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On the Dynamic Energy Release Rate in
Elastic Crack Propagation

Morton E. Gurtin and Chikayoshi Yatomi
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Carnegie-Mellon University
Pittsburgh, PA 15213 USA

1. Introduction /

It is the purpose of this paper to,,tve a unified treatment

of the dynamic energy release rate, (e , for a sharp, straight

crack in a hyperelastic body undergoing finite strain. As our

main result we decompose At into the usual quasi-static energy

release rate plus a nonpositive dynamic contribution; thus for

a dynamic solution the energy release rate computed using the

classical quasi-static formula is larger than the actual dynamic

energy release rate..YWe also present what are apparently the

first proofs (within the dynamic theory) of the well known relations

(t = t) t o  s (x,~tu(xt)dA
Ct t

- - ~ t s0 Ct t

0

where s is the surface traction, u is the displacement,

C tot  is the portion of the crack generated in the time interval

(to,t ] , and t(t) =z t - z with z the position of the crack

tip at time t. AIR FORCZ OFFICS OF SCIENTIFIC RESZARCH (AISC)
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To simplify our analysis, we avoid geometrical and

notational complications by limiting our discussion to edge

cracks in two-dimensional bodies. Also, our analysis is based

on classical smoothness hypotheses1 and therefore in applying

our results care must be taken to insure that the underlying

neighborhood of the crack tip is free of shock waves, etc.

Notation. Light-face letters indicate scalars; bold-face

lower case letters indicate vectors (in 3R2); bold-face upper

case letters indicate second-order tensors (linear transformations

from 3R 2  into R2 ); T is the transpose of A; AB = AijBij; 2

div S is the vector with components bSij/bx j ; Vu is the tensor

with components bu "/x., vu is the third-order tensor with

components B u/BxjBxk; a superposed dot denotes differentiation

with respect to time; LP(R) is the class of all functions

on R with ITIp  integrable on R.

1Such hypotheses are tacit in most other studies of this type.

An exception is Freund [1977].
2Here we use standard indicial notation and cartesian coordinates.
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2. Basic equations.

To fix notation we consider first a two-dimensional regular

body B, which we identify with the regular region of 3R2

it occupies in a fixed reference configuration. We assume that

the body is hyperelastic, so that the displacement u(x,t),

the (Piola-Kirchhoff) stress S(x,t), and the stored energy

w(x,t) obey the energy equation

" : .Yu (2.1)

and the equation of motion

div S = Pi (2.2)

with p > 0 the density in the reference configuration. We

assume throughout that p is constant.

The above equations are appropriate to both the finite

and infinitesimal theories of elasticity. in the infinitesimal

theory S is symmetric and w quadratic, but these restrictions

are not relevant to most of what follows.

'with the exception of Section 6, our analysis is valid for more
general materials provided one uses (2.1) as the definition of w.
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3. Mathematical preliminaries.

We consider a fixed time

interval [0,T]. We assume that1

B contains a straight edge crack

Ct . The tip of the crack at time

t is denoted by z; we assume

that z is C2  in t with

velocity

d
c(t) : - £t # o (3.1)

and that
a

Z E8~ztc

for 0 t T, where B is the interior of B.

The fields V(x,t) of interest will be defined at each x

in B\Ct and each tc [0,T]. A field of this type is a Cn

fracture field (n > 0 an integer) if:

(i) the derivatives of V of order n exist away

from the crack;

(ii) V and its derivatives of order n are continuous

away from the crack and, except at the tip, are continuous

up to the crack from either side.

We write

pc Lp (B)

1It is important to note that 0 here need not be the entire
body, but rather an arbitrarily small neighborhood of the tip
(cf. the remark preceding Theorem 1).



if CP(-,t)ELP(B) at each tc[O,T]. If tiLP(B), then given

any one-parameter family 6 5  (8 > 0) of regular subregions

of 6 with area(B\B6 ) 4 0 as 6 - 0,

p l(Z, t)I P da cp (25.(.t)I P da

as 8 -l 0; when this limit is uniform in tE[O,T], we say

that VLP(B) uniformly in time. Analogous interpretations

apply to the assertions VELP(B), VLP(B) uniformly in time, etc.

