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ABSTRACT

The effects of cold forming on the fatigue behavior of
threads were analyzed using slip-line field and finite-element
analyses. Bolt threads were simulated using notched rotating
cantilever-beam fatigue specimens of Inconel 718. The slip-line
fields for wedge indentations, with some modifications, were used
to analyze the deformation process of notch rolling. Stresses on the
deepest slip lines were used in an elastic finite-element analysis of
the internal stresses existing outside the slip-line field during
deformation.

Negatives of the loads on the notch surface from the
indentor were used in a second elastic finite-element analysis to
determine the internal stresses from unloading. These two stress
analyses, with a correction for yielding, were employed to map the
residual stress distribution around the rolled notch. The predicted
residual stress distribution showed an intense compressive region
below the notch root. However, a short distance away from and to
the side of the notch, there began a region of residual tensile
stresses.

This stress distribution was then used to rationalize the
fatigue crack propagation behavior of Inconel 718 rotating
cantilever-beam fatigue specimens with rolled and machined
notches. When specimens with machines notches were fatigue
tested, the crack propagation direction was perpendicular to the
axis of rotation and in the direction of the maximum alternating
stress gradient. In the presence of a rolled notch the crack
propagation path was altered to a direction 50° from the
perpendicular to the axis of rotation. This change was attributed to
the residual stress distribution around the notch as indicated by
the stress analysis. This change in the direction of crack
propagation also reduced the magnitude of the alternating stresses
driving the crack, thus contributing to enhancement of notch
fatigue strength.
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INTRODUCTION

All machinery systems with notched or threaded members have potential fatigue
problems. In some systems where these conditions cannot be alleviated with redesign or material
subsitution, certain changes in fabrication techniques may provide an increase in fatigue
resistance. One such technique is notch rolling, which has long been used as a fatigue prevention
method, especially in the fasteners industry. The actual mechanism leading to this enhanced
fatigue resistance of rolled-over machined notches is not clearly defined. The purpose of this
investigation was to develop a better understanding of the residual siress pattern around a rolied
notch and its effects on fatigue crack initiation and growth.

Residual stresses occur when a portion of a piece of metal experiences plastic flcw and the
remainder of the material experiences only elastic strains. In the particular case of notch rolling,
the metal is deformed by a notch roller which causes plastic flow of the metal around the notch
and sets up the residual stresses. An analytical tool which might give the residual stresses for this
problem would be one of the new finite-element programs which could treat plasticity. This
approach to the problem employed the more traditional tools of slip-line field theory for the
plastic analysis and elastic finite-element analysis for the elastic portion of the problem. With
appropriate merging of the two solutions, a stress map resulting from the notch rolling of the
material was obtained. A second finite-element program was used to characterize the stresses
resulting from the elastic unloading of the notch as the roller was removed. The solutions were
combined to describe the residual stress distribution around the notch, which was then used to

analyze the fatigue behavior of notched specimens.

BACKGROUND

The beneficial effects of surface rolling on fatigue resistance were first investigated by
Foppl.!* Later work by Horger? on the effects of surface rolling indicated that increased fatigue
strength resulted principally from strain hardening of the surface layer. Further support of this
view was given by Frost3 who showed a 43-percent increase in fatigue strength of mild steel by
uniform cold work.

Although the surface strain hardening rationale may be applicable to surface rolling, the
fatigue behavior of notched specimens requires a different explanation. As in the case of surface
rolling, notch rolling results in an increase in fatigue strength compared to cut or ground notches

and threads. Field* found a 200-percent increase in the fatigue strength of rolled threads over

. *A complete listing of references is given on page 31.

