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1. Introduction yal L
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] It is the purpose of this paper to/gigé a unified treatment
s
of the dynamic energy release rate, (6&) for a sharp, straight

crack in a hyperelastic body undergoing finite strain. As our
! J

3

main result we decompose‘A2 into the usual quasi-static energy

release rate plus a nonpositive dynamic contribution; thus for

a dynamic solution the energy release rate computed using the
classical quasi-static formula is larger than the actual dynamic
energy release rate.?(%e also present what are apparently the

first proofs (within the dynamic theory) of the well known relations

114 f
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where s is the surface traction, u is the displacement,

Ct t is the portion of the crack generated in the time interval
o

(t_,t], and L(t) =z, - z with 2z, the position of the crack
tip at time ¢t.
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To simplify our analysis, we avoid geometrical and
notational complications by limiting our discussion to edge
cracks in two-dimensional bodies. Also, our analysis is based
on classical smoothness hypotheses1 and therefore in applying
our results care must be taken to insure that the underlying

neighborhood of the crack tip is free of shock waves, etc.

Notation. Light-face letters indicate scalars; bold-face
lower case letters indicate vectors (in Ilz): bold-face upper
case letters indicate second-order tensors (linear transformations
from R2 into R?); QT is the transpose of A; A-B = AijBij’z
div § is the vector with components Bsij/axj; Vu is the tensor
with components Bui/axj; 9%y is the third-order tensor with
components azui/axjaxk: a superposed dot denctes differentiation
with respect to time; Lp(ﬁ) is the class of all functions ¢

on ® with |o|P integrable on R®.

lSuch hypotheses are tacit in most other studies of this type.
An exception is Freund [1977].

2Here we use standard indicial notation and cartesian coordinates.




2. Basic equations.

To fix notation Qe consider first a two-dimensional regular
body 8, which we identify with the regular region of 112
it occﬁpies in a fixed reference configuration. We assume that
the body is hyperelastic,1 so that the displacement u(x,t),
the (Piola-Kirchhoff) stress §(§,t), and the stored energy

w(x,t) obey the energy equation

and the equation of motion

div s = pﬁ (2.2)

with p > 0 the density in the reference configuration. Wwe
assume throughout that p is constant.

The above equations are appropriate to both the finite
and infinitesimal theories of elasticity. 1In the infinitesimal
theory § 1is symmetric and w quadratic, but these restrictions

are not relevant to most of what follows.

lwith the exception of Section 6, our analysis is valid for more
general materials provided one uses (2.1) as the definition of w.




3. Mathematical preliminaries.

We consider a fixed time

interval [0,T]. We assume thatl

# contains a straight edge crack

ct. The tip of the crack at time
t 1is denoted by Zy7 We assume
that- Z: is 02 in t with
velocity

c(t) = é% z. %2 (3.1)

and that
gtea

©
for 0L t LT, where 8 is the interior of 8.

W

The fields o(x,t) of interest will be defined at each
in B\C_ and each tc[0,T]. A field of this type is a c?

fracture field (n > 0 an integer) if:

(i) the derivatives of ¢ of order < n exist away
from the crack;
(ii) ¢ and its derivatives of order < n are continuous
away from the crack and, except at the tip, are continuous

up to the crack from either side.

We write

ocLP (B)

11t is important to note that B here need not be the entire

body, but rather an arbitrarily small neighborhood of the tip
(cf. the remark preceding Theorem 1).




if Q(',t)GLp(B) at each te[0,T]. 1If ¢eLp(B), then given

any one-parameter family Bb (8 > 0) of regular subregions

of B8 with area(B\Bb) -0 as 8 =0,

J. lo(x,t) |P da - J. lo(x,t) [P da

B6 |

as 8 - 0; when this limit is uniform in +t¢(0,T], we say

that ¢eLp(B) uniformly in time. Analogous interpretations

apply to the assertions ¢eLp(aB), ¢eLp(aB) uniformly in time, etc.

