 6=10+0a0 |

o8l |~

1/k

Fig. 1

4-57

Chme e e A YR O RSN APPSR TP A A N g




Section 5
APPLICATIONS TO DARPA STRAWMEN

5.1 THE CHARLES STARK DRAPER LABORATORY (CSDL) EXAMPLE
5.1.1 The CSDL Example Structural Model

The model illustrated in Fig. 1 is a conceptual structure recently designed by

Dr. Keto Soosaar and R. Strunce of the Charles Stark Draper Laboratory (CSDL).
The CSDL example consists of a (regular) tetrahedral truss supported on a
ground by three right-angled bipods. The bipod legs are pinned to ground, and
all other nodes are clamped. The individual truss members, including the bipods,
have elastic flexibility in their axial directions only, i.e., they can undergo com-
pression and elongation but no lateral bending. The four vertices of the tetra-
hedron each have three degrees of freedom, so that the entire model can be

completely represented by 12 structural modes.

The structural model is described in consistent, but unspecified units. The
edges of the (regular) tetrahedron are each 10 units long, and the bipod legs

are each 2./2 units long. (The "horizontal" base of the tetrahedron is therefore
situated 2 units above ground, i.e., above the x,y plane.) The top vertex is
defined as LOS (line-of-sight), and the six bipod legs are defined to act as
"member dampers," i.e., active axial spring/dashpots, each equipped with a

rate and position sensor. The three bipods represent therefore 6 colocated
actuator/sensor pairs, each pair being identified with a bipod leg. Sensor meas-
urements and actuator forces are thus confined to the axial elongation/compression

motions and rates of the bipod legs.

The stiffness properties of the structure are non-uniform, and are given in terms
of the truss members' cross-sectional areas. Two sets of values are given, one
for a "nominal” model, and the other for a "perturbed" model, as follows: (see

Fig. 1 for truss element numbers)
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Truss Element No. Area (Nominal Model) Area (Perturbed Model)

1 100 150
2 100 150
3 100 150
4 100 150
5 100 150
6 100 150
7 1000 1200
8 1000 1200
9 1000 1200
10 1000 1200
11 100 150
12 100 150

where, for both models, Young's modulus is E = 1.0. Finally, there are
lumped masses of 2 units at each vertex of the tetrahedron for the nominal model.
For the perturbed model, the lumped mass at the LOS vertex (see Fig. 1) is
changed to 4 units, and the others remain the same.

The structural frequencies (open-loop eigenvalues) of the two 12-mode models
can be obtained from a finite-element structural program (e.g., NASTRAN, SPAR,

ASTRO, etc.) and are as follows:

Frequency (Hz)

Model No. Nominal Model Perturbed Model
1 0.213588 0.186316
2 0.264949 0.233445
3 0.460071 0.471833
4 0.470687 0.566233
5 0.540840 0.612490
6 0.669164 0.819555
7 0.741991 0.903348
8 0.756823 0.908903
9 1.35909 1.42279

10 1.47227 1.63987
11 1.63687 1.73851
12 2.05391 2.22286




5.1.2 The CSDL Example Control Problem

As described in the previous subsection, there are two structural models: one
is the nominal model, and the other is the perturbed model (nominal model with
parameter variations). It is assumed that all 12 modes have 0.5 percent inherent
structural damping. By definition, modes 9, 10, 11, and 12 are to be treated

as unmodelled modes, so that they cannot be used in any controller design
process. However, they are to be used for the full-order evaluation model for

all designs.

The physical model to be used in the controller design process consists of the
first eight modes of the nominal model. The evaluation of the various controller
designs is then based on the full 12-mode models for both the nominal and per-
turbed structures. By "construction", good performance is obtained when
modes 1, 2, 4, and 5 are actively controlled so that they acquire at least 10 per-
cent damping. When that is achieved, the closed-loop response of the structure
to certain initial conditions is such that the x-LOS error (LOSX) and y-LOS
error (LOSY) (i.e., the x and y components of the LOS vertex) have magnitudes
less than 0.0004 and 0.00025 units of length, respectively, after 20 seconds.

The rationale for the statements above is based on the following simulation ex-
periment: 10 percent modal damping is assigned to modes 1, 2, 4, and 5, and
0.5 percent to the remaining modes of the 12-mode nominal model. The structure
is then subjected to an initial condition at t = -1 sec by giving a unit displace-
ment along the x-axis to the front base vertex of the tetrahedron (see Fig. 1).
The transient response is then simulated to t = 20 sec, and it is observed that

the LOS requirements are met.

To make the problem more challenging, a "snapshot" of the transient response is
taken at t = 0 sec, and values of the modal coordinates (displacement and velocity)

are recorded. These values are then modified by setting to zero the modal coor-
dinates corresponding to the unmodelled modes 9 through 12. The resulting
initial conditions to be used at t = 0 sec are then the following:

.



Mode No. Displacement (Q) Velocity (Q)

.0001 -
.0006
.0001
.0009
.0008
. 0001
.0002
. 0002
0.0

.003
.01
.03
.02
.02
.02
.003
.004
0

0

0

NOWOW=T®M U LW
O0.0QOOCQOOO
. .

[y

0.0
0.0

The CSDL example control problem consists then of two parts: (1) design an
"acceptable” controller using all 6 colocated sensors/actuators, and (2) design

an "acceptable" controller that works without using colocated sensors and ac-
tuators. (Thié is to be achieved by eliminating either a sensor or an actuator —
or both — from each bipod leg so that no colocated sensor/actuator pairs remain
in the system. Many combinations are obviously possible.) In both cases, the
controller design is "acceptable" if the LOS requirements are essentially met for
both the nominal and perturbed 12-mode models, with the controller design based
only on the first 8 (or fewer) modes. The primary objective of the CSDL example
is to provide a well-defined, non-trivial dynamical plant which serves as a common
"test-bed" to illustrate, compare, and evaluate various controller designs. In
that context, the exact verification of the LOS requirements. is only secondary,
and the given LOS specifications serve as approximate evaluation guidelines.

5.1.3 The CSDL Example: Centralized Low Authority Controller Design

This centralized controller design is based on the Low Authority Control Gain
Synthesis procedure previously described in Section 4.1. While sensors and
actuators are physically colocated, the feedback in this design is not colocated,
and hence (by definition) is called centralized. (Note: A decentralized low
authority controller, i.e., using colocated feedback, may of course also be con-
sidered. If, however, sensors are further assumed to measure rates only*

*Low Authority Control Theory is valid for full state-feedback. Restriction of this
design to rate-feedback only was assumed here in order to achieve the simplest
controller design leading to acceptable performance vis a vis the LOS requirements.
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the inherent nature of the CSDL example structure, together with a a priori fixed
selection of sensors and actuators, are such that the LOS performance require-
ments cannot be met. Indeed, synthesis of such a controller has shown that it is
limited to approximately 4 percent (maximum) damping in modes 1, 2, 4, and 5,
and hence not acceptable. This result is physically not surprising: indeed, in-
finite gains for such a controller would completely rigidify the bibods and the
base of the tetrahedron while leaving the elastic motions of the top (LOS) vertex
essentially unaffected. As will be shown in Section 5.1.4, a modification of the
CSDL control problem, whereby different sensor/actuator types and locations

can be used, leads to an acceptable decentralized, rate-feedback low authority

controller design.)

For the centralized LAC rate-feedback controller design, an upper triangular
form for the gain matrix C was used. Figure 2 gives the values of the gains

and shows the resulting damping ratios, for both nominal and perturbed models,
obtained by a full system eigenanalysis. The comparison between the LAC-theory
predicted and the actual closed-loop damping (for the nominal model) is shown in
Fig. 3, where the model weights Wn are also displayed. (Note: As in most
gain synthesis procedures, some trial-and-error iterations are required to deter-
mine acceptable gains. In this case, iterations were made on the values of the
Wn and of the desired damping ratios (2 En Wn )D = (d An )D = dn appearing
in Eq. (15) of Section 4.1. A key feature of the LAC theory is that its closed-
loop performance prediction formula, Eq. (9) of Section 4.1, provides a simple
and numericall{r fast method to evaluate the effect of these iterations prior to

final verification by full system eigenanalysis.)

Figures 4, 5, and 6 show the results of LOS transient response to the CSDL
initial conditions, including time-histories of LOSX, LOSY, physical motion of
LOS, and the actuator force levels developed in the bipod actuators. These
levels are only about 1-1/2 times higher than those obtained with the optimal

controller designs discussed in Section 5.1.5.
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5.1.4 The CSDL Example: Decentralized Low Authority Controller Design

This controller design is not restricted to the sensor/actuator pairs postulated in
the CSDL example control problem (Section 5.1.2). Instead, it is based on the

use of 5 sensor/actuator pairs, three of which are one "leg" of each bipod, shown
in Fig. 7 as F1 , F3 R F5 , and the remaining two are inertial proof-mass dampers,

designated as F7 , F8 , acting translationally along the x and y directions ,
respectively.

Figure 7 shows the nominal mod«l open-loop frequencies, the synthesized diagonal
gain matrix C, the LAC-predicted and the actual closed-loop damping ratios ob-
tained from full system eigenanalysis.

Figure 8 shows the actual damping ratios for both the nominal and perturbed
models, and the LOS transient response evaluations to the CSDL initial conditions,
also for both nominal and perturbed models. Since the latter were obtained by

"vector exponentjal” closed-form solution methods, LOSX, and LOSY are tabulated

directly for the time interval 19 sec <t < 25 sec. As can be seen, the LOS require-

ments are easily met at t = 20 sec.
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5.1.5 Generalized Collocated Control Design

The CSDL structure is described analytically by

where
A, = diag (1.8, 2.7, 8.36, 8.75, 11.5, 17.7, 2.17, 22.6, 72.9, 85.6, 106, 167)
(20023  -0.067  -0.439
-0.112 0.017 0.069
-0.077 0.271 0.046
0.189  -0.050  -0.249 ]
0.156  -0.049 0. 351
-0.289 0.289  -0.289
B = [|-0.-320 -0.369  -0.049
° 0. 365 0.299  -0.069 |
-0.229 0.250 0.231 ]
0.167 -0.150  -0.317 ¥
-0.145 0.146  -0.220 ;
0.025 -0.013 0'114J §
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The matrix Q o to be used in the design procedure outlined above will be taken

as a diagonal 12 x 12 matrix.

In the following iterations the diagonal of the matrix Qo will be selected. Using
the design procedure outlined in 4.2, Q and K will be found and, also, the

resulting closed-loop eigenvalue system.

High Authority Control Design

In the high authority controller selection the following weighting matrices are

selected

AGW) A

BGW) = Diag [by(W? + WD, b,w? + wh. ...

2 2
bG(w + WG)]

A(jW) does not depend on the frequency. B(jW) can be factered as
B(jW) = Diag (-jW + Wl, -jW + w2 cees W + W6) b¢
Diag (bl, b2 cens b6) x Diag (W + Wy, iw + W2 cees JW + W6)

If we define
Ui + wi Ui = Zi
then

T b

U* B(jW)u = Z° Diag (bl’ b, ... Z

5-16
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The control design problem is then described by the following set of equations.