[Ap——




b, o AR - T

TS

3
4
:

ground threads for 3/4-in. steel studs. Bellow and Faulkner’ found increases in fatigue strength of
66 and 51 percent for rolled threads over cut threads tested in air and saltwater, respectively. A
study of the fatigue of prestressed notches by Fuchs® concluded that prestressing had its most
significant effect on fatigue crack growth and little effect on fatigue crack initiation. Fatigue crack
growth requires cyclic tensile stresses ahead of the crack? which are attenuated by the presence
of residual compressive stresses near the notch root. Fatigue crack initiation requires slip
produced by cyclic shear stresses? which are enhanced by the notch through its stress
concentration factor and not affected by the residual stresses. Fuchs® investigated this model by
examining prestressed notched aluminum alloy fatigue specimens which were removed from test
at various cyclic lives before failure occurred. Examinations of these fatigue specimens indicated
that nonpropagating fatigue cracks would initiate within 1/2 million cycles but not extend even
after an additional 5 million cycles. The existence of nonpropagating fatigue cracks resulting from
rolled notches was also suggested by Frost et al.8 From these results it appears that the
compressive residual stresses around the rolled notch are responsible for the beneficial effects of

rolling on fatigue resistance of notched specimens.

APPROACH

The objective of this investigation was to characterize the residual stresses near a
circumferential notch, shown in Figure 1, with a stress concentration factor of 3.26. The notch was
rolled into a round rotating cantilever fatigue specimen of Inconel 718, and the analysis related
the residual stresses to the material’s notched fatique behavior. The investigation consisted of two
phases, including the residual stress analysis and the analysis of the notch fatigue tests performed

on rotating cantilever-beam specimens of Inconel 718.

RESIDUAL STRESS ANALYSIS

The analysis for residual stresses was comprised of two segments — calculating the stress
field resulting from the notch formation, and calculating the stresses resulting from the elastic
unloading of the notch surface. The two stress fields were then superimposed, with the sum of the
two being the residual stresses. The two main assumptions made for the residual stress analysis
were that an axisymmetric problem could be approximated with a two-dimensional plane strain
solution, and that the stresses on the deepest slip lines of a :lip-line field solution could be used to

find the loads on the elastic substrate surrounding the deformed metal of the notch.
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The notch indentation process with a sharp wedge was examined by Grunzweig et
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al.%sing their slip-line field shown in Figure 2. It was shown that during the indentation process,
while the coronet was being formed, a linear relationship existed between the load on the wedge
indentor and the depth of penetratinn. A linear relationship also existed for the notch rolling
process as shown in Figure 3, which is a plot of the notch rolling load versus depth of penetration
using two notch rollers with different root radii on a 0.560-in. diameter specimen of Inconel 718.
The notch roller with the sharper root radius produced a greater penetration depth for the same
load. However, both curves had the same slope, indicating that the variations between the curves
resulted from different behaviors in the very early stages of notch formation (the detection of
which was beyond the sensitivity of the instruments used). Similiar results were found by Johnson
et al.!9 when using wedges with sharp and flat edges. Although the wedge indentation model of
Grunzweig et al.? may predict the proper overall behavior, any load prediction obtained with a
wedge indentation model would yield smaller than realistic loads for the notch indentor with a

0.010-in. tip radius for a given penetration.

136 o o R s A . e A il St 1. . AR i it 72 Sl

The Hill slip-line field solution, Figure 4, for a semicylindrical cavity expanded in a plane
surfacel!! which was used to account for the radius at the indentor tip was combined with the
wedge indentation slip-line field to produce a slip-line field for notch rolling, Figure S. Since the

i experimental deformation was accomplished using a lubricated roller, which can be considered
similar to the wedge indentor experiencing a to-and-fro motion as reported by Grunzweig et al.,?
the process was assumed nearly frictionless. The calculated stresses across the deepest slip line

were used as the applied loads for the finite-element computer program which only modeled the

m e e

material below the slip-line field, Figure 6. The finite-element program (obtained from the Civil

Engineering Department at the University of Pittsburgh) modeled an area 0.40 in. (10.16 mm)* by