Consider now (x,t) as a function V(z +r,t) of t and

the position vector r from the tip. We let t/ denote the

derivative of this function with respect to t holding r

fixed; thus, by (3.1),

V= + (3.2)

with

the directional derivative of V in the direction c. For a

vector field u, u/ is defined in the same manner, except that

now

7 u = (Vu)c.

Since Ct c CT for 0 t , T, each Cn fracture field
is of class Cn on the cartesian product (B\C T ) X [0,T]. The

next two lemmas give certain important identities for functions

of this type.



Lemma 1. Let 9 be a c scalar field on (B\CT) X [0,T].

Assume that tp,VcL (0) uniformly in time. Then

cp da (3.3)

is a C function of time and(34

d.r p a tjda.(34

BB

o0f course, Tv may have singularities on CT.
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Proof. Let 9 be the region shown whose boundary consists

of a portion of BfB, two lines

parallel to CT, and a straight

end face of length a perpendicular
I-to these lines and such that CTdT

is contained in RV Let

B\, so that t is C on 6 X [0,T]. Then

88

Moreover, as ecL I (B) uniformly in time,

j da- fda (3.6)

6 B 8[

as 8 . 0, uniformly in time. Thus, since

8 da - ep da, (3.7)

(3.4) holds. Further, since the left side of (3.6) is continuous

and the convergence uniform, the right side must also be continuous;

hence (3.3) is Cl in time. LI

Henceforth, in boundary integrals the letter n will

always designate the outward unit normal.

I



Lemma 2. Let tp, 4, and w be scalar fields on

(B\C T) x [0,T]. Assume that:
TI

(i) and w are C1 and

(ii) tp,OcL 1 (B) and WeLI(30), all uniformly in time.

Then
cp da

is C in time and

d r p da da + w c n d

Proof. Let 9% and 86 be as in the previous proof. On

the upper and lower horizontal portions of BP,, c.n = 0, where

n is the outward unit normal to as6. Also, by the continuity of

w away from the crack, the integral of wc-n over the vertical

right end face of 96 tends to zero as 6 - 0 uniformly in time.

Thus (ii) and the divergence theorem imply that

wc.n dov= lim wc.rn d'= lim V w da;
6+0 84 0

hence (i) and (ii) yield

* da + wc.n dA/= lim f (0+Vw)da = lim da,
8 0 60 -0

and this limit is uniform in time. But (3.5) and (3.7) hold in

the present circumstances. Hence



8

d f da = lim da = da + rwcn dA,,

and, as in the proof of Lemma 1, the left side is continuous in

time.

In the next lemma, and in

the sequel, O6 = n6(t) is the

disc of radius 6 centered at

the crack tip, z

Lemma 3. Let f be a C1  fracture field with div fELl(B).

Assume further that

lim f-fnJ dA, = 0,6 -0 j -.

and that, for e a unit vector normal to C f(x,t) .e - 0 as

x approaches Ct\fz t) from either 2ide. Then

f ds-= div f da.

Proof. Simply apply the divergence theorem to the region

B\ 6 and let 6 -0.
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4. Basic assumptions. Energy release rate.

We begin by stating our assumptions concerning the fields

u(x,t), p(x,t), and w(xt). Here and in what follows the

field s in a boundary integral will always denote the surface

traction

s = Sn. (4.1)

(A1 ) u is a C3 fracture field; S and w are C

fracture fields; u, S, and w obey (2.1) and (2.2) away from

the crack.

'2 For f = u, ,, - u": f is bounded; S,VfEL (a)

uniformly in time; w,w, 7fEL (0) uniformly in time.
1

(A3) The surface traction vanishes on the crack; that is,

if e is a unit vector normal to C then S(x,t)e 4 0 as x

approaches C \(z from either side.
t ~-t

(A4) Given any bounded vector field v on B,

lim v dAd.= 0.
6-+0 P

Assumption (A4 ) asserts that, for bounded "velocity fields",

the virtual power vanishes at the tip. By taking v equal to a

rigid velocity field one immediately concludes that (A4 ) rules

out the possibility of a concentrated force or moment at the tip.

iOur results extend trivially to the case in which tractions are
prescribed over Co, the initial configuration of the crack: we
simply replace integrals over BR involving s by corresponding
integrals over 8 + Co. Here an integral over CO has the obvious
meaning in terms of integrals over the "two faces" of Co (cf.
(6.4)).
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Finally, (A4 ) is implied by the somewhat more stringent

assumption

lim IdI,&= 0.
6-'0

The function e on [0,T] defined by

e s s- d4 - d (w+k) da (4.2)
Bt

is called the dynamic energy release rate. Here

kc -2

2-

is the kinetic energy per unit volume.