X = F + G, = 16 Equations (8 modes)
\’xi = W, U, + Z;, ——= 16 Equations
Cost Functional
xAx + zTRZ

R = Diag (b;, b, ...by)

Control Law

FX + Gu + K (y - HX)

M>e
H

The following weighting functions were used with six actuators and six sensors

(collocated system). i i
State = i . *
Weighting Diag (0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.5, 0.5, 1.0, 1.0, 6* 0.001) !

Modes in which 10% damping
Ratio is desired

Control _ .
Weighting = Diag (0.01, 0,01, 0.01, 0.01, 0.01, 0.01)

All actuators are
equally important

Process
Noise

n

Diag (10, 10, 4, 4, 4, 0.4, 0.4, 0.0)

5-17
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Meas
Noise

Unity Matrix

Shaping
Frequencies

(3.1, 3.2, 3.3, 3.4, 3.5, 3.6) Rad/Sec

Closed loop damping ratio for the nominal control design and evaluation modes are
shown in Table 1 . Note the excellent behavior of high frequency modes not
considered in control design model. Table 2 shows results on the perturbed
model.

The control design procedure was repeated with the first three actuators and the
last three sensors (noncolocated system). The following parameters were used in
the design stage.

State - * * * %

Weighting (4*%1.0, 2%0.1, 4*1.0, 6*0.001)
Modes in which 10% damping
Ratio is desired

Control - * .

Weighting = (3%0.01) First three actuators are used for control

Process = (30, 30, 8, 8, 8, 0.8, 0.8, 0.0)

Noise

Meas _ . .

Noise = Unity Matrix

Shaping _

Frequencies (3.1, 3.2, 3.3) Rad/Sec

Table 3 compares the control design and evaluation models. Note again that the

modes not considered in control design are not significantly effected. When the

controller is used on the perturbed modes, satisfactory results are predicted
(see Table 4).

R
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5.1.6 Modal Cost Analysis (MCA) Results for the CSDL Example

Here we ask for additional insight into the MCA (see Ref 1, Sec 4.2.4) methods
by solving a standard optimal control problem with two different reduced models:
Model 53 is the 16th order model obtained by keeping the 8 lowest frequency
modes; Model S 4 is the 16th order model obtained by keeping the 8 modes with
the largest open loop modal cost. The nominal evaluation model is of order 24

and has the form

x = Ax + Cu + w, Elww?| = [xxT (0)
y = Px line of sight errors at tip (1)
z = Mx displacement and rate measurements in legs

The quadratic cost for this problem is defined by

T ) 2 2 .2
y'Qy = Mg + Mg + 100 <n7+n8)

e

LOS Error Adds Damping
to LOS
Regulation

The open loop modal costs Vc are defined by
i

. 12
lim y"Qy = Z Vc
=1

Vv =
t =0 i i
T
v - 0, Q0
% ared

where 6, are modal amplitudes and w, are modal frequencies.

Figure 1 shows the resulting modal costs for each mode. On the vertical scale

the frequencies of the modes are shown. Thus, the eight modes contained in the

design model S3 lie below the dashed horizontal line. The eight modes contained
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in the design model S 1 lie to the right of the vertical dashed line. The modes in
common to both models are 1, 2, 4, 5, 7. 8. Modal cost analysis indicates modes
3 and 6 are least significant among all modes, while modes 3 and 6 rank among
the 8 most significant in the "dominant mode" model S4. Table 1 shows that the
damping added to each optimal design has approximately the same magnitude but
is distributed differently among the modes. The MCA design selected modes 9
and 11 for additional damping, while the dominant mode design (with model S3)
attempted to add damping to modes 3 and 6. The control effort was approxi-
mately the same for both designs but the line of sight regulation was written
better by 37 percent with the MCA design.

The results using MCA should be even better than the above results by using
closed-loop modal cost analysis. Without such additional results, however, we
can at least say that open-loop MCA has potential in the reduction of large models
(obtained from finite element programs) to lower order models, before any

closed-loop analysis is done.

Table 1
CSDL EXAMPLE

Dominant Mode Model MCA
Use Optimal Control for 53 Use Optimal Control for S 4
to Drive SI: . to Drive Sl:
Mode Damping Mode Damping
1 0.29 1 0.29
2 0.34 2 0.35
3 0.03 3 0.005
4 0.08. 4 0.08
5 0.11 5 0.11
6 0.005 6 0.005
7 0.08 7 0.08
8 0.05 8 0.05
9 0.005 9 0.05
10 0.005 10 0.005
11 0.005 11 0.04
12 0.005 12 0.005
vV =E yTQy +uTu
LOS Regulation: 8.84 6.46

Control Effort: 6.17 6.34

preyames




5.2 LBET SYSTEM
5.2.1 System Description

The LBET strawman system provides an ideal test platform for active vibration
suppression. Although on-board disturbances (state noise) do not excessively
perturb the attitude control system nor do structural modes fall within the atti-
tude control bandwidth, suppression of vibration due to on-board state noise
sources is essential to meet mission requirements. The system is diagramed in
Fig. 1 along with candidate locations for proof-mass actuator systems used to
increase closed-loop damping of structural modes. The selection of structural
materials and design rationale are fully discussed in the LMSC ADOPT TASK E
final report and will not be addressed here. Some typical low-frequency modes

from the finite-element model are illustrated in Fig. 2.

For worst case values, system pointing and wave front errors for the unaug-
mented system are approximately two orders-of-magnitude greater than specifi-
cation requirements. Furthermore, these values assume 1 percent structural
damping in the first 20 modes. This assumption is generally untenable for Gr-Ep
structural designs where experimental evidence indicates that 0.3 percent is

more realistic. *
5.2.2 SAS Performance

The principal modal interaction with pointing performance is due to the tracker
attachment to the spacecraft. Several locations for proof-mass damping actuators
were tried, as shown in the system sketch, with the most successful being loca-
tion 1 at the tracker. Participation of other modes in performance was down by
at least a factor of 10 and increased damping in these modes did not significantly

*Measurement of modal structural damping is a controversial issue which will be
addressed in the LMSC ACOSS phase 1A study.
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enhance performance. The open- and closed-loop damping performance obtained
with a single collocated (decentralized) system is shown by the computer gen-
erated design in Table 1. Open-loop damping was assumed to be 0.5 percent and
the significant modes are enclosed by the boxes. The synthesis procedure was
asked to produce 10 percent in the two critical modes and 9 percent and 7.7 per-
cent were produced as shown.

The principal advantages which acerue from this mechanization are relaxed sys-
tem requirements and decreased sensitivity to knowledge of plant dynamics and
disturbance sources.

Specifically, requirements to disable on-board noise sources, and to maintain high
bandwidth figure control and steering mirrors may be eased considerably.
Assumptions about passive structural damping no longer become so significant,
tolerance to non-isolatable disturbances is high, and transient settling due to

large, on-board disturbances becomes acceptable.
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5.3 MM-WAVE SYSTEM
5.3.1 System Description

The MM-wave strawman system is a 30 m by 60 m curved platform originally pro-
posed by CSDL. The configuration and moment of inertia properties are shown
in Fig. 1. For convenience in modeling, the reflector back structure was modi-
fied to include the NASA-LRC octetruss configuration using Gr-Ep columns man-
ufactured at LMSC. The new properties on the right of the figure represent the
octetruss values. As shown in the accompanying Table 1, the octetruss reduces

both back structure and feed support weight.
5.3.2 SAS Performance

To show SAS feasibility, the LASC synthesis procedure (see Section 4) was used
to select feedback gains for actuators located by visually observing modal de-
flections to assess controllability. A two-axis gyro damper and a single proof-
mass damper were installed on the reflector and a three-axis gyro damper was
used to control the feed tower. These actuator locations are shown in Fig. 2
along with frequency and damping characteristics of the closed-loop system.

The controls are all of the colocated decentralized low-authority type without
consideration for bandwidth constraints. Moderate amounts of damping are in-
troduced up to 20 Hz with the principal effects occurring in the low frequency
modes below 1.6 Hz. In Figs. 3a and 3b the feed decenter transfer functions are
compared for open- and closed-loop and it may be observed that peak responses

are reduced by a factor of approximately 6 to 1.
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5.4 HALO/WALRUS SYSTEM

5.4.1 System Description

The HALO (High Altitude Large Optics) System examined for stability augmenta-
tion was the HUGHES WALRUS (Wide-Angle Large Reflecting Unobscured System).
The optical characteristics and required element tolerances are described in vari-
ous HALO documents contained in the Riverside Rescarch Library and in the
LMSC proposal for An Actively Controlled Structure Program. Vol 1, 17 April 78.
LMSC-L034034(S). The discussions here will be restricted to the feasibility and
potential performance of active stability augmentation using only low-authority
control. The basic configuration, shown in Fig. 1, uses an LMSC designed
structure in lieu of the cable support system used on the original Hughes Config-
uration. The attitude control system, cryo-coolers, etc., are housed in the
so-called "dirty box" which is not actively isolated but rather attached directly
to the optical structure as shown. The mirrors are supported by pyramid
structures which were weight optimized as shown in Fig. 2. The overall mass

properties are repreduced in Table 1.
5.4.2 SAS Performance

A coarse finite-element model, illustrated in Fig. 3, was used to examine basic

Shioh i

feasibility. Decentralized 1ow—a1ithority control (with no bandwidth constraints)
of the fundamental low-frequency structural modes was attempted while higher
frequency "mirror modes" were left uncontrolled. For a practical design, a more
refined model is necessary and actuator/sensor bandwidth limitations would have
to be included to insure that feedback compensation and passive low-authority
actuator damping were appropriately selected. The actuator locations. charac-
teristics and closed-loop damping performance are given in Fig. 4. The modes
between 1 Hz and 16 Hz all exhibit damping greater than 10% except for a few un-
controlled modes; this is accomplished by 8 proof-mass systems and 1 (rotational) .
gyro damper. Individual mirror modes. all above 24 Hz. exhibited less than 1% :

damping. as expected, since these modes were uncontrollable by the actuators

5-38




WO oty cin o

"DIRTY BOX"
1
o

/ .

