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INTRODUCTION

Unsteady aerodynamics play an important role in aircraft response, aircraft loads,
vibration environments and flight systems analysis; this role is becoming more significant
with the advent of active control technology (ACT). For internal flows in engines, turbo-
machinery and helicopter rotors, unsteady aerodynamics are dominant features,

The course was aimed at those either working in industry on dynamic problems in
which there is an unsteady aerodynamic input or involved in research and development of
unsteady aerodynamics and its applications. The course provided a basic understanding
of a range of related unsteady flow phenomena relevant to aeronautical applications, an
awareness of the current state-of-the-art of prediction methods and an appreciation of how
unsteady aerodynamics are applied to contemporary practical problems.

The course covered the following areas:

- aqualitative understanding of the character of unsteady flows at subsonic,
transonic and supersonic speeds, including viscous effects for both attached
and separated flows.

— an outline of the contexts in which unsteady aerodynamics are required for
aircraft stability and control, flutter, aircraft dynamics response, ACT, turbo-
machinery vibration and helicopter rotor operation.

— asurvey of the state-of-the-art of the current prediction methods with particular
emphasis on recent developments in unsteady transonics.

— adescription of contemporary experimental techniques and apparatus.

The Director of the course was Professor G.J.Hancock of Queen Mary College University
of London, UK. The local coordinator was Professor J.Sandford of the von Kdrm4n Institute.
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SOME INTRODUCTORY CONCEPTS BASED ON THE
UNSTEADY FLOW ABOUT CIRCULAR CYLINDERS

G.J. Hancock,

Dept. of Aeronautical Engineering,
Queen Mary College,

University of London, U.K.

1.  RANGE OF UNSTEADY FLOW PHENOMEMA

To begin with, the various categories of unsteadv flows wkich are of current interest in an
atrcraft context are briefly outlined.

At the relatively low response rates associated with aircraft controllability and manoeuvrability
it is necessary to understand the unsteady aerndvnamic flows about a whole aircraft configuration
throui_;hout its flight envelope of Mach numher, altitude and range of manoeuvres, extending for combat
aircraft to post-stall gvrations, following departure from controlled flight, where the aircraft motions
are highly complicated. Combat aircraft can operate at high angles of attack where flow separation and
flow breakdown inevitably occur hence it is necessarv to understand the rates at which flow separations
develop in both symmetric and asymmetric conditions, to be able to describe the separated flow fields,
to understand how a separated flow fiéld convects downstream aft of the main wing and forward fuselage
in order to estimate the time-dependent interference effects on the horizontal and vertical tail units.
Sometimes the separated flow field is well behaved as for strakes and delta wings but usually the
separated flows break down and become indescribable. The development of understanding of such unsteady
separated flows coupled with the highly non-1inear behaviour of a compressible flow field at high
subsonic and transonic speeds is a daunting prospect, especially when it is appreciated that combat
aircraft have complex configurations, including variable sweep, closely coupled main wing and tail unit,
and a range of store and missile attachments. In addition, it is necessarv to be ahle to predict the

aeredynamic loads due to time - varying deflections of contre] surfaces, spoilers, étc. from the point
of view of contro] law design for manoeuvre demand systems, auto pilots, for terrain following,
stabilisation of inherently unstable aircraft, spin prevention systeéms, etc.

Moving on to the faster response times associated with structural response, the problem is the
consideration of structural Mmic motions superimposed on those of the overall aircraft motions
described in the previous paragraph. The stability of the higher frequency structural modes, namely
flutter, has been studied on the assumption that the problem is a 1inear one; at subsonic and supersonic
speeds in attached flow there is some justificatfon for this assumption but not at transonic speeds or
when flow separation occurs. In broad terms, it is necessary to predict airloads on wings, fuselage,
and tafl unit, when the modes of structural deformation and their time behaviour are specified. The
objective is to ensure adequate flutter margins and to ensure adequate structural strength in manoeuvres
and in atmospheric turbulence, including structural fatigue assessment. Structural strength in
atmospheric turbulence is particularly relevant to transport aircraft whose main wings are often gust
designed.

It is not appropriate to attempt review the current state-of-the-art of unsteady aerodynamics at
this stage. However, it may he appropriate to make one or two points. It s convenient to regard the
wide range of areas of interest in unsteady aerodynamics into the following categories:
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i) attached flow in subsonic and supersonic streams

ji) attached flow at transonic speeds

iii) separated flows

iv) self induced unsteady flows.

In the AGARD conference in 1977, on linsteadv Aerndvnamics (”, Ashley stated, and Bergh repeated
in his sumary(z). that.unsteadv attached flows at subsonic and transonic speeds are sufficiently well
understood on the basis of 1inearised theories. 1In relative termms, such a statement is uncontroversial,
taken together with the follow up statement by Asmey“) that it 1s inadvisahle to continue with the
refinement of linearised theories when there are more fundamental problems which need attention. However
there are still areas of concern with the flow attached:

i) at low frequencies, the so called dvnamic stability derivatives, especially those involving
interference,required to assess aircraft performance and afrcraft handling qualities are not too
well understood, prediction methods tend to be empirical and differences appear between flight and
wind tunnel measurements;

ii) very little work on lateral or asymmetric motions has heen done and what has heen done is not
reassuring;

ii1) there is the effect of flow through engines, together with efflux interference effects, on steady
or oscillatory loads, an area which has been neglected by the unsteady aerodynamics, and which could
well be important in the context of vectored thruyst;

iv) while accepting that oscillatory linearised theories are satisfactory for the prediction of flutter,
there is the element of doubt of whether the same prediction methods are adequate for control law
design in ACT applications;

v) only superficial attempts are made to modify theory hy incornorating measured data.

Progress at transonic speeds is well documented and these aspects are given prominence in this
Lecture Series.

Understanding of unsteadv separated flows is still in its infancy; 1ittle can he said apart from
the case dynamic stall in the context of two dimensional airfeils oscilating in and out of a separated
flow regime, a problen of importance in helicopter rotor dynamics and discussed later in the Lecture
Series.

Self induced flows, primarily huffeting, although of considerahle importance are not gciven undue
emphasis in this Lecture Series mainly because of the necessity to 1imit topics for inclusion.

2. WHAT IS 'UNSTEADY AERODYNAMICS'?

Unsteady aerodynamics can he said to be those flows whose character are time dependent. Such a
statement, although factuallv correct, is neither instructive nor indicative of the various ways in
which time variations can occur. However, in order to be more precise, it is necéssary to invoke
immediately mathematical concepts (this statement is made with a sense of apology since the apparent
haste to present mathematics so early on an introductory paper is an admission of inadequacy).

Fluid velocities are normally defined in the sense of Euler where w(xy =z€), vixyz €) and
w(x,y,z,e) refer to the fluid velocity components of elements of fluid which are instantaneously
passing through the point(s)(x,y,z) at time € . Now the reference point (%,y,Z) is itself defined
relative to a specified axis system. A flow which is 'steady’ relative to one axis system can be
“'unsteady’ relative to another axis system; for example for an aerofoil moving at a uniform velocity
through afir at rest, the flow is 'steady' relative to axes moving with the aerofoil but 'unsteady’
relative tn axes fixed in space, although in both treatments, the pressure distribution and the overall
forces on the aerofoil are independent of time. If however the aerofoil is moving with a time dependent
velocity then the problem is unsteady whatever axis system is taken.

It might be argued that a problen is unsteady if its solution involves time as one of the
independent variables in all possible axis systems. Aqgain, such a definition can introduce an element
of doudbt for it is not clear whether it is the answers befng referred to or the mode of solution, for
example, an aerofoil at zero incidence accelerating at a uniform rate in an inviscid, incompressible,
fluid needs to be solved as an ‘unsteady' problem vet the drag force is constant independent of time.

In general, a problam will be unsteady if the houndary conditions vary with time, However, the
corollary s not true, a problem with steady boundary conditions can exhihit strong unsteady features,

e —
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for example, the steady stream of a real fluid past a statfonary circular cylinder or buffet arising
from shock wave - boundary layer interactfons. This 1ine of thought leads on to the observations that
by far the main predominant unsteadv aerodynamic phenomemon is turbulence ftself, often associated with
the generation and propogation of acoustic noise. In the Lecture Series because of 1imitations in time,
it is necessary to be selective on the topics discussed. The emphasis here is on those aspects of
unsteady flows which affect response characteristics efther of aircraft as a whole, or structural
components, or compressor or turhbine blades or rotors. Neither the nature of turbulence nor the
generation and transmission of noise are discussed as primary topics, although reference will be made
to the effects of turbulence and its modelling in unsteady boundary layers and separated regions.
Acoustic radiation from deterministic (as distinct from random) sources is included because it is the
basic ingredient of linearised compressihle flow theory.

3. SOME INCOMPRESSIBLE INVISCID FLOWS ASSOCIATED WITH THE MOTION OF TWn DIMENSIONAL CIRCULAR CYLINDERS

3.1 Basic Equations

This lecture is entitled 'some fntroductory concepts'; so to start at the beginning it is thought
that a number of such concepts can be most simply illustrated by consideration of the motion of a two
dimensional circular cylinder in an inviscid incompressible fluid. It is hoped that these illustrations
give some insight; although inviscid flows around circular cylinders are of 1ittle direct practical
value in their own right, transformation techniques can lead to results of practical usefulness for two
dimensional aerofoils or slender wings.

Consider first the basic equations of an inviscid, incompressible fluid in a two dimensional motion.
Let OXY represent a set of axes fixed in space and let ([(X)Y, ’) V(X Y, c)denote the velocity components
of an element of fluid as that element passes through the point (X Y) at time T as shown in Fig. 1.

% \/()(’V‘T) The basic equations are:
- M oV
u(x,r T) continuity XY o,

N motion f::_g% zlo[gfl_f(,g(gvéiflu--)ég
e Py =3

If the flow is irrotational, a velocity potential f(X,Y.T)exists such that

u- 95 , V= 5_2
1P [(lzﬂ/a] +/"é—;£ - Fa. (4)

Next consider an axis system oxy moving with velocity u.fr) in the positive X direction; denote
ulx,y,€), v(x,y,6) as the velocity components of an element of fluid relative to the motion of the axis
system as the element passes through the point(x,y) at time € (where €=T ),

Y -,-;,,__ y vy e) =X Y, T)
by = U Y T) -(LCT)

XY

then from egns.(2)

= ff(u:).{y
pee —U®

On transformation eqns.{1,2) become:
au + JJ‘ -0

LGl Vs w]- 'a.
/oLé%c' +u3d".a.)‘rj .-




Thus, if J(L/ée 1s zero (i.e. U.&) constant) the basic equations remain invariant under the
transformation of axes even for unsteady flows, retaining the dufpe  term, If U.(t') i{s not uniform,
eqns.(6) hold. And at infinity

wGny), - uxym - U N, vy, g mUKYT) O

, — oy , -'tc
An example for the reader derive the equations of motion relative to an axis system whose origin
moves accordingly to the formula xe, Y(‘r)) with the axes orientation varying as &(T).
If {Ll(XYT) V(X,YT)‘I‘IS an irrotational field then {u.bz,),(‘) c'(!,.j;%is also an irrotational field,

so a velocity potential § exists such that

wboy )~ ¢, o(x,9,¢) *%. (8)

Integration of eqn.(6), using eqn.(8), leads to:

. . (9)
v 4pleo) + 0 3 (§ o L®) - F&)

3.2 Non-Circulatory Flows

Consider the flow past a stationary circular cylinder of radius L placed in a stream of velocity
Ll,,o(r) . The static pressure of the free stream decreases in the X directfon to acconmodate the

accelerating free stream as shown in Fig. 3.
The basic equation, since the flow is irrotational,
is, by combhining eqns.(1,3)
ve =o, (10)
subject to the boundary condition
H| -0, d| =Uo M
OR .2, X 1g=ea

The solution of egns.(10,11) is

dR 6T~ ((,,(T)(R+ ‘R:é )coso‘ (12)

P=Pw
On the surface of the cylinder, hy reference to
eqn, (4),
. 4 4 swi0 + ) (13)
u (‘) P p(U'Mv- ,oJ_‘{;)&me “Pat3 pu..)
P’ P /, X ‘) Defining the force f‘; acting on the cylinder in the
X direction,

FX = - Sk@‘Pm)CGO &‘d@
FIG. 3 = /o‘?nz:o)u“/ﬁ,.

Next consider a circular cylinder of radius Z._ moving with velocity LL(T)in fluid at rest with
ambient pressure P, as shown in Fig, 4

lY‘——
X

ombient

presswre P'°

(14)

FIG. 4

This problem can be considered in two ways either, relative to OXVaxes fixed in space, or relative
to axes exy moving with the cylinder.
Relative to fixed axes OXY the basic equation is again
V¢ =o (15)

subject to the houndary condition
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R = R T ——

1-§

[Llcasm\/s..e]x - U R s = (M) ces®, (6)
yg E;Sms
ER_.“) =0 (an

The solution to eqns.{14-17) is

Gy 1) = - WO RE(X- [ W)

h — —=- (18)
[(X-LRET5 v°]
On the surface of the cylinder, by reference to eqn, (4)
'P + —(ou (-') 4-{0( auv&cos@ + (.L LT)(l Zm’&)) = P - (19)
Alternatively, relative tn moving axes oy, the basic equation is
V¢ =o (20)
subject to the boundary condition .
ég‘! =0 of = -([©). (21
v =R ‘ 0% [ 4opas
The solution of eqns.(20,21) is
f("“: 8 €)= - Uo(t) cas® (f* Rck ); (22)
so that on the surface of the cylinder, by reference to eqn.(9)
2 i L : - ” (23)
P+ _-.‘,L‘o (L(t)481n (4] /pggo?,_ms& P,., *jL/O a’("‘)

It can be seen that the pressure relationships given by eqns.(19,23) are identical.
The overall force f‘, in the direction OX(zm.)'is, on integration of either eqn.{19) or eqn.(23),

f@ “Po)cos 8 Redo = —/of\R¢ Au .

By comparison of eqns.('|4) and (24) it is seen that the 'drag’ force acting on a cylinder held in
an accelerating stream is twice the 'drag' force acting on the cylinder when it is accelerating at the
same rate in still air., This result is an important one, emphasising that, in general, the forces acting
do not depend solely on relative motion of a cylinder and the outsfide air.

The drag force given by eqn.(24) is usually referred to as the apparent mass force.

It is noted that a sudden change in velocity from one steady forward velocity to another is
accompanied by an impulsive drag force.

It follows from the preceding analysis that if the centre of cylinder has velocity components
(L,(T)ch(T) then the ‘drag® forces proportional to Au,azT and Nof,— in theX and Y directions are simply
superimposed.

Interesting compounded problems can be formulated. For example consider cylinder of radfus Rc
moving at velocity (L(T) in the steady potential field associated with a source situated in a fluid
otherwise at rest as shown in Fig.5; it is left to the interested reader to evaluate the forces (assume
Re=<H)-

Although in the example of Fig.5 there are non-

- 1inear pressure terms coupling the effects of the
U.(r) f cylinder velocity and the relative time varying
] source velocities at the cy)tnder, the forcesare
| 1inearly superimposed with the Y force due to this
i:::’ﬁew%‘_ | source field being twice theX force associated ]
m/se< with the motion (i.e. o) ). !

Fl6, 5
3.3 Circujatory Flows
Consider the flow about a circular cylinder which is moving with a steady ve'loc1tyu, in a fluid at
rest such that a specified point & on the aft surface, defined by the angleat, is designated a separation
point as shown in Fig.6. This additional feature is represented by the introduction of a steady
¢irculation
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Taking axes fixed in, and hence travelling with the
cylinder, the velocity potentfal which satisfies
eqns, (20,21) with [L(ﬁ) constant is

f(",@) = "LL cese(n?ck) + E:_? (25)

sheanline To make f(';o) single valued, 1t is necessary to

velahve introduce a ‘cut' in the field across which &
o cjh'nde:- decreases by Ax i it is convenient to take:this cut
FIG. 6 along the downstream streamline, originating at the

rear separation point S-
Since the point S, defined by the angle « is designated the separation point, it follows that

T =4x U, R sine (26)

And on integration of the pressures around the surface the standard formulae
27
L.fe =f>u°r ) :DM3 =0 (27)

are obtained.

Next consider the case where.the velocity of the cylinder varies with time, i.e. u,(‘—‘) » With the
specification that the same point S on the cylinder surface remains a separation point. It follows that
the circulation! 1is now 2 function of time

From Kelvin's theorem, the total circulation around a closed curve remains constant as that curve
moves with the f]uid, this result holds with stationary or movina axes. Thus if the circulation around
the cy]inder.P increases with time then vorticity of the opposite sign is created, which is then
convected downstream of the cylinder as shown in Fig. 7 where %‘é- and ';.g are assumed to be positive.

The total circulation around the shed vorticity will be —f'@))assuming that the motion started from zero
velocity.

It is this shed vorticity into the wake and its
effect on the local flow about the cyvlinder which
gives the so called history or hereditary effects
in unsteady aerodynamics; what has happened in the
past affects the present.

Since there is no static pressure discontinuity
across the shed vorticity which is convected
downstream along a streamline, from the unsteady
FI1G. 7 Bernoulli equation (i.e. eqn.(9)):

Gm Ag + 3% A¢ =o
where A(} denotes the discontinuous change in tangential velacity ¢ across the vortex sheet (i.e. upper
value minus Tower value), Af denotes the discontinuity in velocity potential and qmdenotes the mean
velocity of the tangentfal velocities on either side of the vortex sheet. It will be remerbered that a
d¢ tem also exists to make § single valued.

It is of interest to discuss the flow pattern in the neighhourhood of the separation pointS. Now
eqn.(28) holds at S. And at S, by reference to eqn.(25).‘ﬂ§ is equal to T° 3 it follows from eqn.(28)
that there is a velocity discontinuity so A$ is finite and non-zero. Initially, it might be thought
that the streamline along which the vorticity is shed leaves the .cyliner at S at a finite angle as shown
in Fig. 8(1); however such a postulated flow implies that the poiat S is a stagnation point thus Aq,

would be zero and there would be no mechanism for creating and shedding vorticity. In other words, eqn.
(28) could not be satisfied.

(28)

kit ik e
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In fact the shed vorticity must leave the cylinder surface tangentially as shown in Figs.B(44,i14).
The dividing streamline is a cusp, there is a stagnation point on one side of the separating streamline
from the cylinder surface but not on the other, It is seen qualitatively in Figs.8(i1,111) that if the
arrows on the shed vorticity denote the sense of that vorticity the sketches are consistent. If the
velocity difference at separation is 1’5 then from eqgn.(28)

in Fig.8(ii R ) - T
) ‘}s - ’ 5(; >0 (29)
in Fig.8(ii4) 13 = ?c', N 3;—';<o

An interesting point to note is that the sketches Fig.8(ii,ii1) hold whenever 3"73(7 is non-zero,
however small, yet in the limit where A4t is zero the separating streamline leaves normal to the
surface and not tangential. This can be explained as follows: the curvature of the separating
streamline from S as shown in Figs.8(ii,i11) depends on 91/8c and it is postulated that the radius of
curvature tends to zero as O1/9¢ tends to zero; 1in this manner the conventional steadv pattern emerges
as an appropriate asymptotic limit.

As far as is known the general problem formulated in Fig.7 has not been solved, at least in the
open literature. A numerical solution in successive time intervals would not be too difficult; an image
vorticity system inside the cylinder would preserve the cylinder as a streamline; an iterative procedure
would be needed at each time step to determine the nroper shape of the shed vorticitv streamline.

However, some trends can be described qualitatively.

Consider a circular cylinder which is accelerating at a uniform rate through air at rest keeping the
same point S as the rear stagnation point as indicated in Fig.9.

The cylinder velocity in Fig.9 is denoted by
/_\T: c Ak (->0). S;pp?se thlt the circulation could be
represented by loEwhere I_ is a constant. Then the
circulation shed between time T and Te§Tis TO8T,
and this circulation is left behind the moving
cylinder. At time b the vortex of circulation
1-:§T1s distance approximately A..Q‘—T‘Mz aft of
the cylinder. Thus the induced flow field around
the cylinder at time £ is obtained by integrating
the induced fiow due to To8T from =0 toT=E. It
can be seen that this induced velocity field is
approximately ZT:AC which is small compared with
Fla. 9 the other velocities in the neighbourhood of the
— cylinder which are Q@ In physical terms the
cifrculation ‘c&' which is shed at time £, when € is large, is spread over an element of vortex sheet of
strength T:/A.f: which is small, i.e. the shed vorticfty is convected away relatively quickly. To a first
approximation, the flow can be represented by a doublet and vortex to ensure that the point S {s a
stagnation point’ resembling the steady solution so T: is proportional to A,Su. The approximate forces
acting are, referring to eqns.(9,24,26)
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DH.LS z/o"‘-?c‘Ao + P)T:I/Ao

_ (30)
Life = />A.T:L“+/o?e1: —/QK'R“l,Z/A&
The terms in eqns.(30) arise in the followina manner:
xB*A, — 1is the apparent mass term in the x direction.
.27"/4, -~ 1is the coupling of the circulation with the {nduced
f ‘. velocity field due to the wake.
/oA,?:é" — s the coupling of circulation with forward speed.
' _TT — arises from integrating 9¢é. for the circulation
P rels term To& around the cylinder surface.
There are additional terms but they are of lower order.
Next consider a cylinder moving with uniform speed u‘with steady circulationn with the point S
as the rear separation point, so that steady lift ,ou.racts. Let the cylinder velocity suddenly increase
at £20¢0 u, and the new speed is maintained for €>0, such that the same point S remains the separation
point. It is expected that as ¢=ew a new steady state will emerge with a steady circulatfon T;, and a
steady Hft/,l(;T;_ .

=
‘ T; T:a— 3
— £<O Y g t=o
T .

-
-
——

As shown in Fig.10, immedfately following the change in speed at L=0 the circulation about the
cylinder changes instantaneously to a value r; and a starting vortex of initial strength K‘T: is created.
The value of T; , obtained by satisfaction of the boundary conditions cannot be simply expressed.

There is an impulse in the drag force due to the instantaneous velocity change of LLm u‘_ R
associated with the arguments presented in Section 3.2; and an instantanenus change in the ]ift
associated with 7: .

However, as the time increases, in qualitative temms, the circulatfon around the cylinder approaches
its steadv circulation state T; with a 'starting' vortex of approximate strength T:-T.’ at a distance
approximately u,t downstream of the cylinder. The 'starting' vortex induces a velocity V,_ about the
cylinder where -

~ b 'r:

kU
This flow field induces a negative 1ift force proportional to .)Va/& and a dragq force proportional to
,oV,T;, . There is a smaller additional drag force acting on the cylinder associated with the higher
tangential velocities on the aft surface of the cylinder compared with those around the front surface of
the cylinder induced by the shed vorticity and its image. Thus the 1ift force approaches fts final steady
state ,ouzT;and the drag force approaches zero as
Life = IOunT; - QW)
Drg = Q (VL‘) (32)
A similar argument can he applied to show that {f a cylinder moving with velocity u,_for time <O
suddenly moves with an additional transverse velocity Vi for time €30 then again there would be a
starting vortex which is shed downstream, and asymptotically, as & becomes large,

€ large Fi6. 10

(31
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Lide = Final shady volue - O(%) }

:D"S a Q(V(f)

Note that the drag is positive. This asymptotic behaviour (Ve) is an important factor which {s
featured in later discussions.

Much confusion has been caused in the literature by referring to the circulatory and non-circulatory
contributions to overall forces and moments in unsteady incompressible flows. The impression given are
that these effects are simply additive. This is not so, the so-called circulatory and non-circulatory
contributions are closely interrelated. According to eqn.(25) albeit for a steady case, the first term
can be referred to as the non-circulatory term while the second term, which depends onT , as the
circulatory term; however eqn.(26) demonstrates immediately that if the separation point S is specified
then the circulatory and non-circulatory parts are interrelated. In general, for any body in a time
dependent motion in an incompressible fluid, if the correct boundary conditions are satisfied, then the
resulting solution will be complete. Any attempt to distinguish between circulatory and non-circulatory
contributions is pointless; in the author's experience errors have cropped up perfodically over the years
because of such attempts.

(33)

3.4 Circular Cylinders in Inviscid Shear Flow

The study of rotational flows about bodies is relevant to aeronautics in a number of areas. One
concerns the estimation of gust loads which arise as an aircraft responds to atmospheric turbulence and
by their very nature atmospheric gusts are rotatfonal. Another area is concerned with tailplane or rear
fuselage loads in the wake of a main wing and front fuselage, mostly when the flow over the main wing
or front fuselage has separated. A third area concerns the dynamics of a smaller afrcraft {f it becomes
entangled in the trailing vortices left behind a larger aircraft.

The solution of the flow about a body when the relative stream is a general rotatioral flow is
extremely complicated. However, it is instructive to study some simple analytic solutions of a circular
cylinder in a stream with uniform vorticity.

Consider first the steady problem of a stationary circular cylinder in a stream with uniform
vorticity at infinety as shown in Fig.11. .
The stream at {nfinity has velocity profile in the

Y negative X direction given by Um+ULY/R so that
the free stream has uniform vorticity Wac.
In two dimensions vorticity is conserved along
‘ a streamline. Thus the case of uniform vorticity is
relatively easy to deal with for the vorticity
inevitably remains uniform throughout any perturbed

- field.

u= LLm" uY/ This problem can be solved analytically since

FIG. 11 Re the circular houndary conditions can be satisfied
2 with:

1) a dipole (i.e. doublet), to counteract the mean stream U., (as used in eqn.(12)),

11) a quadrupole, to counteract the shear distribution LV/R. ,

i§1) a vortex of strength (U,KK) to represent the velocity induced on the surface of the cvlinder by the
perturbed fluid flow; this can be easily calculated since it is equivalent to fluid with uniform
vorticity of strength(—U/z‘)situated inside the cylinder,

After some manipulation, the velocity on the cylinder surface becomes

2T Qe IR«- = L, 5in0 - (Lo 26 (34)

- and the stream)ine pattern {s shown in Fig,)2.
\ A number of consequences arise from eqn.(34)
Llf u 1)  although it was necessary to introduce a vortex
into the solution, there is no net circulation

around the cylinder surface,
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11) by Bernoulli's equation (i.e. eqn.(4)) for steady flow
P+ipQ* = const

along a streamline although the constant now varies fram streamline to streamline, therefore there

is a resultant 1ift ( in the positive Y directfon) given by .

Lift = p Ua URR (35)
1i4) although the 1ift is given by eqn.(35), the absolute pressure at any point s indeterminate because
the pressure at the stagnation point(s) is indeterminate.

The last point (iif) is a most important one in shear flows, The difficulty {s associated with the
fact that the total pressure is constant along the streamline which passes through two stagnation points
on the surface of the cylinder. But it is not possible to determine where that streamline originates
from at infinity upstream because of the far field associated with the vortex introduced into the solution.
This is a feature of all two dimensional shear flow prohlems, absolute pressures cannot strictly be
calculated; many numerical solutions which appear in the 1iterature which neglect these far field effects
are suspect.

Next, it is possible to consider the time dependent problem of a cylinder moving at an arbitary
velocity in a shear flow as shown in Fig.13.

By taking axes fixed in the cylinder, it follows
directly from ean.(34) that

G lpog. =2 (Unm* U®D)an6 -Uea2e (36)
Around the surface of the cylinder the pressure is
given by reference to eqn.(6),

PR gt~ deno P"“'?«SM”’

U_m fu% This result leads to the overall forces
< brag = px R’ e (38)
FIG, 13 which 1s the same as in frrotational flow, and
tre = p (Unt LEYTRS (39)

The more interesting problem from a practical point of view is the passage of the circular cylinder
moving at a uniform velocity u. across a transverse shear flow as shown in Fig.14,

Y Y

X
Space
Fixed V= V,, + VX/
axes =\, + V(x+mt/

FIG. 14
The forces on the cylinder for the flow shown in Fig.14 can be built_up from the previous results;i.e.
Thrust (1.e. force in the x direction) = o RK Vi V v )
Lift . .?/_ngV W0 ; (40)

If the separation point is to be fixed at a particular point on the circular surface then an
additional vortex of strength TG‘) can be introduced, about the cylinder which in turn leads to a pattern
of shed vorticity in exactly the same way as for the {rrotational flow. To some extent the unsteady
‘circulatory effects can be superinposed _on the shear flow effects as above, although there {s now coupl ing
since T(¢) will depend on V,,,V and on LV .

It is necessary to emphasise once again that only relative pressures can be calculated in two
dimensional flows because it {s not possible to identify which streamline at infinity is the one which
becomes fdentical to the cylinder surface.

The 1imiting case of the flow shown in Fig.14 {s the passage of a circular cylinder through sharp
edged gust as shown in Fig.15, keeping the stagnation point fixed at point S. The sharp edged gust is
essentially a vortex sheet normal to the motfon of the circular cylinder,
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FIG. 15

A sequence of events is shown in Fig. 16,

FIG. 16(i4)

FIG. 16(1)
FIG. 16(iit)
Now

Fig.16(i) shows the cylinder just entering the gust front, a 1ift will
start developing so Gorticit,v will be shed from the rear
stagnation point.

Fig.16(i1) shows the gust front passing over the cylinder surface; near the
surface the sense of rotation of the gust front will cause
retardation on the upper surface and acceleration on the lower
surface, further away because of the induced circulation the
opposite effect will occur, i

Fig.16(111) shows the pattern when the cvlinder has completely passed through
the front, the two halves of the gust front are joined in a
complicated manner (this is not entirely conjecture but based on
a computer studv of an aerofoil passing through a sharp edged
gust, ref. 3).

3.5 Concluding Remarks on Inviscid Flows about Circular Cylinders

It should be recognised that the inviscid flow ahout a circular cylinder bears no resemblance
whatsoever to the real flow past a circular cylinder.

However, by conformal transformation techniques, the ideal flow past a range of aerofoil sections
can be obtained and an ideal flow past an aerofoil gives realistic results to a first approximation for
the real flow past that on aerofoil when the real flow remains attached. Mnst of the qualitative
features derived above are transferrable tn aerofoils in incompressihle fluid motions.

One feature of particular interest for an aerofoil is what happens in the neighbourhood of the
trailing edge, According to the arguments given in Sectfon 3.3, in an unsteady motion the separating
streamline and shed vorticity leaves the cylinder surface tangentially. The same arguments apply to an
aerofoil. Thus the flow leaves the trailing edge tangentially to either the upper surface or the lower
surface, depending on the sign of the shed vorticity, as shown in Fig. 17.
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4. REAL FLOWS ABOUT CIRCULAR CYLINDERS

4.1 Circular Cylinders in Steady Stream

It seems appropriate to complete this first lecture by briefly reviewing the real low speed flow about
a two dimensional circular cylinder because it illustrates another completely different but important
area of unsteady aerodynamics, namely the creation of unsteady flows even though the bhoundary conditions
are steady.

The various flow regimes around a circular cylinder depend on the Reynolds number, namely funb/,u
where u., is the velocity of the free stream, D is the cylinder diameter,/ the fluid density and/‘. the
coefficient of viscosity.

Attached Flow Regime: Re < 5

For Re < 5 the flow is attached and steadv. By definition Revnolds number expresses the ratfio of
inertial stresses to viscous stresses, so for Re < 5 these two types of stress are the same order of
magnitude throughout the flow. It is of interest to note that for Re < 1 inertial stresses can be
neglected, the equations become linear, and theoretical solutions are possible for such phenomema as
the swimming of microscopic organisms.

Stable Range 5 <~ Re < 40

In this Reynolds number range the flow separates (at about 8n° and 280°) and the separated shear
layers on either side of the cylinder cur] fnwards to form a symmetrical standing vartex pair on the
rear side of the cvlinder. As Re increases between 5 to 40, the vorticity in the separated shear layer
increases so the vortex pair become elongated in the direction of the flow to nrovide a larger area for
diffusion of the vorticity into the free stream to retain equilibrium,

Instability Range 40 <« Re < 90

The wake for this range of Reynolds number is unstable, but this {nstability does not lead to flow
breakdown. A regular aswmetric wake pattern is formed. The variations and developments in the various
patterns for varying Re in this range have heen admirably photographed by Zdravakovftch(4).

Vortex Shedding Range 90 < Re < 15)

This is the well known range in which the flow separation occurs asymmetrically at the cylinder
surface, shedding vortices alternate from each side of the cvlinder, forming a wake consisting of a
double row of laminar vortices for long distances aft of the cylinder,

The frequency of vortex shedding is usually expressed in terms of the non-dimensional Strouhal
number

Se = fb/u_o (41)

where § is the frequency of vortex shedding (Hz), D is the diameter of the cylinder and Uso 15 the
velocity of the free strean. With reqular vortex shedding, the Strouhal number is somewhat less thanO.2 .

The shedd'lr.m of alternate vortices gives rise to an oscillatory 1ift component at the same frequency
of the vortex shedding and anoscillatory drag force at twice that frequency. Because of experimental
difficulties no experimental data appears to be available for the magnitude of the oscillatory 1ift and
drag coeffictents.

One interesting feature of the flow is that fluid in the centre of each upper vortex, emanates from
the separating shear flow on the lower side of the cvlinder and vice versa. It is this carry over and
diffuston of vorticity from one side to another in the formative process of the vortices which s a
distinctive feature of the flow characteristics. The introductfon of a splitter plate down the axis of
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symmetry effectively prevents the interaction of upper and Yower surface shear flows thus destroying
the formation of the vortex sheet.
Irregular Range 150 < Re < 3 x 1P

In this range the shed vortices contain turbulence resulting from transition in the vortices.
Essentially, transition moves up the wake of vortices towards the rear end of the cylinder with
increasing Re and the turbulent vortices diffuse rapidly. Close to the rear of the cylinder however,
vortices continue to be shed reqularly with Re< 3 x 107,

Vortex shedding frequency is now defined as the frequency of the main peak in the frequency spectrum;
in the irregular range the spectrum is a narrow band one and the wake is quasi-periodic. The Strouha!
number through this range is about 0.2,

The level of amplitude of the oscillatory 1ift component C,_ varies hetween 0.4 to 0.9 from
different experiments, these variations are thought to be associated with different testing conditions.
Nscilloscope traces of oscillating forces display a randomly modulated but basic single frequency signal.
It is argued that these modulations are associated with three dimensional disturbances. Evidence exists
that the flows divide into spanwise cell patterns and that these cells can move randomly across the
span, evidence also exists that the shed vortices come off at a slight angle to the two dimensional {deal.
Effectively, the spanwise correlation lengths decreases with increase in Re,

Critical Range 3 x 105< Re < 1.5 x 106

The form of the main separation changes from laminar separation to turbulent separation. There is
still a local laminar separation but transition in the separated shear layer causes the shear layer to
reattach as a turbulent boundary layer, this turbulent boundary layer separates at a more aft location.
In the subcritical range laminar separation occurs about 82° (measured from the nose); in the critical
range the turbulent separation point moves back to about 140°, Because of the reduction in wake width,
the base pressure on the cylinder is decreased so reducing mean drag. Fluctuations in the wake s no
longer confined to a narrow frequency band.

Supercritical Range 1.5 x 106 < Re < 3.5 x 106

In this range, the separatfion point moves forward to about 125° and the Jaminar separatfon -
turbulent reattachment hubble disappears. No dominant shedding frequency is found so the frequency
spectrum retains the wide band random character, as in the critical range,

Transcritical Range Re > 3.5 «x 106

At these higher values of Re, the separation moves forward to about 115° and narrdw band ‘vortex

shedding' occurs once again with a Strouhal number about 0.25.

4.2 Circular Cylinder in Unsteady Stream

A number of expertments have been carried out efther on transverse oscillations of a two dimensjonal
circular cylinder or with a stationary cylinder in an oscillatory flow field. A typical set of results
of force measurements are shown in Fig.18 taken from reference 5.

For the steady cylinder in the irregular range, the spectrum is narrow band with a Strouhal frequency
of 12.5 Hz, as shown in Fig.18(i).

An oscillatory stream component superimposed on the steady stream at a frequency of 10.5 Hz introduces
as shown in Fig.18(11), a peak at the input frequency in the spectrum but with a reduced peak at the
Strouhal frequency, implying non-1inear coupling between the input and natural Strouhal frequency
responses.

At input frequencies of 11.5 Hz, 12.0 Hz and 12.5 Hz all of the energv in the spectrum {s at the
jnput frequency as shown in Fig.18(i1i), this is the phenomema known as frequency 'lock-on'.

With input frequencies s1ightly higher than the Strouhal frequency, the input and Strouhal frequencies
separate out as shown in Figs.18(iv). It is noted that at the higher input frequency of 14 Hz, although
there is 1ittle evidence of the input at that frequency, the magnitude of the peak response at the
Strouhal frequency is considerably reduced compared to the steady case as shown in Fig.18(1).
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4.3 Concluding Remarks on Real Flows about Circular Cylinders

The above types of real flow about circular cylinders are relevant to two types of practical flows.
The first concerns the flow ahout aerofoils, or cascades with round trailing edges; round trailing edges
are preferred to sharp trailing edges because of cooling considerations; however, the main difference
between the round aerofoil trailing edge and circular cylinder is in the relative thickness of the
separating shear layers; nevertheless, narrow band frequency spectra have heen observed. The second
concerns the flow about slender fuselage noses which are typical of the front fuselage of recent. combat
aircraft and missiles; at high angles of attack flow separation occurs, forming discrete vortices induced
by the effective cross flow normal to the nose; when separation first occurs two symmetric vortices are
formed with axes 1ying along the fuselage but at higher angles the vortex pattern becomes asymmetric
giving rise to asymmetric loading conditions.

5. Final Comment

The aim of the introductory lecture has been twofold, The first has been a presentation of the
principles which underly methods of calculation of unsteady motions, albeit where the fluid is
incompressible (as shown later this is not altogether the same as taking Mach number small), honefully
providing insight and understanding. And secondly, to introduce the complexities of real fluid
behaviour and to bear such flow behaviour in mind when relating theory to experiment.
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INTRODUCTION TO UNSTEADY BOUNDARY LAYERS
by

D. P. Telionis
Virginia Polytechnics Institute and State University, Blacksburg, Virginia 24061 USA

The basic characteristics of transient and oscillatory boundary layers can be easily demonstrated in
terms of elementary solutions of the Navier Stokes equations for idealized flow situations. Starting with
such simple examples, this paper gives a qualitative description of the physics of unsteady boundary layers,
briefly describing the response of skin frictiom, velocity profiles, the effects of nonlinearity on velocity
and temperature fields, etc. Compressibility and three-dimensionability have only recently been addressed
but unsteady turbulent boundary layers have been agressively attacked both analytically and experimentally.
The extension of turbulence models to unsteady flow is briefly discussed. Reversing boundary layers and
unsteady separation are also briefly described as evidenced from a large number of contributions which in
fact present conflicting views on the topic.

1. INTRODUCTION

It is our intentioh in this paper to present a brief and simplified overview of the physics of un-
steady boundary layers. The description therefore should represent only the results of experimental or
analytical investigations. The methods employed, experimental or analytical, should be the concern of sub-
sequent papers in the present volume. However, results are inevitably biased by the method they were ob-
tained. It is for example unavoidable to present data of oscillatory flows in terms of the mean and the
amplitude of the oscillation, which implies the use of a signal analyzer or an asymptotic expansion. More-
over, concepts truly deriving from analysis, as for example "nonlinear characteristics™ have already become
part of the terminology in the description of physical phenomena.

The present paper represents a very short and very simplified description of a few classical phenomena
of unsteady viscous flows. It is essentially an introduction to the material that will follow in the present
volume. Inclusive reviews on special topics have appeared on different occasions!'™®. 1In fact, the present
author has just completed an extended monograph on the topic®, which will appear as a volume in the Springer
series in Computational Physics. This paper is therefore served here as an appetizer. It will serve its
purpose if it stimulates the interest of .the reader.

Reviewing again material wiuich caa by aow be considered classical, we decided here to reference mostly
review articles and monozraphs. The reader will therefore have to resort to other articles in this voluwe
or the review articles referenced here, for more information on the original contributions.

2. ATTACHED BOUNDARY LAYERS

Some very interesting characteristics of unsteady vistous flows are most convenientlv demonstrated in
terms of the well known Rayleigh and Stokes problems. The flow over an infinite flat plate (see Fig. 1)
which- {8 given either the velocity uy impulsively, or the periodic®
velocity uycoswt, is expressed in terms of the following two solution
4 y of the Navier-Stokes equations

u=u, (1-erf ) (1)
2/t
B, _
u=ue B cos(wt - %i% y) )

where u is the velocity parallel to the wall, y is the distance per-
pendicular to the wall, t is the time and Vv is the kinematic vig-
cogity.

For the Rayleigh problem, the first solution, Eq. (1), indicates
that for transient flows the effects of unsteadiness propagate away

f/—//// / / / .x,?- from the source of the disturbance, that is the flat plate, instantly

and the extend of the contamination is scaled with the length /vt.
Subsequent extensions? indicate that the character of impulsive
Fig. 1 System of coordinates for the changes of flows about bodies of arbitrary shapes is very similar.
Rayleigh and Stokes problems. In fact for small times the changes are inviscid in character.

For a harmonically oscillating plate, Stoke's Solution, Eq. (2), indicates that the flow responds har-
monically with a phase shift which varies with distance from the wall. An exponential decay of the ampli-
tude is also present and distances from the wall are scaled by the factor Jm?gv.

The problem of oscillations about a zero mean has interested a large number of investigators, because
of a historical controversy of early experimental results. Such flows are rarely encountered in engineering
applications. However, the simplicity of the problem permitted investigators slready in the past century, to
discover the phenomenon of stesdy streaming and the importance of nonlinearities. Consider for example the
oscillatory motion of a circular cylinder, normal to its axis of symmetry, in a fluid which is otherwise
at rest. The oscillations of the cylinder impart an oscillatory motion on the surrounding fluid. However,
the fluid particles do not oscillate about a fixed position. They perform a combination of translation and
oscillation. In the average, there is a net flow with streamlines shown schematically in Fig. 2. This
phenomenon is familiar in literature® as “steady" or "acoustic" or "nonlinear" streaming. It i: perhaps
worth here to have a closer loock in the vicinity of the oscillating wall. It was found that the oscillations
of the wall impart an oscillatory motion in s layer of fluid with thickness approximately equal te¢ Nia ae
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shown schematically in Fig. 3.

Within this layer, the Stokes layer,
steady streaming starts building up. The strength of streaming in-
creagses with the distance from the wall and attains its maximum at
the edge of the Stokes layer. The streaming layer extends further
avay from the wall and if the quantity U2/uwv is very large, it

» forms a second boundary layer of thickneas L/wv/U. The most com-

- plete and critical reviews of the literature on this topic have

1 been prepared by RileySs!'®.

3 In eagineering applications an external oscillatory disturbance

{ is impored on an already developed boundary layer. Three layers

are thea formed. The steady boundary layer, the Stokes Layer and
the streaming layer. The first has thickness of the order of
/fv?u° the second is again of the order /v/w and the third is of
the order of L/ww/U where now U_ is the velocity of the oncoming
steady strean, aud U 1s a typical velocity of the oscillation, as
for example the product «f the amplitude and the frequency. It
should be emphasized that even with a harmonic excitation, higher
harmonics are generated which may in turn give rise to higher or-
der streaming effects.

1 Fig. 2 Streamline pattern of steady One of the most interesting features of such flows is the
steaming around an oscillating fact that the amplitude of the outer flow, which is driving the
cylinder. boundary layer flow through viscosity, may be actually exceeded by

the response of the boundary layer. A typical set of velocity am-
plitudes 1s shown in Fig. 4. This method of presenting the re-
sults is actually a little misleading as HcCroskey" has recently
pointed out. The response of the boundary layer always introduces
a phase shift which in fact varies with distance from the wall.

If instantaneous profiles are plotted, the velocity may never ex-
ceed the free steam value.

The phase differences are varying substantially across the
boundary layer. For large frequencies, the flow right next to the
wall leads the outer rflow by an angle of 45°. Moving away from the
wvall, we encounter a region where the flow actually anticipates the
motion of the outer flow as shown in Fig. 5.

Similar trends have been discovered for the behavior of tem—
perature and therefore heat transfer. However, recent investiga-
tions indicate that overshoots and phase characteristics vary sig-
nificantly with the pressure gradient, compressibility effects and
dissipation. These variations are much larger than originally an-
ticipated. Both analytical and experimental evidence indicate, for
example, for flows with adverse pressure gradients, overshoots
twice or ten times as large as the amplitude of the outer flow.

As separation 1s approached, the percentage of overshoot grows even

Fig. 3 The flucinating and steady mere wildly. In Fig. 6 and 7 we display the contours of constant
streaming boundary layers amplitude for laminar and turbulent oscillatory flows respectively.
and their thicknesses. We will return to these Figures in the next section to discuss the

features of unsteady separation.

In the study of unsteady turbulent flows, the investigator en-
counters more difficulties. Turbulent flows are unateady by defini-
tion. It is only in a statistical sense that we may measure and
calculate profiles of velocity, temperature, Reynolds Stress, etc.
Unsteady turbulent flows involve the random turbuleant fluctuations
which are in a sense "self-excited" as well as organized fluctua-
tions which are induced by the outer flow. This point perhaps re-
quires some clarification. The turbulent fluctuations are certainly
excited by, and receive energy from the outer flow. Although some
connection has been established between free steam turbulence and
the turbulence within the boundary layer, it is very well pnssible
to generate a wide spectrum of turbulence without any countcips ts
in the outer flow. The organized fluctuations, for which we will
reserve in the sequel the term unsteady flow have the same fre-
quency with the externally imposed fluctuations.

The need to investigate these problems analyti:ally or experi-
mentally led to the triple decomposition

IERENENL 3)

Fig. 4 Fluctuating velocity profiles where f is the time average of a quantity
for oscillations imposed on a 1 t,
boundary layer. folim =~ [ Fde (4)
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where T 1s the period of the driving oscillation. The process re-
1 presented symbolically by Eq. (5) implies an ensemble average of
values collected at a fixed phase within the period, i.e. the
phase angle 2mt/T.

In terms of the phase average, the organized and random fluc-
tuations are defined as follows:

fmc<f>-F (6)
£' = £ - <f> (7)

A schematic representation of a triple decomposition is shown in
Fiz. 8.

Governing equations have been derived for all three types of
! functions but the systems involve higher order moments of both
time, ensemble and mixed average modes. Closure assumptions are
Fig. 5 Phase angle profiles for os- necessary. Instead, theoreticians attempted to consider the un-
cillations imposed on a boun- steady form of the turbulent boundary-layer equations and search
dary layer. for closure methods based on more general modeling of the Rey-
nolds stress. Numerical results provide some information about
the behavior of unsteady turbulent boun-
dary layers. However, there are still
some unresolved discrepancies, essentially
due to the lack of sufficient experimen-
tal data. Theoretical models have been
shown to predict quite accurately the
mean flow, do a poor job predictingathe
fluctuating component of the flow and
totally digregard the characteristics of
of turbulence. Instantaneous profiles
of turbulent energy were obtained only
very recently and show a clear periodic
displacement in the direction perpendic-
ular to the wall as showm in Fig. 9.

3
y (mm)

A problem almost untouched up to now
is the possible interaction between the
random and organized disturbances. Only
very recently has it been demonstrated

Q 10 A0 7o that a pulsating turbulent jet may allow

x (mm) the transfer of energy from the mean flow
Fig. 6 Contours of constant amplitude of oscillation for to the random turbulent motion. Inter-
laminar sevaration of an oscillating boundarv layer. action between the two fields may appear

| ” quite reasonable in view of modern des-
criptions of turbulent motion. It is now
widely accepted that the bursting frequency
1 // has a deterministic character and that
// large and coherent structures can be detect-
ed within the turbulent boundary layer.
If the discrete frequency of the external
periodic disturbance is a multiple or
close to a multiple to any of the above
natural frequencies of the phenomenon,
then it is very well possible that energy
may be transferred from one field to the

other.

y (mm)

3. REVERSING & SEPARATING BOUNDARY LAYERS

A number of investigators (Sears,
Moore, Rott, Lin) independently recognized
in the fifties that boundary layers may b

x(m locally and for short periods of time, re-
Fig. 7 Contours of constant amplitude of oscillation for tur- verse without any evidence of separation.
bulent separation of an oscillating boundary layer. In the case of transient flows, an ever
increasing adverse pressure gradient, gen- !
erates indeed a very thin layer of reversing flow which emanates from the point of sepsaration and propa- :
gates rapidly upstream as shown schematically in Fig. 10. The region of partially reversed flow is led by
a moving point of zero skin friction. Numerical and experimental evidence were provided only a few years
ago. It was demonstrated indeed that this behavior is totally confined within the thickness of the boun- |
dary layer and no disturbances can be detected in the outer stream. @

For oscillating flows it was recognized quite early that the flow may generate a thin layer of revers-
ing flow during & time interval of the period. Experimental evidence became available for both laminar
and turbulent boundary layers in the seventies.

Theoretical calculations of reversing unsteady boundary layers were obstructed by the separation
singularity, or at least 8o it was believed. It was later demonstrated numerically that the point of sero
skin fgiﬁtion is not necessarily accompanied by a singularity. This enabled numerical analysts to march t
their calculations through points of zero skin friction and into regions of partially reversed flow.
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Fig. 9 The instantaneous profile of
the turbulent energy for an
oscillating turbulent boun-
dary layer.
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Fig. 10 Streamline pattern in' the
neighborhood of an upstream
moving separation.

The second difficulty encountered has a mathematical charac~
ter. The boundary-layer equations are parabolic. The variable
x along the boundary is a time-like variable. The physical analog
of parabolicity can be expressed in terms of the propagation of
disturbances and equivalently zones of infl and dependence.
For a steady boundary layer the zone of influence of a certain
point extends to all dowmstream stations. If the flow is part-
ially reversed, then the situation is more complex. Disturbances
travel downstream with the speed of the outer flow and upsteam,
within the reversing portion of the boundary layer, with speed
equal to the absolute maximum of the negative velocities as shown
schematically in Fig. 11. The terms "“downstream” and upstream" we

define here in terms of the direction of the outer flow. A straight

~-forward marching of the calculation in the downstream direction is
now prohibited. For steady flows, special numerical tricks are
introduced in order to march the calculations through narrow re-
gions of reversing flows. For unsteady flows and under certain
conditions it is possible to continue marching in the downstream
direction if appropriste marching schemes are introduced. This is
due to the fact that a second parabolic variable is introduced and
the domain of influence extends in a three~dimensional domain,
allowing the introduction of a differencing scheme which does not
violate the Courant-Friedrichs-Levy condition.

One of the main reasons for calculating boundary layers is
the need to determine the location of separation. Today we still
know very little about separation, steady or unsteady. The pre-
sent author feels that the features of separatiom control in a
catalytic fashion the further development of the flow, the size
and shape of the eddies in the wake, etc. However, even the defi-
nition of the phenomenon has been the source of disagreement
and very rightfully so. Prandtl defines separation as the point
where "a fluid-sheet projects into the free flow and effects a
complete alteration of the motion”. The most widely accepted de-
finition of separation today is essentially the same. Separation
is defined as the point along the solid boundary where the flow
breaks away from the wall initiating a region of recirculating
wake flow. The fact remains that the phenomenon is difficult to
identify experimentally or analytically and there exist flow sit-
uvations where one could not identify the point of separation with
confidence. More on this point, the reader will find in subsequent
contributions to this volume.

Interest in this area was revived in the late sixties as des-
cribed in recent review articles’?s'*!%, It was argued that a
singularity of the Goldstein type should accompany the point of
separation and not the point of zero skin-friction. Numerical
evidence in support of this argument were first based on calcula-
tions of steady flows over moving wallgs. It was demunstrated that
calculations could proceed smoothly through the point of zexo skin
friction until the point where the MRS criterion was met, i.e.

au- -

5y = 0 atu=0 €))
Typical features of the separation singularity were found at the
point where condition (8) was met.

The MRS criterion of separation for steady flows over moving
walls has been inadvertently accepted as a criterion for unsteady
separation. Rephrasing the criterion proposed by Sears in the
fifties, we can indeed now state that unsteady separation should be
the point where the MRS criterion is met in a system of reference
moving with the point of separation. In this frame the MRS point

has the form of a saddle point as depicted schematically in Fig. 12.

Subsequent numerical calculation§ of truly unsteady flows

have also indicated that the point of zero skin friction is free of any singularities and that the boundary
layer behaves smoothly for a considerable distance dowmstream. A moving separation singularity was dis-
covered but it was not possible to prove that the MRS criterion for unsteady separation was met. Similar

numerical experiments have been carried out since then with conflicting results.

tain that a separation singularity will take an infinite time to appear if the flow is started from rest or
if an adverse pressure gradient ig suddenly or gradually imposed on an unseparated flow.

The analytical work of Williams and his associates'® demonstrates that a transformation can map a certain

class of unsteady separating flows over fixed walls to steady separating flows over moving valls, a case
that has been well documented and understood both analytically and experimentally. In fact, most recently,
Shen'* proved that all unsteady separating flows can be transformed into steady flows over moving walls.
These works have given more credibility to the theoriee connecting unsteady separation with a singularity.

Very recently some very refreshing spprosches to the problem have appeared’’s'®.

sively all earlier works and compares with the efforts of his group. It is well known by now that all

In fact some authors main-

Shen!® reviews exten-
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numerical integration of the boundary-layer equations indicate the
initiation of singular behavior in the form of rapid growth of the E
normal component of the velocity, the displacement thickness, etc.
Shen and his assoclates therefore conclude that there should be no
need to examine the boundary-layer profile in detail. Instead they
propose to associate separation directly with the condition of
"unmatchability”. This is defined as the growth of the product
vRY/2 until it violates the basic boundary layer assumption.

Their investigations point out analytically that indeed it is pos-
sible that singular separation may emerge at a finite time under
suitable conditions.

A

i i

In an alternative approach'“, the problem is recasted in Lan- !
grangian terms. Numerical calculations then follow the particle |
paths. For convenience, Shen and his associates define a rectan-
direction of dis- gular mesh at t = 0 and follow its subsequent shape development as
turbance propaga- time progresses. Their results, for an outer flow distribution
tion t::==>- that corresponds to the flow around a cylinder and a uniform ini-

tial boundary layer are shown in Fig. 13. A clear singularity is
; emerging at a finite time which by extrapolation was found to cor-
k- Fig. 11 Direction of propagation of respond to a dimensionless time of 2.75. The topography of the
disturbances in a partially distorted mesh is a beautiful visualization of the singular behav-
reversed boundary layer. ior appearing in the form of a vertical barrier, which eventually
blocks the passage of particles at the point of separation.

il

Inspired by his work on three-dimensional boundary layers and
the analogy between three-dimensional steady flow and two-dimen-
~.~_—_-___—-__-~"‘--.~ sional unsteady flow, Wang‘s proposes to investigate the phenomenon
. by studying the topography of the "generalized skin friction" lines
t on the t-x plane. Such lines are defined as the lines that are tan- !

gent at each point in the t-x plane to the slope given by du/3dy at y
= 0. Wang works out a few interesting examples which corroborate but

<: also contradict earlier results. Mcre details on these recent con-
-~\\\\\\ Q:;\ tributions the reader will find in the accompanying paper "Analy-

tical Methods for Prediction of Unsteady Laminar Boundary Layers".

Finally a short comment is perhaps pertinent here with regard
to recent experimental evidence on laminar or turbulent separation.
The amplitude of externally imposed oscillations on both laminar
and turbulent flows appears to grow violently as separation is ap-
proached. 1In fact if one proceeds béyond separation, one finds that
the point of separation represents the peak of the amplitude ampli-

Fig. 12 Streamline pattern in the fication as shown in Figs. 6 and 7. Similar trends have been demon-
vicinity of separation over strated by the random fluctuations of a turbulent boundary layer.
a downstream moving wall.
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A QUALITATIVE DISCUSSION OF DYNAMIC STALL

Dr T.S.Beddoes
Aeromechanics Dept.
Westland Helicopters
1 Yeovil, Somerset BA20 2YB
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INTRODUCTION

Definition of the onset of stall is of fundamental importance in the design of flight vehicles.
A large part of the flight boundary is defined by the phenomena that are associated with stall; i.e.
limiting loads, stability and vibration. The precise behaviour of the stall is subject to many
1 secondary aspects of a given configuration and in the last analysis is most often determined by direct
: or related wind tunnel tests on a static model. It has been recognised for some time that in a
dynamic environment; i.e. gusts, manoeuvring flight, the statically determined loads are likely to be
exceeded. Until recently however, it has been difficult to quantify the magnitude of the increase
and to define precisely the significance of related parameters. Even though much has been learned
of the gross behaviour during dynamic stall, it is apparent that in detail, much more needs to be defined
experimentally, and that existing theory is quite inadequate.

For many aeroelastic studies, it is sufficient to include only linearised unsteady aerodynamics;

this constitutes 'classical' flutter. A class of problems involving unsteady separation has been
recogn:ised and studied, mainly with reference to control surface design; i.e. buzz. Another set of
nonlinearities is associated with stall flutter which involves more primary structure. This is

associated with operation at or near the stall boundary as defined for the static case, but introduces a
purely aerodynamic source of negative damping which can fundamentally alter the aeroelastic behaviour.
The non-linearities associated with transient separation effects may introduce characteristics not simply
interpreted in terms of linearised coupling, stability or instability, but never-the-less associated
with periodic effects and come under the general classification of vibration. In this form, the
phenomenon can be sufficiently severe to effectively constitute a limiting factor in the flight envelope;
e.g. control load growth in the helicopter and allowable buffet penetration for manoeuvring aircraft.

It would be desirable to form a distinction between dynamic stall effects and buffet. This may be
done by assigning to buffet the field of flow separation phenomena which does not involve any major
re-attachment.

25 —
201 s
154 1 i FORCES _AND MOMENTS
& { |EXCEEDS STATIC MAXIMUM LIFT.
J EXTRAPOLATE LINEAR RANGE.
1.0
 |PITCHING MOMENT DIVERGENCE.
VORTEX LIFT PRESENT.
0.54 4 : 3 | MAXIMUM LIFT, RAPID DECAY.
MAXIMUM PITCHING MOMENT.
0.0 N - & | READJUST TO LINEAR RANGE.
0.1 Y .
0.0} 2 ] FLOW_STRUCTURE
1 ) FLOW REVERSALS WITHIN BOUNDARY LAYER,
FORMATION OF VORTEX
0.1
c 2 VORTEX DETACHES AND MOVES OVER
o8 AIRFOIL SURFACE.
3 VORTEX PASSES TRAILING EOGE .
FULL STALL DEVELOPS,
-0-3 3 1 '
4 REATTACHMENT OF FLOW.
~0:4
) s 30 18 20 &=

FIG.1. ODYNAMIC STALL EVENTS

o dinincaatia amiai i ‘m-ﬂm-d




1. GROSS FEATURES OF DYNAMIC STALL

The gross features of dynamic stall as manifest during a cyclic variation of pitch angle are
illustrated in figure 1. Four distinct phases of flow development may be discerned. The
first and most fundamental consequence of an appreciable rate of increase of attack is that values
of 1lift coefficient beyond the static stall are achieved whilst the gross changes in the boundary
layer which precede stall are developing. Flow reversals within the boundary layer are observed
to develop during this period without any gross changes in the flow external to the boundary layer
and thus the force and moment characteristics appear as an extrapolation of the normal attached flow
regime. The second phase is characterised by the re-organisation of the flow external to the
boundary layer. Gross flow separation is observed to develop on the forward part of the airfoil,
or behind the recompression shock wave if appropriate, and is associated with the shedding of a
concentrated vortex. Subsequent motion of the vortex over the surface continues to generate
increased lift, but gross changes in pitching moment result from re-distribution of the chordwise
pressure. Passage of the vortex beyond the trailing edge of the airfoil initiates the third
phase which constitutes the complete breakdown of the external flow. Lift decays rapidly and,
correspondingly, the lift induced pitching moment. If and when, during the cycle, the angle of
attack falls below the normal static stall angle, the flow will re-attach from the leading edge.
This is the fourth phase during which the non-separated flow characteristics are resumed at an
appropriate time-scale.

Based on observation of extensive test data for many different airfoils, it has been concluded
that, to a first order, there is a common time-scale to be associated with the above events, and
somewhat independent of airfoil geometry, intermediate motion and Mach Number. If time is non=-
dimensionalised by introducing the factor V/C, then the resulting parameter T is equivalent to the
number of chord lengths travelled. Adopting this time base, two cycles of the example shown in
figure 1 are re-plotted to form figure 2. The above events are noted, with the exception of the
re-attachment phase, and two more parameters are introduced to illustrate the corresponding behaviour
of the chordwise pressure distribution.
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These are, leading edge (} % c) velocity ratio and trailing edge pressure. The first of these
shows the continued growth of the leading edge suction peak and the detachment of the leading edge
vortex which occurs approximately two chord lengths after the limiting static C; max has been achieved.
Even after this event, the build-up of 1lift continues smoothly until the abrupt collapse associated
with departure of the primary shed vortex. A mild progressive trailing edge pressure divergence
is observed initially; it accelerates somewhat during motion of the vortex and collapses completely
in conjunction with the 1lift. The second stage of development takes place during 3 or 4 chord
lengths of travel.
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A more complete picture of the build-up of local velocities and the progression of the vortex
induced wave is shown in figure 3. This example 1s taken from the response time history to a
ramp input thus angle of attack is increasing monotonically with time throughout. The local Mach
Number corresponding to the highest observed leading edge pressure is 1,38 and the chordwise velocity
gradient is so high that the presence of a shock wave is difficult to detect. A non-dimensional
time-scale is included from which it can be seen that development of vortex shedding and separation
corresponds to the example shown in figure 2.

With variations in the forcing parameters such as amplitude, mean angle and frequency, the
events described above, shift around the cycle and produce significant changes in the characteristics
of the 1ift and moment curves. For example, (from the tests of reference 1) figure 4 shows the
effect of increasing frequency at nominally constant mean angle amplitudes and jllustrates the highly
negative pitch damping which may occur. Vortex shedding is delayed, with increasing frequency,
until it finally occurs after the maximum angle has been reached and after the maximum value of lift
has been achieved. It is apparent from figure 4 that finally a frequency has been reached
which does not allow sufficient time for the somewhat simplified sequence of events discussed so far
to be completed. Thus there is an upper limit beyond which the whole physical process must change.
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This reduced frequency appears to be around 0-6 and has a period which is equivalent to about 5 chord
lengths of travel. It is possibly more than a coincidence that some tests (reference 2) designed
to investigate the effect of increasing frequency on the validity of the Kutta condition determined a
similar limit in spite of being confined to low amplitude around zero lift. Another region for
which the conceptual model described above breaks down is generated when the minimum angle of attack
exceeds the range required for re-attachment of the flow. In this case, depending on the degree
of departure, partial re-attachment may occur and due to the early phasing of the subsequent
separation, quite large positive values of damping may be generated.

An airfoil encounter with a gust or alternative form of discontinuity in the flow field produces
a monotonically increasing angle of attack which may be idealised as a ramp function, and is most
commonly initiatdd from the fully attached flow state. The same sequence of stall events is
observed in this case and perhaps more clearly demonstrates the consistency of behaviour up to
extremely high rates, as demonstrated in referesce 3 in one of the first published accounts of such
experiments.

Considerable variability in the details of behaviour during the first two phases of stall have
been observed. For the first phase, at least, this is not surprising considering the variability
exhibited by the static stall where determining factors must carry over to some extent, into the
dynamic case. References 4, 5 and 6 present much information on this topic, particularly
concerning the progression of reversed flow within the boundary layer. A common feature is the
rapid acceleration of flow reversal as it extends into the forward part of the chord, culminating in
the accelerated growth and detachment of the primary vortex shed at moment stall. Some less
significant shedding of vortices may occur during this phase, particularly at low Reynolds Number.

It has been observed that the presence of the classical leading edge laminar separation bubble
has only secondary effect on the dynamic stall process which subsequently occurs via re-separation of
the turbulent boundary layer. Reynolds Number and airfoil profile appear to influence the location
of the primary vortex within the forward 20% of the chord at low Mach Number. At higher Mach
Numbers, the primary separation is associated with the region at the foot of the upper surface shock
wave.
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Contrary to the static case, Reynolds Number appears to have only mingr effects on gtrongly dynamic stall.
Some recent tests at constant Mach Number of 0.3 and R.N. of 0.9 x 10" and 2.5 x 10° showed very similar
dynamic stall angles, although the static angles for pitching moment break differed by more than two
degrees. The propogation rate of the primary vortex is consistently less than 50% of the free stream
velocity; reference 7 provides data on this aspect, indicates some dependence on reduced frequency and
observes that the initial rate is lower still.

As noted, for increasing angle, the lift continues to grow after the primary vortex has detached and
the leading edge suction has collapsed. In many cases the lift slope increases above the value for
attached flow; e.g. reference 5. This excess vortex lift is most apparent at low free stream Mach
Number and seems to disappear with increasing Mach Number.

The final two stages are not only less consistent in detail but also much less repeatable under
conditions of harmonic forcing. There is evidence of secondary vortex shedding which interacts strongly
with the motion, and presumably has its own time scale. This raises the possibility of sub-harmonic
occurrences. However, the gross features of abrupt decay in circulation and delayed resumption of
unseparated characteristics are common.

A form of excitation not considered so far consists of plunge motion which is perhaps closer in
nature to gust encounter, since it involves increase in angle of attack without nitch motion. Some
test results have been presented in reference 8. The features of stall development in this instance
are substantially the same as exemplified for pitch motioen. Some slight differences in the onset of
stall can be shown to result from pitch rate effects on the velocity and gradient in the leading edge
region and the relative trajectory of the shed vortex is, of course, modified, but overall these effects
are of secondary importance. Similar conclusions were reached in reference 10, which reports on
tests utilising a sinusoidal gust generator,

The effect of sweep on dynamic stall has been investigated in reference 9. Results show an
additional delay in the angle of attack for the collapse of leading edge suction, pitching moment
divergence and maximum 1lift over and above that which would be anticipated from application of simple
sweep laws. Harmonic forcing was used to generate the data and a characteristic of the test results
for cycles of oscillation which include progressively more grossly separated flow was a failure to
regenerate the unseparated lift at low angles where this would be anticipated. The result was an
overall shift of the lift curve to higher angles, and consequent delays in occurrence of the dynamic stall
events. In general, onset of separation effects occurred at the same or slightly lower values of
Cy based on the appropriate normalisation. Thus it might be anticipated that for initial conditions
for which simple sweep laws provide an adequate representation, then the dynamic behaviour may likewise
prove similar. In the event of fully developed stall, the subsequent changes in re-attachment and
persistence of trailing edge separation will have an effect on the resulting level of circulation, and
hence effect the initial conditions for subsequent stall. This consideration is particularly
relevant to the helicopter blade condition where sweep is increasing very rapidly and the steady state
boundary layer behaviour typical of the swept condition may not have time to develop,

2. OPERATING LIMITS

To a large extent the operational limitations of any flight vehicle are determined by stall. The
dynamic case constitutes a refinement of the boundaries established by static stall characteristics.
Initially, structural and mass properties are selected so that the onset of flutter or instability as
predicted by linearised analysis is not a limiting factor. Non-linearities associated with operation
in the proximity of the stall introduce aeroelastic phenomena that, potentially, may prove disastrous.
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The least subtle and most easily labelled phenomena is stall flutter which occurs when negative aero-
dynamic damping converts an otherwise stable mode into a divergence or limit cycle oscillation. The
growth and decay of negative damping in torsion, for a given amplitude and frequency of oscillation, as
the mean angle is increased is illustrated in figure 5 (from reference 1). Positive pitch damping
is represented by a negative value of the line integral f d@, which corresponds to a counter clock-
wise loop in the Cm diagram. Initial penetration of stall introduces an additional clockwise loop
which may grow until it predominates. Further penetration produces a Cm break which is sufficiently
early in the cycle that maximum Cm occurs whilst @ is still increasing,. thus introducing another loop of
counterclockwise sense. By this mechanism, positive damping is re-instated when separation is
present for a large part of the cycle. A particular case of increasing frequency acting to reduce
negative damping is shown by figure 4. In this instance, the onset of the pitching moment bmkois
delayed in the cycle thus restoring the positive potential damping. At a higher mean angle (20 ),
the opposite happens.

It can be seen from these examples that the phasing of the dynamic stall events throughout a cycle
of osclillation completely determines the resultant damping. As Mach Number increases, these
general characteristics are retained for a while, although for a specific structural frequency, by
definition, the reduced frequency decreases in the inverse proportion,which may be a significant factor.
The onset of reduced damping follows the trend defined by the pitching moment break from static data,
but precedes this event by a margin determined primarily by the amplitude of the oscillation. An
example stability boundary is shown in figure 6 (from reference 1); the two frequencies given, 48 Hz
and 72Hz, correspond at M = 0.2 to reduced frequencies of 0.45 and 0.67.

A rapid increase in angle of attack
near the stall results in maximum values 20

of 1ift and pitching moment in excess of M DS ;
those obtained from static tests. Thus
a singular event such as a discrete gust 16 X\_\:‘\\ STABLE
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Some results of more recent tests are presented in
figure 7. In addition to the maximum force and
1.5 L ] moment values, the onset of vortex shedding and the
corresponding moment divergence are shown. As
M=0.3 Mach Number increases, the drop in lift at the

static stall becomes less pronounced until, at high
subsonic M, the normal force continues to increase
steadily through stall (gross separation). This
0 characteristic persists into the dynamic case and
modifies the pitching moment behaviour accordingly.
Thus the pitching moment break assumes greater
significance in denoting the onset of buffet, If
structural response is significantly large, the

1 possibility exists of initiating stall flutter.

Bending or flapping mode response is influenced
by unsteady effects. In the event of stall
being encountered, it is possible for the phase
1 relationship besween displacement and load response

to shift by 180 thus producing a negatively damped
or limit cycle form of oscillation.
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A summary of some results
from reference 8 is presented
in figure 8. Co~incidentally
large pitching moments may be

generated, thus raising the
possibility of coupled torsion- !
bending notion if the two == R 0.4
natural frequencies are close. ! 1.0

In recent years, a large a
body of experimental data on - 1‘: :l :: - :::’
dynamic stall has been a ot
accumulated. A full O she0.4?
analysis in detail and Q & =062
indentification of second order
effects has not been completed. ’ °

There is still much therefore,
to be learned from existing
test data. A qualitative
understanding of dynamic stall
phenomena has emerged, however,
most emphasis has been placed
on the low Mach Number rangg.

L ] 10 13 20 25
o. = DRGREES

FIG.8, Summary of Damping Data in Vertical Translation
for NACA 0012 (Modified) Airfoil.
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SOME_FEATURES OF LINEAR COMPRESSIBILITY

G.J.. Hancock,
Dept. of Aeronautical Fngineering,
Queen Mary College, University of London, U.K,

1. WAVE EQUATION

At subsonic Mach numbers, below the transonic Mach number range, most theoretical prediction
methods for inviscid flows are based on )inearised equations, which are equivalent to superimposing
small disturbances on a uniform stream.Small disturbances are represented by the acoustic wave equation.
The first part of this lecture is concerned with a description of some of the characteristic features of
linear wave propagationin air at rest.

The basic wave equation, relative to space fixed axes, is

Vi - ks 9%, @t M
where YV 1s the Laplacian operator,
Qo is the speed of sound, give‘n by‘ - d
ol B, = By s @
¥ is the ratio of specific heats, P and /5 are the pressure and density of the undisturbed atr,
The fluid velocity vector §(u,v,w)1s given by

q - gred § 3)
P-P-- ‘f’“?’g *)

Eqn.(4) 1s essentially the unsteady Bernoullf equation with the bﬁ-v term neglected,

The basis of eqns.(1-4) is that the magnitude of the velocity field is small compared with the
speed of sound o, so that the velocity squared terms can be neglected. It should be recognised that
the speed of sound, which is the speed at which disturbances are propagated through the air,
can only occur at a microscopic level by a molecular collision processs; a high wave velocity is
compatible with the small fluid velocities only because the assumption is made that the fluid can be
regarded as a continuum.