To see that e is well defined, note first that, by (A2)

and the identity

=U -  U, (4.3)

k satisfies

k,kEL (B) uniformly in time.

Thus the existence of the second term in (4.2) follows from the

equation

(w + k)" = (w + k) - c (w + k)

and Lemma 2 with =-w = w + k, = (w + k).

1The first term is well defined.



Let R be a regular subregion of B. We say that R

surrounds the tip at time t if zteg and B intersects

Ct at only one point.

Remark. Let R surround the tip at time t Then in
0

a sufficiently small neighborhood of t = to, (2.1), (2.2),

and the divergence theorem yield the energy equation

S .ud = (w+k)da

and we can rewrite (4.2) in the form

e su - (w+k) da.

Thus e is intrinsic to the crack tip; that is, the definition

of e is independent of the region Q surrounding the tip.

Our first result gives an alternative formula for e in

terms of a boundary integral over a region which shrinks to the

crack tip, zt . With this in mind we give the following definition.

Let it be a scalar-valued set function defined on the class of

all regular subregions of f. Let oeR . We write

to = lim ()
vXdt

if given any f,> 0 there is a 6 > 0 such that

- - -- ... ... ...... .... ... . .. .. .. ... .. .. ... ... . .. (TooI
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for every region R which surrounds the tip at time t and

has area less than 8.

Theorem 1. At each time t,

e(t) = rnlim ( (w + 2 I cu1 2 )c - sT u).n dA4 (4.4)1

Proof. By (2.2),

div(k u) = S.71 + pu U(

and, since

2 7u+1C U (4.6)

(A2 ) implies that the right side of (4.5) belongs to L (0). Thus

(A3 ) , (A4 ), and Lemma 3 imply that

s-u d4'= (S.u+ p u uda. (4.7)
BS B

Next, by (3.2), (4.6), and (A2 ),

w = w - %w, k K - I 12)

with

K = p -u - 21 u - .u) .V u L L(). (4.8)

Thus Lemma 2 with

0 = w + k, b = w'+ K, W = -w - lul 2

'For a linear elastic solid a similar relation (containing -,
in place of %oj) appears, without proof, as Eqt. (13) of Atkinson
and Eshelby [1968], and, with a sketch of a proof, as Eqt. (13)
of Freund [1972].



13

yields

Sr(w+k) da =f(w-K) da - 12 2 A,

and this relation, (4.2), (4.3), and (4.7) imply

e = t(8) -I(w'+ K - S - 7u/ - pu)da, (4.9)

where O(R) designates the integral in (4.4).

Now let R surround the tip at time t, where t is

fixed. Then the remark preceding Theorem 1 implies that B

in (4.9) can be replaced by R:

= ()-f(w + K V- - p .u')da.

Since the above integrand belongs to L 1(6), (cf. (A2) and
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(4.8)), if we let the area of R approach zero, we arrive

at the desired result (4.4).

Remark. It is important to note that (by definition) the limit

a -z in (4.4) need not be confined to regions R whose

diameters tend to zero. The chief requirement is that the area

of R approach zero. Thus, if R8  is the one-parameter family

of regions shown in the figure,

where each R8  is a rectangular

region which surrounds the tip

t 6 and has height 8, width

independent of 8, and horizontal

sides parallel to the crack, then

e(t) : lir (w + 12 I7c2u l 2) c - ST u ) n dU;
b 6

or, since .-.V vanishes on the horizontal portions U 8 of BR6 1,

while the integrals over the vertical portions tend to zero as

e(t) = - lirn 
8-0

=- lirc. S Ts dA
8 -*0
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Henceforth, t is a fixed time in [0,T]. For convenience,

we write

(- to (4.10)

for the derivative with respect to t at t = to. Also, given

a fracture field , we write t for the function on B\Ct

defined by

t 1 U= S t)

Theorem 2.

t
O(to) = ( ft)t ((S-s)'V + p((t-,) .-S)d? da. (4.11)

