THE LOGAIR ROUTE STRUCTURE: AN EXPLORATION OF THE SINGLE-HUB CONFIGURATION

JUN 80

M O PAYNE, D A SCOTT

UNCLASSIFIED

AFIT-LSSR-40-80
THE JOGAIR ROUTE STRUCTURE: AN EXPLORATION OF THE SINGLE-HUB CONCEPT

Captain Milton O. Payne, Jr.
Captain Darryl A. Scott

AFIT-LSSR-40-80
The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information are contained therein. Furthermore, the views expressed in the document are those of the author(s) and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the Air Training Command, the United States Air Force, or the Department of Defense.
AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications of AFIT thesis research. Please return completed questionnaires to: AFIT/ LSH (Thesis Feedback), Wright-Patterson AFB, Ohio 45433.

1. Did this research contribute to a current Air Force project?
 a. Yes
 b. No

2. Do you believe this research topic is significant enough that it would have been researched (or contracted) by your organization or another agency if AFIT had not researched it?
 a. Yes
 b. No

3. The benefits of AFIT research can often be expressed by the equivalent value that your agency received by virtue of AFIT performing the research. Can you estimate what this research would have cost if it had been accomplished under contract or if it had been done in-house in terms of manpower and/or dollars?
 a. Man-years ________ $ ________ (Contract).
 b. Man-years ________ $ ________ (In-house).

4. Often it is not possible to attach equivalent dollar values to research, although the results of the research may, in fact, be important. Whether or not you were able to establish an equivalent value for this research (3 above), what is your estimate of its significance?
 a. Highly Significant
 b. Significant
 c. Slightly Significant
 d. Of No Significant Significance

5. Comments:

Name and Grade __________________________ Position __________________________

Organization __________________________ Location __________________________
UNCLASSIFIED

REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSSR 40-80</td>
<td>AD 088 715</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE LOGAIR ROUTE STRUCTURE: AN EXPLORATION OF THE SINGLE-HUB CONCEPT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's Thesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. PERFORMING ORG. REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milton O. Payne, Jr., Captain, USAF</td>
</tr>
<tr>
<td>Darryl A. Scott, Captain, USAF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Education Division</td>
</tr>
<tr>
<td>School of Systems and Logistics</td>
</tr>
<tr>
<td>Air Force Institute of Technology, WPAFB OH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Communications and Humanities</td>
</tr>
<tr>
<td>AFIT/LSH, WPAFB, OH 45433</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 June 1980</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. MONITORING AGENCY NAME AND ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SECURITY CLASS. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15a. DECLASSIFICATION/DOWNGRADING SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. DISTRIBUTION STATEMENT (of this Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. DISTRIBUTION STATEMENT (of the authorized document)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED FOR PUBLIC RELEASE APR 1980</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. KEYWORDS (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGAIR</td>
</tr>
<tr>
<td>Transportation</td>
</tr>
<tr>
<td>Supply</td>
</tr>
<tr>
<td>Single-Hub Distribution Network</td>
</tr>
<tr>
<td>Simulation Model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis Chairman: James M. Masters, Major, USAF</td>
</tr>
</tbody>
</table>
This thesis examined the feasibility of a single-hub route structure concept. This represents a marked departure from the present trunk-and-feeder route structure which utilizes multiple hubs of operation. The idea was based upon the routing network used by several commercial air freight carriers. A computerized simulation program, SIMSCRIPT II.5, was employed to evaluate a single-hub structure incorporating as many real world constraints as was feasible. System performance was simulated for a 90-day time period. Results indicated that a single-hub route structure could provide next day delivery for practically all priority one, two, and three cargo. In comparison to the trunk-and-feeder system, transit time was improved by 0.22 days (17.9%). But contract operating costs (based on FY 80 figures) increased by $9,354,000 (19.6%). Furthermore, 23 aircraft were required versus 15 under the present system for CONUS operations. This increased cost was counterbalanced by a projected savings of $10,700,000 annually in spares inventory to be realized by a faster supply pipeline.
THE LOGAIR ROUTE STRUCTURE: AN
EXPLORATION OF THE SINGLE-HUB
CONCEPT

A Thesis
Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the Requirements for the
Degree of Master of Science in Logistics Management

By
Milton O. Payne, Jr., BSIM
Captain, USAF
Darryl A. Scott, BSE
Captain, USAF

June 1980

Approved for public release;
distribution unlimited
This thesis, written by

Captain Milton O. Payne, Jr.

and

Captain Darryl A. Scott

has been accepted by the undersigned on behalf of the faculty of the School of Systems and Logistics in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN LOGISTICS MANAGEMENT
(CONTRACTING AND ACQUISITION MANAGEMENT MAJOR)

DATE: 9 June 1980
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Significance of the Study Effort</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Objective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Research Questions</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Overview of Study</td>
<td>6</td>
</tr>
<tr>
<td>II. LITERATURE REVIEW</td>
<td>Overview of the Chapter</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>LOGAIR Studies</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Federal Express Concept</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Van Valkenburgh's Mark 2 Model</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Available Methodologies</td>
<td>15</td>
</tr>
<tr>
<td>III. METHODOLOGY</td>
<td>Overview of the Chapter</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Research Design</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Variables</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Model Construction</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Limitations and Assumptions of the Model</td>
<td>33</td>
</tr>
</tbody>
</table>
Chapter

Data Sources .. 36
Cargo Demand .. 36
Variability of Cargo Weights 36
Distance .. 39
Aircraft Capacity. 39
System Transit Time (Actual) 39
LOGAIR System Costs. 40
Terminal Hold Time (Actual) 40
Relation to Research Questions 40
Research Question 1. 40
Research Question 2. 41
Research Question 3. 41

IV. RESULTS AND FINDINGS 45
Research Question 1. 45
Research Question 2. 47
Research Question 3. 49

V. CONCLUSIONS AND RECOMMENDATIONS 51
Conclusions .. 51
Limitations of the Study 51
Recommendations for AFLC 52
Recommendations for Future Study 53
Summary of Research 54

APPENDIX A: RAY-SWEEP, ROUTE GENERATOR PROGRAM 55
APPENDIX B: SINGLE-HUB LOGAIR ROUTE SYSTEM SIMULATION
PROGRAM ... 68
APPENDIX C: SINGLE-HUB ROUTE ITINERARY 76
<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>ANALYSIS OF RANDOM SAMPLE OF LOGAIR SHIPMENT WEIGHTS DURING OCT, NOV, DEC 1979</td>
<td>82</td>
</tr>
<tr>
<td>E</td>
<td>SYSTEM TRANSIT TIME: FY 79 LOGAIR ROUTE STRUCTURE</td>
<td>87</td>
</tr>
<tr>
<td>F</td>
<td>COMPARISON OF CONTRACT COSTS</td>
<td>94</td>
</tr>
<tr>
<td>G</td>
<td>TRANSIT TIME VARIANCES FOR THE SINGLE-HUB SYSTEM</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>SELECTED BIBLIOGRAPHY</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>28</td>
</tr>
<tr>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td>III</td>
<td>37</td>
</tr>
</tbody>
</table>

- I Alphabetical Listing of Three-Letter Location Identifiers
- II Cargo Sequencing Problem
- III Average Daily Requirements in Tons
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U.S. Air Force LOGAIR Route Structure for FY 79</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Mark 2 Route Structure</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Illustration of the Ray-Sweeping Algorithm</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Revised Central Hub Network</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>D041 Data Collection System</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Air Force Implementation of VSL for Reparables</td>
<td>44</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Background

The United States Air Force contracts for the movement of high-priority materiel for weapon system support via a commercial contract carrier operation known as Logistic Airlift (LOGAIR). In the contiguous United States, the LOGAIR network connects selected Air Force and Navy installations with the five Air Logistic Centers (ALCs), which provide the bulk of the materiel support (24:9-10).

Air Force Manual 76-1, The LOGAIR Traffic Manual, states the objectives of the system as follows:

1. Establish and maintain a cargo airlift service,
2. Improve the effectiveness and timeliness of logistical support by expanding and improving the utilization of air transport, and
3. Improve the reliability and quality of the system (29:3-1).

The basic concept behind LOGAIR is the rapid movement of high-priority cargo.1 The Air Force incurs the higher

1 LOGAIR supports transportation priorities (TP) 1 and 2 primarily. Priority 3 cargo is carried on a space available basis. Transportation priority codes are determined from the published matrix of Force/Activity Designator Codes Versus Urgency of Need Codes (29:1).
cost of shipping by air to achieve the advantage of speed. The routing structure used to facilitate air shipments is a trunk-and-feeder line system. Trunk, or main lines, connect the five ALCs, AFLC Headquarters, and Aerial Ports of Embarkation (APOEs). Feeder lines are subsidiary routes which connect individual user installations with the trunk lines. The FY79 LOGAIR Route Structure (see Figure 1) utilized six trunk routes and seven feeder routes. One alternative structure is a single-hub network. Under this concept, all freight is shipped to a central location, sorted, and reloaded on aircraft for its final destination. This route configuration has proven beneficial for several commercial air freight carriers (e.g. Federal Express Corp., Emery Air Freight, and Purolator Express) where overnight service has become the norm (21).

LOGAIR currently uses two types of aircraft: the L-100 provides outsize cargo lift capability for items such as aircraft engines, the L-188 augments the L-100 due to its faster speed and more economical operating costs. Current AFLC policy is to limit L-100 service to the AFLCs, HQ AFLC, and the APOEs (23:iii-iv; 32).

The highest priority one category, MICAP, now comprises approximately 14 percent of LOGAIR traffic (35:3).

2 Those items which affect Mission Capability (formerly called NORS) (29:3).
While LOGAIR asserts an average of 2.5 days MICAP transit time, MICAP items that affect major weapon systems are increasingly being shipped by other modes which can provide more speed (35:3).

As LOGAIR contract managers, AFLC/LOM re-evaluates and restructures the network annually with the criteria of reducing direct operating costs which are based on air miles flown and number of landings while maintaining shipment transit times at acceptable levels. There is increasing concern at HQ USAF that more emphasis should be given to reducing transit times, even at the expense of increasing direct operating costs (21). Reducing the amount of time that a component is in the supply pipeline has a two-fold benefit. A quicker pipeline allows a smaller investment in inventory and reduces the time a weapon system is out of commission due to a parts supply shortage.

Significance of the Study

Effort

The Air Staff believes a tremendous potential exists for savings should LOGAIR transit times be significantly reduced. Mr. Dale Sampson of the Logistics Management Center (LMC) cites a hypothetical example:

\[\text{As used in this chapter, transit time refers to the amount of time required for a shipment to travel from origin to destination plus the period that the shipment is initially held awaiting transport, referred to as hold time.} \]
Suppose a major command has 100 of a certain type of aircraft in its inventory of which 20\% are down for parts, on the average, at any given time. If we can reduce transit time by 50\%, then, over the long run, that commander will have 10 more aircraft available for mission flights or contingencies. This is roughly the same as having 10 additional aircraft in your fleet at a fraction of the cost [21].

This rationale is one method of attempting to quantify the opportunity cost of a weapon system out of commission due to parts shortage.