Consider now o(x,t) as a function ¢(5t+£,t) of t and
the position vector y from the tip. We let @l denote the
derivative of this function with respect to t holding x

fixed; thus, by (3.1),
/=0 + v o (3.2)

with

the directional derivative of ¢ in the direction ¢. For a
vector field u, H/ is defined in the same manner, except that

now
ch = (Vu)c.
Since C < C, for 0t T, each c” fracture field

is of class C" on the cartesian product (B\CT) X [0,T]. The

next two lemmas give certain important identities for functions

of this type.




Lemma 1. Let ¢ be a c! scalar field ﬂl (B\CT) X [o,T].

Assume that cp,éeLl(ﬁ) uniformly in time. Then

j o da (3.3)
8
is a ct function of time and
af S -
5 o da J ¢ da. (3.4)
8 8
1

Of course, ¢ may have singularities on CT.

IR e MR 3 TR M L




Proof. Let Rb be the region shown whose boundary consists
of a portion of 9B, two lines

parallel to CT, and a straight

end face of length & perpendicular

to these lines and such that CT

(-]
is contained in R,. Let

§
56 X [0,T]. Then
d r.
£ vaa=] ¢ aa. (3.5)
Be By
Moreover, as &eLl(B) uniformly in time,
j o da = j ¢ da (3.6)
ﬁb 8
a as & -» 0, uniformly in time. Thus, since
J ¢ da - j ¢ da, (3.7)
BG i

(3.4) holds. Further, since the left side of (3.6) is continuous
and the convergence uniform, the right side must also be continuous;

hence (3.3) is C' in time. []

Hencefocth, in boundary integrals the letter n will

always designate the outward unit normal.




Lemma 2. Let ¢, ¥, and w be scalar fields on

(B\CT) x [0,T]. Assume that:

(i) ¢ and w are C and

(p=d)+Vcw;

(ii) o,peLl(B) and werl(28), all uniformly in time.

I v da
8

Then

is ct in time and

é% y p da = J Py da + j w c-n dd.
] | 38

Proof. Let R, and B, Dbe as in the previous proof. On
the upper and lower horizontal portions of 396, ¢c-n = 0, where
n is the outward unit normal to aaé. Also, by the continuity of
w away from the crack, the integral of wecen over the vertical
right end face of R6 tends to zero as 8 - 0 uniformly in time.
Thus (ii) and the divergence theorem imply that

I wcen dw = lim wc-n das = lim vw da;

~ 60 §-0
[-15 366 86

hence (i) and (ii) yield

[ v aa+ [ ween a= 1im [ (p+9w)da = lim [ 4 aa,
v o~ §-0 8-0 o

f o8 f

& 6

and this 1limit is uniform in time. But (3.5) and (3.7) hold in

the present circumstances. Hence




at I ¢ da = %ig J 9 da = I b da + | wc-n d4y ]
B 8 38 N

and, as in the proof of Lemma 1, the left side is continuous in

time. []

In the next lemma, and in

o) the sequel, 06 = Qa(t) is the

z disc of radius ¢ centered at

the crack tip, 2y

Lemma 3. Let £ be a C1 fracture field with div SeLl(B).

Assume further that

lim f.n dav= 0,
520 20,
and that, for e a unit vector normal to Ct,
X approaches ct\[gt} from either zide. Then

£(x,t)g » 0 as

I fen do/= f div £ da.
B 8

Proof. Simply apply the divergence theorem to the region

8\A, and let 6 » 0. [

6




4. Basic assumptions. Enerqgy release rate.

We begin by stating our assumptions concerning the fields

u(x,t), g(x,t), and w(x,t) . Here and in what follows the

field s in a boundary integral will always denote the surface

traction

s = n.
~

T ad

(Al) u is a C3 fracture field; S and w are Cl

fracture fields; u, §, and w obey (2.1) and (2.2) away from

the crack.

! 5", u”: £ is bounded; §,V£eL2(B)

~

(Az) For £f=u, u

uniformly in time; w,wfvvgeLl(B) uniformly in time.
(A3) The surface traction vanishes on the crack;1 that is,
if e is a unit vector normal to Ct, then g(g,t)g -0 as x

~

approaches Ct\(gt] from either side.