°It
0

Proof. Let

t

U(t) = j S. s dA'd - (w+k) da, (4.12)

t Bs
0

so that, by (4.2),

= (4.13)

The first term in (4.12) is equal to

t t

~I J ~ . d?sc+ f '(s ~st) dAo' di. (4.14)

t as t aB0 0

1cf. Rice [1965], Eqt. (5). Rice considers infinitesimal strains

and time-independent applied surface tractions.
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Since

t t
d (s -st1 d., d?, - i s dA d4Jd,

t ~B to 
t0 ast0al

(4.10) applied to the second term in (4.14) vanishes. Thus

t t

s f . l  d7% VAd= 1 1 s W. d? d/ = t u

to b as to as00

and, by (A2 )-(A 4 ), (2.2), (4.1), and the divergence theorem

(Lemma 3), this equals

(t (" (V-,7 ) + pgt.(ut-Ut))da; (4.15)
rtt o 0 j~t ~ t -t 0  ' ~

hence (4.13) yields

e(t ( [t ( ut- ut ) + pit(ut-uto) - (w+k))da.(4.16)0to) = to 0 J t oOwP0

Clearly,
t

t(VUt- Uto ) = t St d?%

to0

for points x not on Ct . Thus, since C is a set of (area)

measure zero in B, both sides of this equation may be integrated

over B to give

t

f At'(Vt-tt)da ft° dN da.
0i a t

0
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Similarly,

tP~" UtU)da = iPt d?% da,

f ot(2t-3t0 ) B t

and, using (2.1) and the definition of k,

t t

dt (w+k)da d (wkd da f j(,a,,Vi + pu'.u)d-X da.
B Bt B t

0 0

The last three results and (4.16) yield (4.11).

Remark.1 It is clear from the remark preceding Theorem 1

that B in (4.11) can be replaced by any region 9 which

surrounds the tip at time to.

I0

1There is much confusion in the literature concerning results of
this type (cf. Gradin's (1979] correction of a misconception of
Luxmoore and Morgan [19771 in the quasi-static theory).
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5. Partition of e.

Theorem 2 allows us to write

(t o ) U= (t o ) + X(to)

with t

=A t ()d -S S !o d\ da,

0

0 krtt 0  " .t _N-N
0 0

X represents the contribution of inertial effects to the energy

release rate, while Ii gives the value the energy release rate

would have were this dynamic contribution neglected.

For a linear elastic material, with positive semi-definite

elasticity tensor, or, more generally, for a material which is

stable in the sense of Drucker [1964],

I)> 0.

The next theorem, which is our main result, shows that, to the

contrary,

hence the effect of inertia is to reduce the energy release rate

from the value obtained using the quasi-static formula (5.1)1.
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Theorem 3. Assume that u is continuous at t in the-0-
sense that

lim sup Iu(x,t) - u(X,to)I = 0. (5.2)
t-Vt XE0

Then

X (tt) t (Ut )da,

0 0 ~t rt 0

t " (t°) (2 to31t

-- ! F 2 e(t) -U t 12 da;

h0 nce Ii(* ^o 0.

Proof. Since

t

( Ut t) "1 d? = (U -tU )"(u -U
t ~ 0 0 ~tOt0t

0

we can write (5.1)2 as the right side of (5.3)1 plus p/2 times

dt) t 0 Ida, (5.4)

where
t

(x t  J (Ut + *to - 2) .Gd? .

t
0

Thus, to establish (5.3) it suffices to show that (5.4) vanishes.

L~.
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For convenience, letu = ut ,  uo =0 = U - c o =c(t o

A simple calculation then shows that

C l= Q* + -)" ( 2  .2

Next, in view of the identities (4.3), (4.6), and

" u -37c - 37g'- V..u + 39 2 u'+ 3Vc7 ,

we have

(CPi_ p2)" I + c W ,

where

2 7 2)u
P P c -

0

=4{u - 37 u" + 32u - 37.u + 37 7.u - IV..u).- ( 0 u

C C C C C -C"
2vopu -" P- OW

+ up - 2 7 L-7 (uf_ 2 u° _6 uo)). u
~c c ~0ocU0 0

w!cl + -*'Vc + -0. S

It is easy to verify that and w obey the hypotheses

of Lemma 2; hence

dj (,l-p 2 )da = f da + wc.n dA,

WEB
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and since

O(X,t o) = W(Z,t) = 0,

it follows that

Net (~-p)da 0. (5.5)t°
Next,

fT a= 0 at t = t o 0

hence

(to f 2 da = lim %'(trdt t f V2 t-;t o  0

where

t= t- I t) 2(xt)da"