The time lag incurred in receiving parts, coupled with limited war readiness spares kits (WRSK), reduced budgeting for spares, and the increased complexity of weapon systems contribute to an overall reduction in readiness. The difficulty in obtaining spares in a timely manner is undoubtedly reflected in lower rates of operational readiness experienced in recent years (35:4). Excessive transit times, coupled with increasingly expensive spare parts,\(^4\) yield a pipeline that requires more and more dollars to maintain. Although the Air Force can do little to control the rising costs of weapon system spares, inventory investment can be reduced by shortening transit times (13).

The implicit savings of a higher percentage of aircraft in commission, plus the savings of a reduced spares inventory required to support a faster supply pipeline, warrant the investigation of a route structure which places emphasis on

\(^4\)In 1978, the DOD average value of a single issue item was $885 while the Air Force ALCs' average was $3344 per item issued (31:27).
reducing transit times rather than reducing direct operating costs. Specifically, the LMC has expressed interest in further exploration of a single-hub network (21).

Objective

The objective of this thesis was to construct a single-hub network utilizing realistic cargo shipment demand requirements and as many other real world constraints as was possible. After the route was constructed, its performance was estimated by computer simulation to determine its ability to reduce overall system transit time.

Research Questions

To meet these objectives, this study answers the following research questions:

1. Does a single-hub route structure yield lower transit times than the trunk-and-feeder system?

2. What will be the impact on contract direct operating costs of a single-hub route?

3. If a single-hub system does produce faster transit times, to what degree will faster transit times lower inventory investment required to support the supply pipeline?

Overview of Study

Chapter II discusses previous LOGAIR studies. Various methodologies amenable to vehicle routing type problems are briefly presented. The technique selected for the route generation is a modification of a ray-sweeping approach.
incorporating a vehicle scheduling algorithm. The characteristics of the ray-sweeping algorithm are discussed and its applicability to the problem is shown.

Chapter III explains in detail the methodology used in approaching the problem. Sources of data, research design, and operational definition of variables are explained. Detailed explanations of the ray-sweeping algorithm and all heuristics employed are presented. And finally, all of the preceding concepts are addressed in their relation to the research questions.

Chapter IV presents the results and findings of the study. It was found that the single-hub system could decrease overall transit time from an average of 1.23 days to 1.01 days. However, the resulting increase in operational costs alone was $9,354,000. This expenditure was countered by a predicted savings in inventory investment of $10,700,000.

Chapter V contains the conclusions and summary of the study. Recommendations for AFLC management as well as future research efforts are included.
CHAPTER II

LITERATURE REVIEW

Overview of the Chapter

Because of the potential benefits to be derived from an improved system, LOGAIR has been the subject of several studies. In the past, most studies and reports have attempted to improve the cost and/or time aspects of the system without changing its basic structure. The first part of this chapter examines several of the most recent of these studies, including their techniques and limitations. The latter section discusses the family of heuristic vehicle routing problem methodologies, including three types of routines: improvement, ray-sweeping, and savings. The chapter concludes with a justification of the use of the ray-sweeping approach to the vehicle routing problem at hand.

LOGAIR Studies

A study by Fetter and Steorts of Rand Corporation, conducted in 1966, presented a computer model designed to evaluate the costs of the existing trunk-and-feeder line system. The Rand model evaluated alternative routes within the current structure based on change in cargo requirements (5:21). It now is the basis for the cargo requirements matrix generator that AFLC/LOM uses as input to their manual route design
process (17).

More recently, Captains Michael McPherson and Brian O'Hara attempted to develop a computerized linear-programming model that minimized operating costs of LOGAIR trunk routes (16). Their model did not, however, consider transit times or pipeline costs. It also failed to address the LOGAIR system as a whole because of limitations in the linear-programming package used to optimize the model.

While McPherson and O'Hara attempted to minimize operating costs on the trunk lines, Major Kenneth Moberly and Captain Theodore Gorychka came closer to solving the transit time problem. In their AFIT master's thesis, Moberly and Gorychka attempted to minimize pipeline time along the current LOGAIR route structure (14). They attempted to use linear programming to develop a flight schedule that minimized the time any shipment spent awaiting transhipment. Moberly and Gorychka recognized that their results were highly dependent on the current route structure (14:48). The optimality of their model was limited because the then-current route structure was not optimal (14:49).

Other studies have attempted to use transit times as performance criteria for improving the LOGAIR system, but these have mainly concentrated on minimizing operating cost

5 Time awaiting transhipment is the time interval a shipment waits at intermediate station(s) for reloading and redeparture for its final destination.
within the constraint that transit times not be further degraded.

None of the studies prior to 1979 attempted to examine the LOGAIR system to determine what improvements in transit time could be gained from modifying the route structure. In a 1979 Air Command and Staff College research report, Major Nicholas Van Valkenburgh described a radically different LOGAIR route structure with the primary objective of reducing transit times. Van Valkenburgh's system was based on the highly successful airborne package express service run by Federal Express Corporation.

Federal Express Concept

Federal Express utilizes a single hub of operations concept. The basis of the hub concept for any transportation network is a single distribution point located near the "center of gravity of the network."

Memphis, Tennessee, was chosen by Federal Express as their hub because of its excellent flying weather and its proximity to their "center of gravity" of package movements (35:24). All packages are flown from outlying cities into the hub, where they are offloaded, sorted, and reloaded on

6See Boudreaux and Olansen (1) and Prescott and Palmatier (18).

7The Center of Gravity is defined as the point that minimizes the total transport costs (12:262), distance traveled, or transit time to all other nodes in the system (2:309).
aircraft to leave the next morning. This allows Federal Express to provide overnight service from any location to another of 97 cities in their network. This differs from the LOGAIR concept which moves cargo from origin to destination via a network of interconnecting, circular routes.

It is interesting to note that Federal Express had originally planned to expand to regional mini-hub terminals to cope with increased volume, but chose instead to enlarge their central operation at Memphis (35:27).

Van Valkenburgh's Mark 2 Model

Van Valkenburgh speculated that a similar system for the "on-line" LOGAIR bases would yield considerable improvement in transit times. The results of Van Valkenburgh's study tended to support his original idea.

Since this thesis uses the Van Valkenburgh study as a conceptual starting point, it is useful to review the major assumptions and design considerations of his LOGAIR Mark 2 model. Van Valkenburgh limited himself to applying the single hub concept to the existing LOGAIR system. Furthermore, he made these assumptions to simplify the design of his hub model:

-- High priority cargo airlift requirements and number of trips per week for each base are the same as under the current system,

-- Flying times are standardized based on length of the leg being flown,
--The same type aircraft are used and their payloads are similar,
--Ground handling times are assumed to be half an hour for user bases and an hour for ALCs/APOEs,
--The same bases must be served as under the then-current system,
--Bases within one hundred miles of an ALC are served by dedicated ground transport,
--A hub terminal capable of handling all cargo on the system is available at the hub base,
--The hub is located at Tinker AFB, OK (35:29-36). These assumptions were necessary because Van Valkenburgh's study was conducted without computer assistance. Without these simplifications, it is doubtful that the LOGAIR Mark 2 model could have been developed manually in the limited time available to Major Van Valkenburgh.

After Van Valkenburgh defined his limiting assumptions, he developed a heuristic route planning algorithm which yielded routes that met the cargo tonnage requirements of the current LOGAIR system while minimizing transit times. Basically, the algorithm selected an aircraft type, then built a tentative route by connecting one or more bases to the hub by a straight line. If the average daily cargo tonnage to be onloaded and offloaded at those bases did not fill the aircraft to capacity, the nearest base to the tentative route was added to the route. Bases were added until the aircraft's capacity was used. Then a check was made to see if more bases could
be added if a larger aircraft (selected from among the types available under the contract) were used. If so, those bases were added; if not, the route was finished and the process started over with another base (35:37-40). When all the routes were completed, they were adjusted to insure that no route required an estimated flying time of over 24 hours, and that transit times were roughly equal for all routes. The final route structure that emerged from this process is shown in Figure 2.

The key factor of the LOGAIR Mark 2 model was that it represented a conceptual break from past studies of the LOGAIR system. As shown above, all previous efforts had concentrated on optimizing costs or schedules of the current, multi-hub, trunk-and-feeder line system. The LOGAIR Mark 2 study, on the other hand, introduced a new way of approaching logistics support for high priority cargo. It was, however, intended primarily to demonstrate a concept, not to support an operational decision (35:6).

Before LOGAIR Mark 2, or any single-hub model, can be used to support operational decisions, the conceptual and design factors that limit the LOGAIR Mark 2 model must be overcome. Van Valkenburgh admitted that he made no attempt to optimize his route structure. He used highly aggregated freight volumes (i.e. average daily tonnage for several years) and he examined hypothetical changes in transit times for three SAC bases in the network. It is difficult to see how these results could be expanded for the entire system based
on such a narrowly focused sample. Some experts in management science indicate that the methods Van Valkenburgh used to arrive at performance factors for LOGAIR Mark 2 are of dubious value (13; 6:1). However, as Van Valkenburgh stated: "The model route structure . . . should be viewed as a departure point for possible future study rather than a definitive solution [35:6]."

Available Methodologies

The LOGAIR routing problem is one of a family of well-known problems that go by the generic name of vehicle routing problems (VRP). These problems have received a great deal of attention in operations research literature in the past twenty years and can be said to be generally well understood (15:250). In the terminology of operations research literature, the VRP can be stated as follows: Given a set of demand points, usually called nodes or stations, and supply points, called hubs or depots, find the set of paths between nodes and hubs (or nodes and other nodes) that minimizes the cost of satisfying the demands. The individual paths are usually referred to as links or routes, and a set of links is called a network or route structure.

Vehicle routing problem analysis lends itself to the LOGAIR situation for several reasons:

--once routes are determined, they remain relatively static for the fiscal year. Under the present structure, aircraft can be diverted to off-route bases or directed to
overfly certain bases on an emergency or mission essential basis. However, these deviations are the exception rather than the rule.

-- Vehicle (aircraft) parameters such as cargo capacity, speed and range are highly deterministic in nature and serve as sharply defined constraints on the routing problem.

-- Customer requirements (inbound and outbound cargo) are readily determinable from AFLC planning data and can be stochastically generated by simulation techniques to approximate real-world user demands.

-- The minimization of distance traveled is of high interest because air miles flown is one of the bases of contract direct operating costs. Reduction of air miles will also naturally reduce fuel consumption.

The VRP can be approached with several available methodologies; for example, via linear programming, as was done by Foster and Ryan (15:248), Balinski and Quandt (15:248), and the thesis teams discussed earlier. The difficulty with this approach lies in its computational complexity. To determine a network of even moderate size requires a large number of constraints and a great amount of computer storage. In fact, as Captains McPherson and O'Hara noted in their thesis, generation of routes containing more than 15 or so nodes cannot be handled by most commercially available linear programming packages (16:24).

Due to the limitations of linear programming solution to the VRP, several heuristic techniques have been developed
that result in near optimal solutions at greatly reduced cost in computer time and storage. These heuristics may be classified in three general categories: improvement routines, savings routines, and ray-sweeping routines.