(A4) Given any bounded vector field v on 8,

lim [ s-y du= 0.
5-»0306

Assumption (A4) asserts that, for bounded "velocity fields",
the virtual power vanishes at the tip. By taking v equal to a
rigid velocity field one immediately concludes that (A4) rules

out the possibility of a concentrated force or moment at the tip.

Our results extend trivially to the case in which tractions are
prescribed over Cg, the initial configuration of the crack: we
simply replace integrals over dff involving s Dby corresponding
integrals over 3B + C,. Here an integral over (C, has the obvious

meaning in terms of integrals over the "two faces" of Co (cf.
(6.4)).

4 e e————— h
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Finally, (A4) is implied by the somewhat more stringent

assumption

The function &€ on [0,T] defined by

e=[sgua-E [ woaa (4.2)
28 8

is called the dynamic energy release rate. Here

k=2 4°

is the kinetic energy per unit volume.

To see that € is well defined, note first that, by (A2)
and the identity

.
]
i<

- 9.4, (4.3)
k satisfies
) .1 . . .
k,XeL " (B) uniformly in time.

Thus the existence of the second term1 in (4.2) follows from the

equation
(w+ k) = (w+ k)/— v (w + k)

and Lemma 2 with @ = -w = w+ k, o = (w + k)%

lThe first term is well defined.
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Let ® Dbe a regular subregion of . We say that ®

o
} surrounds the tip at time t if gteR and 3R intersects

! Ct at only one point.

Remark. Let R surround the tip at time to. Then in

a sufficiently small neighborhood of ¢t = t,» (2.1), (2.2),

e e “‘i—"ﬁ“.-“‘*mt)"ww‘ R T PN T - M

and the divergence theorem yield the energy equation

tag - :
; [ sgaa=F [ woa, ;-
| 3 (B\R) B\R

i and we can rewrite (4.2) in the form

»

. d
e=[g0a -5 | (whaa.
R

oR

Thus € 1is intrinsic to the crack tip; that is, the definition

of € is independent of the region R/ surrounding the tip.

Our first result gives an alternative formula for € in
terms of a boundary integral over a region which shrinks to the
crack tip, Z, - Wwith this in mind we give the following definition.
Let & Dbe a scalar-valued set function defined on the class of

all regular subregions of 8. Let Qoe]R . We write

%

lim &(R)
R—)zt

if given any € > 0 there is a & > 0O such that

o, - ®R) | < &
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for every region R which surrounds the tip at time t and

has area less than §.

Theorem 1. At each time ¢t,

e(t) = lim [ (w+3 vuldg - g™ ulnau (4.4)1
"t 3R

. / [ 1]
dlv(gTB) = §.v5’+ pB.Hf (4.5)
and, since
" " / 2
B=u-29u + Yu - Y., (4.6)

(AZ) implies that the right side of (4.5) belongs to Ll(B). Thus

(A3), (A4), and Lemma 3 imply that

r s.u’ de = j (S-VU/+ pﬁoUﬁda. (4.7)
g M~ ~ ~ ~ o
.} 1}

8

Next, by (3.2), (4.6), and (A2),

we=w- vV, k= K -vc(-g Ivcglz)
with
K = pﬁ-g’— p(g”— ZVCB’- vég)wvcge Ll(B). (4.8)
Thus Lemma 2 with
o =w+ Xk, h=w+ Kk, w=-w- % lvcle

1For a linear elastic solid a similar relation (containing -u

in place of 9,4y) appears, without proof, as Eqt. (13) of Atkinson

and Eshelby {1968}, and, with a sketch of a proof, as Eqt. (13)
of Freund [1972]).

 FREBETRE PG5 o e 1P 5 - T, PR R
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yields
?dt- [ (wik)da = j‘ (whk)da - f (w 4--% IVCB,Z)S.B du,
1 B 8
and this relation, (4.2), (4.3), and (4.7) imply
e=&®) - [ (w+k - g-99/- pi.u)da, (4.9)

!

where &(R) designates the integral in (4.4).