In a one dimensional flow

3¢ ' 5

g - ;L: a‘if‘ (5)
A general solution of egn.($
? ean-! ;(:e) . f(x-at) +3(x*°.e) (6)
where ﬁs are arbitrary functions; the function ¥ represents waves which are moving fn the positive x
direction with velotity @, while the function 9 represents waves moving in the negative x dfrection with
velocity a, . One dimensional waves are of relevance in wave propagation along pipes; this aspect is
discussed further later in this lecture.

In a three dimensional radial flow which depends on + only,and not on any ang]es)then the basic
eqn.(1) can be rearranged into the form

and

3e¢) . L 66 )
vooeE :

Thus the solution of eqn.(7) can be written in the form
+ §(+,6) = $(+-ak). ()

Only outward travelling waves are indfcated here, inward travelling waves arise with reflections. The
velocity and pressure field follow by application of egns.(3,4) so

qe(06) = - F(r-o.e);‘ + el (9)
P_-P° = ﬁo.‘ Zf-o.e%

WPERINS.
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Note that in the far field, for + large, the velocity q., ard pressure p, are 1n phase but not in the
near field, for v small,

2. SOURCE TYPE FLOWS

Consider a three dimensional source type flow; take

$(re) = - m Hat-r) Mm) |
At 3
where “(‘V) is the step function defined by
He) *o =t <o (12)
ey =1 T >o
Note that the differential of the step function is the delta functfion, ’ 4

5(.‘) - d“(‘t)/dt .

Eqn.(11) s the simplest solution of the general solution given by eqn.(8); eqn.(11) represents
a2 uniform source flow which commences at €=O,

i
From eqns.(9,10) (13)
4.5 €) ’4%*“(%&") ¢ m a0 }
4r+ )
- = (14) ;
P Po (@;%1; S (Ooe"’) %
Eqn.(13) states that as the wave front propagates outward from r=Q starting at U=as the source
flow commences, there is an impulse in the velocity field as the wave passes radius vy~ ; after the wave J
._ has passed the flow immediately takes up its steady state source flow velocity. Behind the wave front :
5 there is another spherical surface called the contact surface; the flow inside the contact surface ¢
é comprises the fluid which has emmanated from the source, the flow outside the contact surface is fluid

which is moving outward due to passage of the compressive wave front as shown in Fig. 1. The fluid is t
3 P=Pe given its outward motion by the pressure pulse as
/‘}f"’ the wave front passes. Eqn.(14) states that the

pressure ahead and bhehind of the wave front {s the

same, namely the undisturbed air pressureP, ; this

ifs because %,t is assumed to be negligible.
3 Nimensional The corresponding source type flow in one dimension
Source Flow is from eqn. (6)

v

£l §(x0) = LG hee=) 9
Sowrce : u= {( 'a: =0 considering only waves travelling in the positive x
e i P'T"‘f"““ P=Po direction; then, as shown in Fig.2 ;
| TR o a~2f = UG e
3 FI6. 2 p-pe = posll Hat-) (17)

For this one dimensfonal case again as the wave front passes,the air immediately takes up its final
steady flow velocity. Now, however, in distinction to the three dimensional flow, there is an increase
in pressure in the entire flow behind the wave front. There are no impulses in either velocity or
P pressures associated with the wave front.

) The two dimensional flow {s somewhat different. Essentially, the velocity potential for a two
dimensional source flow, commencing at &ep can be obtained by integrating the three dimensional

] solution. Consider a line of three dimensional sources of uniform strength d’/un'lt length for &>o0,
i then the flow represents a two dimensional situation. Referring to Fig.3, the velocity potential at a
f point d from the source 1ine {s, by integration of eqn.(11) ’

b
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of the velocity fields and pressure fields are shown in Fig.5.
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$lde) =0, at<d

$2m ade-dt
d {\\'@ 3D sowea () - —lj 4:;:»)4'; >t d
| N wss, €0 s
i S
um"f‘::m Sowce 3 Thus ) . ’)“
i:)(:‘o:rce ¢(d 6= "i:: sink {(‘g?. gH@e-&) (18)

Note that {(d, l:) becomes indeterminate as &->~eo . However, the two dimensfonal velocity field and
pressure field become

(de)~ & W& - (19)
%d ). d (w,‘_dg)v‘ H(at °‘))
and

PP = TAS Ha6-4) (20)

A
= (et -d?)"h
So in two dimensions the steady state is not immediately set up behind the wave front for neither the

velocity field nor the pressure field P—-P,; this phemefm’as shown in Fig.4,is sometimes referred
to as the two dimensional wave tail.

p-P-
%4
\ .
. e da, —¢
2 D Source Characteristics fFra. 4

ar———

Although there appears to be an anomaly in the two dimensional case as shown tn Fia, 4 compared
with the one and three dimensional cases as shown {in Figs.2,1, there {s progressfon in the form of the

pressure responses,frdm a pulse in three dimensfons, a decreasing tat] in twn dimensions and a uniform
pressure in one dimension.

A source pulse can be defined as a source which exists for a smal] time .‘e only; typical varfations
The two dimensional ‘tail' {s now more

apparent, :\
¥ " PRy, | u
r ]
4T TRE e TR
7w N R . DRk
) P f =
frTE P ___v:_'.‘ poe
.&wcul‘)
o . o ‘Source Puises  FI6. 5 ;j
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A more 'gentle' source pulse which builds up and decays continuously, 1ike "/(l:'r'l") for
example, essentially rounds off the discontinuities shown in Fig, 5, as shown in Fiq. 6,

Souice
sht,nQHI

Vatiation

a
PPe P rr

\_"_

3D Crchonse 2D Response 1D Response

FIG. 6

To obtain the flow field for an arbitrary source strength varying with time; if m@)'ls the source
strength per unit time at time T, then a source of strength m’(‘l")dTis introduced into the flow at time
T, where the dash denotes differentiation with respect to T. Thus the flow field and pressure field can
be built up by superposition.

In 3 dimensions from eqn,(13) et

Tel -,
' J m'@dT j m'() § (od-T) ) g1
Teo 4R > Ao 4Kt

= mlet)/ .+ m(Ee-Yao) Jarx+ (21)

p-Po= paom’ &Yoo) 2oy (22)

Eqns.(21,22) are of course identical with egns.(9,10) we have gone round full circle. The fundamental
point to emphasise from eans.(21,22) is that what happens at radial point r at time t is simply related
to what happened at the source at the earlier time of &- ¥4, , the time taken for the wave to pass
from the source to the point r. '

It s seen from eqns.(21,22) that there is a near field where r is small and a far field where r is
large; 4n the far field, the velocity 1' and the pressure p-p, are in phase; 1in the near field the
flow behaves in a quasi-static manner. i

For a source varying in a simple harmonic manner, m(-r) is proportional to m ‘mr‘ the velocity
and pressure fields follow directly from eqns. (21,22).

and similarly

_ cu(e-%.) . l
q.(ne) = "li;—-— {-}1 +2 (23)
cwl &Y ,
phe = met T [l e
AR

Thus 9. and p-R are harmonic in time at constant r and harmonic in r at constant time t. If there is
a surface distribution of sources, then those sources distance kcq/n away from each other, 1f in phase,
can amplify their local flow and pressure fields, hence additional modulations on the flow field
characteristics can be introduced.

The field induced by a source in the presence of a plane boundary can he simulated by the method of
images. For example, a wave front emanating from a point source pulse situated close to a solid planar
boundary leads to a radiation field as indicated in Fig.7, the image source pulse 'gives' the reflected
wave behaviour,
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FIG. 7

The reflections of a wave system with a non-planar houndary, for example, a circular cylinder leads
into the general area of diffraction which is too extensive to get involved with here,

Turning to 2 dimensions, by reference to egns.(19,20) for an arbitrary source strenqgth 0‘(1‘) per
unit time the velocity and pressure fields are

Trt-dA,
4 de) = & I TOETHT (e (25)
e o (0-‘(‘-‘"")"4')h '
T=e-dg, _
R ﬁ'}l_:-‘l L o@dT (26)

T (Oa‘@' ‘T);-dz )l’;

The cases where a‘(T) is a step function have been discussed.
When o(T) is simple harmonic, i.e.
() o

then the pressure perturbation becomes 0o
w e ad C_‘a “du. A
ac - .
¢ "P-)e _— - A e —'—'——(u“ D% ) %.o (27)
u=y

This integral is a standard integral proportiona'l to a Hankel function of second kind and zero order

~LAw
e de | ix ue (28)
51 (u"_‘)'/" Iy (\)

The induced velocity field for a simple harmonic source follows from ean.{25) thus
o a=¢‘% .
. 2)C 4.4\14
%(d.e) = owe j we du
ey Y
1‘“ ust @‘4)4
Without going through the mathematical niceties, on differentfation of eqn.(28) with respect to )«‘ then

Jepswu - 4[] - o
w=1 u?

3. DIPOLE SOLUTIONS

Dipoles, or doublets, are formed by bringing together a positive source and a negative source. The
1ine along which these sources are brought together denotes the axis of the doublet, Mathematically, the
velocity potential for a dipole is obtained by differentiation of the velocity potential of a source in
the direction of the negative dipole axis.

Thus in 3 dimensions with the axis of the dipole in the z direction, on differentiation of eqn.(8),

f (x,y,z €)= {-ft‘_!&-) -/,,'(f—a.e)g
Dipde “®r (30)
where /a. denotes the strength of the dipole. The pressure field is given by
‘ & -
P(x,y,z,c) o ,Ooﬂ- [/u Cr-2.8) /“”‘("F!"e)i o
For a doublet there {s a near pressure ffeid and a far pressure field, When the strength of the doublet
varies in a simple harmonic manner then the pressure in the far field is 90° out of phase with the

pressure in the near field. In the far field, as can be seen by differentiation of ean.(3q), the velocity
field is in phase with the pressure and along the z axis in the far field, the velocity amd pressure

PIICL RN

O,




decrease as yf » the same as for the source.

In two dimensions, the velocity potential for a dipole becomes
T e-Ge )i,

f)fk(x,z,‘:) = S Cbgr) 2 0" -T) 4T (32)

'S
Foo 2 (k%) (al-7)-> -z')
the pressure field is best left in the form \
TI=E- Q-‘fl‘)%'

pone) ot | G dT e
AR o
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4, 'CIRCULATORY 'FLOWS

To describe the motion of an incompressible fluid, it is convenient to explain phenomena
primarily terms of vortices and vorticity, as outlined in the first lecture of this series. However,
mathematically a vorticity distribution is eauivalent to a doublet distribution. A two dimensional
vortex sheet along the x axis say, of strength x&) (i.e. the difference in tangential velocities on
both sides of the x axis) is equivalent to a doubhlet (or dipole) distribution of strength/d:) the
doublet axis being normal to the x axis, where 4/G)is equal to Y&) ., In particular a finite length
of uniform doublet distribution between 4sxi[; s (i.e. /a(z)-/a. = constant) is equivalent to two
equal and opposite vortices at ).si. and 1-11

Hence the convection of shed ‘vorticity' aft of a body in a compressible fluid can be regarded,
not in terms of a distribution of vorticity, hut of a doublet distribution.

Suppose that two equal and opposite 'vortices' are created at time €=o as shown in Fig.8.

One vortex remains fixed while the other convects

T T downstream with V . This flow is equivalent to
C . ) a sequence of doublets heing formed; if the strength
'::t“ ,.v is,a. per unit length in the x direction then the

o 4
shaionaly distribution along the x axis at time T is given by
F16. 8 de (HE) -H(x-¥T) ) , x>0 >0 (Y

It is then possible to build up a picture of how the pattern of the flow field develops.

In general, denoting /:.(!,T) as the doublet strength betweéen S=0 ¥=ciVe to represent the
doublet associated with the starting process ahout a two dimensional aerofof] then the downwash wix,¢)
is, from eqn.(32), onz = o T=C- lz-Bfa,

] £- Ve 3/._65% g-ﬁ_'_z),_d_t————-—: “ (35)
N6 o dS r 5 CaldE-TI6-5))
T=0o

f S
where the finite part of the integral is taken. Egn,(35) reduces to

Wi e) = (.f ¢-[Lerk - fJA-) [&Vt (f c-&- 5%‘,) ds
’ < (x- 3') 1&'@.—5)

fnch‘. T-‘:,é
N T
o A, 9T aere-s)] (e
Eqn.(36) is essentially leading to the formation of the linearised integral equation for determining the
doublet strength /z({e) over a chord 0<»<c for a given downwash condition w(x.&) starting at €=o
If 2(67) s oscﬂhtory 1n time so that
/a )-/acf)t wwT T’°; 0< S=<co ,

then from eans. (35, 29) _ = 0) l -5l
L!'° ').- t‘
) /Cf) tﬁ ‘.‘,/x #a)(nll 3'/)) Jg ";"’e )
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Eqn.(37) is similar to the standard integral in linearised compressible oscillatory aerofoil theory.

The aim in the above analysis is to demonstrate the features of two dimensional and three
dimensional sources and doublets and to show how their super position leads fairly directly to the types
of integrals associated with standard 1inearised theory.

5.  ONE DIMENSIONAL WAVE REFLECTIONS

It is of interest to discuss briefly one dimensional wave motfons in pipes to illustrate resonance;
this is of relevance to the measurement of unsteady pressures using tubes between the position where the
pressure is required and a pressure transducer.

Consider a one dimensional pipe as shown in Fig.9({)

m [:““.,_.. with a piston moving in the positive x direction with

- — - *

u..= +00.L an 1N :,; velocity U, then a compressive wave passes down the
TITIT I tube inducing a uniform flow U and uniform pressure

q.(,( . Now consider a compressive wave approaching

FIR,.9(1)
a solid boundary as- shown in $ig.9(ii), then, after
Ll llil fbbilbis hekoktklas reflection, a compressive wave if formed travelling
u-u h—— Ca u=o [ . < .
‘P"Po*ﬂ-“'u — PePe 2 in the negative x direction, as shown in Fig.9(iii),
VAR ar ar vy b e e e e o o S Teaving stationary air hehind the front hut at a
FI6.9(11) pressure Zp.o.u. Thus by reflection, waves
travelling in both positive and negative directions
us(| — 6o w=o are possible,
Prpoqq,o.u ] P*p.h?fw. u Consider the case when
wl, &)= Ly sim wl-30) + W sin 0l
F16.9(ii1) Y = ({ sina€ eos wxe (38)
l;‘ldl._l;l bk L 4 £ £ L F 2L 2 ¢ goe s then u
PPl POOE) -po= a0 L s shiong,  (39)
<4 s If the piston situated at x~0, moves with velocity
F16.9(iv) US(n«le- then a solid reflecting boundary, where
wso s can be located at
4&&&4&;4‘;3:4 UXh. ™ M 3% ’ ' (40)‘
:;,E 4,:%« 1 In this case, there is no input in energy since p is
zero at the piston and so the system of waves
continues unabated in so-called resonance.
F16.9(v) According to this simple theory if

O} =X, A (41)
then p is zero; 1in crude terms this represents wave patterns in an open ended tube where the outside
air is at zero (relative) pressure; u(x,t) is not zero at the open end so air flows in and out but since
the pressure is zero again, there is no work done, so resonance occurs.

However, with an open tube there is a 1n0ss of energy at the open end. Shown in Fig.9(iv) a
compressive wave approaches an open end; now to reduce the pressure after reflection to zero an
expansion wave must be formed which passes back down the tube with fluid heing expelled out of the end
of the tube with ve1oc1ty.lli . However, there is a compressive spherical pressure pulse as shown in
Fig.9(v) which passes into the external ambfent air, this situation resembles a uniform source of
strengthz Yo s all of the pressure varfation is contained within the pressure pulse so the pressure
behind the pulse is zero. Energy associated with the pressure pulse in the external air is lost, With
simple harmonic waves the air passes in and out of the end of the tube but the wave field into the
external afr is always radiating outward, dissapating energy. But the energy loss is relatively small
compared with the energy in the tube; the fractional decrease in energy is proportional to the cross
sectional area hut inversely proportional to the tube length and to the wavelength,
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6. EFFECTS OF RELATIVE MNTION

Finally, consider an acoustic source situated in a free stream of uniform velocity U. Assuming
g that the perturbation velocity field s small compared with u then the equations of motion give

- 3 J (42)
4 P-P"' = u gf - ;I
:’- /’” x /O,. 5
where P, is the static pressure at infinity., Substitution of egn.(42) into the continuity eouation,
neglecting second order terms, gives

2 43
/g.- fu * f:)‘:j *fzz - .2"7“-§;,¢- - éfﬁr =o “)
where M~z , B =t-ul,

To decide what happens at point r at time t:
(4-)(,—) conditions at r at time t are essentially determined

u /& ‘r) by what happens at the source at the earlier time T
—

recoanising that the acoustic wave is convected

downstream with velocitv U.

Thus by geometry as shown in Fig. 10, it is seen that
0 2E-T) = G- Ule-T)' v y24 22 (44)

which when solved gives the delay time

by e Bt ey 9

If the source strength varies as a function of time m(t), then the velocity potential solutjon of
differential equatijon (43) is < )
¢) = mE-S
f(x) .717, ) A/K'(X‘f/x:y‘?/‘:la)'/‘ (46)

where &, is given by ean, (45). Again it is seen that if m(t) {s of constant strength for E»o (i.e.
m(t) = m H(t) ) then the flow takes up its steady state behind the wave froht. It is somewhat surprising
that although the wave effects are convected downstream the actual perturbation flow behind the wave
front is symmetric with respect to x,y and z, The reason is associated with the convective pressure term
- “"5& 3 upstream of the source "%x will be negative while downstream a;s,;l is positive so the
convective pressure is compressive upstream and expansive downstream thus accelerating the perturbation
forward flow and retarding the downstream rearward velocity.

The above analysis also holds for an acoustic source moving with uniform velocity in stationary air,

For an acoustic source moving with arbitrary velocity then the appropriate flows can he obtained
by following the analysis described in the first lecture of this series.

It follows from eqn.(46) that the velocity potential for a dipole with its axis in z direction is

(ny,2€) = faz_€€) YN GaD)
$ (ny.2, T G W TR L) (47)
4“(‘"/‘*‘3 ;/g‘z ﬁ‘ Arase (X 4-/‘., *,

Turning now to the two dimensional case the velocity potential for a two dimensional source which
commences at t=o0 in a relative uniform stream u can be determined by following the same arguments
Teading to eqn.(18) for the still air case (i.e. U-ao ). By reference to Fig. 11, and to ean. (46)

$xz6) =0 [for ae-G-Ule)-z2<0
1 w obﬁ:t oxl’l;(x‘b/ii‘)"‘

N AR
u: ﬁ(l,z,e) =~ ads %
6;’1"‘] Ue ) 4{-(»’/&:’\7“ )
A

-Z kA c..:e{s-ue)‘-zﬂ) *
M ( Can g2

FIG. 10

- -0 qu\“ (A:g-e-fx“,.
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The velocity components and pressures can he simply obtained by differentiation.
The velocity potential for a uniform two dimensional dipole with its axis 1n x direction then

follows
Het) foatersM

 Zfm
2w [flae s MPexrfi]t @A) (49)
Eqn. (49) is of exactly the same form as the dipole in still air (see eqn.(32)) except that the time

variable o, in still air is replaced effectively hy“,‘q_efxﬂ)in moving air. Thus the analysis given in
section 4, i.e. eqns.(36,37) leads directly into one form of the standard 1inearised 1ifting equation.

93(1,2,6) -/

7. CONCLUDING REMARKS

The aim of this lecture has been to introduce the basic acoustic singularities which arise in
Jinearised subsonic unsteady aerodynamics and in particular to show the relationships hetween two
dimensfonal and three dimensional singularities.
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METHODS FOR INVISCID SUBSONIC FLOWS ABOUT AIRCRAFT CONFIGURATIONS

by

W, Geissler

Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V,
- Aerodynamische Versuchsanstalt Gttingen -
Institut fur Aeroelastik
Bunsenstrafle 10, 3400 Gittingen, Germany

SUMMARY

For the determination of unsteady airloads about complex aircraft configurations a voriety of theoretical os well as exper-
imental methods exist. For special aeroelastic application, like the determination of flutter boundaries, the measurement of
unsteady airloads on harmonically oscillating configurations is required. In the following lecture some of the most important
theoretical methods currently in frequent use to solve unsteady subsonic problems are discussed in some detail and compared
with experimental results. Emphasis is also placed on the derivation of the final integral relations serving as the initial equa~
tions for special numerical approaches.

1. INTRODUCTION

Unsteady airloods on harmonically oscillating aircraft configurations are the necessory inputs into the dynamic aercelastic
equation for the determination of flutter boundaries. Due to the complexity of the governing time-dependent flow equations,
the development of appropriate unsteady prediction methods is one of the major problems in aeroelastic investigations. Even
if the time~dependence is simply harmonic, one has to deal with a wove-like problem which complicates the treotment of com-
pressible subsonic ond transonic flows, especially the lotter.

»

Therefore several levels of simplification must be introduced in order to obtain sets of equations suitable for numerical so-
lution. Analytical solutions are unavailable for nearly oll unsteady problems of practical interest.

In the following lecture, which is o shortened and updated version of the lectures given in 1], various levels of simplifi-
cation of the governing unsteady flow equations are briefly discussed. The different forms of integral relations are given which
are the initial equations for numerical methods which are currently in frequent use. These methods are discussed in some de-
tail and comparisons with experimental data are drawn. This detailed comparison between theory and experiment especially
illustrates the problems to be investigated in the future.

The prediction methods for the determination of unsteady airloods on aircraft components do not include viscosity. Ira
few cases corrections can be made by using the boundary layer displacement concept, as will be discussed later. But if sep-
aration occurs, prediction methods based on potential theory obviously will fail. Careful measurement of unsteady pressures
on the surfaces of oscillating configurations have proved to be a sensitive indicator of various types of three-dimensional sep-
aration. Measured unsteady pressures can signal separation much earlier than steady pressures.

2. BASIC EQUATIONS

Where problems of unsteady aerodynamics are investigated, especially the flutter problem, aeroelasticity is usually the
initiator. Before detailing unsteady aerodynamic theory, it is therefore necessary to review briefly the governing dynamic
aeroelastic equation. In generalized form this equation reads

N & 2 2 -aoP -
(n Mr‘i(f) + $§] D"ﬁr(f) + M qr(f) - s§1 Arsqs(f) = Qr ®; (=12,...,0)
with the notations given in (la].

Two types of aerodynamic forces are represented in (1). QD(¢) are the generalized disturbance forces, which are inde-
pendent of the aircraft motion and are regarded therefore as oerrodymmic forcing functions. This type of unsteady airload
occurs for instance during the flight through a turbulent atmosphere, or when the aircraft operates in the stall region, where
fluctuations occur within the separated flow causing unsteady reacting forces on the wing surface. For aeroelastic investiga-
tions, this type of force may be assumed to be known. Without this non-homogeneous term Qr'(t), one has to deal with @
homogeneous dynamic aeroelastic stability problem such as flutter, in which the second type of aerodynamic force remains,
which is caused by the time-dependent movement of the body. These forces are included in the aerodynamic coefficients
A . The motion-induced airloods are a function of the generalized coordinates q,(t).

In most aeroelastic investigations it is sufficient to assume simple harmonic time-dependence of the body motion. This u-
sally leads 1o a response which is also harmeonic in fime. in this cose, the aerodynamic coefficients can be expressed by

(2 A“ = /s-lzr(x,y,z);? (x,y,2)dS ,

where the term o"‘” {s omitted and 3, (x,y,z) is the amplitude vector of the r-th natural mode, and ;,A(x,y,z) is the un-
steady aerodynomic pressure amplitude octing ot a point (x,y,z) on the surface of the body which is oscillating harmonicully
in the s-th notural mode. Different from steady cerodynamic problems, aerodynamic coefficients are now complex quantities,
which have a real part in phase with the body motion and an imaginary part in quadrature to the motion. This phase hift of
the aerodynamic response, with respect to the displacement vector, is the physical reason why elastic structures exposed to on
airstream may become dynamically unstoble, which leads to self-sustained flutter vibrations.




2.1 EQUATIONS OF MOTION IN FLUID DYNAMICS

For the investigation of classical aeroelastic problems of flight vehicles with streamlined surfaces, it is sufficient to assume
that the viscosity of the flow plays only @ miner role, and thus may be initially neglected. Therefore, the parameter Reynolds
number %

(3 Re=Um-I°/U-0cn
is set equal to infinity. However, it must be proved later on whether this assumption is valid for special problems. In Eq.(3)

the arbitrary time-dependent equations of motion of a viscous fluid, i.e. the Navier-Stokes equations, can be simplified con-
siderably to another set of equations, i.e. the Euler equations (4)

(4) dv/dt + 1/pgradp =0 .

With the continuity equation }

(5 dp/dt +p divv=0 ;
together with the usual assumption of isentropic flow ;
(6) p/py = constant . - 1

Eqs.(4) to (6) are the governing equations of motion. They serve as the starting point for most unsteady aerodynamic problems
associated with aeroelasticity. There are five equations for the solution of the five unknowns ¥,p,p with ¥ as the arbi-
trary time~dependent velocity vector of a fluid particle. The assumption (6) is only valid for pure subsonic and supersonic
flow. However, difficulties occur in the transonic flow regime where strong shock waves may appear. Eq.(6) must be re- 1
placed then by the energy equation together with the equation of state, thus involving the temperature T as an additional
unknown.

The substantial time derivative d/dt in £qs.(4) and (5) can be expressed by C
(7) d/dt = 3/ 9t + v grad
Applying the differential operator d/dt to the velocity vector ¥ two different types of acceleration occur in a flow:
-

-+ -+
av/dt £ local accelerotion  ond v grad v 2 convective acceleration

where the local term 3/3t varies with transformation from a space-fixed to a moving frame of reference, whereas the con-
vective term remains unchanged for such a transformation.

2.2 POTENTIAL EQUATION

A further and very important simplification of the equations of motion is obtained with the assumption of irrotationality of
the flow, mathematicolly expressed by

(8 grod xv =0 .
With condition (8) the flow is called a potential flow
(9) v = grad ®

with ® as the velocity potential.
In Eqs.(8) and (?) the first integral of Eq.(4) leads to the Bemoulli equation

P
d 1 » - dp
(10) g;-i(v v) + 2 =0
Po
With the introduction of the local speed of sound by the Laplace formula
D) dp/dp = a2
and
dp_dp dp_ 1dp
(12) t dp dt 2d

combined with the continuity equation (5) and with Eq.(?) yields:
1 d
(13) =-pAd
2d

with A as the Laplace operator. If the d/dt operator is again applied to £q.(10) and the occuring time derivative of the
pressure is replaced by Eq.(13), the final result yields i

1 d rde 192 _ i
(14) J2a L@ -2 J-a0-0

Eq.(14) is the arbitrary time-dependent potential equation, which is invariant with respect to rigid body transformations.
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The potential equation can be expressed in two different coordinate systems, which are both of interest for the solution of
problems in unsteady aerodynamics.

2.2.1 SPACE-FIXED FRAME OF REFERENCE

If the coordinate system is fixed in space corresponding to an observer standing on the ground and looking ot o flight ve-
F hicle moving through the atmosphere which is at rest without the moving body, then the fluid particles influenced by the body
have the induced velocity ¥ with respect to this fixed frame of reference. In this case the substantiol time derivative yields

d/dt = a/ot +V grod
which can be applied to the potential equation (14) yielding
2
1 3P L 9 o =
(15) :2 ;2- + ﬁ (V V) +
Eq.(15) is the full potential equation in a space-fixed frame of reference.

In most applications in unsteady aerodynamics, however, it is more convenient to transform the potential equation into o
body-fixed frame of reference, and thus, in arbitrary time-dependent cases, into an accelerated frame of reference.

2.2.2 MOVING (ACCELERATED) FRAME OF REFERENCE

Mow the coordinates are fixed to the body and from the point of view of an observer in this system (a system which may
be accelerated) the fluid particle has a velocity which is a combination of the induced velocity ¥ and the flight velocity
Viin (kinematic velocity). The observer in a body-fixed frame of reference can only determine the relative movements of
fluid particles with respect to the body. The relative velocity W is obviously determined by

+ -+ =

{16) w=va=V

kin
Now it is important that the substontial time derivative in body-fixed coordinates changes to :
a7) ' d/dt = 3/at + w grad i
3
) - -
where (a/at)wce_ﬁx od is transformed to (8/at - Vkin gud)body-fix od o the term v grad v remains unchanged in
both systems.

By introducing (17) into Eq.(14), the comresponding potential equation in moving coordinates is obtained. After some
lengthy reductions this equation reads
]azQa-o-o]-o -+ 9 + 3 1 » - - 9 » o _
9 ?{—aﬁ ta Wewltgwomd wew)bw g Vi) - 3w erd Vg Vi) - & M vkin)} - A¢=o0.
The first three terms in brackets are identical to the corresponding terms in Eq.(15) if v is replaced by v . However,

there are three additional terms containing time-dependence and gradient of the kinematic velocity Vk.n , which in arbi- 1
trary cases are significant. ! ‘

2.3 BERNOULL! EQUATION

Before the complicated time-dependent potential equations (15) and (18) are simplified further into expressions more suit-
able for solution, the Beroulli equation (10) should also be expressed in a moving frame of reference. Using the substantial
operator  (17) Eq.(10) yields:

[
(19) %?+;gud@-%(3-3)=- | e
Peo
with v= w + Vkin £q.(19) changing to
i
) - |
+ 4 V. .V p |
% w-w _ kin kin _ _ dp/p :
(20) A R S |
Peo
For the special case of incompressible flow (p = po, = constant) the pressure function on the right-hand side of Eq.(20)
simply yields:
g
(21) "l p/p = (P, - PVP, - i

The condition @ refers here to a point in the undisturbed atmosphere at an infinite distance from the body. With
_ 2
(22) ¢ = (P =Py V (0, Up/2)

and Ug os a (time-independent) reference velocity, Eq.(20) gives the pressure coefficient
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Iy
) . =__2_8_¢+kan kin _w.w
o
ST A
For compressible flow the pressure function yields
1/ 1 y-1
P P P -3 P Garom
(24) A pYdp=- 2 Y
JEe e )
and with
2 2
(25) P/Pw =1+y/2 Mam cp ; M:m = Ua/°m and Pm/pco = am/'y
the finol expression for compressible flow reads y
+ - + a0 y-1
V.-V, wew + 2 —
-1 2 i i
(26) e =2 [{i + X5 M [Ldn_Kin _ —2]} -],
P ym ® u? U
@ ® ®

2.4 LINEARIZATION

For most of the aeroelastic problems of interest it is necessary to reduce Eqs. (15) and (18) together with Eqs.(23) and (28)
by a linearization procedure. For a fixed-wing flight vehicle moving with a time-independent translatory main velogity (Uy,)
and undergoing additional small amplitude oscillatory movements with the velocity vector M), it is assumed that Uy Is
approximately aligned with the x-oxis (small main incidence) and V is of harmonic time-dependence

- 2 ot
(27) R v=Ve¢ .
where the amplitude vector V is small compared to |Ug |, such that quadratic and higher order terms of V can be neglected.
Secondly, it is assumed that the induced velocities ¥ are small compared to | Up| (small disturbonces), such that quadra~
tic and higher order terms in ¥ also can be neglected.

7

If the preceding assumptions are taken into account in the potential equation (18) then the terms
-+ = -+ -+ -+ 2
(28) /ot (wew) =~ 2Um°xt ond 1/2 w grad (wew) =~ U, 2.
are simplified considerably,

The three terms containing the gradient and the time derivative of Vk;n in £q.(18) can be neglected if an additional as-
sumption is made: the body under consideration is a lift~producing wing- or failplane configurotion, which can be approxi-
mated by a thin lifring surface located in the plane of the main velocity (x,y-plane, Fig.1). In this case the kinematic vel-
ocity vector is simplified further to

» "y
(29) Viinx =~ Ucb ’ vkin 2z
(z 2 time-dependent displacement of the lifting surface: z = Z ¢! in the harmonic case) and the terms grad (Vkin' Vk;n),
w 8/0t (Viin) ond 3/ 0t (Vkin' Ykin) in Eq.(18) are negligible. With this linearization for lifting surfaces, Eq.(18) re-
duces to the well-known linearized potential equation for sub- and supersonic flow, which is frequently discussed in the text-
books (2] and [3]. 2 2 2

= - (U_oz/ox + 0z/ )

1 (3¢ e 2 7% -
(30) ':2- -a—'f +2U0 axat+UQ;x-2}-M-0 .
a@®

In this equation a further assumption has been made corresponding to the focal velocity of sound, which is approximated by
its constant value at infinity. This latter assumption is no longer valid for transonic flows, in which case the linearization
leads to @ much more complicated nonlinear equation: the transonic small perturbation equation (TSP).

These assumptions are very limiting though in most cases sufficient for aeroelastic applications. Figs.2 and 3, however,
show two examples where the linearization procedure discussed previously does not lead simply to equation (30). Fig.2 shows
a body of considerable thickness moving with constant velocity vector Ug, inclined to the main axis by o, and oscilloting
with a small angular amplitude o' about a pitching axis with an additional time-dependent velocity vector V(). Here the
kinematic velocity has the components
wt ) ot )

Viginx = - (U cosa +V e Y/ = - (U _sina +V._ e
@ x @ z

with
a=a ¢+ a' et
Although the amplitudes of oscillation ogain may be small and the assumption of small perturbations of the flow still moy
be applicable, some terms in Eq.(18) cannot be neglected, This can be easily proved, Further details of this case are given
in section 4.3,

These difficuities are more obvious in Fig.3 for o helicopter rotor blade, in which the kinematic velocity is prescribed by
a tronslating, rotating and oscillating frame of reference. In this case, further simplifications must be taken into account if
special solution procedures, such as singularity or integral methods, are to be applicable.

Corresponding to the potential equation, the linearization procedure can also be applied to the Bernoulli equations (23)
and (26) yielding

RTINS NHp S S P
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2|3
%3

_ 2 2
(3‘) cp = - ? - U_
-]

where a binomial expansion of Eq.(26) is used. Eq.(31) is also valid for incompressible flow.

2.5 ACCELERATION POTENTIAL

From the Euler equations (4) it con be deduced that ‘ f
dv 1 P
(32) a=--‘->grodp=-godfp . A;

Thus the acceleration of a fluid particle is the gradient of a scalar function, i.e. the pressure function, which may be defined
as the acceleration potential

(33) dv/dt = grad ¥

Integrating Eq.(33) the potential equation (14) yields 3
(34) 1/0® du/dt - A® =0 . |
Applying the substantial time derivative (d/dt) on Eq.(34) and replacing the term

(35) A (de/d) = A (v + V2V0)

the final result is 2

(36) S -aweyzd -0

Linearizing Eq.(36) gives 2
1 79 3"y 2 8 )

@7) :2_(;% +2Uco mar T 0—2) Ly = ‘
©

which has a form identical to the linearized potential equation (30) based on the velocity potential & . l

In the case of harmonic oscillations the linearized relation between & and § is then given by b
(38) P = iud + U, ad®/ax . A

For later application of the acceleration potential, the recalculation of the velocity potential from the acceleration potential
is needed

(39) $=2 ) j Ye dx' |,
@
where the Sommerfeld radiation condition & = 0 for x+ - @ is fulfilled.

3. SOLUTION PROCEDURES

A large variety of solution procedures for the unsteady flow equations exists in literature today. These solution procedures b
may be summarized by finite difference, finte element and surface singularity methods. While finite difference methods are 3
applicable for the solution of most of the partial differential equations discussed previously, surface singularity or integral

methods are only applicable for linear equations. Thus, a more extensive simplification of the governing flow equations is

necessary for linear equations. However, the computer cost ard time involved in solving problems by finite difference meth-

ods is much higher than for the solutions of problems by singularity methods. As long as nonlinearities are not too severe,

cheaper surface singularity methods will be favored for aircraft design problems, in which a large amount of parometers such

as Mach number, frequency, mode shape, and geometry must be investigated.

Pt

3.1 FINITE DIFFERENCE AND FINITE ELEMENT METHODS

In general, all partial differential equations and even the Navier-Stokes equations may be solved by suitable finite differ-
ence or finite element techniques, taking into account appropriate stability and boundary conditions. However, large diffi-
culties such as the turbulence problem or other highly nonlinear flow problems like separation occur, and the capacity of even
the largest existing computers does not suffice.

In unsteady aerodynamics with respect to aercelastic problems, the viscosity of the low may be neglected as previously
discussed. However, when regarding the important unsteady transonic flow problems involving shock-boundary layer inter-
actions, this assumption is brought into question. Due to nonlinearities existing even in the nonviscous flow equations, un-
steady transonic problems are mainly investigated by finite difference methods. Without going into detail about these meth-
ods (a survey of unsteady transonic flow phenomena is given in [4]), some of the existing calculation methods should be cited
for completeness.

The most advanced finite difference methods existing today solve the two-dimensional unsteady Euler equations (4), for ;
instance as in [5] ond [6]. ;

The preceding level of simplification is the full-potential equation (14) solved in [7] for harmonically oscillating airfoils.
Linearizing the full-potential equation leads to the transonic small perturbation equation (TSP), which has been solved by a
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number of investigators (18] and 9] ) for two~, as well as for three-dimensional problems.

Only a limited number of investigators use the alternative finite element approach. For this type of method the flow field
is discretized in a suitable distribution of finite elements (2d-problems) or even finite volumes (3d-problems). The first at-
tempt to solve the unsteady transonic small perturbation equation by a finite element procedure is shown in (10]. More ex-
amples and details of transonic flow problems together with a large list of references are given in [11].

3.2 SURFACE SINGULARITY METHODS

As long as the finearized unsteady potential equation (30) is applicable for problems in pure subsonic and supersonic flow,
a different solution procedure can be applied by using the concept of surface singularities. The advantage of this type of
method is that only the surfaces of the bodies under consideration need to be represented by singularities, such as sources,
sinks, and doublets. The outer boundary condition (at infinity) is automatically fulfilled. The solutions include not only
the flow quantities on the body surfaces, but also in the surrounding flow field. The corresponding methods con be based on
the velocity potential & (Eq.30), as well as on the acceleration potential or pressure function § (Eq.37). Both possibilities
will be discussed in more detail in the following sections.

Firstly, the derivation of the governing integral equation together with the corresponding surface boundary condition and
the Kutta condition will be outlined in the following sections using the example of the velocity potential in subsonic flow.

3.2.1 INTEGRAL EQUATION

For the special problem involving large steady flight velocity | Uy | and additional small amplitude harmonic oscillations,
the veloclty potential & can be represented by

(40) ® (xyszt) = 8 (xyez) + 0 (xy,zt) 5 @(xy,zt) = B(xy,z) e 7

i.e. by a steady term ®( and a time-dependent unsteady term ¢ . Introduction of Eq. (40) into Eq.(30) yields for the un-
steady part of the potential (with the term et omiited)

2— 2

' 2, 3% o . ® 30w - _
(4‘) (]-Mlm)—-z- +-—2— +—2— - 2w a B +T ©o=0 |,
ox 9y 9z ® %

which is completely independent of the steady potential ®g . Thus, for all unsteady flow problems based on the small per-
turbation equation, the steady solution of the problem is separated from the unsteady problem,

With the transformation
i(AX +w*T)

(42) © (xy,2,t) = U_£0(X,Y,Z)e .
with w* as the significant unsteady parameter defined by
. IV 2 -V 2
(43) w —w-(o/Um i AT w Mum/ and B = I-Mam
The coordinates and the time are made dimensionless by
(44) X=x/-€o ; Y=y-B/€0 ; Z=z-ﬂ/£° : T=t-Uw/l° ,
with B8 as the Prandt!-Glauert factor. :
Introducing the transformation (42) into Eq.(41) yields
2— 2- 2-

) 3% 9 2- : g2
(45) + + +x%9 =0 , with »=M_w*/

a_xg B j ®

£q.(45) is the Helmholtz-wave equation for which fundamental solutions exist. One of these elementary solutions is the func-

tion: .
f= e."”/r , = 1[(X-X')2 + (Y-Y')2 + (Z-Z')2
with r as the distance between a sending point (X', Y, Z') ond a receiving point (X, Y, Z).

Using Green's theorem, Eq.(45) can now be transformed into an integral equation for the unknown potential © [12]

=inr -ixr

(47) 4%-3 (X,Y,2) = fsf [¢ (xv.2) %(‘-r-—)- %%- (=—)] 4¢*an’

r
with §,7, { os surface coordinates (Fig.2).

In the case of a lifting body, the surface integral of Eq.(47) must be taken over the surfaces of the body and the wake.
The first term under the integral sign of Eq.(47) can be interpreted as the doublet term. The second part is the source term.

Differentiation of Eq.(47) with respect to ¢ (the cutward normal direction in the control point) yields

inr.

- 2 -inr - -
@ Bk B B (e

as the final integral equation for the determination of the unknown source and doublet strength on the body surface. Eq.(48)
expresses the kinematic boundary condition, i.e. the normal component of the prescribed kinematic velocity must be cancelled
by the induced normal velocities of the singularity system. in must be of harmonic time-dependence consistent with Eq. (40).
Therefore, Eq.(48) is complex with o reai port in phase with the prescribed oscillating motion and an imaginary port in quad-
rature to the motion.
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For the special case x = 0 the integral equation is simplified considerably. Two different reasons may cause this sim-
plification

1. Mum = 0  for the incompressible unsteady problem
2. w* = 0 for the time-independent steady (compressible or incompressible) problem,

It should be pointed out here that for the incompressible unsteady case, the full potential equation reduces to the simple
Laplace equation

(49) A® =0 ,

which is linear in itself, and still leads to the integral equation (48) with the exponential terms replaced by ‘one.’

All unsteady integral methods based on the velocity potential can be derived from the general equation (48). A solution
of the complete integrat equation, however, is still difficult, and further simplification with respect to the body geometry
must be accepted for practical applications.

In Eq.(48) one must always keep in mind that this integral formulation is based on the linear small perturbation equation
(30), which has been derived with the assumption of small induced velocities and special limitations of the kinematic velocity
involved.

3.2.2 KUTTA CONDITION

For lift-producing configurations, such as wings and tailplanes, the Kutta condition at the trailing edge of the wing must
be opplied in steady, as well as in unsteady, aerodynamics. This phenomenological condition expresses the main effect of
viscosity, which is otherwise completely neglected in potential theory. When introducing the Kutta condition into the solu-
tion procedure of the integral equation, one has to consider the smooth flow off the trailing edge, which is identical to the
condition of equal steady and unsteady pressures at two points, i.e. on the upper and lower wing surfaces adjacent to the
trailing edge or Kutta point. For steady three~dimensional problems and for unsteady two- and three-dimensional problems,
the wake flow behind the wing must be taken into account. Here exists a principle difference between methods applying the
velocity potential and methods applying the acceleration potential. The velocity potential has a discontinuity crossing the
surface of the wake. This discontinuity can be represented by a doublet sheet. The existence of the wake must be considered
in solving the integral equation (48). In applying the accelerotion potential, however, no discontinuity in the wake exists,
due to the fact that the pressure through the wake is continuous, i.e. the wake is a free stream surface which cannot sustain
any forces. Further details of these principle differences between the two concepts will be discussed later.

3.2.3 UNSTEADY PRESSURES, FORCES, MOMENTS

After the singularity distributions on the body surface have been calculated by solution of Eq.(48), she next step is to ap-
ply the Bernoulli equation in the nonlinearized (26) or linearized version, in order to calculate unsteady pressure distributions.
The pressures then directly enter the aerodynamic coefficients A (2) needed in the governing dynamic aeroelastic equation
(1). The additional step of calculating unsteady pressures by means of the Bemoulli equation is avoided if the acceleration
potential § is used. This advantage will be outlined in a later section.

In the special case of a thin lifting surface (Fig.1) the pressure jump is needed across the surface instead of the local value
on the surface, i.e. the local lift.

In the equations L
(50) Bp =Pk, « AP=90,-0
the index ¢ refers to the lower and the index u refers to the upper surfoce of the wing.
Applying the linearized Bernoulli equation (31) together with the transformations (42) and (44) yields

(61 e = 8p/ (o, ufn c/2) =2 [ivap + 222] X - act +ider
with v = u*/ 82 and C as the amplitude of the oscillatory motion.

If the structural deftection of a wing section can be neglected as in the case of high-aspect-ratio wings, then the integrated
pressure coefficients in streamwise direction define the local lift and moment, which directly enter the aerodynamic coefficient
Ars. Inoddition, the spanwise lift and moment distributions are advansageous for comparison between different prediction meth-
ods and experimental data. '

The local lift coefficient ¢, is calculated by

dL
Lp Lot coy

where the index V refers to the leading edge and the index T to the troiling edge of the wing section. {(y) is the local
chord length of the section. In o similar way the local moment coefficient c,, and the local moment coefficient of the con-
trol surface c, are defined,

(52) < (y) = = 2 [ Aa‘. enxT + jw* ){XT AQ enx dX] .
Y

it should be pointed out that in £q.(52) the differentiation of A7 with respect to X is avoided, and thus a numericol
differentiation of the streamwise potential distribution necessary in Eq.(51) is unnecessary for the calculation of the unsteady
local lift and moment.
4. THREE-DIMENSIONAL SUBSONIC METHODS
4.1 LIFTING SURFACE THEORIES

The starting points for all lifting surface theories are shown in Eqs.(30) or (37). These starting points depend on whether
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the velocity potential @, or the acceleration potential, or pressure function § isapplied. In the first case, the carrespond-
ing aerodynamic influence function of the integral equation is relatively simple, but the woke behind the lifting surface must
be considered, thus leading to semi-infinite wake integrals. However, the velocity potential concept can be applied also to

bodies with complex geometries, thus accounting for the complete geometrical boundary condition, and possibly the Bernoulli
equation.

In the case of the acceleration potential, however, the aerodynamic influence function is more complicated. This fact is
due to a recalculation of the velocity potential from the pressure function Eq.(39) in formulating the kinematic boundary con-
dition on the wing surface. The advantage of the acceleration potential concept is that the pressure difference on the lifting
surface is already the solution function and no additional calculations have to be performed. Furthermore the wake behind the
wing, in this case, does not have to be taken into account, due to zero pressure difference there.

4.1.1 LIFTING SURFACE THEORY BASED ON THE VELOCITY POTENTIAL (PANEL METHOD)
For infinitely thin lifting surfaces, the general integral equation (48) can be simplified by the conditions in (50) with

(53) aap/d=0
(since Ap isan odd function of z = ) to the form
- 2 -inr
2 22 M ssoe, v L (S5 ) acar
Z+0 S+W 4

The surface integral in Eq.(54) must be taken over the wing surface (S) and the wake (W). The linearized downwash on the
wing surface, due to an oscillatory motion of the wing, is given by Eq.(29).

(55) w = 9z/8 + an az/ax ; z = z(x,y) ot ,
which can be transformed by Eq.(42) to

- - 9z ), =i (AX + w*T)
(56) w=1/u 9wy Z)e
The kinematic boundary condition on the wing surface is now given by

{57) (aAB/aZ)Z=o = -W

with the unknown potential jump A’ under the integral sign Eq.(54). After A@ has been calculated the linearized Ber-
noulli equation (51) can be applied. With Acp = 0 in the wake the latter equation gives the condition of A¢ in the wake

" (58) ivAp + aAP/OX = 0 ,

which can be integrated, thus leading to '

_ _ - (X=X )
(59) (A(p)w = AW(XT, Y)e ,
where XT is the position of the trailing edge.

The integral equation (54) together with the boundary condition (56) is solved now by a panel method, which was first
done by W.P. Jones and J.A.Moore in [13]. Fig.l shows the lifting surface divided into small surface elements, which are
distributed over the wing surface with element concentrations at the wing leading and side edges. Chordwise strips on the wing
surface extend into the wake, thus forming semi-infinite wake strips emanating from the trailing edge. Corresponding to the
integral expression in Eq.(54), the wing panels are represented by doublet distributions of constont doubiet strength within
each panel. .

The kinematic boundary condition is now applied in the geometric midpoints of each panel, and thus Eq.(54) and (56)
together with the wake condition (59) can be formulated in discretized form

— iy _ /' 32 (e-iu I') J _ jf -iv(X-XT) el ( o-inr xrd
a' -“w = 17 — d ] Yl E ' "
(¢0) m n§=:| Ay g ] az2 2 e q=|Aw(XT’Y)AWq ) ;;i r %-’0 X

with m referring to the control point and n referring to the integral- or sending point. | *J is the total number of wing
surface panels. Eq.(&0) still cannot be solved by means of a linear system of equations, because there are more unknowns
than equations, due to the wake terms A . To remove these terms, it is assumed that the potential distribution in chord-
wise direction of the wing can be approximited by a parabolic curve through the trailing edge value and the values in the
two wing panels adjacent to the trailing edge, having the indices i,j and (i-1),j (Fig.1). The wake integrals (second term
in Eq.(60)), however, are much more complicated semi-infinite integrals, which must be calculated numerically by solving
expressions like

@® As'

(61) Am.,n=6[ o iV f(s)ds '(‘)=of o iNr (1+ ixr) ds'

r
(s=X- XT q As' 2 strip-width).
Using the periodicity of the exponential function in (61), this formula can be rearranged to

T .
(62) A =6[ e Vi (E(s) - F(s+T) +F(s427) = +...)ds 3 T=w/V .
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The infinite series in Eq.(62) are calculated up to the tenth member. The rest is opproximated by a geometric series. The
final integral in (62) is evaluated by means of Simpson's rule.

After the linear system of equations has been solved for the unknown coefficients A%, the unsteady pressure coefficients
Ac, may be calculated by Eq.(51). In this case, the derivatives of Ap with respect to X are needed. They must be col-
culoted numerically, using a spline fit to the functions A (X) or simply be finite differences. It has already been mentioned
that for the calculation of local lift- and moment-coefficients, only the A® - values are needed in Egs.(52). Thus, the
X-derivative in the Bernoulli equation is avoided in this case,

It should be mentioned that the number of control points on the wing, and thus the magnitude of the linear system of equa-
tions, is reduced considerably by symmetry conditions. Only one half of the wing must be represented by control points. Ob-
viously, the influence of the symmetric half of the wing and wake must be taken into account by the influence of the comres-
pording doublet distributions there.

Fig.4 illustrates a typical result of the method for a rectangular wing with pitching oscillations about its midchord axis.

Real and imaginary parts of the chordwise and spanwise pressure coefficients Ac), , Acl are represented for different num-
bers of panels. The results are compared with the kernel function method [15] based on the acceleration potential (section
4.1.2,1).

4.1.2 LIFTING SURFACE THEORY BASED ON THE ACCELERATION POTENTIAL

In recent years much effort has been pent on the development of the alternative approach based on the acceleration poten-
tial, for which the linearized potential equation (37) serves as the starting point. Two different main concepts for the solution
of this equation have been frequently investigated; the kemel function, and the doublet-lattice approach. The former works
with prescribed functions for the unknown pressures. The latter uses a panel-type discretization procedure.

4.1.2.1 KERNEL FUNCTION METHOD

The integral equation based on the linearized acceleration potential equation (37) and the boundary condition (55) has
the general form _
(63) Swley) o 1 f[ Ac_(x',y') K (x=x', y-y', Ma_, w*) dx* dy'
U 8w P ®
® S
with K as the kemel function, expressing the influence of a single pressure doublet of unit strength located at x',y* on the
wing surface S in a receiving point x,y . This function is ilustrated in [15]. The idea of the kernel function approach is
to approximate the unknown pressure distribution Acp (x',y') in the chordwise and spanwise direction by prescribed functions,
where special known features of the pressure distributions are already included

(64) Acp(x,y) Z Z c. . ffn) ( % ) g}m) (%)

i=1j=1 e 1

with f§") as the chordwise and gj(m) as the spanwise loading functions. The coefficients cj,j are assigned now to favorably
selected control points where the boundary condition must be satisfied. Thus Eq.(63) can be represented by a system of
N = (nxm) linear algebraic equations for the N unknown coefficients ¢; Je The loading functions fi("‘) may be defined

by the usual Bimbaum-Achermann or Glauert functions from steady theory 4
) (1 -x)/0+x0"72 fx n=0
(65) M) = a
sin[ncos  X] foo n>0
with

= (X'XL)/e(Y) ’
where x is the position of the leading edge at the spanwise position y .
These functions include the known square root singularity at the leading edge and the Kutta condition of zero pressure dif-

ference at the trailing edge of the wing. Thus a limited number of these functions is already sufficient for the appropriate re-
pre;entation of the Ac_ distributions.

The spanwise functions g‘ m) are either determined dlrectly with the aid of suitable interpolation functions as in the
Multhopp-Truckenbrodt procedure [16] or they are expressed in terms of another set of pre-selected functions according to
lifting-line load distribution.

i
The general formulation of the integral equation (63) using prescribed loading functions yields ?
(66) - W = [J]az, K ax ay ] el

with {w} and lc} as N-order column matrices of the prescribed downwash and load coefficients, regpectively. After this !
system has been solved for the N unknowns ¢; ;, the unsteady pressure differences Acp can be calculated by £q.(64). %
1

The analytical treatment of the integral expression in Eq.(66), i.e. the oerodynamic influence function, causes difficulties
due to high order singularities included in this function. i

The kemel function method hos been used successfully for numerous unsteady flow problems including arbitrary wing plon-
forms, Mach numbers, reduced frequencies and mode shapes. Fig.5 illustrates a typical example of unsteady airloads on a
rectangular wing with pitching oscillations about the quunor-cﬁ_o'?a—axis [15]. The analytical results are compared with cor-
responding experimenial data. The agreement between theory and experiment is fairly good, aithough the measured wing con-
figuration had a NACA - 0012 (12% thick) airfoil section, whereas a thin lifting surface was assumed for the theory.
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An example of the applicubility of the method for compressible subsonic flow is shown in Fig.6. Unsteady airloads are il-
lustrated on a rectangular wing oscillating in pitching mode about the quarter-chord axis. Up to Mach number 0.8 the agree-
ment between theory and experiment is again quite good. Larger differences occur for the higher Mach numbers, where non-
linearities due to shock waves cause large differences between linearized theory and experiment.

The advantage of the kernel function method compared to the panel method discussed in the previous section is the limiting
number of load functions necessary for a sufficient accuracy of the solution. Thus computer time and costs are minimal when
using the kernel function approach. Difficulties, however, occur in cases where the pressure on the lifting surface has not
only a singularity at the leading edge, but additional singularities at the hinge lines of control surfaces. Then the number of
loading functions must be increased considerably to accomodate these more complicated pressure distributions, or special lood-
ing functions including the pressure singularity at the leading edge of the oscillating flaps must be used. i

4.1.2.2 DOUBLET-LATTICE METHOD :

Adifferent purely numerical approach based on the acceleration potential is known as the doublet-lattice method described
in [17). This method was applied more extensively by several authors. The governing equation is agoin the linearized poten-
tial equation (37) for the acceleration potential ¢ . Similar to the velocity potential panel method of section 4.1.1, the
wing surface is split up into small surface elements (Fig.7). The quarter chord line of each element is represented now by a
pressure doublet line of constant, yet unknown, strength. The corresponding control point of each panel is located at its
3/4-chord point. This assumption of the control point location was confirmed by numerical experimentation such that the
Kutta condition is automatically fulfilled and no additional assumptions for this condition are necessary.

If the wing surface is represented by N surface elements the integral equation (63) may be given in discretized form

— N
67) M) > . . Az ?
‘ UL T & Dy
i=1 %
with the aerodynamic influence function Dj, j corresponding to the influence of a pressure doublet line of length ¢, (Fig.7) }
and strength 'one’ in a control point i: s c A
_1 . P
] (68) Di,)' = 8n ch COS(pj e;./. K(xi' yilxj (t)l Yj (t)l Mcmlw )dt . +

with the geometric terms Acj, ¢j, l; given in Fig.7. The general expression for the function K is given in [17] even for
the case of nonplanar lifting surfaces. Eq.(67) can be assumed again as a linear system of algebraic equatizns with Ac, as
the solution vector. Identical to the velocity potential panel method, the number of equations is determined by the number
of surface elements representing the wing.

The advantage of the methaod is again its flexibility, thus being applicable for arbitrary lifting surfoces including discon-
tinuities of the normal wash at control surface-leading edges, fold lines or intersections of other surfaces (pylons, T-tails,
etc.). The method has been proved for a large variety of unsteady flow problems including interference effects of bodies.
Thus it is one of the standard methods in unsteady aerodynamics.

4.2 UNSTEADY WING THEORY INCLUDING THICKNESS AND INCIDENCE

All methods discussed so far are based on the linearized potential equation in connection with linearized boundary condi-
tions and the corresponding linearized Bernoulli equation. Thus, these methods are limited to lifting bodies which can be as-
sumed to be infinitely thin. In most applications for aeroelastic problems, these assumptions may be sufficient. On the other
hand, it is important to know the magnitude of the neglections due to all these linearizations.

It has been mentioned that for the limiting incompressible flow case the governing potential equation reduces to simple La-
place equation, which is already linear in itself. Therefore, the arbitrary integral equation (48) with the exponential terms
replaced by 'one' serves as the governing equation for this case. This theoretical concept, which is again based on the velo-
city potential, can be applied thus to arbitrary body geometries including not only lift-producing configurations, but also bo-
dies like fuselages, stores, and tanks.

The geometric conditions of the wing problem are shown in Fig.8. Instead of a corresponding thin lifting surface, now the
whole wing surface is split up into suitoble distributed surface elements [18]. The wake is again represented by strips emana-
ting from the trailing edge to infinity. These wake strips may be of arbitrary curved shape, however, it is assumed that the
¢ wake contour is known a priori.

Corresponding to the steady three-dimensional method for (ifting bodies given in [19], the wing surface is now distributed
by sources and sinks, and in addition, by doublets of constant strength within each element. The integral equation (48) is
1 now modified with & = ‘l’q +¢d (source and doublet terms) to

(699) a¢qo/ac = -(u‘:0 + aodo/ac)
for the steady potential (index 0), and
(69b) 89,/ 9¢ = -(Uu+\7c+aadi/ac)

E for the unsteady potential (index i), where the doublet terms apy / 9L are shifted to the right-hond side of the integral e-
quations and odded to the prescribed kinematic velocity terms Ug (normal component of the translatory motion) and 'V,
(normal component of the oscillatory motion). Thus, the doublet terms are assumed to be known at the first step. Their Yinal
magnitudes are determined later by the suitable application of the Kutta condition. The source and doublet terms which are
equivalent to the induced normal velocities of the surface source and doublet distributions can be calculated by
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(70) a ijac( boaT Tsfda:ac( T\J%wacac()dw 2
where A, is the doublet strength within the wake.

Both steady and unsteady potentials are calculated in Eqs.(69a and b), because in the nonlinearized boundary condition and
Bernoulli equation (26), the relative velocity vector ¥ includes both steady and unsteady terms. Thus the problem can no lon-
ger be separated into independent steady and unsteady parts. The calculation of unsteady pressures by means of the complete
Eq.(26) postulates the knowledge of the corresponding steady velocities. In incompressible flow the reduced frequency w*
is not included in the aerodynamic influence functions 3¢q / 3L (source terms, Eq.(70)), which are then identical for both
steady and unsteady cases. Thus, both integral equations (%9) can be solved by only one linear system of equations with sev-
eral right-hand sides of the equation being represented by steady plus unsteady terms. The results of this solution procedure
are two solution vectors: one source-strength distribution satisfying the steady boundary condition, and the second satisfying
the unsteady boundary condition.

For the solution obtained so far the dipole strengths were assumed to have unit strength. Thus, for each chordwise strip of
the wing an additional factor - the overall doublet strength of this section - is needed for the final solution. Here the Kutta
condition, with the assumption of zero pressure difference between two control points on the upper and lower wing surface ad-
jacent to the trailing edge, must be applied. This condition leads to a quadratic system of equotions for the steady problem
and to a linear system of equations for the unsteady problem. The number of equations is determined by the number of chord-
wise strips of the wing.

Applying the incompressible Bernoulli equation (23) in two adjacent points on the upper and [ower sides of the thin wake,
and assuming zero pressure difference there, the unsteady potential difference gives

_ _ -iw*(s-s.l.)
@) (Ap,), = (Ag)ye ,

where s is the unijt tangenﬂal vector of the curved wake, and the index T refers again to the position of the troiling edge.
The steady potential jump (Aq,) is constant within a wake strip. After all source and doublet strengths have been calcu-
lated, the general form of the Bernoulh equation (23) can be used finally to calculate steady and unsteady pressures on the
wing surface.

Typical results obtained with this method are shown in Fig.9 for a rectangular wing oscillating in pitching mode about its
quarter chord axis. The wing hasa NACA 0012 airfoil section. The results are obtained for the case of ag = 4° main in-
cidence and w* = 0.14. Comparison with experiments [20] shows good agreement within the inboard sections of the wing.
In the very tip region (y/¢ = 0.962 in Fig.9), however, deviations of the measured data from the theoretical results are
Iurgely due to the influences of the tip vortex there.

.10 shows unsteady pressures for a swept tapered wing osclllahng again in pitching mode at its quarter chord. The wing
has a NACA 0010 symmetric airfoil section in this case. Three theoretical curves are included in this plot

1. linear lifting surface theory,
2. nonlinear theory including thickness,
3. nonlinear theory including boundary layer comrections.

The theoretical curves are compared with corresponding experimental dota [21]. To take into account first order boundary lay-
er effects, a 2-d boundary layer calculation {22] has been carried out for each wing section using the steady pressures of the
inviscid solution. Then the boundary layer displacement thicknesses have been added 1o the wing surface and a second oal-
culation about the thickened wing was performed. The results show an improvement of the real parts of the unsteady pressures
compared with experiment. Obviously, it is necessary to consider both thickness and boundary layer effects to obtain this im-
provement, a point which is extensively discussed in [11] for transonic flows, in which it pluys o dominant role.

4,3 UNSTEADY THEORY FOR OSCILLATING BODIES

A similar approach to that given in the previous section for finite thick wings can be applied to bodies (missiles, fuselages,
tip-tanks etc.). For a configuration represented in Fig.2 a linearization of the boundary condition is not dbvious. Therefore,
the exact geometric boundary condition, together with the complete Bernoulli equation (26) will be applied again in this case,
A considerable simplification of the problem is obtained if the body is assumed to have no lift; thus, only o source=sink dis-
tribution is necessary, which is placed on the real body surface. Splitting up this surface again into surfoce elements and as-
suming constant source strength for each panel, the integral equation (48) - taking only the source terms - yields

(729) 9¢ /8l =-U
for the steady and a0 £o
(72b) aa ;/9¢ = -(Um +v )

for the unsteady potential (corresponding to Egs. (67)), where again the oerodynomnc influence functions 8¢ / 9 ond
3 ¢ / 3L ore given by Eq.(70).

Tho right=hand sides of Eqs.(72) express the steady and unsteady normal components of the kinematic velocity in a body-
fixed frame of reference. The determination of the kinematic velocity components in body-fixed coordinates (right-hand sides
of Eqgs.(72)) should be outlined at this point in more detail. If the case of pitching oscillations is assumed together with a
time~independent translatory velocity of the body, then two different components of this motion can be observed on the body
surface

1. Velocity V due to harmonic oscillations of a surface point,

2, Velocity U due to the translotory movement of the body.
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Thus the kinematic velocity becomes

Iy +

(73) Vi, = - (U + V)

With the pitching axis parallel to the y-axis and with the vector Uy, in the x, z-plane, Vkin has the components
3 - - = _iwT Y - . . o T,

(74) vkinx = (Ucocosa +Vxe ) Vkinz (U_sina +V._e j

with .

(75) a=a, +a'e'w«T

as the arbitrary time-dependent angle of incidence having a steady (a) ond a time-dependent (a' e'u‘T) part.
If d is the smallest distance between the surface point and the axis of rotation (Fig.2), then the velocity vector v yields

(76} V= iw*da' eiw“‘T

Substituting Eq.(75) into Eq.(74) gives the components of the vector ]

U cosa = U [cosa cos (a' eM‘T) - sina_ sin (a' emq)]
@7) ® ®rs T : o
Um sina = Um [sinas cos (a' e ) + cosa, sin (o' e )] ,
and for small oscillation amplitudes (o') the quadratic and higher order terms in Egs. (77) moy be neglected. Thus Eq.(74)
yields: (78)
Y, = - . ' vi iw*T i N/ = - . ~ T iw#" - -
Vkin = Um cosa + ( Umsm a.a +Vx e ; Vkin 2 Umsm a, (Uw°°5°’," +Vz e Vkin s +Vkin ;

where Vx and Vz are the corresponding components of v.

By means of a simple coordinate transformation the components of vk;n may be expressed also in surface or panel coordi-
nates (£,7n, L inFig.2) with Vc entering the right-hand side of the final integral equation (69) in the wing case or Eq.(72)
in the body case. The term Uy, cosaga' is identical with the normal component Up; in Eqs.(69) and (72).

If only small amplitude oscillations are assumed, the steady and the unsteady integral equation due to the first harmonic of
the motion are sufficient. In [23] it is shown, however, that this linearization procedure with respect to the amplitude of os-
cillation is unnecessary if further terms in Eqs.(77) are retained, which leads to additional integral equations due to the second
and higher harmonics of the motion. The solution procedure is simplified again because only one linear system, of equations
with several right-hand sides, has to be solved. In correspondence to the treatment of the boundary condition and integral e~
quation, the Bernoulli equation also can be formulated to give steady, first and higher harmonics of the_pressure.

Carefully measured steady as well as unsteady pressure distributions are plotted in Figs.11-12 for an ellipsoid of axis ratio
a/b =3 for three ditferent steady incidences [25] . The solid curves in these plots are the results of the theoretical approach
taking care of the exact geometrical boundary condition and Bernoulli equation. As long as viscosity is insignificant (front
part of the body at low incidence), then the calculated curves fit extremely well with the experimental data. At the rear part
of the body a separation region can be observed within the unsteady pressure distributions rather than in the steady pressures.
With increasing incidence a pressure peak within the imaginary part of the unsteady pressures occurs, which must also be re-
ferred to as viscous effects. This peak is shifted forward with increasing incidence and may be caused by the two contra-rota-
ting body vortices observed for such bodies of revolution. It is interesting to mention that the steady pressures in this region
do not show any difference compared to the potential theoretical curve.

Methods for bodies of finite thickness have been discussed thus far only in the limiting case of incompressible flow. Large
difficulties occur if compressibility effects are to be taken into account. Firstly, it must be kept in mind that the concept of
linearization of the full potential equation (18) into Eq.(30) must still be used because a corresponding integral relation for
the full potential equation does not exist. On the other hand, if the body under investigation cannot be approximated by a
thin surface, one must try to use a surface singularity distribution and fulfill the boundary condition on the real body surface.
In addition, one can try to solve the non-linearized Bemoulli equation for compressible flow. This concept is used in [24]
for oscillating axisymmetric bodies in subsonic flow. Here Eq.(48) with the doublet terms neglected serves as the starting
point. Difficulties occur in the numerical treatment of the surface integrals which now have the form

/2
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with % as the compressible reduced frequency. In [26] a series expansion of the exponential term in Eq.(78) and analytical
integration of the single terms are described up to the sixth member of the series expansion.

A typical result of the method is given in Fig.13 for a spheroid with pitching oscillations about the midchord axis at
Mag, = 0.6 . The results are compared with m‘e corresponding incompressible curves and with results of a different solution
procedure including compressibility effects [27]. The latter method solves the Helmholtz wave equation (Eq.(45)) directly
by means of spheroid functions. Results of this quite different concept compared Yo surface singularity methads serve as a use-
ful and necessary check on the reliability of thu purely numerical concept. Fig.14 shows results for an ogive cylinder in
compressible flow oscillating in pitching motior .

5. CONTROL SURFACES

Unsteady airloads on three-dimensional wings including one or more oscillating control surfaces can be calculated by one
of the methods described in the previous sections. Only the normal wash on the oscillating flap must be modified, thus lead-
ing to a discontinuity along the leading edge of the flap. This discontinuity has already been investigated in [28], where a
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logarithmic singularity in the pressure distribution was observed. Using the kernel function approach outlined in section
4.1.2.1, this special feature of the chordwise pressure distribution must be accounted for within the spanwise control surface
region, whereas outside this region the usual loading functions are sufficient. Another possibility for applying the kemel
function approach for wings with controls is described in [29) and [30]. Here the discontinuity in the normal wash distribu-
tion is subtracted, thus leading to smooth distributions, which can be solved easily by a standard kemel function approach.
Although quite satisfactory results have been obtained with these modified kemel function opproaches, tedious and time-con-
suming work is still required to determine the corresponding loading functions and to distinguish between the different regions
where different functions must be applied.

Since surface discretization procedures such as the doublet-lattice or velocity potential panel methods are available, no
special problems occur with the inclusion of oscillating controls. [t is only necessary to represent the control surface leading
and side edges by panel edges. Then the right normal wash within each panel control point is accounted for, regardless of
the pasition of the panel, i.e. control or main wing surface. Using the velocity potential panel method it is advantageous
to concentrate surface elements in front of and behind the control surface hinge lines due to the steep gradient of the chord-
wise potential distribution in this region.

Fig.15 shows a comparison of calculated [14] and measured [31] pressure distributions for a swept wing with two control
surfaces oscillating in anti-phase and the main wing remaining in a fixed position. The correspondence between calculated
and measured results is quite good, except in regions close to the control hinge line, Here a small gap between the oscillat-
ing control surface and the main wing existed in the experimental case, which causes a reduction of the unsteady pressure on
the main wing and ncreased pressures on the control. This behavior becomes obviéus with increasing gap-width until the Kutta
condition on the main wing and a square root singularity on the control leading edge is reached, yielding the limiting values
for the single lifting surfaces.

Fig.16 represents the situation for high subsonic flow for a two-dimensional wing with control surface. With increasing
Mach number (Mag, = 0.804) additional deviations between calculated [14] and measured [32] results due to increasing
‘nonlinearities in the flow can be observed. Interesting here is the change in sign of the real part pressure singularity at the
leading edge of the wing, which is well-represented by the calculations.

Fig.17 gives calculated and measured results for the case of a wing with a NACA 0012 airfoil section using the theoreti-
cal method with the inclusion of thickness [18].

Some special features of the measured pressure distribution are represented by the theory as the final pressure peak at the
leading edge and lower real pressure parts on the control surface. But obviously the introduction of thickness effects alone is
insufficient; viscous effects should be included, particularly in the gap region. This problem must be further investigated in
future work .

6. UNSTEADY AERODYNAMIC INTERFERENCE

Up to this point prediction methods have been discussed to determine unsteady airloads on single oscillating wing or body
surfaces. But the singularity distributions which have been calculated by means of the flow tangency condition on the surface
also influence the surrounding flow field, in that they induce comresponding unsteady velocities. These velocity fields can be
calculated easily in arbitrary field points off the surface once the singularity strengths have been determined. A flight vehicle
has many different lifting surfaces (wings, tailplanes, etc.), and bodies (fuselage, tip-tanks, external stores, etc.). Each
influences the others. Due to such aerodynamic interference, the aeroelastic stability of the flight vehicle is offected con-
siderably. Special problems like T-tail flutter, wing-tailplane flutter for wings with variable wing geometry and wing-store
flutter are some examples in which interference effects are of basic importance in aeroelastic investigation. Therefore, a num-
ber of prediction methods have been developed to investigate interference problems.

These methods are based on the same concepts discussed in the previous sections for lifting and non-lifting bodies in sub-
and supersonic flows. In [33] a kernel function approach for interfering lifting surfaces is presented. [34] outlines a corre-
sponding method based on the doublet-lattice concept, which includes the effects of bodies. A similar approach based on the
velocity potential panel method is shown in {35]. Finally, a mixed doublet-lattice (for the lifting surface) ond velocity po-
tential panel (for the body) procedure has been applied in {36] for wing-store combinations. In the latter case, the body sw-
face is represented by a velocity potential source distribution; the wing is assumed to be infinitely thin ond is represented by
acceleration potential doublets (NLRI-method).