X SOLAR PANELS

' \Z-—-—-——— FOCAL PLANE ASSEMBLY

~ SECONDARY

SUN SHADE

ural Model (General View)

Fig. 2 Halo/Walrus Struct

5-39

P
L e o TN




R o

uoneztwndo ranionaly puuras g o -8t :
(W) LHOI3H QIWWVYAd 4O (W) LHOI3H
0ZL 00L 08 09 0¥ 02 < 02l o0t 08 09 0¥ 02
S A - LTS O P S
g = JIW
— ) ,/./Lo_ Q QIWVIAd AYVWId 01 =
AIVUNODIS "7 = T |klh||+| |||||||| =10z R
17 TT vonuw avwiad %021 5eas 1% 2 =
! —0e = > o W | /-oe 3 &
! N OSE JOUAIW - T 71 0o
m_>~_<§~a Jor 33 >~_<=m_%§_2w  Hor <
A¥VIL¥L I doc S AYVANODIS 788 e os *
_!..uL_ i z ~——— _ - 47
109 < N vararmaky —09

_ AYVANODIS




‘ [ s )

SINIOT
JO4 ADNIONIINOD
2,02 SIANTONI

(*788°1)  "stL’y (00c‘vl) o¥z‘le|{ ('980°'9l) °88g’GE PNLONYLS WVI0L 1
('sz0’1)  "¥Sc‘C (008't) 095’0l | (°SZ8‘G)  "¥l8°CL PNLDONYLS dNADVE z
(ro0g ) 099 (o ) 0 ("o0e ) 099 (IWWYAD AYVW R £
(922 ) Lép (o ) 0 ("9zz ) L6 AIWVIAL AYVANODIS ¥
(gee Y L8l ) ) 0 (‘see )Y LeL "HIWVY Ad AdVIL43L S
. ) 0 (ool’g) 028’9 (ool‘g) 0z8’'9 YONYIW AYVYW I¥d 9
¢ ) 0 ("009't)  "0¢s‘s ("009°1)  "02S’E | JOINIW AYVANODIS L
ol ) 0 (roog’e) 09 ’Z (‘00¢'g) 09t JOUYIW A¥VILYIL 8
o e ? e emen (XIT3IHS % SAVEYY)
. ) {
‘ ) ¢ oov’ L) 080°€ ('00% 1) 080°‘¢ SIOATL IVIOS 6
ALOLYLS - _ CUNLDNYIS NON = 101 LS | uTew;
(o) q - (SS V) HHi3e NOIMILY v

1

RILSLIA

(SASSVIY) SILHODTM SAWIVM/ O'IVH




(LARGE VC)

X

TERTIARY MIRROR

305

5-42

MIRROR

jy=

RIMARY MIRROR

(NOT DRAWN TO SCALE)

ACTIVE NODES

[J MIRROR & PYRAMID CORNER

(VW)
9]
S =
5z
(Ve)

~ O3
Qs =
2 g
Zgu.
C 04

105

Fig. 3 Halo Model



selected. Reversal of high q structural resonances in this case eases significantly

any requirements to isolate vibration sources on-board the spacecraft and permits
greater freedom in synthesis of the attitude control system.

5-43

[ e




20:EETO°T
TO+ET0S6
10409152
TQ+9ELE L
10+0L90°L
T04+9289°S
10+2€S8°2
10+SHBT°T
104+1980°1
10+8+50° T
QO+EETT L
00+9b8h° L
Q0+S8OE*L
00+9805°2
AUYNIOVWI

Jas/quaw 333 Wn O
: ZRANVATARD

J3g)wwa 333 N O
1 SN - 30034

SNMD

3JUBWIOJIDJ PUB SI0}BNIDY OSV'T - (SIPOW 0F) SNIemM/omeH b -Sig

0a+BL° T~
To+L6lLe S~
0010159 °2~
2V4+9€98° T~
TO+T¥rSS° 1~
CO4EGO6E~
TO-£2uT *6-
00+2E5€E" ¥~
00+SceLy * S~
0044 S5EE"* T~
00++508° 2~
TO-6LTL° 6~
19-S8E0° 8-
c20-T1950° -
Lyvd 193y

AZINVAOARD SA\py-Y

SAH3NYq \
. ’ A

SSUYY-300234 ($vev-¢)

ABIMD
ST 00 tmong

STAUYY INQAXAS )
1S53 MO0 @ 310y

TO-ETIEL"S
20-998E "
TO0-232LL°E
TO0-098E"°S
20-vEV°9
10-9095°2
00+42960° T
10-6962°2
10-1660°p
T0-8981°L
190-S+9S°E
00+0620° T
oo+orie’y
TOotpSOb 2
*LSHOO 3UWIL

9T7LT0°
cGTEEZ2®
b 9PSE€0°
99240
1gevie’
205890°
TS6T€0°
286vvE"”°
gsieie’

T€952°T ° -

06899¢€"°
65.82t°
82EGOT*
LI9T910°
ONIdWYd

TO+OCT9" T
1O+6555° T
10+8961°F
TO+GELT T
T0491ST°1
QO+EELO°6
Q0+OriS*
00+9800°2
00+9TLL°T
00+1263°1
Q0+0LT2° T
0+2102°1
00+20.T° T
10-0E66°E
AONINO 3N

(CRU RO RG RGO G UGGV R
A
[8)]

dNI Llood

XXX W3LSAS dO001-03S0710 3HL dJO SLOOM XXX

SJd3danNNa

SSUN - 370Ad (SYY-])

SADANTVA SSUW -3002d (S1AV-1)

5~44




5.5 TILTING TELESCOPE SYSTEM (ADOPT-12)

The structural description of the system considered in this section is given in
Fig. 1. The modes of this system are shown in Fig. 2. The model used in the
control design has 26 states, 13 controls, and 26 measurements; these are de-

tailed as follows:

26 State Model
e 2 rigid body modes
e 11 structural modes
13 Controls
e 12 surface controllers

() 3 back body torquer

26 Measurements
e 12 surface position 96 independent)
e 12 surface velocity (6 independent)
e 1 relative angle
] 1 average orientation angle

1 Disturbance Source

e Lateral force on back body

The control design for this system was concerned with the following problems:

1. Reduced-order model derivation
2. Comparison of LQG and frequency shaped cost functional design method

3. Filter design

In the derivation of the reduced-order model desired states are retained. In
addtion the reduced order model has the same poles as the high order model. Due
to symmetry, duplicate sensors/actuators can be eliminated in the control design
based on the reduced model. Details of the reduction process are shown in Fig. 3.

The effect of the states retained in the reduced model on the zero location is shown

in Fig. 4.
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The next stage in the design was the comparison between frequency shaped cost
functionals and the standard LQG design method. The basis of comparison was

taken as the damping ratios of various modes. The results are given in Figs. 5
through 8.

An important issue in the application of frequency shaped cost functionals is the
choice of these functionals. The choice must be adapted to the particular situation

at hand.

As mentioned before, a problem associated with large space structures is that of
truncated modes. An approach toward dealing with this problem is offered through
the application of frequency shaped cost functionals. The weighting on the control
is increased at high frequency to account for the model invalidity in that regim,

see Fig. 9, leaving the state weighting constant the effect of control weighting can
be observed. In Fig. 10 the change in damping raio as a function of control weight-

ing is depicted.

The last topic considered for this structure was that of filter design. Filter must
be designed for good transient as well as rms response. If only rms response is

considered poor measurement responses may result (fast poles).

Additional requirements are:

e Very little change in the filter closed-loop poles based on original power
spectral density of the noise
Noise matrix scaled to improve system behavior

Requires reduction of compensator for better design
Figures 11 and 12 illustrate these points.

Figure 13 shows the rms response in steady state. As the control weighting de-
creases (a) the damping ratio increases, (b) the rms furface deflection improves
(i.e., becomes smaller), (c) the difference between low order and high order

model increases, and (d) more actuator power is required. Note that this figure

A b S SRIRNALE et o B




v

§ does not include effects of actuator sensor noise. Those two effects could sig-
nificantly degrade performance. Control force requirements are shown in Figs.
14 and 15. It can be observed that with decreased control weighting associated

with increased damping ratio, the actuator requirements are more severe.
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Section 6
EXPERIMENTAL RESULTS

The experimental results presented in this section were created under LMSC
IRAD funding in general support of this area of research and are included to

clarify the applicability of the theoretical work described in earlier sections.
6.1 PROOF-MASS DAMPED BEAM (MINIBEAM)*

This experimental brass-board was developed under the Lockheed Independent
Research Program to illustrate the principle of an inertial translational proof-
mass damper for structural vibrations. While the intended application is generally
for low authority control (i.e., 10 percent to 20 percent damping), the scaling of
this particular experiment (which uses off-the-shelf hardware components de-
signed for other purposes) was such that over 50 percent damping was obtained.

v

6.1.1 Experimental Set-Up

A 40-in. long magnesium bar is clamped on a laboratory table (Fig. 1) allowing
essentially only horizontal cantilevered structural oscillations with the first mode
around 4.5 Hz. A 2-1b Ling shaker unit is mounted at the free end of the beam
in a pivoted plexiglass cradle supporting the shaker caging, while the shaker
stem is solidly attached to the beam. The cradle thus allows free, small horizon-
tal motions of t.he shaker, but constrains its vertical motions which would other-
wise produce excessive bending moments on its stem. As designed, this system
is intended to represent an idealized one-dimensional proof-mass damper in the

horizontal plane.

To implement a rate sensing device, an optical method is used. A laser beam

(emitted from a helium-neon laser source at the root of the magnesium bar) is

*This experiment is shown and described on the DARPA/ACOSS videotape. Since
its purpose is only to demonstrate a physical principle, no quantitative results
will be given.
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folded (reflected) several times by a system of mirrors, as shown in Fig. 2, in
order to produce an oscillating spot corresponding to the beam's tip deflections.
The spot is picked up by a linear detector, and via suitable electronic compensa-
tion, produces a tip-deflection rate signal used as feedback to drive the shaker

with proper phase and amplitude.
6.1.2 Analytical Model and Actuator Dynamics
Let m be the mass of the shaker unit ("proof-mass damper") and let x, X

respectively denote the inertial displacements of the shaker and of the beam tip,

as shown in Fig. 2.

Fig. 2 Notation for Proof-Mass Dynamics

Let f e denote the electromagnetic force applied to the shaker, f a the actual
force applied to the beam, and k the (weak) spring constant inherent to the
caging of the shaker stem. Since fe is proportional to the beam-tip rate, the

equations of motion for the system are

mx f = k(X -x)

1]

e
fe = —fe + k (x - X) (1)
f = DX




In Laplace transformed variables we have then

(ms® +k) x = (Ds+k) X

and hence

D - ms
x-X = sX — (2)
ms- +k

Substituting (2) into the middle equation of (1) yields, after some simple algebra,
two equivalent forms for the force fa applied to the beam tip:

k (1 - ms/D)
f = -DsX |[1-——mmm+—ro 3
a k + ms2
9 ms/k - m/D
fa = -Ds“X — €))
1+ms/k

From these two expressions, it can be seen that:

1/2
» £y

1) for S > (k/m) ~-DsX

2) for S << (k/m)l/2

, £, ~msX

The above shows the characteristic property of proof-mass dampers (such as the
Ling shaker) having a weak spring caging restraint. For sufficiently large fre-
quencies, their behavior approximates that of an idealized inertial damper,
whereas for sufficiently low frequencies, their effect is essentially to mimic the

presence of an added mass m attached to the structure (beam).
Finally, the colocated loop-closure is produced by using the optical position sen-

sor with a classical rate circuit compensation analogous to the one used for the

maxibeam experiment described in the next section, !