Now let R surround the tip at time t, where t is

fixed. Then the remark preceding Theorem 1 implies that @8

in (4.9) can be replaced by R:

e=a®) - [ (w+ K -govy- oii-dida.
134

Since the above integrand belongs to Ll(ﬁ), (cf. (Az) and




(4.8)), if we let the area of R approach zero, we arrive

at the desired result (4.4). D

Remark. It is important to note that (by definition) the limit

R - zt in (4.4) need not be confined to regions ® whose
diameters tend to zero. The chief requirement is that the area
of R approach zero. Thus, if Rb is the one-parameter family
of regions shown in the figure,

where each Rb is a rectangular

region which surrounds the tip

and has height §, width

independent of &, and horizontal

sides parallel +o the crack, then

e(t) = 1imj ((w+2 Joul®g - glv

ul}-'n du;
6 :aas

or, since g-y vanishes on the horizontal portions M, of .1
while the integrals over the vertical portions tend to zero as

6’

6 » 0,

1

e(t) = - gig I (§Tvc9)'2
Y
"

uTg 4.4

el

L4

o

o T T R W P My T 3 e




Henceforth, to is a fixed time in [0,T]. For convenience,

we write
d)
(4.10)
(dt tg

for the derivative with respect to t at ¢t = to' Also, given
a fracture field ¢, we write 9 for the function on B\ct

defined by

9, (X) = o(x,t).

Theorem 2.

d * [ [od M 1
ety = (g;)to {(8.-8,) -7y, + 0 (Q,-4,) -g,}dN da.  (4.11)

ot S—— ct

D —s

o
Proof. Let

3 (t) g8 avan - [ (wk)aa, (4.12)

8

n
ot e—s ¢t

r
i
J
oaa

so that, by (4.2),

e =3, (4.13)

The first term in (4.12) is equal to

t t

| 1 s, -0 r s ).

J j 844, 64 ax + i I (85-8,) *u, A4 dh. (4.14)
to [-}:) to of

1Cf. Rice [1965], Egt. (5). Rice considers infinitesimal strains

and time-independent applied surface tractions.
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f

Since i

t t ;

a . » . . %

] weohaa=-T [ 45 wa,

toas toaﬁ g

(4.10) applied to the second term in (4.14) vanishes. Thus %

t E ;

(?dt-)t [ I g3 war= (Ec}:')t f J ety O = (ﬁgE)t .r Bp (8B )W
©t o8 °® t ©aB °

and, by (Az)-(A4), (2.2), (4.1), and the divergence theorem
(Lemma 3), this equals

d ) *e
(‘&')t .! (S (9 -Yu, ) + ofi - (u, -y, )lda; (4.15)

hence (4.13) vields

1] e(t,) = (a%)toj (Be" (8e7m¢ ) + Pl (Be-Be ) - (wk))da. (4.16)

B
Clearly,
t
§t'(v5t_v5to) = j S¢ 98, dr
to

for points x not on Ct. Thus, since ct is a set of (area)

measure zero in R, both sides of this equation may be integrated

over B to give

[ 8¢ vy -vu, )da = ¢ °%3, A\ da.
(1]

o

»—
e ¢t

o




R

Similarly,

p -u aa da,

d“—ﬁﬂ

4, -(g -y, )da =
gpgt -3, )08 ‘{

and, using (2.1) and the definition of X,
t

ct

d

at | woaa =& [ [ cwan aa =& [ [ (5,098, + o, -5,)an aa.
Bt

8 ts
The last three results and (4.16) yield (4.11). L]
Remark.1 It is clear from the remark preceding Theorem 1

that & in (4.11l) can be replaced by any region & which

surrounds the tip at time to.

1T‘here is much confusion in the literature concerning results of

this type (cf. Gradin's [1979] correction of a misconception of
Luxmoore and Morgan [1977] in the quasi-static theory).




5. Partition of &£.

Theorem 2 allows us to write

C(to) = u(to) + M(to)

with t
_ (& s
o
f t°
t (5.1)
— i (4] [13 .
k(e = (dt) tg [ o8y 8, o aa.
8 t

X represents the contribution of inertial effects to the energy
release rate, while . gives the value the energy release rate
would have were this dynamic contribution neglected.

For a linear elastic material, with positive semi-definite
elasticity tensor, or, more generally, for a material which is

stable in the sense of Drucker [1964],

u> 0,

The next theorem, which is our main result, shows that, to the

contrary,
X < 0;

hence the effect of inertia is to reduce the energy release rate

from the value obtained using the quasi-static formula (5.1)1.