In oll calculotion procedures using surface elements on the interfering surfaces, the only additional difficulty that ocours,
compared to the single body cases, is a possible considerable increase in the number of surface elements and thus an increase
in the number of linear algebraic equations. Special iteration procedures in solving the large systems of linear equations for
interference problems are given in [36]. There the coefficient matrix is partitioned into wing- and body-submatrices having
dominant main diagonals and into “interference matrices” containing the induced effects of the different bodies on each other.

One e<ample of the application of the kernel function concept is given in Fig.18 [37] for @ wing-tailplane combination,
where the sweep-angle of the wing and the chordwise location of the tailplane wos varied. The calculated results are com-
pared with corresponding wind tunnel measurements.

Fig.19 shows the unsteady spanwise load distributions for o swept, tapered wing with and without tiptank, pylon and store,
oscillating in pitching motion as obtained by the NLRI-method [36] . It can be observed from the plots that the tiptank has a
lift-increasing effect like an endplate, whereas the store-pylon combination creates a jump in the spanwise load distribution.
The colculated results are in fair agreement with corresponding experimental data.

Similar methods are presented for supersonic flows based on the kernel function concept [38] or on the velocity potential
method [39]. But in the supersonic case, lack of experimental results makes it difficult to determine which of the methods
gives sufficient resuits.




8. CONCLUSION

A large variety of reliable prediction methods for the detemination of unsteady airloads on oscillating configurations ex-
ists today, and only some of the most important methods have been discussed in the foregoing sections. Although highly ef-
fective unsteady lifting surface theories have been computed for both sub- and supersonic flow regimes, many problems are
still not solved satisfactorily, and thus further intensive investigation is needed. As outlined, the inclusion of profile geo-
metry, i.e. thickness effects alone, Is insufficient to improve the method, however additional viscous effects, which may be
in the same order of magnitude, mast also be token into account to obtain a real improvement of the results compared to ex-
periments. Therefore, the introduction of viscous effects either on the basis of boundory layer theory or on the bosis of more
complex viscous problems occuring within separated flow regions are necessary oims for future investigations. A special ex-
ample with regard to these conplex problems should be mentioned: the problem of wings with cscillating control surfaces.
Viscous effects within the gap between the main wing and the control affect considerably the unsteady loads on the control
surface. For this problem, both theoretical and experimental investigations are necessary. Another very difficult unsteady
problem, in which viscous effects play a dominant role, is the dynamic stall problem accuring on retreating helicopter rotor
blades. Here the cyclic separation and reattachment of the flow on the rotor blade influences the overall unsteady forces.
Prediction methods todetermine the correct unsteady airloads in this case are nSt available and approximate methads do not
include all the complicated unsteady flow phenomena involved. Therefore, emphasis is placed on experimental investigations
determining pressure distributions on blades oscillating with very high amplitudes about mean steady incidences, and measur-
ing in a further step unsteady airloads on rotating and oscillating blades.

The whole transonic speed range still remains in the least satisfactory state. But transonic problems are of high importance
for aeroelastic investigations.
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Figure 1: Velocity potential panel method.
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Figure 4: Unsteady pressure distributions for a rectangular wing with pitching oscillations.
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SUMMARY

This series of three lectures considers unsteady flow phenomena in turbomachines, blade flutter, and
methods for unsteady cascades.

The phenomena of inlet maldistribution, rotating stall, surge, blade vibration, and sound generation
are described, and related to the requirements for unsteady aerodynamic theory.

The types of blade flutter and the modes in which it occurs are then described, a theoretical method
of flutter prediction is discussed, and the effects of mechanical damping and mistuning evaluated.

A theory of linearized two-dimensional unsteady flow in cascades is outlined for both subsonic

and supersonic flow, and the importance of the two different kinds of acoustic resonance which occur is
discussed.

Unsteady Flow Phenomena in Turbomachines

Introduction

There are a con-iderable number of manifestatijons of the effects of unsteady flow in turbomachinery.
1 shall start by giving a brief description of the main physical effects, and then go on to consider how
some of these effects can be predicted by theoretical calculation. Correlations, although of great practical
use, are generally specific to particular designs of machine, and these will not be given any significant
treatment,

Inlet Maldistribution

If the flow at entry to a turbomachine is non-uniform, due for instance to the wakes from struts
supporting the bearings, to the effects of a non—axisymmetric air intake, or to hot-spots from a combustion
chamber, then the rotor blades will see an unsteady environment as they rotate. This can cause various
unwanted effects, such as blade vibration, loss of efficiency, and compressor surge. It is therefore
necessary to know how the non-uniformity develops as it progresses through the machine.

The simplest way to do this is to use the compressors-in-parallel theory. This assumes that each
part of the annulus of the machine operates as a separate system in steady flow, independant of what is
going on in all the other parts of the annulus. For small perturbations in incompressible flow this theory
gives the result. s

vxz' = - pvxl
Ve i
where VXI' is the inlet axial velocity perturbation
vxz' is the outlet axial velocity perturbation
p is the fluid density
Gx is the mean inlet axial velocity
£' is the slope of the characteristic of the blading, plotted in the form of

the outlet static pressure minus inlet total pressure against axial velocity.
This is illustrated for a compressor on figure 1. For a normal operating
point such as A, f' is large and negative, and the disturbance is strongly
attenuated as it goes through the machine. As the stall point at B of the
compressor is approached, f' becomes small, and the disturbances growas they
go through the machine.

This very simple and elementary theory ignores the unsteady effects on the performance of the rotor

blades, and it will be part of our task to consider how these unsteady effects can be assessed.

Rotating Stall

As the compressor is throttled past the point B on figure 1, very small non~uniformities at inlet can
grow to large amplitude. The usual result is that "rotating stall" appears. This consists of one or more
patches of stalled flow which rotate around the machine, usually at somewhat less than half the speed of
rotation of the rotor. If rotors and stators were identical, then the speed of rotation would, by symmetry,
be expected to be exactly half of the rotor speed.
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Fig, 1 Compressor Characteristics

At low speed the result of this is that the mean operating point suddenly drops to a point such as C,
the efficiency becomes poor, and all the blades are subject to severe buffeting from the rotating stall
patches,

Surge

At higher speed, instead of settling down at a point such as C, the compressor may go into a mode of
operation in which the flow oscillates with large amplitude. This is surge, and the instantameous flow
reverses during part of the cycle. On a test facility the frequency is of the order of 1 Hz, but on a jet
engine vhere the duct volumes are much less, the frequencies are of the order of 10 Hz. Note that these
frequencies are much less than the rotating stall frequency, and in fact rotating stall may exist over
part of the surge cycle.

Creitzer (1976) has shown that whether or not a compressor surges is determined largely by the
parameter B = U/2uL., where U is the mean rotor velocity, w is the Helmholtz resonator frequency for the
exit plenum volume and the duct in which the compressor is running, and L. is the axial length of this duct.
Greitzer found that one particular three-stage axial compressor surged when B exceeded 0.8.

Blade Vibration

One result of inlet maldistribution may be that the rotor blades are forced to vibrate at large
amplitude. The blades on an axial-flow turbomachine are usually of solid metal, and they are therefore
much more massive than the air or gas in their immediate vicinity. The unsteady aerodynamic forces and
moments are therefore not strong enough to alter the modes of vibration of the blades significantly, and
the situation is fundamentally different from that of an aeroplane wing. This means that the problem of
predicting the amplitude may be split into first a calculation of the principal modes and natural frequencies
of the bladed disc, and secondly a calculation of the unsteady forces and moments acting on the blades uhen
they are vibrating in one of these modes, We shall only consider the second of these two problems.

It sometimes happens that the aerodynamic forces are such as to feed energy into a small amplitude
vibration, and the vibration is then self-excited. This is flutter and will be considered in a later
lecture.

Sound Generation

An important consequence of unsteady flow over blading is the generation of unwanted sound. This
can arise due to the interaction of the pressure field or vorticity field due to one blade row interascting
with a second blade row. For this reason the fans on fan~jet engines are usually designed with mo inlet
guide vanes, and with a large gap between rotor blades and stator blades. Sound can also be generated by
the interaction of a rotor row with turbulence in the inlet air-stream, and by turbulence generated in the
flow over blades. Sound generated by the rotation of the pressure field of the rotor alone can usually
be arranged to be cut-off. (But this is the most important source of sound for propellers).

Requirements for Unsteady Aerodynamic Theory

In order to predict these various effects, it is necessary to know the unsteady characteristics of
the blade rows. The frequencies involved in surge are so low that a quasi~steady approach is justified,
but for all other cases an unsteady aerodynamic theory is really necessary.

The inputs to the theory are as follows:
(a) bending vibration of the blades,
(b) edgewise vibration of the blades,
(c) torsional vibration of the blades,
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(d) stagnation pressure variations ("Vorticity Waves") at entry,
(e) stagnation temperature variations ("Entropy Waves") at entry,
(f) acoustic waves entering from upstream,

(g) acoustic waves entering from downstream.

For each of these seven inputs, the following outputs from the theory are required:

(a) Lift force on the blades,

(b) chordwise force on the blades,

(c) moment on the blades,

(d) vorticity shed from the blades,

(e) temperature variations downstream,
(f) acoustic waves radiated upstream,
(g) acoustic waves radiated downstream.

This information enables all the unsteady effects to be predicted. Unfortunately, however, it is in
many cases not yet available. Stalled flow involving unsteady boundary layer separation has, so far as I
know, only been applied to cascades in a rather rudimentary manner. Three dimensional linearized theories
have been developed by Salatin (1974) and Namba (1977) and Graham (1970) has developed similarity laws for
extending two-dimensional linearized aerodynamics, and these will be discussed in a later lecture. Two-
dimensional theories in which the steady flow is not assumed to be a uniform flow (as in the linearized
theories) are under active development in several places, but have not reached the stage at which it is
appropriate to discuss them.
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Blade Flutter

Iypes of Flutter

Blade flutter, or self-excited vibration of the blades, has been recognised as a major problem almost
from the beginning of the development of the axial flow compressor. Established cases of flutter in turbine
blades are very rare, and this is not normally recognised as a significant problem. Nevertheless, I have
long suspected that many cases of blade failures in turbines which have been put down as forced vibration
have in fact been due to a near approach to a flutter situation, in which the aerodynamic damping of the
vibration has become very small, But this is an unconventional view, and I shall confine myself to
compressor blading.

The most common type of flutter is stall flutter, which is sometimes observed near the peak of the
compressor characteristic when at least part of the span of the blade is stalled, Amplitudes are usually
large, and give rapid failure of the blades. There is no basic theory which can predict this type of
flutter, but empirical rules such as that proposed by Armstrong and Stevenson (1960) are capable of controlling
its occurrance. This rule states that for bending vibration the frequency parameter wc/V; (where w = angular
frequency, ¢ = blade chord, and V) = inlet flow velocity) should not be less than 0,33, and that for torsionmal
vibration the frequency parameter should not be less than 1.6,

Choke flutter sometimes occurs when the blade passage is choked and there is a shock wave across the
passage. The motion of the blades is associated with motion of the shock wave. Luckily the conditions
under which it occurs are usually outside the normal range of operation of the compressor, so that it is
not an important problem.

Turning to cases where the compressor is working near its design conditions, so that neither stalling
nor choking occurs, it becomes possible to make a reasonable prediction of flutter using basic theory. The
most important practical case is that of the fan blading on modern fan-jet engines, These fan blades
operate with supersonic relative velocity into the tip sections, and they are found to be very close to a
flutter condition, as reported, for instance, by Halliwell (1976).

Modes

Let us consider first a symmetric flexible disc fitted with a set of identical blades without snubbers,
and suppose that each blade vibrates in its first bending mode slightly modified by the dise flexibility,
One mode of such a system, having 3 nodal diameters, is illustrated in figure 1, In general, for r nodal
diameters the deflection of the m th blade is

sin(2rrm/N) eVt
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where N is the number of blades. There is another mode with deflection

cos (2mrm/N) elut

When expressed in this way, the modes will be called "mechanical modes".

An alternative and equivalent way of specifying these two modes it to use
ei(wt + 27rm/N),

and ex(wt - 2mrm/N).

This method is more convenient for aerodynamic calculations, and modes expressed this way will be called
"aerodynamic modes". Each blade has the same amplitude, and there is a phase angle B = 2nr/N between each
blade and the next. The complete set of N modes may then be obtained by taking Ogrs (N - 1), giving N
equally spaced values of 8.

There are further families, each of N modes, corresponding to the first torsion, second bending,
second torsion, and other higher modes of individual blades.

m
(14
. §
Fig. 1 Principal Mode of Bladed Disc Fig. 2 Developed view onto tips of vibrating
r=3 snubbered blade assembly

In order to alleviate the vibration problems, the blades are in many cases inter-connected by
"snubbers" or part-span shrouds. These snubbers lock up tight under the centrifugal loading to give the
effect of a continuous ring interconnecting the blades. As illustrated in figure 2, the effect on the
modes is to link the bending and torsional motion of the blades, so that the axial deflection (£) and
torsional deflection (a) in a mechanical mode are given by

£ = A 8in(2nrm/N) eimt,

a = -A(2nr/Ns) cos(2nrm/N) eiwt.
where s is the blade spacing. The complementary mode is

E = A cos(2arm/N) eimt,

a = A(2rr/Ns) sin(2nrm/N) eit

Note that the deflection and torsion are in quadrature spatially (but in phase in time).
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These can also be expressed alternatively as aerodynamic modes

A ei(wt + 2nrm/N)

g =

a = -iA(2nr/Ns) ei(wt + 2rrm/N)
and the complementary mode is

£=A ei(mt ~ 27rm/N)

a = +iA(2nr/Ns) iUt~ 2mTm/N)

These aerodynamic modes still have the property of constant phase angle between adjacent blades.

There will again by a number of families of modes of this type, each with N modes. These modes can
be calculated with good accuracy.

Flutter Prediction

Suppose that the blades are vibrating in one of these "aerodynamic modes"”, with constant phase angle,
8, between each blade and its neighbour. The problems of calculating the aerodynamic forces and moments
will be considered in a later lecture, but one thing can be seen by symmetry and that is that these forces
and moments will also have the property of constant phase angle, B, from each blade to the next. These
forces and moments can therefore alter the frequency of vibration, and they may feed in or take out work,
but they cannot introduce motion with any other value of B. If the net work is zero we have a marginal
flutter situation, and we reach the important conclusion that the "aerodynamic modes" as previously defined
are the flutter modes of the system. There may be a slight change to the radial variation ~f smplitude,
but this will normally be negligible, and the difference between the flutter frequency and :he mechanical
natural frequency will be small.

Work fed
into vibration Flutter Mode
r=+4
r=+5
r=43
1 .
Vw _ wave speed
\U _ rotor speed
r=+6
r=-4 r=-5 r=42
r=-3
re-6
r==2

Fig, 3 Work fed into vibration by aerodynamic forces

Vw _ Wave speed relative to casing .1+ 1 Vibration frequency
[} Rotor speed 27r Rotation frequency




Figure 3, taken from the paper by Halliwell (1976), shows the work fed into the vibration by the
aerodynamic forces plotted against the ratio wave speed/rotor speed, (or equivalently B or r). The mode
which will flutter is that which feeds most work into the vibration, and in this case is r = 4. It is 1
therefore necessary to do the calculation for a number of different values of B (or r), and find that
which maximises the work. In the absence of mechanical damping, flutter is predicted if the maximum work
is positive and the flutter mode is predicted.

Effect of Mechanical Damping

In practice it is likely that mechanical damping removes a significant amount of vibrational energy,
and flutter will only occur if the aerodynamic work is greater than this. Whitehead (1964) found in a
low Mach number experiment that the effect of mechanical damping was to roughly double the airspeed for
flutter, but this is probably an extreme case, Mechanical damping is therefore always favourable, but
since it is very variable in practice is is questionable whether it is wise to rely on it for safety of a
machine.

Effect of Mis-Tuning "

If the blades are not identical, but are, as is always the case in practice, mistuned, then the
"aerodynamic modes” as defined above are no longer principal modes of the mechanical system. The flutter
mode will therefore contain components of the other aerodynamic modes besides that which gives maximum 1
work input. But as far as the aerodynamic forces are concerned the "aerodynamic modes" are orthogonal,
so that the net work input is the sum of the work from each "aerodynamic mode" as if only that mode were |
present. These other aerodynamic modes will therefore feed in less work than would be obtained in the
exactly tuned case. It is concluded that the effect of mistuning on flutter is always favourable. This
argument can be made rigorous, (Whitehead 1964).

The effect of mistuning on flutter may be contrasted with the effect on forced vibration, where the E
effect can be to concentrate the energy into one blade and increase the amplitude by a factor of (1 + N)/2, i
(Whitehead 1966, 1976). :

When the blades are connected by snubbers, the principal modes of the bladed disc are forced to a
correspond very closely with the "aerodynamic modes". The effect of mistuning on flutter of snubbered
blades is therefore very small.
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Methods for Unsteady Cascades

Bagic Equations

In this lecture it is proposed to give an outline of a few of the methods which are currently being
used to provide unsteady aerodynamic data for cascades in both subsonic and supersonic flow. The methods
to be described are two-dimensional and linearized, which means that the unsteady effects are small
perturbations of a uniform flow. This of course limits the applicability of the methods quite severely. 1
It is impossible to deal with the effects of camber, thickness, incidence, and of mean pressure rise or 1
fall in the cascade. The model used is illustrated in figure 1. i

The equations of continuity, momentum, and isentropic flow are then

Dp
e * 0, Vv = 0
Dv . 1 - 1)
Bt + E: Ip [s)
PaelXo =52
P 0
D 3 ]
where TS + U T

and the suffix o indicates the uniform flow.




\</ vortex sheet shed
from each vortex

Fig. 1 Flat plate model Fig. 2 Elementary row of vortices

Methods of solution

The methods of solution which will be discussed here are the singularity methods, used in subsonic
flow by Kaji and Okazaki (1970) and Smith (1972) and in supersonic flow by Verdon and McCune (1975),
Nagashima and Whitehead (1977), Verdon (1977), and Ni (1979). An alternative approach is to use the
Wiener-Hopf technique, which has been shown to work particularly well for closely spaced blades by Koch (1978).

First we consider two simple basic solutions.

Vorticity and Pressure Waves P

One solution of equation (1) is

u = =(al/w)v gllwe = x/U = ay)

vs= v ei(wt - X ay)‘ (2)

p= aozp =0

This shows a velocity pattern which varies sinusoidally with time and is convected downstream at the main- 4
stream velocity U and has wavenumber a in the y direction. These are vorticity waves, and they involve ;
no pressure or density perturbation. i

The second basic solution is for acoustic waves, and is

u e (kfa) § oilut T kx - ay)

v = \-I ei(mt - kx - uy) 3)
p=a2e = {(uw-ki)py/a} v et = kx - ay) i
where (w = kW2 - a 2(k? +a2) =0 ()] J_

These acoustic waves have zeiu vorticity. For a given phase angle B between blades, the wavenumber must
satisfy

as cosy + ks sing = ~(8 + 2mn) (5)
where s is the cascade spacing, . is the stagger angle, and n is an integer.

Equations (4) and (5) may or may not have two real roots in k and a for given frequency (w), phase 4
angle (B), and integer (n). If they do have real roots, then there exists a pair of acoustic waves, one
of which carries energy upstream, and one carries energy downstream. If there are no real roots, then the ;
solutions show exponential decay in the upstream and downstream directions, and the waves are said to be !

"cut-off".

The solution (2) forms the input to the system, when dealing with vorticity waves at inlet to the
cascade. The solutions(3) form the input to the system, when dealing with acoustic waves entering the




] system from upstream and downstream. These basic solutions will also be used to construct the complete
solutions.

S—

Solution for a Vortex Row

In order to construct the complete solution, each blade will be replaced by a number of singularities
placed on the chord line. There is a choice here of working in terms of either velocity potential or
pressure perturbation (which in linearized analysis is equivalent to acceleration potential). I think that
pressure perturbation is much to be preferred, since there is then no need for singularities to be placed
in the wakes of the blades to represent shed vorticity. We therefore require the solution for a row of
unsteady pressure dipoles, or equivalently unsteady bound vortices, as shown on figure 2, having the required
phase angle 8 between each vortex and the next.

In subsonic flow the solution for each vortex can be written down as the well-known Hankel function
solution, and the solution for the complete row is then obtained as a summation over the complete row. E
This series converges very badly, and is unsuitable for numerical work. I

. In subsonic flow we therefore proceed to construct the solution upstream of the row of vortices as v
i the sum of a number of upstream-going acoustic waves, as given by equation (3). The waves are specified !
3 by taking suitable positive and negative values of the integer n in equation (5). ! 1

Downstream of each vortex there exists a vortex sheet of which the strength varies sinusoidally |
with distance from the vortex. The amplitude of this vortex sheet is determined by the condition that in
any time interval the circulation shed into the wake is equal in magnitude and opposite to sign to the '
change in circulation of the vortex. These vortex sheets may be represented by the sum of a number of .
vorticity waves as given by equation (2), all satisfying the required phase change from blade to blade. ‘
In addition there is the sum of a number of dowmstream going acoustic waves, as given by equation (3).
Details of the way in which these waves are put together to represent a row of vortices are given in the
paper by Smith (1972). Kaji and Okazaki (1970) achieve the same result mathematically by applying the i
Poisson summation formula to the series of Hankel functions. j

The series obtained in this way converges rapidly, because the acoustic waves for large positive or
negative values of n are all cut-off, and decay very rapidly with distance away from the row of vortices.
This is true even for points which are quite close to one of the vortices.

Fig. 3 Wave pattern for supersonic axial velocity Fig. 4 Wave pattern for subsonic axial velocity

In supersonic flow things are more difficult. It is first necessary to distinguish between cases
when the axial velocity is supersonic and when it is subsonic. If the axial velocity is supersonic, all
disturbances generated by the row of vortices go downstream, as showm in figure 3, and there is no upstream
effect. No turbomachine works in this regime, so that this case is of academic intereat only and will not i
be further considered. When the axial velocity is subsonic, although the total velocity is supersonic, one .
get of waves goes upstream and one set goes downstream, as shown in figure 4. This case therefore combines |
some of the features of supersonic flow and some of the features of subsonic flow.

In order to compute the velocity field for the row of vortices in supersonic flow, the series of
Bessel functions representing the individual vortices converges badly, and is unsuitable. I1f one transforms
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this to & series of acoustic waves, in the way that works so well for subsonic flow, the resulting series
does no: converge at all, since the waves corresponding to large values of n all propagate and are all
of comparable magnitude.

Nagashima and Whitehead (1977) overcame this problem by dividing the velocity field into two parts,
a quasi-steady part and a remainder. The quasi-steady part can be expressed as a sum over individual
vor'.ices and summed analytically. The remainder can be transformed to a sum of acoustic waves which
converges satisfactorily.

Salution of the Integral Equation

The complete solution for the cascade can now be constructed by distributing a number of these
vortices (pressure dipoles) along the chord of the reference blade, and thereby implying the presence of
similar vortices with the required phase on all the other blades. Figure 5 shows the vortices evenly
distributed along the chord, and this is entirely satisfactory in supersonic flow. But in subsonic flow
there is a big numerical advantage to be gained by crowding the points towards the leading and trailing
edges, as is done in standard thin-aerofoil theory,
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Fig. 5 Representation of cascade blades by a distribution of vortices

If the strengths of all the vortices were known, then the upwash velocity at all points along the
chord of the blade could be calculated. This upwash velocity, plus the upwash velocity due to any incoming
waves, must match the actual velocity of the surface of the blade, in the direction of the normal to the
blade surface. If there are N unknown vortices, then this condition is applied at N points to give N linear
equations which can be solved for the unknown vortex strengths.

In subsonic flow the Kutta condition, which states that the pressure jump across the blade must be
zero at the trailing edge, must be applied. This means that the vortex at the trailing edge has zero
strength. It is then convenient to match the upwash velocities at N points midway between the positions of
the vortices.

In supersonic flow no Kutta condition is applicable, since waves of finite strength can propagate
from the trailing edge, so that the pressures on each side of the wake are equalised. It is then convenient
to match the upwash velocities at the same points as those at which the vortices are placed.

Once the strengths of the vortices (pressure dipoles) have been determined, since these are directly
proportional to the pressure difference across the blade, they can be integrated along the chord to get the
aerodynamic force and moment. They can also be summed, with the appropriate phasing, to give the strengths
of the outgoing acoustic and vorticity waves.

Computer programs for doing these calculations therefore provide the unsteady aerodynamic data
necessary for predicting forced vibration, flutter, and the acoustic performance of cascades. The programs
are fast and can calculate one case in less than 0.5 seconds.

Acoustic Resonances

In the operation of these unsteady programs, there are certain points at which trouble occurs, and
these correspond to acoustic resonances of the system, There are two kinds of resonance.
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The first kind is associated with the upstream and downstream ducts, and has nothing to do with the
particular geometry of the blades. It occurs in both subsonic and supersonic flow when the frequency and
phase angle are such that equations (4) and (5) are just on the verge of having real roots in k and a and
corresponds to the acoustic waves being just on the point of cut-off. At this point the acoustic waves
carry energy in a tangential direction. In a turbomachine the acoustic energy goes round the duct, and
does not emerge, so there is no damping due to acoustic radiation. At these points the aerodynamic forces
and moments, when plotted against, say, phase angle, show sudden discontinuities, An example is shown in
figure 6, It is possible to find, theoretically, regions of "resonance flutter", close to this resonance
condition (Whitehead, 1971).

0. 20|
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-0:10

010 B

Fig. 6 Example of moment coefficients

M=1.35, s/c = 0.79, ¢ = 59.5°, Axis at mid-chord

The practical importance of this resonance condition is in some doubt. Smith (1972) observed it in
his experiment where he had a very long duct downstream of a rotor row. But in a vibration experiment
(Whitehead, Watson, Nagashima and Grant, 1976), where the axial spacing between blade rows was only about
2 blade chorde, the resonance was not seen. It appears that the resonance is only effective if there is
a large space in which it can build up.

The second kind of acoustic resonance has been described by Parker (1976) and involves fluid moving
in and out of the blade passages. One such mode is sketched in figure 7. At this condition there can be
a large pressure change across the blade, with a large blade force for a small amount of blade motion. In
the vibration context it might be more accurate to call it an anti-resonance.

This second type of resonance is often observed at low Mach number and high frequency parameter,
excited by vortex shedding effects. It is not known whether it is important for blade vibration situationms,
and there is no evidence that it exists at supersonic speeds.

P
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Fig. 7 Example of blade acoustic resonance
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UNSTEADY FLOWS ASSOCIATED WITH HELICOPTER ROTORS
Dr T.S.Beddoes
Aeromechanics Dept.
Westland Helicopters
Yeovil, Someurs':t BA20 2YB

INTRODUCTION

The analytic treatment of helicopter performance and structural loading at any
level of sophistication must incorporate a representation of the spatial and temporal
variation of the local flow relative velocity and angularity. Quasi-steady aerodynamics
in conjunction with simplified models of rotor inflowv and structural characteristics have
served to identify many of the fundamental problems which were encountered in the develop-
ment of a practical vehicle. Reference 1, i n particular, includes an extensive review of
this stage of development. Exploitation of the potential usefulness of the helicopter has
required a reduc tion in structural weight and an expansion of the flight boundary as
limited by tolerable fatigue loading. Fatigue loading results from the interaction of
structural dynamic characteristics and aerody ramic forcing which reflects the presence of
many contributions to unsteady flow within the rotor dise. A summary of the various
sources of unsteady forcing is presented in figure 1 as a breakdown of the two fundamental
categories which consist of blade motion and the structure of the flowfield. The develop-
ment of rotor wake models from theoretical consideration supported by experimental studies
has occupied much cffort for many years; an excellent reviev of this and an extensive bib-
liography is contained in reference 2.

BLADE MOTION FLOWFIELD STRUCTURE

| ] J |
PITCH FLAPPING PERIODIC NON PERIODIC

I | | t ! |
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FI1G,1. SOURCES OF UNSTEADY FORCING

BLADE MOTION

Relative o the rotating hub the helicopter blade has three degrees of freedom, pitch,
flap and lag, The last of these, lag, does not contain motion of sufficient emplitude to
warrant discussion as a source of flow unsteadiness. The pitch degree of freedom includes
impressed motion from trim and control requirements which,conventionally, is large and
applied at the basic rotor frequency (n). A large part of the resulting angle of attack
variation is, however, cancelled out by disc attitude and coning effects and first har-
monic flapping velocity, Torsional stiffness of the rotor blade is not high and is
reduced further by the control system which reacts the nett pitching moment at the blade
root. Consequently, rotor airfoils are designed to minimise pitching moment, a requirement
which is at variance vith the desired use of camber to optimise maximum lift., In the normal
working range torsional deflections are not large but when staell ie encountered locally,
which occurs as the flight boundary is approached, then pitching moments may suddenly inc-
rease by an order of magnitude. This results in significant structural response at the
toreion natural frequency (typically 40N-6n) and, if sufficiently severe, stall flutter may
be excited. The first torsion natural frequency is usually the highest at which signifi-
cantly large structural displacements occur and in terms of reduced frequency (f%)typical
values are shown in figure 2 which is illustrative only for medium size rotors. Less
conventional, are proposals to modify helicopter inherent vibration characteristics hy
applying higher harmonic blade pitch. Model tests have been performed to examine this, see
for example, reference 3.

For centrally hinged articulated rotors the natural frequency in flap is 10l and nor-
mally not more than 15% higher for offeset or hingeleas blades. In addition to response at
10, as forwvard speed increases, there is significant 20l excitation and flapping response
in this mode. The second bending mode has, typically, a natural freguency of around 2.7
and thus also responds significantly to the strong 20 forcing. The amplitude of response
of the higher bending modes falls off rapidly and on this account are of less significance
serodynamically. It is not possible to generalise these frequencies adequately, bearing in
mind the range of possible blade geometries and materials but figure 2 is included to give
some idea of the spectrum of significant oscillatory perturbations in angle of attack
resulting from blade motion.

FLOWFIELD STRUCTURE

Adopting e shaft axis system, the rotor disc reference forms a plane at right angles
to the shaft., Tilt of this plane to contribute to the propuleive component of lift prod-
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uces a uniformly distributed component of the
free stream velocity in the axial or out:of
planeé direction. In plane, at any given
redial station {x =% ) the components of
rotational and free gtream velocity combine
to produce 8 large first harmonic variation
of relative velocity (Ut) normal to the.
blade leading edge:

Uyz U cosd.sinp + xRN vhere ¢ =
forward tilt of shaft and ¢y =0t = blade
azimuth angle. Thus inboard on the retreat-
ing aide the local velocity may reverse
sign. This is obviously the dominant factor
contributing to flov unsteadiness not only
in terms of local dynamic pressure and Mach
Number but also due to its influence on the
resultant flow angularity for given out of
plane components. The variability is
illustrated by the contours of Mach Number
shown in fiqgure 3 for a high epeed case,

u=Ukn= 0.4, and, in relation to local
angle of attack near the tip, in figure 4.
When the in-plane component of velocity in
the radiasl direction, U,= Ucos ¢.cos ¢,
is taken into account the variation in local
sweep (A) may be deduced, figure 5., Depen-
ding on'the method of formulation for the
calculation of absolute local loading and
implementation of airfoil section charact-
erigstics the primary effect of sweep may be
eliminated from consideration via applic-
ation of simple sweep laws but in terms of
secondary effects it cannot be neglected
entirely.

If the farmulation for the unsteady

aerodynamics is based on the parameter

As =2U.At/c i.e. the distance travelled in
time At in terms of the semi-chord, then for
a sampled solution the effect of velocity
variation on circulation is implicitly taken
into account. Such treatment is not rigor-
ous but available test data (see for
example reference 5) indicate that quasi-
steady characteristics are preserved up to
and including the onset of dynamic stall.
Considering that the local velocity varia-
tion is predominantly first harmonic and
therefore of low reduced frequency the first
order representation may be justified for
the subsonic case, For substantially super-
critical conditions as encountered by the
advancing blade tip the flow development
does not follow quasi-steady behaviour.
Both theoretical and expdrimental studies
have examined this problem, e.g. reference
6, and the characteristics that are encoun-
tered. Figure 6 taken from reference 6
shows some of the compasrisons between experi-
ment and theory that were obtained from the
test programme. OFf note is the distinct
phese shift around the azimuth defining the
movement of the shock wave across the 30%
chordwise station, Correlation wvith the
theoretical model is clearly very good at
this radial station (approximately 10% in
from the tip). At a station closer to the
tip (0.946 radius) correlation with the
azimuthal phasing of the shock wave remains
good, although some differences eppear in
the variation of supercritical pressures
ahead of the shock. A likely explanation
for this is found in the development of g
strong 3-dimensional character to the flow,
Inboard from the tip the varietions in sveep
around the rotor can be largely accounted
for by using only the component of flow nor-
fhal to the leading edge. On an infinite wing
the differences produced by sweep forward or
sveep back on the pressure distribution
over the front of the chord are small and
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such a model is representative. At the tip
of the rotor (the .946 radius station in this
case) strong end effects are present. At
azimuths before zero sweep (p = 70°) & svept
back condition will exist and isobars would
concentrate towards the lgading edge at the
tip, whilst beyond ¢ = 90  sveep forward
would exist and therefore the leading edge
would see 8 relief in pressure gradients.
This is clearly the trend of characterist-
ics shown in figure 6 where at the later
azimuth station the strength of the shock
vave has clearly been reduced compared with
the theory which is bssed on 2-D represent-
ation. It seems likely therefore that a
combination of the time dependent character-
igtics with a 3-D model should reproduce

more successfully the measured characteristics
at the extreme tip of the rotor.

For detasiled analysis of local and over-
all vibratory loading the induced effects of
the rotor wake cannot be represented ade-
quately in periodic terms because of the near
singularities contributed by discrete vort-
ices in the near wake, Before considering FIG.5. CONTOURS OF LOCAL SWEEP
the vake in detail it is instructive to
review the reaults of gimplified treatment.

From pomentum congiderations the mean induced THEORETICAL ANO MEASURED
velocity v, normal to the plane of the rot;r PRESSURES ON A ROTOR BLADE

2 2
may be deduced. v,=T12pnRIUsin g+ v, )+ UCosp 17 0 o 9 s 180
For the most elementary applications this 0 = = == THEORY Y
may be considered distributed uniformly over TesT e
the disc. If the rotor wake is represented Ce -~
by a skewed cylinder representing a system \\R ~ ..
of vortex rings the induced velocity at the 05 N3
disc can be shown (reference 4) to include & 7!
component of upwvash in the front and an \\\—'l“§\J:
additional downward compaonent in the rear of 1
the disc. The variation front to rear which *P
increases vith gpeed has been linearised for -0
gimplicity of application and produces a NACA 0012, “R=0892. Vo - 10 M/SEC. WR :200M/SEC

distribution which can be represented by: CHORDWISE STATION = 0 3C
|

vilxp ). (1+Kxcos@ ), where K=tan Ucos ¢ )

Yo Using+w R s 90 135 w0
This representation, though by no means rig- o TWEORY
orous, gives a useful indication of the time —_—resT M1
averaged distribution of induced velocity Ce 1 {
within the disc and may be used where the ~?:" \\.'T\
complexity of the helical vortex wake is -0s N \
not required. Periodic variation of the \ X
flov normal to the blade element is also N 7 ]
encountered during manoeuvring flight in Ny j
addition to the consequences of encountering ﬂ
the previously generated wvake. -+0
NACA0010:5. “R:0:9¢6. Vo:110M SEC. WR=200 M/SEC

Many mathematical models have been con- CHORDWISE STATION = 0-4C
structed of varying degrees of complexity
to represent the true vake shed from the F1G.6. TIME DEPENDENT TRANSONIC FLOW.

helicopter rotor, reference 2 reviews many

of these. The most important feature to be

considered is the rolled up vortex shed from

each blade tip and for any given segment of a blade, away from the tip, the vortex having
the most influence is frequently the one shed by the blade immediately ahead. To define
the geometry of the various vortex paths, the natural starting point is the geometry
established by the blade tip trajectories displaced downward from the tip path plane ta
convect at the mean downvash velocity., An idealisation such as this can be said to
constitute an undistorted or helical wake. The plan view of the instantaneous helical
wvake from 8 four bladed rotor in the vicinity of the disc at an advance ratio M of 0.34
is shown in figure 7a. Immediately obviocus are the various intersections which occur
between each blade and the vortex paths from the other blades and sometimes from its own
prior revolution. The actual proximity of the apparent intersection is determined by the
vertical convection of each vortex and is obviously least for the vortex from the prior
blade, Figure 7b shows the locue of this intersection and the abrupt change in character
for a emall change in M which may occur for certain critical values of Ju and is most
marked in the fourth quadrant of the rotor disc.

In realiity, each vortex trajectory is distorted by the induced effects of blade cir-
culation end the resultant wake structure. Given adequate computational capability these
effects may be assessed. In practice, certain simplificatons may be made and the so-called
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"free wake" computed without excessive time as presented in

8 is reproduced to illustrate the nature of wake distortion.
the point that within the rotor disc itself the distortionsin the top view are small.
vertical distortion is seen in the side view to be much more significant and to demonstrate
this more clearly the coordinates of the tip vortex were re-

vake azimuth angle, ¢, , Telative to the blade from which
significant is the upward digplacement of the vortex in the
rapid downward displacement induced by the vortex shed from
approaches closely, It may be recalled that the simplified
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reference 7 from which figure
Figure 8a serves to make
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plotted, figure 8b, versus the
the vortex was generated. Most
front half of the disc and the
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cylindrical wake model produces
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an integrated upwvash component in the front

of the disc which by analogy would have, N _
qualitatively, such an effect on a free ¥ '"vm"’"ouxtﬁitx;:
vortex in this region. In addition to these : ° —= ~
wake self induced effects, the floufield ] NP N
around the fuselage produces further dis- 8-&2- NN X0lsrony, ! ,‘
tortion of the tip vortex trajectory and v A \ )
addit ional localised induced velocities. < wjr CaLcuLaED \ /
More detailed description of wake structure, < WAKE \,
its calculation and interaction with other X o6l ,mave? 8La0E |
companents may be found in references 8, 9 g TGy e voRter
AT,z 180" ATé = 540°

and 10. : 08 (se€ F1G. @) 1566 HG. @)
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From the above discussion it is apparent
that, not infrequently, a trailed tip vortex
may come into close proximity to a blade.
When the separation becomes less than about
one chord length strong three dimensional
effects contribute to the nature of the interaction.
mental results and theoretical discussion,for positioning of the vortex more or less
normal to the blade span. For this relative geometry large spanvise pressure gradients are
induced by both the spanvise variation of 1ift and the tangential velocity of the vortex.
These gradients are sufficient to induce boundary layer separation but even in the absence
of this induced separation it can be shown from potential theory that the chordvise dis-
tribution of pressure is significantly modifigd. This interaction geometry is directly
relevant for the phlade over the nose (y = 180 ). At high speed and for blade azimuth
angles beyond 270" a portion of the vortex may lie more or less parallel to the over-
taking blade. Comparable studies of this configuration are not at present available.
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References 11 and 12 present experi-

THE COMBINED EFFECT

To validate the integrated effect of the features incorporated in rotor analytical
methods, model and flight experiments are continually being performed. Reference 13
presents a coordinated flight test program and thecoretical comparison for correlation
purposeg and it is appropriate in this context to present briefly some of the results.

The variation in local blade angle of attack around the azimuth is reflected to a
first order by the response of the leading edge pressure coefficient. Figure 9 presents
this information for 17 radial stations between 50% span and the tip. The presence of
discontinuities in the flowfield is apparent and the relation to the geometry of the
helical wake vortices is indicated by their superimposed loci. This geometry is re-
plotted in figure 10 to illustrate the spatial relationship and again in figure 11 to
shov hov, as thrust is increased, the areas of gtall are aligned with the upwash field of
vortices. A more direct comparison between the measured response as represented by
leading edge pressure and the calculated forcing as represented by local angle of attack
comprisesofigurg 12, vortex crossings are signified by perturbations at azimuth angles of
around 90°, 230  and 270 .
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F16.9. LEADING EDGE PRESSURES AND PREDICTED
VORTEX INTERSECTION LOCI.
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F16.10. LOCUS OF BLADE
TIP VORTEX INTERSECTIONS
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STALLED AREA ALSO SHOWN

As speed is increased the radial distribution of lift is modified significantly. One
congsequence of this is the increased excitation of higher bending modes and a change in
character, around the azimuth, of flatwvise bending moment, see figure 13. Some of the
difference between calculated and measured bending moment around the front of the disc is |
attributed in reference 13 to the use of a non distorted wake and consequent under |
estimation of the effect of trailing vortex proximity.
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FIG.13, MEASURED AND PREDICTED FLATWISE BENDING MOMENTS
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The representation of dynamic stall in the rotor calculation has a significant
effect on the ability to predict the limiting rotor loads defining the flight boundary.
This is demonstrated in figures 14 a and b showing the effect of a 25% increase in blade
loading coefficient,at high speed,on the blade torsion moment which in turn determines
the loads transmitted to the control system. The presence of large stall related pit- 3
ching moments excite the blade torsion natural frequency through several stall cycles,
persisting for moge than half a rotor revolution and producing a total elastic twist
range of nearly 8 °

JPPTU STE SO T

for some flight conditions the initiation of stall over the front of the disc is
particularly sensitive to wake distortion. As discussed already there are two contri-
buting factors to tha displacement of the discrete vortices in this region. These are !
the vake induced velocities themselvea and the presence of the helicopter fuselage.
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F1G.14. MEASURED AND PREDICTED TORSIONAL MOMENTS

The effect of the fuselage flowfield in modifying the already distorted wake is illus-
trated in figure 15 from an unpublished source. The baseline comparison is made inclu-
ding the wvake distortion induced by wake itself to calculate the induced velocities at
the rotor, to which are added the velncities induced by the fuselage flow., The improved
comparison incorporates wake distortion induced both by the wake itself and the effect

of the fuselage., This mcdification brings a trailing vortex in the front of the dies 8
little closer to the blade which is sufficient to induce separation around y = 180" and
initiate response at the torsion natural frequency. The resultant control load waveform
reflects these events and reproduces the character observed from flight test.

CONCLUDING REMARKS

600 .
The successful design of
advanced rotorcraft requires ~-=-- CALC. DISTORTED WAKE
the ability to predict with 400 | CONTROL LOAD. —.— CALC.+DIST. FROM BODY
confidence the large unsteady LB, —— FLIGHT TEST
and vibratory loads generated
and transmitted by the rotor, 200 |

Capability to accomplish this
has improved significantly in /‘\

the last decade as a result of 0 »
advances in the modelling of
structural dynamics,unsteady
aerodynamics and the rotor wake
structure. The strong inter-
relationship of these three areas
cannot be overemphasised and
further progress requires co- -400 [
ordinated effort.

WG 30, 140 KTS, m=032

-200 |

REFERENCE - 600 " —_ N
2 0 90 180 270 360
1, Loewvy, R.G. Review of Rotary BLADE AZIMUTH-~y - DEG

Wing V/STOL Dynamic and Aero-
Elastic Problems. Journal,
Americal Helicopter Society,
July 1969.

FIG.15. EFFECT OF INCREASE IN WAKE DISTORTION FROM FUSELAGE

2. Landgrebe, A.J., Cheney, M.C. Rotor Wakes - Key to Performance Prediction. AGARD
Conference Proceedings CP.111, Aerodynamics of Rotary Wings. September 1972.

3. McHugh, F.J., Shaw, J. Helicopter Vibration Reduction with Higher Harmonic Blade
Piteh. Journal, American Helicopter Society, October 1978.

4. Coleman, R.P., Feingold, A.M., Stempin, C.W. Evaluation of the Induced Velocity
Field of an Idealized Helicopter Rotor. NACA ARR L5E10, 1947,

5. Pierce, G.A., Kunz, D.L., Malone, J,B. The Effect of Varying Freestream Velocity
on Dynamic Stall Characteristics. American Helicopter Society preprint 1036, 1976
Annual Forum.

6. Caradonna, F.X., Phillipe, J.J. The Flow over a Helicopter Blade Tip in the Trans-
onic Regime. 2nd European Rotorcraft Forum. September 1976.




78

7.

9.

10.

11,

12.

13.

Clark, D.R., Landgrebe, A.J. Wake and Boundsry Layer Effects in Helicopter Rotor Aerodvnamics.
A.I.A.A. Paper No. 71-581, June 1971.

Tangler, J.L. Schlierenand Noise Studies of Rotor in Forward flight. Preprint No. 77-33.
American Helicopter Society, Annual forum, May 1977,

Landgrebe, A.J., Egolf, T.A. Prediction of Helicopter Induced flow Velocities Using the Rotor-
craft Wake Analysis., Preprint 1002, American Helicopter Society, Annual Forum, May 1976.

Sheridan, P.F., Smith, R.P. Interactional Aerodynamics - A New Challenge to Helicopter Tech-
nology. Preprint 79-59, American Helicopter Society Annual Forum, May 1979,

Patel, M.H., Hancock, G.J. Some Experimental Results of the Effect of a Streamwise Vortex on a
Two-Dimensional Wing. Journal of the Royal Aeronautical Society, April 1974.

Ham, N.D. Some Conclusions from an Investigation of Blade-Vortex Interaction. Journal of the
American Helicopter Society, October 1975.

Brotherhood, P., Young, C. The Measurement and Interpretation of Rotor Blade Pressures and Loads
on a Puma Helicopter in flight. Paper No. 18. 5th European Rotorcraft Forum, 1979.

et e —oetm ... .

L
i
!
t




ROLE OF UNSTEADY AERODYNAMICS IN AIRCRAFT RESPONSE

G. J. HANCOCK
(Dept. of Aeronautical Engineering, Queen Mary College, University of London, U.K.)

1. INTRODUCTION

Unsteady aerodynamics can be studied as a distinct discipline in which unsteady
aerodynamic characteristics can be understood and determined for a wing or aircraft con-
figuration or other body undergoing a specified time dependent motion. However, vir-
tually all practical applications involving unsteady aerodynamics are associated with
dynamic phenomena where inertial, structural stiffness, and (unsteady) aerodynamic
forces interact; this means that the actual motion, for which the appropriate unsteady
aerodynamics are required, cannot be postulated a priori. The purpose of this lecture
is to illustrate some of the main dynamic situations which arise in aircraft response
and to show how unsteady aerodynamics are used. It is important that any research
worker in this field appreciates the role of unsteady aerodynamics for that role often
dictates not only the form in which the unsteady aerodynamics is reguired but also the
direction of research effort into unsteady aerodynamics. Although the illustrations
outlined here are taken from aircraft response, the same theme underlines unsteady pheno-
mena in helicopters and turbo-machinery.

In the design of an aircraft, there are two broad areas of response which need to
be considered:
overall aircraft motion - small perturbation longitudinal and lateral stability,
- controls' effectiveness,

- large perturbation asymmetric manoeuvres at low and
high angles of attack,

- handling characteristics,
- departure from controlled flight,

- post-stall gyrations, including spin, and spin recovery,

structural response - small perturbation symmetric and antisymmetric
stability, i.e. flutter,

- non-linear response, i.e. limit cycle instabilities,
- buffeting,
- structural loads due to manoeuvres and gusts.

There is coupling between the overall aircraft modes of response and the structural

modes of response. Structural flexibility affects the overall aircraft motion; simi-
larly, overall aircraft motion affects some aspects of structural response, e.g.
manoeuvre loads. In the past, this coupling has not been a strong one since typical

response times of the overall aircraft motions were much slower than typical response
times of the structural modes, hence fairly simple minded approaches to account for this i
coupling have been adequate. The advent of Active Control Technology has radically
changed the scenario. With the feedback loops of modern control systems, the response
times of the overall aircraft motions are more rapid becoming comparable to some of the
structural mode response times, thus the coupling is complex and important; the
successful design of a modern control system is critically dependent on emnsuring that
the above coupling effects are correctly incorporated.

Reference is made above to Active Control Technology. To be more specific, the
main areas of current development are:

i) relaxed stability in reducing the size of tailplane, or fin, but retaining
overall controllability through feedback to the elevator (or rudder plus aileron);

ii) ‘'carefree' manoeuvring by limiting the authority of control effectiveness in
critical regimes of flight to prevent the aircraft going out of control or
exceeding its structural strength limits;

i1i) gust load alleviation by reducing the gust loads on a main wing; when an air-
craft enters a large gust fast acting controls induce loads which counteract
the gust loads; transport alrcraft can have wings which are designed by gust
load specifications so reductions ir gust loads can save wing weight;

iv) manoeuvre load alleviation by modifying the load distribution by introducing
changes in control angles and overall incidence;

v) flutter suppression by incorporating feedback with fast acting controls to extend
the flutter speed beyond a specified flight envelope.

Areas (i), (1i), (iv) are primarily concerned with overall aircraft response, (iii), (v)
are primarily concerned with structural response but, as already ..entioned, the sub-
division is not always clear cut.
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g This lecture will first discuss the unsteady aerodynamics associated with overall
aircraft motions and then go on to discuss the unsteady aerodynamics associated with
structural response. Finally, some remarks are made to consider the role of unsteady
aerodynamics in control system design.

As a preamble, a word about steady and oscillatory aerodynamics. The steady
aerodynamicist (this phrase denotes that the aerodynamics are steady; hopefully all
aerodynamicists are steady) is concerned with the prediction of the aerodynamic load
distribution on a specified aircraft configuration for a given steady flight condition
(i.e. altitude, Mach number, incidence, control settings) to obtain overall 1lift, drag,
and pitching moment, together with the appropriate steady lateral forces and moments
when the steady flight condition is an asymmetric one (e.g. an engine out case). The
steady flight condition might be a cruise condition or an almost steady manoeuvring
condition; the flight condition might be assumed to be steady, when in fact it is not,
for example, when conventional aircraft stability derivatives are estimated. It is
important that the steady aerodynamicist appreciates that steady aerodynamics is in
effect a limiting or asymptotic condition of an unsteady aerodynamic flow; setting up
an aircraft configuration at a particular incidence and Mach number at time t = O
implies a transient flow as time t increases which settles down to a 'steady' state as
time t becomes large. Unfortunately, many steady aerodynamicists, never having studied
unsteady aerodynamics, do not appreciate this point, they tend to think that steady
aerodynamics are 'instantaneous' aerodynamics; so the unsteady aerodynamicist often
has an education job on his hands.

Now the unsteady aerodynamicist primarily deals with oscillatory aerodynamics,k for
reasons explained later. In this case, it is assumed that a mode of aircraft dis-
placement (e.g. an overall aircraft mode, such as aircraft pitch, or alternatively a
structural mode, such as the normal mode of primary wing bending) is oscillating in
simple harmonic motion and that this oscillatory motion has been in existence for a
long time. It is then often possible to make an estimate of the aerodynamic loads in-
phase and in-quadrature to the displacement simple harmonic motion. Again, it should
be appreciated that these oscillatory loads are asymptotic in the sense that the tran-
sient loads, wh.ch were initiated in the setting up of the oscillatory motion at zero time
have decayed.
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The essential ingredient of unsteady aerodynamics is the dependency of the loads
at any instant of time on the past history of the motion; this statement is factually :
correct for even the most complicated of flows involving compressibility non-linearities .
and/or separated flows. Steady and oscillatory aerodynamics are two special 'motions' :
; where past history effects can be most readily recognised and taken into account.
4 Problems arise when the motions are general, arbitrary and non-steady. The current ;
k state-of-the-art of unsteady aerodynamics is to know how to use steady aerodynamics and/ .
or oscillatory aerodynamics, possibly incorporating additional features of past history,
in a design process.

When describing unsteady aerodynamics one is interested in the degree of unsteadi-
3 ness, which can be defined in terms of the rate at which the motion is changing. A
1 convenient unit of aerodynamic time is the time taken for the air stream to pass over
- the mean wing chord; this datum unit is the one most usually taken although in some
circumstances, the time taken for the air to pass the full length of the fuselage (to
account for interference effects) might be more appropriate. Taking the unit of time
therefore as c¢/V, where ¢ is the mean wing chord and V is the forward speed of the air-
craft, the response times of overall aircraft motions (e.g. the 'short period' motion)
can be of the order of 150 ¢/V, whereas the faster response time taken in flutter cal-
culations is about 4 c¢/V (i.e. the period of a higher frequency structural mode takes
about 4 times the time for the air to travel one chord length). These figures indi-
cate a typical range of 'unsteadiness'; fortunately the unsteadiness is not too rapid
which should be remembered in the discussion of boundary layer effects.

2, AERODYNAMICS FOR OVERALL AIRCRAFT MOTIONS

2.1 Basic Equations.

Consider the equations. of a rigid aircraft in symmetric motion:
3.24—(}\4) E
m(‘i_‘é -1“) = -l cosa ~Dsinn f-ms ccse)
L,4% -m,
de
-9

Fana = Y/ |

T+ Lsinx ~Deesa =mg Sin 9’

(1)
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NOTATION FOR AIRCRAFT IN SYMMETRIC MOTION

FIG. 1
As shown in Fig. 1:
Oxz axes fixed in the aircraft with origin at centre of mass,
Ox points forward, Oz points downward;
absolute velocity of centre of mass has componentsW along Ox and w along 0z;

Ox, Oz are aerodynamic body axes which define the incidence « such that tan«
is equal to M/LL;

pitch angle €@ is the angle which the Ox axis makes with the horizontal.
It is noted that O and « are independent parameters.

Aircraft mass = m, aircraft moment of inertia = IJJ ,

Aircraft 1ift = L, drag = D, thrust = T (assumed along Ox direction),
Moment = M .

The thrust T depends on u,w , altitude and throttle setting. The aerodynamic
forces L, D and aerodynamic moment M depend on the current values and past history of u,
« ,¢@/t and density # , and also on the control angles and atmospheric gust inputs.
Eqns. (1) are completely general for symmetric motion.

The problem is to solve eqns. (1) for w®) , wl) , O&) for specified time
changes in throttle setting, control angles and/or gust inputs.

It is not possible to express L(t), D(t) and M(t) as simple mathematical
functions of u, « , 4 over the past history prior to time t; such a general relation-
ship is known as a functional, following the terminology of Tobak (see for example
ref. 1).

If there is an autostabilising unit, or other form of longitudinal control,
there will be an additional equation of the form

7t t Fleg. ), (2)

where % is the elevator angle, z;,is the elevator angle input from the pilot, and F
represents an operator on the fe€dback loops, involving possibly o and/or 1 and/or « .

Only the longitudinal equations are shown here mainly for the purpose of

illustration; in general the 6 degree-of-freedom set of equations, coupling longitudinal
and lateral motions needs to be solved.

2.2 Quasi-Static Linearised Derivatives.

Traditionally, to study aircraft stability, eqns. (1) are linearised by intro-
ducing small perturbations in « , w ,8about an initial trim (i.e. steady equilibrium)
state, then

W) 2 (103D | WE) = us s ra€) ) = 6, - 96), (3)

where subscript 8 denotes initial steady state and & , « , & are now small non-dimen-
sional perturbation variables.




Correspondingly, the forces and moments are writtem in the form:

L= Ls(/o,u;gg) +L QO+ L‘e(&) + L‘i qv(fr) + L‘:‘j'f +‘—,~,j,,“:f s

’ (4)
with similar expansions for D and M.
Again traditionally,
(i) all the remainder terms referred to as (4 .......... ) in eqn. (4) are ignored,

(ii) all the derivatives L“,L_, ,l-q,,l.a, ,l_;, are regarded as independent of time,
depending on /q U, g ; variations in density with altitude are usually ignored.

Substitution of eqn. (4), and similar equations for D and M, into eqns. (1), neg-
lecting second order quantities, leads to a set of ordinary differential equations in

) <€) ) with constant coefficients, which can be solved by standard techniques.
P4 rd

Next, it is necessary to ascribe values to the derivatives. Now the steady aero-
dynamicist has the job of predicting the equilibrium siate aerodynamic lift LSC,o_ Uy )
on the basis of theory and wind tunnel measurements. It is conventionally assumed that
the static derivatives L, and L“ are given by

- AL [~ 9ks
L= us = “ T 3 (5)
s

The dynamic or rotary derivatives ZLQ, ng, Z:; are in a different category.
By definition, these derivatives arise in an unsteady aerodynamic context, yet these
derivatives are determined in a simple minded manner not altogether compatible with the
corresponding unsteady aerodynamic behaviour. There is the further complication that
it is not clear how such derivatives could, or should, be measured in a wind tunnel
experiment.

There are a number of questions relating to the traditional approach of dealing
with aircraft stability and control, these questions stem from the form of egn. (4):

(1) what is the basis of this expansion?
(ii) . .what exactly are the derivatives?

(iii) what are the remainder terms conveutionally packaged as (+....... ; are
they negligible and, if not, how are they calculated and incorporated
into the equations of motion?

To partially answer these questiohs, consider the hypothetical situation whereby when
the aircraft is in a steady equilibrium state at y hs 4 oty » B, the aircraft incidence
is suddenly (instantaneously) changed to «s +&8« /, where §, is constant, at a reference
datum time t = O; then for t>O with the incidence constant at og+du , keeping
P s, 6 unchanged, the change in 1ift as a function of time can be expressed as

Loy = L, © d«. ©

In eqn. (6) Li,((tS represents the transient (indicial) 1lift as a function of time due
to a step change of unit & at t = o; in unsteady aerodynamic parlance this is known
as the Wagner function. Physically Lu(‘f) is the change in 1lift associated with the
creation and convection of downstream trailing vorticity. As €00 Ly gapproaches a con-
stant value associated with the new steady state of wg ,olgtdd , B ; for a finite wing
L s«@¢) approaches its asymptotic state as Q(/¢* ~. Because of the impulsive change
in d§« there is a delta impulse in Li,‘(e) at t = o when fluid is incompressible.

In general
Lo© =L, (o €) (7

since Lu@> will depend not only on the initial starting condition but also on the
actual magnjtude of Jo itself. If o 1is not too large (this statement is best inter-
preted in terms of the flow conditions remaining the same as the incidence changes from
c{f to osrdx , for example, if the flow remains attached or if the type of flow separa-
tion remains the same) then L;.. can be regarded as independent of du . If the flow
is attached Lot is also independent of o . If the flow is separated at the steady
state oy but the degree of non-linearity of L, with of is small, then Ly will be
a function of &« , but independent of dx . The situation where L;., could be a
function of §u 18 when the flow is attached at a trim state » Ug + wfy but separated
at the perturbed trim state ‘o » U ,.g.& . P s )

When Ly#) is independent of dot , then for a general change in perturbation inci-
dence oft) for C>0 the 1ift is given by

(8)

LO =Ls@uad+ | L (/0, us, ofs, € T) dotlr)ye
X dar
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Strictly the limits O € are included in the range of intexration; this is important
since 1in incompressible flow qp;g.g &) includes a delta function at t = O,

Eqn. (8) can be changed to the form
LE) = L luga) v Ly, (p us,ets, o) <€) .
€ ) _)
- = - oo ) o
{L“(/), ws % € r) LuCP" U, ol )j%’(_r_v de,

where L.li(fZ‘k,“%,°9) is the incremental steady state 1ift associated with a wnit
increase in incidence.

Now introduce
j <{O Us oL, é. I3 -T) J le(“‘,d‘, L'—T")-L_t“(u-,‘ 4y n&dp,‘ 10y

As TZ>Q then the integrand in eqn. (10) is O ((¢-7)*?) which is integrable, so
5/0,“3,'9,‘-‘, e-) is a finite function.

Substitution of eqn. (10) into eqn. (9) gives

Le) =1—s(l“s,°‘s>"/—‘(,“s,-<,°°)o((¢)+:f (o « ¢, o) ]
. 1 0 U85 P us.ts, s |

(11)
¢ )
- J ji« (ﬂus,d;, ¢ e ) dd de .
©

By comparison of eqns. (11) and (4) it is seen that there is a correspondence between
the derivatives as defined in eqns. (4) and the terms in eqn. (11), hence

L= L Cpugo o0, :

(12)

= ji« (/0 us o €, o) — jj.«(ﬂ Uy oy 03, 0) fer large €,

while the remainder of the series in eqn, (4) is expressed by the remainder integral

in egn. (11). The condition for large t is a reasonable one since an overall aircraft
motion is a relatively slow one (relative to the unit of aerodynamic time, as explained
earlier).

In these circumstances, the derivatives L_ L_. are constant derivatives indepen-

dent of time
Le( = aLu(ﬂ“g}d,‘b>A‘s
- J{Lh(ﬁ w.,««,F) - L_h(/a, U, o, ,,,)j di

The derivative ij is therefore simply the integral of the indicial response function.

(13)

It might be thought that the process leading to eqn. (11) can be extended to give
a series expansion such as

Ley= L) +Ly @ e by e or

“ & ' o
Such an expansion is most convenient for the dynamicist for then the solution of the
equations of motion is straightforward. Unfortunately, such an expansion as eqn. (4)

is not possible since it would imply that

J \{ (/ou‘xsr G- )a’r") (15)

which is 1nfinite1y large for large t because J{ is C>(T’) for small ™ and finite
for large P’. Similarly all the 'derivatives' L-. etc. are infinitely larger. Any
attempt to formulate 'derivatives AL; etc., and then to separate these derivatives
from the variable rates of change o/¢) etc., 1s completely unacceptable, in spite of
many attempts to do so in the literatures.

More specific questions are now:




(1) under what circumstances is the integral remainder time in
eqn. (11) negligible?

(ii) 1if the remainder integral term in eqn. (1l1) is not negligible, how
are the dynamic equations to be solved?

As a partial answer to question (i) experience over the past 50 years seems to indicate
that the remainder term as far as overall aircraft response is concerned is negligible,
but question (i) is becoming more and more relevant as control systems tend to increase
the frequency of the short period motions; further work is needed to answer the
question (i). As a partial answer to (ii) standard step-by-step numerical procedures
can be used if the indicial function is known but such methods do not necessarily lead
to the qualitative understanding required for design purposes.

A more fundamental question is how a quantitative estimate of the transient function

Lia(fﬁ“a-%,t) could be obtained. Such a function is not normfé}y determined at
the present time although the numerical method of Morino named SOUSSA incorporates
such a procedure. Furthermore it is impossible to perform an experiment to determine

Lig{pus, ¢ €) since it is impossible to build a mechanical device to change the inci-
dence of a model instantaneously in a wind tunnel experiment, the fastest rise times
would be comparable with the unit of aerodynamic time

Remembering that the unsteady aerodynamicist aims at prediction of oscillatory
derivatives, again by a reference to theory and experiment, it is of interest to
relate the overall aircraft derivatives to oscillatory derivatives.

Now take the time dependent perturbation incidence to be a simple harmonic motion
with real amplitude §¢ , so

o) = S ™. (18)

Then as & oo the 1lift force can be written in the form

e

Le) = L (a %, <) + Z,‘ (/e u &, w) du 'fu, (17)

As
where Lglk , the complex amplitude of the oscillatory incremental 1lift force, will have
an in-phase and a quadrature component. For some regimes of flight E‘ could be a
function of ¢ but in this case it is highly probable that the 1lift force would include
higher harmonics of the form et where pn> i ; this occurs in separated flows and
in flows at transonic speeds. There are also special types of shear flows where half
frequency effects appear.

When can be taken to be independent of » on substitution of eqn. (16) into eqn.(8)
it is seen that

(4
L (o uw w)iae™ = J Lo Cpute & gé(r)dr»

€ oo
& (18)
= | ™ AU (s ) dr ]
g d
[~ fi )
Substitution of edn. (16) into eqn. (18) gives
4 —wr“) )
- <2 w ))dr,
/__‘ (/q Us, ol w) 3—1:‘(L"‘ (ﬁ s, T (19)
[~
The real and imaginary parts of Lq‘ are known as oscillatory derivatives which are
functions of £ Us and c{,usually independent of o but not necessarily so. Note, from
eqn. (18), a8 « = O
Eo( <Pf Us, 5, o) = L.l.‘ <f°’ Us, %, °°> ’ (20)
which is the incremental steady state.
Por small @ 1t can be shown that
. - & - e
L“({Qu,,a(,, 4..-) - L_.((/o, Ug, o o)+ whA ﬁ“s,-(s) t+ W w%«s&)* 2 (21)

where A and B are real.




e T SRR T T e R T e

T TR A AR

Relating eqn. (21) to eqn. (11) it is seen that the first two terms in eqn. (21)
correspond to the second and third terms of eqn. (11), the remainder terms of eqn.(21)
correspond to the integral remainder term in eqn. (1l1). Thus from eqns. (11, 12, 21)

L‘.“< = Caeal Part [t* (f, Ug, <s, “’)K)w-—.o ’
L°.< - (Imaginary Part{ L (ﬂ Us, o6, w).‘/“’)“’ -0’

The formula for Lﬂg given in eqn. (22) is a convenient and proper method of estimation
from either theory or experiment. Experimentally, both L, and Ly can be obtained from
simple harmonic tests extrapolating the results to w=0O. The remainder term in

eqn. (11) can be obtained in terms of oscillatory derivatives, since from eqn. (19),
taking the inverse Fourier transform,

L% [ () . wr .
L.I.((P’ u,,d;,'r‘) T e j %‘f_) 2 of7

o

(22)

(23)

These relationships between quasi-steady and oscillatory derivatives do not help
with the difficulty of including the remainder terms in a dynamic calculation.

All of the above analysis has been presented in terms of the indicial function
LiJkHor the 1ift following a sudden change in incidence. Reference to the basic
equations of motion indicates that a number of such indicial functions would be required,

namely
L, Cpusso LinCp us) L0 usc)
:D.‘l« ( f’, Ug o6, ¢) :Da.u (f’, Ug, ot €) D1e <f°’ us, %, €)
. _ ), ¢) .
Mio Cp, us, . €) My (o s ©) Mo (p s €)
(the subscript 1 denotes the transient due to a unit step input). The estimation of

the drag derivatives via an indicial function would be an unnecessary refinement.

There are additional indicial functions associated with a step change in elevator

angle, namely
L 1% (ﬂ Us, o 7. (:) D.:L? (/,‘ Us, . 22 ¢) M17 (ﬂ Us, . 7s C')

which serve as a reminder that strictly all indicial functions are functions of
the trim elevator a.nglez,in addition to /.), U and ol -

There is need for further research into the relationship between conventional
methods of calculating the dynamic derivatives L& ’L‘$ , Mo M$ with the methods
described above (i.e. eqn. (22). Although the above analysis presents a formal method
for estimating these dynamic derivatives the actual procedure is far from straight-
forward since the values of the derivatives are due primarily to wing-tailplane inter-
ference. An interesting project would be the calculation of the indicial functions
for a wing-tailplane combination including the rolled up vortex sheet aft of the main

wing, then estimating the dynamic derivatives to compare with standard methods.

This line of thought leads on to an alternative strategy, for if a method for
calculating indicial functions could be formulated then the same method could be applied

to give the loading during arbitrary changes =) and qﬂ:) ; it would themn be
possible to combine both the aerodynamic and dynamic calculations in a single step-by-
step process in(§§me. Such an approach, as yet at rather a superficial level, is being

sought by Wells

2.3 Non-Linear Derivatives.

The arguments presented in Section 2.2 are based on the assumption that perturba-
tion changes in =) and Q) do not significantly change the flow pattern. However,
there are aircraft motions where the changes in x&) and ¢&) are large, with the air-
craft going in and out of separated flows or with rapid changes between different kinds
of separated flows. 8o the question is how to represent such aerodynamic characteris-
tics to calculate dynamic motions, No satisfactory answers are yet in sight.

Because of intrinsic difficulties in theoretical prediction methods for these types
of flows the main emphasis at present is on deciding what wind tunnel efgsriments
should be done to provide appropriate data for design purposes. Tobak has made some
significant observations on this aspect. It is possible to generalise the concept of
the indicial functions as outlined in Section 2.2 essentially by recognising that the
indicial 'function' depends on the magnitude of the increment Ju ?’nc, L (2 ug, g du, €))
in this case the representation for the 1lift for an arbitrary«®) is not a simple -
integral as in eqn.(8). For the relatively slow motions associated with overall air-
craft motions, Tobak argues that for an arbitrary change in incidence «®) relative




to an initial state /), Us, o 7s the 1lift force can be expressed as

Le)=Lilpu o) 3) + Lo, (/q Us, ol r®), 75)2_!31 (24)

where the subscript § refers to steady state and ¢+ to a transient rate term.
Eqn. (24) is seen to be a generalisation of eqn. (l1), ignoring the integral 'remainder’
term.

The crux of eqn. (24) is whether or not Le,. is in fact independent of d«/d.b‘
but dependent on «(7)), and whether or not this single function L ¢+ incorporates all of
the past history effects for all possible motions «&) . There is no way at present
of predicting such a function. Experimentally it would be necessary to perform a
range of incidence motionmns. As far as is known such an experimental programme has not
been done. Whether or not conventional simple harmonic tests for a range of amplitudes
of dx , taking the quadrature term for l&+ , is sensible or informative, is also not
clear. Nevertheless, eqn. (24) suggests an approach which, if validated, could form
the basis of a wind tunnel programme, to provide an entirely satisfactory form of aero-
dynamic inpit into dynamic equations.

However, this overall problem attains its zenith of complexity in the coupled longi-
tudinal and lateral motions for an aircraﬁ)in post-stall gyrations, in transient and
developed spins. For such motions Tobak argues that for an aircraft in nearly
rectilinear flight, involving perturbations in all degrees of freedom, the aerodynamic
forces and moments can be made up from the following separate motions:

i) steady incidenceaf and sideslipA ,

ii) a steady rate of coning (i.e. a steady state of rotation of the
aircraft about an axis to the stream direction with the aircraft
maintaining steady incidence and sideslip a.ngles),

iii) small pitching oscillations about a steady coning motion,
iv) small yawing oscillations about a steady coning motion.

Thus a generalised force or moment coefficient could be expressed in the form

C, = Co (o B en) + C.‘:cv(“s/ﬂ&c")q, + C;'_ (s, s ca) ¥

(25)

where C€n is a steady rate of coning, (CL 1‘) are small perturbations in rate of
pitch and rate of yaw about the steady @,‘A cn)state. An appropriate wind tunnel
programme would aim to measure C;_ (d"‘ Bs,en) Cp.,. Cpu It is understood that attempts
are being made in the U.S.A. to meaSure the’se'%iarameters.

An approach in the U.K. is to assume that a generalised force, or moment, co-
efficient can be expressed in the alternative form,

Cp = C:F (o(f(i)/&’—’))ﬂ- C_p_(d(@,?(‘-’\) + C{r (,(((:))r + Cf'l‘(d«:))%

(26)

where CAG(,A) is a static coefficient depending on incidence and sideslip, C;(o(,‘p)
incorporates the rate of roll p, and Cg () and Coe(w) are associated with small
perturbations in rate of pitch and rate of yiw. Now C;(x;,ﬁ;) can be measured on any
conventional six component balance,q_(-(;l‘p, can be measured on a rolling rig for a
range of aircraft incidences, while (g (&) and C{:*(ats) can be measured on a small
amplitude oscillatory rig. ¥

Boths egqns. (25, 26) are pragmatic in the sense that they are made up from terms
which can be measured in wind tunnel experiments. However, it is necessary to vali-
date whether either or both of these equations represent the aerodynamics on an air-
craft in high angle of attack motions. In the U.K. some answers are being provided
by drop model tests, but there is a long way yet to go.

3. AERODYNAMICS FOR STRUCTURAL RESPONSE

The stability of structural response, namely flutter, is of fundamental importance.
In the past, the primary task of the unsteady aerodynamicist has been to provide the
appropriate aerodynamic data for flutter investigations where only the simple harmonic
or oscillatory derivatives are required, as explained below.

Nommally to study flutter, a modal analysis is undertaken. he nth mode
(n=iN), either a normal mode or a branch mode, is denoted by §,&)f,(xy), where
fl%y) represents the structural deformation and 9 &) represents the amplitude
and time variation. The basic stability equations can e written in the form
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[M] {% * LS]& 3 “"“’“J namie (27)

foices

where {(t 1 1s a column vector of all the modes, Dq] is a square inertial matrix.
(Nx N is the square structural stiffness matrix; the generalised aero-
dynamlc forces are the aerodynamic inputs into each mode.