6-4

Ce e - o




6.2 GYRODAMPED BEAM (MAXIBEAM)*

This experimental brass-board was developed under the Lockheed Independent
Program to illustrate the principle of an inertial rotational gyro-damper for
structural vibrations. The major hardware component for this experiment is a
pair of identical single-gimbal control moment gyros (CMGs). CMGs are not off-
the-shelf pieces of hardware and are generally unique, "few-of-a-kind" develop-
mental items, as shown in Table 1, which lists CMGs built by the Bendix
Corporation. The two CMGs used in this experimental brass-board are model
no. MA-5-100-1, and are part of a set of 5 identical units built for LMSC in 1973.
(The shared developmental cost at the time was $60,000 per unit.)

While gyrodampers would normally be sized and fabricated for specific spacecraft
structural stabilization systems, this experimental brass-board had to be de-
signed "in reverse". That is, given the two available Bendix CMGs, weighing
approximately 40 1b each, a massive flexible support structure had to be de-
signed to match the performance characteristics of these CMGs. Approximately

10 to 20 percent damping was obtained with this experiment.
6.2.1 Experimental Set-Up

A massive aluminum I-beam, weighing almost 400 1b, with 16 in. web and 6 in.
flanges, 25 feet long, is cantilevered on a special 1000 Ib support structure so
that its "soft-gxis" deflections are essentially constrained to occur in the hori-
zontal plane, with the first mode around 1 Hz. At the free end of the beam, the
two MA-5-100-1 Bendix CMGs are symmetrically mounted (Fig. 3) in a scissoring
V-CMG pair, with gimbal axes parallel to the long axis of the beam. In the caged
position (i.e., zero gimbal angles), the CMG angular momenta are equal and op-
posite in the horizontal plane, and hence cancel (zero stored momentum). When

the beam oscillates horizontally, the V-CMG pair scissors so that the resultant

*This experiment is shown and described on the DARPA/ACOSS videotape. Since
its purpose is only to demonstrate a physical principle, no quantitative results

will be given.
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momentum (and hence the output torque) always lies along the vertical axis nor-
mal to the horizontal plane of beam vibrations. A summary of the maxibeam ex-

perimental data is given in Table 2.

To implement a rate-sensing device, an optical system is used. A laser beam,
emitted at the root of the beam, is folded (reflected) once by a mirror colocated
with the CMGs, and produces an oscillating spot picked up by a linear detector
colocated with the laser source. The signal is then processed electronically to
produce beam-tip rotational rates, and with suitable compensation, is used as
(rotational) rate-feedback to drive the CMG gimbal torquer motors with proper
phase and amplitude. (The CMG rotors have a constant 8000 rpm spin, and at
20 rad/sec gimbal rate, the output torque of each CMG is about 100 ft-1b; see
Table 1).

Table 2
MAXIBEAM EXPERIMENT DATA

Beam
M = 154.6 kg (effective cantilevered mass)
L = 6.96 m
1 = 4.37510 6 m?
E= 17.2110pa
Actuators
Total mass = 34.5 kg
= 20 rad/sec
Max gimbal sec = 1650 rad/sec?
Max output torque = 120 nm

System Modes (cantilever beam with tip mass)

Mode Shape at Tip

Mode No. Frequency (rotation) rad kg‘l /2
1 1.000 0.0244
2 7.064 -0.0884
3 20.86 0.1425
4 42.22 -0.1966

-1
Control gain for 10% damping in first mode: Da = 2105 nm/rad-s
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6.2.2 Analytical Model and Actuator Dynamics ;

Consider a small rigid portion B of the oscillating maxibeam, with an orthonormal
frame }é‘l, ey 33: attached to it as shown in Fig. 4. For simplicity of illus- i
trating the basic principles involved, we assume that B can only undergo planar

oscillatory rotations about '61, and that '51 maintains an inertially fixed orienta-

1 tion. Then the inertial angular velocity_ﬁB of B (i.e. , of the frame :'él, 'e'2, é'3")

is E

QB = e (1n !

Aabars s o

where 6 is the angle of rotation of B about é'l. Consider first gyro no. 1, with

constant speed rotor having angular momentum -1;1, gimbaled on 33, the gimbal

angle o being zero when h, is parallel to -¢,. The total angular momentum H
1 2

the gyro, expressed in the moving frame 31, €,, €5 is then given by :

H = h(sinoel—cosaez) + Jae3 (2)

where h = |h,| = const, and J is the gyro's inertia about the gimbal axis

1
3

v

(direction)

[

Let Fg be the torque applied externally to the gyro (e.g., by the gimbal

torquer motor). The equation of (gimbal) motion of the gyro is then

|z,

= Tg, (3)

where d( )/dt denotes time differentiation w.r.t inertial space. If (") denotes
) - ‘

time differentiation in the moving frame :é'l, €9 €4 » and if we assume small

motion linearized dynamics, then from (1), (2), and (3) we obtain:

d -~ - - _ . > - - = -
It h (cre1 e2) + Joe3 = h (<7e1+<7$2Bxe1 QBxez)
+ Jae3 + JaQB X eg (4)
h (68, - 68,) + JFe, = T
1 3 3 g

6-9
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CMGs GIMBAL AXIS e,

Fig. 4 Notation for CMG Dynamics

Assuming now that Tg = T‘gé'3 is an applied gimbal torque, projection of the
last vector equation (4) along 53 results in
J3 = ho + T 5
g &)

which represents the actuator (linearized) dynamics for each gyro. If, further-

more, Tg = - kca - kg g
stants, Eq. (5) represents a passive dissipative system driven by the input 8(t).

g, where kc >0, k_>0 are spring and dashpot con-
This passive gyro system will therefore absorb beam-rotational energy by oppos-
ing the § motion. However, the transmission of this energy is determined by
the magnitude of h/J, which, in most practical cases of oscillating beams or
structures, is too small for effective damping.

When two identical gyros are used such that zero gimbal angles correspond to

gyro momenta alignments of ﬁl paralle} to —52, HZ parallel to 52, then the

6-10
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counter-rotation of the rotors cancels the internally stored momentum for o = 0.

In addition, because of symmetry, the -induced gyro gimbal motions result in

the classical "V-~scissor" pairing of the momenta -1;1 and -ﬁZ’ i.e., the resultant
total gyro momentum (w.r.t the moving frame :;1, -e.z, 33:) always remains
aligned with the tel beam axis. This allows utilization of increased gyro gimbal
travel. This travel is limited in practice due to the nonlinear relation between

gyro momentum and gimbal angle, i.e.,

(hl + h2 . e1)= 2h sino (6)
where h = I-ﬁll = |-};2| . Finally, the output torque -'fB applied to the beam
by the gyros is:

- - - - e
TB = -(hl + h2) Teqey = —thosm‘e1
.- 7
= —Zhoe1

6.2.3 Control Equations for Active Augmentation of Passive Gyrodamper

The inertial absorption of the f-rotational energy by the passive gyrodamper is
limited in practice by the magnitude of h/J. To increase this energy dissipa-
tion, an angular rate sensor is added to the system to estimate the velocity
which is fed back to the gyro's gimbal motor with the proper gain so that the
colocated sensor /actuator pair will mimic a purely passive device. As is well
known, this pas'sive nature alone guarantees structural stability, i.e., this
(idealized) device cannot excite the structure, but the structure can excite it.

Such an actively augmented passive damper can be caricatured as a passive de-

vice with a "hearing aid" to magnify the 9 signal, and in this sense, is quite :
distinct from a purely active device which does not necessarily require either a l

colocated sensor or a rate feedback. ]

The maxibeam brass-board is an implementation of this concept for a system of
two identical, coaxially gimbaled gyros (so-called V-gyros) as shown in Fig. 1.

6-11
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Equation (5) remains valid for each gyro, but the gimbal torque Tg is no

longer realized by passive springs and dashpots, but generated electronically
by gimbal motors and will include a feedback team proportional to the sensor
output 9. The control equations of each gyrodamper are now described by:

D

Control Equation: ¢, = ’2'h'é (8)
T =Xk_(6,-6) - kK o 9
CMG Rate-Servo g g€ ¢ ¢
and Caging Loops: - camin
rate-loop ging
loop
where D >0, kg >0, kC > 0 are constant gains, and o’ are, respectively,

the commanded and actual gimbal rates. Substituting Eqs. (8) and (9) into (5),
the gyrodynamics of each CMG are now given by:

J&¢ = ho + (ngIZh)B - kgo - kco (10)

The transfer function corresponding to Eq. (10) is given by (i2 =-1):

iK
g/e =
2 2 ) ’
wG - w + 1w1w
where
3
K = h+(ng/2h) 1J (11) J
Wy = kg/J

wé = kN 1

l, where w. = wé/ w,. 5

and the gyrodamper bandwidth is the interval [wo, w 0

1

6~12 ;
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1

Fig. 5 Gyrodamper Transfer Function

The colocated loop-closure is finally produced by using the optical position
sensor with a classical rate circuit compensation shown in Fig. 6. The compen-
sator generates a rate signal up to 7 Hz to 10 Hz and is then rolled off. Curves
a and b correspond to shifts in the second pole so that the relative damping of
the 1 Hz and 7 Hz bending modes may be adjusted. The 21 Hz mode is not

controlled.
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6.3 TOYSAT EXPERIMENTS

6.3.1 Introduction

The next three sections describe experiments performed in the Space Systems
Division's Modal Lab. The experiments were designed to test three of LMSC's
basic control theories; optimal slewing, Low Authority Control, and High Authority

or Modern Modal Control.

A photograph of the test specimen is shown in Fig. 1. The specimen consists
of a rigid block of aluminum in the middle, with a long flexible bar of aluminum
attached to each side. The central block is suspended from the ceiling by

thin wires. The control is provided by two Electroseis linear actuators which act

on the rigid central body. For these experiments, the linear actuators are com-
manded to give equal but opposite forces, resulting in a pure torque on the central
body. There are two sets of sensors installed. On both ends of the flexible bar
accelerometers provide information on the tip acceleration. Connected in parallel

with the Electroseis linear actuators are linear potentiometers which give the

amount of rotation of the central body. Small Ling shakers are also attached to

each end of the flexible bar, however they are not used for control purposes;

their only function is to provide a weight at the end of the flexible bar so as to

lower the frequencies of the natural modes. For each experiment the control

commands are g:anerated differently. They will be described separately in each

section.