0.28 in. (7.11 mm) with 294 nodes and 511 elements. The stresses were transtormed into loads
acting on the nodal points of the loaded boundary. It was assumed that there were zero strains
acting across the notch centerline and the centerline of rotation (the longitudinal direction). The
area of the finite-element map was approximately 70 times that of the slip-line field to assure the

needed constraint for a realistic model. The output of the finite-element computer program was

the tensile stresses in the iongitudinal and transverse directions (oy and oy), shear stresses (1xy),

and the principal stresses (01, and 03) for all the elements,

The stresses of some of the elements around the notch were above the yield stress of

it o e o

Inconel 718. These stresses were corrected using the quadratic yielding equation for plane

strain,!2 Figure 7, and the stress-strain curve for Inconel 718, Figure 8. These two graphs were .

*Definitions of abbreviations used are given on page v.
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used to construct a second yielding surface, Figure 9, which was employed to compute the stress
reduction percentage applied to elastic finite-element results to account for yielding. Although the
corrections were usually small, their existence meant that the slip-line field should have been
slightly deeper, especially near the notch root. The analysis also revealed a small “dead-metal
cap” at the root of the notch. The abovementioned corrections were also calculated using the
quadratic equation for plane stress,!? Figure 7, which resulted in slight differences in stresses
from the plane strain analysis except for the dead-metal cap which disappeared. The plane strain
corrected finite-element output gave the stress map of the material at the completion of the notch
rolling.

The second phase of the residual stress analysis dealt with the elastic unloading of the
notch surface. This finite-element program had 317 nodes and 551 elements, most of which were
identical to those of the previously mentioned finite-element analysis. This analysis required a
finite-element map of the entire area including the plastically deformed area around the notch,
and the loads applied to the inner surface of the notch by the indentor at the final instant of
rolling, Figure 10. Again, the slip-line field was used to calculate the stresses on the notch surface
which -were transformed to nodal point loads for the finite-zlement program. Since this phase was
to model the assumed elastic unloading of the notch, the negatives of the applied indentor loads
were used in the computer program. The centerline boundary conditions were the same as in the
loading analysis. The output of the second finite-element analysis was the internal stresses
resulting from the elastic unloading of the notch surface at the end of the notch rolling process.

The two finite-element maps were then superimposed and the stresses of the
corresponding elements were summed, producing the residual stress distribution.

Figure 11 is a plot of the stresses acting across the notch centerline as a function of their
location along the notch centerline for the loading and unloading situation. Also, Figure 11 shows
the results of the loading analysis without the yielding correction. The sum of the loading and
unloading curves would produce the residual stress distribution acting across the notch

centerline.

FATIGUE TESTS

The tatigue tests were performed on Inconel 718 bar in the fully heat-treated condition
with the properties shown in Table 1. The specimens used were rotating cantilever-beam
specimens or McAdam specimens!3 which had a 0.500-in. (12.7-mm) test diameter and an overall

length of 11 in. (280 mm), as shown in Figure 12.




TABLE | — MECHANICAL PROPERTIES AND
CHEMICAL COMPOSITIONS OF INCONEL 718

A A e

Tensile Stress 258.9 ksi (178 MPa) H
Yield Stress 178.6 ksi (123 MPa) g}
Elongation (% in 2 in.) 17 7

Chemical Composition (wt %)

SRR b e

Ni .. 53.3
Cr 18.0
Fe 18.2
Mo 3.0
Co 3.3
Heat Treatment Annealed and hot rolled (1700° to 1800°F) then

aged (1325°F/8 hr, FC to 1150°F, hold at
1150°F/8 hr, AC)

The specimens were dead-weight loaded and rotated at 1725 rpm until failure, which was
defined as a compiete separation of the specimen. The rolled notches were formed with a
hydraulically actuated notch roller attached.to a lathe bed. While the specimen was rotating in
the lathe, hydraulic pressure was gradually increased until the proper notch depth was achieved.