For a stability analysis it is reasonable to assume that the amplitude of deforma-
tion is small, and for attached flows, outside of the transonic region, linearisation
of the aerodynamics is reasonable.

Eqn. (27) is to be solved to find the critical flutter condition where by defini-
tion the motion is simple harmonic. It is argued that at speeds below the flutter
speed, any disturbance is damped out while at speeds above the flutter speed any dis-
turbance will grow. Thus to determine the critical flutter condition, only oscillatory
aerodynamics are required. Assuming a value of the frequency parameter y (= ﬁJCy’us)
the oscillatory loads associated with each modal oscillation can be calculated using
methods described later in this Lecture Series. Representing the load distribution
induced by the nth mode by the expression

/(n (J,J‘ w/) i" Q"‘Je = {4 I(x)‘y’ v) 'H.’YZ”(I’J V)]€”€lw6‘

where the ' refers to the in-phase, ' to the out-of-phase, ,1s the complex amplitude,
the generalised aerodynamic force column matrix in eqn. (27) becomes

G

where A is the square matrix with element Amngiven by

(28)

Ay = hasir AL =[] £ 6 LG5y, (3

ader

Amn is a functicn of /J,u;, v

and possibly of . , although this is usually
neglected.

7

At the flutter conditicn eqn. (27) becomes of the form
- — ‘ AJQ Y 1 =0
[—v*[m] + 31 - LAY~ »1] {3 (31)

where LM1 |, and [S] are real but{fA(¥)]is complex. Eqn. (31) is a complex eigen-
value problem which when solved gives values for the two variables v, and /oa‘ for a
non-trivial solution of 7;

An iterative method is required to solve eqn. (31) since ¥ , and us (i.e. the Mach

number) are not known to start with. Therefore the aerodynamic oscillatory derivatives
are required over a range of frequency parameters and Mach number in order for the
iterative solution to proceed. This procedure is numerically straigqhtforward.

To study the severity of the onset of flutter, it is necessary to determine how
rapidly the damping of structural response decays to zero as forward speed 4g approaches
the critical flutter speed. Attempts are made to solve eqn. (27) at sub-critical
speeds (there can be confusion in the use of this therm; to the flutter dynamicist
sub-critical implies speeds below the flutter speed, whereas sub-critical to the steady
aerodynamicist implies speeds at subsonic Mach numbers below the transonic regime).

The difficulty is that at sub-critical speeds the motions are not simple harmonic but
decaying motions of some form and it is not easy nor straightforward to represent the

unsteady aerodynamics of such decaying motions in the equations of motion. There are
two main approaches, one originating from the U.K., the other from the U.S.A., both
heuristic. In the U.K. the effect of the decay on the aerodynamic loads is neglected,

the loads are assumed to depend only on the frequency; so eqn. (27)is solved in the form

[ [] + 051 - (Aot 1= [AGus 1] (gl =0 o)

for complex eigenvalues ) , where V¥ is the complex parto‘A. At sub-critical speeds a
real positive part of )\ exists, implying a rate of decay of the structural stability
modes .

i O
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The U.S.A. approach is slightly difference; here an artificial negative damping
matrix is inserted into the basic equation and the value of this negative damping is

determined by the condition that the motions are simple harmonic at a sub-critical
speed. So the appropriate equation to be solved is

[—v‘-[MJ 3] r @] - [A(p us.-es,v)_'lj [‘1..} =0 (33)

The eigen solution gives the values of ¥ and a damping coefficient o for given

A

PR

values of . Us, «s . There are a number of arbitrary ways of introducing d into the

square damping matrix. The advantage of this approach is that oscillatory deriva- i
tives can be retained but the meaning of the resultant damping coefficient d? is not ]
clear.

An important problem of structural response is concerned with response to atmos-
pheric gusts, then eqn. (26) can be formally rearranged

- . - aerodynamic aerodynamic load

LM] {11 fLS] [$I = load matrix , Jmatrix due to (34)
depending on gust imputs as
responses 1n functions of time

There are two aerodynamic calculations to be done here, the first is the calculation
of the loads due to response, secondly there is the calculation of the aerodynamic
loads due to the gusts; on the whole the same methods can be applied to each set of
calculations.

Assuming that the aerodynamics can be linearised, if the gust input is assumed to
be oscillatory then the steady state response (i.e. response after the initial transients
have died away) will be oscillatory, so standard oscillatory derivatives can be used.

If the gust input is statistical in the sense that the range of gusts can be expressed
by a random gaussian process with a prescribed spectral density, then the spectral
density of the responses can be found from the frequency responses over the who.e range
of frequencies. If the gust input is deterministic, say to represent a discrete ramp
type gust, then ideally the problem should be solved in the time domain using indicial
functions (as outlined in Section 2.2); however in practice the Fourier transform is
is applied to both sides of the equation so that oscillatory derivatives can be used,
and the final response in the time domain is obtained by the inverse Fourier transform.
There are numerical difficulties at higher frequencies which are to some extent overcome
if the limiting case of infinite frequency at any Mach number is take to be piston
theory.

Although the above procedures can be applied to calculate sub-critical response in
attached flow at subsonic or supersonic speeds, there is some doubt on the accuracy of
the results especially where the responses are associated with wing - tailplane inter-
ference. It is said that the comparison between flight measured results for sub-
critical response compared with predicted results is not good, although it is accepted
that there is better agreement between 'measured' and predicted flutter speeds. This
lack of agreement at sub-critical speeds may be attributed to inaccuracies in either, or
both, of the structural or aerodynam{q)models. Ashley comments on aerodynamic model-
ling of aircraft in his review paper‘“’ where he shows that with the same linearisation
assumptions different methods can give substantially differing results for tailplane
interference loads.

At the present time, the main problem area concerns those flows where the aero-
dynamics are non-linear, that is when the flows are separated at any Mach number or when
the flows are attached at transonic speeds (separated flows at transonic speeds is the
peak of complexity). It is necessary to predict the unsteady aerodynamic behaviour in
a suitable form for calculating dynamic response, whether for flutter, which could well
be of the limit cycle variety, or general response at speeds below the flutter speed.

1f for a wing, or aircraft, which is performing a time dependent motion, the com-
plete flow history is known for &<T |, say, the unsteady aerodynamicist has the job of
predicting what happens at T+AT given the position of the wing or aircraft at 7T+4T
If this can be done successfully, the combined dynamic/aerodynamics problem can be
solved in principle in a step-by-step process. Such a procedure is a formidable under-
taking, if one is solving a typical dynamics problem in N degrees of freedom by a 4th
order Runge-Kutta process (or equivalent) it would be necessary to calculate the aero-
dynamic flows at 8N different states at each time step in order to interpolate to the
correct state. Anything less usually leads t?4¥nacceptab1e cumulative errors. Such
an approach has actually been done by Rizzetta tor a flexibly supported two-dimen-
sional airfoil at transonic speeds, solving the aerodynamics by a field solution method
developed by Ballhaus, to be described later in this Lecture Series. As far as is
known it is not possible to apply such an approach to separated flows because the
methodology is not yet available.

There is a need for continuing research into these types of methods which combine
the dvnamic/aerodynamic interface directlv in the solution process. Such methods, although

extremely long in terms of contemporary computational time and complexity, can provide
useful results for comparative purposes.
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For design purposes, there is a need for research into methods for solving dynamic

equations with approximate non-linear aerodynamics in such a way as to highlight the
main dynamic response characteristics. There may be lessons to be learnt from our

control system colleagues, for example, if the non-linear aerodynamics could be expressed
in terms of 'describing functions' then the main features of dynamic response might be
established, alternatively the possibility of obtaining solutions using integrated
effects such as energy concepts needs to be further explored.

CONTROL SYSTEM DESIGN

As stated earlier, aircraft are becoming more dominated by control systems in this
era of ACT. Such advanced control systems inevitably bring problems. For example,
reference 5 identifies three types of instability which arise on the YF-17; first limit
cycle oscillations were induced at high system gain by an interaction between the con-
trol system and the overall rigid aircraft motions; secondly response of the control
sensors to the structural mode deformation introduced a self-excited oscillation where
the energy to sustain the oscillation was supplied in part by the control system;
thirdly an instability arose in the absence of aerodynamic forces with the inertial
forces acting as the exciting agency. Another consequence of advanced control systems
is that they cause coupling between the overall aircraft degrees of freedom and the
structural modes such that there is much less of a gap between the lower frequencies
associated with overall aircraft motion and the higher frequencies associated with the
structural modes, thus the concepts of quasi-static 'aerodynamic derivatives' become
questionable.

The control engineer designs his control system by referernce to the frequency plane
(i.e. by plotting out the frequency response in either Bode or Nyquist plots), in the
s plane (by plotting the eigenvalues $=0+lw as a function of a parameter gain of
the system, the so-called root locus plot), and in the time plane. Essentially the
frequency response and s plane methods indicate the degree of stability of the system;
the time plane is necessary to study response. A common starting point for all of
these approaches is to express the various components of the overall system in terms
of their transfer functions (i.e. the ratio of the Laplace transform of the output to
the Laplace transform of the input). Therefore the control engineer would appreciate
the aerodynamic inputs in the form of Laplace transforms. As already pointed out it
is not easy to determine or represent linearised aerodynamics for general unsteady
motions and so approximations are needed.

In the following summary of current developments the author wishes to acknowledge
the help of D. L. Woodcock, R.A.E.

In the earlier sections the ideas have been built up on the basis of the indicial
response to a step change since a step change is acceptable in physical terms. How-
ever mathematically the indicial response to an impulse or delta function is a more
convenient base.

So definel—&xr> as the lift response to an impulsive change unit incidence at

time T"=o where T is non-dimensional time ust/e. Thus for an arbitrary change in
incidence o¢(r) for T>o0 , the 1lift [/ (") is given by

L&) = J[_& (r-T)<@)dr = j l_&(r'-f‘c)d(f:)df'o, (35

since L& (T’-To) is zero for T, >T" , and «(T)) 1is zero for T, <O.

Now [‘Sk @) can be expressed in the form
[, @)= k&) + k $@ + g H®, (36)

where Jﬁ) is the standard delta function, as defined by the integral property,

f“ § Sem)dr ~ §62),

-

/
J(F) is the differential of the delta function, defined as

j fer Sanddr - - §@)
H@) 1is the step function which is the integral of Jb”)

?
j e dm - HE.
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The values of ko and k( are associated with the behaviour at 7 close to zero and there- ;
fore associated with the behaviour for fast or high frequency motions.

Again there is a relationship between oscillatory motions and indicial motions, so 1
in the notation of Section 2

+O 'Vf'
~ -<V7g
L&) = f [__&(T;)z ‘[7:, (37)
-
where ¥ is the non-dimensional frequency parameter uc//.s . In practice it is normally
the oscillatory derivatives ['(v) which are calculated directly, and the indicial func-
tion [_&(7;) obtained by Fourier inversion of eqn. (37).
Replacing y by(-tp) then eqn. (37) can be written as
)
~ . o~ —Pr'o Lol
L(—cP) = J L-Sg((“)e' C("o) (38)
(=4

which can be regarded as a Laplace transform relationship.

Now at low frequencies L (V) can be expanded in the form

Z.(v) - Z(‘éé) ~ Zn > Nes Pﬁs (n':p)

Y=o SV (39)
whereas at high frequencies
=)
g ) ~ + as
= - ) I<| + ko —
L(Y) L ( P F = Pv- (40)
The 1limit of high frequency is piston theory, which gave expressions for k. and k, , If

the fluid is assumed incompressible, piston theory is not the high frequency limit,
thus there is a different limit between M-*0O (for which piston theory applies) and
M=0 (for which it does not).
,~
Because L(V) is complicated approximations are sought.

The crudest approximation is to write

/:(v) = [,(v) *LVL”(Y) -~ [/()g)f—z;yzﬂ(%) (41)

where ¥ is some chosen real value of V. For aircraft stability and control, as already
explained, Yy, is taken to be the limit as ),-=>=0O . For subcritical structural response,
again as already described, ¥, is taken to be the flutter frequency or a nearby fre-
quency. The corresponding indicial response function is then

Ly @) = L0 I + L) I, (a2

A more common contempoary approximation is to assumed

r~ e ~ L k‘ . _L_ m—t Ef -
L( /’) ko + P G_)+P°)m %5 P (3

which has the equivalent form
m-t
LSJ(T’) * k& rk S0 + c'ﬁr(;”C*?')H(r)

where there is a linear relationship between the coefficients by, Cs and all the co- 1
efficients are real. The coefficients by(eo+c¢) are obtained from a least squares :
fit to a set of calculated values of AL {(p). The choice of the single real pole P,

is arbitrary. The disadvantage of this expansion is that when used in a dynamic cal- :
culation a spurious dynamic root appears associated with 'P‘. . ‘

A generalis?aj,on of the above approximation which has been further developed
recently by Vepa and described as the use of Pade approximants is to assume
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[ Cp) = ko vkip v | 2 web’

:_r_——.;—
2 Uep (48)
=

and its equivalent form

, w —P r Ne-\ s
L. =k +k §@ + ) &P ) cwd
du = s=o (45)
where P =-Py+ is an n, multiple root of
+
vy -
and so ' +P ©
w;
Ny =m
=i

In eqn. (45) wy v» are taken to be real, but the poles associated with the values of
to make (E.c;p'j zero are now complex; this is the difference with the approximation
in eqn. (43). All the poles Py have negative real parts (i.e. the aerodynamic system
is stable). But again spurious roots appear in the solutions to the dynamic equatioms.
Current work is aimed at understanding whether or not these effects are significant when
used in a control law analysis.

To avoid spurious dynamic fggts (or in the parlance these days, undesirable
augmented states) Edwards et al have been developing an dternative approach. The
basic problem to be solved is of the form

Adq . Ddy , Fq = ) g (n)dn
e A _NCQ%(P )4.()
fon (46)
(r-m)y @) + &)
Ik
where
@) = Rd - Sq
d 7 3 v

represent inertial, structural damping and structural stiffness
7(7") is the elevator angle variation
R’.S represent rate, and direct, feedback
f(r) is a disturbance input
CQS Cﬂ) is the generalised load due to an impulse in ¥
GQ»(J? is the generalised load due to an imonulse in Z

£} is a response variab'e
AD E

Transforming to the‘P plane, eqn. (46) becomes
{A‘Plfbp +E£ — 61,(‘“”)} Ei(p) = (5? (-«',6)@,»*5)?(?) r 1) (47)

The solution proceeds in two stages.

First Edwards determines the characteristic roots of the left-hand side of eqn.
calculating the aerodynamic term(s) ‘Gdi? from standard oscillatory programs but

replacing the conventional frequency o y G red) . How far this process can be
performed for finite wings at a general Mach number is not clear. It is argued that
no spurious roots are introduced by this approach. The validity of such a procedure

needs to be clarified.

I1f the characteristic roots of the left-hand side of eqn. (47) are denoted as
P =P (=, ) , then the second stage is to expand the right-hand side about
the poles'P, along the lines, but generalising, eqn. (43).

There are a number of questions which need to be resolved, for example:
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is the method effective for practical applications? how much computational effort is
required?

It is seen from the above brief comments that aerodynamic modelling for control
law design is one which needs and requires further attention.

5. CONCLUDING REMARKS

The general theme of this presentation has been the appreciation that unsteady
aerodynamics only have practical relevance in a dynamic context and that the mathemati-
cal modelling of the unsteady aerodynamic characteristics need to be compatible with
the solution of the dynamic problem. In these days the solution of dynamic problems
is crucial for estimation of design loads, aircraft response and control system design.

Even when the flow is attached at subsonic and supersonic Mach numbers conventional
quasi-static derivatives for low frequencies and oscillatory derivatives for higher
frequencies may not be adequate for modern requirements, it is becoming necessary to
calculate the aerodynamic loads for arbitrary unsteady motions not only of wings but
complete aircraft configurations. Such a specification operates at two levels; at
one level relatively fast approximate but adequate methods are required for preliminary
design purposes, while more thorough and exact methods are required to validate
finalised designs.

Aircraft are operating more and more in non-linear aerodynamic regimes of flight
involving separated flows and/or transonic Mach numbers. Although remarkable progress
is being made with field solutions at transonic speeds the dynamic/aerodynamic inter-
face remains a formidable challenge which even when overcome will provide methods which
could be used only infrequently in a design process because of the large extensive pro-
grams involved, even recognising the advances in computer technology. Meantime, there
is a real intermediate task for the theoretical unsteady aerodynamicist and dynamicist,
namely, to inform the wind tunnel specialist what experiments are required and how the
results can be used and incorporated into the solution of dynamic problems.
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APPLICATION OF INDICIAL AERODYNAMIC FUNCTIONS
Dr T.S.Beddoes
Acromechanics Dept.
Westland Helicopters
Yeovil, Somerset BA20 2YB, UK

INTRODUCTION

Numerous approaches have been used to calculate the aerodynamic loading in response to time varying
motion. Even for the incompressible case the calculation is laborious but solutions have been obtained
for idealised forcing such as harmonic motion (Theordorsen) or an instantaneous change between two steady
state conditions (indicial response). Subsequently, by assuming suitably small perturbations the compre-
ssible flow equations were linearised and solutions again obtained for idealised motion. The theory for
these two approaches has been presented, for example, in reference 2. More recently, using numerical
methods, programs have been developed that can solve either the exact equations for steady compressible
flow or the approximate equations of the non linear small disturbance theory of transonic flow and have
been applied to the case of unsteady motion. The computational requirements for the latter approach are
considerable and consequently application is largely limited to specific aspects of airfoil design and
behaviour,

The objective here is to demonstrate relatively simple means for applying the theoretical results
for idealised forcing to routine calculations of airloads and structural response. In this context none-
linear system characteristics may be simulated and complex or arbitrary forcing may be included. Init-
ially the aerodynamics are assumed to be more or less linear, that is, the flow is assumed to remain
attached but the procedure is intended to provide the parameters required to define the onset of sep-
aration.

CHOICE OF AXIS

For convenience and simplicity in strip analysis application, motion is referred to the £ chord
location and pitching moments are related to the § chord. For steady state calculations specification
of boundary conditions at the g chord is sufficient to define lift. This is true for both pitch and
plunge motion. For sudden application of pitch rate about the g chord location it has been shown (ref-
erence 1) for subsonic flow that following an initial transient, the resulting lift decays rapidly to
zero and the pitching moment degenerates with time to form a pure couple. As discussed later indicial
1lift response is comprised of two components, an impulsive force which is initially centred at the mid
chord and which decays rapidly and a circulatory component which increases from zero, tends asymptotice
ally to the steady state value, and maintains a centre of pressure at the ¢ chord.

ac, =C (s} A+ C (s). 6c
Thus 1 la:‘c M \q v =2yt
¢ Is). 8¢ c
aC, = cu(s).Aq'alll(s) * Coa ) 8«
Where @.(s) 1is the indicial lift response to angle of attack

clq(S) is the indicial lift response to pitch rate about #c
Cmq(s) is the indicial moment response to pitch rate about gc
Ci;!s) 1is the impulsive component of ¢ s)
il(s) is the centre of pressure variation corresponding to cu(s)
and as noted Clq(s) and Xp(s) both tend to zero. The angle of attack at the § chord location is obtai-
ned by summing the contributions from the free stream velocity vector, plunge motion, pitch rate about an

alternative axis location and the induced velocity field effects where appropriate.

INDICIAL LIFT AND MOMENT FUNCTIONS

The derivation of the indicial 1ift and moment functions for compressible flow have been presented
by numerous sources e.g, references 1 and 2 which include numerical solutions for variocus Mach numbers.
Two different approaches are used, one to solve for the initial loading which is impulsive in nature and
another for the circulatory loading which builds up quickly in the first few chord lengths of travel and
tends asymptotically to the steady state value. Considering first the indicial circulation, this has
been shown (reference 6) to be proportional to that derived for the penetration of a sharp edge gust,
which, for the incompressible case, was first solved by Kussner and for which the approximation

yis)s _0se1 % 056t has become accepted where C‘(s): 2n \s y (s}

Solutions for the compressible case are presented in reference 2. The asymptotic values forcl(s)
are given by the steady state 1lift curve slope values of2nll1 -m2 but for increasing Mach number the
build up of 1lift is r in terms of semi chord lengths travelled (s). It can be shown that by scaling
the ordinate cl by /1-M2 and the abscissa s by 1-M¢ the compressible solutions for the Kussner func-
tion collapse to what is effectively a single solution. Correspondingly, then it is possible to utilise
a simply modified Kussner function for use for compressible flow, i.e.

172 -13¢' -s
C s 01-M) (1-05¢  -0.5e () where s sli-M2)
and cle = 2n . v 8) or, alternatively, G 6 'ﬁm‘"’:-,'"c"’- Fm?
where C « (M) is the best available value of 1ift curve slope for a given Mach number from theory or

test. application of the above expression is compared in figure 1 with the solutions presented by
Bisplinghoff in reference 2. Similarly, it may be shown that a modified form of the above expreasion
may be used to represent the circulatory response to indicial forcing i.e. an instantaneous change in
angle of attack.




The impulsive forces which comprise the initial loading in response to an instantaneous change in
angle of attack are generated by a compression wave on the lower and rarefaction wave on the upper surface.
These produce an initial lift coefficient

clm) = L&

4
M
Decay of this force with time is rapid, reference 2 presents a solution which is valid for a short

iod:
per C=z4E[t-8(1-M)] Ogsg2M
t M| 2m ’ oM

With the objective of producing an overall expression suitable for the application of Laplace transform
methods it is not unreasonable to assume an exponential decay for the initial impulsive forces. Thus an
indicial 1ift function may be generated which includes both the circulatory and impulsive lift terms:

, 12 088 _ -65s’ (3L 76M) o
tsre (1-M 1-03¢ T S0re ) .'%M.( '
such that Cl1=2n @415) o CeMI & & 15, [rom2

The above expression is compared to the solutions for the compressible indicial 1ift function
presented in reference 2 for:'various Mach numbers (figure 2) and is shown to preserve the continuity
between the initial, impulsive, loading and the succeeding circulatory loading. To examine more closely
the time history for the first two semi chords of travel figure 3 shows a comparison of the above ex-
pression with the initial values from piston theory as quoted above.

GENERALISED INDICIAL LIFT

Indicial Response to Step Change in Angle of Attack

€, () = 2niecit 1 - AT AR ag0s%)

2ok where 5° zlnn-nzp
-t/ T,
Thus -é n where T 2 &£
CftheZnjmi (1 -3 A ' n® 2ve(t-M2)
1-M nal no .
. .3
The Laplace transform of the response is C ol = /-L’"z'm' (r i_ﬁnIL )
- P nzt 1"\"
and the Laplace transform of the step input is alpls lxl
Q)
_ 3 3
thus the transfer function for lift is C,lp) s2n " AnTpP 1 s 2n [" - é‘n Ve An
alp) h-ml 5 teTyp f-m2 ael neT 1o,

For the linearised theory2n/fj_q2 represents the steady state lift curve slope, therefore for application,
the measured two dimensional 1ift curve slope may be substituted.

Thus Cyle) « ¢ M [u -ém . é Ag
x(p) nsl nst V1eTP
Indicial Response to Step Change in Pitching Velocity about 2 Chord
G¥) =~ 1 M e G (e -1 T
M q M
where qs= 9_5 T ¢ i see fig.4.
v 9 WiT-™Y &

Hence the transfer function € _(p) =-1 Top =-1[1 -2 ]

:(Lm MiTege  M[ (1+Tp)

Thus for any form of motion comprising pitch and plunge referred to the g chord location

C,{p) = C ip) c(pl_‘ « C.lp) qlpl
i L I3 ﬁ_i 34
x{p) ql

where xiply,,. q(’)sl‘ represent the Laplace transforms of the forcing «it), qlt)
Thus cl (t) 1is given by the inverse transform of C, ip}

GENERALISED PITCHING MOMENT

Indicial Response to Step Change in Angle of Attack:

It has been established that the circulation of a flat plate plunging indicially is proportional to
the 1ift of the plate entering a sharp-edged uniform gust., For the latter case it has also been estab-
lished that the centre of pressure is at the & chord location throughout the motion. Therefore, having
separated the indicial 1ift into circulatory and impulsive components, it is most convenient to treat the
moment contributions independently. For a moment axis at the i chord, it follows that the pitching moment
contribution of the circulatory 1lift component will be zero (neglecting camber).

The impulsive force is initially distributed uniformly along the chord thus its centre of pressure
is, initially, at mid chord. The subsequent moment may be considered as the product of the impulsive

SPE e i aa i a2 M o A i e v




force component (which is decaying) and its effective center of pressure. Reference 2 presents the comp-
uted theoretical indicial pitching moment about the 4 chord. From these results and the expression for
the variation of the impulsive force with time, the variation in centre of pressure may be deduced.

%0t} 2-0.25 [1 -1 n."”l]
K
where x;{t) is the shift from the initial mid chord location. In the customary non dimensional form this
becomes . /T
X ls) =-0:25 |1 -(Ty+s)e 1 ' T"ng 2v
LS <
In Laplace form the indicial response is given by: % (pl = 1 2
Lpl1+T,p)
Since ai{pl=1/p , the transfer function for the impulsive centre of pressure is X (pl= 1
xip) &01eTp12

A value for T{ of am3 produces the variation in total indicial pitching moment shown in figure 5.

For pitch rate about the # chord, as noted, the asymptotic value of lift is zero; the corresponding
pitching moment is a pure couple. The initial impulsive loads generate a value of pitching moment about

the 3 chord Cpx-1.9
M
and the asymptotic value is Cp= —_n_14
oFie

From the results presented in reference 1 the following expréssion for the timewise variation of C"\has

been deduced:
C s-n(1-d"Ty 1 ¢¥Ta

Y = M
is the time constant derived for the decay of the impulsive lift. Thus the transfer function is:
(pre-1- 1[n_ -1 ]
atp)

where Ta

2M 1 e 12M

APPLICATION OF THE LIFT TRANSFER FUNCTION

The existence of a 1ift transfer function implies that for any timewise variation of o for which it
is possible to derive a Laplace transform there will exist an explicit solution for the lift response. A
simple and relevant example comprises the response to simple harmonic forcing at w rad./sec for which:-

axlplz 1.8 qlplz 2k
witepii?) w2 (1ep2h? )
where B = €8x and Ax = distance of 3¢ aft of pitch axis, k = wc
v v

Derivation of the expressionsfor the amplitude ratio and phase angle response are presented in
Appendix 1. These expressions have been evaluated for a range of frequency and Mach Number and are com-
pared in figure 6 with results obtained from linearised unsteady flow theory (reference 3).

The approach may be extended to the evaluation of experimental results. It would be desirable to
verify experimentally the response to indicial forcing but this is in practice physically unrealisable.
The nearest one can approach this condition is by applying ramps at an increasing rate until the limits
of the apparatus are reached. Even then, finite mass and damping effects modify the ideal forcing. It
is possible, however, to describe the characteristics of the equipment in terms of transfer functions and
compare the airfoil force and moment response with that expected. This has been done for a recent set
of experiments which incorporate an electro hydraulic actuator driving the airfoil through a tuned spring
arrangement. This produces a transfer function of the form:-

x(p)s 1 +Bp , qlp) = 1
92(10Fp)( 1 oZ;p/wno pzlu'z) pl1+Fp)(1e 2!9/«),.0 pzluﬁ )

Applying this forcing to the 1lift transfer function produces some rather lengthy expressions, but the
results of such calculations are compared in figure 7 with test results.

These two examples illustrate that for an open or closed loop dynamic system for which the equations
of motion may be expressed in operational form and which includes a 1ifting surface, the overall system
response may be evaluated in explicit form. The examples given apply to 2 dimensional lifting surfaces,
it should be possible to extend the procedure to the three dimensional case,

COMPARISON WITH NON LINEAR THEORY

The indicial 1ift and moment functions have been derived from the results of linearised unsteady
flow theory. In recent years, with the growth of computational capacity, methods have been developed for
the numerical solution of the non linear small disturbance equations for transonic flow. In addition to
steady state solutions the methods have been applied to harmonic and indicial motion. Reference 4 pressnts
an example, the response of a NACA 64A-410 at M = 0.72 to an instantaneous increase of incidence from 2
to 4 . The resulting change in 1ift as computed by a finite difference procedure is compared with the
indicial 1lift variation produced from the generalised indicial 1lift function (figure 8a).

The linear theory produces a centre of pressure at the § chord for the circulatory loading, thus
the asymptotic value of pitching moment about the i chord is zero. For substantially supercritical flows
incorporating shock waves this aspect of the theory in particular is inadequate. If, however, the centre
of pressure location is derived for some finite perturbation of circulatory 1ift the resulting indicial
pitching moment may be computed from the components of impulsive (1) and circulatory 1ift (2). The comp-

e




arison of pitching moment (figure 8b) shows the magnitude of these two components,their sum and the pit-
ching moment from the finite difference calculation (the assumed centre of pressure was deduced from the
asymptotes for 1lift and moment).

From the point of view of engineering applications these comparisons are quite encouraging. The
discrepancies appear to be less than might be expected from experimental factors.

IMPLEMENTATION IN A SAMPLED SYSTEM

In many applications aerodynamic forces are required to be generated within what is effectively a

closed loop solution involving structural and inertial responses. Furthermore, the problems may involve non

linear forcing or response in which case a preferred form of solution is via digital simulation. This in-
volves sampling at finite time steps and for this purpose the indicial response form i{s particularly app-
ropriate. The previous expressions may be re-formulated for this purpose by considering an arbitrary
variation of angle of attack with time c(t)as being the summation of a series of step changes at each

sampling. i.e. 0
pine @in) = «l0) « S Bain)
1

The general form of the indicial response to a change in attack of attack is  AC{g)= C 8 .$is)

where @ (s’) has the form Qists 1~ éAj ot
1

The combination A cc. p{s) may be considered as an effective angle of attack 4 L which differs from the
instantaneous value by a decaying decrement.

a -b, (1-MA ¥4t
Thus dx (n) = AacO) - Din » ) where Din)s é {Djln-no ) L o A utn)]
1 )=t

and At is the sample time. Included in the instantaneous value of is the component of pitch rate
required to establish the boundary condition at the g chord location. e additional 1lift due to pitch
rate about the £ chord is given by:
. -At/
AC (n)z-1¢Bin} « AC In-ﬂoA Ta
N 'a

where 1'q = C Mz

2Vii-M2)

As previously noted, the first two terms of thn indicial 1ift function may be identified with the
circulatory component and the third with the impulsive lift. Correspondingly, the appropriate contribut-
ions to the chordwise loading may be identified when required to determine the onset of stall. When stall
has occurred the individual significance of these terms is lost but when re-attachment occurs they may be
reconsituted via the concept of the lift decrement. That is, by assuming that cE(nl . c‘(n)/cm

bearing in mind that oc_[n)has been generated for separated conditions, it follows that Dinls & (n) - ccgln)

D,(n) = A.Din) D,in) Din) n)=0
and assuming that the impulsive 1ift has decayed, | A0, Dyinl= A0, Dyinie0.
Aye A Mty

thus re-initialising the values required for the continuing attached flow calculations.

SOLUTION OF DYNAMIC RESPONSE TO ARBITRARY FORCING

There are many methods for the numerical solution of differential equations, they all have limit-
ations which involve accuracy, stability or complexity. In this discussion application of the difference
equations derived from the Z transform of a second order equation are presented. The Z transform is
derived by the application of the Laplace transform to a sampled time function F(t). Techniques for the
derivation and manipulation of the Z transform have been expanded in response to requirements for the
design of sampled data control systems, for example see reference 5.

For most aeroelastic problems the equations to be solved reduce to the form © ¢ 2fw@ e oo = ctt)

" For closed 1loop and multiple degree of freedom problems C(t) may include external forcing plus coupling and
feedback terms. An advantage of this formulation is that the structural characteristics may be linearised
to produce the values'of f and w for the appropriate modes whereas the overall problem remains non linear.
If the forcing is effectively arbitrary, i.e. not conveniently expressed in moderately simple explicit
form, then the above problem may be solved by a numerical procedure for evaluating the forcing and response
at successive intervals. For convenience, equal intervals of time are used. Since the forcing is thus
defined at discrete points in time, some representation of its intermediate value must be made. The most
elementary representation is to hold the value of C(t) constant for the following interval and is commonly
referred to as the 'zero order hold' implementation.

The continuous function is represented by 8. 2;(.:5 * w20 = Clt)

8(p)= Clp)
for which application of the Laplace transform produces the solution P% e 2pup o -pt
Qlpl= Cl2) -
For the discontinuous sampled representation of the forcing (zero order hold) ’7 <2 J’M ] °

. w2 zfl)
From which the difference equation may be derived, where -uu-rz) s f 0 fr1eg
8in) s 81n-1), 267 Teos WiT. Bin-2) s VT 13_{[1 - 1 cos T+ frinuTIC 1)

T[T - lcom Wit - fain dﬂ]C(n-zli
Using the relation é(p) = pOIp) the following difference equation results

@tn) s 0(n-1)2 ¥ con T~ 81n-2) T o #9Tsin ST [Ctn-11 - Ctn-21]
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Thus for a constant time interval the solution reduces to a combination of constant coefficients and the
two prior values of © ,@ and sampled forcing. The values of 8 and © may then be used, if required, in
evaluation of the new forcing.

It is of interest to evaluate the accuracy of the results obtained from application of the above
procedure and to establish the minimum sampling interval that may be used. For this purpose the response
to two idealised modes of forcing are examined. These are the indicial response (response to a step input)
and the response to harmonic forcing c(t) = sin N t, starting initially from rest. For these two inputs
the exact continuous response may be easily calculated for comparison. In the comparisons shown, time has
been non dimensionalised by dividing by the period of the undamped natural frequency i.e. t' = t.2n/w
and the sampling rate N is referred also to this base.

The indicial response is shown in figure 9 for both low and moderately high values of damping, it
can be seen that quite satisfactory results can be obtained for a sample rate of N = 6. It is a charac-
teristic of the zero order hold that,for harmonic forcing,a phase shift is introduced that is equivalent
to half the value of the sampling interval. If this is acceptable, then, for values of the ratio of forc-
ing frequency to natural frequency ( w¢ / Wy, ) close to 1 the above sampling rate can be shown to be
adequate.

For higher ratios of forcing frequency (w_ /w =4, figure 10) it is necessary to increase the sample
rate somewhat proportionally. In these examp1e§, bJ‘defining explicitly the forcing, there is no possib-
ility of errors arising from feedback of forcing terms derived from calculated response.

It was stated earlier that the method of formulation permitted the inclusion of feedback terms in
the forcing that were not convenient to include in the characteristic equation. The implementation of
this may be simulated (in the case of rate feedback) by assigning a low value of damping ( § = 0.02)
for the calculation of the coefficients of the difference equation and subtracting the appropriately
scaled value of computed @ (n) from the forcing. As may be expected this degrades the solution both for
indicial response (figure 11) and response to harmonic forcing (figure 12)., It appears that, in order
to regain the level of acceptability previously established, the sampling rate may need to be more than
doubled. This depends of course on the relative values of the inherent and external damping. As a guide
then, if significant damping effects are incorporated in the forcing, the sample frequency should be
around 20 times the highest frequency present.

The above difference equations were derived employing the concept of a zero order hold. It is
possible using the same techniques (reference 5) to implement alternative assumptions of the behaviour
of the forcing function between samples. For instance the slope derived from the prior two samples may
be projected into the following interval (first order hold) or an apparent half step lead may be intro-
duced. Both of these schemes reduce the phase lag inherent in the zero order hold but, in the case of
the first order hold, it is possible to introduce significant overshoot into the solution. In common
with other approaches it is found that for each c¢lass of problems an optimum form of solution has to be
determined. A feature of the above method is that the proper phase relationship between rate and dis-
placement is maintained.
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APPENDIX 1 - FREQUENCY RESPONSE

The 1ift transfer function is given by:-

Cile) = ¢ M [n-éw. A, |, Gq'® +-1 Top =-_[1 - ]
x(p) ns1 n= 'loTnp qlp) M{1.1p) M “'qu)
For simple harmonic forcing, © = sin wt., q= wc coswt
v
alpls 1.8 B sc % -
olte ) 2) where 2V and x = distance
of # ¢ aft of pitch axis in semi chords. qlpls 2k where ko»we
w? (1 +pPh? ) 2V
- 3 a l1+8Bp)
Taking the o terms first Cy°! = 1 ) %ﬂ\"’”' ¢ g
n.pzm (te 1eTp})
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We obtain from the inverse transform after the initial transient has decayed.

112 2
) = (1-3 AN 1232} sinfuted) « 1.u2f.2} inlwt +
cEl:tTg % : i? %L.rn sinlwtey)

where $= Qon"(ki) *n = tan (ki) -toAl( T W)

The above may be expressed in the form ¢ (1) , Nsinlwt+B) = Nisinud cosB + coswt sing)
H G
Equating the in phase and quadrature terms yields:

Ncosp = [hib,,)cou < cugnrl 2" , Nsinp « [n-gw sing + & _An _ sin ‘,]u.n?i?f“
4} oTbrz

(1T 22
Substituting
I cos § » _1 ., $ing s cosgp = _) okiTw v sing =z kx-Thu
4 o 15242 (e E’ w2’ L Nt e T2LAN2 MY+ k2220« T2 BV2
We get:-
Ncosp :(!-EAnl . E {1okit Tow! . NsinB = {1- EA"H:: . 2 A tkK - T W)
{1 ) {1e T )
3 Considering the pitch rate term Cllp) = '2" 1-_1 _'2’!;_1
_' a M 1- qu )( 1e )

After the initial transient has decayed

C(t) = -2k cosuc-cos(uc-,., s ton' Luw Cit) = 2kTgw [ sinwt - Tgwcosuwt)
a ?[ e Tgu? ] % K or W4 mu%ﬁ !

)

Thus if the overall response is given by N sinlwte g)) then
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Hence

N = [lN'eosa')z . lN'sin;’,z]Vz [ tan’ (N smg)

N cos 8

and

From the numerical values assigned to the generalised indicial 1ift function the following values
for the above variables may be derived:-

Tyw = 12.5 k Tow = 1.5385 k Tyw = Mk Tws Mk

1 = ’ 2 . 3 q — N
1- M oM (37eT6MI1 -M2) (1-M2)
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7 EXPERIMENTAL TECHNIQUES IN UNSTEADY AERODYNAMICS

N. C. Lambourne
Royal Aircraft Establishment
Structures Department, Bedford, UK

SUMMARY

The role of experiments in the field of unsteady aerodynamics
and the methods of simulating unsteady conditions with models in
wind tunnels, or other facilities, are outlined. The techniques of
measuring unsteady quantities such as aerodynamic force and pressure
are described, attention being given to the part played by computers
in the acquisition, processing and presentation of measured data.
The choices facing the experimenter and some of the phenomena that
may be encountered are discussed. Finally, specific examples of test
rigs and test procedures are briefly described.

1 INTRODUCTION

Taken as a general class, experiments in unsteady aerodynamics embrace a wide range
of procedures and measuring techniques. They depend on expertise in a diversity of sub-
jects distinct from aerodynamics itself. For instance, most experiments use a variety of
electrical equipment and require, in the end, the manipulation, measurement and processing
of electrical signals. Often the person who will ultimately make use of the experimental
results remains somewhat outside the actual measuring processes. There is thus a need for
a common understanding of the procedures and their limitations.

The intention here is to provide an outline of the methods commonly used when deal-
ing with subjects in which unsteady aerodynamics affects the behaviour of aircraft. Not
all unsteady phenomena are included: turbulence (apart from atmospheric gusts), the
unsteadiness within a boundary layer and aspects of unsteady aerodynamics peculiar to
turbines and compressors are omitted.

Some subjects are treated more thoroughly than others. Indeed, those subjects
adequately dealt with in readily available literature are given only cursory mention.
Whilst the present document on its own should be sufficient to provide an introduction, a
more complete picture could be obtained from the recommended references.

Within the present limits of time and space it is certainly not possible to give a
complete coverage of methods and equipment. Apologies are offered to those who find their
work unmentioned.

2 SUBJECTS OF EXPERIMENTS

The main aeronautical subjects that involve unsteady aerodynamics and which require
experimental investigation are:

buffeting;

behaviour in gusts;

flutter and other flow-induced oscillations;
aircraft stability;

rapid operation of controls;

behaviour of helicopter blades.

In all these subjects there is interaction between the unsteady aerodynamic forces
and the structural response. Some experiments aim at reproducing the whole unsteady
phenomenon; the structural behaviour is then a principal objective. Other types of
experiment are concerned only with the aerodynamic forces or pressures, the aim being to
determine these for a prescribed unsteady situation.

Experiments are usually done only when the problem is not amenable to reliable
theoretical treatment because one or more of the following elements are present:

boundary layer and viscous effects;
mixed subsonic and supersonic flows;
shock wave;

flow separation; .

cyclic changes of flow regime;
complicated geometrical configuration.

The specification of the model and the test conditions relate to an aeroplane and a
flight condition through the requirements for dynamical similarity. Sometimes the rela-
tionship is a rather loose one. The aim of the experiment is usually one or more of the
following:

(1) To provide data to be used directly in design;
Copyrtght ©, Controller HMSO, London 1980




(2) To provide data for Eomparison with theoretical
calculations; to validate a theoretical method;

(3) To explore a phenomenon.

For aims (1) and (2) the relationship between the model test and the aeroplane is
illustrated in Fig 1. The model and test specifications are more severe for (1) than for
(2), because in the latter case the mathematical calculations can act as a buffer. The
exploratory type of investigation allows the experimenter the greatest freedom.

3 CONDITIONS FOR SIMILARITY

The simulation of full-scale conditions requires that certain non-dimensional
similarity parameters have the same values for the model and prototype systems. Mach
number M and Reynolds number Re are familiar parameters important in steady tests.
Unsteadiness leads to the introduction of a further similarity parameter which can be
expressed in several alternative ways. If T is the duration of a definable event then
kinematical’ similarity requires TV/L to be invariant, where V is a relative velocity
and L a typical dimension. When the conditions are oscillatory, T is conveniently
taken as the periodic time and, using frequency f , an alternative non-dimensional para-
meter is the frequency parameter fL/V which is often based on either the full-, or the
half-chord of a wing. For non-oscillatory unsteady conditions, alternative similarity
parameters bgsed on a linear acceleration Z , or an angular velocity 6 are respec-
tively ZzZL/V and 6L/V . Thus for a rigid model undergoing a prescribed unsteady
motion the test conditions can be specified by any one of the following unsteady
parameters: . 2 .
TV/L, fL/V, zZL/V°, eL/V .

When the experiment involves the dynamic response of an elastic model, three other
similarity parameters become important:

stiffness parameter E/pV2
structural damping parameter D/pV
mass, or density, ratio o/p
where EL = stiffness, force/unit linear deflection,
DL2 = structural damping, force/unit linear velocity,
oL3 = structural mass (ie force/unit linear acceleration).

When gravitational forces enter into the problem, another similarity parameter is:
Froude number Vz/gL
where g = acceleration due to gravity.

It is usually impossible for a scale model to achieve the correct Mach number and
the correct Froude number simultaneously. The model is then built to satisfy one or
other of the following types of modelling.

Mach modelling

Gravitational effects ignored.
Parametric conditions satisfied:

M, E/sz, o/o, D/(UE)E

where ghe structural damping D now relates to model mass and stiffness by the parameter
D/(cE)% , which is proportional to the relative damping of the model.

In a tunnel where flow conditions are defined by Mach number, total pressure pg
and total temperature K¢ , an alternative set of parameters is

M, Ep. B[k, D/eEE.

In words, the scaled stiffness of the model must relate to the tunnel total pressure, and
a parameter (E/o) representing structural efficiency must relate to the tunnel total
temperature. The potential advantage offfred by a cryogenic tunnel to the construction
of aeroelastic models is hereby disclosed®.

Froude modelling
Mach number effects ignored.

Parametric conditions satisfied:

v¥/gL, E/oV?,  o/e. D/(E)Y .
Since g 1is constant, the linear scale of the model fixes the velocity scale which in
turn, if o is constant, fixes the stiffness scale. That is,

Vz « L, E « L, o = constant .

Froude modelling is appropriate to free-flight models.
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Low-speed tunnel modelling

Mach number and gravitational effects ignored.
Parametric conditions satisfied:

E/DVZ. o/p, D/(aE)s
The linear and the velocity scale may then be chosen independently.
4 TEST FACILITIES
4.1 Wind tunnels

Most unsteady experiments are made in conventional wind tunnels. The majority are
made in a stream flow that is basically steady and uniform, the element of unsteadiness
being introduced either by motion of the model or by the flow changes caused by the model.
Usually a tunnel with an absence of flow fluctuations is preferred for unsteady experi-
ments although sometimes their presence can be exploited as a means of model excitation.

Many experiments involve model flexibility either explicitly or implicitly. It is
then an advantage for the tunnel total.,pressure to be variable since this allows varia-
tion of the similarity parameter E/pV whilst keeping Mach number constant.

Currently there is an interest in cryogenic tunnels not only for their ability to
attain high Reynolds numbers but also because the low temperature and the capability of
varying temperature ?ave potential advantages for matching model dynamic properties with
flow characteristics™.

4.2 Tracks and free-flight facilities

Some experiments are made by moving a model through a stationary atmosphere or
fluid. Unsteady motions can then be obtained by constraining the model to follow a pre-
scribed path. Alternativelg the model may move freely. A description has been given of
a facility at the IMF Lille“ in which a model with remotely operated control surfaces is
catapulted and, whilst in free flight, its behaviour following control surface deflection
is studied by photography. A track to simulate gust encounter will be mentioned in the
next section.

4.3 Gust facilities

Atmospheric gusts are simulated either by modifications to a conventional wind
tunnel or by special facilities. Some arrangements are designed to reproduce an isolated
gust, others to produce harmonically varying upwash. Fig 2 shows several schemes.

(a) A two-dimensional jet is deflected by the movement of upper and lower flaps. The
gust tunnel at Queen Mary College, London operates on this princip1e3.

(b) A two-dimensional jet is deflected by transient or oscillatory motions of two or
more aerofoils ahead of the model. Examples of this type of facility are located
at the University of Salford4 and the DFVLR,

(c) In an arrangement used at NASA Langley6'7 one or more rotatable vanes are attached
to the side walls of a conventional transonic tunnel at a suitable distance
upstream of the model. A complete model centrally mounted is thus in the downwash
field of the vanes and, when these are oscillated in synchronism, the model
experiences an oscillatory downwash.

(d) At Cambridge University8 a two-dimensional facility with flexible walls at the top
and bottom can be used to simulate either vertical or horizontal fluctuations in
velocity and is mainly used in research on turbine and compressor blades. The walls
can be distorted by mechanical means and a travelling wave motion imposed. Whether
the velocity fluctuation is in the vertical or the horizontal direction depends on
the phasing of the motion applied to the walls.

(e) By using a gust track, a model is carried on a moving vehicle to pass through a
transverse jet, thereby experiencing a single transient gust. A facility of this
kind has been used by the RAE?,

In all gust facilities, as well as making force or pressure measurements on the
model, it is necessary to make a thorough calibration of the device to determine the
exact nature of the simulated gust flows. This is often more difficult than making the
measurements on the model. As an example Fig 3 shows the flow field in the gust tunnel
at oMC3 in the test region downstream of the harmonically operated deflector plates.

Gust facilities tend to be used more for research than for routine testing.

5 EXPERIMENTAL ARRANGEMENTS

Most experiments in unsteady aerodynamics consist of a model system to which an
input is supplied and an output measured. The model may be rigid or flexible. The input
may be an imposed unsteady perturbation, an applied unsteady force, unsteadiness in the
local flow over the model (as in buffeting) or a steady flow that causes an instability
(as in flutter). The measured output may be aerodynamic forces or pressures or the
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unsteady response of the model. Fig 4 identifies four of the possible types of experi~
mental arrangement and relates these to various subjects of investigation. For simplicity
a complete model is shown in each of the diagrams but more usually experiments are made
with partial models, for example half-span wings.

The perturbation motion applied to the model may be some form of transient, such as
a step or a ramp, but more often it is simple harmonic.

Note the difference between (a) imposing a known motion and measuring aerodynamic
force or pressure and (b) applying a known harmonic force to a sprung model and measuring
motion. The first is the direct way of measuring unsteady aerodynamic quantities. The
second, the indirect method is often used to measure aerodynamic derivatives; then the
aerodynamic properties are effectively regarded as combinations of stiffness, damping and
inertia which add to the corresponding mechanical quantities. The procedures adopted to
measure the aerodynamic derivatives are then the same as those used to determine the
properties of a completely mechanical system. Finally, the aerodynamic contributions are
obtained as differences of two sets of measurements, one obtained wind-on, the other in a
vacuum (but more usually in still-air).

6 APPLICATION OF MOTION OR UNSTEADY FORCE
6.1 Motion

Periodic motions can be applied to the model by cams, cranks or other reciprocating
mechanisms., High frequency oscillation can be obtained with electromagnetic vibrators
but these really produce forces, not inexorable motions. For motion that can have any
prescribed form the present tendency is to use an hydraulic actuator, or ram, controlled
by a servo-loop. Such components are able to overcome very large forces but tend to be
limited to frequencies not much above 100 Hz. Most actuators produce linear motion but
types have recently been designed to produce rotary oscillation.

6.2 Force

Harmonic forces can be applied by mechanical out-of-balance exciters or by forcing
through a spring. More usually they are generated by electromagnetic vibrators, the
force being known from the current in the coil. These devices can operate at high
frequencies but the amplitudes of the forces are small and often necessitate working near
to a resonance of the system.

In flight impulsive forces can be applied by explosive charges, sometimes known as
'bonkers’.

6.3 Triggered release

A triggered release from a deflected position is a simple method of applying an
input to a model. Measurement of the transient response can then be used to determine
stiffness and damping of a system having a single degree of freedom.

7 MEASUREMENT OF UNSTEADY DISPLACEMENTS AND FORCES
7.1 Displacements

Various types of displacement transducers are available commercially, their opera-
tion usually depending on a relative displacement causing a measurable change in an
electrical quantity. It is often difficult to obtain devices small enough to be
installed within a model. Ref 10 describes a recently developed fibre-optic probe to
measure the rotation of a control surface in a small model.

The fixed reference required by displacement transducers is not easily provided
when model motions are to be measured in a tunnel. For this reason, in oscillatory
measurements it is more usual to employ accelerometers; these operate satisfactorily as
displacement sensors provided the frequency is not too low. If a measure of absolute
displacement is required this can be obtainable by double integration of the signal.

Literature indicates that research continues into optical interferometric and
holographic methods of measuring model deformation.

7.2 Forces

Almost all methods of determining an unsteady force depend on applying the force to
a spring element, the deflection of which is measured, usually by some electrical device.
Even in the ideal situation where all the other components are rigid, the introduction of
a spring means attention must be given to the dynamic response of the system, and parti-
cularly to its natural frequency. The classic example - the response of a single degree
of freedom system when harmonic force is applied is shown in Fig 5. The manner in which
amplitude and phase vary with frequency illustrates the importance of keeping all natural
fregquencies high, the need for dynamic rather than static calibration and more generally
the difficulties in measuring rapidly varying forces.

When the model itself is moving, the force being measured will include contribu-
tions from the model inertia which are usually much larger than the aerodynamic forces
whose magnitudes are to be determined. It is possible to arrange to balance-out the
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inertia contributions either mechanically, or electrically using signals from acceler-
ometers, but such methods become less reliable as the working frequency increases.

8 MEASUREMENT OF UNSTEADY PRESSURES

An unsteady pressure consists of a steady level and a fluctuating component. 1In
aerodynamic experiments the steady pressure may be as high as 1 (or more) bar _whilst the
amplitude of the fluctuating component to be measured may be as little as 10™3 bar. To
obtain adequate percentage accuracy in the measurement of the fluctuations requires the
unsteady and steady components to be separately measured, although this need not mean two
completely different systems.

8.1 Methods

Fig 6 illustrates three main methods of measuring unsteady pressure distributions
on an aerodynamic surface.

In aitu transducers

In this method small pressure transducers are installed so that their pressure
sensitive areas form part of the aerodynamic surface. The great advantage of this
arrangement is that, in principle at least, the pressure required to be measured is
the pressure acting on the transducer. Usually however, this advantage is out-
weighed by the difficulty of achieving a flush and correctly contoured surface.
Also, the sensitive areas of the transducers, being exposed, are liable to damage.

Tube system

This system, as pioneered by the NLR, uses small-bore tubing to transmit the
aerodynamic pressures to a location, usually just outside the working section where
they are measured. In this method it is economical to use one transducer and a
pressure switch (a Scanivalve) to measure a number of pressures sequentially. The
length of tubing means that the unsteady pressure measured by the transducer is not
the same as the unsteady pressure acting at the orifice. The transfer function of
such a typical system with a tube length of about 1 m is shown in Fig 7. _There is
usually good agreement between the transfer function calculated by theoryll and that
measured in a laboratory bench test. Unfortunately, as shown in Fig 8, the trans-~
mission characteristics change when there is a flow across the‘'orifice and the
effect increases with local Mach number. It is possible to make allowance for this
effectl? put it requires at least one transducer to be installed in the model to
allow calibration to be made under the flow conditions. Use of a tube system
allows a stiff and relatively simple construction for the model.

Recessed transducers

Transducers are installed in the model and connected to surface orifices by
the shortest possible passage. Compared with the tube system, this method largely
avoids problems of transmission, allows the pressures to be measured simultaneously
and is better able to deal with pressure time-variations that are not sinusoidal.

The disadvantages are in the cost of the required number of transducers and
the complication of having to install them in a manner that allows their eventual
recovery.

8.2 Miniature pressure transducers

Most pressure transducers depend for their operation on the deflection of a flexible
diaphragm the two sides of which are exposed to differing pressures. The deflection of
the diaphragm is converted by some means into an electrical signal which is measured and
from which using appropriate calibration factors the pressure is determined.

Many transducers have flush diaphragms; Fig 9as&b illustrate the differences
between two classes, the absolute and the differential types.

In the absolute type the pressure on the inner side of the diaphragm is that obtain-
ing in a hermetically sealed volume, which can be a vacuum. In principle, provided the
internal pressure remains constant, the output voltage from the transducer is proportional
only to the pressure p , applied to the outer side of the diaphragm and it is not
necessary to know explicitly the pressure in the enclosed volume.

As its name implies, the differential type is designed to measure the difference
between two applied pressures, one the unsteady pressure p , to be measured, the other a
steady reference pressure pp usually brought to the transducer by a tube. The relative
advantages of the two types §or unsteady measurements is discussed later.

A large variety of both classes is available commercially. Shape and size are prime
considerations when selecting a type to install within a model. Fig 9csd gives some idea
of two small types available from Kulite Semi-Conductor Products Inc. New Jersey, USA.

The flat 'button' type could be useful where thickness is the limitation, but it is the
cylindrical type that has found favour for model installation. It may be noted that other
cylindrical transducers are available with diameters less than 1 mm.
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In a type of transducer commonly used, the diaphragm is silicon on which a strain
sensitive semiconductor material has been deposited to form an active four-arm wWheatstone
bridge. The basic circuit of the transducer and its associated module to compensate for
- temperature changes is shown in Fig 9e. Because the diaphragm is vulnerable to damage by
abrasion, the type of transducer that comes complete with a screened diaphragm is usually
preferred. The natural frequency of the diaphragm is very high, 230 kHz or above which
means the transducer can easily cope with the usual situation where the frequencies are
no more than a few hundred Hz,

Although excellent for the measurement of unsteady components many small transducers
suffer from temperature effects that make them unsuitable for accurate measurement of the
steady component of pressure. In consequence it has been customary to use two separate
systems, transducers for the unsteady components and a conventional tube system for the
steady components, thereby complicating the design of the model. Recently, a promising
scheme has been developed to use the same transducers for both unsteady and steady
measurementsl3.

8.3 Installation of transducers

Fig 10 shows several methods of installing a transducer within a model and connec-
ting it to an orifice at the surface. 1In all cases a coating of silicone rubber or other
slightly resilient substance is used to seal the body of the transducer in a hole only
slightly larger than its diameter. It is obviously preferable for the orifice plugs, but
not the transducers to be inserted into the model before finally machining the surface.
The main requirements for good installation are:

the block into which the transducer is inserted should protect it from mechanical
stress;

the volume of air at the face of the transducer and the length of the connecting
passage between transducer and orifice should be as small as possible.

It is usually difficult to keep the connecting passage short when the orifice is near a
trailing edge. When an arrangement, such as that shown in Fig 104 is resorted to, it is
important to test for unwanted transmission features.

S

8.4 Transducer and amplifier characteristics

Transducers, such as Kulites, that depend on change of resistance need to be /
supplied with a steady voltage, say 5 V, and then, depending on the pressure applied,
they produce an output of several millivolts which will need to be amplified. Regarding
the transducer and its associated signal conditioning as a whole, an ideal system for
measuring unsteady pressures would be one in which:

the output voltage E 1is linear with applied pressure p , or pressure difference
(p - pg)s

the sensitivity dE/dp is independent of oscillation frequency;

there is no phase lag between E and p, at least over the working range of
frequency;

the output E 1is independent of all other environmental changes, such as tempera-
ture, acceleration, mechanical stress or electro-magnetic radiation.

As already mentioned, compensation for temperature change is usually made by additional
circuitry. With Kulites any sensitivity to acceleration can be neglected for most appli-
cations. A sensitivity to light falling on the diaphragm has been reported, but when the
transducer is recessed within the model this should not be a problem.

An absence of phase lag is achieved by the high natural frequency of the diaphragm
and the design of the amplifier. 3 reasonable specification for the latter would require
the phase change to be less than 1~ for frequencies up to 1 kHz.

8.5 Calibration procedure

Calibration of the pressure measuring system is of the utmost importance because
the final results and any comparisons with theory ultimately depend on it. The calibra-
tion should embrace the whole system as installed in the model, and, as far as possible,
should be done under similar conditions to those obtaining during the actual measurements.
Although it is possible for calibration to be based only on steady pressures it is
preferable to make use of a device for generating oscillatory pressures. A hand-held
instrument that can be moved across the model from orifice to orifice is shown in Fig 11.
A rubber tube at the ovtlet allows the oscillatory pressure to be applied to the orifice
of the transducer under test., Either a displacement transducer or a reference pressure
transducer, as shown in the diagram, is used to define the phasing of the oscillatory
pressure. As indicated in the diagram, the amplitude of the pressure depends on the !
thermodynamic behaviour of the enclosed air; this generally remains unknown so that the
device cannot be regarded as an absolute standard. In practice the pressure generator l
itself is calibrated against an established reference transducer over a range of
frequency. The reference transducer chosen for this task is judged to have a dynamic ]
sensitivity identical to its static sensitivity which is measured against a pressure
standard.
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A motor-driven generator of the type described is suitable for frequencies up to
100 Hz and a pressure amplitude of 10-2 bars.

The procedure used by one research team for calibrating transducer systems instal-
led in models is now outlined. It involves selection of transducers and measurements of
sensitivity. Firstly, no transducer is installed in a model unless it shows adequate
linearity. When all the transducers have been installed, the model is placed in a
pressure or vacuum chamber and subjected to the range of steady pressures that will be
encountered later in the wind tunnel. By adjustment of the gain of the amplifiers, each
transducer channel is brought to the same sensitivity (volt/bar) and this sensitivity is
measured against a secondary standard of pressure (a Texas gauge). Temperature effects
will be examined at this stage. Finally working in atmospheric conditions, the oscilla-
tory pressure generator will be applied to each orifice: (a) to verify that the dynamic
sensitivity over the relevant range of frequency is the same as the steady sensitivity;
and (b) to see whether there are transmission phase lags which demand improvements in
the installation or corrections in the data processing.

It will be appreciated from the foregoing account that the calibration procedure
involves several cross checks, but ultimately it rests on the assumption that, for one
transducer at least, the sensitivity is independent of the oscillation frequency. Also
in none of the calibration tests is the effect of flow across the orifice represented.
There is certainly scope for further investigation into both these matters.

8.6 Relative merits of absolute and differential types of transducers
The relative merits for unsteady pressure measurements are summarized as follows.
Absolute type
Advantages:

- no need to supply a reference pressure;
- ability to determine steady pressure directly from voltage output.

Disadvantages:

~ small-amplitude sensitivity must be determined over a range of steady pressure;
~ non-linearity is more likely to occur because large deflections of the
diaphragm may be caused by the steady pressure.

Differential type
Advantages:

~ provided the reference pressure is always the mean of the oscillatory
pressure, there is no need to determine the sensitivity at different steady
pressures;

~ 1linearity may be more easily achieved because diaphragm deflection remains
small.

Disadvantages:

~ a suitable steady pressure reference must be provided, and this may require
additional tubing;

= the steady pressure component cannot be determined without knowledge of the
reference pressure.

The potential advantage of the differential type in having only the unsteady com-
ponent as the pressure difference across the diaphragm is often not easily realised with-
out additional complication. One method is to connect the reference side of the trans-
ducer to the source of pressure through fine bore tubing of sufficient length to smooth
out the fluctuations.

When differential transducers are installed in a hollow model, their reference
pressures are sometimes obtained by venting each one through a short length of fine
tubing to the inside of the model. The pressure inside a model is usually close to the
static pressure of the stream, so that under lifting conditions those transducers at
positions of high steady C_ will experience large differences in the steady pressure
across their diaphragms. In that case some of the advantage of the differential
type is lost.

9 TREATMENT OF TIME-DEPENDENT SIGNALS

Nearly all unsteady measurements require the analysis of electrical signals from
transducers. These signals will either represent the response to a deterministic input
to the mocdel or be the result of some random-like process occurring at the model. In
practice, the signals from deterministic inputs are likely to include other extraneous
components including random 'noise' some of which may be generated in the instrumentation
but some will come from fluctuations inherent in the flow over the model. Of all the
signals to be dealt with, those from pressure transducers and accelerometers tend to be
most affected by noise,

e o s miny et a i o Y

]




vVarious objectives of signal analysis are:

1 Determination of the harmonic components coherent with a sinusoidal input;
measurement of harmonic transfer function. These often require the
separation of the required components from noise.

2 Measuring the response of a quantity to a specific transient input (eg
pressures due to a ramp displacement of the model).

3 Determination of system parameters (eg stiffness and damping) from response
to a specified input.

4 Determination of system parameters from response to a random input.

5 Measuring the harmonic content of the signal.

6 Obtaining a statistical description of a random signal.

The subject of signal analysis is very large, and for an extensive treatment the
reader is recommended to textbooks such as Refs 14 and 15. Only certain of the more
commonly used procedures are mentioned in what follows.

9.1 Determination of harmonic components due to a sinusoidal input
This is probably the most frequently used form of analysis in unsteady experiments.

The left hand side of Fig 12 shows examples of signals obtained from accelerometers
and pressure transducers during an oscillatory experiment in a wind tunnel. Trace 1
approximates so closely to a sinusoid that amplitude and phase could be obtained by
direct measurement of the trace. Trace 2 is periodic but evidently contains harmonic
components above the fundamental. Traces 3 and 4 suffer from noise that prevents the
making of direct measurements. Indeed Trace 4 might be thought to be completely random.

In all cases the treatment is to apply Fourier analysis to the signals to obtain
time-averages for the fundamental components related to the input as follows:

mT
in phase (2/mT) [ £(t) cos wt dt
0

nT
in quadrature (2/mT) f f(t) sin ot dt
0

where f£(t) is the signal, cos wt 1is the sinusoidal input and T = 27/w is the
periodic time.

Note that the integration extends over a period of time that coincides with a whole mumber,
m , of cycles. The higher harmonics of order n are likewise obtained by realising the
gquantities:

mT
cos n wt
{2/mT) o! f(t)(sin n wt)dt

In practice, separate reference signals corresponding to cos wt and sin ot are avail-
able from the primary electrical oscillator driving the model and the multiplication of
each of these with f£(t) , the signal to be measured, can be done by various methods
either analogue or digital. For instance commercially available Transfer Function
Analysers can be used to obtain .the fundamental and in some cases the higher harmonic
components. However, the present-day tendency is to use a computer for digital process-
ing of the signals. The basic treatment is then to obtain digital samples of f(t) at a
time rate that is an integral multiple of the fundamental frequency and from these to
calculate the Fourier coefficients in the computer. The introduction of a computer
offers efficient analysis using a Fast Fourier Transform algorithm to obtain a value of
the discrete form of the Finite Fourier Transform

T -
Flw) = [ f(t)e
0

iwtdt

where T is now the total sampling time.

Provided T contains a whole number of cycles of the reference signal, the har-
monic components determined in this way are identical to those obtained by the simple
Fourier analysis. 1In addition, the calculation of the Fourier transform discloses the
presence of other periodicities and gives information about the freguency content of the
noise. The right hand side of Fig 12 shows the amplitude spectra for each of the time
signals. The harmonic components coherent with the input can be obtained from the height
of the spectral lines.
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9.2 Analysis of transients

Aerodynamic damping and stiffness are sometimes determined from the transient
response of the model after being released from a deflected position. In simple cases
these quantities can be obtained from measurements of the time-history traces. But if
noise is present, or there is coupling between two or more degrees of freedom, more
elaborate methods involving signal processing and spectral analysis may be necessary.

When the unsteady pressures resulting from a prescribed transient input to the model
are required it may be necessary to extract an average response from the noisy signals
from several repeated transients. In such cases, it is sometimes advocated that the com-
pPlex Fourier transform should be obtained for each transient, an average of these then
taken and finally, using the inverse Fourier transform, to return to the time domain to
obtain an averaged response.

9.3 Analysis of random signals

In some experiments such as those concerning buffeting, or the determination of
system characteristics from the response to tunnel turbulence, it is necessary to find
certain statistical properties of the excitation or response, for example the Power
Spectral Density. The computer application of the Fourier transform occupies an important
place in many of the methods. Textbooks need to be consulted for details.

10 EQUIPMENT FOR DATA ACQUISITION AND PROCESSING

Analogue instruments such as Transfer Function Analysers, Spectrum Analysers, RMS
Meters and Phase Resolvers continue to find a place in unsteady measurements, but there is
a growing tendency to employ computer-based systems for acquiring, recording and process=-
ing the data. The Fast Fourier Transform already mentioned, has placed digital methods in :
a pre-eminent position. Also the high speed of operation and the display capabilities §
associated with the computer have revolutionized experimental procedures.

T AR e

Measurements of unsteady pressure distributions inevitably involve many measuring !
channels each producing a large number of time-wise samples. Data acquisition, processing i
and the final presentation of results are now planned as an integrated operation. Equip-
ment for these tasks has already been described in Refs 16 and 17.

ol

A data acqguisition system known as PRESTO recently commissioned within the RAE, and 4
described in Ref 18, was designed to a functional specification that required the results i
in non-dimensiocnal form to be available as graphs and tables within a few minutes of ‘
initiating the test. For instance, in making measurements with an oscillating model, :
plots of the chordwise distributions of inphase and inquadrature pressures can be obtained i 41
almost immediately after the signals have been sampled. This overcomes problems
associated with blind recording and post-experiment analysis of results.

A block diagram of the PRESTO system is shown in Fig 13. In essence N channels
(N € 64) are sampled simultaneously S times a second, and the blocks of data so obtained
are stored on disc. At the same time the data can be processed in the required manner, a
suite of programs providing great flexibility in application. Depending on the phenomena
being investigated, the number of channels N , can be traded with frequency (which
depends on S ), the main limitation being a maximum value of NS which for PRESTO is

about 0.25 x 105 sec~l.

11 TUNNEL INTERFERENCE

Interference effects include all the differences between the results obtained in a
tunnel and those which would be obtained with the same model in a free atmosphere. Various
effects are:

= wall constraint on the flow around the model; 4
- reflection from the wall of pressure disturbances generated by model motion; g
- tunnel resonance; . 3
- termination of an unsteady wake by a turning corner of the tunnel, the fan, or a E T

shock wave; :
- tunnel turbulence or flow unsteadiness.

Whereas the first of these is familiar in steady testing, the others are more
relevant to unsteady conditions. Also, only the first effect is directly relevant to the
choice of model size.

11.1 Wall constraint effects

Corrections for intefSerence effects on oscillatory measurements can be obtained by
theory for some situations'”’, but it is often better to choose a model size for which the
effects are small enough to be neglected.

In many instances the perturbation forces for an oscillating model are dependent on
the steady flow over the model in its mean position. To obtain oscillatory measurements
free from interference requires:

(1) the mean flow to be free from interference, and
(2) an absence of interference on the unsteady perturbations about the mean flow.
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The first of these requirements can be satisfied by following the recommended
practices of steady testing. So also can the second for changes that are quasi-steady, i
but for oscillatory conditions, consideration has to be given to the possibility of
additional interference effects on both the inphase and inquadrature components.

For low speed and transonic tests the choice of model size is a matter of judgement
based on experience of steady and unsteady testing.

Current practice for three-dimensional transonic tests with oscillating wings tends
to choose model spans and planform areas within the following limitations:

s/b < 0.4, s/C < 0.15
where s = span and § = planform area of the model and
b = breath, C = cross section area of the tunnel.

The effectiveness of these criteria 152}arqe1y confirmed by recent tunnel-to-tunnel
comparisons<Y, However, other results suggest that a larger model (s/b ~ 0.5,

§/C ~ 0.25) is acceptable when only a control surface is moving and when the main surface
is near to its zero steady 1lift condition.

Transonic tunnels have walls that are ventilated either by slots or by perforations.
The amount of ventilation provided in the design of the tunnel can influence the forces
on a model and this becomes more important as the model-to-tunnel size ratio increases.
It is possible to assess the correctness of the chosen wall-porosity from general experi-
ence of steady lift curve slopes obtained in the tunnel.

11.2 Reflections from the tunnel walls

Consider a small model situated centrally in a tunnel. Imagine at time t = 0 the
incidence of the model is suddenly changed. A pressure disturbance will travel outward
from the model at the local speed of sound, a . The walls, if they are solid, will
reflect the disturbance and eventually, with some attenuation, it will arrive back at the
model. For a two-dimensional model the time for a disturbance to return to its point of
origin is

st = H/a(a -Mz]l’

where M 1is the-Mach number of the flow, assumed uniform, H is the tunnel height and
a the speed of sound.

On this basis, if the initial steady flow were interference-free, the model would
‘continue to be free of any wall-effect until time ét when the reflected disturbance
returned. Unfortunately this interference-free time is too short to be of practical use
except possibly in a very large tunnel close to M =1 . The idea of disturbances being
reflected back from the walls does however lead into the subject of tunnel resonance.

11.3 Tunnel resonance

In theory, tunnel resonance can occur when a train of reflected disturbances from
an oscillating model returns with a phase delay that tends either to cancel or to rein-
force the pressure changes occurring at the model. For a tunnel with solid walls the
lowest frequency, which corresponds to cancellation, is

2. %
£, = a(l-M)/ZH .
Usually the resonance frequency is in the practical range of test frequencies only for
transonic conditions, but the occurrence is then complicated by the ventilation at the
walls of a transonic tunnel. For ventilated walls, theory predicts a lowest resonance
frequency

2. %
£, = na(l-M)/H

where n depends on the degree of wall porosity varying between 0.5 for completely
closed walls, and 1.0 for completely open boundaries, as for an open jet.

Resonance has been shown to occur under twg-dimensional conditions. An early
example was given by Runyan, Woolston and Rainey 2 yho found a sudden decrease in the
oscillatory 1ift when the oscillation frequency of the model coincided with the calcula-
ted tunnel resonance frequency. Resonance effects can be reduced by sound absorbing
walls23,24, However, it is doubtful whether the phenomenon occurs at all with three-
dimensional models.