An analytical model was developed in order to implement the control schemes.
The model was used to generate a modal model; a truncated version is shown in
Table 1. The values predicted by the analytical model were verified by
performing a sine sweep of the test speciment. Agreement between analytically
predicted and experimentally obtained frequencies was quite good. The biggest
difference in frequency was around 5 percent. The analytical model was then

adjusted to agree exactly with the experimental results.
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Table 1

SYSTEM MODAL EQUATIONS

6 0 1 0 0 0 0 0

6 0 0 o o 0 b 1/3
a a | 0 0 ) 1 0 0 a |, 0 .
at 4, 0 0 -w 0 0 0 a, Ul

(.12 0 0 0 02 1 c.12 0

d, 0 0 0 W, 0 a, Mo

is rigid body angle
are modal amplitudes

L o

are modal frequencies
is the total moment of inertia

2 & g

e

are the control influence coefficients

=

is the control torque

Values:
w1 = 2,62 Hz
w,= 9.4 Hz
2 2
J 135,05 1b-in-sec
771(0) 1.53
772(0) 0.78

i}

i}

6.3.2 Optimal Slew Maneuver

The Optimal Slew as presented here is an open loop torque command to cause a
rigid body angular displacement while leaving the first bending mode quiescent
at the end of the maneuver. In general, more than one mode can be controlled i

at the end of the maneuver, but in this case only the first mode is considered.
"Optimal” in the title is justified because the particular maneuvers shown here
minimize the control energy used for the maneuver as v!.ell as accomplishing the
desired objectives. Briefly, the control profile is a solution of the calculus of

variations problem shown in equation (1).
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te
min u2 dt (1)
u
o

subject to x(0) = Xo , x(tf ) =20

Here u is the control torque, and x is a state vector composed of the rigid
body angle, the first modal amplitude, and both of their rates of change. For

a more detailed description see "Optimal Feedback Maneuvering of Flexible Space-
craft” by John A. Breakwell, presented at the AIAA/AAS Astrodynamics Specialist

Conference, Provincetown, Massachusetts, June 1979.

For these experiments, the commands to the linear actuators were provided by a
PDP1145 digital computer. The desired profiles were approximated by small seg-
ments of constant output. Each command was divided into one hundred such
segments. The output from the computer was fed through a digital to analog
converter, and then smoothed by an eight pole butterworth filter set at 100 rad/sec

before being input to the actuators.

The effectiveness of this slewing technique is demonstrated in Figs. 2 and 3. All
slews are through 10 degrees. For comparison purposes, the responses to square
wave torque commands are also shown. The tip acceleration output is filtered to
show frequency content between 0.1 and 5 Hz. Both optimal slews show almost
no residuals of the tip accelerations at the end of the maneuvers. What residual
there is can be attributed to the 1 Hz symmetric mode, which was not controlled,
and only insignificantly excited.

6.3.3 Low Authority Control

This version of Low Authority Control takes the form of a collocated rate feedback.
The rate signal is obtained by differentiating the difference of the linear poten-
tiometers attached to the central body. The signal is then rolled off twice for
smoothing. Initially the roll off is set at 10.5 Hz, but a case is also described
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with the double roll-off at 18,9 Hz. The signal is then multiplied by some gain,
and input to the linear actuators. A block diagram of the system is shown in
Fig. 4. Rather than picking the gains through the use of an analytical model,
the testing capabilities of the Modal Lab were used. A sine sweep was performed
to obtain a Bode plot of the transfer function between the output (the smoothed
rate signal) and the input (the signal to the linear actuators). The Bode plot
is shown in Fig. 5. Classical techniques were then used to predict the highest
gain which would yield stability. The prediction was a gain of 10. Figures

6 and 7 show the result of the closed loop system acting on an excited TOYSAT.
The gains were varied from 0 to 20. Because of the rate-feedback nature of the
feedback loop, the angular displacement history exhibits some drift, however
the tip acceleration histories show significant damping. The resulting modal

dampings are shown in Table 2.

6.3.4 High Authority Control

The final TOYSAT experiment is a test of both Modern Modal Control and digital
control. Measurements of the tip accelerations and the central angular deflection
are processed by the PDP 1145 digital computer to provide estimates of the instan-
taneous modal amplitudes. These estimates are then multiplied by gains and fed
back to the linear actuators. In addition to the PDP 1145, analog to digital and
digital to analog converters are used to convert the measurement signals and the
control commands respectively. Before the measurements are converted to digital
signals, they are passed through a 100 Hz eight pole Butterworth filter which
acts as an anti-aliasing filter, Also, before the commands are fed to the linear

actuators, they are smoothed by a similar filter.

The formulation of the estimator and controller is shown in Figs. 8 and 9. The
method used for dealing with the acceleration measurements makes the filter sub-
optimal. The optimal, or Kalman formulation, is applicable only when measure-
ment and state disturbances are uncorrelated, which is not the case here. The
delay caused by the two Butterworth filters was quite significant, amounting to
four time steps. The usual way of dealing with this sort of delay
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Table 2

TOYSAT LOW AUTHORITY CONTROL EXPERIMENTAL RESULTS

Mcde Resonant Viscous Feedback
Description Frequency (Hz) Damping (%) Gain, K
fc =10,5 Hz
First 2.600 0.3 0
Asymmetric 2,707 8.3 10
2.714 18.7 20
Second 8.97 2.3 0
Symmetric 9.39 1.4 10
9.00 1.2 20
Second 9.37 1.6 0
Asymmetric 9.56 2.5 10
9.60 3.4 20

f =18.9 Hz
C

First 2.60 0.3 0
Symmetric ‘ 2.63 4.4 10
Second 8.97 2.3 0
Symmetric 8.99 2.8 10
Second 9.37 1.6 0
Asymmetric 9.52 2.7 10

requires augmenting the state vector. Speed limitations on the PDP prevent
this alternative. A simpler approach is used; it's described by Fig. 10.

The performance of this digital regulator is shown in Figs. 11, 12, and 13.
The TOYSAT was manually excited, then the controller was turned on. Most of o
the tip acceleration dies out within one second - much faster than with the Low ;
Authority controller. There is some drift apparent in the angular displacement.

This is probably caused by the poor DC response of the linear actuators.

Figures 14, 15, and 16 show the output of the estimator which was used to

generate the actuator commands.
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The preceding results were generated rather quickly. It is anticipated that
careful tuning of the gains could result in even better damping of the modal

disturbances.
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6.4 MICROVIBRATION SENSING

6.4.1 Introduction

A He-Ne laser Vibration Sensor has been developed which features a digital out-
put for computational convenience, and which complements conventional vibration
sensors (i.e. accelerometers) by sensing vibratory events at low frequencies from
DC to beyond 50 Hz. Vibration amplitude resolution of the sensor is 0.08 um;
maximum amplitude and frequency product is presently limited to 0.05 m°Hz for

2 MHz electronic bandwidth. For example, the maximum measurable vibration am-
plitude for a 25 Hz vibration is 2 mm. The time delay of the sensor output to the
actual vibration is less than 1 psec which is nearly perfect for measuring the dy-
namics of structures and vibration sensing for the dynamic damping of structures
(active control of structures). By electronically splitting the laser beam using a
Bragg cell it is possible to simultaneously sample and hence monitor a large num-
ber of points to which retroreflectors have been affixed. Although the laboratory
Vibration Sensor employed but two channels, it exhibited the basis for continu-

ously sensing more than 50 independent vibrating targets,

The Vibration Sensor employs a low power He-Ne laser and two Bragg cells, one

to provide a heterodyne offset frequency for use as a local oscillator, the other

for generating multiple beams for various targets. Optical path variations due to
the vibratory .motion of each target is measured by comparing zero-crossings of
the local oscillator signal with those of each target, identifiable by a specific Bragg
frequency. The various differential zero-crossings provide the basis for the digi-
tal output of the Vibration Sensor. Experimental results compare well with theo-

retical predictions.
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6.4.2 Theory

The Vibration Sensor conceptual layout diagram is illustrated in Fig. 1. The
first Bragg cell translates the laser output frequency from Yo to Yo + Vg * The
frequency translated beam is directed by the second Bragg cell to two target
retroreflectors which correspond to two driving frequencies “ and Vo
respectively. The laser beam incident upon the channel 1 target at range ¥1
has a frequency Vo + a + v 1 which is different from frequency Yo + v vz
for the laser beam on channel 2 target at range yz(t). The returning signals
Yo + Va + vj + 2?1/7\ and v, + vg
length) are being shifted in frequency, when passed through the second Bragg

vyt 2y/X (where A is the laser wave-

cell again, by v 1 and Vg » respectively. A photodiode detector is used to sense
the heterodyne beat between the optical local oscillator (LO) beam, which is de-
rived from the laser output directly, and the vibration sensing beams.

The electric field of the laser beam on the photo-detector from channel 1 and

channel 2 targets can be expressed as

Es - Esl +Es2
= E1 exp {i 27( Vo tvg t 21}1) t + 47ry1 (t)/)\]} o
E, exp {1 27y, ty, + 2V) t+ 4rmy, (t)/)\]}
The electric field of the optical LO can be expressed as
E; = Ef exp {1 27 uot} (2)

The resultant electric field on the photo detector is the sum of equations
(1) and (2) or
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Fig. 1 Vibration Sensor (2-Channel) Conceptual Layout Diagram
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mwv-vr‘«rroﬁ [

E = E_+E =E, exp {i[z (yy *+ v, + 2yt + 47ry1(t)/x]} "
+ E exp {1 2m( v toig 2u2)t + 41ry2 (t)/x]}

exp {1 2Ty t}

Optical power received by the photodetector is proportional to the product of

equation (3) and its complex conjugate or

_ 2 2 2 _
PaEE* = E1 + E2 + Eg© =

2E1 Eg (2:05 [27T( vg * 2v1) t + 47ry1 (t)/)\]
+2E2 Eﬂ cos [277( Vo + 2V2) t + 41ry2 (t)‘/k] (4)

+2E1 Ez cos [41r( v - v2) t + 47ry1 (t)/x - 47ry2 (t)/A]

Since Eﬂ >> El’ EZ’ equation (4) can be simplified to

P =P, + P, + P + P + P

1 2 I sl s2
where
P,, P, = DC component of signal power
P, = Optical LO power»Pl, P2
PSl = 2 P1 Pf’ cos [217( vy * 2 Vl) t + 4'rr'y1(t)/)\] (5)
PSZ = 2 P2 P! cos [217( vy * 2 u2) t + 4ny2 (t)/x] (6) 1
3
The AC component of photo current is
I, =1, + 1 {

s sl s2 (&)) C
% (Psl + P ‘

)
s2
-2—"9'[‘/91"1 cos [21r(ya + 20D T + 4y, (t)/A]

hv
+ VP, P cos [2:1'( b+ 2v)t + dry, (t)/A]
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Here we have used equation (6) and (7),

where

]

hy

The mean

quantum efficiency of the photo diode detector
charge of electron

laser photon energy

square noise current can be approximated as

- 2
2 2nq 4kTa
= Bl B R

electronic bandwidth
Boltzman's constant
equivalent temperature of preamplifier

resistance of detector load resistor

The power signal-to-noise ratio of the sensor is

for channel 1 target and

2
2 nq
(i) Va1 A5e) PiPy
N B
1 ) 2 4KT
I 2nq a
N B(FU Pz*‘n“)
L
2 .mz
s Ve o gy PR
N ~ —— 2 4kT
2 2nq a
'y B(hu Py *T—L>

for channel 2 target.