- WO T G A

L ae
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Theorem 3. Assume that u 1is continuous at t_ in

sense that

lim sup [u(x,t) - u(x,t )| = 0.
tot  xcB ~ ~~ o
o ("]
Then
= (4 £ % -g
Kltg) = (dt)t I 2 B8 )-(gp-n, )aa,
(o] 8 o] (o]
= (&
= (dt)to I 2 (Be78¢ ) Yo (r) By, )da,
8
= - d) [ £ |v (u,-u )|2 da;
%_t-toé 2 Ve(t) '~

hence ¥X(t
hence ¥(t,

Proof, Since

t

[ @ -8, ), @ = (U8, )-(u.-g, )

dt ~t to A ~t to ~t ~t°’
o)

we can write (5.1)2 as the right side of (5.3)l plus p/2
d
(E)t I¢1 da,
°g

where

1t

91(6,8) = | @ + 8 - 28,5, .

t

(o]

Thus, to establish (5.3)1 it suffices to show that (5.4)

18

(5.2)

(5.3)

times

(5.4)

vanishes.




For convenience, let

A simple calculation then shows that

oy = (@ + 83 - @ -3d.

Next, in view of the identities (4.3), (4.6), and

It is easy to verify that ¢ = 9, - 9,5 U, and w obey the hypotheses

of Lemma 2; hence

ws " II._ /_ 2/ _3
a=u" - 3VQB 3vég vag + 3v°2 + 3vcvég vcg,
we have
(91-9,) " = 0 + 9w,
where
H
_ 2 2
- =8 (vco - vc)Bo’
i $ = (u” - 39 u" + 392~ 39.u'+ 39 9. - v.uleg - (B - ) -u
- ~ o~ c o~ € g o
|
= + (' ~2vu/-9u- (@ -29 u/ - v.u)}vu
[ ~ &~ c _~o & ~o o~
; o o
- + 2g:9,9 u_ + u-(v2 - vz Yu
ii VeVl + BV, c,’'~o’
s‘ =—-2 .
I w g ch + vcg vcg.
]
|
[

é% f (9,-9,)da = I b da + [ wc-n d44
8 8 28




20
and since
'b(,}.f:to) = w(?_f;to) = 0,
it follows that
d
(a_{:-)t f (gpl—tpz)da = 0, {5.5)
°g
Next,
j ¢2da =0 at t = to;
f
hence
d) .
- o,da = lim ¥(t_,t)
(dt t, £ 2 tot o*""?
o
where
_ 1
Yt _,t) = = j 9, (%,t)da_.
R o d

Let e = ¢/[c|. Then

_ 2 2,2
® =9 (So's )vego’

sO0 that
2 2
(o)

-
~o ~

2
W, ) | < (s't;p lu-u f |92y, lda,

f

t-t
o

and, by (5.2), this tends to zero as t = to’ since vzgoeLl(B)

and
2 2
<2-c l
T
o]

IC 'é .

~Q ~0O

(€o-8) - (cote) I S
t-t 2
o]

— T

s apcatcdnad sl

e S

o -
PRI & TR
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Thus
d
(aft')t I ¢2da =0 (5.6)
°g
and (5.5) implies that (5.4) is zero:; hence (5.3)1 holds.
Next, define
¢3 (:‘é":‘io) 9>
so that (5.3)1 becomes
=24
X(t,) = 2(dt)t .,r v3da.
o
8
A simple calculation shows that
P =v + 92g -
3 AV T 9y
. . u“ ‘_ - v ’
v = 80le - 29 Ve - (g - 2% Bg - e B, (507

o o
and, by (Az), y,&eLl(B) uniformly in time. Thus ¥ obeys the

hypotheses of Lemma 1 and

é% I v da = I v da.
f 8

But &(5,to) = 0 for almost every xeB; hence

d »
(Eﬁ)t JVda:O’
°a

and, by (5.6) and (5.7)1, (5.3)2 holds.
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Next, let
8 =g-vg=73v.(g%,
so that
VB = lvcglz + g.vgg. (5.8)

Clearly, VBeLl(B). Consider the regions Rb and Bb introduced
in the proof of Lemma 1. Using an argument similar to that given
in the first paragraph of the proof of Lemma 2, we conclude that

J Bc-.n d4 = lim Bc-n 44 = lim f v.p da = I v.B ada.

