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Abstract

Using a constitutive equation and anti-plane shear 
field

introduced by Knowles, we show that the expressions 
of Irwin

and Achenbach for the energy release rate are not 
generally

valid for non-linear elastic materials.
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On Irwin's and Achenbach's expressions for the

energy release rate

Chikayoshi Yatomi

Department of Mathematics
Carnegie-Mellon University
Pittsburgh, Pa. 15213, U.S.A.

1. Introduction.

Several expressions for the dynamic energy release rate, e,

for a straight edge crack have been presented more or less on the

basis of intuitive arguments. In a two-dimensional field, most

simple1 and notable among these are the expressions given by Irwin

[1,21 (see also Erdogan [31)

e(tl ( (X,t .u (x- (t) ,tdA x  (1.1)

and by Achenbach [4-7]

e(t) = - f s(xt) .u(x,t)dAx, (1.2)

Ct

where s is the surface traction, u is the displacement, Ctot
t0

is the portion of the crack generated in the time interval fto,t ,

t(t) = z(t) - Z(to) with z(t) the position of the crack tip at

time t , and Ct  in (1.2) is some portion of the fracture plane

which contains the tip z(t) 3

1in the sense that the expression requires a knowledge of stress and

displacement (or velocity) only on the fracture plane.

2Cf. Gurtin and Yatomi [8] for a proof valid within the dynamic theory.

3Here an integral Ctot or Ct has the obvious meaning in terms of

integrals over the "two faces" of C tot or Ct
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In [3] and [5] the above expressions were deduced from an

overall energy balance in a neighborhood of the crack tip by

regarding the problem as a half space with time-dependent

boundary conditions. We note that (1.2) has an ill-defined

integrand, while (1.1) is given in terms of a well-defined,

integrable function.

It was shown by Freund [9], using the flux integral expression

for the energy release rate and applying it to the boundary of a

rectangular fixed region R surrounding the tip (Figure 1), that

(1.2) is given in the limit as 6 -, 0. Freund then computed (1.2)

for some known linear elastodynamic solutions using the result1

d- (-v) - Z (1.3)
1-0 lV 2 (-)1/2 2

r fracture plane

z~t

E

Figure 1

1The first evaluation of (1.3) was given in the Appendix of
Achenbach and Nuismer [6] and in the corresponding "Erratum" [7].

4 1
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which was established with the aid of Parseval's formula for the

two-sided Laplace transform, where H is the Heaviside unit

step function.

Freund's interpretation, however, is at most formal. Even

if the value of e is the same for all loops as they are shrunk

to the crack tip, we cannot, in general, conclude that

lim lim .(xt) (x,t)dA/= - lim s(x,t)- (x,t)d M, (1.4)

where Ct = Ct(c) is the portion of the fracture plane contained

in R. The independency of loops guarantees that the left-hand

side of (1.4) gives ?(t) correctly, but does not say anything

about the validity of the right-hand side, since s-. is not,

in general, integrable on ZR uniformly in 6 > 0. Further, the

value of the right-hand side vanishes, unless you consider generalized

j. functions, since the integrand vanishes almost everywhere on Ct.

In spite of this defect in the mathematical proof, this method

is interesting and has advantages, if it is correct, not only in

that it requires a knowledge of s and u only on Ct, but

also in that it may be valid for more general materials.

It is important to note that Achenbach's argument in support

of (1.2) is not necessarily confined to linear elastic materials,

and the interpretation of Freund discussed above, which uses the

two-sided Laplace transform to evaluate the ill-defined integral,

iFor a more precise proof, cf. Gurtin and Yatomi [8], Theorem 1
and the Remark following it.
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might also be valid for more general materials, since his flux

integral expression for e has the property. In fact, the

form of the integrand in (1.2) suggests the validity of this

expression independent of material considerations; on the other

hand, since (1.1) involves an expression for work which is valid

only for linear behavior, (1.1) is probably not generic.

It is the purpose in this paper to examine (1.1) and (1.2)

for quasi-static crack extension in a non-linear elastic material.



5

2. Examination in a class of non-linear elastic materials.

To make the discussion simple, we consider the quasi-static,

finite and anti-plane shear field analyzed by Knowles [10]. The

material was assumed to belong to the special subclass of in-

compressible elastic materials defined by the constitutive equation

= ( (1 + .b 1u12)n _ 1,
2b n - .9(

where w is the strain energy per unit undeformed volume, 4

is the infinitesimal shear modulus, n is a hardening parameter,

b is a material constant~and u is the out-of-plane displacement.

In the case of anti-plane shear, to evaluate (1.2) we need

the first-order asymptotic solution for the Piola stress a3 2

and the out-of-plane displacement u in a neighborhood of the

crack tip. Using Knowlest [10] solution and notation, they are

bn-1 A -2 n- n- i 2 ( n - I ) + I/ 2 n  1

a A .(2n-1) 1n0(21
32 22n-1 n4n+i/2n_7/2 r 1-l/2n on 6 = 0 (2.1)

uA l-1i/2nu 1/2-1/2n r on = r (2.2)
n

as r -*0 where r, 0 are polar coordinates at the crack tip

(see Figure 1) and A is a constant related to the stress intensity

factor.

Employing Parseval's formula for the two-sided Laplace

transform, we obtain a generalized formula for (1.3):
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SH(v) H(-v) 2 sinp' Pl (2.3)
-co v I1 - p (-v) l-q d 23

0 ~V'~ v, p+q>l1

where p > 0 and q > 0.

Then, following the method of Freund [9] or Achenbach [5],

that is, introducing (2.1) and (2.2) into (1.2) and using (2.3),

the energy release rate e is given in the form

A2n 7PI- (2.4)
bl1-n g(n)

where

S(n) (4n4) n sin 7r/2n

n2 (2n-i) 2n-1+1/2n

and c is the velocity of the crack tip.

Similarly, introducing (2.1) and (2.2) into (1.1), but using

the relation

8(v--a)p--(0_v)g-ldv =($_CL)p+q-I F(p) F(q) (~ )

r(p+q) (P'q > 0),

where r is the gamma function, we find the expression (1.1),

which has been proved only for a linear elastic material, gives

the same value as (2.4).

On the other hand, using the well-known relation (cf. e.g.

[11] )

4-----
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8 I(wce - s .'7uc) dA'

(which is valid for non-linear elastic materials),where P is

an arbitrary regular region surrounding the tip, the energy

release rate is given in the form

A2n rp
= blnf(n) (2.5)

where

4n

f(n) = 2n-1 2
n(2n-1) (2n -2n+l)

Since g(n) 9 f(n) in general, we find that the result (2.4)

does not agree with the correct value of e given in (2.5).

It is interesting to note, however, that since

f(n), g(n) - 4 as n - 1

and (2.6)

f(n), g(n) - 2 as n - 1/2,

the differences between (2.4) and (2.5) disappear for a linear

elastic material (n = 1) and for an elastic material which

behaves like a perfectly plastic material in loading (n = 1/2).

The result (2.6)1 is not surprising, since (1.1) is known

to be valid for a linear elastic material.

lWe use the results (5.18) and (5.19) by Knowles [10).
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3. Conclusions.

The expressions of Achenbach and Irwin lead to a value

for the energy release rate which is generally incorrect, at

least for finite anti-plane shear of the material defined by

(*) with n yd 1/2, 1. For n = 1, these expressions give the

correct result.
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