11.4 wWake curtailment

In a free-atmosphere an oscillating model leaves behind a periodic wake. In theory,
the flow at the model must be consistent with the distribution of wake vorticity. 1If, as
in a tunnel, the natural wake is destroyed by a corner of the tunnel, a shock wave, or
the driving fan, it is reasoned that the unsteady condition at the model will be affected. i
Theoretical calculations have shown this to be important in certain special cases, but
usually the phenomenon is not regarded as important.
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11.5 Tunnel turbulence

Unless tunnel turbulence is to be exploited as a means of model excitation, it is
generally regarded as a nuisance not only because it can interfere with the aerodynamic
measurements but also because it causes model vibration and consequently reduces fatigue
life. Furthermore, its presence necessitates a longer sampling time in making the
measurements, which in turn extends the time the model is exposed to vibratory conditions.

When the local flow at the model produces random-like disturbances as in buffeting,
which themselves are the subject of the measurements, the presence of tunnel turbulence
can only lead to difficulties in interpreting the results. On the other hand, in experi-
ments where the input is deterministic and the effects of tunnel turbulence are linearly
superposed on the response to the input, the required separation can be achieved by
signal processing as already mentioned. If non-linearities between input and response
are present, the effect of extraneous fluctuations can be more serious and an example
will be discussed later in section 13.

Transonic tunnels, particularly those with perforated walls provide most of the
examples of flow unsteadineig. In one case an improvement was obtained by covering the
perforated walls with gauze“”, More generally, the use of sound absorbing material at
the tunnel walls has been shown to be beneficial23,24,

12 MATTERS FOR DISCUSSION

Previous sections have outlined the measuring techniques common to many experiments.
Even after the objectives of an experiment have been settled, there is still the job of
finding the most suitable course of action amongst the several possibilities. Much
depends on equipment and funds to hand, and also on the expertise and experience that is
available. Remarks on some gquestions that frequently arise now follow.

12,1 Half-model or complete span model

The two main advantages of a half-model mounted at the wall of the tunnel are the
higher Reynolds number and the ability to have direct access to the root of the model. In
unsteady experiments the second of these is the more important. Compared with sting-
mounting, wall-mounting provides the root of the model with a firm attachment, and any
motion-producing mechanism or measuring devices can be conveniently accommodated at the
tunnel wall but outside the working section.

The disadvantages of a half-model stem from the presence of the tunnel wall bound-
ary layer and the need for a root gap and some kind of seal if the model is to move
relative to the wall. 1In cases where the aerodynamic forces on a fuselage are important,
or where the wings are of low aspect ratio or highly swept, the half model is not
appropriate. For the measurement of derivatives due to lateral motion it is obviously
necessary to use a tip-to-tip model centrally mounted in the tunnel.

12.2 Boundary layer transition

At the low Reynolds numbers obtaining in model experiments the boundary layer
remains laminar over much more of the chord than for the full-scale aeroplane. This may
lead to unrepresentative flow separations or shock-wave boundary-layer interactions. Also
if, because of the low Reynolds number, transition is delayed until mid-chord or beyond,
the transition point could undergo much larger backwards and forwards movements as the
model oscillates and this could lead to a spurious set of additional aerodynamic forces.

These considerations provide the reasons for fixing transition, usually by a band
of roughness attached close to the leading edge of the model. However, the turbulent
boundary layer so formed is usually much thicker than it should be for full-scale
similarity. This is particularly serious for trailing-edge controls.

As described in Ref 26 pressure measurements for an oscillating control surface
have been made with the model shown in Fig 14. The measured chordwise distributions of
pressure amplitude and phase are shown in Fig 15 for two Mach numbers, M = 0.8 and
M= 0.9 . For each Mach number, measurements are shown for free transition and for
transition fixed by a roughness band at 0.05c. For M = 0.8 , fixing transition causes
a reduction in the oscillatory lift and this is attributed to an increase in the thick-
ness of the boundary layer as a consequence of the forward position of transition. At
M = 0.9 a shock wave is present in the vicinity of 0.,3c. The oscillatory motion of the
shock causes the large oscillatory pressures measured downstream of this position where
there are substantial differences between the results for transition-free and transition-
fixed. It is considered that these differences in the form of the pressure distribution
are not solely due to a change in the thickness of the boundary layer, but rather to the
shock wave interaction with the laminar layer being different in character to its inter-
action with the turbulent layer.

Following the advice of Ref 27, it is probably best not to fix transition when
working with control surfaces unless a surface shock wave is present. Then the require-
ment is to ensure, by locally added roughness or other means, that no unrepresentative
shock-induced separation occurs.
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12.3 The problem of model flexibility

The aim in many experiments, particularly those directed to measuring unsteady
aerodynamic pressures for comparison with theoretical calculations, is to impose an
oscillatory motion on a rigid model. For full-scale similarity appropriate values of
frequency parameter will need to be reached. It is then often difficult to attain the
specified working frequency whilst maintaining adequate rigidity in the model under
dynamic conditions. This is another example of the problem illustrated by Fig 5. For a
model to remain rigid under dynamic conditions, its stiffness should be high and all its
natural frequencies well removed from, and preferably much higher than, the working
frequency.

The model must therefore be designed and constructed not only to have a high stiff-
ness, but also a high ratio of stiffness to mass. Since the latter is also an aim of
full-scale design, it is soon obvious that when high rigidity is demanded at representa-
tive values of frequency parameter, the model designer is really being asked to do better
than the aircraft designer. To be successful he will need to exploit new or unconven-
tional materials and structural forms.

The idea of a rigid model undergoing oscillation in a simple mode makes for easy
comparison with theory; but such motion is not representative of aircraft. Father than
strive for rigidity it may be better to accept that every model will be flexi.le when
subjected to high frequency oscillation and to plan to make the measurements for motion
in an elastic normal mode. Although the mode may not remain the same under wind-on
conditions, it could be measured with sufficient accelerometers. The results will then
be in the form of measured oscillatory pressures for a measured mode of distortion.
Unfortunately the latter may consist of coupled motions included phase changes across the
wing.

12.4 The choice between measuring forces or measuring pressures

Of the various forces acting during an oscillation, the aerodynamic force will
usually be only a small proportion of the inertial force due to the model mass. Almost
always an unsteady aerodynamic force is obtained as the difference between two measure-
ments, one wind-on and the other wind-off. For the difference to accurately represent
the aerodynamic force it is necessary for the motion of the model, including any elastic
distortion to be the same for the two measurements; if not an additional inertial force
will appear as a spurious aerodynamic force. Such changes in the mode of motion can be
caused by the oscillatory aerodynamic forces if the model is less than rigid under
dynamic conditions.

From this it should be clear that whilst the measurement cf unsteady aerodynamic
forces may not be too difficult at low frequencies, the extraction of the aerodynamic
force from the inertial contributions becomes more difficult with increase of frequency.
Although in principle the actual model motion could be sensed by accelerometers and
appropriate inertial corrections deduced, or analogue signal cancellation arranged, it is
likely to end up in a complicated and unsatisfactory procedure.

For high frequencies the measurement of pressures is more reliable. The main dis-
advantages are: (1) the construction of the model will be more complicated; (2) the model
is likely to be more flexible because of the installation of transducers; and (3} a large
number of measuring channels will be necessary to obtain pressure distributions in
sufficient detail to establish the total forces acting on a model.

Measurement of the aerodynamic forces on rigid components, such as wing stores,
even for high fregquencies is, however, satisfactory. Unsteady pressures on the main
lifting surface and unsteady forces on rigid control surfaces or stores may offer the
best solution.

For some purposes there is no choice. The determination of the stability deriva-
tives for a complete model by pressure measurements is unthinkable. It is fortunate that
these measurements can be made at low frequencies.

13 NONLINEARITIES

The problems of unsteady aerodynamics are usually concerned with small perturba-
tions, the effects of changes of shape, displacement or relative velocity. It is usually
assumed that the perturbation forces and pressures are linear with the quantity that is
changing and indeed, some of the experimental technigues are based on this assumption.
Whereas overall forces tend to remain linear, the same is not always true for local
pressures. Nonlinear features are often associated with vortices, shock waves or flow
separation. 1In experiments in which a sinusoidal motion is applied to the model, non-
linearities, if present, will appear as higher-order harmonic components in the measured
pressures.

The subject of the first example, taken from Ref 28 and shown in Fig 16, is a model
of a slender delta wing at sufficient incidence to generate leading-edge vortices above °
its upper surface. The model is oscillating in a mode of longitudinal deformation and
this causes the strength and spanwise position of the two vortices to oscillate, thus
affecting the pressure distribution at the upper surface. Although the motions of the
model and the vortices are sinusoidal, it is obvious that a point over which the suction
peak oscillates will experience a minimum pressure twice during each cycle of the
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oscillation. Thus the oscillation in the position of the suction peaks leads to
additional harmonic components one of which is shown in the diagram.

The second example is the pressure variation in the vicinity gf a shock wave at the
upper surface of a wing which is undergoing a pitching oscillation2®. an approximation

to the actual behaviour is suggested by Fig 17 where the distribution of surface pressure
is represented by three straight lines which oscillate because the shock responds to the
wing motion and which are shown in their extreme and mean positions. The diagram illus-
trates how the time-histories of the pressures at some positions are non-sinusoidal. In °
an actual experiment measurement of the amplitudes of the first two harmonic components
produced the following results:

x/c Funda:\lental Second :zamonic A2/A1

0.05 42 units 0 units 0 ;
0.2 32 1 0.03 ;
0.3 80 15 0.19

0.4 165 17 0.10

0.5 29 7 0.24

0.6 30 0 0

In the actual experiment, the deep troughs shown for position B in Fig 17 did not occur
regularly. As shown in Fig 18, the waveform obtained at 0.3 chord seems to consist of a
sinusoid which for some cycles has its trough drawn down into a steep valley correspond-
ing to a large increase of pressure. This is due to extraneous fluctuations causing for
different cycles a greater or lesser movement of the shock, so that for only some cycles
does the shock reach the 0.3C position.

This is an example where, because of nonlinearity, the extraneous fluctuations or
noise affect quantities that are measured as averages over a period of time. If none of
the cycles during the measuring time experienced the shock, the average pressure ampli- :
tude would be smaller than if every cycle experienced the shock. A sample of mixed o
cycles would have an average amplitude between those two extremes. Thus, if the fluctua- 3
tions were absent there would be a sharp distinction between the pressure amplitudes for
those positions that do, and those that do not, experience the passage of the shock. 1In
other words, the chordwise distributions of the oscillatory pressure distributions tend
to be 'blurred' by the noise.

Fig 19 shows a simple illustration of the effect amplitude can have on the
normalised pressure due to an oscillating shock wave.

14 SPECIFIC INVESTIGATIONS

The previous sections have dealt with general techniques applicable to many
different forms of experiment. The following sections describe certain procedures and
test rigs currently in use for specific investigations. Each of the first two subjects,
buffeting experiments and flutter testing, embraces a complete aeronautical phenomenon
and some account is taken of the interactions between the aerodynamics and the aero-
elastic and dynamic properties of the structure. The other subjects, stability deriva-
tives, the aerodynamics of flutter and control surface motions, and the dynamic stalling
of helicopter blades are concerned only with the measurement of aerodynamic forces or
pressures for prescribed unsteady conditions. 3

15 WING BUFFETING

Wing buffeting is usually associated with high incidences. It is the vibratory
response of the structure to unsteady aerodynamic forces caused by flow separation,

The subject is very well exposed by recent literature and only a brief description
will be given here3 For general accounts the following should be consulted: John3 ’
Butkewicz3l, Mabey3Z.

Experiments with models in wind tunnels are almost invariably related to the design o
of new prototypes and are usually separately directed to: 1

Buffet onset - to determine the flight conditions at which buffet will
first occur.

Buffet intensity - to predict the response of the aircraft after penetrating
the buffet boundary (important in respect of structural
fatigue, weapon aiming, pilot comfort).

15.1 Buffet onset tests

Of the two types of experiment, this is by far the easiest, tests often being made
with the kind of model normally used for steady tests. A popular method is to observe
the output of strain-gauges attached near the wing root and as incidence is increased, to




note the point at which there is a sudden increase in the intensity of the unsteady
strains. More accurate predictions can be obtained when the model has the correct (that
is distorted) shape of the full-scale wing under the appropriate high-lift conditions.

e

15.2 Experiments to predict buffet intensity
Possible procedures are:

Measuring the response of a dynamically similar aeroelastic model, and
deducing the response for the aeroplane by direct scaling. (Recommended
reading: Hanson, Ref 33.)

Using a flexible (but not dynamically similar) model to measure buffet
excitation and aerodynamic damping and, from these and estimates of the aero-
plane structural damping, calculating the response of the aeroplane.
(Recommended reading: Butler and Spavins, Ref 34.)

Measuring the buffet pressures on a rigid model, to obtain spectral content
and spacial correlation, and from the results calculating the response of the
aeroplane. (Recommended reading: Hwang, Ref 35.)

The Butler and Spavins technique is particularly interesting since two unsteady
aerodynamic quantities, buffet excitation and model damping are determined by statistical
means from one and the same signal representing model vibration. The underlying assump-~
tions are that the buffet excitation is random and the model has only a single degree of
freedom (although in principle the method could be extended to multi-freedom systems).
Damping is obtained either from the width of the peak in the power spectrum of the
response, or from the decag rate in the autocorrelation function or by the more recently
developed Randomec method3®. oOnce damping has been determined the excitation is obtained
from the rms response.

16 FLUTTER TESTING

The aim is to determine the flutter characteristics of a model by exposing it to
flow conditions of increasing severity. Flutter models vary from the simple plate-like
structures used in research to the extremely elaborate and costly aeroelastic models of
full scale aircraft such as that described in Ref 37, Similarity requirements are dis-
cussed in Ref 38, For tests in low-speed flow it is usual to increase stream velocity
until flutter is imminent; for high-speed tests it is more usual to increase tunnel total
pressure at constant Mach number. 1In some experiments, usually with the less costly
models, an actual fluttering condition will be reached. 1In others, usually with the more
costly models, the intention is not to reach the flutter condition but to predict the
flutter boundary from a series of response measurements made with increasing flow severity.

Possible forms of the variation of frequency and damping for the modes of a system
having two degrees of freedom are shown in Fig 20. The modal frequencies and damping can
be obtained by analysis of the response of the model to some form of excitation applied
either mechanically, or by tunnel turbulence39,40, 1n principle the excitation and
analysis techniques for determining the flutter subcritical response of a model are
similar to those used in flight flutter testing, for which the recommended reading is
van Nunen and Piazzolifdl,

Current problems requiring the flutter testing of aeroelastic models are mainly
concerned with the effects of transonic conditions or the effects of stores added to the
wings. Flutter tests are usually coupled with complementary theoretical predictions
which are made both for the aeroplane and for the model since the two systems may not be
exactly similar. Comparison between the results of the flutter test and theoretical
prediction can sometimes throw light on the values of important unsteady aerodynamic
quantities, but the relationship between an aerodynamic quantity and the flutter behav-
iour is not usually direct. Although the aerodynamic guantities would be obtained more
directly by measurements of aerodynamic forces or pressures for imposed oscillatory

- motions, the flutter test has the ability to embrace the whole structural problem and to
include complicated aerodynamic configurations.

17 MEASUREMENT OF STABILITY DERIVATIVES

An appreciation of the wide variety of rigs used in wind tunnels for the measure-
ment of derivatives may be obtained from the review of Orlik Riickemann42. Also informa-
tion on the basic principles may be obtained from an older account given by Bratt43,

By drawing on the descriptions of Fail“, brief mention is now made of two rigs
illustrating different approaches to the problem.

17.1 A response-measuring multifreedom rig at RAE Bedford i

This rig is suitable for tunnels up to 4 m wide and in the form described, is
arranged to measure lateral derivatives, but the same principle could be adapted to the
measurement of longitudinal derivatives. The rig provides the model with three degrees
of freedom, the procedure being to apply a known oscillatory excitation force, to measure
the responses in each of the three coordinates ¢ yaw, y side slip and ¢ roll and
from these measurements, by using the equations of motion of the system, to determine the
set of derivatives, Fig 21 shows the essential features of the sting supporting the
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model. The two spring units provide the model with the three freedoms. The natural fre-
quencies are about 4, 5 and 6 Hz and the normal modes are:

- Yyawing about an axis near the CG of the model;
- sideslipping mainly, but with some yawing about a far-forward axis;
- rolling.

An electromagnetic vibrator at the rear of the sting, not shown in the diagram,
provides a known excitation force in each coordinate and the system is oscillated at, or
near, each natural frequency in turn. Working near resonance means a reasonable ampli-
tude can be obtained with a small exciter. The system when oscillating at frequency o
is governed by three equations of motion relating to yawing moment N , side force Y
and rolling moment L :

(ulel + luNg 4 Nw)w + (mlez + imNi + Ny]y + (u2I13 + LuNg + N¢]o + N,

2 2
+ deyy + yw)w + (0f1,, + foYe + Yy)y + (1,5 + floyy + Y°)o + Y,

(sz

2 2
31 * ey + Lw)w + (w Iy, + imL9 + Ly)y + (0154 + iuLg + Lo]o + L, 0

where the 1Is are inertial constants, the derivative coefficients, N etc include

N
aerodynamic and mechanical contributions, and Ne Ye and Le are thg exgitation
forces.

The complex amplitudes of the coordinates are obtained from strain gauges attached
to the sting. The amplitudes are measured at each of the three oscillation frequencies
yielding a total of nine complex equations which, with knowledge of the nine inertial
constants, are sufficient to soive for the 18 unknown coefficients. The measurement
procedure is carried out twice - once wind-on and once wind-off, so that the aerodynamic
derivatives are obtained as differences. The reduction process depends on two assump-
tions: (1) that the derivatives are independent of frequency (justified by the low
frequencies); and (2) that the model rigidity is sufficient for the mechanical properties
of the system to be unaffected by the change in air loads between wind-off and wind-on.

The extraction of the derivatives requires that the equations be taken six at a
time. Thus, for example, the single equation for yawing moment taken for each of three
frequencies, and after separating inphase and inquadrature contributions, yields six
equations from which the yawing moment derivatives can be obtained.

The accuracy of the results depends on a careful choice of system properties, on
the determination of the inertial constants and on the calibration of the strain gauge
units that are used to measure the displacements.

17.2 A two-freedom force-measuring rig at Cornell Aeronautical Laboratory

This rig which is fully described in Ref 45, measures longitudinal derivatives. The
main point of interest is that instead of applying force and measuring motion, as in the
previous example, it operates by applying a known motion and measuring the forces.

The rig is designed for use in a 2.5 x 2.5 m transonic wind tunnel. The model
can be oscillated at frequencies between 3 and 12 Hz with vertical amplitudes up to
20.15 m and pitching amplitudes up to 15 , The mechanical system is shown diagrammatic-
ally in Fig 22, The required motion, consisting of a combination of pitching ¢ and
heaving 2z , is obtained by adjusting the eccentric amplitudes and the phase angle
between the flywheels. These adjustments are made by means of small hydraulic motors
whilst the rig is oscillating. The forces and moments on the model are measured by a
conventional strain gauge balance incorporated in the sting supporting the model. Instead
of obtaining the aerodynamic. contributions by differencing the readings obtained wind-on
and wind-off, the inertial reactions appearing in the balance signals are cancelled by
accelerometer signals. Indeed, any proportion of any signal can be added to any other
signal so that all component interactions are eliminated. The compensated signals are
finally analysed to give amplitude and phase referred to a reference signal obtained from
the driving system.

The ability to provide a combination of two motions has interesting possibilities
for reproducing certain basic types of motion of relevance to flight and measuring
certain derivatives directly as illustrated in Fig 23.

17.3 Comparison between response- and force-measurement rigs

An advantage of applying inexorable motion is the ability to control an unstable,
or negatively damped, model. Also the model can be oscillated in a chosen motion and at
any frequency and it is probably easier to detect and measure forces that are nonlinear.
The principal disadvantage is the large excitation force that is needed and the massive
construction that accompanies it.

The advantage of a response-measuring rig is that by working near resonance the
exciter can be quite small and much more easily accommodated.
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Both techniques have to solve the problem of separating the aerodynamic forces from
the large inertial forces and resolving the aerodynamic forces into the various component
derivatives but the methods of doing this are different in the two cases.

18 MEASUREMENT OF AERODYNAMIC RESPONSE TO CONTROLS

The unsteady aerodynamics of control surfaces are of interest in flutter calcula-
tions, -but at the present time, the subject is of special interest to Active Control
Technology.

A balance to measure the principal wing forces due to control surface motion is
shown in Figs 24 and 25 and fully described in Ref 46. It supports a half-model at the
wall of a tunnel, and an oscillatory motion can be imposed on the control surface by a
vibrator connected to it through a push rod and shaft. The frame to which the model is
attached is supported at three locations by strain gauge elements which measure the
unsteady reactions. These, together with the measured excitation force, when operated
upon by a set of dynamic calibration factors yield the oscillatory inphase and
inquadrature components of 1lift, pitching moment and rolling moment. Hinge moment com-
ponents are determined by a torque-measuring unit incorporated in the shaft driving the
control surface (Fig 25).

The balance is suitable for tests in tunnels with working section areas up to about
1 m“. It has operated satisfactorily at frequencies up to about 100 Hz using low aspect
ratio models of rigid construction. Attempts to use the balance with a model of aspect-
ratio 6 clearly showed the difficulty of measuring unsteady forces on a model not having
sufficient rigidity.

The high aspect ratio model, already seen in Fig 14, is an example where the advan-
tage lies with unsteady pressure, rather than force, measfrements. For this model chord-
wise distribution of oscillatory pressure have been measured at four sections as shown in
the diagram and some results as described in Ref 26. .

19 PITCH AND HEAVE RIG
A
This is a rig in use at the Aircraft Research Association, Bedford for tests on two-
dimensional aerofoils in a transonic tunnel4?. .

In most other experimental arrangements the motion applied to the model is harmonic
and of small ampljitude. Linearity is often assumed. However, in this final example
large amplitudes can be applied and the motion need not always be harmonic,

The rig was designed to test new aerofoil sections under the kind of dynamic con-
ditions experienced by a section of a helicopter blade in forward flight. Whilst not
attempting to reproduce the time-wise variation of Mach number, the rig can apply various
combinations of harmonic heaving and pitching, or arbitrary time-wise changes of
incidence. 1Its main use is in examining the dynamic stalling properties of newly
designed sections. :

The principles of the rig are shown in Figs 26 and 27. The constituent motions are
supplied by separate components, the heave motor and the pitch hydraulic ram. The aero-
foil is mounted eccentrically in large discs arranged to be flush with the side walls of
the tunnel. When the discs are rotated by the heave motor, the aerofoil orbits about a
transverse axis: but unless the pitch ram alters the length of the lowest link, the pitch
angle of the aerofoil remains constant throughout. The motion of the aerofoil is then a
combination of vertical translation and horizontal translation, but the latter is small
and is not intended to simulate the variations in forward speed that are experienced by
the helicopter blade.

Pitching motion is obtained by alteration of the length of the lowest link by
operation of the hydraulic ram. This causes a rotation of the lower diamond-shaped
component, which motion is transferred by push-rods to the upper diamond to which the
model is attached. The ram can be phase-linked with the heave motion or driven indepen-
dently. Pitch amplitudes up to 200 and pitch rates up to 1300°/s can be obtained with
this equipment. The chord of the test aerofoils are usually 100 mm and the maximum
frequencies are 20 Hz for heaving and 100 Hz for pitching.

Unsteady pressure distributions are measured by a number (usually up to 34) Kulite
transducers installed within the aerofoil, and lift and pitching moment are obtained by
integration of the pressures. The rig is complemented by a data acquisition system‘s,
which is also used to programme and control the test runs.

Fig 28 shows an example of data obtained during a ramp change of pitch, in which
incidence a« was increased from zero to about 20°, Separation occurs when the incidence
reaches about 15% the time histories of the pressures show the progression across the
chord. Also it can be seen that the break in the pitching moment precedes the break in
the 1lift.

20 EPILOGUE

The previous sections have ocutlined methods of measurement and described specific
experimental procedures.
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When experimental results are to be used either for comparison with theory, or
directly in design, it is necessary to make some assessment of their accuracy. This is
dependent on:

the accuracy of the experimental representation, including such items as the
adequacy of the model, the effects of wind tunnel interference and scale effects;

the precision of the measurements, which itself is dependent on the instrumentation

and its calibration.

The first is usually difficult, if not impossible, to quantify and requires judge-
ment in the particular circumstances. It is easier to attach a value to the second,
although again, this depends on circumstances. To give an example, it is probably true
for oscillatory pressures that amplitudes can be measured to an accuracy of a few percent
and phase angles to a few degrees.

Sometimes experiments show large differences in comparison with available theory,
clearly indicating that theory must be improved. In the meantime whilst the improvements
are awaited, it may be difficult to apply the experimental results directly to the design

An example of this is contained in Ref 29 which shows the difficulty of trying

to predict the effects of supercritical flow on wing flutter solely from measurements of
pressure for one simple mode of wing motion,

Current experimental interests relate to one or more of the following items:

- transonic flow, and the flutter of supercritical wings;
- high incidence conditions for wings with some areas of separated or vortex

flow;

~ control devices in relation to ACT.

Looking into the future, it would seem that, apart from the measurement of stability
derivatives, the trend in unsteady experiments will continue to be towards the measure-
ment of pressures and not forces. It is easy to enthuse over the prospects for greater
sophistication, including the measurement of pressure distributions for complicated modes
of flexible distortion, faster and more efficient data processing and possibly computer-
based interaction between experiment and theory. But measurements need to be justified;
they are not an end in themselves but a means to improve the design of aircraft. Experi-
mental work will continue only whilst the exploration of phenomena or the provision of
measured data is seen to lead to better aircraft.
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EXPERIMENTAL TECHNIQUES FOR UNSTEADY BOUNDARY LAYERS

by

D. P. Telionis
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

This short paper concentrates on methods of measuring velocity distributions in unsteady viscous flows
and techniques for amalyzing and presenting the data. Unsteady pressure measurements are not included here.
Both hot wires and lazer-doppler velocimeters have been successfully used to investigate unsteady boundary
layers. A variety of flow visualization methods ranging from smoke and tuft observation in air to hydrogen
bubbles and solid particles in water, have been successfully used in the study of complex unsteady flows, as
for example the formation and development of large scale vortices. Recently it has been attempted to obtain
simultaneously velocity measurements at a point and instantaneous flow visualization. Both laminar and
turbulent flows with or without pressure gradients have been investigated. Such flows, especially turbulent
flows and separating flows require special averaging techniques to disclose their basic characteristics.
Typical data from flat plate flows with adverse pressure gradients, separating flows and flows over oscil-
lating airfoils are presented.

1. INTRODUCTION

Theory and experiment usually compete in the discovery and explanation of physical phenomena. A discovery
is usually made by one method of investigation and then the other is called upon to corroborate and explain
it. 1In the area of unsteady viscous flows, it is perhaps theory that preceded the experiment. In impulsive
changes of the flow, interest was generated from the very first paper of Prandtl! on boundary layers,
followed by classical contributions of Blasius? and Goldstein and Rosenhead.3 Experimental verification of
the properties of flows started impulsively from rest have followed later, as described in this article.

In the area of oscillatigg flows, experimental work of Faraday, Dvorak, Rayleigh in the nineteenth
century and the work of Ca' riere, Andrade and Schlichting at the beginning of this cemtury,followed by a large
number of more recent exp-.imental investigations, disclosed the basic features of oscillations with no mean
and the ph n of ic streaming. References on the topic, the reader will find in Riley.“ Attempts
to explain analytically the physics of the problem and resolve the controversies of experimental data appeared
much later and the problems were not clearly resolved until very recently (Stuart,5,® Riley“). Oscillating
boundary layers with nonvanishing mean were considered first amalytically by the pioneering work of Lighth111,7
Moore® and Lin.® Initial efforts for experimental verification followed soon after’? but only very recently,
serious experimental work was undertaken and this was mostly concentrated on unsteady .turbulent boundary
layers as described in this short paper. The reader will find more details and more references in a very
recent review article (Telionis!l),

Interest in the area of unsteady viscous flows was for decades rather academic. After all, until very
recently, the design of aerodynamic cumponents was based essentially on empirical data of steady flows. It has
been finally realized that real-life aerodynamics is for all practical purposes an unsteady phenomenon.
Unsteady airfoil stall is a typical example of spectacular deviations of unsteady from steady flows. A closer
look via analytical and experimental methods disclosed that such deviations are almost entirely due to unsteady
viscous effects and in particular unsteady separation as described in recent review articles.

In this paper we decided to concentrate on two topics which are of great practical importance: Oscil-

lating boundary layers and unsteady separation. Transient boundary layers and oscillation about a zero mean )
will not be discussed here. For information on these topics the reader is referred to Refs. 5, 6, 11, 12, 13 !

and 14. The spirit of the present review ti.srefore, revolves essentially about applications to aeromautics.

More in tune with the title of this paper would be a grouping of the topics of interest according to the
methods of investigation rather than the topic of interest. In this sense it is admitted here that the title
of the paper is a little misleading. However, the experimental techniques described are not new. We
describe here how, well established methods are employed in the investigation of specific problems of unsteady
boundary-layer flows.

2. DATA ACQUISITION AND REDUCTION

Except for the work of Hill and Stenning,'° most of the experimental work in the area of unsteady
boundary layers deals with turbulent boundary layers. Investigation of unsteady turbulent flows hinges
critically on the method of reducing and analyzing the data. The meaning of unsteady turbulent flows itself
requires sowme clarification, since turbulent flows are inherently unsteady. A common practice in the experi-
mental investigation of random phenomena is to average the signal at each point in space. Time aversging and
ensemble averaging at a point r in space are defined by the following equations

1 (T i
q(r) = 1lim ;f q(r,t)dt 1) i
Tr= o
1 ¥
“a(me)> = ling nzo q(r.t,) @

vhere q, is the nth realization of the phenomenon. If the ensemble average is independent of time, t_, then
the variable q {s stationary. It is weakly stationary if the ensemble average and the nutocorrelatioa do not
depend on time and strongly stationary if all higher s are independent of time as well. 1f a random

varisble {s stationary snd the time averages do not depend on the particular realisation, then the variable is
ergodic and q = <q>.
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Consider now a random variable on which an external oscillation with discrete frequency is imposed. In
particular, consider a turbulent boundary layer which is driven externally by a fluctuation of the outer flow
velocity. For all practical applications, the frequency of externally imposed fluctuations is contained in
the spectrum of frequencies of the turbulent flow. The discrete signal is therefore buried in the random
signal. The organized part of the signal can be separated if the period, T, of the externally imposed
discrete oscillation is known. A "conditional ensemble average" can then be defined:

N
<q(t)> = lmt | q(ewD) (3
N+ ' n=Q

Conditional sampling was introduced in periodic turbulent flows in the late fifties and early sixties'®”!®

and 1s often also termed "phase" or "periodic" sampling. In terms of the conditional average, the organized
part of the signal can be determined

=< -q )
and the random fluctuations are defined accordingly

Q' = q - <¢> (5)
Acharye and Reynolds19 provide a number of identities relating the quantities q, q , q' and q as well as
governing equations of such quantities and their moements defined in terms of both the averaging methods

described. The property under consideration can now be decomposed into three parts: the time averaged or
mean, the organized fluctuation and the random fluctuation, as shown schematically in Fig. 1.

a(r,t) = q(r) + 4(z,t)
+ q'(zx,t) (6)
Such decompositions have been proposed
by Townsend,zo Ph:l.llips,21 Kovasznay

et al.?? for the investigation of
similar problems.

A number of second or higher
12 order moments can now be defined.
Reynolds stresses that drive the mean

flow are
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where u and v are velocity components
parallel and perpendicular to the wall
respectively. Ensemble averaging the
product of the random fluctuations,
yields a Reynolds stress which drives
the organized fluctuations
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T, = <u'v'> (8)

|

| Similarly we may define turbulent

| kinetic energy functions that depend on
| the random fluctuations, the organized
| % fluctuations or both.

1 t In practice, conditional averaging
requires an external trigger at a
specific instant within a period. This
can be an electronic signal which is
in turn activated by a mechanical
signal. The electronic signal can
easily be further delayed to allow the

Fig. 1 Definition of averaging processes and the triple decompo- sampling to span the whole period.
sition. Very often, an analog signal itself
can be used to control the periodic
sampling. In this case a particular
value of this signal, which Kovssznay22 terms the "master signal", or a value of its slope can be used as a
trigger to obtain one sample value. Most modern signal analyzers, as for example Hewlett Packard's HP-5420A
or Zonics DMS 5003, provide the capability of periodic sampling in any of the nodes described above.

Koruznay22 describes a variety of other problems that require periodic sampling and averaging. A class
of such problems is related to recurrent phenomena. These are phenomena that are initiated at random times,
but the driving mechanism is always the same.

Most modern signal analyzers process signals digitally. This usually requires that the signal levels
are as close to the peak of the dynamic range as possible, in order to minimize the error in digiti:tng.19
However there are distinct advantages in digital operations. Most important of all, the same digital sample
can be used to provide various ensemble averages, as for example <q>, q and higher moments like the turbulent
energy or the Reynolds stress.!? Acharya and Reynolds argue further that digital processing circumvents the
problem of maintaining the delicate calibration of analog multipliers.




3. CONTROLING PARAMETERS FOR TURBULENT BOUNDARY LAYERS

The earliest experiments on unsteady turbulent boundary layers were reported in Ref, 23, Karlsson?3 in-
vestigated the response of a tripped turbulent boundary layer developing on a flat plate and driven by a
harmonic disturbance in the outer flow. Karlsson was able to vary his amplitudes and frequencies in a range
unmatched by contemporary investigators. He considered amplitudes of the outer flow velocity up to 34X of the
outer mean and frequencies from 0 to 48 Herz for a Reynolds number R* = U, &§*%/v = 3.6 x 10° where U, is the
mean of the outer flow and 6* the displacement thickness. Karlsson reduced his data by analog operations.
Comparing his boundary layer signal u with the outer flow signal U,, he calculated the time averaged products

ﬁzth) . ult) Ue(wt) , u(t) Ue(mt + n/2) , ﬁg(mt + n/2) 9)
Combining these moments he was able to calculate the in-phase and the out-of-phase components of the organized
fluctuation of the velocity
Ue(wt) u(t)
-2—=7====—
Y4n UZ(uE) (10)

U (wt + 7/2) u(t)
u =2 -

1y
out EZ?;;Y

Any higher harmonics of the organized response are thus lumped together with the random fluctuations. The RMS
of the higher harmonics and the random signals can be calculated by the formula

T @O wo)Z (U@t ¥ 7/ ao)?]
e +_e

(12)
Uz(mt) Uz(t)

< = uZ(v) -

Karlsson measured and reported mean velocity profiles, profiles of uy, and ugyt as well as profiles of
*Z. His data, for almost two decades, has been the only available data for testing theoretical models of un-
steady turbulent boundary layers. His findings indicate that even for the largest amplitudes of fluctuation
there is no influence on the mean profile. Karlsson's uj, and ug,, profiles are qualitatively similar to
their laminar counterparts.

Experimental investigations of oscillating turbulent boundary layers were attempted again with vigor in
the seventies. Modern electronic hardware made the task of periodic sampling and digital processing of the
data relatively easier. A large number of publications on the topic appeared almost simultaneously.16’17-18'2“‘32
With all this information available, it soon became obvious that the problem is a lot more complex than the
problem of laminar oscillations. For laminar flow, the Strouhal number § = uL/Us is the only similitude
parameter that would govern the flow and permit comparison between different experiments or experiment and
theory. True, the Reynolds number controls the scaling in the direction normal to the wall. However, the
appropriate stretching of the normal scale results in collapsing of data obtained with different Reynolds num-—
bers. In turbulent flows the situation is entirely different. The history of the flow playc a much more
important role. The situation is hopelessly confusing if natural transition to turbulence is allowed to con-
trol the flow. Even with artificial transition, the upstream history of turbulence controls the periodic
response of the turbulent boundary layer and results in unexpected deviations. It has been suggested that the
Reynolds number based on the displacement thickness or the momentum thickness would be the proper parameter
for dynamic similarity. This would account for the alternative designs of the leading portion of models,
since a good number of investigators simply study the boundary layer that develops on the tunnel walls. There
is no doubt that a single parameter, like some Reynolds number, is not enough to characterize the turbulent
boundary layer at a point, nor would for sure all such layers develop in an identical form further dowmstream.
Moreover, other parameters, like the wall roughness, the free stream turbulence or even acoustic disturbances
may influence the subsequent development of the boundary layer. All these well known difficulties are greatly
amplified in the case of unsteady turbulent boundary layers.

An element of the problem that has not been attacked experimentally yet is the possible interaction be-
tween the random and the deterministic fields. Acharya and Reynoldslg propose a comparison of the frequency
of externally {mposed oscillation to the frequency of the bursting process.

u
fb =335 (13)
Investigating the response of internal, fully developed flows they found that the organized part of the
Reynolds stress is considerably higher for a frequency very close to the bursting frequency. Thomas and
Shuk1a3" have looked into the wall region of fully developed fluctuating turbulent pipe flow. They report on
the interaction between the bursting effect and the imposed fluctuations and compare their experimental
results with the theoretical model based on the concept of surface renewal.

Binder and Didelle!® and Soutif3S investigated the response of a turbulent jet to fluidic 1ip dis-
turbances that generate symmetric or antisymmetric periodic fluctuations. The authors presented instantaneous
profiles and the downstream evolution of periodic and turbulent intensities. Most important of all, they
indicated that the externally imposed fluctuation may transfer energy to the turbulent motion. Indeed 20
jet thicknesses downstream of the disturbance, the periodic fluctuations die out but the intensity of turbu-
lence grows to a value 70 percent larger than the corresponding undisturbed jet intensity. In a later publi-
cation, Pavre-Marinet and Binder3® repeated careful measurements of the Reynolds stresses in the pulsating
jet. They show that the Reynolds stress T4 = <u'v'> oscillates with much larger amplitudes compared to normal
stresses <u'?> and <v'?>. Moreover the ratio <u'v'>/<q?> with <¢2> the organized part of the turbulent kinetic
energy, varies periodically between the values of 0 and 0.4. This clearly indicates the inadequacy of quasi-
steady models which assume <u'v'> to be proportional to the turbulent kinetic energy.
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The evidence described clearly indicates that it is possible to transfer momentum and energy from an
external organized oscillation to the random field of turbulence. The opposite, of course, would be an ex-
tremely intereating problem, since then it would be possible to quiet down a turbulent field. Except for the
work of Karlsson and only for the highest frequency that he investigated, there is no other evidence of such
deterministic-random field interactions for external turbulent boundary layers. Karlsson's data present the
profile of the RMS rlndon fluctuation essentially averaged through the cycle of oscillations, as defined by
Eq. (12). The quantity r T2/Ue varies from a value 0.10 near the wall, almost linearly, to 0.02 or 0.03
at the edge of the boundary layer. For f = 48 Herz, the ;2;profile behaves erratically with a scatter that
perhaps 1s due to experimental inaccuracies. However, values of 0.13 or above seem to persist for at least
1/3 of the boundary layer thickness. Surprisingly, the mean profile as well as the organized fluctuationm,
i.e., the profiles of uy, and uy,: indicate a normal behavior, in qualitative continuation of the trends
established by lower frequency data.

One more parameter is widely accepted as a basic characteristic of an unsteady turbulent boundary layer:
the relative amplitude of oscillation. Both reduced frequency and reduced amplitude have been repeatedly
shown to have a negligible effect on the mean profile. This is in fact true for amplitude ratios of as
much as 0.4 or even 0.5. The profiles of the reduced fluctuations change considerably with the frequency,
but depend rather mildly on the amplitude ratio.

In an effort to present a clear picture of today's avallable experimental information, we collected in
Table 1 the parameters that characterize the experimental data on unsteady turbulent boundary layers. This
has been a very difficult task since each author chooses to provide the quantities that he feels are more
representative of the flow under investigation. Many of the quantities presented in this table had to be
calculated from data provided by the author. Quite often,quantities were calculated from scratch based on
classical flat plate boundary layer theory. In cases of doubt, the figures are contained in a parenthesis.
In some cases the authors provide general information about their initial station, but proceed to make de-
tailed measurements at another station further downstream. It has been attempted to include here data
pertaining to the station at which all the information was obtained. If this was not possible then initial
station information were included. Some authors provide data for more than one station. In these cases it
was attempted to single out the most characteristic station, usually the one closer to separation.

Reference R* = U_§*/v s = wL/T £(Hz) b e=0/T,

Karlsson23 3.6 x 103 2.9 - 163.2 0.33 - 48 0.08 ~ 0.34
Houdeville et all® 7 x 10 1.5 40 0.330

Schachenmann et all® (1.16 x 10%) 1 7 0.069
(0.70 x 10%) 7.33 30 0.013

Cousteix et al2" 3.36 x 10* 0.27 43 0.330

Patel?S 4 x 10° 0.35 11 0.110
1.05

Charnay et al2® (1.6 x 10%) 1 36 0.260

Cousteix et al27 7 x 104 2.5 40 0.330
3.36 x 103 5 43 0.370

Simpson28 (1.5 x 103%) 1.1 3.7 0.330
Kenison?9 * 4 x 103 0 - 3.0 . 0.035 - 0.102

Tomsho & Brown30 (0.75 x 103) 1.05 5 0.100
6.28 30

Houdeville et ald! 3.6 x 10* 3.0 - 10.0 38 0.19 - 0.13

Hayakawa32 1.7 x 10* 2.63 2.16 0.064
3.88 3.45 0.103

Table 1. Compilation of nominal parameters of available experimental data: £ at entrance, * near the point
of separation, ¥ flat plate.

Table 1 should be considered only as an initial approximate compilation of data. It is felt that the
only way of providing a complete and accurate set of nominal data is by direct contact with the authors of
the referenced works and the time limits for the preparation of this paper did not allow such an ambitious
undertaking. A similar compilation has been prepared by Ramaprian3 who included fewer references but calcu-
lated more quantities characteristic of the average skin friction, the pressure gradient, etc.

4. TYPICAL EXPERIMENTAL DATA

It should be interesting to plot data of different experiments on the same graph for comparison and in
fact this should have been done in a critical review like the present. However, it is felt that no such
comparison should be attempted since no two experimental riggings have the same parameters as described before.
Such a comparison should be done only in terms of a theoretical model which could be used to transform the
experimental data to match a set of nominal conditions. To be more precise, it is proposed here that an
analytical model should be used to simply extrapolate experimental data to achieve the same values of the
controling parameters and facilitate comparison.
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Fig. 2. The mean and the organized part of the velocity for flat plate
flow from Ref. 27. € = 0.33; eo,R* = 7 x 10%, § = 2,5;
o,R* = 3.36 x 103, 5 = 5.
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Fig. 3. The phase angle profile for flat plate flow from Ref. 27.
€= 0.333 o,R* = 7 x 10%, S = 2.5; o,R* = 3.36 x 103,
S = 35,

In the present discussion we
will confine ourselves to descriptions
of the physical phenomena. This will
become easier 1f representative ex-
perimental data are presented.

It has been established that
gross features like the mean of the
boundary layer velocity is very little
affected by the external fluctuations.
At this moment we cannot claim that
the same is true for the locatfon of
separation but this is the topic of
the following section. The externally
imposed deterministic oscillations
generate an organized oscillation
which depends strongly on the fre-
quency and mildly on the amplitude of
the oscillation.

For a flat plate, that is for
an outer flow velocity given by

U (x,8) = U_(1+ € sin wt) (1)

The situation appears to be relative-
1y straightforward and can be clearly
seen in the data of Karlsson. The
amplitude of the organized velocity
component overshoots the outer flow
value by up to 252. Surprisingly,
-smaller amplitude ratios, €,
generate larger overshoots. The
effect of frequency is more domi-
nant but the qualitative behavior

is very similar to that of a laminar
boundary layer. For larger fre-
quencies, the thickness of the
organized part of the fiuctuationm,
often also called the Stokes layer,
decreases and the peak of the pro-
files approaches the wall and the
numerical value of 1.0. Typical
example of velocity profiles for

S = 2.5 and 5.0 from Ref. 27 are
shown in Fig. 2. 1In this figure

the mean profile and the organized
fluctuation are shown. The second
quantity is the reduced amplitude.
of the in-phase fluctuation,
assuming

u=u; sin wt + u; cos wt ,
U, = Use sin ut (15)

It should be mentioned here that the
experimental rigging described in
Ref. 27 dictates a mild acceleration
over the flat plate.

The phase profiles correspond-
ing to the flow described above are
shown i{n Fig. 3. 1In this figure
definite phase leads are shown, a
dominant characteristic for flat
plate flows, at least for the imner
part of the boundary layer.

Experimental ambiguities are
introduced in the immediate neighbor-
hood of the wall. Most availsble
data are widely acattered in this
region. The present author and his
associates averaged and extrapolated
Karlsson's dats to calculate the
phase advance of the wall shear.

The amplitude of the wall shear and
the displacement thickness as well
as the corresponding phases are

plotted against the Strouhal number




based on the displacement thick-
ness in Pig. 4. This-figure,
including our interpretation of
Karlsson's data and Hayakawa's un-
—l published experimental information
l.o was put together by the second in-
vestigator.
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scription of the phenomenon we need
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; kinetic energy, the Reynolds stress,
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7 etc. Instantaneous values of such
{ /' quantities can be calculated by
7 ensemble averaging and have been
,I./ - 0 reported in Refs. 24, 26, 27 and 32.
Such information will be valuable
| | N \ L1 1 to theoreticians who pursue
analytical modeling of unsteady
10‘3 10"2 10"1 turbulent boundary layers. Cousteix,
*® Houdeville and Desopper” for
o 6 / U example have reduced their data and
oo estimated instantaneous profiles of
the mixing length as shown in F:I.E.
. The same group has 1-_e§m-te¢:l2 ’
27,31 profiles of u'Z, v'2, q2,
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Fig. 4. Reduced displa t thickness and wall shear and the cor- <u'v'>. et As a typical 1
responding phase angles for a flat plate. 4,4, Karlsson”; uv iz, ete. a typlca . example
a.m, Houdeville et al.16220; o8, Hayakawa32, Open of turbulence level variations

. . . through the cycle of deterministic
symbols: amplitude; closed symbols: phase. fluctuations we present here in

Fig. 6 the data of l~layakawa32 for
a flat plate flow with S = 3.88 and R* = 1.7 x 103. The deviation from the quasi-steady profile is most ob-
vious in the lower half of the boundary layer.

5. STABILITY AND TRANSITION

Early experimental investigations of parallel shear flows, external or internal, provide critical Rey-
nolds numbers for either purely oscillatory flows or periodic flows that are steady in the mean. For the
Stokes layer over a smooth flat plate, for example, the criticdl Reynolds number, based on the Stokes-layer
thickness, is Rg = U°6/v = 565. In fact it was discovered that purely oscillatory flows are more stable than
flows that have a nonvanishing mean. More experimental information on such classical problems and a long
list of references can be found in recent publicstion38'39. A complete account of analytical works on the
topic the reader will find in Davis’ review article“?, All experimental evidence38:3% indicate that even
for purely parallel flows, it is possible that transition may appear in the form of periodic bursts that
emerge at a certain phase during the period, all across the steamlines and at all downstream distances. The
phenomenon is similar to the appearance of turbulent patches in boundary layers developing in space.

Very little is known about the influence of uniform periodic disturbances on the problem of hydrodynamic
stability, that is the development and growth of disturbances. It is recalled here that in many stability
experiments, periodic disturbances are in fact introduced at a specific point in space. A ribbon with a
specific freq y, for ple, generates a disturb h bsequent growth is studied. The problem
under consideration here is the transition characteristics of a boundary layer which is driven uniformly by
an oscillating outer flow velocity. The periodic disturbances then take the form of standing waves as des-
cribed extensively in the previous sections. Even then, it is sometimes necessary to seed the flow with
short wave packets of arbitrary dominant frequency and arbitrary amplitude. The work in this area has been
recently reviewed thoroughly by Loerke Morkovin and ther“l. This section provides only a very short out-
1line of elementary concepts on the topic.

The pioneering work of Miller and Fejer'? disclosed that for an oscillating boundary layer, transition
is organized in the form of turbulent patches very similar to the turbulent spots observed by Emmons“?® and
Schubauer and Klebanoff“" in steady flows. The main difference 1s that a turbulent patch appears at regular
times and spaces and is actually a two-dimensional disturbance. Miller and Fejer note that the transitinn
Reynolds nuaber is influenced only by the amplitude of the free-stream oscillation whereas the transition
length depends only upon the frequency of the free-stream oscillation.
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Figure 7 presents the results of the work of Obremski and Fejer*5., 1In this figure the boundaries of
turbulent patches in the time-space plane are plotted for three periods of oscillation. A patch is preceded
in timz and space by a wave packet where minute turbulent disturbances grow. The leading and trailing edges

2.0 of the patch are then traveling at a

( constant speed, 0.88 U_ and 0.51 LN

respectively, regardless of the am-
plitude and frequency of the externally
imposed oscillation. Obremski and
Fejer"5S experienced difficulties in
estimations of transition Reynolds
mmbers and they attribute them to
free stream turbulence and acoustic
disturbances.

Kobashi et al%€ ran similar ex-
periments indicating that increasing
the unsteadiness of the flow makes
the boundary layer more unstable and
forces the unstable region in a narrow
| d range of the phase of the oscillation.

. In a later publicatioa’, the same
authors employ a seeding mechanism,
in this case a tripping wire, to con-
trol the initial steps of transition.
Imernmviency This of course did not permit inves-
tigations of transtion Reynolds num-
bers. However, they were able to
Length of spot study the development of a turbulent
patch and its temporal evolution.
They found that initially the turbulent
\\— patch emerges away from the wall, per-
Leading edge

Nondamensionsl Time (v®)

haps due to the mechanics of seeding,
but soon it attaches to the wall and
starts growing at a constant rate,
keeping its shape almost self-similar.

0.5 N 1,0 . 1;3 = Most recently, a similar investi-
10 20 10 0 50 60 fn. gation was undertaken by Consteix et
Distance from Leading Edge, x al?, Por the parameters of their ex-

¥ig. /. The leading and trailing edges of turbulent patches (Ref. 45), veriments they actually found that the




phenomenon is controlled by the frequency of the external flow. Their measurements further indicate speeds
of the leading and trailing edges of patches equal to 0.890- and 0.48U_ respectively.

6. SEPARATION

Interest in the problem of unsteady separation has been revived in the late sixties. Extensive historical

accounts of the orig!ml ideas and early contributions the reader will find in recent review articles“®-

3 Despard and MillerS! initiated the work by investigating laminar oscillating flows. For the frequencies and

3 amplitudes that they examined they found that separation is displaced always upstream from its quasi-steady

3 location but its position remains unaffected by the periodic disturbances. In fact they found that the initia-
tion of the wake, as detected at the outer part of the boundary layer, coincides with a station at which the
skin friction oscillates between zero and some negative value. This they proposed as a definition for separa-
tion in oscillatory flow.

More recent investigations52 indicate that violent pressure gradient oscillations may eventually force
drastic changes on the shape of the wake and the point of separation. This of course is the case for an air-
foll that oscillates in and out of stall., Koromilas and Telionis®3 concentrated their interests in the im-
mediate neighborhood of separation. Using a combination of Laser-Doppler-Velocimetry and flow visualization,
they found that a turbulent wake organizes itself if the oncoming flow contains a periodic disturbance. This
is true for a fully turbulent wake with a thickness not much greater than the thickness of the boundary
layer and therefore a situatfon reminiscent of a thin airfoil at. a small angle of attack. The gituation is
very similar to the intermittent but organized wakes generated by dynamic stall or the organized turbulent
patches described in the previous section.

3 The findings of Reference 53 and the continuation of the same effort5* are mostly in agreement with
E those of Despard and Miller5!, However, it appears that for the lower frequencies examined in Refs. 53 and
54, thé location of separation is actually displaced downstream instead of upstream. A more careful inves-
tigation of oscillating flowsS" indicated a new phenomenon characteristic of the point of geparation. In-
specting the velocity amplitude profiles it was found that they increase monotonically as separation is ap-
proached. A characteristic peak appears at the station where the Despard and Miller criterion is met and
simultaneously the flow visualizations indicate a more abrupt thickening of the boundary layer. Relative
amplitude contours are shown in Figure 8. Similar contours have been reported by Kenison2? but the quantity
plotted was the RMS of
turbulent fluctuations.
Kenison's measurements
were actually terminated

at separation as shown
13 in Figure 9 and therefore :
- the actual peak cannot !
? i 139 be identified. However,
i / the evidence of Figs.
1 - -~ 8 and 9 seems to indi-
[ / Pl cate that the growth of
i such disturbances is a
b

characteristic of sep-

/ / ’ \\' o aration.

/ loa \ The transient
4 characteristics of

'°‘; separation were inves-
: tigated by Koromilas
i and TelionisS3. For

accelerating flovs, for
example, It was shown
that the flow reattaches
over the entire contour
of the body, washing
hd ro away the separated re-
gion. After a certain
time, separation re-
emerges and eventually
returns to its original
Fig. 8. Relative amplitude contours in the neighborhood of laminar separation position. Instantan-
(from Ref, 54). eous velocity profiles
of guch a flow are
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shown in Figure 10. The opposite is true for decelerating flows.

The complexity of separating flowa dictated the need for sinultaneoualg sensing the entire flow field:.
This is possible only with methods of visualization. Very recently Taneda’ published a tremendous amount
of information on unsteady separating flows, Impulsive and transient starts and velocity changes of cylin-
ders and ellipses were reported. Moreover, impulsive, transient and periodic changes Of angles of attack
were presented. This paper can simply serve as a lexikon of visualirzations of unsteady separating flows.
Taneda defines separation as the point at which the boundary layer is shed from the surface of the body.
This 1s in agreement with earlier definition of separation, i.e. the point at which the outer flow ceases
to follow the contour of the body and breaks away into the flow. In both cases it is the interface of the
viscous and inviscid flow that determines the phenomera. We usually view the flow from the outer side of
the interface, wvhereas Taneda observes the inner side of the interface. However, it should be emphasized
here that such definitions may b ambig in of mild adverse pressure gradients. The present
author feels that the aserodynamic concept of separation as a catastrophic phenomenon with drastic conse-

to pr e distributions can be unambiguously defined only in the limit of Re + =. In this case

the interface between viscous snd inviscid flow collapses on the skin of the body along the regiona of
attached boundary layers and actually separates from the body at the point of separation, Taneda5® notes

S " g T i
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Fig. 9. RMS of random velocity fluctuations in the neighborhood of a separating turbulent boundary layer
(from Ref. 29).
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Fig. 10. Instantaneous velocity profiles and the outer flow velocity at two stations from Ref. 53. Station
BB is 60mm upstream of steady separation, Station AA is approximately at steady separation. Sym-~
bols denote different instances of time and correspond to the Ug-temporal variations on top of the
velocity profile.

that streakline patterns are invariant to the frame of reference and proposes that the determination of sep-
aration can be based on streakline observations. This is an interesting idea which may need further inves~
tigation.

A careful inspection of the flow visualization included in Ref. 53 and 54 indicates that some properties
of separating flow are more or less global. For the small to medium values of adverse pressure gradients
tested, it appears that steady flow separation is unambiguously defined by the vanishing of ekin friction.

The point at which this condition is met marks the beginning of a region of reversing flow and will be re-
ferred to in the sequel as the point of detachment. The detachment line forms a very small angle with respect




to the boundary of the body. In the flow visualization pictures the reversed flow region appears at first

to be filled with extremely slow moving particles. The term "dead water" is indeed very appropriate for

this region. A little further downstream the wake is activated and a few discrete large scale vortices
appear. The generation of such vortices may be due to the instability of the free shear layer which emanates
from the point of detachment. However, the present author feels that the exchange of momentum between the
outer low and the wake occurs much further downstream.

Two different types of separation have been distinguished in lfterature. Regular separation and
"catastrophic” separation. The first has been extensively investigated analytically via the asymptotic
analysis of the tripledeck. This theory holds for small disturbances of the flow with dimensions in both
the streamwise direction and its perpendicular that vanish with powers of the inverse of the Reynolds
number. Catastrophic separation, although not very well defined, in literature, is usually accepted as the
point where the flow decisively leaves the solid boundary and gemerates a wake of finite width. The sep-
aration line in this case is finite even in the limit of Rg + .

The data of Ref. 53 and 54 indicate that actually both types of separation are present in the neigh-
borhood of wake formation. "Regular" separation for steady flow coincides with the point of zero skin fric-
tion followed by a small region of very slow flow which is rather controlled and almost steady. Further
downstream the flow enters into a region of large scale vortices which could be identified as "catastroghic
separation. Considering the similarities of such flows with the description given by Sandborn and Liu®
we propose to use the term “"pre-wake region" for the domain between the point of detachment and the point
of catastrophic separation. In other words, pre-wake region is defined here as the region following the
point of detachment, in which the flow is reversed and very slow with no evidence of discrete large scale
vortices. For steady flow the pre-wake region is thin and has a length of not more than a few boundary
layer thicknesses.

Moving over now to unsteady flows and inspecting the data obtained in Ref. 53 and 54, we can make the
following observations. Basically the general flow patterns appear to be the same for steady and unsteady
flow. Perhaps the most important difference is that in unsteady flow the "pre-wake region" appears quite
often activated and usually much longer. In the thin separated region where the flow has decelerated to
near stagnation, apparently the unsteady pressure distribution often generates momentum which results in
well ordered reversing flow. For the impulsive changes tested by Koromilas and Telionis®3 the pre-wake re-
glon appears to be shooting upstream generating a very thin layer of reversed flow. This layer however is
totally embedded in the boundary layer and does not generate disturbances in the outer flow. The pre-wake
regions observed in Ref. 54 are not as clougated as those of Ref. 53. However, the excursions of the point
of detachment are longer than their corresponding quasi-steady flow counterparts.

In view of the evidence provided up to now, it appears that the point of zero skin friction, that is
Prandtl's criterion for separation, always signals the initiation of reversing flow and never the begin-
ning of wake, that is "catastrophic" separation. For steady flow the two points are very close together.
In fact it is pdssible thac for very large Reynolds numbers, the two points coalesce and the extent of the
pre-wake region tends to zero. However, for unsteady flow, the two points may be distinct.
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METHODS FOR INVISCID SUBSONIC FLOWS ABOUT UNSTEADY AEROFOILS

by
G. J. Hancock R. Doe
Dept. Aeronautical Engineering British Aerospace
Queen Mary College Filton Division
University of London U.K. Bristol U.K.

1. INTRODUCTION

This paper is intended to catalogue some of the numerical approaches which have
been developed for subsonic flows about two dimensional aerofoils. Such solutions are
useful in their own right, for aerofoil results are often used in strip theory approaches
in early design stages, but primarily these methods lay down the language and framework
for applications in three dimensions, to be described in later papers. In this paper
the flow is assumed to be attached, the boundary layer effects are neglected so the
inviscid equations are taken.

Although the distinction is artificial, if not misleading, this paper treats the
case of incompressible fluid flow first, and then secondly introduces the effects of
compressibility.

2. METHODS FOR INCOMPRESSIBLE FLUID MOTIONS

With incompressible fluids the velocity field equations separate from the pressure
field equations, considerably simplifying the problem. Assuming inviscid flow, the
basic equation is, taking fixed axes,

7?’%'%’0 (1)

where f is the perturbation velocity potential superimposed on a uniform free streamu;
the perturbation velocity components are

“'34 W= g_f (2)

soL,wWw tend to zero as *+ tends to infinity, The static pressure ‘P is then given by

Ptip [«lfu,)zf w"_] + F?g = Poat .ér,u’?@_‘g)”“ (3)

All methods for solution are made up from the superposition of singularity distri-

butions. The basic singularity solutions of eqns. (1) are:
source ﬁ - g Zn +
‘9
doublet with axis z - Ces (4)
- —— - e ——
in z direction ﬁ é ezt ,/:: +

vortex §\l - ;,":6
I

Consider an aerofoil at incidence o in stream of resultant velocity (.l
I1f the profile of a stationary aerofoil is given by

7,- f ) = LG ARV, (5

- i(x;) -1 - :“f(‘)/‘1

on upper and lower surfaces, where suffices ¢ and € refer to camber and thickness
respectively and x, is measured from serofoil leading edge. For an arbitrary motion
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of the aerofoil defined by wl) in the x

z Ua&\ u‘(e) direction, %@) in x direction and pitch
rotation €¢) about the chordwise location
X thenthe point (%,2,) on the profile be-

7' Q,Q') comes (X , { ) where
e U’ —ox XG.‘C)’ Lu.@-’)dt:' +@&-X YosGE) +2{x)5n 8) ©
Zlx) ~ fn{&')dt'fg(x‘)caa&)-é-i):u&@')‘

the boundary condition of adjacent flow
becomes

w(k,2)-[w) €008+ Usma _ 935,
U cose + w(X,2) "{“.&) v2, 66)) )Z‘ (7)

FIG. 1 .

At the trailing edge a Kutta condition holds, so a time varying circulation will be
set up about the aerofoil which in turn causes vorticity to shed and be convected down-
stream. At the trailing edge the flow velocities must be finite and the loading (i.e.
pressure difference) must be zero. Downstream of the trailing edge there must be zero
loading across the shed vorticity.

2.1 Steady Thin Aerofoil Theory

Linearised theory assumes that velocity perturbations are small compared with free
stream, that thickness effects (i.e. symmetric part of the solution) are superimposable
on camber and incidence (i.e. antisymmetric or 1lifting part of the solution).

For the lifting problem, according to linearised theory, singularities are placed
on the x axis (i.e. Zx= 0O, O<x<¢c ) and the linearised form of the boundary condition
of eqn. (7) is satisfied along the same line. Thus

({(«-3t) - r ¥(8)ds p@ds o [ ap(e)ds
3= | 2eG-9) A r(x-¥) A jx/oL((x-g) (8)

where XG) represents a distribution of vorticity, /A'«) represents a distribution of
doublets, and dp(f) represents the loading (i.e. difference of pressure between lower
and upper surfaces). The camber profile f.(x) can include the deflection of a
trailing edge control surface.

In eqn. (8) [f) can be regarded as(—A $(¥)) the discontinuity in § acCrossxro ,
and so /l'({) (= ¥(%)) is equivalent to (- ABHs)) . Nore O = lower —upper.

To obtain a unique solution of eqn. (8) the Kutta condition must be applied. In
this case it is

W) ~ pe) = Ap(d =0 ®

Listed below are some standard techniques of solution; all are collocation techniques,
the unknown iunction)/(l) is expressed in terms of a finite number of arbitrary constants,
eqn. (8) is then satisfied at a discrete number of (collocation) points along the chord;
the number of collocation points is the same as the number of arbitrary constants and

the locations of the collocation points are chosen to give an optimum solution.

(1) Superposition of continuous loadings“); assume
A N
o 46) o Ap()] = (o= A ¥ G)
Y(x-)[l*) p&)J (,_)I;.rr (10)
where XI("') are orthogonal polynomials with respect to((c-iyz)v‘ . The assumed

expression for X(L) satisfies the correct form at the leading and trailing edges.
Essentially




Y T T T .

P

12-3

YI(6)= % CGSCI___’”L_E dm &;‘l—cqs
Cos Gy < 2 (11)

and the collocation points chosen to give the most accurate answer are located at

(@) = %(l-cos(;%:_")x) (12)

With control surfaces eqn. (10) can be extended to include the appropriate singular
behaviour at the hinge line.

(ii) Superposition of piecewise linear functions; divide chord into N elements
then assume

16D - %@ +(EBTNVE D) D<nex®), TN (1)

where XCI)I.I5|,N*‘ are unknown constants. To satisfy the Kutta condition KOHV)
is zero,leaving N unknowné. And the N collocation points are (usually) chosen at mid-
points of elements.

Substitutbn of eqn. (13) into eqn. (8) leads to simple analytic integrals which lead
directly to the appropriate influence coefficients.

Method is reasonably accurate especially if non-uniform elements are taken with
small elements concentrated about the nose and tail, or around the hinge line of control
surfaces.

(i1iii) Standard vortex lattice method(z%divide chord into uniform elements, assume that
loading on each element can be represented by Dirac delta function placed at 1/4
(element length) from the leading edge of element, i.e.

) = Z_ ¥(@) § (- "-[CC ')'0253) I=iN (14)
Ted

Collocation points xCT) are taken at 3/4 .(element length) from leading edge of element,
i.e.

x(3) = &(ET“] ‘0'75) (15)

Substitution of eqn. (14) into eqn. (8) leads to trivial integration to give matrix
of influence coefficients A(3'I) where

AT, I) = [zx e (T-I +o. so)] (16)
When i(;,) is zero this method gives exact values for q_ and C. for any number of
elements, even when N*1. When j:(;) is not zero a reasonable number of elements are

required for acceptable accuracy.

For a trailing edge control surface the above method can be applied but the tan-
gency flow condition in the element containing the control surface hinge line should be
smoothed out over the element before taking the appropriate conditions at the collo-
cation point.

(iv) Modified vortex lattice method due to Lan(s), who shows that for the locations

«@) = 4 [l-cu@%ﬁ.]

' (17)
x(T) = 3 [‘-c“%‘] !
eqn.(8) ¢an be integrated by trapezoidal rule
N X
2 -l ¥x) [ <@)(1-20)]
W é),‘,,.m NE mam W aw
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Furthermore the leading edge thrust is given by

xp [u(«-éfz)“ . L 3y "=J

For N22 and xc(x) equal to zero the values of Yﬁ)’ C"l C” and leading edge thrust
coefficient are exact.

There are solutions of eqns. (8)(4’5) which are not strictly collocation solutions
but solutions based on variational principles. From a numerical analysis viewpoint all
numerical solutions of eqn. (8) can be interrelated.

Perhaps it is pertinent to point out at this point an aspect of terminology; in
structures, finite element methods are always via variational procedures whereas in aero-
dynamics finite element methods are invariably collocation methods.

2.2 Unsteady Thin Aerofoil Theory

On linearisation the unsteady lifting problem can be simply superimposed on the
steady thickness and lifting problems; again with the linearisation approximations
the singularity distribution and the boundary conditions are all placed on the %=
axis. Thus taking the linearised form of the boundary condition of eqn. (7), taking

u,d:) to be zero and extracting the steady condition, then
[-%x0,6)] = -n€) +@-2)66) + L 6.6
= S ¥(s.€)ds , (20)
o 2&'(;-—3)

Now, from Bernoulli's equation,

AP():)G') = ‘/ouéix(df) - ?;.gf. "/J(/( KGIC) +/Of a_j_iﬁ_e)dz'

(21)

Across the wake AP is zero, hence for Xx >e¢
X(X)E) = X(c {:—&c.)) (22)
Thus the basic equation to be solved for z&tl_notion commencing at t = 0, is
e Ce
[ - _ CE-
~w(x,0,¢) = J. _)__b’(!,e dy ¥ (e, € G(,TC))JS

Ix(a-¥) 1 I (=-3)

osxsc; £>0 (23)

subject to the Kutta condition

e
.
u X(c,e) + 2 ‘(x,('f)dx =0
¥ J, (24)
And where the loading is then given by eqn. (21).

Eqn. (23) can be solved by extending the methods of solution for the steady problem
(listed (i)-(iv) in Section 2.1), solving eqn. (23) at successive intervals of time.
In particular:

(1) the representation of 1('5, e) by piecewise linear distributions in N
chordwise elements is numerically straightforward; the steady influence co-
efficient matrix still applies (for the first integral of eqn. (23)) while
the integration of the second integral is direct based on values of ¥(c)
determined at earlier times;

(i1) the vortex lattice method can be generalised; denoting the discrete bound
vortex at station ¥&) , and time &, as T,C(I) ; then taking the incre-
ments of time interval as (c/uN) (1.e. the time taken for the free stream
to pass the length of one element) each bound vortex has a 'wake' of shed
discrete vortices located at 1/4 point of each downstream element, both on
the aerofoil chord and aft of the aerofoil as shown in Fig. 2.
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For oscillatory motions the problem simplifies. Taking

YD =¥(De"™ wtx0e) =)™ ap(ge) = Bp€)e™
then
_ < — 0 _wk-X)
~Wk) = J I®ds | Fey J < Uy
, 2x(x-X) L 2c(x-¥) (25)
subject to the Kutta trailing edge condition of zero loading
— c
(,( Ye©) + iw j‘ §(x)dx =0

o (26)

The integral from @ to oo on right hand side of eqn. (25) can be reduced to standard SL
and C¢ functions.

Now, from egn.(21),

— x _
&;’(.1) - f)“ Y(‘L) +/°(,._JL x(xl)cl;l -
thus
v/, il . X e,
/Ja Y(;) = Ap(x) "ca_w J- e %(d;(’S)JS (28)

Hence eqn. (25) can be written in the form

TG = r 4pcs) oo (29)
5 ] ‘L(‘pc K(x,3.c)ds

where K(x) S} L.,;,) is the Kernel function given by
—io(S-E)
K(x, S i) = - -t | e de’ (30
Ax(x-%) a PR D)
iy ) §

The various methods listed for the steady solutions in Section 2.1 can be extended
to the oscillatory case.

(1) Superposition of continuous modes for tﬁ(s) , applied to eqn.(29); the same

modes are chosen as those given by eqn. (10); the integration of the influence

coefficients needs to be done numerically;

(11) Assumption of piecewise linear variation in elements; if eqn. (25) is to be
solved, the influence coefficients derived for the steady case can be applied
directly to the oscillatory case; if eqn. (29) is to be solved, the integra-
tions are not so straightforward.

(i1i) Unsteady vortex lattice method is the representation of the aerofoil vorticity
and wake vorticity in terms of discrete vortices; for each bound vortex at the
1/4 point of each element there is a wake of vortices, applying the arrange--
ment of vortices as shown in Fig.2 to the oscillatory case;

(iv) Vortex doublet method assumes that AF(!) is represented by discrete Dirac
delta functions, 1i.e.




12-6

—_ N
ApCe) = 2_ 4p) §(s-3@)) ; S@) - < (C-1) +0.25) ,I=iN
I=1
which when substituted into eqn.(29) gives

[—'Ci(x(:n)} = [l((:-(‘f)) 5@){ Lw)] { %)I x@) ‘/‘\Ic- <Q-‘l)f0.75)) TN 32)

In this case the Kernel function can be evaluated in terms of S(. and CL functions.

(31)

2.3 Steady Thick Aerofoil Solutions

The problem is to solve the perturbation velocity potential equation
T3
V¢ o (33)

subject to the adjacent flow boundary condition

(Usines + 2 )m = (Uses + 36 ) g;{ -

PR 2= o)

Again a Kutta condition at the trailing edge is required.

Essentially singularities are distributed over the aerofoil profile and the condition
of tangential flow,eqn. (34), satisfied at discrete points on that profile. Different
combinations of source and vorticity (i.e. doublet) distributions can be taken.

The standard numerical approach is
associated with A.M.0. Smith and his co-
workers(e). A variant of the method is
shown in Fig. 3. The profile is divided
into N elements; on each element is placed
a uniform source distribution @¢l), I=LN
which varies from element to element,
and a uniform vorticity distribution ¥

/
eement3

ement 1 which is the same for all elements. Thus
there are Nt1 unknowns; there are N
linear equations of tangential flow (i.e.
FiG. 3 ean. (34)) which are satisfied at the mid-
point of each element and the Kutta condition
usually taken to be equal pressures at the midepoint of the trailing edge elements 1 and
N . Alternative forms of the Kutta condition have been taken, e.g. that the flow leaving
the trailing edge follows a bisector of the trailing edge angle.

There are improved versions of the above A.M.0O. Smith method incorporating polyno-
mial variations in the source distributions in the elements.

The A.M.0. Smith method gives reasonable results but loses accuracy for thick highly

cambered aerofoils and the method tends to break down as the thickness of the aerofoil
becomes small.

Alternatively singularities can be placed along the mean camber surface(7l Such an
approach is powerful, and recommended; for comparable accuracy with the standard A.M.O.
Smith method, the number of elements can be reduced; furthermore the answers are not
sensitive to the location of collocation points on the surface. Interior singularity
distributions can be applied to thin aerofoils.