5-0 §-0
-1 7} aaa 36 8

Since the left side of this relation is a C1 function of time,

and since B and é vanish at t = to’

d = {4 _
(Ti'E)t r VB da = (dt)to dr Bo-n v = n
°g 28 28 =t

thus we conclude from (5.8) that

e, [ avois on - (&) [ rear®
° g °g

and (5.3)3 follows from (5.3)2.
Finally, since the integral in (5.3)3 vanishes at t = 0

and is > O otherwise, X(t)) < 0. []

Remark. It should be emphasized that uw and ¥, separately,

do not generally represent rates of change of strain energy
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W= [ w da
8
and kinetic energyl
K = I k da.
8

Indeed, it is clear from (5.1) that

u(to) -ﬁ(to) + (é%)to J §t'(vut'v2t )da,
68

(5.9)

iy d 13
Kltg) = -Klgg) + (dt)t [ o8- (ue-u, )aa.
o] 8 (o]

When the power supplied by the environment vanishes, i.e., when

[ 88 aa=o, (5.10)
a8 ~

the last two terms in (5.9) sum to zero (cf. (4.15)), but are

generally not individually zero, so that while

W4 XK= -W - k,
in general
u# -ﬁ, X # -K.
This is in contrast to the quasi-static theory for which u = W ;

when (5.10) holds.

1Cf. the theoretical studies of Hahn, Hoagland, Rosenfield, and
Sejnoha [1974], Freund [1977]), and Popelar and Gehlen [1979],
where actual curves are given for strain energy and kinetic
energy as functions of crack length,

e o e B
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Remark. The definitions (5.1) are intrinsic to the tip;
that is, (5.1) are invariant when 8 is replaced by an
arbitrary region ® surrounding the tip. 1Indeed, if we
replace each integral over B8 in (5.1) by an integral over ®
plus an integral over 8\R, and interchange this integral over
B\R with the time derivative at t = t,» we find that the terms
involving 8\Rf vanish.

In view of this remark and the remark preceding Theorem 1,
€, u, and X are possibly more closely related to the dynamical

behavior of the crack than W and R, since W and K are

generally not intrinsic to the tip.

bttt
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i

i

6. The energy release rate for a linear elastic material. 2
We now restrict our attention to the linear theory for which g

- f

1 4

S = GV, w =3 1-.Cvu (6.1) £

with C, the elasticity tensor, a symmetric linear transformation

e § W

(at each point of B8). Of course, symmetry is the requirement

that
A‘CB = B°CA
~ P -~ P

for all second-order tensors A and B.

Theorem 4.

_1fa) g (v~
vitg) = Z(dt)to J BeRe ) (T8 )2,
1} o
1(d . 1
= 2(dt)t ] (9w -vu, ) -C(Y4, -y, )da, (6.2)
(o] 8 (o] o
_ (g ¢ , ey
E(ty) = 2(dt, ty | {(ﬁt‘§to) (VHt‘VBtO) + o (U, }_l,to) (u, gto) }da
8

Proof. As in the first few steps of the proof of Theorem 3,

we can decompose h(to) as follows:

t
h(to) = —( ) J (~t t ) . (Vu -Vu )da + J_[ (S t+§t -zgx)-v'\:b\ an da).