6-41

(8)

(9

(10)

vk n e A NN




P et L

Assume a 0.4 mW single frequency He-Ne laser is used to measure vibrations of

RV

50 targets, the signal-to-noise ratio of each channel can be calculated according

to the typical values

= 0.8

= 1.6 x 1012 cout
hy = 3.13 x 10712 jow
Py = 1074 watt )
P. = 5x 102 watt 3

L 6
B = 2x 10 Hz

k = 1.38 x 1023 j/ok
Ta = 5 96° (for an amplifier with 3 dB noise figure)
R. = 50 Ohms

Yields the result according to Equation (9)

~19
2<0.8x 1.6x}(1]9 ) x5x10_9x10_4
S _ 3.13 x 10
N/, T 38 _ . -4 23 =125
1 6 [2x 0.8x 2.56x 10 x 10 4x1.38x 10 x 5 96
2x 10 9 + 50
3.13 x 10

This signal-to-noise ratio is more than what is required by the dig:ital signal pro-
cessor to process the signal. For a constant signal-to-noise ratio, the maximum
number of channels can be measured by the sensor is proportional to the laser

output power.

The phase modulation expression in Equation (1) for channel 1 signal
exp {i [er(uo tug t 21/1) t + 411'y1 (t)/;\]} can also be expressed in a frequency
modulation form such as exp i[Zw(uo ty, 2111 T2y. (/A + 91]} ,

where 8, is constant. The Doppler frequency, vy = 23'71 (t)/x . for a sinusoidal

vibration can be written as Vg1 = 47 Y a1Y41 sin (Zwumlt)/)\ , where m1 is the

modulation frequency and y di is the amplitude of vibration. For a 2 MHz electronics
bandwidth, the peak Doppler frequency is limited to 1 MHz or 4 ”leydlm = 106
Hz or Vo1Yd1 = 0.05 m-Hz. Therefore, the maximum amplitude and frequency pro-

duct of the vibratory targets is limited to 0.05 m-Hz for 2 MHz electronic bandwidth.
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In order to separate two target signals from the photodetector output we can first
mix with cos [2~ (va - ur) t] to obtain cos [21r(2u1 + Vr) t + 41ry1/7\]

and cos [27(2vy+ vt + 47y,/2], and then mix these with cos (2mc2v ) t]
to obtain cos [217Vr t + 4ﬂy1/A] or with cos [27(2 Vy) t] to obtain

cos [21rvrt + 4my,/A J

Here vV, is the frequency of the reference signal which is 4 MHz in this case. The %
signal cos [27( v, - vr) t] is a result of mixing the reference signal with the
“irst Bragg cell driving signal and bandpassing at Va = Vpr Signals cos [27(2 vl) t]
and cos [2 7 (2 Vz) t] are derived from frequency doublers and

in turn from oscillators at frequencies vy and Vo respectively. Signals of both
channels are centered at frequency Vo but separately passed by each bandpass

filter. The digital signal processor takes the reference signal and the output of

two channels from the bandpass filters to process the vibration information of

targets. By comparing the zero-crossings of cos (2 nurt) with cos (2 nurt +

47 y1/>1) and cos (ervrt + 47ry2/)\) the displacement Ayl and Ay2 can easily

be determined. For every zero-crossing count difference there is a phase change

of 27 radians or a displacement of A/2 = 0.32 um. If four reference signals

cos (21rvrt), cos (27rvrt + w/2), cos (27rvrt + 7 ), and cos (21rur + 3 17/2) }

are used for'zero-crossing comparison, the displacement resolution would be

A/8 or 0.08 um.
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6.4.3 Digital Signal Processor

A digital electronic circuit has been designed to measure the total phase difference
between the reference signal (4 MHz) and the phase modulated heterodyne signal
returning from targets. A zero-crossing counting technique is used to determine
the phase difference in a multiple of 27 radians which corresponds to a displace-
ment resolution of about 0.32 um. A fine phase measurement system based on

the zero-crossing timing has also been built in order to achieve a 0.08 um

resolution.

CLOCK CIRCUIT

All the timing signals needed for the digital circuit are derived from a 16 MHz

oscillator. With a 4 bit binary counter and a 4 to 16 line decoder, the clock cir-
cuit is capable of generating 16 disjointed clocks. Each of them has a frequency
of 1 MHz and pulse width of about 60 ms. The clocks used in the signal processor
are illustrated in Fig. 2, where ¢ is used in the coarse phase measurement; ¢ 2
Py, 9, together with ¢,, are used in the fine phase measurem_ent; s is used as
the sampling signal for the output. In addition to the clocks mentioned above,
the clock circuit also provide a 4 MHz reference signal for use as the carrier for

the phase modulated target signals.

COARSE PHASE MEASUREMENT

The coarse phase measurement circuit consists of a reference channel and as many
target channels as needed. Figure 3 shows the functional block diagram for a
two-target system. Additional channels can easily be added. As shown in Fig. 3,
the reference channel is just a 14 bit binary counter which continuously counts
the number of zero-crossings (or the number of 27 radian phase change) of the

4 MHz reference signal. A 14 bit latch samples the content of the counter at the
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Fig. 3 Vibration Sensor Coarse Phase Measurement System
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at the falling edge of clock ¢ 1+ The output of the latch corresponds to the total

phase change of the reference signal since the beginning of counting process.
Signals from each target are first shaped by a zero-crossing detector then passed
through a circuit identical to the reference channel to generate a binary number
corresponding to the total phase change in the target signal. This number together
with the one provided by the reference channel is fed into a binary subtractor to
calculate the total phase deviation of the target signal due to the displacement

of the target.

FINE PHASE MEASUREMENT

To achieve a phase resolution better than 27 radians, a circuit has been designed
to determine the timing of zero-crossing of the target signal. As illustrated in
Fig. 4, the least significant bit of the target counter in each coarse system is
sampled at 4 different instances which are r/2 radians apart in terms of 4 MHz
frequency. The output of the latches are then processed by a simple logical
circuit to determine when the zero-crossing occurs and to encode this information
into 2 bits. These two bits together with the 14 bits from the coarse system are
sampled at the falling edge of clock P to provide a steady 16 bit output for the
vibration sensor system. A graphic simulation of all the input and output signals

of the digital signal processor is summarized and shown in Fig. 5
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6.4.4 Experimental Apparatus

The Vibration Sensor laboratory setup and the breadboard layout diagram are
shown in Figs. 6 and 7, respectively. The Channel 1 target is a 1-cm retro-
reflector driven by a shaker located on a separate Table 3 meters away from the
sensor setup. The Channel 2 target is a PZT driven mirror set on the same plat-
form with other optical components. A Hughes Model 3176H He-Ne laser with
4 mW output at 632.8 nm is used in the system. The reflectivity and transmission
of all the beamsplitters used in the system are close to 0.5. The efficiency of the
first Bragg cell, €1 is 0.8. The second Bragg cell efficiency can be expressed
as €, = 0.8/N, where N is the number of channels. Because the Bragg cell can
only take 3 watts RF power to reach 80 percent efficiency, the RF driving power
for each channel is 3/N watts. Therefore, the Bragg cell efficiency for each
channel is € = 0.8/N. Two cylindrical telescopes are used in conjunction with
the Bragg cell to generate a large number of target sensing beams for multiple
targets vibration sensing purposes. Only one beam expander is used in Channel 1.
The laser beam diameter after the beam expander is approximately 1 cm. The
return signal power onto the photodetector can be calculated by
PS =~ Polex elezx € X esz3
~ 4x10%x0.5x0.8x .08/N x 0.8/N x 0.5x 0.5
~ 0.128 x 10" 3/N% watt

where T's and R's are the transmission and reflectance of beamsplitters shown in
Fig. 7 and Po = 4 mW is the laser output power. For 50 channels, N = 50, the
signal power is P_ ~ 5 x 108 watt for P =4mWorP ~5x 10" watt for
P_=0.4 mW. In our experiment N = 2 and the calculated power level is

o -6
32 x 10 ° Watt.




Fig. 6 Vibration Sensor Laboratory Setup
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The optical LO power onto the detector is P g = Po X R1 X R3 which is
Pp = 4x 1073 x 0.5 x 0.05 = 10™° Watt for P =4mWorP, = 10”4 watt for
P0 =0.4 mW.

Two K&L Model 5B53-4/2-B/B bandpass filters centered at 4 MHz, one for each
channel, are used in the system to restrict the input signal to the digital signal
processor to a bandwidth of 2 MHz. A two-channel digital signal processor has
been assembled and tested. Due to the availability of digital IC components, we
use 16 bits instead of 14 bits in the entire coarse measurement system thus pro-
ducing two 18 bit outputs. Two 16 bit Digital-to-Analog (D/A) converters are
used to convert the lower 16 bits of each output into analog form for the display

purpose.
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6.4.5 Experimental Results

The oscilloscope trace of the displacement of two vibratory targets is shown in
Figs. 8 and 9. In Fig. 8, the upper trace is the sensor output for Channel 1
target vibrating at 30 Hz and an amplitude of 1.5 mm. The middle trace is the
sensor output for Channel 2 target which measures a 60 Hz vibration at an ampli-
tude of 0.9 um. It is noticeable that the "stair-like" waveform is a result of

digital signal prbcessing. Each step of the stair represents 0.08 . m displacement
of target which is the resolution of the present system. The lower trace represents
the driving signal to the PZT for Channel 2 target. Comparing the output of the
Vibration Sensor with the driving signal of the target mirror indicates a time

delay of about 1 nsec between the sensor output and the actual vibration. Of

this, about 500 nsec is contributed by the digital circuitry (between the falling
edges of input sampling clock ?, and output sampling clock ¢5) , the rest of it is
due to the settling time of the D/A converter. Power consumption for the two-channel
digital signal processing system is about 10 watts with standard TTL components.

Although the output of the sensor system closely follows the actual vibration in
general, we found a large number of glitches presented especially when the ampli-
tude of the yibration is small. These glitches occurs at certain intervals of tar-
get displacement corresponding to even 27, 47, 67, and 87 radian phase

changes. Most of these glitches have been identified as being caused by the sam-
pling of target signal counters while the counters are changing states. We have
done experiments to sense such ill-conditioned triggering cases in the coarse
system and delay the latch action whenever it occurs. This scheme seems to be
able to eliminate glitches at 27, 47, and 67 intervals but those with an 87 interval
still remain. At this time no effort is made to identify the cause of this problem.
But we feel this can be solved with confidence after a careful examination of the

digital signal processing electronics. The DC response of the sensor is shown in




1

3mm

Fig. 8 Vibration Sensor Output for Two Vibratory Targets -
Exhibition of Amplitude Range and Sensitivity of Sensor
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Fig. 9 Vibration Sensor Output for Two Vibratory Targets -
Exhibition of AC and DC Response of Sensor




the upper trace of Fig. 9. The only difference between the Fig. 8 and Fig. 9
experiments is the driving voltage applied to the shaker for channel 1 target.
In the Fig. 9 experiment, a 0.5 Hz square wave is applied to the shaker. The
sensor measures the steady state DC displacement (~1 mm) as well as the tran-

sient behavior of the shaker,

As mentioned earlier, the signal processor provides a 18 bit digital output in
2's complement form. In other words, the output digits represent a decimal
number between -131072 to +131071. With the least significant bit corresponding
to 0.08 um in displacement, this means a displacement range from -10.485 mm to
+10.485 mm. It is worthwhile to mention that wider range can be achieved by
simply using longer words in the signal processing electronics and the only
limitation is that the vibration amplitude and frequency product must be under
0.05 m-Hz. Since we are only using the lower 16 bits in the display, the range
shown on the oscilloscope is further restricted to -2.62 mm to +2.62 mm. Larger
displacement causes a sudden jump from the largest representable value to the
lowest value as can be seen in Fig. 10.