Improvement routines basically build a simple route structure by selecting links at random, then examine the structure to see if improvement can be made by replacing any set of "n" links with any other set of "n" links. The resulting tours are called "n optimal," where "n" is the largest number of links for which optimality can be theoretically demonstrated. Proponents of the "n optimal" improvement routine include Christofides and Eilon, Lin, Carg and Thompson, and Lin and Kernighan (15:246). These methods have been demonstrated to provide optimal or near-optimal solutions to problems involving as many as 100 nodes in less than 30 minutes of computer time (15:246). However, there is some question as to the suitability of these methods for problems involving many active constraints. Furthermore, the routes generated tend to be circular rather than petal-shaped. Narrow, petal-shaped routes are preferable to circular routes because the broader the route, the greater the probability that the route contains links that are longer than they should be (15:248).

The savings approach concentrates on reducing travel time by building up a network consisting of a series of out-and-back trips from a central depot to each node in a sequential manner as if done by a single vehicle. It then attempts
to save time by linking two customers together in substitution for one link between the depot and each customer (15:247). Since two routes are permitted to be merged by replacing links adjoining the depot, the time savings that accrue are cumulative. Routes continue to be merged until some vehicle capacity constraint would be violated by adding additional links. Mole points out several criticisms of this approach (15:247-248). Since only links adjoining the depot are removed, no attempt is made to examine savings that might accrue from exchanging links between customers in the middle of the routes. The savings approach may be inappropriate for the LOGAIR problem, however, because it places emphasis on improving time required to travel the entire network rather than individual routes. One of the greatest disadvantages of the savings approach, as discovered by its proponents, is its tendency to produce individual routes that overlap. It can easily be demonstrated that overlapping and/or crossing routes are not optimal with respect to minimizing distance traveled (15:247-248; 34:344). Therefore, any heuristic that may produce such routes would not be optimal.

In contrast to the other two approaches, ray-sweeping algorithms are based on the notion that narrow, petal-shaped routes are preferable to broad, overlapping routes since the latter include many "overly-long" links (15:248).

8 Dantzig and Ramser, Clarke and Wright, Fletcher and Clarke, and Gaskell (15:247).
In general, the ray-sweeping algorithm generates a list of nodes sorted in order of coordinate angle from the central depot (see Figure 3). These nodes are then connected in order until some constraint is violated. Most of these methods then employ a refinement procedure to see if additional savings can be gained by reallocating some nodes between routes. These methods differ mainly in how the coordinate system is defined and aligned. Wren and Holliday align their coordinates along the most sparse direction and then rotate the coordinate axis through 360 degrees in steps of 90 degrees. At each step a network is generated and the best of the four networks is chosen as optimal (34:335-337).

Gillette and Miller, and Gillette and Johnson, on the other hand, pick an arbitrary starting direction and then realign the coordinate axis through each node in sequence until a 360 degree rotation is completed. This generates "n" networks where "n" equals the number of nodes in the system. They then reverse the procedure, sweeping backwards to develop "n" slightly different networks. Finally, the best of the "2n" networks is selected as the optimal (15:248). Mole points out that all ray-sweeping methods produce networks of similar quality in similar amount of computer time (15:248-249).
Nodes are added to route in order of increasing angles θ, i.e. A, B, C, as in Figure 3A, until a cargo or time constraint is reached. Then the algorithm links the nodes in a manner that minimizes total distance between nodes, i.e. B, A, C, as illustrated in Figure 3B.

Figure 3
Illustration of the Ray-Sweeping Algorithm (34:336-337)
CHAPTER III

METHODOLOGY

Overview of the Chapter

This chapter covers three main topic areas: a general description of the variables, assumptions, and limitations of the computerized network generator program, a detailed description of how the generator program works and how its output was modified, a description of the simulation of the central hub network and how its performance was compared to the present LOGAIR route structure, and finally sources of data and justification of their use are discussed.

Research Design

The research design consisted of three basic steps: determining the route structure by means of the ray-sweeping algorithm, simulating the performance of the route over a 90-day period, plus evaluating its performance and comparing that performance to that of the LOGAIR route structure as it existed over the same 90-day period (October-December 1979). This period was selected because it was the most recent completed quarterly data compiled at the time of the research effort, and HQ AFLC personnel felt that it would be representative of the annual performance of the entire system. Furthermore, these three months contained a mix of good and
bad flying weather, which is representative of the weather throughout the year (19).

The period of the data and the run of the simulation were limited to 90 days because the researchers felt that any longer a period would produce an overabundance of both data and computer run-time required to complete the simulation.

Variables. The following were used in the model computations:

--Distance - the straight line distance in nautical miles between two nodes (bases) in the system. This mileage is derived by the program by means of reading the coordinates of the node pairs and calculating the distance. Coordinates fed into the program were measured from a standard navigational chart for which a special grid was constructed. Standard longitude and latitude were not used because the phenomenon of converging meridians would have distorted the vertical axis component at the higher latitudes. This variable was used in the route generator only.

--Cargo tonnage (W) - the mean daily weight of cargo, to the nearest 1/100 ton, originating or terminating at any node in the system. The mean weights were used as the parameters in generating stochastic cargo requirements in the simulation.

--Route Segment Time - time required, to the nearest 1/10 hour, for the aircraft to fly from one node to the subsequent node in its route. It was computed by dividing nautical mile distance by an average groundspeed (286 knots
for L-100 and 358 knots for L-188 (23:ii-iv)) and adding 20 minutes for approach and landing time. This variable was used in the simulation model only.

--Transit time (TT) - the time required in days, to the nearest 1/100 day, for a shipment to travel from origin to final destination. It included actual time in flight and transhipment time.

These variables were used to develop the measure of system performance by which the existing route structure and the central hub system were compared. This measure was:

--weighted transit time - the amount of time in days, to the nearest 1/100 day, required for a shipment to travel from origin to final destination, weighted by the volume of cargo, in tons, shipped between those nodes. This value represented the performance of an individual node pair in the system. It was used to evaluate system transit time.

--system transit time (STT) - an evaluation of the entire route network arrived at by means of the following formula:

\[STT = \frac{\sum (W_{ij} \cdot TT_{ij})}{\sum W_{ij}} \]

where \(W_{ij} \) is the weight shipped from node i to node j; \(TT_{ij} \) is the transit time from i to j.

Even though present reporting procedures reflect a straight average transit time, the researchers felt system transit time should be weighted in order for it to more accurately indicate overall performance. This weighting
factor would prevent, for example, distortion caused by introducing a large number of small (lightweight) shipments transported over a frequently serviced link, or by exceptionally fast service to infrequent users of the system.

Model Construction. This section describes the operation of the two routines, the network generator and the simulation, in detail. The inputs and outputs of each routine are described, and the algorithms used to manipulate the data are outlined. Both programs were run on the HQ AFLC Honeywell/GE 635 computer. The route generator was written in Honeywell's version of FORTRAN, while the simulation was coded in Consolidated Analysis Center Incorporated's H6000/SIMSCRIPT II.5.

The network generator routine read a computer file that contained the grid locations, in degrees to the nearest 1/10 degree, of each base in the network, the grid location of the central hub, cargo tonnage originating and terminating at each base, and the constraints (e.g. total time per route, vehicle capacity) the network was subject to. The network was constructed using Gillett and Miller's single-hub vehicle dispatch algorithm incorporating changes suggested by Elio Conto (3; 7). This algorithm was chosen from among the ray-sweeping algorithms because it was capable of generating routes covering a large number of bases in a very short time.9

9The lack of an algorithm that could handle a large number of bases in a reasonable amount of computer time severely limited past LOGAIR studies (1:17; 18:23).

Gillett and Miller's algorithm has been tested on problems involving up to 100 nodes. It requires 233 seconds of computer time to solve "typical" 100-node problems (7:346).
it was simple to program, and it has been demonstrated to produce better results than any of the other available heuristics (3:186, 188; 7:346-347). Gillett and Miller's algorithm worked basically as follows: all bases were numbered according to the size of their polar coordinate angle when the hub was used as the origin. Starting with the base with the smallest angle, the algorithm added bases to the route in order of increasing polar coordinate angle until some constraint (route length and/or vehicle capacity10) was exceeded by adding another base. It then built a second route in the same manner, but used the base with the smallest polar coordinate angle that was not included in the first route as the first stop. This process continued until all bases were included in a route. The results was a network of non-overlapping routes emanating from the central hub like the petals of a flower. Each route was then evaluated and the order of the bases adjusted, if necessary, to minimize transit time on that route. Then the entire route network was evaluated to determine if shifting bases between routes would produce an improvement in transit time for the network. The entire algorithm was repeated using the base with second lowest polar coordinate angle as a starting place, then again with the third lowest, and so on until each base was used as a starting point. Finally, all of the above steps were repeated, but the bases

10See Data Sources for aircraft capacity figures. Route length was constrained to 16 hours to allow 8 hours for cargo turnaround at the hub.
were assigned to routes in order of *decreasing* polar coordinate angle starting from the base with the *largest* angle. This method produced "2n" networks (where "n" is the number of bases assigned to the network), each with a slightly different structure and length.

The route structure thus produced was an initial feasible solution. However, manual adjustment was required to yield a more effective network (see Figure 4). This resulted in overlapping of some routes, interchanging nodes, reversing the flow of certain petals, and directing the type of aircraft to be used for a particular base. These changes were required because:

-- the number of aircraft required by the initial solution was too high. Even though contract costs are a function of air miles flown, compensation rate per mile would naturally have to increase to reflect higher fixed costs associated with a larger fleet.

-- special networks traits were desirable. As mentioned earlier, it is current AFLC policy to provide ALCs, APOEs and HQ AFLC with L-100 service.

-- the direction of flight of some routes was reversed.