The notches had a depth of 0.031 in. (0.787 mm) with a 0.010-in. (0.25-mm) root radius
and a tatal notch angle of 45°, Figure 13. The rolled notches differed slightly from the machined
notches due to the coronet of metal pushed up on both sides of the rolled notch. Nine specimens
were tested (five with rolled notches, four with machined notches) in air at various stress levels.

In addition to the nine smooth and notched specimens, four hybrid specimens were tested
at a stress level of +40 ksi (276 MPa) in air. The hybrid specimens were produced by rolling

notches to depths of 0.007 to 0.025 in. (0.18 to 0.63 mm) and then machining them all to some
final notch profile as in Figure 14.

RESULTS AND DISCUSSION

The results of the first finite-element analysis for the stress field resulting from the notch
formation are shown in Figure 15. The three areas shown are: the tully plastic area, which was

slightly larger than the original slip-line field; the elastic region comprising most of the area; and
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the transitional region between the two, which had stresses above the elastic limit but less than the
engineering yield stress.

The sums of the stresses acting in the longitudinal direction obtained from the
superposition of the two finite-element programs are shown schematically in Figure 16. The region
marked “compression” contains all the elements which had a residual compressive siress acting in
the longitudinal direction. The magnitude of these stresses was greatest near the surface of the
notch and went to zero at the boundary between the compressive and tensile region. In the region
of residual tension the stress magnitude increased for elements further below the boundary,
through a maximum and then approached zero. The distribution of longitudinal stresses acting on
the notch centerline is shown in Figure 17.

The results of the fatigue tests performed on the Inconel 718 with machined and rolled
notches are shown in Figure 18. These results clearly show the enhanced fatigue resistance
resulting from notch rolling compared to machined notches with the same stress concentration
factor, K; = 3.26. The compressive residual stress region around the notch root accounts for the
greater fatigue resistance of the rolled notches over the machined notches. This residual stress
configuration makes it very difficult for a crack to grow from the notch root down the notch
centerline since crack growth would require very high cyclic tensile stresses to counteract the
mean compressive stress. The normal crack extension path in bending or axial fatigue with a
machined notch assuming cyclic stresses applied in the longitudinal (x) direction, perpendicular
to the notch centerline, is along the notch centerline. Such a fracture surface for a machined
notched Inconel 718 fatigue specimen is shown on the left in Figure 19. Also shown in Figure 19
is a failed specimen with a rolled notch. The orientations of the fatigue cracks are very different
despite the identical loading conditions of the two specimens. This fatigue crack behavior was also
seen by Shatinskiil4 on notched steel fatigue specimens. The different crack orientation on the
rolled specimens resulted from the residual stress distribution around the notch root. The
compressive residual stresses below the notch root made fatigue crack growth difficult by
superimposing a large mean compressive stress on cyclic stresses experienced by the metal. The
path taken by the fatigue crack, which is 50° from the notch centerline, allowed the crack tip to
grow into a field of residual tension near the notch root, as shown in Figure 17. After the fatigue
crack was initiated via the shear stresses, the crack was able to propagate into this field of

residual tension. The applied cyclic stresses on the crack path, which were attenuated but still

possessed tensile components, coupled with a mean tensile stress provided the tensile cyclic




stresses needed for fatigue crack growth. The residual stresses on the fatigue crack shown in
Figure 17 had a compressive stress region adjacent and beyond the tensile region. Once the
crack has grown through the residual tensile stress region, this compressive stress region should
nearly disappear as the constraint and balancing tensile field is reduced. At some point away from
the influence of the rolled notch, the crack front should change direction and grow toward the
center of the specimen. This was observed in tests and is shown in Figure 19.