A reset button is built in the electronics to signal the beginning of the counting
process. Hence the output of the electronics represents the displacement of the
target relative to the target position when the reset button is released. At the
present time we have no control orr the zero displacement position relative to the
vibration waveform. This causes a DC component associated with the output of

the sensor.

The laser used in the system outputs three longitudinal modes spaced by 500 MHz
which is shown in Fig. 11. Although the unstable laser is used in such a sensi-
tive system we can still obtain reasonably good results. Because of the 500 MHz
frequency spacing between laser modes and the destructive interference between
them, we have observed that for every 30 cm displacement of target alung the
optical path of the vibration sensing beam there is a node point for the returning
signal which limit the full range application of the sensor. The single frequency
laser will be a solution to that problem.
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Fig. 10 Output Discontinuity of Vibration Sensor
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Fig. 11 Optical Spectrum Analyzer Output Shows 3 Longitudinal Modes
of the Laser Used in the Vibration Sensor Experiment

6-59




6.4.6 Conclusions and Recommendations

After this very limited effort toward the development of the Vibration Sensor,

we are satisfied with the outcome of this research. The concept of using zero-

crossing counting technique in the sensing of low frequency, small amplitude

vibration has been proved. The capability of the sensor for simultaneous sens-

ing of multiple targets and wide frequency and amplitude coverage of the vibra-

tion has been demonstrated. The remaining problems which need to be done in

the future concerning the Vibration Sensor are listed below:

1.

Design and fabricate or purchase a stable single mode single
frequency He-Ne laser with an output of 0.4 mW at 632.8 nm.

Remove the glitches from the sensor output.

Develop a second generation signal processor to handle larger
amplitude and frequency range of vibration to provide improved
resolution, to automatically adjust the system zero to the center

of vibration, and to derive velocity/acceleration information of
targets,

Incorporate the microcomputer and the graphical display into
the system for real time display/control of vibrating targets.

Fabricate or purchase compact optics and electronics to minimize
the size of the sensor.

Procure better quality optics such as cylindrical lenses, beam-
splitters, Bragg cells, etc. in order to reduce the optical loss.

Verify the minimum required signal-to-noise ration experimentally.
Isolate the EMI problem.

Develop and demonstrate a 10-channel Vibration Sensor as a basis
for the design of sensor with more channels.
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Section 7
CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

The integrated control design methodology presented in the previous sections
has significant promise for large space structure applications. The approach is
geared towards addressing specific issues such as low damping ratios, truncated
modes and finite bandwidth actuators and sensors. The control laws have been
optimized for minimal complexity to aid implementation on space based systems.
Controller robustness with respect to modeling errcrs and truncation effects are
discussed.

Application of the methodology to three simple structures illustrates that satis-
factory closed loop systems can be obtained. The procedure, however, is not
automatic but requires iteration based on designer's judgement. The techniques
developed minimize the effects of truncation errors on control and observation
spillover, but the stability of the closed-loop system must be examined on &
case by case basis. It is also the belief of the authors that absolute stability
will be impossible to assure with realistic sensors and actuators for unbounded

modeling errors.
7.2 FUTURE WORK

The work performed during this phase has set a sound foundation for large

space structures control design methodology. Further experience is required with
some of the techniques already developed. Certain new methods must also be
developed to provide a more complete basis for control design in complex space
structures with densely packed modes.
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The following specific tasks wﬁll aid the development of an integrated control

methodology:

(a) The question of mode truncation and reduced order models is of
fundamental importance in the study of dynamic systems in general,
and large space structures in particular. The roles of system poles,
zeros, and residues should be further studied. In addition, projection
methods should be examined. The construction of models based on
partial observed information (output) should be studied.

(b) The problem of collocated control should be further studied to yield
a better understanding of mode controllability through this type of
control. Actuators/sensors dynamics and their effect on the design
should be considered too.

(c) Robustness properties of the system must be studied for various
system operating conditions. For example, actuators, sensors
dynamics, structural damping, etc.

(d) The question of actuators and sensors dynamics should also be con-
sidered. Sensitivity of actuators/sensors location to their dynamics
should be examined.

(e) The concept of frequency-shaped cost functionals and its adaptation
to a design tool should be further developed. In particular, a specific
guideline for the selection of cost functionals should be developed.

(f) Design of ground based experiments including validation procedures
for assuring adequate robustness demonstrations must be investigated
further, '

(g) Sensor and actuator designs to handle the micro-vibration control
problems need further development.
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Appendix A
MODAL STRUCTURE OF OSCILLATORY SYSTEMS

The oscillatory system is described by
X(t) = Ax(t) + Bu(t)

where

I

._r_l... B = —O—
0 Bu

>
i
|

and A =AT>0.
o o

Let U be the n x n matrix of eigenvectors of A, i.e.,

AOU = UA.
Define z = Tx
where U"l' o
- ]
T = —
o !yt
]
leads to z = Fz + Gu
where :
(I | -1
F = __..0__:_3_ = TAT *, G = TB
A 4 0
o
!
A-1




Since Ao is p.d. the diaganal elements of A0 are all positive, i.e.,

Ao = diag (al, a2, P an)
a; > 0 V1£ign
The eigenvalues of the matrix F are found from
7\+ai=0 i=1,2, , N
to yield
A
i Ja . i=1,35, ...,2n-1
A= ! (1)
A —
—j ai i = 2, 4, 6’ * Zn
where
id V-1
Let
UO = [ul’ uz, ey u2n]
A% =

1
o = vy Vg ees Vgl

be the 2n x 2n matrices of right and left eigenvectors, respectively, of the
matrix Fo ; i.e.,

FOU0 = U Ao
VoFo = A V0
where Ao = diag (Al, vee s AZn) is the diagonal matrix of eigenvalues obtained

via Eq. (1). Then, it can be verified that
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the modal analysis performed above, in conjunction with the use of Euler's
equations for complex numbers, can be used to obtain the transition matrix in
closed form. Therefore, the 2n x 2n transition matrix is given by

‘/-Ei sin &,

For evaluating the controllability matrix defined in Eq. (22) we need ,(0, t)
rather than ¢ (t, 0) ; however, since

¢Z(0, t)

it can be easily verified that

a B
¢z (o, t) [ ]
Y o

where each of the four n x n blocks is diagonal with elements given by
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A e At A

@, = a, )

1 1

By = -B, t i=1,2, ...,n (7
'yl = -.Yl J

Using (5) yields the required expression for the transition matrix <I>z( 0, t).




Appendix B

INVERSE OPTIMAL CONTROL FOR
GENERALIZED COLLOCATED CONTROL

Ever since Kalman (Ref 1) formulated the inverse optimal control problem in 1964,
the subject has been of significant interest in control theory (Refs 2 through 5).
The inverse optimal control theory attempts to derive a class of performance in-
dices which are optimized by a prespecified control input. In its simplest form,

the state and input penalty matrices of a quadratic performance index are deter-

] mined for linear feedback control of linear dynamic systems (Refs 1 and 6 Sec. 4.2).

Past research has never exploited the full potential of inverse optimal control
theory. Once the control law has been specified, obtaining the optimizing cost
functional itself has little direct value. However, when combined with known
and previously proven properties of optimal control laws, the derived optimizing

function aids understanding of the feedback and the robustness properties of
the control law. An optimizing function is derived for a specific class of systems
and is used to study controller properties.

This appendix addresses purely oscillatory systems defined by all poles and zeros

on the imaginary axis. Large space structures (LSS) can be approximately de-
scribed by suth systems because of their typically low damping ratios. Quad-
ratic optimizing functions are derived for control laws which increase damping
ratios in such systems.,

Consider the linear dynamic system described by.

(1) = Ax(t) + Bu(t), xeR%®, uer™

et

(1)

y(t) = BTx(t), yeR™




where

A= |---1-- B = |--- (2)

> 0 (3)
Next, consider the set of admissible controls, %, defined by

% b {ueRm: u = Ky, Re [A\(A + BKBY)] < o} (4)

where A(:) stands for the eigenvalue of the argument, and Re(:) is the real
part of a complex number.

Let the objective function to be minimized be quadratic in the state and control

over an infinite time period, i.e.,

w8 f7 [xT(t)QX(t) ¥ uT(t)Ru(t)] at (5)
[o]

with

Q =0, R >0 (6)




'
'
A
:

Problem: (inverse optimal control problem)

Given an admissible control, u*, under what conditionson K, Q, and R is
this control law optimal, ie.., when is

J(x,u*) = min J(x,u) (&)
ue¥%

If such an optimal control u* exists, then (Ref 2)
u* = Ky = -R-1BTpx (8)

where P is the 2n x 2n pd solution of the algebraic matrix Riccati equation
(ARE) given by

PA + ATP - PBR-1BTP + @ = 0 (9)
The inverse optimal control problem is, therefore, the following. Given an ad-

missible rate feedback control law find for what, if any, weight matrices Q and
R, the ARE in Eq (9) is solved

Let the 2n x 2n symmetric P and Q matrices be partitioned as

P ,IP Q,,+ 0
P = -1, 121 o - _ll_i___ (10)
T ! 0'qQ
P12l Py ' V22
Then from the ARE in Eq (9), we find
P, - AP,. - P.BRIBTp =0 (11)
11 oF 22 12BoR "Bg Paa
T -1.T _
PioAy * AgPig + PyBGR By Py = Qyy (12)




-1, T _ T _
PygBoR BoPay = PpaP1p = Qg (13)
Since a rate feedback control law is used, we find from Eq (8) that

Ty, _ o .o T
BJP, = 0 Pme./t’(Bo) (14)

Therefore, P12 can be expressed as

_ T
P, = N; @N; (15)
where
T
Nleﬂ(Bo) (16)
& = &% > 0 an

The n x n matrix P12 as given in Eq (15) is symmetric and from Eq (17), psd.

The latter condition is required to satisfy Eq (12) since (-A 0) is a stable
matrix.

Lemma 1:

For a dynamic system under a rate feedback control law, the n x n matrix P12
in Eqs (11) through (13) has to satisfy

P12 =0 (18)

Proof:

This is verified by observing Eq (13) where Q22 has to be at least psd.




|
£

Since P, =0, the resulting 2n x 2n matrix P that solves the ARE will be
a block diagonal matrix. This motivates the following fcrm for the matrix P to
be checked as a possible solution of the ARE.

Let

P = oBBTB) BT 4+ NENT (19)

where

Ne#(BT), NepZ x (Zn-m) (20)
NN = (21)
aeR}_
E=E >0 gr‘Im-mxn-m (22)

It is clear that P in Eq (19) is symmetric. To show that it is also pd we note
that

PB = oB (23)

PN NE (29)

Therefore, B and N are right eigenvectors of the matrix P corresponding
to positive eigenvalues; therefore, P is pd. Similar results are obtained for

left eigenvectors.