This enabled some routes to be combined (serviced by one aircraft). To illustrate, consider the situation where two bases are served on a route. Base "A" receives 10 tons from the hub and returns 2 tons. Base "B" receives 3 tons and returns 10 tons. The capacity of the aircraft is 15 tons. By flying to Base "A" first rather than "B", the cargo
TABLE I
Alphabetical Listing of Three-Letter Location Identifiers

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Station and Geographical Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABQ</td>
<td>Kirtland AFB NM (Albuquerque)</td>
</tr>
<tr>
<td>AEX</td>
<td>England AFB LA (Alexandria)</td>
</tr>
<tr>
<td>BAD</td>
<td>Barksdale AFB LA (Shreveport)</td>
</tr>
<tr>
<td>BLV</td>
<td>Scott AFB IL (Bellville)</td>
</tr>
<tr>
<td>BYH</td>
<td>Blytheville AFB AR (Blytheville)</td>
</tr>
<tr>
<td>CBM</td>
<td>Columbus AFB MS (Columbus)</td>
</tr>
<tr>
<td>CHS</td>
<td>Charleston AFB SC (Charleston)</td>
</tr>
<tr>
<td>COF</td>
<td>Patrick AFB FL (Cocoa Beach)</td>
</tr>
<tr>
<td>COS</td>
<td>Peterson AFB CO (Colorado Springs)</td>
</tr>
<tr>
<td>CVS</td>
<td>Cannon AFB NM (Clovis)</td>
</tr>
<tr>
<td>DLH</td>
<td>Duluth Int'l Airport MN (Duluth)</td>
</tr>
<tr>
<td>DMA</td>
<td>Davis-Monthan AFB AZ (Tucson)</td>
</tr>
<tr>
<td>DOV</td>
<td>Dover AFB DE (Dover)</td>
</tr>
<tr>
<td>FEW</td>
<td>Francis E. Warren AFB WY (Cheyenne)</td>
</tr>
<tr>
<td>FFO</td>
<td>Wright-Patterson AFB OH (Dayton)</td>
</tr>
<tr>
<td>GFA</td>
<td>Malmstrom AFB MT (Great Falls)</td>
</tr>
<tr>
<td>GSB</td>
<td>Seymour-Johnson AFB NC (Goldsboro)</td>
</tr>
<tr>
<td>HIF</td>
<td>Hill AFB UT (Ogden)</td>
</tr>
<tr>
<td>HMN</td>
<td>Holloman AFB NM (Alamogordo)</td>
</tr>
<tr>
<td>HST</td>
<td>Homestead AFB FL (Miami)</td>
</tr>
<tr>
<td>LFI</td>
<td>Langley AFB VA (Newport News)</td>
</tr>
<tr>
<td>LIZ</td>
<td>Loring AFB ME (Limestone)</td>
</tr>
<tr>
<td>LRF</td>
<td>Little Rock AFB AR (Jacksonville)</td>
</tr>
<tr>
<td>LSV</td>
<td>Nellis AFB NV (Las Vegas)</td>
</tr>
<tr>
<td>LUF</td>
<td>Luke AFB AZ (Phoenix)</td>
</tr>
<tr>
<td>MCC</td>
<td>McClellan AFB CA (Sacramento)</td>
</tr>
<tr>
<td>MCF</td>
<td>MacDill AFB FL (Tampa)</td>
</tr>
<tr>
<td>MIB</td>
<td>Minot AFB ND (Minot)</td>
</tr>
</tbody>
</table>
TABLE I, continued

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Station and Geographical Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTC</td>
<td>Selfridge ANG MI (Mount Clemens)</td>
</tr>
<tr>
<td>MUO</td>
<td>Mountain Home AFB ID (Mountain Home)</td>
</tr>
<tr>
<td>NIP</td>
<td>Jacksonville NAS FL (Jacksonville)</td>
</tr>
<tr>
<td>NQX</td>
<td>Key West NAS FL (Boca Chica, Key West)</td>
</tr>
<tr>
<td>OFF</td>
<td>Offutt AFB NE (Omaha)</td>
</tr>
<tr>
<td>OSC</td>
<td>Wurtsmith AFB MI (Oscoda)</td>
</tr>
<tr>
<td>PAM</td>
<td>Tyndall AFB FL (Panama City)</td>
</tr>
<tr>
<td>PBG</td>
<td>Plattsburgh AFB NY (Plattsburgh)</td>
</tr>
<tr>
<td>PSM</td>
<td>Pease AFB NH (Portsmouth)</td>
</tr>
<tr>
<td>RCA</td>
<td>Ellsworth AFB SD (Rapid City)</td>
</tr>
<tr>
<td>RDR</td>
<td>Grand Forks AFB ND (Grand Forks)</td>
</tr>
<tr>
<td>RME</td>
<td>Griffiss AFB NY (Rome)</td>
</tr>
<tr>
<td>SAW</td>
<td>K.I. Sawyer AFB MI (Marquette)</td>
</tr>
<tr>
<td>SBD</td>
<td>Norton AFB CA (San Bernardino)</td>
</tr>
<tr>
<td>SKA</td>
<td>Fairchild AFB WA (Spokane)</td>
</tr>
<tr>
<td>SKF</td>
<td>Kelly AFB TX (San Antonio)</td>
</tr>
<tr>
<td>SSC</td>
<td>Shaw AFB SC (Sumter)</td>
</tr>
<tr>
<td>SUU</td>
<td>Travis AFB CA (Fairfield)</td>
</tr>
<tr>
<td>SZL</td>
<td>Whiteman AFB MO (Knobnoster)</td>
</tr>
<tr>
<td>TCM</td>
<td>McChord AFB WA (Tacoma)</td>
</tr>
<tr>
<td>TIK</td>
<td>Tinker AFB OK (Oklahoma City)</td>
</tr>
<tr>
<td>VPS</td>
<td>Eglin AFB FL (Valparaiso)</td>
</tr>
<tr>
<td>WRB</td>
<td>Robins AFB GA (Warner Robins)</td>
</tr>
<tr>
<td>WRI</td>
<td>McGuire AFB NJ (Wrightstown)</td>
</tr>
</tbody>
</table>

requirement can be handled by one aircraft (see Table II).

In explaining the characteristics of the simulation, the flow of one day's operation is detailed below:

Initially, outbound cargo for each base was generated. These cargo requirements had the following attributes:
TABLE II
Cargo Sequencing Problem

<table>
<thead>
<tr>
<th>Location</th>
<th>Action</th>
<th>Load on Take Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIK</td>
<td>Depart</td>
<td>13 tons</td>
</tr>
<tr>
<td>B</td>
<td>Offload 3 tons, onload 5 tons, leaving 5 tons</td>
<td>15 tons</td>
</tr>
<tr>
<td>A</td>
<td>Offload 10 tons, onload 2 tons, leaving none</td>
<td>7 tons</td>
</tr>
</tbody>
</table>

COMMENT: 5 tons of cargo left at location B must be carried by another aircraft.

<table>
<thead>
<tr>
<th>Location</th>
<th>Action</th>
<th>Load on Take Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIK</td>
<td>Depart</td>
<td>13 tons</td>
</tr>
<tr>
<td>A</td>
<td>Offload 10 tons, onload 2 tons, leaving none</td>
<td>5 tons</td>
</tr>
<tr>
<td>B</td>
<td>Offload 3 tons, onload 10 tons, leaving none</td>
<td>12 tons</td>
</tr>
</tbody>
</table>

COMMENT: All requirements satisfied

-weight in tons - this figure is a random variable selected from a probability distribution derived from a sample of 768 actual shipments chosen at random (see data sources for validation of this parameter).

-destination - all weight generated from any given base to another base on any given day was assumed to be part of one shipment. Destination was annotated by a base.
identification number.

--Release time - time, in simulation units, that the shipment was made available from the originating base. This was the same as aircraft arrival time.

--Route number of destination base - a means of identification by which the program sorted cargo at the hub and scheduled it for shipment.

Next, flights were originated from the hub. Each flight included all cargo outbound for any base on a single route, up to the capacity of the airplane. Any cargo that caused the aircraft to exceed its weight capacity remained at the hub and was included on the next flight for that particular destination. The flight time from the hub to the first scheduled stop on each route, as well as each subsequent stop, was loaded by means of a separate data matrix. At each base on the route, cargo for that base was subtracted from the aircraft load and outbound cargo from that base was added to the load, not to exceed aircraft cargo capacity. Any outbound cargo from a base that could not be included on a flight waited for the next arriving flight. The aircraft continued in this manner around the route until it returned to the hub. Once at the hub, all cargo was sorted according to final destination and placed in a waiting queue for the route to which the destination belonged. The next simulation day, new flights were generated, cargo from the waiting queues was loaded on the flights and the process started again.

Transit time for a shipment was determined by subtracting
the cargo's release time at the origination from its arrival time at its final destination. This transit time included these components:

--flight time - pre-computed and loaded into a data matrix for the entire network.

--transhipment time - the time interval between arrival and departure from the hub.

--handling time - a constant (one hour and thirty minutes) allowed at each base for cargo downloading, uploading, aircraft servicing, etc.

The simulation allowed for an originating shipment to be separated into two shipments in the event an aircraft arrived at a station but had only enough remaining capacity for part of the requirement from that station. In this event, each of these shipments was tracked individually until it reached its destination.

Cargo destined for a base that was down-route on the same petal was offloaded at that base and did not continue to the hub.

At the end of the simulated 90-day period, the transit times for all shipments were compiled. The program reported both a straight average transit time for all shipments and a weighted system transit time.

A weighted system transit time was computed manually for the LOGAIR system as it existed in the last quarter of FY 1979 (see Appendix E). Computation of actual system transit time and a single-hub based transit time provided a basis
of comparison for the two route structures. LOGAIR transit time, as it is currently reported, includes the elapsed time from the point when a package is made available for shipment to the time the aircraft arrives at the unloading facility at the destination base (4). Reported separately is the air terminal hold time report. This figure measures the elapsed time from when a package is made available for shipment until the aircraft departs the originating station (4). Therefore, by subtracting the average hold time from the average transit time, one can approximate the amount of flying time plus transhipment time and handling time for shipments between any two stations (4; 33). In this manner, a transit time was derived for the current system that was analogous to the simulation transit time.

Limitations and Assumptions of the Model. While every effort was made to make the simulation model reflect real world conditions, the incorporation of certain constraints was not feasible or practical for a computer simulation. These conditions included:

--individual base closing times/quiet hours were not considered. However, since practically all arrivals and departures at non-hub bases were between the hours of 0705 and 1600 local, individual base closing times and quiet hours do not significantly effect the itinerary as published (see Appendix C).

--aircraft diversions, including overflight of a base, flying a route in reverse, and diverting to a base not in the
route structure were not simulated. Circumstances requiring these actions in LOGAIR operations were too unique and infrequent to be practically simulated. However, LOGAIR contract managers make every effort to reschedule routes so that any airmiles and/or landings that may be lost to the contractor as a result of diversions are recouped before the end of the contract period. Therefore, total airmiles traveled and number of landings made by the end of the year would be approximately the same as was originally called for in the contract (8).

--LOGAIR policy is to connect all ALCs, HQ AFLC and APOEs with L-100 service and to restrict L-100 service from other stations when possible (32). In addition, there were numerous special requirements, such as L-100 service between TAC bases for the movement of F-15 engines. The simulation did provide L-100 service to all ALCs and Wright-Patterson AFB, but not to the APOEs. This was done to minimize the number of L-100s required in the network because they were the more expensive of the two types of aircraft to operate. However, L-100 #1 terminated at Tinker 1030L and would have been available for special requirements. Otherwise, the model provided daily service to all Air Force installations and weekday service to Key West and Jacksonville NASs as did the actual system.

To facilitate the operation of the model, certain assumptions were made:

--the average daily inbound and outbound cargo
requirements for a given station were generated based on the mean daily cargo weights plus or minus randomly generated variates.11

--It was assumed that Tinker AFB, OK was the location of the hub and had sufficient facilities to handle the required aircraft and cargo, and to download, sort, and load aircraft overnight for an 0600L launch. It is not the intent of this paper to justify the selection of Tinker as the system center, since it was the site which the Logistics Management Center considered a prime candidate for the hub (21). Neither is it within the scope of this project to argue the physical and technical feasibility of constructing a terminal with materiels handling equipment sufficient to accommodate the anticipated aircraft and cargo demands. As commercial firms have demonstrated, it is clearly possible to construct and operate such a facility (35:35).

--Contractors could provide sufficient aircraft (six L-100s and seventeen L-188s) to satisfy route structure demands. This assumption is totally feasible given the capacity of contract carriers in the continental United States today (3).