2.4 Unsteady Thick Aerofoil Solutions

The problem is now the full problem initially postulated, solving the Laplace dif-
ferential equation, eqn. (1), for the velocity potential § to satisfy the boundary
condition expressed by eqn.(7). The A.M.O. Smith has been extended to this unsteady
motion.

——— —————

——————
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There are three approaches depending on the degree and type of unsteadiness.

If the unsteady perturbations are small about some mean state (e.g. small amplitude
oscillations about a mean state), then following the A.M.O. Smith technique 2 uniform )
steady and uniform oscillatory source distribution are assumed on each element
(GKIX GJI)eﬁdi.I*ghl) the strength varying from element to element, and a uniform
steady and oscillatory vorticity distribution (U; ﬁ,C“Qt) which are the same for
each element. A known distribution of shed vorticity is placed along the mean stream-
line emanating from the trailing edge; the steady and oscillatory boundary conditions
are satisfied at the mid~point of each element. The oscillatory equations involve the
steady solution and so there is coupling between the steady and oscillatory solutions.
There 1is some ambiguity in the application of the Kutta condition. Only one condition
is required to make the oscillatory solution unique. One solution is obtained by making
the velociti~s at the trailing edge finite; another solution is obtained making the
loading at the trailing edge zero; the difference between these two solutions arises
mainly in the neighbourhood of the trail: g edge. Results of this approach are given
in reference 8.

An extension of the above approach when the aerofoil is again oscillating with
small amplitude about some steady state, is to place all of the singularities on the
steady profile, but expressing the boundary conditons on the steady profile in terms of
a Taylor expansion from the boundary conditions on the actual displaced surface. Such
an approach would be consistent with the inclusion of a boundary layer calculation using
the so-called surface transpiration boundary condition to estimate the outer inviscid
flow.

The third approach is for the general unsteady motion. At any instant of time a
source distribution and uniform vorticity distribution can be placed on the instantaneous
profile. The modelling of the wake needs care especially if both conditions of finite
velocity and zero loading are to be satisfied (and lead to the accuracy of the numerical
modelling). Giesing(g) modelled the wake by discrete (convecting) vortices but only
satisfied the trailing edge condition of finite velocities; Basu and Hancock(lo) again
modelled the main wake by discrete vortices except for the wake just downstream of the
trailing edge, there the wake was represented by an element of uniform vorticity but the
element length and its direction were estimated as part of the calculation to ensure both
finite velocities and continuity of the zero loading condition from the trailing edge of

the aerofoil into the immediate wake.

3. EFFECTS OF COMPRESSIBILITY

At speeds below the critical Mach number, the flow outside of the boundary layer
remains isentropic and irrotational and a perturbation velocity potential f exists,

Compressibility causes the differential equation for f to become non-linear. It
however second order terms are neglected then the standard linearised form emerges,

S em s e s i meiia
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1200 06 _2Md6 L D¢ _ (35)
fd 8 - ande 1 B o

a/ _ri M tYh
where the coefficient of 3‘@62_& , namely /@c (‘(/ M) ) is valid as long as
2 L3
O SR _é:_,—-; ; (36)
T @-20-¥)M2)
there are slightly different versions depending on how the linearised eqn. (35) is
derived. Eqn. (36) indicates how close to the transonic regime eqn. (35) can be

applied before eqn. (35) becomes invalid.

Compatible with eqn.(35) there are first order expressions for pressure and
density, namely

P-F..e-/,u;ag -/ogg (37)
- " N*9¢ _a
L[ u:?“/a"'(ﬂ" t{i .&‘_) (38)

oo Ooa’

It should be recognised that a first order variation in density exists, this fact can
cause difficulties not so much in the calculation of linearised lift distributions as
in the calculation of induced drag which is a second order quantity(ll).

3.1 Steady Motions

For the steady lifting problem the basic equation is for the perturbation velocity

potential
/@.: ‘%fg \ ‘g.:!, =0 (39)

The consistent coundary condition is the linearised boundary condition (i.e. linearised
to the same extent as eqn. (39))applied on the plane zx=o ,

b} - - 'afc O<x«c.
glz:., e 5> ) (40)

The solution of eqn. (39) satisfying eqn. (40) is obtained by a trivial transformation
to an incompressible problem.

However it is fairly common for solutions to be obtéined to eqn. (39) satisfying
boundary conditions of tangential flow on a thick aerofoil profile. Such a solution
is not altogether satisfactory because of the inconsistencies in level of approximation
between the basic differential equation and the boundary conditions. In fact there
are two possible boundary conditions. One boundary condition is to take the velocity
component normal to the aerofoil surface equal to zero, the other boundary condition
is to take a linearised form of the component of mass flow normal to the aerofoil sur-
face equal to zero, taking into account the variation in density; these two boundary
conditions differ somewhat especially around the nose region. For the thick nrofile
egn. (39) can be solved either by transformation to an incompressible problem with a
transpiration boundary condition on the transformed profile, or directly by superposi-
tion of 'compressible source and vorticity' distributions (these are of interest in
that a 'compressible vorticity' distribution, i.e. one which satisfies eqn. (3), at a
general angle ~ inclination to the X axis induces both circulatory and source--like
motions.

3.2 Oscillatory Motions

The problem is to solve the unsteady eqn. (35) subject to a boundary condition
such as

tiveminit Sl

PR
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. - ot
- € : - ] el
[—w(x)t _1 - [u*"“(" x)|Oe (41)
for an aerofoil pitching in simple harmonic motion with amplitude 6 about an axis located
at A=E2Xo |
The basic linearised solution then follows directly from the earlier lecture
‘Some Features of Linear Compressibility' combining eqns. (37, 39) from that lecture to

give
vy _(,H_.u(f-a.)
. -5l
G0 - ﬁ__‘:. de é {./,,(s)e Gl '_,‘-;H wlx 5/)(&.:/:. f)
g €. oS 2 /5 D 42y 1
The doublet distribution ép/ﬁg' is simply related to the loading distribution via f
eqn. (28) . Substitution into eqn. (42) leads to the standard Possio equation. E
—w(x) 4_&____ K( f’ Moo )d.g gaf 22§ yaws !
v, AR AN/ S € ) 1
where

K(€ v, M) = e’—w![“',g{;;:/il He)(v” /I/) # (‘)(VH /3’/)}
1

Mv/&(—é) L—‘Zg/ /g‘u‘//@)(ﬂ /a()du] i

Numerical methods of solution again follow those outlined previously

(i) Eqn. (42) has been solved, assuming linear piecewise variation for
in each chordwise element, satisfying the appropriate Kutta condition.

(ii) Eqn. (43) has been solved by superposition of continuous modes for
z
(dpeo/50%)

(iii) Egn. (43) has been solved by representing (Ap(l)/a ) by a number of
discrete Dirac delta functions at the 1/4 point of chordwise elements
(i.e. vortex doublet method).

3.3 Arbitrary Motions

For arbitrary motions the basic equations are essentially evaluated in the lecture
'Some Features of Linear Compressibility' simply modifying eqn. (32) (in that lecture)
to account for the free stream according to eqn. (49) (in that paper) leading to an
equation similar to eqn. (36) (in that paper). Little numerical work appears to have
been donme on general arbitrary motions although a fair amount was done on indicial
functions' some time ago(l1
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ANALYTICAL METHODS FOR PREDICTION OF UNSTEADY LAMINAR BOUNDARY LAYERS

by

D. P. Telionis
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Oscillatory boundary layers have been investigated at first via asymptotic expansions in terms of
small parameters like the amplitude or the frequency of oscillation. The pioneering work of Lighthill,
Moore, Lin and others is reviewed and subsequent more sophisticated expansions are described. In the last
decade a large number of numerical investigations have appeared. Explicit, implicit methods as well as the
well known box-method are described and their relative performance is evaluated. Typical examples are com-
pared with classical experimental data. The definition of unsteady separation and criteria for its predic-
tion have generated a lot of interest in the last decade. Analytical methods will be discussed for the
prediction of unsteady separation. There 1is still some disagreement on this point with respect to the
appearance of the separation singularity. The arguments of both points of view will be presented.

1. INTRODUCTION

For many decades, the analytical investigation of fluid mechanics was essentially a mathematical
exercise with no significance whatsoever to practical applications and engineering. In fact, at that time
most design engineers were not even aware of the results of potential theory, the theory of sound, etc.
More careful theoretical modeling and in particular the development of boundary layer theory at the turn of
our century have allowed the theoretician to consider more realistic problems. For many more decades to
go, analytical investigations had rather academic character.

The need for convergence between experiment, practice and theory was at that time becoming obvious.
Indeed, the development of boundary-layer theory has helped to decipher many of the peculiar effects of
viscous flows, and essentially contributed in the education of generations of experimentalists and
practical engineers. Still, and until very recently, the mathematical tools have prohibited theoreticians
from calculating realistic flows immediately applicable in practice. Only in the last decade or two it
became clear that modern computing machines can be used to calculate complicated flow fields, perhaps re-
place the wind tunnel with numerical experiments and become an important tool in design.

A breakthrough in the theoretical investigation of complex models like the Navier-Stokes equations was
the development of asymptotic methods. Rayleigh's' and Prandtl's? pioneering works represent early versions
of perturbation methods. Such methods have been used extensively since then and most recently were formal-
ized into theories.3’%’5 Perturbation methods have also proved invaluable tools in numerical analysis,

They provide simple test cases for comparison, they are available to explain the sometimes erratic behavior
or the computational results and usually provide data in such regions where numerical calculations are
prohibitive. Finally, perturbation methods have been used quite extensively in combination with numerical
methods .

The first part of this paper contains a short description of perturbation methods used in the develop-
ment of unsteady boundary layer theory. This is followed by basic concepts in the application of numerical
methods to unsteady viscous flow problems. A very interesting and novel approach of calculation based on a
Lagrangian formulation is also briefly outlined. Finally, in the conclusions, some general comments are
included and in particular, the results of many recent developments in the theory of unsteady separation
are discussed.

This paper is only a short outline of material which has been extensively reviewed very recently. For
the sake of brevity it was even decided to omit in most cases the explicit expression of initial and
boundary conditions. The reader is referred to Refs. 6-17 for a more detailed description of different
topics and a more complete list of references. A monograph on the same subject is also about to appear.

2. ASYMPTOTIC THEORIES
There are two basic methods of perturbations by expansion in fluid mechanics: coordinate expansions
and parameter expansions. The first is perhaps more common in the early developments but the second appears

to have gained the trust of many investigators and has essentially dominated the field in recent years.

A typical example of a parameter expansion and historically the most significant is nothing else but
boundary-layer theory. The boundary layer equations

Juk vk

axk T age = 0 )
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can be considered as the approximate form of the Navier-Stokes equations in regions next to solid boundaries.
In Eqs. (1) and (2) u*, v*, 5*, and y* are velocity components and coordinates parallel and perpendicular

to the wall, respectively, Ug, t* and v are the outer flow velocity, time and viscosity respectively.
Alternatively this set can be viewed as the set of equations that the first term of a coordinate expansion
satisfies: 1/

q(x,y,t) = qo(x,)'.t) +R qu(lent) + O(R-l) 3)

1/2

In Eq. (3), the Reynolds number R is assumed to be large and R has proved to be the appropriate

parameter in the asymptotic expansion. Inner and outer expansions and stretched coordinates are intro-
duced as described in any classical text.




A tgpical example of a coordinate expansion can be found in the theory of unsteady boundary layers.
Blasius!? and later Goldstein and Rosenhead?? and others, investigating the early stages of an impulsively
started flow, seek a solution to Eqs. (1) and (2) in the form of an expansion in powers of a dimensionless
coordinate t, the time.

2
u u +t u1 +t u, + ... %)

1/2 R-1/2(

vt +edv, 4 ... (5)

2 2

vhere the quantities u,, Vis i=1,2,..., depend on x and y alone. The idea of course 1s to eliminate one
of the independent variables and this is indeed accomplished. The only difference in these sclutions 1is
that the problem is worked out in terms of similarity variables. The analysis indicates that the convec-
tive terms of the momentum equation are negligible for small times and that the Lagrangian scceleration
balances directly with the diffusion terms. It is interesting to note that the problem can be formulated
also in terms of a parameter expansion. To this end it is necessary to identify a small time scale to»
perhaps characteristic of the duration of the early stages of the motion. Two dimensionless parameters
can then be identified: the Strouhal number and the Reynolds number.
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(6)
where U. is a typical velocity and L a typical length of the problem. If dimensionless and stretched

variables are introduced
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The scaling of the different terms now is brought out and expansion in powers of the constant parameter
87" yields essentially the same set of equations derived by Blasius.

Another classical example of coordinate expansion is the solution to the problem of oscillations with
no mean . If the outer flow oscillates harmonically,

*
b - uelet (12)

then the boundary layer response is again a harmonic oscillation. In this case, if the quantities U, 0-1
and L with U say equal to U3(L), are used to render velocities, time and length dimensionless respectively,
then Eq. (2) becomes

du u, 3w _dp .1 2%
T e[“ R ax ¥ Ry ay2 a»n
where 2
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Riley21 proposes a solution in the form of a double expansion
it 21t 2
a(x,y,t;€,R ) = q (x,y;R Je " + € g, (x,y;R Je" = + € q (x,y;R ) + 0(e%) (15)
where q stands for any dependent variable and each term may in turn be expanded:
- -1
9,(x,¥3R ) = q  (x,9) + R “q_;(x,y) + ... . (16)

The original analysis of course is much more involved and Riley identifies four different categories depend~
ing on the magnitude of the dimensionless parameters. For each case stretching of the coordinates and
introduction of inner and outer variables is necessary. In fact the original analysis is based on the full
Navier-Stokes equations and at each step approximate equations are derived. In this short presentation we
confine ourselves to a few basic remarks:

Expansions of the form given by Eqs. (15) and (16) require special attention because the relative
magnitude of the small parameters € and R~l must be defined before one could proceed to collect terms of
powers of such parameters. One of the most interesting features of the expansion of Eq. 15 is the steady
term Yg. The nonlinearity of the governing equations gives rise to steady terms of order € which generate
a steady flow familiar to investigators as "steady streaming" or "acoustic streaming." The streaming flow
is characterized by a streaming Reynolds number which Stuart has recently identified: Ry = v2/wv. For a
large streaning Reynolds number, two thin layers can be identified. The Stokes layer and the streaming
layer with thicknesses of order vv/w and L{wv)! 20'1, respectively. The Stokes layer drives the steady
streaming via the nonlinear terms. What is most interesting is the fact that at the edge of the Stokes
layer the streaming velocity does not vanish. 1Its value matches in the sense of inner and outer expansions
with the inner solution of the outer flow. A second and thicker boundary layer thus develops as shown in
Fig. 1.
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Moving on to oscillations about a nonvanishing
mean, consider an outer flow velocity distribution
given by

% *
vk = v} + e vlelt an

where € 18 a small dimensionless parameter representing
the relative amplitude of the oscillations.
Lighth111?3 expands in powers of € and derives a set
of equations that govern the steady and unsteady part
of the motion. To solve the equations thus generated,
Lighthill expands again in powers of frequency or its
inverse. The problem is therefore again formulated

in terms of a double expansion. The joining of the
two Lighthill solutions for large and small values

of the frequency have been investigated by Rott and
his co-workers and later by Ackerberg and Phillips.2%
It was identified that a basic similarity characteris-
tic we can combine in one variable the frequency and
the coordinate x. Introducing dimensionless

> ¥ariables

t=wtk , x= mx*/Um s ¥y = (m/v)l/zy* (18)

u=ux/y_ , v= v*(mv)-l/2 19
Fig. 1 Schematic sketch of Stokes and streaming we can rewrite Eqs. (1) and (2) in the forms
layers.
du v
ax 3y (20)
du Ju Ju e Vg 32u
e tia Y 3y ~ 3t T ledx * o2 21)

It is noted that large values of x now correspond to either large values of the physical distance x* or the
frequency w. Solutions are sought in the form

it
a=~gq + € q,e (22)
where for a flat plate q, = q5(n) and q1 = q1(§,n) with
E=x , n=y/V2x (23)
For small values of £, an expansion in powers of £ is introduced:
2
9 qlo(n) + (21E)qu(n) +0(E)° + ... (24)
For large £ the situation is more involved. Ackerberg and Phillips identify the necessity for two
layers, one next to the wall and one away from the wall. They further expand in powers of 5'1 and appropri-
ately match the inner and outer solutions.
A more straightforward approach is to combine asymptotic methods with numerical computations. Retain-

ing the expansion in powers of € we essentially reduce the number of independent variables from 3 to 2.
The resulting set of dimensionless equations has the form

order €9: ;Eg.+ %;2.. 0 (25)
ug ;;9 + v, %;g = U, %gg + %;;2 (26)

order el:
;:%+%-o 27
iu1+u02%+u1—:-:—q-+vo%+vl%-U°:—2L+Ul~;%"+:—z% (28)

These equations can now be solved numerically in the two-dimensional space. Ackerberg and Phillips2®
have carried out such calculations and later Telionis and Romaniuk?® have extended the work to include the
effects of temperature and heat transfer. The method is only restricted to small amplitudes of oscillations.
However arbitrary body shapes and frequencies can be considered since the equations are solved numerically
4in the x~y space. Moreover, the method is readily available for three-dimensional calculations.

Figure 2 displays the amplitude of the velocity fluctuation for a moderate . It is true that this
quantity exceeds the amplitude of the driving external flow. However, this does not mean that the
instantaneous boundary-layer velocity exceeds the corresponding outer flow value as McCroskey (private
communication) pointed out to the author. In Fig. 3 we have plotted the phase of the velocity as a
function of the parameter §.




Fig. 2 Amplitude of the velocity fluctuations at £ = 2,844,
Uo = 1 - 0.0035 &2 ——, Ref. 25, o; experimental
and —+——, numerical results of Ref. 26; — — ~
calculated by the method of Lighthill.2}

3

Fig. 3 The skin friction phase as a function of the
frequency parameter £: — — —, Lighth111;23
o e, exact numerical; for references, see Ref., 25,
—, asymptotic expansion.

3. NUMERICAL METHODS

Purely numerical computations of un-
steady boundary layers are straightforward
extensions of steady flow methods, with the
exception of reversing boundary layers or,
separating flows. The well-known diffi-
culties due to nonlinearities are still
present but this is not the topic of the
present paper. In most cases the nonlinear
effects are treated by linearization and
iteratious. Established methods of solution
as for example implicit and explicit finite
difference algorithms or the box method have
been extended to unsteady flow.

The unsteady two-dimensional boundary-
layer equations are parabolic in character,
with time t and axial distance x as gatabolic
variables. The domain of influence?’:28 of
a point Xosto is extended in a downstream
wedge with side walls defined by

e ulxyget) s te=t, (29)
where u(xp,¥g,ty) is the maximum velocity
at the point x,,t,. Disturbances propagate
in the direction perpendicular to the wall
instantly. The message from a point there-
fore travels instantly up to the edge of the
boundary layer, then convects downstream
with the speed of the outer flow and moves
again down to reach any point at an x-
station instantly. The speed of propagation
therefore is equal to the speed of the outer
flow.

A stable algorithm should satisfy the
Courant-Friedrichs-Lewy criterion. This
criterion states that the local net of
numerical influence at each grid point of
the numerical scheme should contain the
domain of influence of the point.

The most common method for the numerical
calculation of unsteady flows is to convert
the system to a set of steady flow equations
and then use a steady flow algorithm. This
is easily accomplished by writing the time
derivative in a finite difference form

u . u-u

ryy v (30)
where u, is the value of the variable at the
previous time plane. The method fails in
regions of reversed flow. At such points
the unsteady boundary layer equations
are free of singularities. However a
straightforward extension of steady flow
algorithms runs into a "forbidden" region.
For two-dimensional steady flow the Courant-
Friedrichs-Lewy criterion is violated in
such a region. A more careful consideration
of the three-dimensional grid indicates
that an appropriate differencing scheme can
be devised to permit the integration through
regions of partially reversed flow. In
terms of the notation of Fig. 4, two finite
difference schemes suggested and tested are
as follows:!3,

n~1 n-1 n n
2u; Ytk Ymk , Ymk ” w1k (g

ax 24x 24x

un-l un
2u; Ttk ~ Tmk
3x Ax (32)

s
In the above equations uiég denotes the
e

value of the function at grid point




Xy Yj' tg.

Keller28 proposes a more direct method inte-
grating directly along the subcharacteristics, that
is along the boundary of the domain of influence.
Based on the definition of the Eulerian operator he
suggests that

n-1,k n-1,k n~-1,k

(33)

where m and n denote grid points as shown in Fig. 4,
and Q is the intersection of a backward subcharacter-
istic with the mesh. In this way the box method can
be modified for calculations of unsteady reversing
flows. It is recalled here that the method is based
on the idea of reducing the problem to a set of
ordinaty differential equations by introducing a new
! dent variable, the velocity gradient t = 3u/dy.
All derivatives can then be expressed in terms of
values on the sides of a three-dimensional box.

Grid notation for the plane y = yj of Keller evaluates the convective derivative at the

the three-dimensional domain x,y,t. mid-plane k - 1/2 of the box and writes the finite
differencing form of the momentum equation as
follows

n

n
Y k-1/2 ~ Yo, k-1/2 _ [@1 21]PY2 PQ/2  [p,)PQ/2
- ) S R A [s] et

At ax
m

k-1/2 k-1/2
where PQ/2 denotes evaluation at the midpoint of the segment PQ. In the above equation, brackets demote
a difference between evaluations at the upper and lower index.

4. DISCUSSION - UNSTEADY SEPARATION

The methods described in the previous sections have been quite successful in predicting fluctuating
laminar flows. Controversies only arose with respect to the accuracy and efficiency of the methods or
perhaps their mathematical rigor. The reader can find extensive accounts of numerical results in the
review articles referenced here. In this section we will be concerned with a specific problem which most
investigators tested their method against: unsteady separation.

There is significant difference between unsteady separation and other problems in unsteady viscous
flows. Separation is by definition the point at which the boundary layer approximation breaks down, since
the actual flow breaks away from the wall and ceases to follow the solid boundary. The problem of unsteady
geparation therefore is not just another problem to be considered by a new method. The difficulty lies
in the fact that correct interpretation of the results of an inappropriate model , the boundary layer
equation, may give information about the actual fluid flow or equivalently the behavior of the full Navier-
Stokes equations. Whether this is possible altogether, is not yet proven. However, most investigators
accept the fact that the boundary-layer equations contain information about the extent of their validity,
for steady as well as unsteady flows.

The early work on unsteady separation hinged around two basic ideas due to Moore, Rott and Sears. 15,16
The first was a conviction that steady separation over a moving wall could be mapped to an unsteady
separation over a fixed wall. The second idea was the criterion of separation for the first case, the
MRS criterion

%3'- 0 atu=20 (35)

Details on this material, the reader will find again in the review articles referenced here. The

discussion in this section will favor the more recent analytical developments on the topic.

It is well known that the boundary-layer equations exhibit a singular behavior at the point of vanish-
ing skin friction. Since the actual flow turns sharply away from the wall at the point of separatiom, the
normal component of the velocity should be indeed expected to blow up as separation is approached. It was
argued that the singular behavior is in fact a property that accompanies unsteady separation2? and not the
point of zero skin friction. In fact, Sears and Telionis propose as criterion for separation the
appearance of this singular behavior. It is emphasized here that numerical instabilities are encountered
as the point of the Goldstein singularity is approached. However, the progressive inability of the
numerical scheme to converge is well ordered and it increases as the point of separation is approached.
Moreover, it is accompanied by substantial growth of quantities like the normal component of the velocity,
the displacement thickness, etc.

Numerical calculations39=32 of unsteady flows based on an implicit finite-differencing scheme indi-
cated that in unsteady flows, integration can proceed through the point of zero skin friction without any
evidence of singularity. For flows that become progressively more adverse, a traveling singularity was
discovered30-32 fyrther downstream of the point of zero skin friction. The box-method was also employed
in numerical calculations of laminar separating flows but with contradictory results. These methods of
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computation were briefly described in Section 2.

Quite often numerical codes developed and extenlive1§ tested for steady three-dimensional calcula-
tions were converted to an unsteady two~dimensional form. 4-36 Thig 1s easily accomplished by setting
the third velocity component equal to one, dropping the second momentum equation and {nterpreting the
third space coordinate as time. Some modifications are also necessary on the pressure gradient terms and
the boundary conditions.

New methods were introduced recently, especially for the purpose of studying unsteady separation.
The first is due to Williams!6,37,38 and his co-workers and is essentially a self-similar method. A new
coordinate system that travels with the speed of separation is introduced. In its most simple version,
the dependent and independent variables are transformed according to the expressions

x=x +J.Us(t)dt , y=y , t=c¢t (36)

u=u+ Us s v=v  , Uy =Ug +Ug (37)

where Ug(t) is the velocity of separation and the transformed quantities are denoted by an overbar.
Williams and Johnson37,38 discovered a class of outer flow velocity distributions, that under the trans-
formation (36), (37), result in a problem of steady flow over a moving wall. Shen's more recent work!7
proved that the class of problems discovered by Williams and Johnson contains in fact all possible un-
steady separating flows. With steady separating flow over downstream moving walls well understood and
documented,37,38,39 the significance of the contribution of Williams, Johnson and Shen is obvious. It
proves that all unsteady separations are accompanied by a singularity.

In an alternative approach Shen and Nenni“? approach the problem from an asymptotic point of view
focusing attention on the behavior of the v-component of the velocity at the outer edge of the boundary
layer. They base their definition of separation to the ummatchability condition and apply their method
to weakly unsteady flows. These arguments,17-37s39»“° although mathematically sound, may not be as con-
vincing as engineers may expect. It remains to demonstrate that this is the behavior of an unsteady
boundary-layer solution integrated step by step from a leading edge or a stagnation point. This has been
attempted by quite a few investigators and their results will be outlined here.

Two basic types of problems have been considered. In the first, it is assumed that steady separating
flow has been established and the point of separation is therefore characterized by a vanishing skin
friction and a Goldstein singularity. At t = 0 a disturbance on the outer flow distribution, impulsive or
transient, is introduced that would force the point of separation to move to a new position. The problem
is then to follow separation as it moves from its initial position and travels towards its final position.
In the second problem the initial flow is free of separation. A change in the outer flow distribution is
then introduced such that separation is induced. 1In the first problem separation and its classical steady
flow properties are the starting point of the calculation and its subsequent unsteady development is
sought. In the second problem, the initial flow field is not separating and the emergence of separation
and the singular behavior 1s investigated.

a. The Displacement of Separation

This problem was considered first by Buckmaster"! who introduced an asymptotic analysis around the
point of zero skin friction. In an attempt to investigate the development of the separation singularity
in time, Buckmaster further assumed a small time approximation. He found that at least for small times,
the point of zero skin friction moves upstream but the position of the singular behavior is unaffected.
Thus, a traveling point of zero skin friction leaves the initial singularity behind.

A direct numerical calculation of such a problem was reported by Telionis, Tsahalis and Werled? who
consider ag an initial steady flow the Howarth flow which involves a linear deceleration of the outer
flow velocity and separation at the station x = - 0.120 dUe/dx. The outer flow distribution is assumed
to switch impulsively from one linear distribution to another:

Usg = 1 - Cyx for t < 0 (38)
Ug=1-Cx fort>0 (39)

with C2 > Cy. Numerical calculations indicate that the point of zero skin friction is displaced very
quickly upstream, moves slower downstream and eventually starts propagating again upstream towards the
final position of separation (see Fig. 5). 1In contrast, the position of the singularity is not affected
at all by the drastic changes of the outer flow, in qualitative agreement, at least for small times with
the analytical results of Buckmaster.“! This inertia-like behavior of unsteady separation has been veri-
fied experimentally as described in Ref. 42. At later times, the calculations indicate that the
singularity starts moving, very slowly at first, preceded always by the classical symptoms of separation,
as for example, gradual but decisive growth of quantities like v, %u/3x, &, etc. According to the spirit
and definitions of Ref. 29, the physical interpretation of these results is the following. Immediately
after the impulsive change of the outer flow conditions, a thin layer of reversed flow shoots upstream,
beneath the attached boundary layer and then downstream again,until eventually it begins a slower propa-
gation towards the final position of separation. At about that time, separation begins to move upstream
slowly at first, and then at a moderate rate, until eventually both points merge smoothly but asymptotically
to the point where separation is calculated for the steady flow that corresponds to the outer flow given
by Eq. (39).

The same problem was considered most recently by Wungas who converts his computer code from a three-
dimensional to an unsteady two-dimensional computational scheme. In three-dimensional boundary-layer
flows it has been argued and numerically demonstrated that a separating line on the skin of the body is
also the envelope of skin friction lines. In a coordinate system x,y,z, where y = 0, defines the skin
of the body, the family of skin-friction lines are given by
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= 1n ¥ . MY (40)
h_dx u  3u/dy 70

where h 1s the scale factor for the co-
2.6 ordinate system.

Wang36 proposes to search for similar
topographical patterns in the plane x-t for
separation unsteady two-dimensional flows and defines
separation as the line in time, t, and
———— zero skin space, x, which is the envelope of curves
friction defined by a formula analogous to Eq. (40)

24
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- (41)

2.0

\\\ K Results for the unsteady Howarth prob-
v ‘\\<:: ;:ii:?isgg 181 lem are shown in Fig. 5. There is an un-
1.8F e 8 - acceptable discrepancy in the scale of time

TS — —- - 174 between the results of Refs. 30 and 36.

£ .32 This is indeed puzzling, since calculations
Telionis & Tsahalis by the same authors of other problems, as
1.6 for example the impulsive start of a circu-
k lar cylinder, are in excellent agreement,

at least with respect to the location of
L y 2 1A a t the point of zero skin friction and its up-
0 10 20 30 40 stream displacement in time. Moreover,
discrepancies are also obvious in the loca-
tion of the initial and final positions ‘of
separation. The first group of discrepancies
Fig. 5 The excursions of the point of zero-skin friction may be due to errors in the definition of
and unsteady separation as defined by Sears and the dimensionless time scale. The second
Telionis!®,2? and Wang, for an impulsively group of discrepancies is not as disturbing
changed Howarth flow. and may be due to inaccuracies in the actual
numerical calculationms.

b. The Emergence of Separation

A more popular problem has been the emergence of separation in a flow which stays attached up to a
certain time. This is possible for example,if the flow about a blunt body is started impulsively from
rest, or alternatively, if with an established flow, the configuration of the body changes to generate
regions of adverse pressure gradients. A classic case which belongs to the first category is the impulsive
start of a circular cylinder which has been studied by almost all investigators working on unsteady
boundary layers.

Blasius!® and Goldstein and Rosenhead?? recognized the fact that immediately after the impulsive
start, the flow around the cylinder is potential and calculated the early stages of the boundary-layer
development and the upstream displacement of the point of zero skin friction which at the time was
believed to accompany separation. It was Proudman and Johnson"“? who clearly demonstrated with their
asymptotic analysis that reversing flow may have absolutely no effect on the outer flow and that a
reversing layer is compatible with attached external flow at the rear stagnation point of an impulsively
started cylinder.

A number of contributions based on exact solutions of the Navier-Stokes eguations appeared in the
late sixties and their results are reviewed adequately by Collins and Dennis.3® In the present paper we
will concentrate more on recent contributions, addressing specifically the problem of unsteady separation
for rather large values of the Reynolds number. Belcher et al.“5 describe two methods of numerical calcu-
lations of the boundary-layer equation: the first is a straightforward implicit method; the second
employs data from two previous stations of t and neighboring points on the x-grid both upstream and down-
stream, much like, perhaps, in Eqs. (31) and (32).

Collins and Dennis““ extend their method for solving the full Navier-Stokes equations to compute the
impulsively started flow around a circular cylinder for different values of the Reynolds number. Their
method 18 based on expansions of the form

v =] £.(5,7) sin no 42)
1

t=7 8,(£,7) sin no (43)
1

where ¢ is the stream function, I is the vorticity, 6 is a polar angular coordinate, £ is the logarithm
of a dimensionless radial coordinate and t is the dimensionless time. In this way, the problem reduces
to a system of partial differential equations with only two independent variables which are solved
numerically by a Crank-Nicolson scheme.

Telionis and Tsahalis32 integrate the boundary-layer equations by an implicit method using a zig-zag
scheme for partially reversed flows to study the impulsive start of a circular cylinder and an ellipse at
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an angle of attack. Bar-Lev and Yang“®
solve the full vorticity equation by the
1 T T ’ method of matched asymptotic expansions
while Wang3® and Cebeci®’ employ again their
numerical schemes to solve the boundary-
\ layer equations in a three-coordinate space.

WEINBERG R = Van Dommelen and Shen? introduce a novel
o 405 method for the calculation of unsteady
o 408 viscous flows based on a Lagrangian formu-
o 406 lation.
06 -
' 0 403 All results are in good agreement with
' o O 819 respect to the excursions of the point of
\ (@] zero skin friction and the properties of

the reversing layer as shown in Fig. 6.

Some minor discrepancies exist in the esti-
mation of the time when the point of flow
reversal departs from the rear stagnation
point, but soon after,the results aEEear to
merge together. Collins and Dennis** and
Bar-Lev and Yang“® present data for the
temporal variation of the point of zero skin
friction for a wide range of finite Reynolds

numbers.
0 l ] 1 - Having established that the point of
100° 120° 140° 160° 180° zero skin friction is not connected with un-
a steady separation, some questions of great

significance are now posed to the investi-
gator. Where and when will separation
emerge in boundary-layer calculations, if
‘~——.~“\~ at all it appears in finite times?
Fig. 6 ' The excursions of the point of zero skin friction

for a circular cylinder started 1mgulsively from The exact solutions of the Navier-Stokes
rest (Re + ). ——, Presz et al.“%; ——, Thoman equations (see Reviews in Ref. 6-13) indicate
et al."%; — —, Telionis et al.32; m..., Cebeci."” that the recirculating bubbles grow smoothly

without any extraordinary behavior. The
first indication of major changes in the
character of the flow 1s the appearance of secondary vortices at a dimensionless time of t ~ 1.00 and
8 = 135° where © is measured from the forward stagnation point. Collins and Dennis““ calculated the flow
for various values of the Reynolds number. Their vorticity plots indicate a kink in the region of
8 = 130°~150°, a clear indication of the anticipation of secondary vortices. Such vortices were observed
for as low Reynolds numbers as 550. Collins and Dennis“* reported that their calculations break down at a
finite time ty which is progressively smaller for larger Reynolds numbers. For their largest Reynolds
number, calculations are terminated at tp = 1.25. Boundary-layer calculations reported in Ref. 45 were
unsuccessful beyond t = 0.45, however more refined differencing schemes, similar to those given by Egs.

" (31) and (32), permitted the computation up to t = 2, although inaccuracies appeared near the point of

zero skin friction already at t = 1.

The mesh-configuration used by Cooke and Robins“® was rather crude, containing 18 stations in the
downstream direction. Boundary-layer calculations were repeated by Telionis and Tsahalis3? who used a
much more refined mesh configuration with 400 stations and 100 to 150 points at each station. Employing
a zig-zag scheme, Telionis and Tsahalis found that the unexpected violent behavior of the flow is initiated
approximately at t = 0.65 and for 6 = 135°. However this behavior does not seem to become organized before
approximately t = 0.95.' At this moment the abrupt growth of the u-component of the velocity seems to
follow the pattern of a separation singularity. On any time plane, the behavior of all singular
quantities is monotonic and the number of iterations required for convergence grows also monotonically
until a station is reached at which no convergence is possible. A clarification 1is necessary here with
respect to Fig. 4 of Ref. 32. In this figure the authors have actually plotted their modified v-component
of the velocity which they define by their Eq. (12). This is a poor choice because this quantity by
definition blows up at the rear stapgnation point and behaves erratically in its neighborhood. However, its
properties are qualitatively similar to those of the true v-component, away of the rear stagnation point.

Using inner and outer expansions, Bar-Lev and Yang“® solved the full Navier-Stokes equations and
obtained results in agreement with those of Collins and Dennis. However, their calculations for Rg = =
indicate no peculiar behavior in the range 0.6 < t < 0.8,

Cebeci*” undertook to repeat careful boundary-layer calculations. Using the standard box method with
41 stations and 100 points at each stetion, Cebeci discovered far from the wall unacceptable behavior of
the velocity gradient reminiscent of the unmatchability condition of Shen.!? This behavior was encountered
first at ¢ = 0.65, 6 = 153° and propagated upstream with a rate comparable with the rate of propagation of
the singularity found by Telionis and Tsahalis.32 However, Cebeci found that introduction of a zig-zag
scheme completely eliminates any singularities at least up to a dimensionless time of t = 2.8, thus
contradicting the findings of Telionis and Tsahalis,3?2

The problem of whether a singularity will appear in a finite time in a domain which started with no
singular behavior, Cebeci has addressed before§31nvestigating a Howarth type of flow which is initiated as
a Blasius flat plate flow. In this case as well, the numerical analysis was marched with a zig-zag acheme
through a region of continuously growing reversed flow with no evidence of singularity. Most recently,
Dwyer and Sherman 31 imposed an unsteady Howarth-like edge condition on the boundary-layer equation

Ue = 1 - Ax + x?
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This flow generates a small recirculating bubble which grows with time but is fully contained within the
domain of integration. They found that the behavior of all properties is very smooth for a while and the
recirculating bubble grows slowly until at a certain instant a singularity appears in the skir friction,
accompanied by an erratic oscillatory behavior of the velocity profile at this station. Dwyer and Sherman
found that the "unphysical growth" is independent of the size of the reversed flow region. Moreover, they

argue that Cebeci? may have missed the singular behavior because he did not comsider large enough values
of dimensionless time, confining his calculations to t < 0.5.

Intrigued by the controversy over the specific case of the impulsively started cylinder, Shen!’ and
Wang36 decided to reconsider the problem, the first through a novel method and the second using a new
definition of separation. Van Dommelen and Shen”" recasted the boundary layer equations in Lagrangian
coordinates. In this system of coordinates there is no distinction between steady and unsteady flow and
therefore no difficulty should arise in interpreting the results. With £,n the fixed coordinates attached
on the body and x(£,n,t), y(£,n,t) the coordinates of the particle which was found at E,n at time t = 0,
Van Dommelen and Shen studied the distortion in time of the x,y grid and searched for a singularity which
appears as a blow-up of quantities like
9y/3g, 3y/dn and 3u/5x while quantities like
x and u remain finite. They noted further
that the singular behavior is accompanied
by vanishing of (3x/3€)2 + (3x/3n)2, which
implies the vanishing of both terms in this
expression. This, in turn, implies the
formation of an envelope of the x = const
curves in the x,y plane which appears as a
physical barrier or as a vertical wall in
Fig. 7. No evidence of singular behavior
was found in Ref. 50 until t = 2.4, The
formation of the singularity became obvious
in the next time step and at the point
8 = 110°.

Wang employed his classical numerical
scheme for the calculation of unsteady
boundary layers but introduced a new defini-
tion of separation. In analogy to the case
of steady three-dimensional flow, whereby
separation is defined as an envelope of
skin friction lines, Wang searched for
similar geometrical configurations in an
x~t plane. The analogy to "skin-friction"
lines, or equivalently "limiting stream
1lines" are the curves defined by the equation

dx _ 2y
dt 9y

y=0

Wang considered again the problem of
the impulsively started cylinder and calcu-
lated the limiting streamlines which are

Fig. 7 The deformation in time of an initially shown in Fig. 8. The formation of an
rectangular mesh attached to the fluid envelope is clearly shown in this figure
particles (Ref. 51). although it may not be possible to define

the time of its initiation. On the same

figure we plot the trace of the traveling
singularity reported by Telionis and Tsahalis.?? The first few points, about which the authors expressed
some hesitation, cut across some of Wang's limiting streamlines. However after t = 1.0, it appears that the
temporal path of the separation singularity is aligned with the neighboring curves and seems to be directing
itself towards the initiation of the separation envelope.

The idea of envelope formation in an x,t plane is not actually new. Concepts of unsteady separation
and the ideas of a moving separation singularity have been considered by investigators of unsteady turbu-
lent flows as well. Cousteix et al’2 presented a very similar pattern of limiting streamlines, indicating
the formation of an envelope, almost two years before the publication of Ref. 36, a fact that the author
of the latter seems to be unaware of. In Ref. 54 the results are compared with calculated trajectories of
the separation singularity. Convincing qualitative agreement is evident but it is not possible to claim
that the two definitions give identical results,

Studying the behavior of a single rectilinear vortex over a flat plate, Walker®3 was able to draw
some conclusions quite pertinent to the problem of unsteady separation. 1In the neighborhood of the leading
edge of the separated bubble, Walker discovered an overshoot in the velocity which appears to grow with
time; while the number of {terations required for convergence increased and eventually the integration
could not be continued past t = 0.675. WalkerS% expected the Proudman and Johnson model to apply in his
problem but his numerical integration did not support this idea. This suggests that a singularity occurs
at a finite time in accordance with the model of Refs. 15 and 29.

Williams,55 Wang3® and Dwyer and Sherman5! extended their work on unsteady separation to three-
dimensional flows. Information on this difficult problem is at this point fragmented and its discussion
should be postponed until more information becomes available.
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4. DISCUSSION

The evidence presented in this paper

i1s critically interpreted and discussed in

this section. The main interest is on un-

steady separation as revealed from the

boundary~layer equation. There is no doubt

that this approximate model is not at all

appropriate for the investigation of the

actual phenomenon. To find how the real

flow behaves, one should rather resort to

the full Navier-Stokes equations, or to

experiments. It is only because the boundary-
Limiling streamlines layer equation is still a valuable predictive
tool, that we are interested to learn what
it can reveal about separation. Unfortunately,
little information is available about the
actual behavior of unsteady separation and
this makes the investigation of the boundary-
layer equation response even more difficult.

(egrees) 160
= Telionis &

Tsahalis32

A fact that has been established both
experimentally and numerically is that the
vanishing of the wall shear does not signal
separation in unsteady flow. A definition
originally proposed by Sears became well-
known recently as the MRS criterion because
of the contributions of Moore and Rott to
the original ideas.!5,16,17 Sears argued
that separation should be accompanied by the
vanishing of the shear somewhere within the
flow but in a frame moving with separation.
Fig. 8 LUimiting streamlines for a cylinder started Since the speed of the point of separation

impulsively from rest, (Ref. 36). o, is not known a priori, it is not possible to
numerical calculations from Ref. 32. use this property as a criterion for
separation.

Moore argued that the point of unsteady separation should be accompanied by the Goldstein singularity
and later Sears and Telionis!®»29 suggested that the appearance of such a singularity could serve as a
criterion for separation. This has been a very controversial point and many contributions have offered
evidence in favor or against it. The main questions are: (1) Is it possible at all for a singularity
to develop in the solution of the boundary-layer equation, if the domain of integration is free of such
singularities at earlier times? Furthermore, (2) is such a singularity related to separation and, if so,
could it be tracked and recorded to provide information on unsteady separation? Finally, (3) 1if the
answer to the last question is negative, is there any other criterion that would signal unsteady separa-
tion? In other words, does the boundary-layer equation contain information about the extent of its
validity? Most of the authors believe that the answer to the last question 1s YES. 1If the boundary-layer
equation can be used to predict separation in steady flow, it should contain enough information to predict
separation in unsteady flow as well.

The most controversial of the 1ssues is centered around the first question and at this time the evi-
dence points also to the answer YES; it is indeed possible that a singularity may develop in the solution
of the unsteady boundary layer at a point in space which was free of singularities at earlier times. Such
a singularity can be convected to the point of interest from downstream, as pointed cut by Telionis et al1.30
and Wang.36 This has not been disputed up to now. But then going one step further, is it possible for a
singularity to emerge at a certain instant at a point in space if the domain of integration was free of
singularities at earlier times and at all neighboring points? Evidence that this is again true is pro-
vided by a variety of methods: the numerical calculations of Telionis et al.32 and Dwyer et al.,51 as well
as a large number of turbulent-boundary-layer calculations;!2:13 the analytical investigation of Shen and
Nenni;“0 the numerical investigations in a Lagrangilan system of coordinates of Van Dommelen and Shen.S!
Wang3 reports no evidence of singular behavior, however the formation of an envelope in the x~t plane
certainly implies infinite variation of a property with distance at a fixed time, The singularities dis-
covered by the above investigators cannot be identified as separation singularities for sure. However,
they emerge at the point where separation 1s expected to appear and after some time is ellapsed, they dis-
place themselves to the point of steady state separation. In another case, not directly related to external
flow separation, Bodonyl and Stewartson”” present a solution to the boundary-layer equation which is
initially well behaved but breaks down after a finite interval of time.

Riley groups in the category of works presenting the opposite view References 43, 57, 44, and 45. He
argues that the results presented in these references are at variance with those of Refs. 15, 29 and 32.
The asymptotic work of Proudman and Johnson“3 and Robins and Howarth’? is essentially an asymptotic expan-
sion about the rear stagnation point. The flow field analyzed is a magnification of the region in the
immedfate neighborhood of the rear stagnation point. Proudman and Johnson“3? point out that large scale
changes to the external flow cannot occur in a finite time if R, + =, Separation and its possible singular
behavior, however, is known to emerge far upstream, in a neighborhood which 18 located an infinite distance
away from the point of the rear stagnation point. The findings of Refs. 43 and 59 therefore simply state
that separation may not occur in the vicinity of the rear stagnation point in agreement with Refs. 32, 40,
50 and 51.

Collins and Dennis“* solve the full Navier-Stokes equations whose solution 1s free of any singularities
at the point of separation. Their results, therefore, even for the largest value of the Reynolds number,
could not contribute to the understanding of the boundary-layer separation singularity. It is interesting
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though that Collins and Dennis encounter some difficulties with their calculations, at times that are
smaller and smaller for larger values of the Reynolds number. For Re = =, their procedure breaks down at
t = 1.25. They hint that this behavior may be related to transition and it is felt that alternatively it
way not be unrelated to the formation of a secondary vortex and separation.

Belcher et al.,“5 using a zig-zag type of numerical integration carry their integration until t = 2,
but do encounter inaccuracies near the position of steady separation. The experience of the present author
indicates that with a coarse mesh, numerical integration may go through a station of singularity without
any evidence of instability. In fact calculations can proceed sometimes beyond the point of separation
into a region of well behaved and non-reversing flow, which bears no .nnection to the correct solution.

In the calculations reported in Ref. 45 the upper surface of the cylinder, from 8 = 0 to 180° was divided
into only 18 increments. Each increment is therefore A8 = 10°. More recent calculations*’ of the same
problem using 41 8-stations spaced by A8 = 4.5° around the circular cylinder indicate no difficulties at all
for much larger times. It is felt that such mesh configurations are very coarse. The work of Telionis and
Tsahalis?2 with 400 stations within the same domain of integration, that is with A6 approximately equal to
0.45°, indicates that the singular behavior usually develops within a domain of 2° to 2.5°. The calcula-
tions of Refs. 45 and 47 could therefore easily "jump over" the singularity. It appears that until today
the finest by far mesh used for the numerical solution of this problem is the one employed in Ref. 32. In
Ref, 33 it is argued that a flow with a progressively growing adverse pressure gradient was found with no
evidence of singular behavior. It is possible that the mesh of Ref. 33 {s not fine enough to capture the
singular behavior. It is emphasized therefore that the results of a numerical calculation could never be
considered as a proof that a specific solution is free of singularities since with a coarse mesh the solu-
tion may appear perfectly normal in the entire domain of integration.

It has been argued that the appearance of the separation singularity is perhaps the creation of the
particular numerical scheme under consideration. This may be true. However, the numerical results of
Telionis and Tsahalis,32 for t > 0.901 seem to be very well behaved. In other words, what was identified
in this referenc2 as a separation singularity, is not just a disturbance with oscillating values of the
properties like v, 3u/3x or even the velocity profile. At each instant t > 0.901, the calculations of Ref.
32 indicate a well ordered monotonic growth, until at a point, convergence becomes impossible. This
singular behavior seems to propagate upstream, again in a well behaved fashion. The domain of influence
of the singular station based on the differential equation or the differencing scheme, do not contain the
point at which the separation singularity appears at the subsequent time step. The formation of each
singularity therefore is totally independent of the earlier history of singularities.

The present author feels that the past decade has seen a large number of significant contributions to
the problem. Unfortunately, some of the major difficulties remain unsurpassed and basic questions remain
unanswered. It is believed that one of the main reasons of our inability to make positive progress in this
area is the fact that we still understand very little about the actual phenomenon of unsteady separation.
Only then will it be possible to give a meaningful answer to the second question posed in this section.
However, recent experimental data seems to indicate that the classical concept of a single station of sepa-
ration may be misleading. Each problem perhaps has its own characteristic features and should he examined
independently. In this sense, the problem of the impulsively started circular cylinder is perhaps not a
"good" problem for consideration, because the recirculating bubbles grow far beyond the domain of the
validity of the boundary layer before a secondary vortex and a turbulent wake can be developed.
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ANALYTICAL METHODS FOR PREDICTION OF UNSTEADY TURBULENT BOUNDARY LAYERS
by

D. P. Telionis
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Almost all of the models for the closure of the turbulent boundary layer equations have been extended
for the calculation of unsteady flows. The advantages and disadvantages of introducing more governing
equations and, therefore, more arbitrary functions and constants are discussed. Algebraic models prove to
be quite successful and very attractive since they involve the most simple procedures for the calculation
of turbulent flows. One-equation and two-equation models have been extensively used with a variety of
generalizations to account for the unsteadiness of the outer flow. Depending on the specific closure as-
sumption, the character of the equation becomes either parabolic or hyperbolic. Numerical schemes for the
solution of such equations have bee. introduced and will be referenced in this short review.

1. INTRODUCTION

The mathematical models that describe unsteady turbulent boundary layers are very similar in character
with the equations of laminar boundary layers. New terms that model the Reynolds stresses and perhaps new
equations are introduced but the equations usually remain parabolic. In one of the original formulations of
the turbulent energy method, actually, the problem was reduced to first-order differential equations"2 hy-
perbolic in character. The method of characteristics or equivalent methods were then proposed for solution.
However, since then, most investigators prefer alternative formulations which essentially retain the para-
bolic character of the differential equations®*“*5, Numerical methods developed for laminar flows can
therefore be directly applied to turbulent flows. More details on the numerical schemes of integration can
be found in the accompanying paper on laminar flows. Emphasis will be given here on the modeling of tur-
bulent flows.

A natural clasgification of methods is based on the number of differential equations used in modeling
the Reynolds stress’. If the Reynolds stress is related algebraically to mean flow quantities, then the
model 1s considered a "zero-equation' model. If the differential equation that governs the Reynolds stress
or if the turbulent energy equation with appropriate closure assumption is used, then the model is consid-
ered a "one-equation" model. Bringing into play the differential equation that governs the dissipation rate
upgrades the model to a "two-equation” model. All methods have been used for the calculation of unsteady
turbulent boundary layers and some modifications and additions have been proposed to account for special un-
steady effects.

Modeling of the Reynolds stresses is a somewhat arbitrary process based on theoretical results of very
special and simplified problems, or, qualitative experimental trends. In fact as the sophistication of the
model increases, the number of necessary arbitrary assumptions increase as well. The final test of such me-
thods is the comparison of theoretical results with experimental data. Unfortunately, at least until very
recently, there was very little experimental information available and only for the special case of a flat
plate’. In the past few years a few experimental projects were undertaken some of which are still under
way, as reported by the present author in a recent review article’. At the present, work on modeling of un-
steady turbulent flows is being continued in the light of the recent experimental information. This short
paper gives a quick account of the methods and their relat-.ve success. More details the reader will find
in Refs. 7, 9 and 10.

2. GOVERNING EQUATIONS

Consider the differential equations that govern two-dimensional incompressible turbulent boundary-layer
flow:

ay |, v

ﬁ-'b-ay 0 (1)
U U 2

s, you, g, e, Ve, oA, um

E‘FUE*’Va—y 3t +Ueax <|-\)3y2+ay (2)

where U and V are the ensemble averaged velocity components parallel and perpendicular to the wall respec-
tively, x, y and t are the distances parallel and perpendicular to the wall and time respectively, v 18 the
kinematic viscosity and T is the Reynolds stress.

The quantity T depends on the definition of the averaging process. According to the classical defini-
tion a random quantity, q, can be ensemble averaged as follows

N
U = Um ] ane) €)
N+*© n=]

where the values q are sampled at arbitrary fixed or even random intervals of time. If an orgenized sig-
nal 1s buried in §, then this process is averaging it out. The quantity q can be decomposed as follows

q(r,t) = q(r) + q(r,t) %)

where by definition i = 0. If a conditional averaging process is adopted, that is if the sampling of the
quantities q_ 1is controlled then it fs possible to isolate an organized variation. Experimentally, the per-
iodic or transient process provides an external trigger for the sampling process as described in more de-
tail in Refs. 7, 9, 10, 11 and 12. The same mathematical expression given by Eq. (3) can be used to define

Bt lmvd, a e s
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the .¢w.itional averaged quantities
R
Q(z,t) = Um J q(r,t + nat) (5)
N+x n»l

where now At is the period of a periodic oscillation. For a transient phenomenon the appropriate formula
is

N
Q(r,t) = Um ] q (z,t) (6)
N+ n=1

where q, is the value of q of the nth realization after a time t has ellapsed from a specified time stationm.
The symbols U,V in Eqs. (1) and (2) denote conditionally averaged velocity components.

A random quantity can be decomposed now in terms of the conditional average and the random fluctuation
CI(_l-’_.t) = Q(_E)t) + Q'(E,t) (€))

Note that q' # a. For an unconditional sampling the Reynolds stress is given by

T=-puv ®)

For conditional averaging, the Reynolds stress in Eq. (2) contdins ensemble averages of products of u,;
and u',v'. We should conclude that the extension of models developed for steady flow to periodic or trans-
ient flows may not be straight forward. 1In other words, there is no justification at all to assume that
the Reynolds stress, T, of Eq. (2) depends on conditionally averaged U and V in the same way that the Rey-
nolds stress of the steady state equation depends on the ensemble averages u and v. Nevertheless, such an
assumption may and has been used as a first engineering approximation to the problem and as a stepping
stone in the development of more complete unsteady flow models.

The Reynolds stress may be related directly to the averaged flow or to the instantaneous turbulent
energy. In the latter case the equation that governs the turbulent energy is needed to close the system

— . 2
D oa2ypy T3, 3 B,
D';(41/2) pay+3YIV(p+2)]+e 9

where e is the turbulent dissipation and q is defined by the equation
qz YN ;2 o2 Qo)
In two-equation models a differential equation that governs the dissipation is added.

3. ALGEBRAIC MODELS

“Zero-equation models" are more familiar to investigators as "algebraic models". The Reynolds stress
according to these models is assumed to depend algebraically on the mean flow and its derivatives. Accord-
ing to the most widely accepted model,

au

- g — 11
Teegy (11)

A two-layer eddy viscosity model is then introduced. In the inner layer the eddy viscosity is proportional .

to the velocity gradient

e, = p22|ou/3y] (12)
where . is the mixing length given by

Lekyy[1-exp ()] 3

with ky = 0.41 and A the Van Driest damping factor'?’. The latter quantity is tradionally assumed to be in-
versely proportional to the friction velocity up = (Tw/p)llz, where Ty is the skin friction at the wall

A= A"\a/uT - A+v(1'w/o)-1/ 2 (14)
and At = 26,

To account for flows with pressure gradients as well as flows with heat transfer, Cebeci'" assumed that
a characteristic velocity in the Stokes flow that models the inner part of the turbulemt boundary layer is
the friction velocity at the edge of the viscous sublayer, Tq. The damping factor then becomes

A = At /72 (15)

This assumption permits a straightforward extension to unsteady flows. An estimate of the shear stress 7,
can be derived by solving the approximate form of the momentum equation in the viscous sublayer. Integrat-
ing across the viscous sublayer from the wall to yf = ygur/v = 11.8, yields :

+
A-l’:—u-11.8L3%§1 (16)
T ou

T
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The acceleration effects of the outer flow now enter via the pressure gradient. Cebeci and his associa-
tes propose for the outer layer
o«
€. = 0.0168 . f (ue - U)dy a17?)
1+ 5.5(y/%) 0

Telionis and Tsahalis'® (1975) adopted the same inner model for the eddy viscosity but used in the
outer region the velocity defect law

k2 ue
v

€9 Shy (18)

where ky = 0.0168, &* is the displacement thickness and y is intermittency factor
2y = 1 - erf [5( 35! - 0.78)] (19)

In a later publication Telionis'® attempted a comparative study of algebraic models for unsteady tur-
bulent flows. In this paper the models of Kayu” and Alber'® were also extended to account for unstead-
iness.

Cebeci and Keller!® limited their calculations to spatially one-dimensional flows and compared their
results to those of Bradshaw?®. Dwyer et al.?? also developed a technique based on the quasi-steady model
of the mixing-length tgge and integrated the boundary-layer equations by a finite difference method.
McCroskey and Philippe®‘ later used this method, checked it against previous theoretical and experimental
results and calculated the flow fields about airfoils. The quasi-steady mixing-length model was also used
by Gupta and Trimpi??, who computed the development of a compressible turbulent boundary layer on a semi-
infinite flat plate after the passage of a shock wave and a trailing driver-gas, driven-gas interface.
Most recently Cebeci?* employed this model again to calculate oscillatory flows over a flat plate and com—
pare with experimental data.

It is well known that the laminar shear stress is very small compared to the Reynolds stress and out-
side the viscous sublayer, the term v32U/9y? in Eq. (2) 1is one order of magnitude smaller than the term
91/3y. With all algebraic models however, the Reynolds stress is proportional to the square of the velo-
city gradient. As a result the dominant derivative on the right hand side of Eq. (2) remains the second
derivative with respect to y. The differential equation is parabolic and its numerical integration can be
implemented by any of the methods described in the previous chapter. The investigations referenced in this
section are based on straightforward numerical integrations in the three-coordinate space: x, y and t.

An alternative formulation based on asymptotic expansion in powers of the amplitude, permit the re-
duction of the independent variables from three to two. This method however is confined to small ampli-
tudes of oscillation and nearly harmonic flows. For an outer flow distribution given by

- iwt
U, (x,t) Uo(x) +aUge (20)

where a is a small dimensionless number and w is the frequency of the imposed oscillation, we seek solu-
tions in the form

u(x,y,t) = u (x,y) + aul(x,y)eiwt + . (21)

vix,y,t) = v (x,y) + c::vl(x,y)ei“’t + ... (22)
Substituting expansions of this form in Eqs. (1), (2) and (11) and collecting powers of the quantity Q we
derive sets of differential equations that can be solved seriatim for the quantities of order zero, one,

ete.

Expanding in this fashion Eq. (12), Patel?’® estimates the Reynolds stresses that govern the mean,
(uo,vo), and the oscillatory part (“l’vl) of the flow

du_ \ 2
2 )
To p (a—y-) (23)
du_ du
. 2o o 2
R vty (26)

This expansion is therefore equivalent to the assumption that the total Reynolds stress is decomposed into
a mean part, Ty, and an oscillatory part, T;, in a way determined by the governing equation. Physically,
it implies that the oscillatory Reynolds stress, Ty is proportional to the gradient of the organized os-
cillations, 3u]/3dy but the eddy viscosity of the oscillatory motion is proportional to the gradient of the
mean flow. Clearly, all these assumptions may be an optimistic initial attempt to solve the problem but
bear no physical justification and yield poor results.

The simplest possible model that represents decoupling of the Reynolds stresses T and 7; is the quasi-
laminar model which aseumes that 7, = 0. This assumption is essentially equivalent to a laminar oscillatory
correction on a steady turbulent boundary-layer. It is well known that the boundary layer, laminar or tur-
bulent, responds to local disturbances in an almost invigcid manner. The hypothesis here is that the outer
flow pressure fluctuations are instantly carried across the turbulent boundary layer, without interaction
with the random fluctuations. Or equivalently, that the turbulent eddies undergo an oscillatory deforma-
tion that does not affect their entity and the process of their mutual interaction. However, quasilaminar
models did not prove successful if compared with experimental data of internal flows?® or external boundary
layer flows’’. The next step would be to attempt independent modeling of the quantities T and Tj. In Ref,
27, for example, it is assumed that the oscillatory Reynolds stress is proportional to the square of the
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Fig. 1 Profiles of instantaneous levels of turbulence:

four characteristic instances from Ref. 28, curves 1,
6, 12 and 18 correspond to Eq. (20) for wt = -m, -m/2,

0 and 7/2 respectively; ---, from Ref. 25 averaged
through the cycle; -.-.-, steady flow.
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Fig. 2 Distribution of the normalized amplitude of the os-
ctllatory part of the Reynolds stress, (t1,), across
the boundary layer for a Strouhal number equal to
0.073. 0, rough estimate derived from Ref. 28; e,
Ref. 27; b, quasi~steady model.

successfully the velocity profiles as shown in Fig. 4. For
be smoothing out again.

gradient of the oscillatory part of the
velocity.

Equations (23) and (24) represent the
asymptotic form of the classical eddy vis-
cosity model given by Eq. (12) which was
originally proposed and extensively used
in steady boundsry layer flows. Solutions
based on such expressions could therefore
be classified g5 "quasi-steady" models,
although they do depend on time implicitly,
through the mean: flow Ug(x,t). Methods
based on independent modeling of the
steady and fluctuating part of the Rey-
nolds stress may be considered as truly
unsteady models. Evidence that unsteady
models are more accurate representations
of actual unsteady turbulent flow is pro-
vided by comparison of predicted velocity
profiles with experimental data. Most re-
cently, the actual variations in time of
turbulent kinetic energ¥ and the Reynolds
stress were measured?®>2%, In Fig. 1 we
plot profiles of instantaneous and aver-
aged dimensionless values of one term of
the turbulent energy as obtained from Refs.
25 and 28. It should be emphasized that
the conditions for which these data have
been obtained are quite different. There-
fore, plotting the data on the same graph
may be misleading and the reader is alerted
to this fact. The reduced amplitude of the
fluctuating component of the Reynolds
stress as inferred from the measurements
and calculated by an unsteady and a quasi-
steady model are shown in Fig. 2.

The data is very limited and no defi-
nite information at this time can be ex-
tracted to guide the theoretical modeling
of the Reynolds stress. The reported in-
stantaneous profiles of Reynolds stress?®
correspond only to four values of the
phase. As a result it is very difficult
to obtain phase difference variation.
However, a careful inspection of the ex-
perimental data is enough to convince that
the Reynolds stress varies in phase with
the outer flow only in the immediate neigh-

.| borhood of the wall. Further away from

the wall and for the most part of the boun-
dary layer, it appears that the Reynolds
stress leads the outer flow by approxi-
mately 90°. It should be noted that in
quasi-steady models, the Reynolds stress

is essentially and tacitly assumed to

vary in phase with the outer flow.

A number of experimental projects
have resulted in valuable experimeatal in-
formation in the last few years as cCescrib-
ed in Refs. 9 and 12. However, most theore-
ticians have tested their resulta against
the classical data of Karlsson®. In Fig.
3 we ghow the amplitudes of the "in-phase"
and "out-of-phase” velocity profiles for
the lowest available frequency. It should
be noted that quasi-steady models fail to
to predict the overshoot of the in-phase
velocity component. At w/2m = 1.0 which
has been shown for laminar flows to cor-
respond to the intermediate regime between
high and low frequencies, the situation
changes drastically and no analytical me-
thod has been shown up to now to predict

a larger frequency the discrepancies appear to

o




4. ONE-EQUATION MODELS

To close the system of Eqs. (1) and (2) by virtue of the energy equation, one needs to model the Rey-
According to one of the original models’ it may be

nolds stress in terms of the turbulent kinetic energy.
assumed that T is simply proportional to ET

Fig. 3 In-phase and out-of-phase velocity profiles for w/2n
= 0.33 secl, ,» Ref. 27; - — =, Ref. 24; V, 4, @,
experimental points from Ref. 8 for low, medium and
‘high amplitudes respectively.

1.2

Uin -0
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4
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Fig. 4 In-phase and out-of-phase veloc1t§ profiles for w/2m =
1.00 sec-i, , Ref. 27; = - -, Ref. 24; V, A, @, ex-

perimental points from Ref. 8, for low, medium and high

amplitudes respectively.

du
2 0,2
T, = palL (W) (25)
where a; is a universal constant equal to
0.15. The triple product and the energy
dissipation are also modeled

v'(p'/o + q2/2) = ﬁl (qz)quaz(%)
e

e= ¥ (2n
where az and L are universal empirical
functions of y. Here a; and a, are di-
mensionless but L has units of length.

Bradshaw et al’ note that in most
applications, the convection and diffus-
ion terms are negligible and Eq. (9) re-
duces to

T 93U

—B'a—y‘l'e’O (28)
It can be readily seen then that the as-
sumption (27) is equivalent to

2 faul2
T palL <3y)

vwhich is essentially Pradtl's mixing
length formulation. The present author
feels that a straightforward extension of
Eq. (28) to unsteady flow should include
the local acceleration of the turbulent
kinetic emergy, which may not be small if
large frequency oscillations are imposed.
The equivalent simplified but unsteady
version of Eq. (9) then is

(29)

(30)

One may conlcude, that for unsteady flow,
the functional dependence of T on L and
9U/3y given by (29) is not sufficient. It
is very interesting to solve this equation
in order to arrive at the generalization
of Prandtl's mixing length formula for un-
steady flow, as dictated by the turbulent
energy equation and the closure assumptions
of Ref, 1. Assume that the mean flow os-
cillates harmonically
1wt

U= u, + ue (31)

Assuming further that the Reynolds stress
also fluctuates about a mean

e (32)

we can bring Eq. (30) to the form.

T T T
fw "1 iwt 0 1l dwt
—2‘1 E‘- e - (0_ + r e ) x
du du
(-] 1  dwt
(—ay + Wy ® )
T T
o, -1 twe,3/21
+ (p. + p.l. ) i 0 (33)
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No perturbation principles are invoked here and the expansion in Eqs. (31) and (32) is simply decomposition
to mean and oscillatory parte. The steady terms in Eq. (33) reduce to Eq. (29) expressed in terms of mean
quantities

du
2 0,2
T, ™ Pa)L7 GG (34)

This may be considered as yet another indication that the mean part of an oscillating turbulent boun-
dary layer is not influenced by nonlinear effects. Physically, this is due to the fact that the nonlinear
terms in the turbulent energy equation, that is the convection terms usually represent a negligible contri-
bution and can be omitted.

Neglecting the higher harmonics in Eq. (33), we can solve for the flucuating part of the Reynolds
stress

T du T 3du
Lo o2yt (012, -2 (35)

o "%y 2a;L pa; Za, Za,)

Some qualitative characteristics can now be identified. Dividing through by (t /pa ) 12 renders the factor
in the brackets dimensionless and indicates that T, is proportional to the product of the gradients of the
mean and the oscillatory velocity components

3u° Bul
T = (F) (F) (36)

It is very interesting to note that a straightforward expansion of the algebraic models described in the
previous section resulted i{n a similar equation. Such a closure model therefore has the potential of fur-
ther development. The coefficient of proportionality, however, is complex and this implies that the Rey-
nolds stress does not oscillate in phase with the velocity field, in agreement with the experimental find-
ings of Ref. 28. The departure from the in-phase variation grows with frequency.

Assuming that the term Bzulay2 in Eq. (2) is negligible, changes the character of the problem from
parabolic to hygerholic. Hyperbolic systems of equations are conveniently integrated by the method of
characteristics'. The mesh is aligned with the characteristics and the system reduces to ordinary differ-
ential equations. Singleton and Nash 3 propose instead to march downstream, essentially following the tra-
ditional method of solution of the boundary layer equation. They introduce a transformation to account for
the thickening of the boundary layer

t’t.x’E.Y'S(x.t)nB (37)

where S is taken to be equal to 1.25 5. They then account for three-dimensionality effects by considering
the flow about an infinite yawed cylinder. A third velocity and Reynolds stress component is thus intro-
duced but the problem can still be solved in two space dimensions and time. The equations are rewrittca
in the form

JF _ , OF _ _ 3F (38)

where F represents a dependent variable,
A, B and C are functions of the dependent
variables and in addition C contains de-
rivatives of U and V with respect to n.
Following the work of Nash’' a mesh pat-
tern is introduced with primary and sec-
ondary points as shown in Fig. 5. Fourth-
order differences in the n-direction are

written
(3F n =Y _2 ;
Nk An 12 k—z 3 "k-1,m
+ip ] + o(am®
3 Tktl,m 12 k+2 m n
(39)
except for the point k = K-1 at the edge
o of the boundary layer where
X F.n

n
G k,m an [6 K-3.n = Fg-2,m

l1._n 1l ._n 3
+ 3 FK-l.ll + 3 FK.II! + 0(An)
(40)

For the calculations of unsteady flow,
3ingleton and Nash use an explicit second-
Fig. 5 Uniform grid for the numerical scheme of Ref. 30. O , order accurate, finite difference scheme.
primsry points; @, secondary points. New time points are calculated at secondary
points in the nev time plane according to
the formula

1 1
Lt RYPRE E Lt

ar n n
AR ARVORY A"“an akt (an aketl 7 3o [(T’n.k T’- k1) (1)
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These expressions are then used to derive more accurate values at the primary mesh points. With ap-
propriate boundary and initial conditions, information is derived in the two dimensional space for time t.
Time then is incremented to t + At and information on a new time plane is obtained. Marching therefore
groc:ed; first in the x-direction sweeping the two-dimensioual physical gpace and then in time, progressing

n the future.

Nash, Carr and Singleton32 employ the method described above to calculate the response of a turbulent
boundary layer to oscillatory fluctuations
of the outer etream. They investigate
flow fields with adverse pressure gradients
and proceed until the point of flow rever-

* sal. In these investigations and due to

the neglect of the laminar shear stress,
the calculations cannot be extended to the
wall. Instead the solution is matched at
y/6 = .05 with § the boundary-layer thick-
ness, to an approxina:e solution. The same
group (Patel and Nagh®3, Nash and Scruggs®")
later extended their wbrk by introducing a
refinement in the neighborhood of the wall,
to meet the inner boundary condition.
This is essentially the law of the wall
with appropriate modifications in order
to handle regions of partially reversed
flow.

A comparison of the relative perfor-
mance of different methods (Singleton and
Nash’®, Nash, Carr and stngleton’ » Kuhn
and Nielsen”, Telionis and Tshahalis'®)
has been attempted by Cousteix, Desopper
and Houdeville’® who employ a two-equation
model. Oscillating flows over a flat
plate and a configuration that imposes an

oﬂ’ adverse pressure gradient were examined.
0 1 — 2T In particular outer flows were chosen ac-
cording to the formulas
Fig. 6 Displacement thickness and wall shear outer flow given, U = U (1 + asinut) (42)
by Eq. (28) with a = 0.125, & = 1.57; x/L = 1, Re = 107, e o
—— , Ref. 36; ---, Ref. 32; —+-+—, Ref., 35; - - -, U =U[1+ (a + alsimit)x] (43)
Ref. 15. e ° o E
where o4 are dimensionless amplitudes, x L
and t are dimensionless downstream dis-
tance and time respectively and @ is the
reduced frequency, & = wL/U,. All quan-
IlJJ., tities were calculated at the point x=
15 1.0, for two different frequencies, w =
1.57 and 15.7 and different values of the
3 amplitude parameters.

Figure 6 and 7 show the periodic var-
iation of the displacement thickness and
the skin friction for a small amplitude
(o = 0.125) and two different frequencies,
(@ = 1.57 and 15.7). Unexpected discrep-
ancies appear in the displacement thick-
ness for low frequency and amplitude.
Similar calculations for higher amplitudes
indicate only some departure from the har-
monic response of both quantities. The
maxima of all curves appear to be more
pointed but very little change in the
phase angles can be observed. All methods
indicate that the skin friction phase lead
does not exceed 10°, although the displace-
ment thickness phase lead may reach values

L S " -

é of 30° or 40°. Moreover, large departures
0 from the quasi-steady values are indicated
0 1 - 2yT in the plots of displacement thickness.
3 Fig. 7 Displacement thickneu and wall shear for o = 0.125, & In Fig. 8 calculated and measured
= 15.7, Re = 107, x/L = 1. __, Ref. 36; -—-, Ref. 32' values of the skin friction phase lead are
wy=e=, Ref. 35. plotted versus the frequency parsmeter .