Bt

[o]

Since C is symmetric,

Re "8 = Re "8e

i
1For (6.2)1 cf. Bueckner [1958], Eq. (15): Rice [19653], Eq. (19) .
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and thus, by (2.1) and (6.1),

~t

t
] Getse -28,) %8, an = (g5, )+ (@ -vu ) - 2(w-w ) = o,
t o] (o] (o] (o]

o

which vields (6.2)1 2° The result (6.2)3 is a direct consequence
2
of (5.3)1Aand (6.2)1. []

For t > to let

c = Cc.\¢C
tot t to
denote the portion of the crack between 2 and Zi- In the
o
statement of the next theorem we write
I S '8, W (6.3)
Co ¢ ©
to
for the integral of 8. 'y, over the "two faces" of C ; that is,

tot
writing

Bi(ﬁ:t) = lim u(x + 8n ,t),
501" ~

(x,t) = lim S(x + 6n+,t)n—,

u,

for all zeCT (x # 5t)’ where gi =+ e with € a unit vector

perpendicular to the crack, then (6.3) is defined to be

+ 4 - -
f g up v | gp_up 9 (6.4)
¢ ¢
tot et

Also, in what follows the notation (4.10) designates the right-hand

derivative at to.
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Theorem 5. Assume that si eLl(cT). Then

~t°
1/d
8(1:0) = - E(EE) to ur st ‘U, a4,
c
t t
° (6.5)1
1/d
= - '5(?15)1: .,r s(x,t,) -ulx-L(t),t )des,
c ~
tot
where L(t) = Zy - Zp -
o
Proof. By (6.2)3,
= 1[4
e(t,) = 2(dt)to [ v aa, (6.6)
8
where
v = (8-8,) 99 + o(¥-E ) -g. (6.7)

(Recall that g = B-go.) Consider the region Ry = B\{Oé(to) U ﬂb(tﬂ

and fix te(to,T]. By (2.2},
— L T
y = div{(g-g)"g].

We therefore conclude from the

divergence theorem and (A3)

that

1For the quasi-static theory (6.5)) was derived by Bueckner [1958]
(see also Rice [1965]), while (6.%)2 is essentially contained in the
work of Irwin [1957, 1958]. For the dynamic theory a heuristic
argument in support of (6.5); was given by Erdogan [1968]. The
observation that (6.5) require separate proof in the dynamic theory,
and that such a proof is probably non-trivial, is due to Freund
[1972], who notes that (6.5) yield "the correct result for all
problems for which a solution is known".

e e s L

;
i
£
i
¢
)
4
&
i
:



where the last integral has a meaning analogous to (6.4). Clearly,

’E!

i

;

28 !

i

. ?
J ¥y da = %
By g
[ es)-gaw- [ (sg)-gas- | (5-20) g e+ [ (5-85) 9 & |
28 30, (t,) a0, (t) BsNC, ;
o 5

{

[ sgavaso
a0, (t)

as & = 0, because both § and g are bounded near 2

Similarly,

J‘ go-g dsar -+ 0,
306(t)

On the other hand, since g is bounded, (A4) implies that

| sorgav-o, | sgav-o,
20, () 20, (¢)

and} by (A3)’

Further, since §° and 1, are continuous across 86 N Ct £

| gogo =0,
8.0C
] tot
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and, since §§€L1(CT) and u 1is bounded,
- | somaw= [gomam
. 8,.Nc c
& 6 et tt
‘ Thus
I vy da = Jgircr; f y da = | (s-8,)(u-u,) d - j So'u 44,
6 8 )¢ Ci ¢

where we have used the fact that, by (6.7) and (Az), veLl(B).

This relation also holds at t = t since (by definition) the

o’
integral ov:r Ct £ is zero. Thus, since
o)
-1 ) (s~s )+ (u-u )da = r {(s~-s )su + s-(u-u_)lde =0
dt tOJ ~ ~0 e~ ~0 J ~ ~0 ~ ~ ~ ~0 b4
. of o8 t=to

this relation and (6.6) imply (6.5)1.
To establish the equivalence of (6.5)1 and (6.5)2, it clearly

suffices to prove that

u(x,t) - u(x-L(t),t,)

im [ g(x,t)-( Jaa; = 0. (6.8)
totd o - © t-t e

t t
(o}
Writing x = z, + L, Wwe see that

~

B(?j:t) = E(Et"';’t) ’

BE-E(0),€5) = Bz, +Et)-

(o}
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Thus (cf. the paragraph containing (3.2)) the quantity in { ]}

in (6.8) is bounded in absolute value by

/
sup |u],
8% [0,T]

which is finite by (Az). Thus, since g%eLl(qT), (6.8) follows. []
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