Let e = Then

2_ 2 Y72 UoCP2 = '(So - )~

so that

f(to,t) I < (sup lu-uOI)jt-t 0 1

and, by (5.2), this tends to zero as t - to, since 2oLl()

and

~o-~~ I I (c-°c-2 ) (o--+c)
t-t t-t 0 ~0

0 I ~ 0 0

"" ... . ... ..... I... III.. . ..... . ..... .L-i
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Thus

f. d%
(~) t0  (P da 0 (5.6)

and (5.5) implies that (5.4) is zero; hence (5.3) 1 holds.

Next, define

3 (MU3io) "i,

so that (5.3)1 becomes

X(to) = 2 ) to [ 3 da.
0

A simple calculation shows that

C3 = 7  + V 4 - C2'
f - I !V

S '-[u"~ - 27- (u - 2 U- U), (5.7)
0 o

and, by (A2), Y,EL 1(8) uniformly in time. Thus y obeys the

hypotheses of Lemma 1 and

t y da = f da.
B B

But v(xt o) 0 0 for almost every xcB; hence

(d )~ t ' y da= 0,

and, by (5.6) and (5.7), , (5.3)2 holds.
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Next, let

1 2)
= = 1c

so that

1,0 = 2 + q.q2 (5.8)

Clearly, 70eLI(0). Consider the regions %6 and B86 introduced

in the proof of Lemma 1. Using an argument similar to that given

in the first paragraph of the proof of Lenmra 2, we conclude that

Oc-n dS = lir Oc-n d-1 = lim 7 $ da V = da.

as B B da.

Since the left side of this relation is a C function of time,

and since 0 and 8 vanish at t = t0.

( d-1 t f c da t Oc n 6 '= I' ( c n + 0 .n)cls' 0;

thus we conclude from (5.8) that

r(d) 5t j Vj da _(t)t 0 da,

and (5.3)3 follows from (5.3)2

Finally, since the integral in (5.3)3 vanishes at t = 0

and is > 0 otherwise, X (t0) < 0. E

Remark. It should be emphasized that 11 and W, separately,

do not generally represent rates of change of strain energy

-I
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W- w da
B

1
and kinetic energy

K j k da.
B

Indeed, it is clear from (5.1) that

11(t =W (to) + ( ) St '(Vu t-7 31t )da,
0 dt06 0

(5.9)

X(to) =-K(to) + ()t °  pUt.(ut-ut )da.
0~I 00d~ .t~--

When the power supplied by the environment vanishes, i.e., when

S s. i dk= 0, (5.10)

the last two terms in (5.9) sum to zero (cf. (4.15)), but are

generally not individually zero, so that while

It + X = - W- k,

in general

This is in contrast to the quasi-static theory for which Ui -W

when (5.10) holds.

.1Cf. the theoretical studies of Hahn, Hoagland, Rosenfield, and
Sejnoha [19741, Freund [1977], and Popelar and Gehlen [1979],
where actual curves are given for strain energy and kinetic
energy as functions of crack length.
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Remark. The definitions (5.1) are intrinsic to the tip;

that is, (5.1) are invariant when 0 is replaced by an

arbitrary region R surrounding the tip. Indeed, if we

replace each integral over B in (5.1) by an integral over R

plus an integral over S\R, and interchange this integral over

B\R with the time derivative at t = to. we find that the terms

involving B\Q vanish.

In view of this remark and the remark preceding Theorem 1,

e, U, and X are possibly more closely related to the dynamical

behavior of the crack than W and K, since W and K are

generally not intrinsic to the tip.
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6. The energy release rate for a linear elastic material.

We now restrict our attention to the linear theory for which

1

-Cvu, w = 7U.Cvu (6.1)

with C, the elasticity tensor, a symmetric linear transformation

(at each point of B). Of course, symmetry is the requirement

that

A.CB = B-CA

for all second-order tensors A and .