--An average of 1.5 hours stop-over at each base would be sufficient for cargo offloading/loading and aircraft servicing. This time compared favorably to the average 63 minute stop-over on the FY 79 LOGAIR itinerary. Additionally,

11See Data Sources for mean weights explanation.
no individual stop extended beyond 90 minutes (23:7-8).

-- All aircraft were "launched" simultaneously from the hub at 0600L.

-- All cargo was "generated" instantly at the moment the "aircraft" arrived at a given base. This, again, was done to facilitate the simulation since an actual distribution of times that cargo was actually generated at each base could not be determined from available data. During the analysis, the real world transit times were adjusted by subtracting out average hold time so that the times for the two systems would be comparable.

Data Sources

Cargo Demand. Mean daily cargo weights were extracted from the Fiscal Year 80 cargo shipments table. This is a planning document compiled by the Directorate of Distribution, HQ AFLC, of the anticipated inbound and outbound cargo requirements for each LOGAIR base for the fiscal year. This table was used by AFLC/LOM during the manual construction of LOGAIR routes for the upcoming year (9). The table is a computer generated matrix showing origin/destination annual demands expressed in tons. This tonnage was divided by 365 to produce mean daily cargo weights.

Variability of Cargo Weights. To determine the nature of the distribution of individual cargo shipment weights, a computer listing of over 137,000 terminal IDCs (intransit data cards) was obtained from Sacramento Air Logistics
TABLE III
Average Daily Requirements in Tons
(24:1-8)

<table>
<thead>
<tr>
<th>Station</th>
<th>Terminating</th>
<th>Originating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinker</td>
<td>38.19</td>
<td>24.40</td>
</tr>
<tr>
<td>Kelly</td>
<td>28.87</td>
<td>49.33</td>
</tr>
<tr>
<td>Little Rock</td>
<td>2.01</td>
<td>1.38</td>
</tr>
<tr>
<td>Barksdale</td>
<td>2.19</td>
<td>1.39</td>
</tr>
<tr>
<td>England</td>
<td>1.50</td>
<td>0.52</td>
</tr>
<tr>
<td>Blytheville</td>
<td>1.67</td>
<td>1.51</td>
</tr>
<tr>
<td>Robins</td>
<td>30.61</td>
<td>22.84</td>
</tr>
<tr>
<td>Eglin</td>
<td>2.70</td>
<td>1.23</td>
</tr>
<tr>
<td>MacDill</td>
<td>6.80</td>
<td>2.48</td>
</tr>
<tr>
<td>Key West</td>
<td>4.38</td>
<td>4.27</td>
</tr>
<tr>
<td>Homestead</td>
<td>3.76</td>
<td>4.77</td>
</tr>
<tr>
<td>Patrick</td>
<td>5.27</td>
<td>4.69</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>2.69</td>
<td>4.46</td>
</tr>
<tr>
<td>Tyndall</td>
<td>4.10</td>
<td>0.88</td>
</tr>
<tr>
<td>Charleston</td>
<td>4.04</td>
<td>1.00</td>
</tr>
<tr>
<td>Shaw</td>
<td>2.46</td>
<td>2.68</td>
</tr>
<tr>
<td>Seymour-Johnson</td>
<td>4.65</td>
<td>1.92</td>
</tr>
<tr>
<td>Langley</td>
<td>3.15</td>
<td>1.50</td>
</tr>
<tr>
<td>Dover</td>
<td>12.51</td>
<td>23.57</td>
</tr>
<tr>
<td>McGuire</td>
<td>8.20</td>
<td>19.77</td>
</tr>
<tr>
<td>Pease</td>
<td>5.52</td>
<td>4.64</td>
</tr>
<tr>
<td>Loring</td>
<td>1.32</td>
<td>1.61</td>
</tr>
<tr>
<td>Plattsburgh</td>
<td>2.10</td>
<td>1.04</td>
</tr>
<tr>
<td>Griffiss</td>
<td>2.96</td>
<td>11.37</td>
</tr>
<tr>
<td>Wright-Patterson</td>
<td>14.4</td>
<td>15.79</td>
</tr>
<tr>
<td>Scott</td>
<td>1.94</td>
<td>0.30</td>
</tr>
<tr>
<td>Selfridge</td>
<td>0.91</td>
<td>0.46</td>
</tr>
</tbody>
</table>
TABLE III, continued

<table>
<thead>
<tr>
<th>Station</th>
<th>Terminating</th>
<th>Originating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wurtsmith</td>
<td>1.49</td>
<td>0.73</td>
</tr>
<tr>
<td>K.I. Sawyer</td>
<td>1.78</td>
<td>0.90</td>
</tr>
<tr>
<td>Duluth</td>
<td>0.95</td>
<td>0.57</td>
</tr>
<tr>
<td>Grand Forks</td>
<td>1.64</td>
<td>1.45</td>
</tr>
<tr>
<td>Minot</td>
<td>1.59</td>
<td>1.33</td>
</tr>
<tr>
<td>Offutt</td>
<td>2.10</td>
<td>0.69</td>
</tr>
<tr>
<td>Whiteman</td>
<td>1.91</td>
<td>1.15</td>
</tr>
<tr>
<td>Malmstrom</td>
<td>2.73</td>
<td>1.18</td>
</tr>
<tr>
<td>Ellsworth</td>
<td>2.32</td>
<td>1.95</td>
</tr>
<tr>
<td>F.E. Warren</td>
<td>1.23</td>
<td>0.75</td>
</tr>
<tr>
<td>Peterson</td>
<td>1.84</td>
<td>2.19</td>
</tr>
<tr>
<td>Cannon</td>
<td>1.83</td>
<td>1.18</td>
</tr>
<tr>
<td>Holloman</td>
<td>2.19</td>
<td>1.67</td>
</tr>
<tr>
<td>Kirtland</td>
<td>1.69</td>
<td>1.12</td>
</tr>
<tr>
<td>Davis-Monthan</td>
<td>3.22</td>
<td>1.72</td>
</tr>
<tr>
<td>Hill</td>
<td>21.50</td>
<td>28.55</td>
</tr>
<tr>
<td>Fairchild</td>
<td>1.32</td>
<td>0.76</td>
</tr>
<tr>
<td>McChord</td>
<td>8.52</td>
<td>5.38</td>
</tr>
<tr>
<td>Mountain Home</td>
<td>2.50</td>
<td>1.39</td>
</tr>
<tr>
<td>McClellan</td>
<td>18.57</td>
<td>37.35</td>
</tr>
<tr>
<td>Travis</td>
<td>12.71</td>
<td>1.28</td>
</tr>
<tr>
<td>Norton</td>
<td>11.50</td>
<td>6.90</td>
</tr>
<tr>
<td>Nellis</td>
<td>3.55</td>
<td>2.54</td>
</tr>
<tr>
<td>Luke</td>
<td>3.89</td>
<td>2.66</td>
</tr>
<tr>
<td>Columbus</td>
<td>1.65</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Center/ACDBL. This listing represented all bases in the LOGAIR network. A random sample of 768 cargo weights was selected and processed through the Statistical Package for the Social
Sciences (SPSS). The SPSS "FREQUENCIES" routine was used to develop a probability distribution for the weight of cargo. The results of the "FREQUENCIES" run is contained in Appendix D. The frequency distribution was scaled by dividing it by its mean. The scaled figures were then used as input to the SIMSCRIPT routine for building the user-defined probability distributions. When cargo was generated for any source-destination pair, a random variate was drawn from this user-defined probability distribution, and was multiplied by the mean daily demand for that source-destination pair.

Distance. Nautical miles were measured directly from a jet navigational chart (JNC).

Aircraft Capacity. Payload capacities of an L-188 and L-100 aircraft are 34,000 pounds and 46,100 pounds, respectively (23:iii-iv). The weight of pallets and nets was subtracted from these figures (two configurations are possible, so an average weight was taken). The resulting capacities used in the construction of the routes was 21.5 tons for the L-100 and 15.4 tons for the L-188.

System Transit Time (Actual). Transit time in hours between the stations of interest was extracted from the RCS HAF LET (M) 7106, Air Transportation Transit Report, furnished by HQ AFLC, Reports and Analysis Branch. LOGAIR shipments priority 1, 2, and 3 and their associated transit times were

12 This user-defined probability function capability is described in SIMSCRIPT II.5 Programming Language (10:316-322).
taken for October, November, and December 1979 (25).

LOGAIR System Costs. Charges per L-100 nautical mile flown were $3.529, and per L-188 mile were $2.412 (28) based on figures contained in the FY 80 AFLC Logistical Airlift Briefing - LOGAIR, compiled by the Directorate of Distribution, HQ AFLC, LOGAIR and Requirements Branch. Cost per landing for both types of aircraft was $250 (28).

Terminal Hold Time (Actual). Hold time, in hours, of a shipment originating at a station bound for a particular base was extracted from the RCS HAF LET (M) 7107, Air Terminal Hold Time Report, furnished by HQ AFLC, Reports and Analysis Branch (26).

Relation to Research Questions

Research Question 1. Does a single-hub route structure yield lower transit times than the trunk-and-feeder system? To answer this question, a computer model was constructed to simulate single-hub performance. Flights and cargo demands for a 90-day period were generated, tracked, and recorded. Individual shipment transit times were weighted by tonnage and compiled into a separate figure. A sample of 60 bases was selected from the entire system to serve as a basis of comparison to the present system. Since the only data available on transit times are on those shipments which originate from the ALCs and Wright-Patterson AFB, the sample used for comparison included ten randomly selected bases served from each ALC and Wright-Patterson.
The total weighted system transit time generated by the simulation was then compared to the actual weighted system transit time computed manually from reported data.

Research Question 2. What will be the impact on contract direct operating costs of a single-hub route? To determine the change in operating costs, the total annual mileage of the single-hub route was determined and then multiplied by the contractual cost per mile charge related to each type of aircraft. The number of landings under the new route structure was multiplied by the contractual cost per landing, $250 (28). This charge was the same for both type aircraft. The 5 percent revenue charge was based on amount of cargo carried (28); this amount was the same for both route structures. Fuel costs above contract allowances varied directly with airmiles flown (28). Thus, the $2,463,000 charged under the former system was increased to $3,247,000 in accordance with the mileage difference between the two systems.

Research Question 3. If a single-hub system does produce faster transit times, to what degree will faster transit times lower inventory investment required to support the supply pipeline? To analyze this impact, data provided by the D041 model were utilized. D041, the Recoverable Consumption Item Requirements System, is a computerized system developed by HQ AFLC to substantiate the acquisition program, budget projections, and other logistics actions for recoverable consumption-type item replenishment spares (27:1-1). It receives input from many other AFLC data collection systems
Outputs from the Variable Safety Level (VSL) Subsystem were used to quantify the effect of a reduction of pipeline time on inventory requirements. Although the VSL Subsystem computation covers only a part of the supply system spectrum, the impact of one day's reduction in pipeline time has been quantified by a D041 run completed in June of 1977 (11).