Dbt




Using the form for P as given in Eq (19) the ARE can be written as

PA + ATp - o%BR7IBT + @ = o (25)

Since

?
2
r
3
¥
k4
4
.

B

we find that to satisfy Eq (20)

= |-_41 nx(n-m
N = [N ' ], NoeR (26)

_ — T
BN, =0 NOEI(BO) 27

NN =1 (28)

E = [|-5-1-* (29)
2
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Theorem 1:

A necessary and sufficient condition for P in Eq (19) to solve the ARE in
Eq (9) is that

[~
0, 0
Q =l -r=3--Zi%
!
30 :aBoR Bo
g om0
0 V@A
) O
- |

The 2n x 2n pd solution matrix P is given by

o
i
5

Slo

e

R
L L -
ey

Proof: (sufficiency)

1 I
aA 0
P = o--':---—-_T—o----.i + __Q.E.__..__
01eB BIB 1B 0 IaNN
1 0 0.0 0 , 00

T_l
o)
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o
I
Lo}
(=]
o
© X
o
< 1
P
Z
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(31)
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we get

P = _‘.xfg_i_-o.
0 !aln
[]
Q = O!2BR lBT -PA - ATP = Q-L—f-q:l—,f
0 'aB R
t ) o
(necessity) from Eq (25)
i
i
Q = ¢8R - pA - AP |
Since ]
E, | EgNE
I 20 e 3
NE 'eB (BYB) BT + NE,N
o2 o\"o o o o'l
we find ,
: ]
T T ! T -1 T T !
ool EONGAG AN ageng (B8] MmN - g
_1 | i
T T |, _ .3 2, o-1.T _ R, |
[aBo BOBO) B, +N0E1N0]Ao E”! @B RT'Bj - N E, - E,;N,
Since Q is block diagonal, then using Eq (33) and Lemma 1, we find
i
El = aln—m i
E2 =0 k




Once the solution to the ARE is obtained, one can find the optimal control as
well. For the case where the sensors and actuators are co-located we have the

following.
Corollary 1:
When the output feedback control law is chosen as
u = Ky (34)

where K is a symmetric, m x m negative-definite (nd) matrix and the output

is given through
y = B'x (35)

then

R = -aK (36)

is the m x m control penalty matrix of the quadratic objective function

[}

J = f (xTQx + uTRu) dt (37)

o

Proof:

The optimal control that minimizes Eq (37) is given by

u* = -R_IBTPx

using the solution matrix P from Eq (32) we find

u* = -aR™1BTx
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Appendix C ﬂ

DESIGN OF CONTROL LAWS WITH FREQUENCY
SHAPED COST FUNCTIONALS

The design problem treats a linear problem i
x = Fx + gu
y = Hx

and the following performance index is to minimized: ‘ 1

-

J = ;/ x*(JWA(w) x(jw) + u*Gw)B(jw)u(jw) dw

—0o0

Note that the weighting functions are functions of frequency.

If the weighting functions A(jw) and B(jw) are assumed to be rational
functions of squared frequency, -w2 , a systematic control design procedure,
may be developed for positive semidefinite A(jw) and positive definite B(jw) .
This is not a'serious limitation because a wide variety of functional forms may
be approximated by ratios of polynominals. To develop a specific control de- 1
sign procedure, it is further assumed that A(jw) has rank p, and B(jw) !
is positive definite with full rank, q

AGw = PGP (jw) (D
B(jo) = P3(IP,(jw) 2
C-1
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P1 and P, are pxn and qxq rational matrices. Define

. i
Pl(jw)x = X &)
4
s _ .1
P2(]w)u = u &) 1
K |
If P (Jw) is a ratio of polynominals in jw and the number of zeros does ‘h

not exceed the number of poles, Eq (3) may be written as a system of differ-

ential equations with output x1 .
z, = Flz1 + Glx
1 - E
x* = H,z, + d,x (5)

D1 is zero if the number of poles is at least one more than the number of
zeros. Equation (4) may also be written in terms of a differential equation,
again if the number of zeros does not exceed the number of poles.

z2 = F2z2 + G2u

u = H222 + D2u (6)

The dynamic Eq (1) and the cost functional (16) may now be written in terms 4
of an extended state vector.

u
X F 00 X

% 2| = G1 Flo z,| + |0 &)
z 0 OFz z G2




_ v({r T T\[.T 1017
Jss = EX (&1 zzu)ﬁ)lDlo 0 X (8)
T
H1D10 0 zZy
0 T T z
22 22 2
0 T T u
| 22 22 | "

Defining appropriate vectors and matrices, Eqs (7) and (8) become

x! = rle! + gl (9)

T 1

= 1 1 A N| [x™] dt (10)
gl FrAE g B
(o]

The control law is obtained by solving the following modified algebraic Riccati

equation
-sFl - Fls - A+ a6l + B Liel + T = 0 ay q
and ‘
u = Blia + N Txl (12) ]
5
Equation (12) is written in an equivalent form as
u = Clx + szl + 0322 (13) 3
The generalized controller structure is then shown in Fig. 1. This controller j
has the form of a general dynamic compensator. The transfer function between
the control input u and the state x is
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Fig. 1 Structure of the Generalized Controller
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Gol - P G x (14)

zl..(jw)

z, (J0) Gol - Fp lG,u (15)

[1 - C4(jul - Fz)'lcz] u(jw) = [C1 + Cyljul - Fl)'lcl] x(Gw)  (16)

or

- -1 -
u(jw) = [I - C3(jwl - F2 '162] [(Cl + Cz(iwl - Fl) lGl] x(jw)

The compensator may be expressed in an equivalent form shown in Fig. 2.
Note that the transfer functions between x1 and u and u1 and u are

x'qe = [H; Ge1 - Fpla; + b x (o (an

WG = [H, Got - Fp7le, + DY) u G (18)

Therefore, the poles of Pl(jw) and P2(jw) show up as compensator poles
and zeros, respectively and directly influence the closed loop transfer func-
tion. This provides a direct relationship between the form of the frequency
dependence shaping used in the cost function and the structure of the over-

all compensator.

If the number of zeros in Pl(jw) exceeds the number of poles, Eq (5) must
be modified. For example, if Pl(jw) has one more zero than poles, Eq (5)

may be written as
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Using Eq (1), this may be written as

Ne
L1l

F,z, + Glx

1 171
1 _
X = lel + Dlx + D11 (Fx + Gu)
= lel + (D1 + DnF)x + D11 Gu (20)

Therefore when Pl(jw) may have k1 more zeros than poles, a more general

form for Eq (3) is

2 = F,z +G1x

171
kl-l
1 _ . i
x' = Hjz, + Dix + E%) Dllu() (21)

where u(l) is the ith derivative of u . Equations (6), (7), and (8) are

also modified in a similar way.

Selection of Weighting Matrices

It appears that a solution can be guaranteed if B(jw) is positive definite and
A(jw) is positive semi-definite at all but a finite number of discrete frequencies
(though this is not a necessary condition). It should be pointed that that even
under these constraints, the solution may not be easy to find and in fact may not
even be causal. The total class of weighting functions for which a causal may be
found will be subjects of future research.
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Appendix D
MINIMUM-ENERGY CONTROL

‘1
E;
:
]
.

Consider the linear dynamic system described by

n

x(t) = A(t) x(t) + B() u(t) , xR® ,uR (1)
Next, define the controllability matrix by ;
a i
— 1] t
W(t .t 2 tf &(t ,HB(MB(T) &'t ,7)dr (2)
(o]

where prime indicates transposition (real or complex), and ®(.) is the transi-
tion matrix. Then we have the following.

THEOREM
For a controllable system described by Eq (1), the controllability matrix is non-

singular and the input that transfers the initial state X, to a desired final state
x(t) in a finite time ty >t is given by

U*(t) = B'(t)tb(to,t)w_l(to,tl) @(to,tl)x(tl)—xo (3

Furthermore, this input requires the minimal control energy. This minimal
energy is given by

t
I 8 f 1”u(‘r‘)]l2 dr = x' W 1(t 'tox (4)
t o o o :
o ;
for a system whose final state is the origin x(t,) = 0.
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PROOF:

First we prove that the control in Eq (3) transfers the initial state x_ to the
desired final state x(tl) . The solution to Eq (1) is given by

t t
x(1) = 2(t,t )x, + [ e, mB@Uma = a(t,t) fx + [ @t ,DB(Mumar

t o to
(5)
where we have used the property

B(1T) = B(L,t IE(t,,T) .

Using Eq (3) in Eq (5) we find

t
1 )
x(t)) = #(ty,t ) {x_+ |f et ,mBMB(Ht,,Na

to

-1
Lij (to’tl) [Q(to’tl)X(tl)‘x(J
Using the definition in Eq (2)

_ -1
x(tl) = é(tl,to) }xo + W(to,tl)w (to.tl) Eb(to,tl)x(tl)-x(;”

=8 (t,t) [xo +a(t,tx(L) - "o]




and using the fact that
-1
foctotp] * = ety

we obtain the result.

Next we show the minimal energy property. Let {u(t)} be any control sequence
that transfers the initial state x o to x(tl) , then we have to show that
tl . t1 .
S el at 2 [ uxol? at 6
t t
o o

Define

@(to,tl)x(tl) - X

- _ -1 _
X = & (tl’to)x(tl_) X,

then, by the assumption that both control sequences transfer X to x(tl) we
have from Eq (5)

ty t
X = f é(to,‘r)B('r)ul(‘r)d = f Q(to,'r)B('r)u*(‘r)d
t

t0 o

Subtracting
t

1
! a(t, DBM[uy(n - wr)ar = o0
o




which implies
/ M | _

—u* %) =
q &(t ,MB(T) [ul(T) u (T)] dr, W “(t,t DX 0
where (.,. is the usual inner product.
Since (x,Ay) = <A’x,y> we have

t
1

f <ul(‘r)—u*(‘r), B'(T)O'(to,T)W_l(to,tl)i dr = 0

i

(o]

and using Eq (3) this becomes

t
1

f <u1(‘r)-u*('r), u*(‘r> ar = 0

tO

Consider now

t t1
= f ||u1(-r) - u¥(7) + u*(r)"zd‘r

t t
o o

—
=
Y
”~~
-
>~
o
[}
|

t t
1 1
S o -usoifa s [ urcol? ar
t

(o] tO




t
1
+ 2 f <11('r) - u*(n), u*(T)> dr
to

t t
1 2 1 2
= f “UI(T) -u¥7))|® ar + / la*(Dll* ar
t t

o o
Since

t

1
f Ilul(T) - u*('r)llz dr 2 0
t0

we conclude

t t
1 2 1 2
S @l ar 2 [ o) ar
t tO

o

Finally

t
. 1 2
= [ ol ar
t
o

t
1
= ) -1 ] [} -1 p—
= f x'W (to,t1)<1> (to,T)B(T)B (T)@(to,‘r)w (to,tl)x dr
to
= i'w—l X = X W—lx
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Since it is assumed that
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