The four hybrid specimens tested with an applied alternating stress of +40 ksi (276 MPa)
displayed fatigue lives greater than 108 cycles. The notch rolled-only specimens tested at the
same stress level failed at 8 x 108 cycles. The fatigue strength of the hybrid specimens apparently
resulted from the final notch machining which removed any surface asperities produced by the
notch rolling process. Such an asperity, which would act as a local stress raiser causing early
crack initiation, is shown in Figure 20. The hybrid fatigue specimens were removed from test after
108 cycles and underwent a heat tinting process of 1 hr at 700°F (371°C) which changed the
specimen'’s surface color from silver to light straw. Three of the four specimens were then retested
with an applied alternating stress of +65 ksi (448 MPa) until failure, as summarized in Table 2.
The fatigue strengths of thé hybrid specimens indicated that the residual compressive stress
region below the notch root exists to a depth of at least 0.024 in. (0.61 mm) since specimen A,
with the shallowest rolled notch of four hybrid specimens (A, B, C, and D), was a run out (108
cycles) at +40 ksi (276 MPa).

TABLE 2 — SUMMARY OF HYBRID SPECIMEN FATIGUE TEST RESULTS
Final Notch

Specmen  yoilhonng  Desbater SRS Rt
in. (mm) in. (mm) (+276 MPa) ( 4+ 448 MPa)

A 0.007 (0.18) 0.031 (0.79) 108 1.9 x 107

B 0.013 (0.33) 0.031 (0.79) 108 1.8 x 107

C 0.019 (0.48) 0.021 (0.79) 108 8 x 106

D 0.025 (0.63) 0.031 (0.79) 108 Not tested

The fracture surfaces of specimens B and C appeared similar to those of the notch rolled-

only specimens, as in Figure 19, with the fatigue crack which caused failure initiating away from

—
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the notch root area. Also evident on the fracture surface of specimens B and C were fatigue
cracks at the notch root which had heat tinted surfaces, indicating their existence before being
subjected to the higher alternating stress of + 65 ksi (448 MPa). The existence of these
nonpropadating fatigue cracks at the notch root supports the previously mentioned work by
Fuchs.® Figure 21 is a photomicrograph showing the notch root fatigue cracks and the fatigue
crack which caused the specimen failure. Figure 21 also indicated the presence of an area of

compressive residual stresses below the notch root deterring fatigue crack propagation. The
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hybrid specimen A had a fracture surface similar to that of the machined notch fatigue specimen
shown in Figure 19. The fracture surface had a heat tinted fatigue crack at the notch root which
was similar in size to those in specimens B and C. However, the higher applied cyclic stress, 65
ksi (448 MPa), caused the fatigue crack to propagate out of the region of compressive residual

stresses and fail the specimen, indicating a small zone of compressive residual stress.

SUMMARY

The fatigue behavior of notched specimens was investigated to understand the process
which increases the fatigue resistance of rolled notches. The two phases of the investigation were
the analytical prediction of the residual stress distribution from slip-line field theory and finite-
element computer programs, and the analysis of notched fatigue data for Inconel 718 rotating
cantilever fatigue specimens.

The investigation showed that a residual stress distribution can be constructed with a
combination of slip-line field theory and elastic finite-element programs. This process was used to
produce a residual stress distribution that could rationalize the fatigue behavior of Inconel 718
with rolled notches. The investigation showed that the increase in fatigue resistance of the rolled
notch resulted from the residual stress distribution of compressive stresses around the notch root,
which caused a change of crack orientation during the early stage of fatigue crack growth. This
altered fatigue crack growth path experienced smaller cyclic tensile stresses than the normal

crack path, thus reducing the fatigue crack growth rate of the specimens with rolled notches.
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and Fatigue Tests of Inconel 718
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Figure 19 - Fracture Surface of Machined and Rolled
Notch Fatigue Specimens
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Figure 20 - Photomicropraph of Cross Section
of a Rolled Noteh in o Round Specimen
(0.560-1In. Diamceter) of Inconel 718




Figure 21 - Photomicrograph of the Notch
Cross Section Showing the Notch Root
Fatigue Crack Which Caused Failure
(Upper Right) (50X)

(Etchant: HNOj + HF + Hy0
for 2-3 Minutes)
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