The case of laminar flow is also indicated
for comparison. Unfortunately the experimental data of Karlsson® are widely dispersed in the neighborhood
of the wall. Karlsson actually measured only the in-phase and out-of-phase of the velocity components. An |
estimate of the phase angle from these data can be derived by extrapolation followed by calculation of the :
ratio of the out-of-phase to the in-phase components. The dispersion of the analytical results shown in
this figure is equally disheartening.

Quasi-steady calculations with outer flow distributions of the type given by Eq. (29) indicate that
the wall shear may vanish during a portion of the period. In fact it is probable that separation is in the '
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neighborhood of this point as indicated by the large values of the digplacemwent thickness. Calculated re-
sults with the quasi-steady models and the corresponding unsteady models are shown in Figs. 9 and 10 for
small and large frequencies respectively. 1Tt is most interesting to note that the unsteady boundary layer
remains attached and well behaved for a pressure gradient which, if averaged, would induce separation. It
18 noted further that the larger frequencies and therefore much larger pressure gradients that the boundary
layer experiences periodically do not seem to affect the phenomenon. In other words, the strong but

Fig. 8 The skin friction phase angle. Theoretical results:
===, Ref. 35; ~.-.—, Ref. 32;— — Ref. 15; —w-u-,
Ref. 14;——— Ref. 22. Experimental data derived

approximately from Ref. 8.

Fig. 9 Displacement thickness and wall shear for Eq. (29) with
op = ~0.2, a; = 0.4, & = 1,57, x/L = 1, Re = 107, ——,

Ref. 36; -~-, Ref. 32; -.=+=, Ref. 35.

periodic pressure gradients due to the
term 3U,/3t, which in fact grow larger
with frequency, do not induce separation.
The results indicate that the point of
flow reversal is displaced downstream, at
least for the range of frequencies inves-
tigated.

Nash, Carr and Singleton? calculated
unsteady boundary layers and the upstream
propagation of flow reversal but termin-
ated their calculations at the point of
zero wall shear. Turbulent boundary layers
that remain attached, even over a thin re-
circulating region, have been calculated
by Telionis and Tsahalis'S, Patel and
Nash®? and others. In these references
trangient flows with ever steepening ad-
verse pressure gradients are investigated.
Telionis and Tsahalis!® chose a 1linearly
decelerating flow which eventually separ-
ates. In such calculations it is neces-
sary that flow reversal propagates up-
stream faster than other disturbances as
described in detail in the earlier chapter
with regard to laminar flows. It is then
necessary to drop a few of the mesh points
at the downgteam end of the domain. To
avoid this, Patel and Nash®® and later
Nash®? and Wash and Scruggs’® chose an
outer flow with a linear decrease followed
by a linear increase of the velocity

U, (x,£) = U, for t < 0, all x (44)
x
U /U =1 - "_1 [1- £(t)]

for t >0, 0 < x < x; (43)
Xy=x

Ue/Uo 1 - o) [1 - £(¢)]
for t > 0, x <x< C (46)

where C ig the downstream extend of integra-
tion, X1sXp &re prescribed values of x and

f is an arbitrary function of time. Nash
and Scruggs proposed

f=1-(Q - ff)t/tf

for0<t<t (47)

f

f=f fort. <t (48)

f £
with f¢ and t¢ some prescribed constants.
Such flows and their equivalent oscillatory
variations were essentially proposed for
investigation of the relationship between
unsteady flow reversal and separation. Of
interest in this section is the modeling
of turbulent boundary layers with partially
reversed velocity profiles.

To integrate through such regions, the
basic assumotion made by all the investi-
gators is that for negative 3U/Jy the eddy
viscosity algo changes sign. However, it
was further assumed that the basic char-

acter of the closure models s not necessarily different in the reversing flow region. 1In other words, the
Reynolds stress effect is equivalent to shear stresses opposing the motion and pushing towards deceleration

of the local flow, regardless of the direction of the outer flow.

For models based on the turbulent energy

method, Patel and Nash’® propose a modification of Eq. (9) and (25)

Dt

where

Dt F1H ) Ty.11/2
= 4 2'1|TIW + 22,6+ 2a; 3y (a,7) + 22 Elrl 12 .9

(49)
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¢ = TilTl3E + TN (50)

T T

with ' some large number. The inclusion of the last term does not have any effect on the resultant shear
stress and essentially serves to maintain the proper direction of the shear stress vector accordiug to the
equation
2 3u
T = a,9"sqn (5;) (37)
In a later publication®® Nash and Scruggs
propose an alternative assumption for
closing the turbulent energy equation
2,1/2. 3U
T=-k L 52
(@) %

(38)

This assumption results in a drastic
change of the character of the differen-
tial equations. A second derivative of
the mean velocity U reappears and the sys-
tem becomes again parabolic.

It should be emphasized that accord-
ing to the models described, the Reynolds
stress in the neighborhood of a vanishing
9U/3y, are zero. This occurs at the point
of zero skin friction and from then on,
there may exist further downstream, a
point where 3U/3y vanishes within the flow.
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1. Introduction

Experimental investigations have provided an understanding of the phenomena associated with

separated flows, both unsteady and quasi steady. To apply this understanding to engineering
problems requires the development of quantitative analytical methods to enable the importance of
geometric and flow parameters to be evaluated. Unfortunately, the potentially more rigourous

theories require very considerable computational effort, and,to compliment their usefulness for
airfoil applications methods for the simulation or synthesis of experimentally derived characteristics
have been developed for routine use. A wide field has been well covered by existing literature,
for example, a previous AGARD lecture series (No. 94) in 1978 was devoted entirely to this topic.

A comprehensive review and extensive bibliography has been compiled by Dr. McCroskey of NASA Ames in 3
reference 19 covering unsteady flows, attached and separated, for airfoils and bodies. In addition,
as a contribution to the above lecture series, Dr. McCroskey has already reviewed the 'state of the
art' for prediction methods for unsteady separated flows on two dimensional airfoils at subsonic
speeds (reference 1). A similar review (in French) has been presented by Dr. Phillippe of ONERA
(reference 2). Much of this presentation, then, constitutes a repetition of these two references. é

2. Theoretical Methods

a) Solutions to the Navier Stokes equation

The most fundamental formulation of the equations of motion for a viscous, compressible fluid
cons.itute the Navier Stokes equations. Exact solutions for practical applications are not
available but the development of finite difference and numerical techniques has enabled numerical
solutions to be obtained. These solutions provide a means for overcoming the limitations
resulting from the simplifications of tlassical' aerodynamics which allow the separate treatment
of the boundary layer and external flow. This is particularly relevant for the process of
unsteady separation where distinction between the two regimes is quite artificial. Three
references (10, 11, 15) from the same conference proceedings, are quoted as examples of numerical 1
techniques applied to the Navier Stokes equation. The specific problem of dynamic stall during H
harmonic forcing is treated by Meh ta (Reference 10} and some of the graphical results constitute
figure 1 which shows a sequence of pictures of streamlines and equi-vorticity lines synchronised

with the pressure distribution. The physical features of bubble and vortex formation and motion

are represented in great detail and were shown to correlate with flow visualisation pictures

obtained for matching parameters. ) i
STREAMLINES

PRESSURE DISTRIBUTION . )
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The inability to solve for the turbulent boundary layer has limited the solution to low Reynolds
numbers {10°), Consequently the multiple vortex shedding from the aft and mid-section of the
airfoil is not representative of the range of current practical interest (say 3 x 10°) where
visualisation has indicated the dominance of the leading edge vortex. Compressibility effects
are ignored; these are significant even at low free stream Mach number and need to be included to
provide reliable predictions. These reservations are common to the two other treatments
cited but should not detract from the significant accomplishment represented by these studies.

To add some perspective to the computational requirements, for the computer used (CDC.7600) the
total core storage was required and a CPU time of nearly 900 minutes quoted for one complete cycle
of airfoil motion.

In reference 15, Kinney applies some of the techniques of 'classical' aerodynamics including
representation of the body (airfoil) by bound-vortex singularities and solves for the forcing
represented by an impulsive gust and a periodic gust. Wu et.al. in reference 11, present their
experience in applying various approaches to formulating and solving the Navier Stokes equation.
In due course it is to be hoped that current limitations will be overcome and a sufficiently
rigorous solution obtained to provide further insight into the details of the development of
separated flow. When this is accomplished, it should provide a basis for the development of
more tractable solutions.

Discrete Vortex Potential Flow Model

Based on flow visualisation observations and pressure measurements from experiment, a conceptual
model of dynamic stall was constructed by Ham (reference 12) in a form amenable to analysis by

potential flow methods. The procedure is illustrated by figure 2. In the physical plane
bound vorticity is shed from the leading and trailing edges of a thin airfoil in the form of free
vortex elements which convect under the influence of the resultant local velocity. The strength

of the vortices is

adjusted to ensure

stagnation points on

the airfoil which 4
include those

required to define

the forward separa- . ki ~ &t
tion point and the ‘€>\ )

extent of the

-2 0 2 <
reverse flow region. !
The geometry is

transformed into
the J plane, in
which the airfoil
becomes a circle,
for solution by s-planc representation. £-planc representation.
potential theory.

This approach has

been extended by the

Bertin Company for

an airfoil with 'y
finite thickness

and combined with

a boundary layer

analysis to provide
definition of the

forward separation

point. The flow

field and local
velocities are

calculated by an
adaptation of the _,»"’
numerical potential
flow technique of
Geising (reference
20). Although
this approach pro-
vides a fairly

w.ors

B ¥z oot e

4
realistic repre- Se—e—s, L
sentation of the N e
developing flow- o eaes b < =
field during the -~
gnr:ziagfa::f:;;::i:g ’ The inception of trailing-edge separation. Theoretical vortex trujectories following a suddea

have to be made in onnet of flows ay = 30°,

order to perform the

calculation. Thus

pending further

development the

procedure cannot be FIG, 2. DISCRETE POTENTIAL VORTEX
used in an entirely

predictive manner

for arbitrary profiles.
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c) Boundary Layer Calculations

For the steady state condition the application of boundary layer theory has been used with some
success to determine flow behaviour near maximum 1lift; by including unsteady terms in the boundary
layer equations the dynamic case may be examined. Development of the theory is treated else-
where in this lecture series and application discussed in references 19 and 21. In physical
terms the important distinction between the two regimes is that whereas, for the steady case, zero
shear at the surface heralds flow reversal and hence separation, it can be shown that both theor-
etically and experimentally, flow reversals within the boundary layer whilst the airfoil is in
motion take time to develop and may not immediately result in gross changes to the external flow. 3
Reference 17 suggests that at high lift flow reversal within the laminar boundary layer is B
dominated by the spatial gradient but for turbulent flow toward the trailing edge the temporal 4
gradient may assume as much significance.

Using the unsteady potential flow method of reference 20 to calculate the external flow, reference % 3
18 presents an examination of dynamic effects on turbulent flow reversal. Figure 3 shows

some of the results obtained by introducing unsteady effects into calculation of the boundary layer
and external flow,independantly and in conjunction, for uniform pitching velocity. For the
combined effect, the progression of flow reversal from the trailing edge is fairly steady until the
region of high adverse chordwise velocity gradient is reached, whereupon the reversal moves forward
almost instantaneously toward the leading edge. This behaviour is characteristic of observed
hot film measurements on the NACA.0012. Figure 3 also shows the effect of pitch rate on the
angle at which the flow reverses at 50% chord, which coincides with the above phenomenom.
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FIG.3. UNSTEADY BOUNDARY LAYER CALCULATIONS

For values of & c/u.<0-05 which encompasses much of the range of practical interest, the delay in
flow reversal is linear with @ which infers ~ constant value of non-dimensional time delay (At u/c)
of about 2 which correlates again with obser ions of the delay in the collapse of leading edge
suction. Reference 21 discusses further, the procedures and implications of this approach
and conjectures on the connection between the boundary layer reverse flow and growth of the leading
adge vortex. For many configurations at high lift, a leading edge bubble is present which
~=ars that transition to a turbulent boundary layer has occurred following laminar separation and 3
criar *o re-attachment, Reproduction of these initial conditions present an obstacle in the E.
v at.rr o af this promising approach to determining the onset of separation.
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F1G.4. VISCOUS-POTENTIAL SOLUTION

In reference 13, integral methods are applied to boundary layer development and separation
determined by zero shear. The potential flow is derived from a distribution of sources and
vortices representing the airfoil and a vortex sheet represents the free shear layer. The
method of reference 13 was developed for steady conditions and extended in reference 22 to
accommodate dynamic effects by inclusion of time dependant circulation and an empirical lag in
separation. Although all the elements required for flow development are present, many
assumptions are still implicit in their application, and published results so far are not as
convincing as might be desired. Nevertheless, the method represents the nearest approach of
'classical' aerodynamics to the rigour offered by solution to the Navier Stokes equations and at a
more practical level of computing requirements. Refinement of this approach might be facilitated
by the availability of results from the Navier Stokes solution.

Empirical Methods

Airfoil testing under dynamic conditions has been going on for more than twenty years motivated by
recognition that local maximum 1ift levels on helicopter rotors are in excess of those attainable
under static conditions. Having substantiated this phenomenum under controlled conditions engineering
requirements dictate that a reasonable representation should be incorporated into any design analysis.
At present conventional thepry is incapable of qualitative prediction of dynamic stall, hence the
reliance on empirically derived procedurea for applying the information obtained from test, From the
body of theory for unsteady aerodynamics applicable to attached flow conditions, certain parameters
emerge which allow generalisation and scaling of the dependent forces and moments. These form the
tasis for the generalisation of test data involving penetration of the separated flow regime.
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- Thus events are transferred from the time domain and expressed as distance non-dimensionalised by
' semi-chord length, At.2V/c; likewise, pitch rate becomes 0§ ¢/2Uw. Since dynamic effects

. generally delay the onset of separation, initial behaviour is observed as an extension of normal air-
b foil characteristics, and hence measured static data may be used as the most reliable representation
f of airfoil geometry and flow parameters (Reynolds number and Mach number) upon which to superimpose
‘!. the appropriate modification. Current methods are reviewed briefly with one exception which
;' reflects the author's interest.

s

a) UTRC o, A, B Method

At the United Technologies Research Centre, an extensive program of oscillatory testing was
performed on the NACA 0012 airfoil at low Mach numbers. On the basis that, for harmonic

' motion agu& attashed flow, the instantaneous lift and moment can be expressed in terms of @c,&cc/2V ,
E (A) andaxc/4V ©, (B), these parameters were used to generalise the results for the entire program.
; By cross-plotting and interpolating for given values of the parameters, tables of Cy and C;, were
I

constructed (reference 23). The tables and associated look-up routines were then incorporaed
within a rotor analysis program. Assumptions were made to permit application of the data to
3 higher Mach numbers. Subsequently, the computational procedure has been streamlined {reference
3 24) by substituting for the table look-up routine, a series of coefficients derived from curve
: fitting. Not surprisingly, when the method is used to regenerate the test conditions,
3 correlation appears to be good. When the implicit relationship betweenc ,& ,& , are violated

and distinction between the first and second derivatives of pitch angle and angle of attack become
important; for example, when approaching a wake vortex, the accuracy of the method may be less
certain.

b) Boeing-Vertol Gamma Function Method

Boeing-Vertol have generated and published a large body of experimental data covering several air-
foils, a significant Mach number range and for both pitch and plunge motion. To model the
influence of motion on stall behaviour, the measured airfoil characteristics under static conditions
are used as a basis and manipulated through use of an effective angle of attack. Firstly, the
influence of pitching and plunging below stall is accounted for by applying a correction derived
from the Theodorsen function, thus producing a quasi static glade element angle of attack (Xgg ). ) £
From this is subtracted a correction termaa= Y (ik ¢ /2vI)®.& /&), thusXppp =xpp -Ac which is i
used to obtain Cy from the static data. The 1ift coefficient is then factored by® B.E.AREF. to
restore its full value. This has the effect of delaying the appearance of stall by Acc.
Pitching moment is obtained via an empirical shift of centre of pressure when the flow is separated.
The value of ¥ is determined empirically as a function of Mach number from' tests of the appropriate ;
ajirfoil. A consequence of this formulation is an inability to delay stall beyond the point at )
which @ becomes less than zero when € B.E. is beyond the static stall angle.

Comments on the two following methods from M.I.T. and Lockheed are copied virtually verbatim from
reference 1.

¢) M.I.T. Method (Reference 25) !

This method is basically an empirical representation of the forces and moments due to the vortex-
shedding phenomenon for ramp changes in angle of attack. The actual angle of dynamic stall must
be specified separately; the value Xpg TLag + P has normally been used. Fora §< @ < & pe
the data below static stall are extrapglateg. Starting at @« =, C, and ar§ assumed to’
increase linearly with time, over a specified time interval, from in%sci& to peak values that
depend onxc/U, at the instant of dynamic stall. If this is attained before @ =a max, then
CL and Cy remain constant untilacpay. They decay exponentially with preassigned time i
constants thereafter, until the static-stall values are attained. These new values are retained H
until o =acgg on the downstroke, when the unstalled static section characteristics are resumed.

d) Lockheed Method (References 26, 27)

This combined analytical and empirical modelling of dynamic stall incorporates phase lag time

constants and pitch-rate-dependent stall angle delay increments into a ficticious effective angle

of attack. This effective angle is used to construct C, and Cy from static airfoil character- §
istics and a linear combination of a number of separate dynamic stall elements. Some of these :
elements are assumed to be analogous flow phenomena that have been treated elsewhere in the !
literature, such as leading edge jets, the lag in circulation build-up on a pitching airfoil in
potential flow, separation over moving walls, fluctuating pressure propagation in turbulent
boundary layers, and the vortex lift due to leading-edge vortices on delta wings. Other elements
are modelled directly from dynamic-stall measurements on oscillating airfoils. In this sense,
the method has more degrees of freedom than any of the others, and information from many sources
has been utilised.

At low frequency, the phase lag of the effective incidence 1is linearly proportional towc/Uy, ‘
The latest version (Reference 29) includes increments of Cp and Cy due to the vortex shedding

phenomenon, that are proportional to sine, Compressibility corrections are developed from } \
various applications of the Prandtl-Glauert rule.

A comparison of the application of the above methods plus an early version of the time delay method
was included in reference 1 and reproduced here as figure 5.

~—

e) The Time Delay Method

At e W 1

Rather than regenerate the results of a specific programme of dynamic airfoil tests, this approach
attempts to model, in a simplified manner, the physics of the separation process as deduced f{rom
many sources. What is, in essence, a time base, is generalised in the form of distance travellled
in chord lengths.
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Thus v = t. V/c, which may be identified with the para-
meter s = 2 t. V/c fundamental to the development of the .,/ —— "
expressions for the indicial aerodynamic response for the . r 7]
attached flow regime. Continuity between attached and 2

separated flow calculations is thus provided. The basic
features of dynamic stall have been described elsewhere in
a qualitative manner. Within the context of rapid and ot
repetitive closed loop rotor response calculation, the 1 .
process has been idealised and quantified. It is |
applicable nevertheless to any two-dimensional or strip e % 5"4‘
analysis airfoil response to forcing of a totally arbitrary ° ° S HIE]
nature.
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The key feature of this method is the use of two non-dimen- aniF W wean

sional time delays T, and T, which have been identified
based on observation of many series of tests of different s
airfoils. They represent the periods of time required F

, EXPERIMENT

*MODIFIED FROM
ORIGINAL PUBLICATION

for changes between idealised flow states. The first
observable gross change in overall flow structure is the _
detachment of a vortex from the forward part of the airfoil. 2
This may be preceded by flow reversals within the boundary stanc
layer and, obviously, the formation and growth of the vortex, c‘w"
T, represents the time required for this initial stage of .
separation to take place and is initiated by the attainment

of local velocities and gradients which cannot be sustained.

When the vortex detaches,leading edge suction collapses and

the distribution of suction reflects the passage of the vortex °
over the surface which takes place at a velocity of 30% - 40%

of free stream velocity. During this period, total lift FIG.5. COMPARISON OF DYNAMIC
is sustained at a level associated with attached flow

conditions, but when the vortex departs from the region of STALL PREDICTION METHODS
the trailing edge, the lift decays very rapidly to the level associated with fully separated flow as
measured statically. Values of 7,and 7;, on the basis of observations, apnear to be relatively in-
sensitive to a first order to variations in Mach number and independent of airfoil geometry. From
initiation, the value of T.has been identified as approximately 2 and the value of Z,as approximately
5.5, which allows a period of 3.5 for vortex traverse of the airfoil.

BOEING VERTOL

LOCKHEED"
SIRORSKY*

For adequate reproduction of the characteristics of any specific airfoil throughout the Mach number
range it is desirable to incorporate a representation of measured forces and moments obtained from
static wind tunnel testing. As separation is delayed by dynamic effects, it is necessary to
extropolate the range of measured attached flow, and as separation effects are generated independently
on an idealised basis, it is relatively easy to construct a simple curve fit representation of
measured attached flow characteristics

throughout the Mach number range. For

example, C] may be represented simply by INTTIALIZA LI ON.

a zero lift angle and slope, Cm and Cd by PRIOR VALUES, REINITIALIZE |

quadratic expressions with suitable AT,ETC. r
breakpoints. ® ®

The procedure for implementing the model
for dynamic stall is illustrated in the
form of a flow chart (figure 6), which
may constitute a subroutine to handle the
force and moment charactepistics of the
airfoil throughout the complete range of
attached and separated flow. The boxes
are numbered for identification for
further discussion. -

ATTACHED FLOW
Cn1Cm:Cq

TESY
SEPARATION ?

1. Initialization

To initialize the procedure requires
current values for the independent
variables, velocity,Av, Mach number,
etc. In addition, to implement the
indicial aerodynamic response, values
from the prior calculation must be
known, together with the logic which
signifies the current flow state and |
a record of the time expired (T) since !
the initiation of separation, if
appropriate. Only information SEPARATED FLOW '
from the immediately prior calculation Cn. Cm:Cg I

T

VORTEX TRAVEL
Cn:CmiCa

need be retained for the indicial
method.

i
Y

2. Criteria for Separation

From observation of experimental data, SYSTEM RESPONSE
a model of separation for the dynamic
case has been postulated; 4i.e. that |

having attained a high level of 1lift,

sufficient to precipitate separation,

. then the subsequent process of bound- FIG.6. CALCULATION PROCEDURE

ary layer flow breakdown and vortex
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formation will occupy a set period of time. During this period, which is assumed to be
nominally constant (in non dimensional form) the gross features of the flow external to the
boundary layer are assumed to be unmodified, to a first order. It remains then, to determine
the limiting conditions for attached flow. Whatever criteria is used, it is obviously
desirable that it should, when dynamic effects are negligible, be compatible with the observed
static measurements of airfoil behaviour. This objective suggests that the static measure-
ments themselves could be used as a criterion, in particular, the most consistently and clearly
defined event which is the sudden break in pitching moment at the stall. Such a criterion
identifying the angle of attack for Cm break and labelling it oc,, was used in the initial devel-
opment of the model (references 3 and 4). This parameter is strongly dependant on Mach
number and its application for a range of airfoils and Mach numbers has produced fairly satisfac-
tory results.

At low Mach number in particular, there is considerable variability in the development of flow
separation at static stall and much has been written on this topic; for example, reference 5.
Two basic categories may be constructed; 1i.e. ‘trailing edge stall' in which the dominant
feature is a progressive growth of separation from the trailing edge and 'leading edge' or 'nose'
stall in which separation first appears in the front part of the airfoil. Within these
categories, there are many identifiable variations in behaviour and it is common,for a given air-
foil, for the stall characteristics to progress from one category to the other with a change in
Reynolds Number. It is even possible for features from both cagegories to be present at the
same time; e.g. the NACA.0012 at a Reynolds number of around 3 x 10 In reference 6, a
criterion for leading edge stall for the dynamic case is presented as an extension of correlation
studies by NASA on static stall (reference 7). A limiting value of peak velocity in the
leading edge region in combination with a level of adverse velocity gradient forms the basis of
the criterion. For a given airfoil and Mach number, this can be reduced to a sampled leading
edge velocity alone. Use of the leading edge criterion has several implications:-

a) If trailing edge separation is 1limiting in the static condition, an increment in limiting lift
will be realised on application of the leading edge criterion to the dynamic case. It
follows that transition between the two conditions must be dependant on achieving some signif-
icant rate of change.

b) Since peak velocity is dependant on circulation, then the prior motion of the airfoil will
become a factor and instantaneous angle of attack is no longer sufficient.

c) Compressibility effects will become significant up to the point where shock waves are formed
which are sufficiently strong to modify the shape of the velocity distribution.

d

~—

Pitch rate terms must be incorporated into the determination of peak velocity and gradient.

e) If account of the persistence or limited growth of trailing edge separation is included in the
calculation, it will modify the peak velocity.

f) The leading edge criterion may be used in a predictive manner for a hypothetical airfoil
geometry prior to fabrication and test.

Application of the leading edge criterion for a range of airfoils and tests (reference 6 for
example), indicates that these implications are in fact realised. For use in repetitive
dynamic calculations, the criterion may be simplified so that the local velocity at a single
location near the leading edge needs only be monitored, the relationship between the critical
local velocity and the peak value having been established in advance. The local velocity
may be constructed from the contributions from the thickness distribution, camber, time dependent
circulation and pitch rate; i.e. v (t)=yye dv,(/d s oclt) + dv"/clécIZV)' Bc/zv

Where v, represents the zero 1ift local velocity ratio, dv,/qq, represents the variation of local
velocity ratio with the effective circulatory 1ift angle and dv /diBc/2v) represents the variation
with pitch rate, The effective circulatory lift angle (relative to the zero lift angle),

o (t), is obtained from application of indicial aerodynamic response functions to the forcing
time history and since the calculation at this stage utilises incompressible terms the appropriate
value of acg{t) should refiect this. The above coefficients may be derived from application
of incompressille two-dimensional, finite thickness airfoil theory. Compressibé%ity effects
may be assessed via the expression (from reference 8) v = 1+ ‘x{ ML 1-M(1— v

and the resultant velocity v, compared with the maximum allowable value which corresponds (for
that station) to the predetermined maximum peak velocity. In some cases (reference 6) it may
be found that the local critical value is only weakly dependant on Mach number. An example
correlation of leading edge velocity up to and including dynamic stall is presented in figure 7.

Depending mainly on the shape of the component of the velocity distribution due to additional 1lift,
it is found that for a freestream Mach number of around 0.3, then the allowable peak velocity is
supersonic. This means that, for further increases in Mach number, the presence of signifi-
cantly strong shock waves will modify the pressure distribution and invalidate the criterion.
Reference 9 includes a correlation of maximum 1lift with the corresponding values of maximum upper
surface suction from which an upper limit of 0.7 vacuum is deduced, This limit may be used
to extend the range of applicability of the leading edge criterion but,until further research
provides a foundation for a revised procedure, the upper limit of applicability for the leading
edge criterion is within the range ¢f 0.3 to 0.4 Mach number.

For the time being, above a Mach number of around 0.35, the criterion for initiation of separation
remains the value of a,established from static test.
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3. Calculation of forces and Moment for attached Flow

If logic dictates that gross separation is 4
absent then lift and moment are calculated v
using the generalised indicial aerodynamic
functions as outlined in the paper on that

topic. Drag is calculated on a quasi

static basis from the curve fitted airfoil

test data (extrapolated as required). If

the criterion for separation has been

exceeded but the ensuing value of T does 3
not exceed ?,, then the caltulation proceeds

as for attached flow.

—

x/c =0-005 )

o~

Calculation during Vortex Traverse
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If T,<T<T,a detached vortex is assumed to
be located over the airfoil. In this
period additional 1ift may still be gener-
ated and is calculated as though the
assumptions relevant to the indicial lift
function had not been violated. At low
Mach numbers an additional vortex lift has
been observed and may be simulated by mag-
nification of the calculated circulatory
1lift if required. As a consequence of
the loss of leading edge suction and re-
distribution of lift the centre of pressure
moves aft over the airfoil. From static
tests with separation the instantaneous
centre of pressure may be related to the
angle of attack and in most cases the
variation may be linearised between the
first departure at «,and an ultimate
equilibrium reached at an angle which may
be labelled ac,. At .ny given angle
the transition between the c.p, for attached

flow and the appropriate value for separa- ] 1
ted flow may be taken to a function of -0-1 o RAMP. THEORY | )
time. A function analogous to a RAMP, TEST V@ g E
second order lag has been assumed; it is -~ STATIC, TEST \\ s
illustrated in figure 8 and may be imple- M=0.295 G?
mented by a numerical method similar to -0.2 A N " " %
that used for the indicial lift. The 0 5 10 15 20 25
resultant pitching moment may be calculated « -DEG ¥
from this centre of pressure and the ’ 4
current value of 1ift. FIG.7. LEADING EDGE VELOCITY
Loss of leading edge pressure simplifies DURING DYNAMIC STALL
the calculation of pressure drag which ]
tends to the value of Cy sina . This ‘ E
value may be refined by 1.0
using the centre of pressure b
calculation as a measure of FUNCTIONAL REPRESENTATION
the severity of separation. 0.8 :
An appropriate value of flpy = 1 A
friction drag may be included. {1+TpH1+T,p!

5. Calculation for Separated " 2')5 RESPONSE O S_:E.; .ZNP?‘ITsz
Flow tHe) = Al1ede > o TOT) ‘i
In the present context it is- 0.4
assumed that if the angle of
attack is greater than 30°, STEP INPUT
in either forward or reverse 02 8= CPhqy -CPog ‘
flow, then the flow must be
separated; i.e. there is
an upper limit for the appli- 0
cation of unsteady aerodynamia 0 ! 2 3 ‘ 5 :

In these circumstances the

airfoil characteristics can be
» simply represented by a curve FIG.8 CENTRE OF PRESSURE TRAVEL

fit derived from &ﬁ"’; e.g. !
b Cn= 2.2 sina, /Cpn= 0,15 - -001875 (kct - 30) and Cd = Cpn sina . For the angle of i
; attack range below 30°, it is assumed th;f* when the 1ift collapses ( T > Ty ) the decline follows ;

an exponential variation with time (e~ ) and the lower limit may be determined from an

envelope of the observed data. This lower limit can be represented simply by the
expression Cp, = 1.1 8in 3 / (I-Mzﬁ, Cm can be derived from the centre of pressure location
which is modelled as per the previous section and, again, Cd = Cp sina + friction drag.

During the'separated' phase, an account is kept of the equivalentap which is thus an indirect
measure of circulation. When the flow re-attaches this value of ccp is used to re-
initnitse :he calculation of 1lift. In a similar manner, the centre of pressure location
8 monitored.
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6. Re-attachment

When the angle of attack is reduced belowa,, following separation, then it is assumed that the
flow will re-attach. At this point, the value of C; will be lower than would have been
computed for attached flow. This deficiency may be treated in the same way as any other
which occurs in the process of constructing the time history for attached flow; i.e. via the
indicial functions for attached flow. Thus the re-attachment is not instantaneous. Re=
adjustment of the centre of pressure is handled via the time constants utilised for separated flow.

The equationsused to implement the calculation of force and moment for separated flow are
extensions of those used for attached flow; i.e. indicial functions, thus not only may
continuity of calculation be maintained but the numerical methods are the same. In rotor
calculations, during any cycle of oscillation or perturbation , the airfoil relative velocity
will change significantly. By using a time base which is related to airfoil distance
travelled through the air then, to a first order, the effects of varying velocity may be
simulated, taking into account the prior history of circulation. Having assessed the
aerodynamic forcing, system response may be calculated via the numerical procedures outlined for
the application of indicial aerodynamic functions.

To construct a formlation suitable for routine, rapid inner loop calculation and at the same
time preserve a generality that will accommodate any non-prescribed combination of independant
variables requires considerable simplification of the physical processes involved. To examine
these processes in more detail and under more controlled conditions than encountered in flight,

a considerable amount of airfoil wind tunnel testing is currently in progress. In interpreting
the results of test, it is often difficult to isolate the effect of any single variable,
particularly when results are not exactly repeatable. In this context, use of the model
described here for correlation purposes is helpful in identifying variations in behavour, second
order effects and inconsistencies in the test data. At the same time, confidence in the
model may be assessed and areas for improvement identified.

Some results of a recent programme of tests on the RAE 9644 airfoil are included to show the
degree of correlation currently obtained. (figures 9 and 10). Data for a Mach number of
0.3 are shown and the theoretical comparison incorporates the leading edge criterion. The
lowest rate ramp illustrates the influence of trailing edge separation; i.e. a rounding of
maximum 1ift and nose up pitching moment just prior to stall, This influence is not so
apparent for increased rate. At higher Mach Numbers the o, criterion is used, comparisons
are presented in reference 4.

References
1. McCroskey, W.J. Prediction of unsteady flows on oscillating airfoils. Paper 12, AGARD Lecture Series
No. 94, Three dimensional and unsteady separation at high Reynolds Numbers. February 1978.

2. Phillippe, J.J. Le decrochage dynamique: un example d'interaction forte entre ecoulements visqueux
et non-visqueux. Paper 21 AGARD. Conference Proceedings No., 227. Unsteady Aerodynamics. Sept 77.

3. Carlson, R.G. et al. Dynamic stall modelling and correlation with experimental data on airfoils and
rotors. NASA SP-352, Rotorcraft Dynamics, Paper 2. February 1974.

4, Beddoes, T.S. A synthesis of unsteady aerodynamic effects including stall hysteresis. Proc. 1st
European Rotorcraft Forum. September 1975.

5. McCullogh, G.B. Gault, D.E. Examples of three Representative types of airfoil-section Stall at low
speed.  NACA TN.2502. 1951.
RAE 9644 AIRFOIL, M=0.29, ---TEST, —THEORY,
k=-083 k=.083 k=z-25 k=-25

)

Nel
N
\\\
N

. )
_— e -t Sy = . X = -0 W=
E \ AR ; - i
-0 01 1 o 7‘ T 01 \‘
Cu h\ Ce } Cw \ [l Cw
02 0.2 * o
E ! 1. c ‘
|
-0-2 o3 ‘] Qs+ 0.9 ]
v
o -0. ey b »
#GL O AtTAR - CIOWES NOE @ ATIAR - QIS QX O ATTA: - OEONTS NOLL OF ATTADR - RS

F1G.9. HARMONIC FORCING COMPARISON




RAE 9644 AIRFOIL, M=0.3, ---TEST, —THEORY,
éc = .002 .004 -010 .01
2 . A
r’A
4 /{\\ pa
¥ h)
7 A /
\ L]
Cw / -‘ ! Cn ) & Cw c
"
4 d
4
v
Q1 % o1 L2}
A) C 2 -0-0 —
[\ |} e T = \
o \ 0L \" h—— 0L ‘\‘ o1 v
Cu V_“_ Ce 1 '~ lcs \ Ce \‘\‘
-0 0 ! B0 4 |‘ OB "
V4. ‘
.3 <8 o3 s
i Vi
0.4 h, o b, 04 e } 4
AGL OF ATTON - (KINEER AL O ATHOL - CEOUES NOLE OF ATTAR - OEPUES AOE OF ATTACR - GDRES 1
FIG.10. RAMP FORCING COMPARISON
6. Beddoes, T.S. Onset of leading edge separation effects under dynamic conditions and low Mach number.
American Helicopter Society Annual Forum 1978, pre-print 78-63.
7. Evans, W.T. and Mort, K.W. Analysis of computed flow parameters for a set of sudden stalls in low
speed two-dimensional flow. NASA TN D-85, 1959.
8. Wilby, P.G. The Calculation of sub-critical pressure distribution on symmetric aerofoils at zero
incidence. N.P.L. Aero Report 1208, 1967.
9. Smith, A.M.0. High lift Aerodynamics. Journal of Aircraft. June 1975.
10. Mehta, U.B. Dynamic stall of an Oscillating airfoil. Paper 23, AGARD Conference Proceedings No, 227.
Unsteady Aerodynamics, September 1977.
11. Wu, J.C. et al. A numerical Study of unsteady viscous flows around airfoils. Paper 24, AGARD
Conference Proceedings, No. 227, Unsteady Aerodynamics, September 1977.
12. Ham, N.D. Aerodynamic Loading on a two-dimensional airfoil during Dynamic stall. A.I.A.A. Journal.
October 1968.
13. Maskew, B. Dvorak, F.A. Investigation of Separation Models for the prediction of Cimax. A.H.S.
Annual Forum. Paper 77.33-01. May 1977.
14, Crimi, P. Reeves, B.L. A Method for analysing Dynamic Stall of Helicopter Rotor élades.
NASA CR-2009. May 1972.
15, Kinney, R.B. Two-dimensional viscous flow past &n airfcil in an unsteady airstream. Paper 26,
AGARD Conference Proceedings No. 227, Unsteady Aerodynamics. September 1977.
16. Phillippe, J.J. Sagner, M. Calgul et mesure des forces aerodynamique sur un profil oscillant, avec
et sans dechrochage. AGARD CP.111, Paper No. 11. 1972.
17. McCroskey, W.J. Phillippe, J.J. Unsteady viscous flow on oscillating airfoils. AIAA Journal.Jan.7S.
18. Scruggs, R.M. et al. Analysis of dynamic stall using Unsteady Boundary Layer Theory. NASA
CR-2467. October 1974.
19. McCraskey, W.J. Some current research in unsteady fluid dynamics. Trans. of the ASME, Journal of
Fluids Engineering. March 1977.
20, Giesing, J.P. Non=1linear two-dimensional potential flow with 1lift. Journal of Aircraft. March 68.
21. Nash, J.F. and Scruggs, R.M. Unsteady Boundary Layers with Reversal and Separation. AGARD
Conference Proceedings. CP-227, Paper 18. September 1977.
22. Rao, B.M. Maskew, B. Dvorak, F.A, Theoretical Prediction of Dynamic Stall on Oscillating Airfoils.
A.H.S. Annual Forum Reprint 78-62. May 1978,
23. Arcidiacono, P.J. Carta, F.0. Casellini, L.M, Elman, H.L. Investigation of Helicopter Control

Loads induced by stall flutter. USAAVLABS. TR.70-2. March 1970,




24,

25.

26.

27.

Bielewa, R.L.
A.H.S. Annual

Johnson, W.
Journal A.H.S.

Ericsson L.E.

1511

Synthesised Unsteady airfoil data with applications to stall flutter calculations.
Forum, Reprint 935. May 1975.

The Effect of Dynamic Stall on the Response and Airloading of Helicopter Rotor Blades.

April 1969.

Reding , J.P.

Dynamic Stall Analysis in the Light of Recent Numerical and Experimental

Results. Journal of Aircraft. April 1976.

Ericsson, L.E.
Paper No. 24.

Reding J.P.
1976.

Quasi-Steady and Transient Dynamic Stall Characteristics.

AGARD CP-204.




NUMERICAL SOLUTION TECHNIOUES FOR UNSTEADY TRANSONIC AERODYNAMICS PROBLEMS
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1. INTRODUCTION

During the last decade, there has been a truly remarkable improvement in computational aerodynamics
capability. This has resulted from the continuing availability of larger, faster computers and from rapid
advances in the develooment of numerical methods. For example, the first useful numerical solution procedure
for steady transonic flows about wings was reported in 1972 (Ref. 1). Solutions required about 12 hr of
processor time on the IBM 360-67. By 1975 the numerical method had been improved, and with the availability
of the CDC 7600, solutions could be obtained in 5-30 min of processor time (Ref. 2). The pilot comouter code
based on this method has been used for a number of practical aerodynamics apslications, including the redesign
of the HiMAT RPRV wing (Ref. 3) and the development of the Sabreliner Mark Five wing (Ref. 4), which is now
in production. There is a danger in the widespread nroliferation of aerodynamics comnuter codes, however,
because many aerodynamicists have not had time to adjust to the rapid nrogress that has been made in compu-
tational aerodynamics. As a result, they are using computer codes based on numerical solution procedures
with which they are unfamiliar.

The modern aerodynamicist must become as aware of the sources of error in these codes as he is of errors
in exoeriments. Now, most aerodynamicists understand that there are differences in the inherent errors asso-
ciated with computational methods and experiments. For this reason, one of the nrincinal uses of comnutations
has been to provide an alternative data source to supplement and verify experimental data. The computational
data are free of wind-tunnel wall and support interference, Reynolds-number scaling 1imitations, and aero-
elas%ic medel distortions, unless of course they are included to determine how they influence the experimental
results.

But, to use aerodynamic computer codes most effectively, an aerodynamicist must understand the character-
istics of the formulational and numerical errors inherent in computational data. Formulational errors result
from mathematical modeling of the fluid physics. Size and speed limitations of current computers preclude
solution of the complete Navier-Stokes equations, including computation of all the scales in turbulent bound-
ary layers and separated regions, for oractical aerodynamic flow fields. Hence, mathematical formulations of
the flow-field physics are solved that are approximations to the complete equations. These aoproximations
are tne source of formulational or nhysical modeling errors. For transonic flows, these formulations are
nonlinear and must be solved using numerical techniques, such as finite-difference or finite-element methods.
These approximate solution procedures are the source of numerical errors.

Most aerodynamicists have a much better understanding of formulational errors, which are associated
with ohysical modeling, than of numerical errors. For example, most aerodynamicists would understand and be
able to account for the difference between exact inviscid airfoil pressures and those obtained from a wind-
tunnel test. This requires an understanding of the ohysics. Few would understand the differences between
an implicit and a semi-implicit method and how these a?i??erences affect the accuracy of the solution and the
efficiency of the method for a given problem. This requires an understanding of the numerics.

One of the principal purnoses of this paper is to provide aerodynamicists with an understanding of some
of the basic concepts of finite-difference solution techniques for unsteady transonic flows. The discussion
begins in Sec. II with a review of the hierarchy of mathematical formulations that aoproximate the Navier-
Stokes equations. Section 111 deals with the basic concepts involved in constructing numerical algorithms to
solve these formulations. In Sec. IV semi-implicit and implicit schemes are constructed and analyzed. The
discussion focuses primarily on techniques for solving the low-frequency transonic small-disturbance equation.
This is the simplest formulation that contains the essence of inviscid unsteady transonic flow ohysics. The
low-frequency formulation is emnhasized here because codes based on this theory can be run in minutes of
orocessor time on cutrently available comouters. Furthermore, numerical techniques involved in solving this
simple formulation also aoply to the more complicated formulations. Extensions to these formulations are
briefly described.

A second purpose of this paper is to provide an indication of the present capability for solving unsteady
transonic flows. Example, applications of the methods described in Sec. IV are presented in Sec. V. Finally,
Sec. VI dtiaaIs with important areas of future research for the advancement of computational unsteady transonic
aerodynamics.

I1. MATHEMATICAL FORMULATIONS
Reynolds-Averaged Navier-Stokes Formulation

The Navier-Stokes equations are generally accepted as the basic equations governing most fluid dynamic
phenomena of fnterest to aerodynamicists. The equations are capable of representing mathematically the physi-
cal phenomena encountered in transonic flows, including mixed subsonfc-supersonic flow, shock waves, boundary
Jayers, and separation. They also apnly to turbulence, a random, dissipative, three-dimensional phenomenon
that involves many characteristic scales. Since present computer speed and capacity do not permit resolution
of all of these scales for practical aerodynamics problems, some type of averaging must be used. The commonly
used Reynolds time-averaging procedure averages the equations over a time interval that is long compared with
turbulent eddy fluctuations, but small compared with macroscopic flow-field changes. This process introduces
new terms, called "Reynolds stresses," that represent time-averaged transnort of turbulent momentum and energy.
Thus, there are more unknowns in the averaged equations than there are equations. This is commonly referred
to as the closure problem. The process of exoressing the Reynolds stress terms in terms of empirical functions
and constants or transport equations is referred to as turbulence modeling.

The unsteady, compressible Navier-Stokes equations for a perfect gas can be written in the conservation
form:

%% + % (puy) = 0 (continuity) (1a)
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where the stress tensor i and the heat flex vector qj are given by
Ml (aﬁ . i"i)
. :)x‘j ax;

the bulk viscosity A = -(2/3)u and where u 1is the dynamic viscosity; p, u, h, p are the density, velocity,
specific enthalpy, and pressure; k 1is the thermal conductivity; and 813 1is unity when i =j and zero
when 1 # j. A summation is applied when indices are repeated.

" The equations can be Reynolds-averaged in the following way. The flow variables are expressed in the
orm

(1d)

ui(x,, ot) = ui“i’ + u,i(xi,t) (2)

where the bar denotes the time average of uj(xj,t). The time average is obtained from

totat
4= 1im J' 0(t)dt (3)

At
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Here = means a time interval that is large compared with the scale of turbulent fluctuations; note that
uj = 0. Introducing this concept into the continuity and momentum equations gives

B, 2 o o -
3t + 3Xj (Duj +p uj) 0 (4‘)

ait' (pu1 + p'ui') + 3-% (puiuJ + "ipl"J'" = - a—ax%“ % (’1,1 - “j"'"i" pui'uj' - p'ui'uj') (4b)
Very often a different type of averaging is used called "mass-weighted averaging" (Ref. 5). The mass-
weighted velocity is iij = puj/p. The instantaneous velocity can then be written uj(xi,t)=Uj(xi) +ud(xi,t).
After a sequence of manipulations, the continuity and momentum equations can be expressed in a form similar
to that of Eqs. (1) with 5 and ij replacing o and uj. The only difference is a Reynolds stress temm
-(a/axj)(pu,”ug) on the right-hand side of Eq. [1b). This is the term that must be modeled. Additional terms
to be modeled also appear in the averaged energy equation.

Inviscid-Flow Equations

The Euler equations, the "exact" inviscid flow equations, result from setting 145 = 0 1in the Navier-
Stokes equations. In the case of one-dimensional flow they reduce to

oy + (pu), = 0 (continuity) _ (5a)
(pu)y + (ou?), +p, = 0 (momentum) (5b)
(oh)y + (auh)x = py + up, (energy) (5¢)

By definition, dh = Tds + o~! dp, where s 1is the soecific entrooy. This expression can be combined with
the continuity and energy conservation equations to give

E:a_s+u.aiso

Dt ~ ot ax
which is often used in pnlace of the energy equation. This states that entrooy is constant along particle
paths.

The continuity and momentum equations can be combined and rewritten in the form

[%»f(uu)%(ua)w (6a)

[§E+ (u - a) %](u -o)=0 (6b)

where do = dp/pa (for a perfect gas o = 2a/(y - 1)). These expressions state that the quantity u + ¢ is
constant along curves defined by dx/dt = u + a, and the quantity u - ¢ 1is constant along curves defined by
dx/dt = u - a. The two families of curves dx/dt = u + a are called characteristic curves.

The physical meaning of the characteristic curves is indicated in Fig. 1. Consider the case of a one-
dimensional flow with uniform velocity u and soeed of sound a. Suppose that at x = x5, t = o there is
a disturbance of infinftesimal strength. The wavefront generated by this disturbance travels upstream (assum-
ing subsonic flow). along the path x = (u - a)t + x,. A wavefront propagates downstream along
x = (u+ a)t + xg. At some subsequent time t = t,, the region influenced by the original disturbance is BC.
For transonic flows, u ~ a so that the downstream wave propagatfon rate is substantially greater than the
upstream propagation rate.

The ful) potential equation is obtained from the Euler equationg under the assumptions of irrotational
and isentropic flow. velocity potential can then be defined q = V4, where u = ¢, and v = oy. The «x
momentum equation can be integrated with respect to x to give Bernoulli's equation

A s Tt AT T




16-3

] 2 2 a2 _ 1 2 a ?
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where the free-stream velocity u, has been assumed to be steady and uniform. The free-stream soeed of
sound is a,. Here, a2 = ypp~! and the isentronic relation po-" = constant have been used. The speed of

sound can be eliminated using a2 = a_?(p/p,)Y"! to provide a system of two equations in the two unknowns
Py ¢

oy * (pu)x + (pv)y = 0 (continuity) (8a)
1 ] 1/(y-1)
5% =] 4 Y_a:,?_.[’z u? - % "7 (°x2 + ¢y2)] (Bernoulli) (8b)

The unsteady transonic small-disturbance equation can be written

Rogy + 2Boyy = Copy + 0y (9)

where A = k2M,2/82/3, B = kM,2/82/3, C = (1 - M 2)/62/3 - (v + 1)M M, and where ¢ is the disturbance

velocity potential, M, is the free-stream Mach number, and & 1is the airfoil thickness-to-chord ratio. The
choice of the exponent m 1is somewhat arbitrary. The parameter k is the reduced frequency. For an airfoil
of chord length c, traveling with speed u,, and executing some unsteady oscillatory motion of frequency o,
k = wC/u,. The reduced frequency is given in terms of radians of oscillatory motion ner chord length of air-
foil travel. The quantities x, y, t, ¢ in Eq. (9) have been scaled by ¢, ¢/s1/3, =1, ¢82/3u,, respec-

tively. The right-hand side of Eq. (9) is the familiar two-dimensional, transonic, small-disturbance equation

for steady flows. The pressure coefficient is given by C_= -262/ 3(¢x + key).
The characteristic equation for £q. (9) is (Ref. 6):
Ct2 - Ax2 - (AC + B2)y2 + 2Bxt = 0 (10)

Hence, the disturbance front for t > 0 that results from an instantaneous disturbance of infinitesimal
strength at the point x =y =0 at t=0 is

8t\2 | [AC + B2\ , _ (AC + 82\,
(x--A-)+( ) ,y- ) t (1)

Dropping the scaling on t, ¢, and y, and replacing M, by u/a gives
{x - ut)2 + y2 = a2t (12)

The disturbance front propagates at the speed of sound relative to the fluid. It is a circle with radius
(a-t) and center at x = ut, y = 0, as shown in Fig. 2. The disturbance center corresponds to the location
of the fluid particle that was at the noint of the disturbance at t = 0, and it moves with velocity u. In
the plane y = 0, the effect of the disturbance propagates upstream, for u < a, with velocity (u - a), and
downstream with velocity (u + a). The characteristic surfaces for an infinitesimal disturbance are the same
for the Euler and full-potential equations as for the small-disturbance equation.

An approximation to Eq. (9), valid for low reduced frequencies, is

2Boyy = Copx * byy (13)
where B and C are defined in Eq. (9). This equation can be derived from the unsteady Euler equations under
Ehe assug\;}tszions k~62/3~1-M2 << 1, The pressure coefficient expression consistent with Eq. (13) is

= -262/3¢,.
P X

The characteristic surfaces for the low-frequency equation are given (Ref. 6) by taking the limit A » 0
in Eq. (10). The equivalent to Eq. (12) then is

2
y2 = _2au_t [x + _a_}f;‘_u (a - u)t] (18)
The disturbance front is a parabola, as iTlustrated in Fig. 3. Note that the disturbance propagation rate

in the downstream direction is infinite. In the low-frequency approximation, the sound and particle speeds
are infinite. Hence, the downstream propagation rate, which is the sum of the two, is also infinite. However,
the upstream propagation rate, the difference of the two, is finite and equal to (u - a)(u + a)/2u. Since

;1*- a Eor %;§nson1c flows, this is a good aoproximation to the uostream propagation rate (u - a) correspond-
‘ing to Eq. .

Some Characteristics of Inviscid Unsteady Transonic Flows

In transonic flight, the unsteady motion of a body strongly affects the resultant aerodynamic forces
acting on that body. The reason is that Surface pressures, and hence aerodynamic forces, are extremely sensi-
tive to perturbations in boundary conditions. For example, the well-known expression from linear theory
relating the 1ift coefficient Cy to the angle of attack o for a flat plate, C; ~ ao//T - N .Z, indicates
that changes in C; due to changes in o become more pronounced as the free-stream Mach number
aporoaches unity. Simflarly, changes in airfoil velocity or shaoe (e.g., flap deflection) can be exoected to
produce large changes in the magnitude of aerodynamic forces, especially for motions that induce large
excursions of embedded shock waves.

Another characteristic of transonic flows is the large phase differences that often occur between the
motion of an aerodynamic body and the flow-field response to that motion; that is, transonic flows are rela-
tively slow to adjust to unsteady perturbations. This is to be expected, since disturbances generated on or
near the body must travel upstream at the local speed of sound against a nearly sonic oncoming flow and,
should they éncounter a supersonic region, they must propagate around it. The slow upstream orooagation rate
allows a disturbance to affect the flow field near the airfoil for a period of time that is large comoared
with that in either a purely subsonic or supersonic flow.

for the problem of an airfotd-of chord length ¢ oscillating in pitch or plunge at a frequency w, four
time scales can be {dentified:

o e
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~c ~—C ~c ~1
W u-a* ™ u+ta’® T¢ u* WMo (15)

The four scales are associated with upstream disturbance propagation, downstream disturbance propagation,
convection, and airfoil motion, respectively. For transonic flows, u ~ a, so that Ty >> tp ~ 1¢. Because
of the large difference between r,; and rp, the flow downstream of a disturbance adjusts nuch more rapidly
than the flow upstream of the disturbance. Low-frequency cases are those for which - W >> 1n. That is,
K=zac/u~1-M<<1, where M= u/a. Moy

IT1I. SOME FUNDAMENTAL CONCEPTS.OF FINITE-DIFFERENCE METHODS

The objective of the computational aerodynamicist is to first select a mathematical formulation that
describes the significant ohysics of the flow and then solve the governing equation(s) numerically as effi-
ciently as oossible. For the transonic flow regime, nonlinear formulations are required to predict the proper
mixed (subsonic-subersonic) character of the flow, including the presence of embedded shock waves. The most
efficient solutions to these formulations have been generated using comoutational algorithms based on finite-
difference methods. The successful construction of such algorithms is strongly denendent on the researcher's
understanding of the fundamental concepts involved in finite-difference techniques.

Finite-Difference Approximations

A general second order quasi-linear partial differential equation for initial boundary value problems,
representative of currently solved transonic potential formulations, can be written symbolically as

228 4 oy 228 4 o 228 ( IR IR T AR
adg e b cber(x 8, 8. 38) 0 (16)

where a, b, and ¢ are functions of .3, 3§/at, 24/3x, F is an arbitrary function, and § 1is the dependent
variable which is a function of the spatial variable x and the temporal variable t. For simplicity only
one space dimension is considered.

To solve the differential equation using finite-difference techniques, a grid of mesh noints is introduced
in x,t space with increments Ax and At and with indexing defined by t" = nat, xi = jax. The exact solu-
tion to the governing equation, $(x,t), is aoproximated on the grid by the solution %o the numerical scheme,
#(xj,t") = oM.

The idea, then, is to replace the partial differential equation with a system of algebraic equations
for the values of the dependent variable at the mesh points. In the finite difference method, this is
accomplished by replacing each partial derivative term in the governing equation with a finite-difference
approximation. The resulting finite-difference equation is valid at each discrete point in the computational
domain.

A finite-difference approximation to any derivative term can be derived by exvanding the dependent varia-
ble at neighboring points about the point (xj,t“). By forming appropriate linear combinations of these expan-
sions, formulas are obtained that involve local values of the dependent variable. For example, formulas for
the 3$/ax term in Eq. (16) are readily obtained using Taylor series exnansions for two neighboring points;

they can be written as
n 2 fa2,\N 3 [a34\N
o =¢,’_‘¢Ax(§_ﬁ)+é)‘_§_ﬁ g AT fa7e) .
Jr1 %) /g 2 \ax2/y T 6 \ax¥/j

Using this equation, three different finite-difference approximations for 23$/3x can be derived; they are
(3¢/3x)j = (1)(¢j+1 - ¢j)/Ax {forward), (2)(¢j+1 - ¢j_1)/2Ax (central), and (3)(¢j - ¢j_1)/Ax (backward).

ysing T?{I?r series expansions for ¢g11, ¢g;i, and og:% yields various formulas for the other derivative term
n Eq. (16). t *

Since these finite-difference approximations are not unique, the question naturally arises: Which approx-
imation is best to use in a given case? The answer is that there is usually no "cookbook" approach for con-
structing an optimum algorithm. The algorithm developer must rely on experience and on an understanding of
basic concepts of accuracy, stabjlity, convergence, and computational efficiency.

Modified Partial Differential Equation

Given a finite-difference aporoximation to the partial differential equation (16) and assuming the
existence of a continuously differentiable function ¢(x,t) that coincides with the exact solution to the
difference equation at the mesh points, then ¢(x,t) can be viewed as an approximation to ¥(x,t), the exact
solution to the differential equation. An alternative interpretation is that ¢(x,t) is the exact solution to
a different nartfal differentfal equation that approximates the governing equation. This approximate differ-
ential equation is called the modified partial differential equation (mpde). The modified equation can be
derived by expanding each term in the finite-difference a|gor%tﬁﬁ Tn a Taylor series about the noint (xi,t").
The result is a partial differentfal equation containing an infinite number of soace and time derivativgs.
This mpde contains the original ode plus higher order terms. In order to obtain an equation amenable to
physical interpretation, the higher order time-derivative terms can (in some cases) be eliminated, as shown
in Ref. 7. In general, for a given finite-difference analog of the governing equation, the modified equation
will have the form

= k
Z 3¢

L{¢} = Ck axk (17)
k=3

nher? gk denotes the coefficient of the kth spatial derivative and L{¢} ts the linearized form of
Eq. (16).

As an example, consider the following finite-difference approximation to the model equation 24y¢ = Béyys
ot - ot = o - ol )+ (e, - 204" + 0] ) (18)
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where c 1is the Courant number gat/2ax. Substituting in the Taylor series expansions for each term and

eliminating the higher order terms involving time derivatives yields the modified equation

- = - Bat! B fax2 - B2At2 i
2°xt Boyx B(}x 5 )°xxx *3 (Ax BAXAt + =3 Sxx * higher order terms (19)

Hence, the modified equation is equal to the governing equation with the addition of the truncation error
terms (the right-hand side). The physical significance of these additional terms is investigated subsequently.

Consistency

A finite-difference approximation is said to be consistent with a given partial different?.]l equation if
it reduces to that equation in the 1imit of vanishing mesh spacings. From the modified equation viewnoint, a
finite-difference scheme is consistent with the governing equation if the right-hand side of £q. (17) tends
to zero as At and Ax aporoach zero in an arbitrary manner. The satisfaction of the consistency condition
ensures that the difference equation is approximating the correct differential equation. The difference scheme
for the model equation given by Eq. (18) yields a consistent approximation as can be seen from the modified
equation, Eq. (19).

Another finite-difference scheme for the model equation is given by

n+l n+1 n-1 n-1 At /.n n n
. o= e = 4. = s e, - 20, + ¢
5 T %% T4t ("JH 205 * 45 1)
Introducing the approximation
n-1

n_. 1 f.n+1
. - o= . + .
b T2 (¢J ¥

yields the difference equation

n+1 n+1 n-1 n-1 _ gat /. n n+1 n-1 n
o S O YA S =L PO Yo S O Y .
4 %5-1 7 ¢ 451 ¥ ax (¢J+1 ¢ J °J-1)
The modified equation for this finite-difference scheme is given by

- _ Bat? BAX? _ ax2 _at? gat*
Zoxt T Boux T T oz ftt Y12 xxxx T 3 Yoot T 6 Okttt Y g ftttt (20)
Clearly, this scheme is in general inconsistent with the model linear equation due to the (AtZ/Ax2)¢tt term.
It would be a consistent approximation if at ~ ax?2. If At ~ ax then this scheme avoroximates the equation
Ay + 205t - Bixyx = 0 where A = gat?/ax?.

Order of Accuracy

The order of accuracy of a finite-difference scheme is defined by the lowest order vowers of the mesh
spacings Ax and At appearing in the error terms of the modified equation. For example, the finite-difference
scheme given by Eq. (18} is first-order accurate in both space and time as indicated by the fact that the
truncation errors in the modified equation, Eq. (i9), are prooortional to the mesh snacings &x and ot to the
first power.

A more accurate finite-difference aporoximation can be obtained by using central-snatial differences on
the ¢4t term. This scheme is given by

n+1 n#l_ n N Bat (. n n n
%541 " %o T a1 T 45 * (°j+1 2¢j * °j-1)
for which the modified equation is
- =_82At Ay2 2,42y B
2058 = Boyy 7 ox t (-ax® + B28t2) 47 byppy * - -

This scheme is first-order accurate in time and second-order accurate in space.
Stability

The stabflity of a finite-difference scheme pertains to its ability to nrevent errors introduced in the
numerical solution from becoming unbounded as the number of time steps n approaches an arbitrarily large
number. The essence of stability is that there should be some limit to the extent that any component of the
initial function may be amplified by the sequence of difference equations.

A commonly used technique for analyzing the stability of finite-difference schemes is the Von Neumann
method. Denote the theoretical and numerfical solutions to the difference equation by ¢ " and 435", resovec-
tively, and let the error be given by Ej" = #" - @3". In the Von Neumann method it is”assumed that the
error can be represented by a Fourier series

E," - ; o(k,tMe'*xd

where § = /T and it is assumed that the boundary conditions are perfodic. This tacitly implies a linear
constant coefficient difference equation, which in general will not be the case. Fortunately, there is
numerical evidence to support the contention that in many cases the method can be applied locally with the
expectation that the stability characteristics will be roughly the same.

The error propagation can be investigated by substituting one arbitrary component of the Fourier series,
Y e'ka, fnto the difference equation and solving for the amplification factor G(k), where G(k) = o™*1/e",

The error component will not grow with time if {G(k)| s 1, and this is the Von Neumann stability condition.
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For the finite-difference scheme of Eq. (18) the amplification factor is given by

6(k) = U= e Tkax) 4 c(efkax _ 5 4 g Tkax) - {1 -2c)(1 - cos 8) + 1 sine
a- e-ikAx) (I -cos 6} +1sine

(21)

where c¢ = gat/2ax and o = kax. The stability condition yields, after some algebra 0 <c <1 or

0 s at 5 2ax/8. For B < 0 (suoersonic flow) the stability condition cannot be satisfied and the scheme is.

said to be unconditionally unstable. For B > 0 (subsonic flow) the stability condition olaces a restriction
on the size of the time step and the scheme is said to be conditionally stable. Schemes that always satisfy
the stability condition are said to be unconditionally stable.

Convergence

In any finite-difference approximation, a desired property is the ability to systematically reduce the
difference between the solutions of the difference and differential equations. If the solutfons to a differ-
ence scheme, upon successive refinement of the mesh, approach the exact solution, then the scheme is safd to
be a convergent approximation to the differential equation and hence maintains this property.

The fact that a finite-difference scheme produces stable solutions does not necessarily imply that these
solutions will converge to the exact solution. Lax studied the relation between consistency, stability, and
convergence of finite-difference approximations to initial value problems, the result of which is termed the
Lax equivalence theorem (see, for example, Ref. 8):
Given a properly posed initial boundary value problem and a finite-difference aggroximation to it that
satisfies_the consistency condition, %en staBE Tity is the necessary and sufficient condition for
convergence.

Thus, for any consistent approximation, the question of convergence reduces to a stability consideration.

Dispersive and Dissipative Errors

There are many sources of error involved in the apnroximate solution of transonic flows. Formulationa:
errors due to the approximations involved in the choice of mathematical formulation (e.g., inviscid, irrota-
tional isentropic) and round-off errors due to machine-accuracy limitations are independent of the numerical
scheme. Two types of errors that can be directly attributed to the finite-difference algorithm are dispersive
and dissipative errors.

The numerical solution of a finite-difference equation will generally exhibit amplitude and phase errors
due to dissipation and dispersion, respectively. The effect of these errors on the physics of the flow can be
determined from an examination of the modified equation. For the mode! equation and finite-difference scheme
of Eq. (18) the modified equation was shown to be of the form 4

200 " By T 0 Y Yhx Y- - (22)

The effects of each of the two lowest order truncation terms can be determined by examining thrge rodel equa-
tions and their solutions; they are obtained by assuming a general solution of the form ¢ = % etkx “ang
solving for a:

Low frequency: 26, - 86y, = O s ¢ = elkDxt(s/2)t]
= o~k2(w/2)t ikIx+(8/2)t]

oTkIx#(1/2) (8-k?y)t]

Burgers: 2°xt = Béyy = ué

©

xxx *

Korteweg-deVries: 2°xt = Boyy T Yhuwxx } ¢ =
The exact solution to the equation with u =y = 0 is a traveling wave with constant amplitude and a speed
B/2. The effect of the ¢yyx term is to add to the exact solution an amolification factor that dissipates
the solution for u > 0 or causes exponential growth for u < 0. In fact, the stability of a finite-
difference scheme can be determined by examining the sign of the lowest-order dissipative term. The éyyxx
term does not affect the amplitude but changes the wave speed to [8/2 - k2(y/2)]. Since the wave speed is
now a function of wave number, each wave travels with a different speed, thus causing disversion.

The dispersive and dissipative properties of a particular finite-difference scheme can be analyzed using
the amplification factor G(k) obtained from the Von Neumann method. Since the amolification factor is com-
plex, it can be written G(k) = |G[el¥. If yo {s the exact phase shift per time increment At then v/ve
represents the relative phase shift error or velocity dispersion per time step. The scheme will be dissi-
pative if |G| < 1. The dispersive and dissipative errors of various difference schemes can be compared E
using polar plots of |G| and y/ve. For the model equation, the exact phase shift s given by
Ve = kBAt/2 = co where 6 = kaAx and ¢ is the Courant number BAt/2ax. Polar plots for exact, purely dis-
persive and purely dissipative schemes for the model equation are shown in Fig. 4. For the exact solution,
both plots are semicircles of radius 1. The plot of ¥/v¥e for the purely dispersive scheme indicates that
the wave speed increases with the wave number. For the purely dissipative case the plot of |G| shows that ;
the dissipation increases with wave number. ]

Figures 5 and 6 show the numerical solutions to the model equation for an upstream traveling wave using 3
each of the above schemes. .olutions for both high- and low-frequency waves are shown that graphically
11lustrate the dispersive and dissipative properties indicated by the polar plots.

b iicadt i

Implicit versus Explicit Schemes and Time Step >election

Consider the equation 24xt = Béxx written in the form 2up = guy, where ¢, has been replaced by u.
A general two-time-level finite-difference approximation to this equation is

.,:'“ - u1" - Ea-t- su[eu?ﬂ + (1 - o)u1"] (23)

where Syuq 1{s an approximation to wux, and o = 0, 1/2, 1 corresoond to explicit Euler, trapezoidal, and

implicit Euler time-differencing, respectively. Notice that for e = 0, u?" depends solely on values of
uj at time-Tevel n. This is a characteristic of explicit schemes.
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A scheme is safd to be implicit if o # 0. Then the solution at the point {1 at time-level n + 1
depends on the solution at every other point at time-level n + 1. Hence, a system of equations must be
solved to advance the solution one time steo. In one-dimensional problems, this system is usually solved
directly. For two- and three-dimensional oroblems, the solution is complicated substantially; this is a
deficiency of implicit algorithms. However, implicit schemes can often be constructed to be unconditionally
stable, permitting selection of an integration time step At that is determined based on accuracy rather
than stability considerations. A Von Neumann stability analysis apnlied to Eq. $23) with

Sxui = (uj+; - uj)ax~! indicates that trapezoidal (e = 1/2) and implicit Euler (6 = 1) are unconditionally
stable, provided 8 > 0 and that exolicit Euler (o = 0) has the stability restriction at < 2ax/s.

The integration time increment At, chosen for a computation should, 'for reasons of computational effi-
ciency, be the largest one that will adequately resolve the unsteady physical phenomena of interest. For
disturbances with spatial wavelength A prooagating with speed v, At ~ A/v. In transonic flows the wave
propagation velocities of interest are v, = u - a for upstream prooagation and V, = u + a for downstream,
ru"op:gai:'lon.2 The smallest spatial waveleugth that can be resolved on a finite-difference grid with spacing
Ax is A ~ 2ax.

Consider the case of an oscillating airfoil. The number of time increments oer cycle of oscillation is
n = T/at = 2n/(wat), where T is the period and w/2n 1is the frequency. Using k = wc/u to eliminate o
and letting At = /v provides an estimate of the number of time steps required per cycle of oscillatory
motion in terms 6f the flow velocity u, airfoil chord length c, reduced frequency k, and spatial wavelength
A and propagation speed v of disturbances to be resolved: n = 2ncv(uak)-!. There are three cases of
interest: (1) high-frequency disturbances traveling downstream () ~ 2ax, v = u + a); (2) high-frequency dis-
turbances traveling upstream (» ~ 2ax, v = u - a); and (3) low-frequency disturbances traveling upstream
{A~c, v=u-a). For a computation with 50 mesh points on the airfoil chord, aAx = ¢/50; and for tyoical
values of Mach number and reduced frequency M = 0.8, k = 0.05 we obtain: (1) n, = 7,000, (2) n, = 700, and
(3) n3 = 30. Hence, substantial differences result in the number of time steps required per cycle, depending
on the degree of resolution desired.

The three cases just described can be related to the use of explicit and imolicit finite-difference
schemes. Case 1 resolves high-frequency disturbances traveling downstream, and the time-step restriction for
accuracy s At ~ 2ax/(u + a). This is the same form as the time-step restriction required for stability with
explicit schemes. Hence, adequate resolution for Case 1 can be expected using an explicit scheme with a time
step chosen to maintain stability.

Semi-implicit schemes have been developed that are implicit on downstream oropagating disturbances and
explicit on upstream oropagating disturbances, so that the stability restriction is At ~ 2ax/(u - a). This
corresponds to the time step required to resolve high-frequency disturbances traveling upstream, Case 2. Note
that for the example described above, an order of magnitude fewer iterations per cycle would be required for
Case 2, using a semi-implicit scheme, than for Case 1 with either an explicit or semi-implicit method.

For Case 3, in which only large wavelength disturbances are generated, substantially fewer time stevns
are required for accuracy then would be required for stability with either an explicit or semi-implicit
scheme — as might be expected when the reduced frequency is small. For Case 3, an unconditionally stable
implicit scheme should be used. A question naturally arises: Why not always use an implicit scheme and then
adjust At for the required accuracy? Because implicit methods are usually more difficult to construct and
code than explicit or semi-implicit methods, and because for a given at (within the stability bounds),

explicit and semi-implicit methods usually provide better resolution of high-frequency disturbance propagation.

IV. SEMI-IMPLICIT AND IMPLICIT METHODS FOR UNSTEADY TRANSONIC FLOWS

Many unsteady transonic flow problems of practical importance occur in the reduced frequency range
k = wc/u, << 1. The time scale of the motion for these reduced frequencies is of the same order as the time
scale corresponding to upstream disturbance propagation (along "receding" waves). As shown in the previous
section, explicit schemes have a time-step restriction for stability based on downstream disturbance orobaga-
tion (along "advancing" waves). The associated time scale is much smaller than that of the motion, hence the
time-step restriction is much more severe than that required for adequate flow-field resolution. For this
reason, explicit finite-difference methods applied to these flows have been notoriously inefficient. The
standard approach to increasing computational efficiency is to introduce some degree of implicitness into the
solution procedure. Several such methods have been developed for the efficient solution of these flows.

Semi-Implicit Schemes

Semi-implicit schemes have been developed for both the small-disturbance Eq. {9) and its low-frequency
approximation Eq. (13) by Ballhaus and Lomax (Ref. 9). The schemes were designed to (1) have a time-step
restriction for stability based on the receding rather than the advancing-wave-orovagation time scale, (2) be
as consistent as possible with the characteristics of the corresponding partial differential equation, and
(3) reduce to the Murman scheme (Ref. 10) in the steady-state case. These schemes are fllustrated schemati-
cally in Fig. 7. Both schemes are implicit in the y direction, thus avoiding a severe time-steo restriction
due to the shallowness of the characteristic traces in the y,t plane. The differencing in the x,t plane
is implicit in the upstream direction and explicit in the downstream dirvection.