Figure 5 represents the various factors involved in D041 computations. Although the VSL Subsystem is used mainly to calculate Safety Stock Levels, safety stock required is a function of, among other factors, order and ship time between depot and base. This relationship is demonstrated in Figure 6. The VSL computational formula below (30) demonstrates that an expedited transit time will have the effect of lowering overall stock requirements.

\[
\text{Authorized Stock} = Q + \sqrt{3Q}
\]

\[
Q = D(PM + [1-P](T+H))
\]

where

- \(Q\) = Pipeline Requirement
- \(\sqrt{3Q}\) = Safety Level
- \(P\) = Probability an item can be repaired at Base level
- \(M\) = Base Repair Time
- \(D\) = Daily Demand
- \(T\) = Transit Time to and from the Depot
- \(1-P\) = Probability an item must be returned to a Depot for Repair
- \(H\) = Handling Time

13 According to AFLC/LOM, this is the last full run of the D041 program. Another run was planned for May 1980, but its results were unavailable at the time of final printing.
Figure 5
D041 Data Collection System
Figure 6

Air Force Implementation of VSL for Reparables
CHAPTER IV

RESULTS AND FINDINGS

This chapter details the results of this research effort and relates them to the research questions. Weighted transit time for the single-hub network was projected to be .22 days less than under the trunk-and-feeder system, permitting a $10.7 million reduction in inventory investment resulting from a faster supply pipeline. This savings was counter-balanced somewhat by a $9.35 million projected increase in LOGAIR direct operating costs.

Research Question 1

Can a single-hub network yield a lower overall transit time than the present network?

Transit time for the October-December 1979 time period was calculated for the 60 base-pairs in the sample by using data from the RCS LOG LET(M) 7106 and RCS LOG LET(M) 7107 reports. System transit time was estimated by multiplying the number of shipments transported between each sample base-pair by the average transit time (adjusted for hold time) for that base-pair, summing the product of number of shipments and average transit times for all base-pairs, and dividing by the total number of shipments for all base-pairs. Weighted system transit time was calculated in a similar manner. However, each base-pair's
average transit time (adjusted for hold time) and number of shipments product was multiplied by the total weight of all cargo shipped between the base-pair. The sum for all base-pairs was then divided by the product of the total weight of cargo for all base-pairs and the total number of shipments for all base-pairs (see Appendix E). Unweighted system transit time was found to be 1.36 days, and weighted system transit time was found to be 1.23 days. Unweighted system transit time represents the average time to ship anything between any two nodes in the system. Weighted system transit time, on the other hand, is a truer measure of the expected time to ship any item of cargo, because it is adjusted to reflect the fact that some links are used to transport far more freight than others.

The performance of the single-hub system was the major output of the simulation model. Although the simulation generated and tracked cargo for all possible base-pairs, the performance statistics were only collected for the 60 base-pairs in the sample. All cargo was tracked to insure that the cargo from the sample bases would experience the delays that would be expected in the full system. These delays would not have occurred in a system with only 60 possible source-destination combinations.14 The same method of calculating

14Such delays would include a shipment having to wait at a base to be loaded on subsequent aircraft, if the next aircraft to arrive at that station is full. Shipment weights were generated stochastically to simulate the fact that, although on the average the demand on each route will be less
unweighted system transit time and weighted system transit
time was used to make the simulation results directly compar-
able to the trunk-and-feeder system's results.

Unweighted system transit time and weighted system
transit time for the single-hub system were projected to be
0.95 days and 1.01 days, respectively. The single-hub model
demonstrated a 0.22-day decrease in weighted system transit
time, and a 0.41-day decrease in unweighted system transit
time over the trunk-and-feeder LOGAIR system. In addition,
the single-hub system demonstrated extremely low variability
in individual shipment transit times, as shown in Appendix G.

Conclusion: The single-hub network yielded transit
times that were lower, on the average, than the trunk-and-
feeder network.

Research Question 2

What is the impact of a single-hub system on LOGAIR
contract direct operating costs?

Annual LOGAIR contract direct operating costs based on
AFLC FY 80 projections are broken down as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Charges:</td>
<td>$30,587,000</td>
</tr>
<tr>
<td>L-100 Mileage Charges:</td>
<td>15,975,000</td>
</tr>
<tr>
<td>L-188 Mileage Charges:</td>
<td>20,213,000</td>
</tr>
<tr>
<td>Gasoline Surcharge:</td>
<td>2,463,000</td>
</tr>
<tr>
<td>Taxes:</td>
<td>1,335,000</td>
</tr>
</tbody>
</table>

than the capacity of the airplane, on some days the aircraft
may be fully loaded before it covered all bases on its route.
These figures were extracted from the FY 80 AFLC Logistical Airlift Briefing prepared by the LOGAIR Requirements Branch, HQ AFLC (28). Total operating costs for the year were $47,633,000.

For the single-hub system, miles flown by aircraft type was calculated by measuring the distance from an aeronautical jet navigation chart and multiplying mileage by the number of days in the year. Total annual distance for each type aircraft was then multiplied by the same mileage rates to arrive at mileage charges (see Appendix F). Total annual landings were determined by multiplying the number of daily landings by 365 and subtracting out the 208 landings saved by not serving Key West and Jacksonville NASs on weekends. Since taxes were based on cargo tonnage, they remained the same for both route configurations (28).

Gasoline surcharges were a function of miles flown. Single-hub surcharges were increased in the same proportion as mileage increased over the FY 80 system (28). The single-hub system's operating costs are summarized below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Charges</td>
<td>$7,431,000</td>
</tr>
<tr>
<td>L-100 Mileage Charges</td>
<td>$12,422,000</td>
</tr>
<tr>
<td>L-188 Mileage Charges</td>
<td>$32,552,000</td>
</tr>
<tr>
<td>Gasoline Surcharge</td>
<td>$3,427,000</td>
</tr>
<tr>
<td>Taxes</td>
<td>$1,335,000</td>
</tr>
</tbody>
</table>

Conclusion: The single-hub system was projected to cost $56,987,000 per year. This is a projected increase of $9.35 million over the FY 80 trunk-and-feeder system.
Research Question 3

To what degree will faster transit times lower inventory investment required to support the supply pipeline?

Computations from HQ AFLC's D041A VSL system simulator were used as a conservative estimate of the incremental savings in inventory investment that would result from adopting the single-hub LOGAIR system. The D041 system is extremely complex and cumbersome. It requires too many hours of computer time to be used routinely as a "what if" forecasting tool (11). For this reason, the last available "what if" projection, run by HQ AFLC/LOR in June 1977, was used as a baseline. The June 1977 VSL run was used to investigate the expected savings from a one-day decrease in the logistics transportation pipeline. Total savings was projected to be $69.6 million in 1977 dollars (11). According to the Chief of the Requirements Analysis Branch, HQ AFLC/LORRA, a one-day reduction in LOGAIR transit time would account for 70 percent of the dollars saved, which is approximately $48.7 million (11). HQ AFLC's Requirements Analysis Branch (22) stated the $48.7 million figure was a conservative estimate of incremental savings in inventory investment that could have been experienced in 1979 from a one-day decrease in pipeline time. This was because the cost to buy spares increased greatly between 1977 and the time this study was conducted (22).

Multiplying the $48.7 million/day figure by the 0.22 days saved by implementing the single-hub system yielded a projected inventory investment savings of approximately
Conclusion: A conservative estimate of the change in inventory investment resulting from implementing the single-hub system indicated a projected savings of $10.7 million.
CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the research team's conclusions based on the results of this study, recommendations for LOGAIR managers at HQ AFLC, and recommendations for future research in this area.

Conclusions

This study has shown that, had the single-hub system been in operation in October, November, and December 1979, transit time for shipments moved by LOGAIR could have been reduced by 0.22 days, with less variability in transit times. This reduction in transit time would have been accompanied by a $9.35 million annual increase in operating costs. The increase in operating costs would have been outweighed, however, by the decrease in inventory investment costs, which were conservatively estimated at $10.7 million. Therefore, the net savings from operating a single-hub system in 1979 could have been at least $1.35 million.

Limitations of the Study

The costs and benefits outlined above can in no way be construed as all-inclusive. Although this study only addressed operating costs and inventory investment savings, the researchers recognize that other factors would have to be
considered before a decision to adopt a single-hub system could be made. Some of these factors include: the cost of expanding facilities and adding additional materiel handling equipment at Tinker AFB; savings from reducing materiel handling requirements at the other ALCs, APOEs and HQ AFLC, since those bases would no longer be required to transship cargo; changes in manpower requirements throughout the system; possible increases in contract charges to compensate the contractors for the additional overhead for operating 23 aircraft instead of 15; and savings due to economies of scale associated with performing all sorting and transshipping at Tinker. In addition, this study made no attempt to quantify the benefits of increased readiness resulting from reducing both pipeline time and the variability of pipeline time. The areas addressed, however, clearly indicate that the single-hub system is promising from both cost and readiness standpoints, and merits further examination.

Recommendations for AFLC

In order to more completely evaluate the total costs of the single-hub system, at least two cost areas must be investigated further: funding required to upgrade and enlarge facilities at Tinker AFB, plus associated manpower requirements; and any possible reductions in operating costs at the other ALCs and APOEs.

In addition, HQ AFLC should attempt to investigate, quantify, and publicize the implications of increases or
decreases in LOGAIR service on readiness USAF-wide.

Recommendations for Future Study

During the course of this study, the researchers identified several areas associated with the single-hub model that require further study. These areas include:

--Revision of the simulation model to include more "real world" requirements such as diversion of aircraft, L-100 support for major readiness exercises, and service to bases not in the route structure. This study was unable to address many of these areas in the time allotted.

--Investigation using Kelly AFB, Texas as the hub. Kelly is the single largest generator of cargo in the system. It seems logical that some reduction in weighted transit time would result from being able to ship Kelly's outbound requirements directly without having to transship to Tinker.

--Simulation of reduced service to small users (e.g. 5 or 6 days a week). Investigate various levels of service to determine if operating costs can be reduced without significantly increasing weighted transit time. Several of the smaller user bases did not generate cargo every day. Intuitively, it seems that if these bases were served less frequently than daily, contract costs could be reduced without significantly increasing system transit time.

--Review of scheduling and other operating practices of commercial air package express carriers to see if their methods could be applied to LOGAIR and what benefit, if any, could be
gained by doing so.

--Investigation of ways to reduce hold time at the ALCs (e.g. improved materials handling policies/practices, greater management emphasis on expediting shipments). For four of the five ALCs, average hold time exceeded 21 hours (see Appendix E).