Theorem 4.

1) (t O I= a Vu t O

(d7) 7u (C(Cvu _7u )da, (6.2)1

= i(t ((St-s ).(7u -u p(IA -U ).(u

Proof. As in the first few steps of the proof of Theorem 3,

we can decompose h(t ) as follows:

t

I(s(t (St-st (vut-v to)da + j J (St+St -2S?) " v  dX da}.
0 d t O J O w ~ 0 0 B ( o

Since C is symmetric,

at " i.to = Pt 0 "Vut'

For (6.2)1 cf. Bueckner [19581, Eq. (15); Rice [1965], Eq. (19).
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and thus, by (2.1) and (6.1),

t

S(St+S t-2S) .vu dA = (St+St ). (u - 2 (wt-wt) =o

tto o

which yields (6.2) 1,2. The result (6.2)3 is a direct consequence

of (5.3)1 and (6.2)1. F

For t > t let

Ctt = Ct\Cto

denote the portion of the crack between z and zt . In the-to

statement of the next theorem we write

Sto.Ut dv (6.3)
Ct t

0

for the integral of st over the "two faces" of Ctot; that is,

writing

_+(x,t) =lim u(x + 6n+,t)

s-(x,t) lim (x + b ,t) n+ ,

for all xECT ( , zt ), where 14 =+ e with e a unit vector

perpendicular to the crack, then (6.3) is defined to be

s u dA#+ S u dA'. (6.4)
Cto0t C to0t

Also, in what follows the notation (4.1.0) designates the right-hand

derivative at to.
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+ 1Theorem 5. Assume that so EL (CT). Then
0t 0ut

0 2 Vd-t)tot ot

0 (6.5)1

-- - t ) . u ( x - t ( t ) , t o ) U ,

Ctot

where L(t) =z - z
0

Proof. By (6.2) 39

e(t) I )t o  da, (6.6)
0

where

v (S-S .72 + p( i-Uo) .. (6.7)

(Recall that = u-.) Consider the region B6 = B\(0 6 (tO ) U 06 (t))

~00
...... and f ix tE (to,T . By (2. 2)

-y = divf (-S)T

t -- We therefore conclude from the

6 (to) n6 (t) divergence theorem and (A3 )

that

1For the quasi-static theory (6.5)1 was derived by Bueckner [1958]
(see also Rice [1965]), while (6.5) 2 is essentially contained in the
work of Irwin [1957, 19581. For the dynamic theory a heuristic
argument in support of (6.5)2 was given by Erdogan [1968]. The
observation that (6.5) require separate proof in the dynamic theory,
and that such a proof is probably non-trivial, is due to Freund
[19721, who notes that (6.5) yield "the correct result for all
problems for which a solution is known".
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Iy da=

(S-s, ) .- 'j -W js j o -,q d A - I Z ' o -2 U s , o A

where the last integral has a meaning analogous to (6.4). Clearly,

qi s dA/'*

S( 0)

as 6 -. 0, because both S and are bounded near z-t

Similarly,

an 8(t)

on the other hand, since q is bounded, (A4) implies that

and, by (A 3),

s s.,ad* = 0

Further, since S and u are continuous across fln Ct t'

Ss *u d#l= 0,

0
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and, since s7E L (CT) and u is bounded,

5oJs.u Zo-udAW.

0 0

Thus

r da limr y da =5(s-s ).(u-u) dA,- su *
B6 840 0B

where we have used the fact that, by (6.7) and (A 2 ), 'veL (s).

This relation also holds at t = to.9 since (by definition) the

integral o- -!r C is zero. Thus, since

Id r;(s-s ) -(u-u )d.& [(S-s ,). + s(u-U0 dA= 0,

suffice to prv0ta

rlima.2 - u d-(t)t0
ka3dM =t 0. (68

thi rlai+ an (6.t6) iml (6.5)

Writings to prv +thaesetta

u(x,t) 2-'t'

lim 2(-Xt)tt 0  =- ~z + 0 )d%0.68

00
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Thus (cf. the paragraph containing (3.2)) the quantity in ( 3

in (6.8) is bounded in absolute value by

sup JI
8x [0,T]

which is finite by (A). Thus, since s+LI (C ), (6.8) follows. r
2 -27 T
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