A semi-implicit scheme for the 1inearized low-frequency equation, namely,

20 = By * by (24)

can be constructed using the differencing of the mode) linear equation of the previous section given by
Eq. (18). Combining this scheme with the general two-time-level temporal difference aoproximation for ¢,

ylelds ,
n+1 ny ., n n+ _ ayal
26,((0” - 0”) M[“xx‘u + syy[eo“ + (1 e)o”]] (25)
where 8yo¢4 * “ij ol TIRY J)/Ax, dyy 1s a second-order central-difference approximation, and &y is a
1]
general-di fference operator given by

B
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6,(,(0” = [% (r- 1)01_2_34» (1+4r- 21‘2)01_1.j + ('2*3"2)’” +{1-r -2r2)¢“1’j+% (l‘+1)¢i+2‘j]/Ax2 (26)

where T - -1,0,1 corresponds to backward, central, and forward differencing, respectively.
The modified partial differential equation is given by
- gat 1
20,0 = Bbyy t oyy + |ax - T]‘xxt + (e - 2—)At¢wt + Braxe,,, + higher order terms (27)

A Von Neumann stability analysis indicates that the scheme is stable for o6 2 1/2 and At < 2ax/g provided
that T =0 for 8 > 0 (subsonic flow) and T = -1 for B < O (supersonic flow). Note that for e = 1/2,
the truncation error term containing dyyt s eliminated.

The difference equations must be solved by marching both in x (the free-stream direction) and t. For
a given time level, tridiagonal equations are solved for ¢ along y lines (x = constant), successively
marching in the x-direction. This procedure is similar to the successive line overrelaxation (SLOR) schemes
used to solve steady transonic flows.

Now consider the nonlinear low-frequency equation written in the form
24 = CHM2Ye - YF1yo, o2
220, = [0 - 020 - T3tued, v o, (28)
Equation (28) can be written in difference form as 2kM,26x(¢?§‘ - ¢'i'j) = at[Dyfij + (eyy/Z)(o?’s‘ + ¢’i'j)]

where fij = f(o?qj) = [(1 - M.z)oﬁi - [(Y+1)/2]M,2(¢',:ij)2] and dx;s = [o4u172,5 - 3-1/2,5)/8x. Dy s

Murman's mixed-difference operator required to maintain stability in both subsonic and supersonic regions.

As shown by Murman (Ref. 10?, care must be taken in switching from one difference operator to another, other-
wise the conservative form and its correct weak solution may not be maintained. Switched differences can be
used while maintaining proper conservation form by expressing D, in the form

Ofis = (0= €0z = Frorze,g] * Salfioagag = Frova,gl)ox (29)

where ¢j =0or 1 for [1-M2- (v + 1M,2(844),5 - $4-1,j)/28x] > O or < 0, respectively. Each point in
the computational domain is classified according to" the test” for €j. In Murman's terminology

€y T 0, € 0 = subsonic point

€4-1 1, € * 1 = supersonic point

LTI e; = 0= shock point

€4y © 0, €5 * 1 = parabolic {or sonic) point

This differencing strategy amounts to using central differences in subsonic regions, backward differences in
supersonic regions, a combination of both at shock points, and zero at sonic {parabolic) points. The effect
of improper mixed differencing on shock speeds is described in the discussion on implicit methods.

Using the finite-difference approximations in Eq. (25) for &y and &y, along with the mixed-differencing
scheme (29) results in a conditionally stable, conservative finite-difference scheme for Eq. (28). The scheme
is consistent with both the differential equation and the shock-jump conditions associated with the integral
form of the equation. Failure to include the shock-point transition operator, as in the original Murman-Cole
scheme (Ref. 11), results in erroneous computed shock-jump conditions that depend on nonphysical considera-
tions, such as mesh spacings. In the unsteady case, failure to maintain conservation form can result in
erroneous computed shock speeds, as demonstrated later in this section.

The stability restriction for the semi-implicit scheme applied to the low-frequency Eq. (28) is
’ 2
At < min 2K, ax
10 [1-M2- (v + M2,

An unnecessarily severe time-step limitation is imposed with the semi-implicit scheme near singular points,
such as the airfoil leading- and trailing-edges, where the small-dfsturbance assumptions break down (i.e.,
éx becomes large). This restrictive time step is used in updating every point in the flow field. This can
be overcome by patching in a fully implicit method in these singular regions. However, it is usually easier
to use an implicit method for the entire flow field.

Implicit Schemes

The deficiencies of the semi-implicit schemes can be overcome and the computational efficiency substan-
tially increased with the use of fully implicit methods. It was shown in Sec. III that an unconditionally
stable method should be used for low-frequency motions to allow the largest possible time step that adequately
resolves the flow field. In general, the implicit schemes are constructed to be unconditionally stable. In
principle, relatively large time steps can be taken with these schemes if the flow-field response to some
motion has only low-frequency content. In practice, however, the time step for accuracy (and, in some cases,
even stability) is 1imited by high-frequency content in the solution due to the motion of shock waves (Ref.12),
although this restriction is much less severe than the one associated with the semi-implicit schemes.

The construction of an implicit scheme for Eq. (28) can be 11lustrated by considering the model linear
equation, Eq. (24). An implicit, two time-level differencing of Eq. (24) is given by

n+l ny . at n+1 n
26!(“” - ’1:’) ‘2‘ (BGXX + ny)(‘ij + .11) (30)
where 8y, Sxx, and Syy are finite-difference operators to be defined. Travezoidai temporal differencing
has been chosen to provide second-order time accuracy.

Solution of Eq. (30) for ¢7i' requires the inversion of a nonbanded matrix to advance the solution
each time step. To avoid this oogt'ly procedure an alternating direction implicit (ADI) technique, originally
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introduced by Douglas and Gunn (Ref. 13) for the heat equation is used. The ADI scheme “factors® the differ-

ence equation into a sequence of equations, each of which requires only a simple tridiagonal fnversion. The
consistency, stability, and convergence properties of the original-difference algorithm are unaltered.

The ADI algorithm for Eq. (30) is given by

NCHECHES 5 [ZMXX’?J P O ’?J)] (31a)
n+l n At n+ <N+ n
NCARTHEE 3 EMCAREAREW CHEE) (310)

where 3'1’31 is an intermediate solution that is a consistent, first-order time-accurate approximation to the
solution at time-level n + 1. The first sweep through the grid treats ¢,x explicitly; the reverse is true
on the second sweep. Subtracting Eq. (31a) from (31b) and rearranging, yiefds
at o nt1 At n
(zax - B ns )olyt = 26,370 - Fesely

which §s normally used in place of Eq. (31b). The difference-operators &y, 8xx, and & y _can be chosen to

be the same as those used in the semi-implicit scheme. The y-sweep then becomes 1dent'¥cal to the semi-

fmplicit method, which is conditionally stable. The addition of the x-sweep provides unconditional stability

;:r tﬁkAD; s:?eme Incidentally, the ADI scheme generalizes to three dimensions in the usual Douglas-
nn-11ike fashion.

The shock-capturing properties of the implicit finite-difference scheme can be investigated using the
model nonlinear equation

2) =
(6 )y *+ (0,2), =0 (32)
along with boundary conditions ¢(0,t) = 0, ¢x(0,t) = ox; » and  ¢x(2,t) = xps and initial conditions as

shown in Fig. 8. The weak solution to the model problem c% be found by deriving the shock-jump conditions.
The model equation can be written in the divergence form W= 0, where

T
$=13 2 V= 21T
v [at s ax] and V [ox. by 7.
Using the divergence theorem

fV-Vdv-_‘;V-Hdwo

v

here j is a vector normal to the shock surface in x-t space as shown in Fig, 9. Substituting in for
and n gives the shock-jump condition -(#x, - ¢x )dxg + (6%, - ¢%,)dt = 0 which yields the shock speed

dxg
vs = at = (‘Xz + 0Xl) = (‘XL + 0XR) (33)
The solution to the model problem is ¢y = x for x < xg, and oy = ¢ for x > xg, where xg is the
instantaneous shock-wave location given by x¢ = xso + “"L + QXR)t.

The implicit finite-difference scheme for Eq. (32) is written in the form

n+1 n -
8 (47 - o") + st fy = 0 (34)
where fj = f(o',{j.o'};‘), &y s a backward difference operator, and
Oxj = [‘J"‘I/Z - ’j‘l/Z],Ax (35)

The operator &, can be written in the form
Sdy = [(2420)ay - 200 + 2oy, + 2ey_,1/28x (36)

which is first- or second-order accurate for 1 = 0 or 1, respectively. The quantity fj {s some difference
approximation for (¢x?), and the difference-operator D, remains to be specified. To avoid iteration at the
n+1 level, fj 1is linearized by expanding in temms o o,’(';‘. Using a Taylor series expansion,

2
(02”)2 - (0: ) + 24 (02“ - 02) + 0(at?) (¥7)
3 J J\ 7 J

For trapezoidal temporal differencing, ox2 is averaged at the n and n + 1 time levels; this gives

) )] 4 e

which maintains the second-order time accuracy of the difference scheme,

As mentioned in the previous section, central and backward differences for ¢xx are required to mintain
stability for the cases g > O (subsonic) and @ < O (supersonic), respectively. fn differencing Eq. (34)
then, central and backward differences should be used for f when z < 0 (subsonic) and ¢, > O (supersonic),
respectively. Murman's mixed difference onerator as defined in Eq. 59) is used for . Combining Eqs. (34)-
(38), then gives first- and second-order accurate implicit difference equations for (32

,"j‘"l . .3':: . -AxAth(Q:jQ:;l) + ’j" - .3‘_‘ (first order) (3%) |
303'“ - 403":: + .3':; . '2"‘“0::(’:1‘:;1) + 30"" - 403'_1 + ‘3-2 (second order) (3m) i
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The term “second-order” in (39b) applies only for locally subsonic regions because the upwind diffevence used
in Dxfj for locally supersonic flows is only first-order accurate.

The procedure outlined here maintains proper conservation form by following a three-step procedure:
21; write the difference equation in conservation form, as in Eq. (32}, (2) linearize, as in Eq. (38), and
3) apply the switching operator D0,, as in Eq. (29). Failure to maintain proper conservation form can result
in erroneous shock speeds. For example, consider Eq. (32) written in the nonconservation form
f!l(t + 2’ éxx = 0. Now introduce a mixed spatial difference approximation to dxéxx in the form
- € fcxoj)(axxoj) + €3-1(8x03-1) (Sxxdj-1) where cf is defined as before and 64 and &xx are first and
second central differences, respectively. Coincidentally, it can be shown that this scheme is conservative;
in fact, it is exactly equivalent to the Murman conservative scheme. Now, we can aoply trapezoidal time
differencing to this term and time-linearize to avoid nonlinear matrix operations in advancing the solution
o 1N+ n.n . s 4 Ng,N41 N
one time step. Two :bvio:illivnlearizations for z‘x’xx S0y by t A8, are: (1) 2‘x°xx " (’xx +‘xx)
and (2) 2‘x°xx z (°x + 0 )oxx' Both of these linearizations are first-order accurate, and they produce
the erroneous shock speeds

Ve Ve
(m v = %3 (2) v, = X3 (40a,b)
T+ 5% (’xl_ - ‘x;) 1 - 7ax (’xL - ‘xR)

where V 1is the correct shock speed given by Eq. (33). The shock speed can be derived by summing the differ-
ence expressions over all the points at a given time level to obtain the change at the downstream boundary
during one time step and then relating this change to the shock displacement. Figures 10 and 11 show the
variation of shock speed with aAt/ax for each case for ox = 1.0 and oxg * -0.5. For both cases, the

shock speed approaches zerp as At/ax becomes large. The shock speed becomes infinite in the second case
when At/ax = 2/(oxL - ¢yp). The numerical solutions to the model equation with at/ax = 2/3 are shown in

Fig. 12 along with the exact solution. Erroneous shock speeds resulted here because we time-linearized a
quantity (2¢yéxx) that is not the flux conserved in the physical formulation (#42).

Another way to accidentally generate a nonconservative scheme is to improperly include transition oper-
ators in mixed difference schemes. This problem went undetected in the early 1970s after the original
Murman-Cole scheme was reported. Their scheme used the subsonic (central) difference operator at the first
mesh point downstream of a shock {ej-; = 1, €§ = 0) instead of the shock point operator. In the unsteady case,
it can be shown that this produces a shock speed that depends on the location of the shock within the grid.
When the shock is located at a grid point the shock speed is zero, and the shock will remain stationary for
all time thereafter.

A more subtle error that can result in a nonconservative scheme occurs with nonuniform grid spacings.
The differencing of Eq. (32) for nonuniform grids remains in the form of Eq. (34) where the finite-difference
operators are defined by

5x0j = (0j - oj-l)/Axbj

by = garyy = 950172V (R4a1p2 = %40072) (an)

0 fy = {0 = e furyn = Fiorgod * galfyiys - v/ bxe, /2
and where Bxey = (X541 = %j-1) and where MXby is yet to be defined; the natural choice is to let
Axp, = (xj - xj_l), since &y 1s a backward difference operator. However, for a supersonic to subsonic
shock case (oxL >0, oxp < 0) the shock speed for the above difference scheme is given by V¢ = [Z(Axb/Axc)j]VE
and is a function of the mesh stretching. To maintain conservation form and hence produce the correct shock
speed the mesh spacing in the &y operator must be chosen as Axbj = Axcj/Z = (xj4_1 - xj_l)lz.

To investigate the shock-capturing characteristics of the conservative implicit scheme, four types of
shock motions are considered; they are summarized in Table 1. The terms "subsonic" and “"supersonic® are
relative to the coordinate system and not to the moving shock.

TABLE 1.- CLASSIFICATION OF SHOCK MOTIONS

Shock Characteristic Spatial differencing
1. Supersonic-to-supersonic x> 0, ¢ > 0 Backward
2. Subsonic-to-subsonic by < 0y oxp < 0 Central
3. Supersonic-to-subsonic (downstream moving) °"L + °"R > 0, O*R <0 Mi xed
4, Supersonic-to-subsonic (upstream moving) O"L + °"R <0, "‘R <0 Mixed

A parameter that has a significant effect on the shock-capturing properties of the scheme {s the number
of Ax increments the shock wave travels in a time aAt, T = (At/Ax?(dxs/dt). where the correct shock speed is

dxg/dt = (”‘L + ”‘R) and a uniform grid is assumed. A value T = 1 corresoonds to the case where the shock

moves a distance of one x-grid point per time step. Another parameter of interest is the Courant number
v = 2|4l (at/8x), and the stability restriction for the semi-implicit scheme 1s |v| < 1.

Now consider the impifcit schemes (39) applied to the model problem Eq. (32) for the four types of shock
motion Tisted in Table 2. The analysis of the resulting shock profiles is aided by examining the wmodified
equation for the locally-linearized form of the model governing equation which is given by Eq. (19) with
8 = 44,. The modified equation can be put in the general form

ik

ke




l6:ll
20,4 " By, * fer+ (0 -0 g'gioxxx + ({'] +30 -2 +erir+ (0 'A)]}E%z"' 3_3‘%_2.) oxx ¥ (82)

where for subsonic or supersonic flow, I = 0, or 1, respectively, and 1 is defined as in Eq. (36). The
coeff:‘cien::s gfb%hezdissipative term dyxx, for both implicit schemes in the supersonic and subsonic cases,
are shown in Table 2.

JABLE 2.- DISSIPATIVE COEFFICIENT

Scheme Supersonic (8 < 0) Subsonic (g > 0)
First-order ¢, - B Bx
Second-order °xt - BAX 0

The shock profiles for the first-order (39a) and second-order (39b) schemes for the supersonic-to-
supersonic case are shown in Fig. 13 for different values of T and v at the same time. In this case, the
(0x2) term is approximated by backward differences throughout. The shock is smeared over five grid points
for the first-order scheme and over approximately twice as many voints for the second-order scheme. This
trend is indicated by the magnitudes of the dissipation shown in Table 2 for this case (i.e., the dissipative
coefficient for the second-order scheme is twice as large as that for the first-order scheme). For each
scheme, the shock profiles are similar in appearance at the different values of T and v.

Results for the second tyoe of shock motion, the subsonic-to-subsonic case, are shown in Fig. 14. In
this case, the term (4,2), is central-differenced throughout. The first-order resuits are similar in
appearance to those for tf‘:e supersonic-to-supersonic case. From Table 2 it can be seen that the dissipative
terms for the first-order scheme in the supersonic and subsonic cases are identically equal (provided the
g8's are the same magnitude). The second-order results contain oscillations that increase with T and v.
Fgr t!lrlsdcasedthere is no first-order dissipation and the velocity dispersion at the shock is not suffi-
ciently damped.

A sequence of shock profiles for a downstream-moving, supersonic-to-subsonic shock is shown in Fig. 15.
For the supersonic-to-subsonic cases, mixed differences are used for (4,2). The sequence of shock orofiles
is periodic, repeating every fifth time step, because T = 0.2. Both the schemes capture the shock sharply.
Similar shock profiles result for the upstream moving supersonic-to-subsonic case.

The first-order results of Fig. 15 are replotted in terms of ¢ versus x 1in Fig. 16. The dashed Yines
indicate the exact solution at different time steps. The exact shock location at time-level n {s indicated
by the intersection of two dashed lines and is marked by Xsp on the abscissa. The location of the shock

relative to the mesh at n = 19 is repeated at n = 24, and that at n = 20 {s repeated at n = 25, etc.
Points identified as shock points at level n according to (29) are denoted by S,. The solution to the

difference equation (39) for the case treated in Fig. 16 is o;m = ¢j“ for x§ < xsn and
¢?‘” = ¢J,“ - Axs(o,(R - *"L) for xj 2 xg . where axg, the distance the shock travels in time at, is given by
axg = At{e, + ¢y.). Hence, in updating ¢ from time-Tevel n to n + 1, the solution remains unchanged

for all (supersonic) points to the left of the shock point. The shock point, and all (subsonic) points to the
right of it, move to the dashed line that is the exact solution for n + 1. The test to determine S,
ensures that the shock point remains downstream of the shock for the value of T used here.

For large values of T, however, the shock-capturing procedure breaks down, and an instability occurs,
as illustrated in Fig. 17. Here the solution downstream of the exact shock location is correct for each n;
because of the test for Sp, however, the shock point can move only one grid point downstream per time step,
while for 1 = 2, the exact shock location moves downstream at a rate of two grid points per time step. An
incre::ingly large discontinuity in ¢ develops, which aopears as a growing overshoot in 4y, and the pro-
cess diverges,

For this type of switched-differencing-induced overshoot to occur, two conditions must be met: (1) the
point immediately downstream of the shock must be a shock point, and (2) the (downstream moving) shock must
move past this point in the next time sten. Referring to Fig. 8, these conditions can be expressed

¢ - ¢ < 0= x - X > AX .‘_xl':_.in.
Jgtt © Tigmt Is "% ‘xL - ’xR
xjs i xso ) At(.xt * .xk

or, equivalently

xJ - X
1(ax/at) P 0 ¢

by =4, AX :

L R

This indicates that the occurrence of overshoots depends on the speed of the shock and its location relative
to the mesh., As the shock propagates through the grid, the inequality may be satisfied at some time levels
and not at others. It follows that these overshoots can never occur {f

o, *+ o
At( ) "‘L "R}
T=2==1¢ *+9 < e
Ax \"x X, ¢, - ¢
L R X X

This 1s a more restrictive condition than the T s 1 requirement for stability. Equivalent inequalities
can be derived from the upstream-moving shock case in a similar way.
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The ADI technique for maintaining implicitness in two dimensions and the treatment of the nonlinear
term just described form the basis for a computer code, LTRANZ, designed to solve low-frequency unsteady
transonic flows past thin atrfoils. Further details, including the treatment of boundary conditions and 1ift,
are described in Ref. 6. This basic technique has also recently been extended (Ref. 14) to solve the unsteady
full potential equation.

An Implicit Method for the Euler and Navier-Stokes Equations

Efficient, noniterative, implicit finite-difference algorithms for nonlinear, hyoerbolic and mixed
hyperbolic-parabolic conservation laws have been constructed by Beam and Warming (Refs. 15, 16). The two-
dimensional compressible Navier-Stokes or Euler equations can be written in the form

B 2R+ )] + 2 T-6(0) + (00T + 2 V(00 + 2 W (UL, (43)

where U 1is an unknown p-component vector and F, G, V, and W are given vector functions. Let
U(t) = U(nat) = UM, where At is the integration time step. A general three-time-level, at least second-
order accurate temporal differencing of Eq. (43) is given by

+2 +1
(U™ - (1e2e™! + " - At[a al?t + (%-- Ze+£)gy;§— - (%—- e+e)%u£-]+ 0(at3) (44)

where the parameters o and £ are arbitrary real numbers. For 6 # 0, the scheme is implicit. Equation (44)
can be written in the convenient form

ay"

p(E)Un = Ato{E) 3t (45)

where
p(E) = (1 + E)E2 - (1 + 2E)E + ¢

o(E) = o€ +(%- 29+E)E-(-;—-e+g)

and dE is the shift operator defined by gJun = y"*3. substituting in Eq. (45) for aU/at from Eq. (43)
yields

(46)

n R ’ Vv, aWp)n
o(E)" = Ato(E){;i [-F + Vi1 # 55 [-6 + Wy] + -+ T}T} (47)

The mixed spatial derivative terms aV,/ax and 3W,/3y on the right-hand side of Eq. (47) preclude the
construction of an efficient implicit algorithm by a spatial factorization into a nroduct of one-dimensional
operators. This difficulty is avoided by treating the mixed derivative terms explicitly by splitting the
right-hand side in the form

R R n v, AW )n
O = ato(E T 0 i)+ 16 + el s otegO 57 + 57 (s8)
where og(E) = (3/2 + £)E - (1/2 + £). Equation (48) can be written in the form
n n v, W )n
p(E)" - v»Ato(E)[% [-F+vi]+ % [-G+w2]l = atlo(E) - wo (B2 [-F+V;) +§; [-G+u2]} +Atae(s)‘a—x + W}
where « 1is defined by 6/(1 + £) such that the right-hand side only involves explicit terms. (49)

L’:g nonlinearity introduced by the functions F, G, V;, and W, presents an obvious difficulty in solving
for 2, This difficulty is overcome while maintaining the order of accuracy through the use of a proper
l:cal l:‘nearization. By using Taylor series expansions and the consistency condition for Eq. (44), it can be
shown that

n
p(E) 3E°(U) = & (A" (E)U"] + 0(at2)
av} (s0)
) n, 3 0 n
o(€) 35 W0 = & f[ip - =" ¢ % RTocen”)] + oter)
where A, P, and R are the Jacobian matrices aF/aU, avl/au, and av§/aUx. Similar expressions can be derived

for the terms 3G/2y and aW,/3y. Using these linearizations, Eq. (49) can be rewritten as a linear equation
for o(E)U, namely,

lx + uAt[% (A-P+ ax)" - a—"’:-z- R" + .:7 8-Q+ sy)" - a‘;—zz s’]'p(s)u"

v, ow]"
« tho(E) - w®I[Z CF + V) + 2 (60 )" ¢ stag(E e+ 2]+ oteen (s1)

The numerical evaluation of the right-hand side of Eq. (51) may represent a significant amount of compu-
tation. The number of evaluations of each nonlinear function (and its spatial derivatives at each time step)
can be reduced to one using the quasi-one-leg approximations

RHS = At‘:—x [-F(U) + VI(U.UX) + Vz(fl.ﬂy)] + % [-G(O) + "2(0o0y) +H1(0.0x)]ln + 0(at?) (52)

where 0" = [o(E) - wp(E)IU" and " = oe(E)U".

To avoid the inefficient inversion of the formidably large system of algebraic equations generated by
Eq. (51), an alternating-direction implicit algorithm is used. An AD! form can be obtained by approximately
factoring the left-hand side of (51), namely,

'x + Mt[a—ax- A-PsR)"- 3% R']l {r . uat[;’y- (B-q+s)"- :y—zz s"]’o(e)u" = RHS + 0(at?) (53)
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where RHS 1s given by (52); the additional cross-product term introduced by the factorization is 0(at3)

and hence does not upset the formal order of accuracy of the algorithm.
An obvious computational sequence to implerent Eq. (53) as an ADI method is

1+ wat % (A-P+ Rx)" - -a% Rn,p(E)U* = Atl% [-F(D) + v,(ﬁ.ﬁx) + vz(ﬁ.ﬁy)]
+ 3 160 + b3, + 1 (0.0,)])
k+wME%(B-Q+Sﬂ"-£%§noﬂw"=MUW

U™ = [o(EU" + (1 + 2e)0™ - )1+ €)

(54)

where o(E)U* s a dummy temporal variable.

1f the spatial derivatives in (54) are approximated by three-point central differences, then the x and y
operators on the left-hand side of (54) each require the solution of a block-tridiagonal system of equations
with each block having dimension p x p {(p = 4 for the two-dimensional compressible Navier-Stokes and Euler
equations). To improve the resolution of shock waves, upwind (backward) and central spatial differences are
used in supersonic and subsonic regions of the flow field, respectively. Transition operators are required
to maintain proper conservation form of the difference scheme when switching between upwind and central
spatial differences.

V. EXAMPLE APPLICATIONS

The algorithms described in Sec. IV have all been tested by comparing computed results with existing
standard solutions or experimental data. These comparisons demonstrate new ways in which the algorithms can
be used to solve practical aerodynamics problems, and they help verify accuracy and establish limitations.

Oscillating Flap

One of the most useful experimental studies to provide insight into the physics of unsteady transonic
flows was conducted at the National Aerospace Laboratory (NLR), The Netherlands, by Tijdeman and his asso-
ciates (Refs. 17, 18). They recorded surface pressures and forces, along with flow visualizations, for
transonic flow about an NACA 64A006 airfoil with a harmonically oscillating trailing-edge control surface.

One of the first steps in evaluating LTRAN2 was to solve the linear version of £Eq. (13), obtained by
setting vy = -1.0, for the airfoil with oscillating flap. The resulting computed surface pressures were then
compared with exact linear theory comoutations provided by NLR. The linear theory results were obtained by
solving the linear version of Eq. (9) using a solution technique of verified accuracy. Hence, any discrep-
ancy between the linear theory and LTRAN2 results can be attributed to either numerical error in the LTRAN2
finite-di fference scheme or to the low-frequency approximation on which LTRAN2 §s based, or to both. The
comparison is presented in Fig. 18 in terms of magnitude and phase of the pressure coefficient differentials
across the airfoil surface. The reasonably good agreement indicates that the numerical accuracy and low-
frequency approximation are adequate for this case.

An important feature of unsteady transonic flows is the motfon of shock waves. NLR researchers observed
and classified three tynes of shock-wave motion induced by the harmonically oscillating control surface.

In Type A, sinusoidal shock-wave motion, the shock moves nearly sinusoidally (only the lowest harmonic
was measured) but with a phase shift relative to the flap motion. There also exists a phase shift between
the shock motion and its strength; that is, the maximumm shock strength is not encountered when the shock
rea;:hes jts maximum downstream location, as in the steady case, but at a later time during its uostream
motion.

In Type B, interrupted shock-wave motion, the shock moves as in Tyne A, but now the oscillatory shock
strength is of the same magnitude as the mean steady shock strength. Hence, the shock weakens so that it
disappears during the downstream moving portion of its cycle.

Type C, upstream oropagating shock waves, occurs at slightly supercritical conditions. Shcck waves are
formed periodically that do not oscillate in displacement but continue to propagate upstream as the embedded
supersonic region vanishes during the flan motion cycle.

LTRAN2 computations illustrating these three types of shock-wave motion were reported in Ref. 6 and some
of these are also presented here. Surface pressures for motion Types A and B were also computed by Magnus and
Yoshihara, who solved the Euler equations using an explicit finite-difference scheme. The Magnus-Yoshihara
results serve here as a standard to help assess the accuracy of LTRAN2 computations. Their approach required
nearly 200 times as much computer time to generate a solution as LTRAN2.

Type B motfon is f)lustrated in Fig. 19. The shock reaches its maximum downstream extent at time D,
increases in strength at time E, and then weakens at times F and A so that it totally disappears at time B.
The shock reapnears at time C and strengthens as it moves again downstream to its location at time D.
LTRAN2 and Magnus-Yoshihara results agree reasonably well throughout the cycle.

The LTRAN2 and Magnus-Yoshihara results agree better than might be expected for the high reduced frequency
{nvolved (k = 0.368), A possible explanation is that the characteristic length used in the expresston for
reduced frequency is incorrectly, in this case, taken to be the chord length c. Fluctuations in the flow
field occur primarily in the region between the shock wave and the trailing edge, a distance that is more
nearly equal to the flap length, c/4, than to the chord length. Including c¢/4 as the proper length scale
in the expréssion for reduced frequency gives k = wc/4u, = 0.0895 for the case shown in Fig. 19. This
value is well within the low reduced frequency range, which, from our experience, is bounded by k = 0.2.

Type C motion is fllustrated in Fig. 20. A shock wave forms at some time between C and D, then streng-
thens and propagates upstream. The forward motion of the shock wave entirely eliminates the embedded super-
sonic region at some time between E and F. The upper surface flow is entirely subsonic from this time until
some time just before C. The shock wave continues to pronagate upstream as shown at times G, H, and I.
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At time J, it has disappeared, probably dissipated by numerical viscosity. A fine x-grid spacing of 1%
chord was used to improve the resolution of the shock wave in this case. Type C shock motion has been com-
puted for a different airfoil motion in Ref. 12 (also reported in Ref. 19). In this case, the shock was
c:':a:lyd:esol;ed as it traveled several chord lengths upstream from the airfoil after having propagated off
t eading edge.

The Type A, B, and C cases shown were all computed for free-stream Mach numbers that were lower than
the corresponding Mach numbers in Tijdeman's experiments. Wind-tunnel interference effects and viscous
effects would have to be modeled for the computations. to reliably reproduce the experimental results for the
same Mach numbers. Comnuted results reported in Ref. 20 indicate that wind-tunnel wall interference could
have significantly altered the 'shock-wave motion type for a given M_ in the experiments.

The Indicial Approach

One of the primary applications of the methods described here is the prediction of flutter boundaries in
the transonic regime. Usually, flutter boundaries are calculated from a linear system of equations of the

form
[M]d + [C]§ + [K]q = F(q) (55)

where M, C, and K are mass, damping, and stiffness matrices, respectively; q is a vector that is a measure
of the structural response; and F(q) is a vector of applied forces. The aerodynamic response to the motion
F(q) can be computed in several different ways. For example, the structural motion equation, Eq. (55), could
be integrated in time simultaneously with the governing equations for transonic flow. The airfoil motion and
aerodynamic forces would be free to drive each other. Flutter boundaries could then be determined by varying
appropriate parameters such as the free-stream velocity, a procedure very similar to experimental determina-
tion of flutter boundaries. Two examples of this aporoach are presented subsequently. First we consider an
alternative approach — time linearization.

For very small amplitude motions, an approximation can be made in which unsteady effects are treated as
linear perturbations about nonlinear steady-state solutions. Since in many aercelastic applications one need
consider only infinitesimal amplitude motions, time-linearization methods can be very useful. To begin with,
assume that the airfoil motion and force response are simple harmonic. Substituting expressions q{t) = gelot
and F(t) = [Alq into Eq. (55) Teaves

[K + iuC - w2M]q = [Alq (56)

The matrix A represents the dependence of the aerodynamic forces on the motion of structure. For subsonic or
supersonic cases governed by linear aerodynamic equations, these forces are independent of the body shape and
mean aerodynamic conditions, and there is no amplitude restriction. The unsteady component of the solution
therefore represents the unsteady motion of a flat plate. Furthermore, the forces corresponding to different
modes of structural motion can be superposed. The forces for each motion mode are tabulated as functions of
M. and k.

The equations governing transonic aerodynamics are nonlinear, and the supervosition principle cannot be
applied so generally. In the transonic case, a more limited form of superposition is used in which unsteady
aerodynamic solutions are given as linear perturbations about nonlinear steady-state solutions. Then, the
forces corresponding to different types of body motions can be supervosed, and the forces for each motion can
be tabulated as functions of M, and k, as in the subsonic and supersonic cases. However, these forces are
not independent of either the body shape or the mean aerodynamic conditions, and they are valid only for very
small oscillation amplitudes.

When oscillation amplitudes are sufficiently small that time linearization is valid, surface pressures
and aerodynamic forces can be computed using the indicial method (Ref. 21), an implementation of Duhamel's
principle. For example, consider some arbitrary variation of angle-of-attack « as a function of time and
suppose that the indicial 1ift coefficient response to a unit change in o, Cy (t), is known. Then the 1ift
coefficient response to the arbitrary variation of o fis a

t
Cl(t) = Claa(O) + I Clu(") ad? a{t - 7)dr (57)
0

That is, once the indicial response to a given motion mode is known, then the 1ift-coefficient resoonse to an
arbitrary variation of that type of motion is given by Eq. (57). Multiple-motion-mode problems can be treated
by considering each mode separately and then supervosing solutions. For a given mode, the integral in

£q. (57) must be evaluated for each motion frequency of interest. The indicial responses can easily be com-
puted using the transonic solution niethods described in Sec. IV.

Example calculations using the indicial method to compute unsteady moment coefficients as a function of
M, are shown in Fig. 21 for oscillatory plunging motion of an airfoil at k = 0.1. Several observations can
be made. First, the purely linear (flat plate) results show only a weak dependence of moment coefficient on
Mach number. They do not properly represent the physics of the flow field because flat-plate theory does not
account for the motion (or even the existence) of shock waves. The nonlinear results, obtained by time-
accurately integrating the governing equation for periodic oscillation of the airfoil until the pitching
moment becomes periodic, clearly indicate significant variations in the real and imaginary parts of Cn with
M, for M, greater than about 0.86. LTRANZ can be used to obtain the indicial response to a step change
in angle of attack and Cp evaluated by solving a Duhamel expression similar to Eq. (57). Results are shown
for a sequence of step changes. Clearly the time linearization approximation is significantly ¢n error for
step changes as large as 1° and 1,5°,

Aeroelastic Computations

Here, a simple aeroelastic problem {s devised and solutions computed to demonstrate that flow-field and
structural-motion equations can be integrated simultaneously in time. Consider an NACA 64A006 airfoil with
moment of inertia I free to pitch about midchord. The pitching motion is restricted by a torsion spring
of stiffness K and structural damping g. The governing equation is
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1é + §a + Ka = M(a) (58)
where M(a) is the aerodynamic moment and I, g, and K are all positive constants.

We can construct a neutrally stable system ({.e., a system that will flutter) by properly choosing the
structural constants. For example, from an indicial method computation for M, = 0.88 and k = 0.}, we
obtain |C,,|u| = 0.8617 and ¢ = -68.87°. Assuming the motion can be expressed in the form o=agel®t and

substituting this into Eq. (58) results in two expressions (the real and imaginary parts of Eq. (58)) relating
the aerodynamic and structural constants:

Ay = -A3|Cm,|sin ¢
Ay =1+ Aglcmulcos ¢

where A; = g/Iw = 1.072, A, = K/Iw? = 1,414, Ay = Qc2/102? = 1.333, and Q = dynamic pressure. The equations
are satisfied for the values shown.

Figure 22 shows aeroelastic responses for a series of computations in which the structural damning A,
was varied parametrically. These computations were obtained using LTRAN2 counled with a simple ordinary
differential equation integration orocedure for Eq. (58). The aerodynamic and airfoil motion equations were
integrated simultaneously. The motion was forced for the first few cycles until the pitching moment became
periodic, after which the airfoil motion and aerodynamic response were left free to drive each other. The
first cycle shown in Fig. 22 is forced for all cases. The initial motion amplitude is o = 0.5°. For
A; = 1.072, that is, the neutral stability point o>tained from the indicial method and Eq. (58), the motion
is very nearly sinusoidal. The small deviations from sinusoidal behavior can be attributed primarily to
nonlinéar unsteady effects and truncation errors in the numerical integration schemes. For other choices of
A;, the motion is either damped or unstable for values greater than or less than the value corresponding to
the neutral stability (flutter) point. For this system to flutter, it is necessary that the moment variation
lead the motion, which it does in the nonlinear case for M, > 0.88. Linear (flat-plate) theory does not
predict a phase lead and thus could not be used in this case to predict the flutter point.

A similar calculation is shown in Fig. 23. The initial amplitude in this case is considerably larger,
ag = 1.5° and the Mach number is smaller, M, = 0.87; the structural constants differ from those in the pre-
vious case. This example is presented mainly to illustrate the nonsinusoidal pitching-moment behavior that
can result from the large shock-wave excursions encountered at larger airfoil motion amplitudes.

The aeroelastic computations presented here demonstrate that the nonlinear aerodynamic equations and the
equations governing the motion of a structure can be integrated simultaneously to provide solutions to aero-
dynamic problems. Additional work in this area has been reported in Ref. 22, The further development of the
simultaneous integration aporoach may eventually lead to the development of computational aercelastic models
from which flutter boundaries could be predicted in a manner similar to existing experimental methods; that
is, the structural model could be perturbed and the response surveyed for disturbances that produce instabil-
jties. Such an approach might prove advantageous for systems with many degrees of freedom, for which multiple
indicial response computations would otherwise be required.

Aileron Buzz Computations

In 1947, during wind-tunnel tests of a semi-span wing from the P-80, it was discovered (Ref. 23) that
severe aileron vibrations that had been encountered in flight were manifestations of a one-degree-of-freedom
flutter. This phenomenon was characterized by shock-wave motion that produced a phase shift in the response
of the hinge moment to the aileron motion. Aileron buzz was observed for certain combinations of Mach number
and angle of attack.

Recently, Steger and Batley (Ref. 24) simulated aileron buzz computationally using an approach similar
to the one used in the aeroelastic computations just described. They simultaneously integrated in time both
the thin-layer Navier-Stokes equations governing the flow field and a simnle differential equation for the
motion of the aileron, 81 = H, where § and I are the aileron deflection angle and moment of inertfa and H
is the hinge moment. The thin-layer Navier-Stokes equations neglect the streamwise diffusion terms in the
stress tensor. These equations were solved using the Beam-Warming algorithm described in Section IV. The
computed and experimental buzz boundaries are in close agreement (Fig. 24). Comouted results in terms of
aileron deflection angle as a function of time are also shown in Fig, 24 for M, = 0.79, a = -1.0°. For
this combination of Mach number and angle of attack, an initial deflection (4° in this case), causes the
afleron to oscillate, but it eventually returns to zero deflection. However, for a free-stream Mach number
of 0.82 at the same angle of attack, a limit cycle oscillatton results. The comparison of the (2-D) results
with experimental data indicates that the (3-D) buzz frequency and negative deflection are accurately pre-
dicted, while the positive deflection is overpredicted. It is also interesting to note that when the viscous
terms in the Navier-Stokes equations were neglected, either stable or divergent oscillations results; no
aileron buzz was observed in the inviscid case.

VI. RESEARCH OPPORTUNITIES

Computational aerodynamicists generally are trying to improve the physical modeling in their simulations,
extend present capability to treat more complex configurations, improve computational efficiency, and find
better ways to apply codes to aerodynamic design and anmalysis. There are a number of specific research
opportunities to support these overall objectives.

First, for the rate of progress to continue, it is essential that there be a continuing avatlability of
larger, faster computer systems. This point is well addressed elsewhere (Refs. 25, 26) and will not be
belabored here. However, it is important for the computational aerodynamicist to understand that the large
computer systems of the next decade will meet the speed requirements by use of vector processing. This will
require the algorithm developer to devote more attention to computer architecture and compiler characteristics
in constructing efficient numerical solution procedures.

A number of other challenges provide significant research opportunities to solution algorithm developers.
The computational efficiency of implicit algorithms can be improved by improving their stability character-
istics. The potential for improvement is far greater for the Euler and Navier-Stokes solution procedures,
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which sti1l suffer from relatively severe time-step limitations, than for those applicable to the potential

formulations (Ref. 27). A second obvious extension is to the treatment of three-dimensional flow fields.

Very little work has been done in three-dimensional, unsteady transonic flows. Such extensions are compli-

cated significantly in applications involving multiple component configurations. No suitable (automatic)

grid-generation procedure yet exists even for steady flows about complex configurations. For unsteady

applications, the grid must distort as the boundary locations change as, for example, in the case of a wing

oscillating in bending and torsion. Work also is required in the development of solution adaptive grids,

concentrating grid points in regions where flow variable variations are large. This is a dynamic process

requiring that the grid evolve along with the solution. Finally, techniques must be found to eliminate

reflections at far-field grid boundaries. Preliminary work on nonreflecting boundary conditions has been

reported in Refs. 28 and 29. The use of nonreflecting boundary conditions allows olacement of these 3
boundaries much closer to the airfoil, reducing computation time and storage. ;

Presently, viscous effects can be properly modeled only for attached or mildly separated flows. However,
the capability to accurately predict aerodynamic verformance near performance boundaries requires proper
treatment of massively separated flows. This is feasible using the Reynolds-averaged form of the Navier-
Stokes equations with turbulence models. Considerable research is required, combining the talents of experi-
mental as well as theoretical fluid dynamicists, to develop suitable turbulence models for separated flows.

Two principal advances are required in the area of applications. To begin with, appropriate standards
must be adopted to improve the state of aoplications software. Currently available codes are often difficult
to modify, do not run reliably, and are very costly to develop. In the future, as the scope and size of aero-
dynamics codes increase, teams of programmers will be required and the development management task will
increase enormously. Software develooment concepts used routinely in other technology areas should be
investigated and adapted for use in aerodynamics. Production codes must also be thoroughly tested and certi-
fied before widespread release. At the same time, aerodynamics researchers must find more effective ways of
applying these new computational tools in design and analysis. For example, no clearly optimum manner of
using nonlinear unsteady transonic codes for predictions of flutter boundaries has yet emerged. However, we
anticipate substantial progress in this area during the hext decade as a result of continuing imorovements
in unsteady transonic codes and increasing interest on the part of aeroelasticians.
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Fig. 1 Wave propagation from a disturbance at x = xp at time t = 0.
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LINEARISED METHODS IN
SUPERSONIC FLOW
by
R. H. DOE

British Aerospace, Aircraft Group
Weybridge-Bristol Division
Filton, Bristol, England

SUMMARY

Following a brief statement of the linearised equations for supersonic potential
flow the essential differences between subsonic and supersonic flows and the concept
of the supersonic source are examined, Specialising the time dependence to oscillatory
flow the generalised Green's Theorem for such flows is presented through which the integral
equations forming the basis of the numerical methods are developed.

The second part of the paper outlines the numerical solution of the integral
equations for lifting surfaces in particular those methods developed in British Aerospace.
Some consideration is also given to the development of panel methods applicable to general
configurations of wings and bodies,

1. INTR TION

The purpose of this paper is to describe numerical methods, based on the linearised
theory, for the prediction of unsteady airloads acting on vehicles travelling at supersonic
speeds, It is not the intention to give a complete review of all available methods. For
review material the reader isreferred to papers cited by Ashley in the introduction to
ref, 1, The emphasis will be placed on methods developed within British Aerospace with
some comparison of the results with those of other workers, Some consideration is also
given to the recent developments (elsewhere) of panel methods for bodies and wing-body com-
binations,

The detailed development of the linearised potential theory far supersonic aero-
dynamics is to be found in such texts as Ashley and Landahl (ref, 2), and the monographs
of Ward (ref., 3) and Miles (ref, 4)., In particular Miles book gives an appraisal of the
conditions on Mach number, aspect ratio, thickness and amplitude of motion necessary for
linear theory to apply and is primarily concerned with analytical methods of solution,

Numerical methods for finding solutions to the linearised equations are generally
based on one or another integral equation statement of the problem, Section 2 of the
present paper is therefore given over to a brief derivation of the basic integral equations
which we seek to solve. In section 3 we deal with some of the methods of solution for
lifting surfaces in isolation and in tandem. The final section looks briefly at the recent
developments in panel methods for general wing-body configurations,

2.  BASIC LINEARISED THEORY

We are concerned with the flight of a vehicle through an initially uniform fluid
medium and the forces induced on the body by the resulting fluid motion. We assume the
motion of the vehicle to consist of a mean steady translation through the fluid at speed U
with small time-dependent excursions of the body surface from its mean position superposed.
For a suitably 'streamlined! body whose surface slopes in the direction of flight are small
the direct effects of viscosity and heat conduction within the fluid may be neglected.
Furthermore any shock waves generated by the motion are assumed to be weak so that the
flow may be taken to be irrotational and isentropic to a first approximation, at least,

The situation is illustrated in figure 1, A cartesian coordinate system (x, y, 2)

forms a frame of reference fixed at the mean position of some point in the body with the
x-axis parallel to the undisturbed fluid flow., Points in space will be described by a

position vector
A? - (:*:jli‘!)

and the fluid motion by the vector velocity field Q.

Under the assumption of irrotational flow there exists a scalar potential ® such that

Q ~vVé (1)




The assumption of isentropic flow of an initially uniform fluid implies a unique
relationship between pressure and density

Y
P/r.. = (%~) (2)

the sound speed,Q, is given by

d Y
G‘=g§ = —pf' (3)

and the following integral of the equations of motion exists (Bernoulli's equation)

af - G n] o

2.1 Ihe Linearised Equations

With the assumption that the presence of the body and its motion generates only small
perturbations of the fluid properties we write

$ U(x+@)

Q UeE +g) =((€ « VD) (5)

where g is the non-dimensional perturbation velocity and @ its potential., To first
then equation (4) becomes

P/p., =/-—M‘(&-’-¢,+¢L) (6)

where M is the freestream Mach number,

The continuity equation

op . -
£y + 7(pg) o

M2 (G i) +V[VP M (h )] =0

or, more usually,

(M) ot By Sagm 2 e e = o

vi¢ =
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represents the time derivative following a particle travelling at the
freestream velocity ,{ . This last form of the equation emphasises
the fact that the physics of the linearised flow are precisely the same as in acoustic wave
theory for a uniform medium, The first form, equation (8), is a law of conservation for
the first order perturbation mass flow

o = P — EM¥ P, fl.lf.,(,t) (11)




The expression for the pressure coefficient consistent with the present approx-
imation is

G = Z—T’Z“ = "z(¢"+&L¢c~) (12)

This expression is the correct first order approximation for points in the fluid
away from the immediate vicinity of the body. It remains valid near the surface of
wings, but should be augmented by the nonlinear terms

2 2
- (¢y + ¢g )
in the vicinity of slender bodies of revolution and the like (see, e.g. Ashley and
Landahl, ref, 1),

Note

In later sections it will be convenient to introduce the alternative measure of
time ¢

¢

T = U (13)

which has the dimensions of length in common with the definitions of @ and the
cartesian components (x, y, 2z). The unit of T is the distance travelled by particles
in the freestream in unit time. The quantities @, and (x, y, z) may alternatively be
regarded as having been non-dimensionalised with respect to the length unit Z prior to
setting T = Ut/Z.

2.2 Supersonic versus Subsonic Flow

By consideration of the propagation of disturbances within the fluid implied by
equation (10), and their convection relative to the body at freestream speed, the time taken
for a disturbance wave front originating at the origin at time t = O to just reach a field
point &£ is determined by the solution of

(x-ue)’= aier_ r2

i.e. * a + M ry
tee T & we —ﬁ(m.z-tm) (14)

where 7= ,/ 242, For outgoing waves we require that 1> 0, whence for subsonic
flow (ML 1) only the one root

T = T = #ﬁz(f’ - Mx),
(15)

where s =./x*+ (1-MIr* ,
is meaningful, Disturbances will ultimately reach every point in the flow field,

In contrast, for supersonic flow (M > 1) both roots are meaningful but only in a
restricted, conical region of space,

= 7% = -f'!(Mz £Ry) ; x>Br (16)
where
B = /M2y

Rp =/x*-Btr2

No disturbance from the origin can reach points outside the rearward facing "Mach
cone" , =x>PBr,

This distinction between subsonic and supersonic flow is illustrated by the familiar
diagrams in figure 2, and is of great utility in development of certain numerical methods,

For full accounts of the mechanisms of signal propagation refer to Garrick (ref, 5)
and Das (ref, 6).
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2.3 Ihe Supersonic Source

The linearised equation for supersonic flow may be written symbolically as

L {#] = o

where the operator on the left hand side is defined by

‘4[¢} B Pex + Pyy + Pz ~2MPPBr -M *brr
= -M2 2 (v Br) + V(P -EM*per )

A fundamental solution to (17) is the perturbation potential field due to a source
at the origin of time varying strength £(T)

¢ -p(2) = - g, [AT-T*) +F(r-77] , =>Br

= O , otherwise (18)

The perturbation mass flux induced by the source inside the rearward facing Mach
cone is

m = Lp - EMP,
Ly = Pp -EmMgp, = (?)Sﬁég.,qz,, ?éz]

% = im &3 [(” *£) - -f )] ()

Here we have written f,  for f(T-Tt) and gg represents the derivative of with
respect to its arguement. %

In the immediate neighbourhood of the origin the flow is quasi-steady; the source
strength is assumed to have changed by a negligible amount in the short time taken for
disturbances to propagate through this region., Close to the origin then

2 "Bt . /(T) (20)
2n Kg

This leads to an apparent paradox t we have claimed that equations (18, 19, 20)
represent the flow due to a source and that the total mass flow emanating from that source
at time T is f(T)., 1In the immediate neighbourhood of the source, however, equation (20)
tells us that the mass flux vector is directed inward for f(T) > O, The resolution of
this paradox depends upon how equations ( 19, 20) should be interpreted at the Mach cone,
A point source is an idealisation of the flow due to a continuous distribution of sources
over a vanishingly small volume, An investigation of the flow due to such a volume dis=
tribution shows that there is a mass flux outflow between the Mach Cones emanating from
the nose and tail of the distribution. This region becomes "invisible" as we allow the
volume to shrink to zero. 7The total mass flux through an enclosing suxface S,

/ mo’? dS » (21)
S

is maintained constant during the limiting process, In the limit only the inflow
due to re-expansion in the region behind the rear Mach cone remains visible as indicated
by equation (20), The situation is illustrated in figure 3,

Taking the 1limit of zero volume first leads to a divergent integral with g in (21)
given by equation (20), It was to enable 1 limiting processes of this kind to be taken
through the integral sign that the concept of the "finite part integral" was introduced
(see Ward, ref 3, or Heaslet and Lomax, ref, 7, where several alternate "recipes" are
given for the evaluation of the finite part), The mass flux emanating from a point souxce
can now be determined since
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A second result of some utility is that total mass flux above (or below) a plane
surface cutting through a source and inclined relative to the freestream at an angle

less than the Mach angle, sin-1 1/M (see figure 4). The result is independent of the
angle of inclination and is given by

B LA
_Z_’E/_,_&”ds =% (23)
Su

where S, is that portion of the enveloping surface above (or below) the 'cutting!
plane. These results can be used to show that for a surface distribution of sources of
density o~

’?‘(,ﬂyl '155) = O

where p1; and M, denote the mass fluxes on opposite sides of the surface and A is the
noxrmal to the surface at this point directed from side 1 to side 2. Similarly the local
surface density of (suitably orientated) doublets is given by the difference in the
potential across the surface.

2,4 Oscillatory Flow, Greens Theorem and an Integral Equation

The majority of numerical methods have been developed for a particular form of time
dependence, namely, oscillatory motions, We shall thexefore specialise our consideration
to this class of solution, Note that more general time dependence may be treated through
the use of the Fourier integral,

The velocity potential is assumed to have the form

e(L,7) = Z{¢/_'€)eiwé] =f/¢e"kr/ (24)

where @ and Akgff are the circular and "reduced" frequency respectively, The
complex amplitude of the potential satisfies

v({q’f =0 (25)

LLe] = B Pust By + Boe - 20kM' By +kM* g

= kMA@ +ikgp) + Pe(ly - EikMip)

The supersonic source is now represented by

- Ml.
¢ =nle) = -zl & skl (26)

A generalised form of Green's Theorem which will enable the integration of equation
(25) may be obtained by first noting that if @ is a solution of (25) then the function

V&) = o (L-£)

where ,& is a fixed pointy,must satisfy the "adjoint" equation

LAV & thM(Yu-thp) + V-(Ly + 8ihMPY) =0 (27)

Forming a combination of (26) and (27) and integrating over a fluid volume V leads to
the required result

[ [ed 131 - vLie]]
=/ [ (Lo -itm'p) + o (Lv + Bikm*y)]oh ds, (28)

where A is the inward normal (pointing into the fluid) to the bounding surface,Sy.

Now take @ to be a solution of (25) and ¥ to be the singular solution to (27) which
corresponds to the potential at f£e due to a source at £ 1i.e.

‘l‘s(@) Lo %(‘o")




Note that ﬂ(g) is non-zero in the region for which

%o -2 DB (Yo~ ) ¢ (2-2)" ,

that is, in the forward facing Mach cone which defines the domain of dependence of
£ . The volume of integration is bounded by the body surface,the Mach forecone from e,
and any surface upstream of the region of space influenced by the body, Evaluation of
the surface integral involves the use of the finite part integrals (22) and (23)., The
result is

H(R) p (&)= 52 [e* R [Gm, - 7.l G]dsS (29)

S
Here we have identified

m, = A (L@ - EikMmip)

with the normal component of the perturbation mass flux at the body surface S.
Other undefined terms are

- L &
q & cosiqﬁa

Bs = of(%-2)* - B*(dfo-y)* - B2, -2)*

in the fluid
//( & ) = in the surface S

inside the body

Equation (29) may be interpreted in terms of surface singularity distributions.
The term

ébﬂl(xo—x)'a'm" - Y. My

being identified with a source distribution of strength #% and the remaining terms
with a doublet distribution of strength ¢ . Note that #% and @ are equal to the dif=-
ference across the surface of normal mass flux and potential respectively ( ¢ and hence
@M. are identically zero inside the body).

In the particular case when &£o lies in the body surface equation (29) may be regarded
as an integral equation for @ if the normal mass flux has been prescribed through the
boundary conditions., The equation may then be regarded as determining the necessary doub-
let distribntion to ensure that @ is identically zero throughout the interior of the
body given the surface source distribution of density sy . This integral equation forms
the basis of recent panel methods for the determination of supersonic flow around general
wing-body combinations,

3. NUMERICAL METHODS FOR LIFTING SURFACES

In this section we shall be concerned with the flow around thin wing-like surfaces,
In particular we are concerned with the effects of time dependent motions of the surface
involving the bending and twisting of the wing camber surface, Within the linearised
approximation the time-dependent perturbations are independent of and may be superposed on
the mean steady flows For the calculation of the unsteady components of the loads acting
on the wing we need not considexr the effects of steady wing thickness and camber,

Consider a thin wing whose surfaces lie close to a mean cylindrical surface with
generators parallel to the freestream, (This means that not only is the wing thickness
small but that the steady camber and the amplitude of unsteady motion are small also).
Consistent with the linear theory conditionsatthe true wing surfaces are assumed to be the
same as those existing on the upper and lower sides of the mean surface, In particular the
boundary condition that the normal component of the fluid particle velocity relative to the
true surface be zero is to be applied at the mean surface,

Applying the integral equation (29) to the mean surface of the wing and its wake we
find,

p(‘.)-ﬁ[e’“ﬁz(“’*)[a.dm - 4pA.L6]ds (30)

where S_ is the ‘upper' side of the mean surface and A is directed from the lower to
the upper sial, Am, and &A@ represent the jump in normal mass flux and velocity potential
respectively, across the mean surface,

PRty




Since we are dealing with a lifting surface the jump in normal mass flux is zero and
equation (30) reduces to a trivial identity for &, on the mean surface,

A workable equation relating the flow velocity normal to the surface to the potential
jump across it is obtained by differentiation

w(k) = 4By

Su

where I?. is the unit normal to the mean surface at the point £ . Methods based on
this equation are often referred to as "integrated potential" methods.

For planar wings, where the mean surface may be taken to be the plane £ = 0O, an
alternative approach involving an integral equation with a simpler kernel than that in
equation (31) may be developed utilising the antisymmetry of the flow with respect to
& = 0 and the restricted domains of influence and dependence of points in supersonic
flow, Methods based on this approach are known as "integrated upwash" methods,

Referringto figure 5 consider the finite region Z of the plane & = O which lies in
both the domain of influence and the domain of dependence of points on the wing mean
surface, This region may or may not contain points in the wake; the part of the wake
outside this region cannot affect the flow over the wing surface. The integral (29)
may now be applied to the upper half space Z > O; the flow in 2 < 0 is to be determined
by antisymmetry. The result is the same as if we had modelled the flow in the upper half
space with a source distribution over the whole of the region X , imposing a condition
corresponding to zero load on those parts of the region that lie outside the wing planform
(the so called diaphragm regions). The source strength on the wing region is given by the
prescribed upwash (which equals the component of mass=flux normal to the mean surface),
The resulting equation is

plK.) = %/e"%‘("'”‘) G. () 4Z (32)
2o

where Z, is that part of £ that lies within the domain of dependence of £ and the
upwash, 20 , on the diaphragm regions is to be determined from the zero load condition,
The load acting across the mean surface is given by

AQ - X{{el'ffj
= -4 (¢;f¢'k¢)L .

where

The latter may be integrated for the case of zero load to give

¢ = A (y ) e—:’éx:

where A@) is determined from conditions existing at the upstream end of the region
of zero load to give

p =0 (33)

on the diaphragm outside the wake, and

@ = g, &% %re) (34)

for points in ihe wake, (Equation (34) is also required for the wake region in the
integrated potential formulationj the use of diaphragms outside the wing and its wake are,
however, not required as ¢ is zero over such regions, and the domain of integration is
correspondingly reduced),

It is also possible to derive an acceleration potential formulation equivalent to
the integral equation of the subsonic kernel function methods, relating the upwash to
the loads acting on wing (refs 8, 9, 10), Numerical methods employed in the solution of
this integral equation, in common with subsonic methods, are usually of collocation type p
utilising sets of certain assumed loading distributions (modes),

* The gradient operator ¥ is to be applied to ¢ as a function of & . In taking it
through the integral sign we have utilised the fact that Vh = -V.
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The coefficients attached to each distribution are determined by satisfying the
integral equation only at an appropriate number of collocation points., There are diffi-
culties with this approach connected both with the complexity of the kernel function and
proper choice of loading modes for a given planform, The latter difficulty, in particular,
is increased when the method is applied to more general configurations although Cunningham
(ref, 11) has tackled the problem of interacting lifting surfaces.

Numerical methods for the solution of the integrated potential or integrated upwash
formulations are generally based on 'finite element! techniques. The integration over the
dependence domain is replaced by the sum of integrations over a set of simple elements.
Over each elemental area the unknown is expressed as the sum of a few (often only one)
simple functions. A variety of element shapes have been used such as squares (ref, 12),
Mach or characteristic boxes (Box methods), and triangular or quadrilateral elements,

In the box methods, usually applied to the integrated upwash formulation, the depen-
dence domain is divided up into a large number of equal sized elements. These elements
are either rectangular, with diagonals parallel to the Mach lines (Mach boxes), or diamond
shape with sides parallel to the Mach lines (figure 6), The upwash is generally assumed
to be constant within each box. Examples of the Mach box technique are given in refs
13, 14 and 15 where the use of the diaphragm technique has been extended to cover general
configurations of interfering surfaces. An example of the characteristic box method will
be discussed in the following paragraphs,

The integrated potential formulation forms the basis of the method developed by
Allen and Sadler (ref, 16), using characteristic elements, for planar wings and extended
by Woodcock and York (ref, 17) to tandem wings,

Interesting recent developments by Appa and Jones based on the integrated potential
formulation are repoited in references 18 and 19, They work in terms of the reduced
potential ¢ =Cp.e."%‘i"and the corresponding modified upwash function, which eliminates the
complex exponentialterm in equation (31). After integrating by parts with respect to =
the problem is posed as an integral equation relating upwash to the potential gradient ag‘.
The integral is then replaced by the sum of integrals over a set of quadrilateral elements
(panels) covering the wing and wake planform(s), (figure 7)., The method is applicable
to general configurations of lifting surfaces,

3.1 A Characteristic Box Method

This method (ref, 20) was developed some 12 years ago for planar wings and is
generally similar to that of Stark (ref, 21), This brief presentation differs in
detail from that in reference 20 in order to be consistent with more recent, unpublished,
extensions to tandem surfaces,

The integrated upwash formulation (31) for a planar wing, is written in terms of
the characteristic coordinates

r=(%p -y)/ze
where s = (3‘/5 "'H)/ZS

(35)

where € is identified with the semispan of an element in the characteristic box
scheme: the boxes are defined by a lattice formed by the lines for which r and s are
integer constants (figure 8). The upwash distribution over each box is taken to be con-
stant equal to the mid-point value for boxes wholly on the wing and some suitable mean
value for those wholly or partially off the wing, The potential, evaluated at the nodal
points (m, n) of the lattice, is dependent only on the influence of those boxes in the
region £ m and ssn7 ,

For given lattice point we have then

m
+
‘P(mm.o ) * Pm,n -’;wz.l Sﬂ‘l-fl,ll-v'wf"v (36)
where the source influence coefficients Siot' are given by
o rvel
- -fx (res
Suv = 7 e1x () xS d::" (37)
M v

with X = kM'e
B
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These integrals are evaluated following a procedure proposed by Zartarian and
Hsu (ref. 22) whereby, after making the substitutions r=u% and ss=v/%, the inner integral
is expressed in terms of the Fresnel integrals 2
y 4
2

!"it "
) - iste) = g ' - [E[
[ o

The outer integral is evaluated numerically by Gaussian quadrature,

The problem is solved by following a systematic marching procedure working from the
foremost point on the lattice along successive lines m = constant, At each step the
upwash on every box in dependence domain save, possibly, that of the pivoted element
itself is known. One of the following alternative conditions will apply

(a) The pivotal element lies wholly on the wing; compute %ﬁndirectly from (36)

{(b) The box lies wholly on a diaphragm region: solve (36) for w,,,,,, with Pm,n
given by the zero load conditions (33) or (34).

(c) The box straddles a leading or side edge: compute a value w' for ®Wmn as in
(b) above, Determine a mean value for Wmn by combiningw’and the value of
on the wing weighted by the proportions of element area which lie off and on
the wing respectively, Finally compute ¢ as in (a), A similar process applies
at the trailing edge, Note that in this simple 'area~weighting' technique no
account is taken of whether the edge is subsonic or supersonic.

Figure 9 illustrates results obtained with this method for an aspect ratio 2 rect-
angular wing at a freestream Mach number of 2, The "direct" generalised forces, Qi »
are shown compared with analytic results obtained by Williams and Woodcock (ref, 23) for a
set of increasingly complex deflection modes over a frequency range k = O to 0.8 based
on the root chord. The steady flow results (K = 0) indicate errors of 1%% and 2% in the
estimation of the 1lift, Q32, and pitching moment, Q22, respectively. In general it was
found that the errors increased with increasing complexity of mode shape. An examination
of the results shows that the discrepancy was predominantly in the magnitude lejf of the
generalised forces,the differences in phase angle being typically 0.5°., The largest errors
tend to occur for those deflection modes dependent on Y2 indicating that a possible
source lies in the treatment of the (subsonic) side edges.

In his method, Stark (ref., 21), employed a special technique for boxes cut by sub-
sonic leading edges approximating the inverse square-root behaviour of the upwash in
upstream part of the box at the leading edge, Stark's method, however, can only be
applied to straight leading edges for a certain, discrete, set of Mach numbers dependent
on the leading edge sweep.

A comparison of the results of the present method with exact conical flow theory
for a cropped delta at Mach 1,054 in steady flow is shown in figure 10, It can be seen
that there is an almost constant error in the present results (Stark's results are almost
indistinguishable from the exact theory)., This error leads to an overestimation of the
of the 1lift force acting on the wing of some 3%,

A similar discrepancy exists in the comparison between the present method and that
of Stark for the same wing oscillating in translation shown in figure 11,

Subsequent to the initial development of the present method it was discovered that a
relatively minor modification to the definition of areas used in the leading edge weighting
technique could produce results for wings with subsonic edges of greatly improved accuracy.
The idea was derived from Evvard's equivalent diamond principle for steady flow over wings
with subsonic edges. Considering the part of the wing covered by the element to be an
isolated wing in an upwash field determined by alternative (b) above, Evvard's principle
states that the potential at the rearmost point is obtained by applying the source integral
to the area indicated in figure 12, The modification to the present method was simply to
replace the wing area used in the weighting technique by that dictated by Evvard's
principle. Results from the modified method are virtually indistinguishable from those of
Stark, The method has the advantage of being applicable to wings of general planform at
general supersonic Mach number,

3.2 € n_t exrf Tand: Surface

When one turns from the isolated planar wing to more general configurations the
artificiality of using sources (as in the integrated upwash method) to represent the flow
over the upper surface of each wing leads to certain conceptual difficulties in setting up
the interference problem, Through the judicious use of diaphragms, however, there have
been some impressive achievements (see, e.g, ref, 13),

In the present method an idea due to Fenain and Guiraud-Vallée (ref, 24) has been
used to obtain an inverse form of the relationship (36)., Equation (36) is a set of sim-

ultaneous equations relating the potential at the lattice points to the values of the upwash
in each box,
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Written in matrix form

(nn} =[S ] { 0]

If the ordering of these equations follows the basic marching sequence then it is
obvious that the coefficient matrix is a lower triangular matrix, The inverse relationship

{w"""} - [ ‘Dm-#m-t'] { ‘Pp.v}

orx

m A
Wy = ZZ Dm-,x,n-v- Pu,v (38)
’LSI v=1

[‘D'"-F""V} B [ Sm-ﬂm-”] )

can be obtained in a straightforward manner. (The cost is equal to the solution
of (36) for one deformation mode),

where

Equation (38) is a discrete form of the integrated potential formulation enabling
us to avoid the need to calculate the upwash in regions off the wing. The value of the
potential is known in these regions from the zero load conditions (33, 34).

For the tandem surface problem we need to determine the upwash field in the plane
(2 = h) of the second wing surface due to the potential distribution, on the upper
surface of the first wing and its wake, and vice versa, Taking the & derivative of
equation (32) and multiplying by sign(z) to account for the antisymmetry of the true flow
field we obtain a relationship between the upwashes in the two planes. The resulting
integral is discretised in the same manner as that for the potential by assuming constant
upwash over the characteristic box elements of the first surface. Evaluating the result
at the mid-points of boxes on the second surface (it is assumed that the lattices for
the two surfaces coincide in plan-view) we obtain the form

m n

2) ’ o)

wi”” - w(m-l/z N )h) = pr'v W,,,..P‘,,-y (39)
w =/ Vs/

The final step is to replace ﬁihv through the relationship (38) to obtain

m n

2 4 2:' o) tad
Wy ré':' &ss Py Pmeps,n-v (40)
A similar relationship exists between the potential, (P‘i}, on the second surface
and the upwash w"(l'z on the first. g
&

The solution process follows the same systematic march simultaneously in the two
wing planes, each step involving the solution of, at most, a pair of simultaneous equations
when the vertical separation is such that the two pivotal elements are mutually interfering.
The treatment of boxes cut by planform edges is devived in a straightforward manner from
that used in the planar wing method,

Results (supplied by the authors colleagues at B,Ae Warton) have been obtained using
this method for the AGARD coplanar wing-tail configuration shown in figure 13, where the
four, antisymmetric, mode shapes are also defined, The results at two Mach numbers, M =1.2
and 3.0, for reduced frequencies k = 0 and 1,5 were compared with those of Huttsell and
Pollock, Schmid and Becker (taken from tables 5 and 7 of ref. 25), and a version of Wood-
cock's method (xref, 17), The general agreement between the methods is fair as illus-
trated by the polar plots of selected generalised forces in figures 14 and 15. Results
were also obtained for the same configuration with the tail raised to # = 0,6, Again
the general agreement between the methods is fair as illustrated in figures 16 and 17,

Also illustrated in figure 15 are results obtained by Jones and Appa (ref. 18) and
Tsengand Morino (ref, 26)., The generalised forces on the wing due to wing modes and on the
tail due to tail modes obtained by these panel methods are in agreement with those obtained
by the box methods, However, the interference effects, i.e. forces on the tail due to wing
modes do not compare at all well. One suspects that k= 1,5 is a rather severe test of
these methods; it is also possible that the source of these discrepancies lies in the use
of a rather small number of panels with the panel geometry unrelated to the Mach lines.
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4. METHODS FOR BODIES AND WING-BODY COMBINATIONS

For pointed, streamlined shapes whose dimensions in planes normal to the freestream
are small compared with the length there has been a heavy reliance on slender body theory
(e.g. Ward, ref, 3 and Miles, ref, 4). Applicable for low to moderate reduced frequencies
based on body length, the part of the flow field which contributes to the transverse loads
at a given ax -~ station is obtained as a solution to the two~dimensional Laplace equation
for the (incompressible) cross flow around the body section. For higher frequencies and
transient flow problems Miles, ref. 4, shows that the correct equation for the crossflow
is the two-dimensional wave equation

L t
¢95"¢zz =¢¢“=M¢TT
He gives the solution for the 1ift acting on cones entering sharp-edged gusts.

In recent years some considerable effort has been expended on the development of
numerical, panel methods for wing-body combinations in steady supersonic (and subsonic)
flow, Rather less attention has been paid to the equivalent unsteady flow problem
exceptions being the SOUSSA programs of Morino et al (ref, 27) and Woodcock's method
(ref, 28) for isolated bodies. Both methods are aimed at the numerical solution of the
integral equation (29) of section 2,

Woodcock specifies the boundary conditions in terms of the normal velocity component
at the mean body surface, including the effects of the mean steady flow, The normal mass
flux which is identified with local source strength, however, involves both the normal
and tangential components of velocity. The resulting integral equation therefore in-
volves both the potentialand its tangential derivative at the surface. Woodcock solves
this problem by approximating the tangential derivative by a finite difference quotient.
The body is modelled as a polyhedron, the surface being made up of a set of flat facets,
He then solves his equation for @ by collocation using techniques similar to those used
in his box method for tandem wings (ref, 17). Reference 28 contains an application to a
complex fuselage with canopy at M = 1,225,

In contrast to Woodcock, Morino equates the normal mass flux to the surface normal
velocity, the difference being of second order for bodies with smhll streamwise slopes,
The body surface is divided into a set of quadrilateral elements within each of which the
normal wash and surface potential are assumed constant., The true body surface within each
element is approximated by a hyperboloidal paraboloid enabling analytic evaluation of the
integrals over each panel in steady flow, For unsteady flow the integrands are replaced,
locally, by a low order expansion in terms of frequency parameter in order to, again,
achieve analytic evaluation of the panel influence coefficients, It is to be noted that
Morino's formulation of the unsteady flow problem allows for more general motions than
oscillatory flow, Inpractice this appears as a generalisation to complex values of frequency
parameter, i,e, damped oscillatory flows,

A similar method to that of Morino employing higher order representations of the
normal mass flux and potential distributions within a panel has been developed by Johnson
et al at the Boeing Company. Their method appears to have been applied only to steady
flows at supersonic speeds, However, it is worth noting that they give an alternative
expression for the normal mass flux boundary condition in their work in subsonic
oscillatory flow (ref., 29),

It is unfortunate that, as far as the author is aware, there are no published results
for the unsteady flow about wing-body combinations, although, as previously mentioned, an
example for an isolated body is given in ref, 28,

5., CONCLUDING REMARKS

With regard to the results for interfering 1lifting surfaces quoted in section 3,2 it
is noted that while the box methods are in qualitative agreement, the quantitative compar-
ison can only be described as fair, Whether the accuracy of such methods is good enough
for flutter or dynamic load prediction is dependent on the particular problem,

It should be remembered that these methods have been developed to obtain solutions
to the same linearised statement of the unsteady flow problem, The question remains as to

how closely the linear model represents the true flow; the Paucity of experimental results
leaves this question unresolved.

As to the development of panel methods for complex configurations, the lack of even
qualitative agreement between the panel methods and box methods for certain interference
forces leads one to suspect that much further work is required before they could be applied
with confidence, (It is certain that the methods have developed beyond the point for which
results have been quoted in this paper),
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Figure 1 Axis System for Aerodynamic Calculations
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Figure 3 Perturbation Mass Flow due to a Supersonic Source
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Figure 4 Supersonic Source *Cut' by an Inclined Plane
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