Summary of Research

As demonstrated by the results presented above, a single-hub LOGAIR system can reduce system transit time over the trunk-and-feeder line system. Increases in operating costs of the single-hub system can be more than countered by savings in inventory investment costs. The single-hub system holds great promise and merits further investigation.
APPENDIX A

RAY-SWEEP, ROUTE GENERATOR PROGRAM
S OPTION FORTRAN, MAP, SYRCC
S FORTY : FORM, ELIC, DEBUG, RET
S LIMITS .27

DIMENSION HUB (60, 60)
REAL ANGLE (60, 60)
CHARACTER RECORD 444, RECORD*444
EQUIVALENCE (RECORD1, RLOAD)
LOGICAL SWITCH, HUB, HUBVTLC, DEPOTFLG
INTEGER HUB, HUBTours, TOUR, GRANTOUR, HUB, SETHEAD, ACCTYPE
REAL CARGO/9.00/, CAPACITY/7.00/, L160 LOAD/14.5/, L160 LOAD/23.0/, HUBLOAD/6.00

COMMITE/TOlTS/01STITAL, ROUTOTAL/PETALS/GRANTOUR (20, 25), HUBPETAL
COMMON/ROUTES/KOUT, TOURS (12, 20), TOUR (15), MATRIX/ DISTANCE (60, 60),
& BASES (10, 60)/ HUB/SHEED/ACCTYPE (60, 60)
COMMON/PRIVATE /IZER, SWITCH/LOAD/CAPACITY/SORTSTART/SWEEPANG (60)
& KEYS (60)

C INPUT ROUTINE
READ, HUB, HUB, AIRSPEED
READ (05, 66, ENDS) (BASES (IN, JN), IN=1, NUMBASES), JN=1,5)
66 FORMAT (V)
88 PRINT, " IN, " JN, IN
DO 100 I=1, NUMBASES
DO 100 J=1, NUMBASES
X=BASES (1, 2)-BASES (J, 2)
Y=BASES (1, 3)-BASES (J, 3)
X=X*60
Y=Y*60
DISTANCE (I, J)=SQRT (X**2+Y**2)/AIRSPEED
IF (X.EQ.0) GO TO 110
121 ANGLE (I, J)=ATAN (Y/X)
IF (X.LT.O) ANGLE(I, J)+ANGLE (I, J)+180
IF (ANGLE(I, J).LT.0) ANGLE (I, J)+360.00
GO TO 100
110 ANGLE (I, J)=90.00
IF (Y.LT.0) ANGLE (I, J)+270.00
IF (Y.EQ.0) ANGLE (I, J)=0.00
100 CONTINUE

C SAVE ANGLES FROM HUB TO BASES, PREPARE TO SORT THE!
DO 130 I=1, NUMBASES
IF (I.EQ.HUB) GO TO 130
SHEEPS(I)=ANGLE (I, HUB)
KEYS (I)=I
130 CONTINUE
CALL SORTKEYS (NUMBASES-1)
PRINT, " BASES IN POLAR COORD ORDER"
PRINT, (KEYS (I), J), J=1, NUMBASES
C ANGLE FROM HUB TO HUB MUST BE EXCLUDED
K=0
135 DO 140 KNOTOURS=1, NUMBASES
C BEGIN GENERATING INITIAL TOURS
NUMTOURS=1
NUMPETAL=0
J=0
150 TOUR (1)=HUB
I=1
CARGO=0.0
TOURLGTH=DISTANCE(HUB,KEYS(J+1))
ACFTYPE=182
CAPACITY=L16 & LOAD
C IF CONSTRAINTS ARE EXCEEDED, DON'T ADD ANYMORE BASES
C CHECK DISTANCE, AIRCRAFT CAPACITY CONSTRAINTS
C TIME CONSTRAINTS TO BE ADDED LATER.
160 IF ((CARGO+BASES(0,KEYS(J+1),5)-BASES(0,KEYS(J+1),4).LT.0))
& ((CAPACITY*CAPACITY) .LT. (CARGO+BASES(0,KEYS(J+1),5)-BASES(0,KEYS(J+1),4)))
& ((DISTANCE(HUB,KEYS(J+1)) + DISTANCE(HUB,TOUR(1)) +
& DLTLTIME*(I+1)) .LT. (TTT.TGT.10)) GO TO 170
IF (J.LT.1) GO TO 167
TTT=(TOURLGTH+DISTANCE(0,KEYS(J),KEYS(J+1)))+
&((DISTANCE(HUB,KEYS(J+1)) + DISTANCE(HUB,TOUR(1)))+
&DLTLTIME*(I+1))
167 I=I+1
CARGO=CARGO+BASES(0,KEYS(J+1),5)-BASES(0,KEYS(J+1),4)
TOUR(I)=KEYS(J+1)
IF (J+l.GT.NUMBASES) GO TO 180
J=J+1
GO TO 160
180 IMPRVTFLG=.T.
170 IF (I.GE.4) CALL LINSTSP(I,ACFTYPE)
PRINT,"TOUT LENGTH="TTT." CARGO="CARGO
PRINT,"NUMBER OF PETALS="J " BASES IN THIS PETAL="I
IF (I.GT.1) GO TO 190
TOUR(2)=KEYS(J+1)
DEPOTFLG=.T.
ACFTYPE=100
I=2
190 CALL BLRTES(I,ACFTYPE)
IF (.NOT.DEPOTFLG) GO TO 195
DEPOTFLG=.F.
TOUR(I)=HUB
J=J+1
TOUR(2)=KEYS(J)
I=2
CARGO=BASES(0,KEYS(J),5)-BASES(0,KEYS(J),4)-LOAD
IF (CARGO.LT.0) CARGO=0
GO TO 160
195 IF (J+l.GT.NUMBASES) IMPRVTFLG=.T.
196 IF (IMPRVTFLG) GO TO 200
GO TO 150
C CONTINUE STATEMENT BELOW USED AS A PLACE HARK.
200 CONTINUE
CALL SINGLE(HUB)
CALL DOUBLE(HUB)
C SINGLE AND DOUBLE ARE IMPROVEMENT ROUTINES BASED
C ON THE ROUTINES SUGGESTED BY ELIO CUNTO (OPS
C RSCH, VOL 26, PP 163-196), BUT USING THE SAVING
C APPROACH SUGGESTED BY B.L. GOLDEN (NETWORKS, VOL 7
C, PP 113-146).
C ROUTINES SEEK TO REDUCE TOTAL DISTANCE TRAVELED
C FOR ALL ROUTES BY INSERTING BASES FROM ONE ROUTE
C INTO ANOTHER ROUTE. SINGLE CONSIDERS BASES ONE AT
C A TIME, DOUBLES TWO AT A TIME.
C
C PRINT AND RECORD IMPROVED ROUTE
C
WRITE(06,2)
2 FORMAT(5X "ROUTE","DISTANCE"," # OF BASES"," BASES")
DO 210 IRT=1,NUMTAL
WRITE(06,3)GRANTOUR(IRT,1),GRANTOUR(IRT,3),GRANTOUR(IRT,2),
& (GRANTOUR(IRT,1)+4),IIP=1,GRANTOUR(IRT,2))
3 FORMAT(7X,12.7X,15,6X,20(I2,3X))
210 CONTINUE
C
C OUTPUT ROUTINE
C CLEAR OUTPUT BUFFER CALLED RECORD
DO 220 IC=1,448
220 RECORD(IC)="O"
C BUILD A SINGLE RECORD FOR THE ENTIRE ROUTE STRUCTURE
ENCODE (RECORD,11) ; ROUTOUTS, ROUTOTAL, (GRANTOUR(IX, JX), JX=1,GRANTOUR
& (IX,2), IX=1,NUMTAL)
11 FORMAT(12,16,110(I4))
C WRITE THE RECORD TO A DISK FILE
WRITE(12,12)RECORD
12 FORMAT(A448)
C ROTATE THE ANGLE MATRIX
TE:PO=SWEEPANG(1)
IT:PO=KEYS(1)
DO 230 III=1,NUMBAS
SWEEPANG(III)=SWEEPANG(III+1)
230 KEYS(III)=KEYS(III+1)
SWEEPANG(60)=TE:PO
KEYS(60)=IT:PO
140 CONTINUE
IF(KEYS.LT.1)GO TO 148
KEYS=0
KEYS=NUMBASES+1
DO 145 III=1,NUMBASES
145 IKEY(KKK-III)=KEYS(III)
DO 146 III=1,NUMBASES
146 KEYS(III)=IKEY(III)
GO TO 135
148 REMIND 12
THISTOTL=999999
250 READ(12,13,END=290)ROUTE,IDIST, (IFNLROUT(IY) ,IY=1,110)
13 FORMAT(12,16,110(I4))
IF(IDIST.GT.THISTOTL)GO TO 240
I=1
J=1
K=1
270 L=K+1
L=IF(NLROUT(L)
280 IF (2+L+L.EQ.K)GO TO 260
58
CRONTOUR(I,J)=IFNLPFoUT(I)
 J=J+1
 K=K+1
 IF(K.NEG.110)GO TO 233
 GO TO 280
 260 I=I+1
 J=J
 GO TO 270
 235 TFSTOTL=MIST
 240 GO TO 250
 250 DO 300 N=1,1
 300 WRITE(G6.4)
 WRITE(G6.5)
 DO 300 N=1,1, CALTTOUR(I,2)
 300 WRITE(G6.15)!, EASES(CRONTOUR(N,NK),1)
 15 FORMAT(3X,12,4X,12,3X,16,3X,13,16(3X%,12))
 STOP
END
SUBROUTINE LINSTSP (N,ACFTYPE)
 LOGICAL SWITCH, MEMBER
 INTEGER UNION, TOURS, HUB, SETHEAD, ACFTYPE
 COMMON/TOTALS/DISTOTL, ROUTOTAL/PETALS/CRONTOUR(20,25), HUB, PETAL
 COMMON/Routes/KOUNT, TOORS(12, 20), TOUR(15) / MATRIX/DISTANCE(60,60),
 &BASES(10,60) / SETS/SETHEAD/AFMG0/UNITL(60,60)
 &KEYS(60)

C TRAVELING SALESMAN ROUTINE CALCULATES
C THE SHORTEST ROUTE BETWEEN BASES IN A
C PETAL USING SHEN LIN'S ALGORITHM (DELL
C TECH JNL, VOL. 44, P2243)
C FIRST, CALCULATE LENGTH OF THE INITIAL TOUR
 CALL TOTALGTH(N,TOUR)
 KOUNT=0
C RECORD INITIAL TOUR
 CALL RECROUTE(TOUR,DISTOTL,1,N,ACFTYPE)
 CALL CLEAR(N)
C CLEAR INITIALIZES UNION, AN ARRAY CONTAINING
C THE SET OF ALL BASE LINKS THAT HAVE BEEN USED
C IN LOCALLY OPTIMAL SOLUTIONS, TO ZEROES.
C N IS THE NUMBER OF BASES IN THIS PETAL.
C
C CALCULATE R, THE NUMBER OF LOCALLY OPTIMAL
C TOURS TO BE GENERATED TO OBTAIN A .99
C PROBABILITY THAT A GLOBAL OPTIMAL IS AMONG THEM:
CR=INT(ALOG10(.01)/ALOG10(1-2**(-N/10)))
R=16
PRINT,"BASES THIS PETAL-- ",N
C
C BEGIN MAIN LOOP
DO 310 N=1,R
C NOTE THAT EACH OF THE R TOURS USES IT'S
C PREDECESSOR AS A START POINT, THEREFORE,
C THE ALGORITHM CONVERGES ON AN OPTIMUM.
IF (C.GT.1) Q=1
320 COUNT=1
330 IF (COUNT.GE.N+1) GO TO 360
IF (Q.LT.1) GO TO 340
CALL SLTCH(N)
C SLTCH CHECKS IF A LINK FROM HUB TO THE
C LAST BASE HAS BEEN INCLUDED IN A LOCALLY OPTIMAL TOUR
IF (MEMBER) GO TO 370
340 CALL IMPROVE(I)
C IMPROVE ATTEMPTS TO IMPROVE TOUR BY
C SYSTEMATICALLY REPLACING 3 LINKS WITH
C 3 OTHER LINKS. IT CALLS SWAPLINK TO CHANGE
C THE TOUR IF IMPROVEMENT CAN BE MADE
IF(SWITCH) GO TO 320
C ROTATE CITIES IN TOUR AND TRY TO IMPROVE AGAIN:
370 ITOUR=TOUR(1)
DO 380 IDX=1,N-1
380 TOUR(IDX)=TOUR(IDX+1),
TOUR(N)=ITOUR
C IF LINK BETWEEN BASE I AND BASE N IS IN
C A LOCAL OPTIMUM, DELAY IMPROVEMENT
CALL SLTCH(N)
IF (MEMBER) GO TO 360
COUNT=COUNT+1
GO TO 330
C IF 380 WASN'T THE FIRST PASS, IMPROVE AGAIN ANYWAY.
360 IF (Q.LT.1) GO TO 400
Q=0
GO TO 320
C ADD THE LINKS IN THE ROUTE TO THE SET OF USED LINKS
400 CALL TLACLKNS(I)
C RECORD THIS LOCAL OPTIMUM AND START
C SEARCHING FOR ANOTHER.
CALL TOTALGT(N,TOUR)
CALL RCDROUTE(VECTOR,DISTOTAL,R,M,OPTTYPE)
310 CONTINUE
C SORT TOURS IN ASCENDING ORDER BY DISTANCE
CALL SORTOURS
RETURN
C END OF TSP SUBROUTINE
END
SUBROUTINE TOTALGT(NUMBASES,QTUR)
INTEGER QTUR(NUMBASES)
COMMON/TOTALS,QDISTOTL
COMMON/MATRIX/DISTANCE(60,60)
DO 10 I=1,NUMBASES-1
10 QDISTOTL=QDISTOTL+DISTANCE(QTUR(I),QTUR(I+1))
QDISTOTL=QDISTOTL+DISTANCE(QTUR(NUMBASES),QTUR(1))
RETURN
END
SUBROUTINE RCDROUTE(VECTOR,LONG,NUMBER,OPTION,AIRPLANL)
IMPLICIT INTEGER (C)
INTEGER TOURS, HOMANY, VECTOR (HOMANY), AIRPLANE
REAL LUNG
COMMON/ROUTES/COUNT, TOURS (12, 20)
COUNT = COUNT + 1
PRINT "ENTERING RCDRUOTE. COUNT =", COUNT
TOURS (COUNT, 1) = LUNG
IF (COUNT .LE. COUNT) 410, 420, 430
420 TOURS (COUNT, 2) = 99999
TOURS (COUNT, 3) = COUNT - 1
GO TO 460
430 TOURS (COUNT, 2) = COUNT + 1
TOURS (COUNT, 3) = COUNT - 1
GO TO 460
440 WRITE (06) "ERROR IN RCDRUOTE " "TERMINATING"
STOP
460 DO 130 I = 1, HOMANY
130 TOURS (COUNT, I + 4) = VECTOR (I)
TOURS (COUNT, 4) = AIRPLANE
RETURN
END

SUBROUTINE CLEAR (INDEX)
INTEGER SET (60, 60)
COMMON / ALFCIO / SET
C NOTE THAT SET IS COMMON WITH UNION
DO 10 I = 1, INDEX
 DO 10 J = 1, INDEX
 10 SET (I, J) = 0
RETURN
END

SUBROUTINE SET (INDEX)
INTEGER SET (60, 60)
COMMON / ALFCIO / SET
C NOTE THAT SET IS COMMON WITH UNION
DO 10 I = 1, INDEX
 DO 10 J = 1, INDEX
 10 SET (I, J) = 0
RETURN
END

SUBROUTINE SETCHK (INDEX)
LOGICAL MEMBER
INTEGER HOMANY, TOUR, TOURS
COMMON / ALFCIO / UNION (60, 60) / TRUTHTEL / MEMBER
COMMON / ROUTES / COUNT, TOURS (12, 20), TOUR (15)
IF (UNION (TOUR (1), TOUR (1)) .NE. 0) GO TO 10
MEMBER = .T.
RETURN
10 MEMBER = .F.
RETURN
END

C FOR ALPHA TRUE = 18. FALSE = 16
SUBROUTINE IMPROVE (NN)
INTEGER NN, TOUR, TOURS
LOGICAL SWITCH, MEMBER, ALPHA
COMMON /ROUTES/COUNT, TOURS (12, 20), TOUR (15) / TRUTHTEL / MEMBER, SWITCH
COMMON / MATRIX / DISTANCE (60, 60), BASES (10, 60)
ALPHA = .F.
SWITCH = .F.
DO 470 K = 1, NN - 3
 DO 470 J = (K + 1, NN - 1)
 D1 = DISTANCE (TOUR (K), TOUR (J + 1)) + DISTANCE (TOUR (1), TOUR (J))
470
IF (D.LT.D2) GO TO 480
D=D2
ALPHA=-.T.
GO TO 480
480 D=D1
ALPHA=-.F.
490 D=D+DISTANCE(OUT(K+1),OUT(K))
D3=DISTANCE(OUT(1),OUT(N))+DISTANCE(OUT(K),OUT(K+1))
6+DISTANCE(OUT(J),OUT(J+1))
IF(D.LT.D3)GO TO 500
470 CONTINUE
RETURN
500 CALL SWAPLINK(ALPHA,J,K,NK)
SWITCH=-.T.
RETURN
END
SUBROUTINE SWAPLINK(BOOLEAN,JJ,KK,NK)
INTEGER TDX/1/,TSTA(15),TOUR,TOUR
LOGICAL BOOLEAN
COMMON ROUTES/KOUNT,TOURS(12,20),TOUR(15)
DO 10 NDX=JJ+2,NNN
TSTAR(TNDX)=TOUR(TNDX)
10 TNDX=TNDX+1
DO 12 NDX=KK+1,JJ
TSTAR(TNDX)=TOUR(TNDX)
12 TNDX=TNDX+1
IF (BOOLEAN) GO TO 16
DO 14 NDX=1,KK
TSTAR(TNDX)=TOUR(TNDX)
14 TNDX=TNDX+1
GO TO 20
18 NDXZ=0
DO 19 NDX=NDXZ,KK-1
TSTAR(TNDX)=TOUR(KK-NDX)
19 TNDX=TNDX+1
20 DO 21 NDX=1,NNN
21 TOUR(TNDX)=TSTAR(TNDX)
RETURN
END
SUBROUTINE TAGLINKS(N)
INTEGER UNION,TOUR,TOUR
COMMON APLCIO/UNION(60,60)/ROUTES/KOUNT,TOURS(12,20),TOUR(15)
DO 510 I=1,N-1
510 UNION(TOUR(I),TOUR(I+1))=1
UNION(1,TOUR(1))=1
RETURN
END
SUBROUTINE SORTOURS
LOGICAL XCHG,SWAP
INTEGER SETHEAD,SUC/2/,PRE/3/,D/1/,SETHED,TOUR
COMMON ROUTES/KOUNT,TOURS(12,20)/SETHED/SETHED
C SORT TOURS MATRIX IN ASCENDING ORDER BY DISTANCE
SETHED=1
62
SUBROUTINE BLDRTES (IDX, ACFTYPE)

INTEGER TOURS, TOUR, GRANTOUR, SETHEAD
COMMON/ROUTES/KOUNT, TOURS(12, 20), TOUR(15)/PETALS/GRANTOUR(20, 25),
NUPTETAL/SETID/SETHEAD/TOTALS/QDISTUFL, ROUTOTAL
NUPTETAL=NUPTETAL+1
GRANTOUR(NUPTETAL, 1)=NUPTETAL
GRANTOUR(NUPTETAL, 4)=ACFTYPE
GRANTOUR(NUPTETAL, 2)=IDX
IF(IDX.GE.4)GO TO 10
CALL TOTALGFL(IDX, TOUR)

RETURN
END
GRANTOUR(NUPPEL,3)=DISTOTAL
LO 9 I=1,IP:
9 GRANTOUR(NUPPEL,1+4)=TOUR(I)
GO TO 15
10 GRANTOUR(NUPPEL,3)=TOURS(SETHHEAD,1)
DO 12 I=1,IPX
12 GRANTOUR(NUPPEL,1+4)=TOURS(SETHHEAD,1+4)
15 ROUTotal=ROUTotal+GRANTOUR(NUPPEL,3)
RETURN
END
SUBROUTINE SINGLE(HUB,ACFTYPE)
REAL SAVING,CAPACITY
INTEGER HUB,ACFTYPE,TOURS,TOUR,NTOUR(20),SETHHEAD,GRANTOUR
LOGICAL IDIDTI-IIS/.F./
COMMON/PETAL/GRAINTOUR(20,25),NUPPEL/TOTALS/DISTOTAL,ROUTotal
COMMON/SETHHEAD/ROUTES()/KOUNT,TOURS(12,20),TOUR(15)/MATRIX/
&DISTANCE(60,60),BASES(10,66)
COMMON/LOAD/CAPACITY
DO 600 K=1,NUPPETAL
JMINUS=K-1
IF(K.EQ.1)KMINUS=NUPPETAL
JPLUS=K+1
IF(K.EQ.NUPPETAL)KPLUS=1
DO 610 J=1,GRANTOUR(K,2)
IF(GRANTOUR(K,2)-J).EQ.1,420,430
JPLUS=J+4
420 JPLUS=J+4
GO TO 350
C J+4=J+1+3: I.E. -- THE OFFSET IN GRANTOUR
430 JPLUS=J+4
350 IF((J-1).EQ.450,450,440
450 JMINUS=GRANTOUR(K,2)+3
GO TO 3602
C J+2=J+1+3: I.E. -- THE NEGATIVE OFFSET IN GRANTOUR
440 JMINUS=J+2
3602 IF(GRANTOUR(K,J+4).EQ.HUB)GO TO 610
SAVINGS=DISTANCE(GRANTOUR(K,JPLUS),GRANTOUR(K,JMINUS))-
&DISTANCE(GRANTOUR(K,J+4),GRANTOUR(K,JPLUS))+DISTANCE(GRANTOUR(K,J+4),
&GRANTOUR(K,JMINUS))
KVAR=KPLUS
620 OLENGTH=GRANTOUR(KVAR,3)
DO 630 I=1,GRANTOUR(KVAR,2)
630 TOUR(I+1)=GRANTOUR(KVAR,1+3)
TOUR(1)=GRANTOUR(K,J+4)
IF(GRANTOUR(KVAR,2).EQ.2)GO TO 650
CALL LINSTSP(GRANTOUR(KVAR,2)+1,ACFTYPE)
660 IF,IDIDTI-IIS)GO TO 670
DO 680 L=1,GRANTOUR(KVAR,2)+1
680 NTOUR(L)=TOURS(SETHHEAD,L+4)
670 THISLGT=TOURS(SETHHEAD,1)
GO TO 690
650 CALL TOTALGTH(GRANTOUR(KVAR,2)+1,TOUR)
THISLGT=DISTOTAL
DO 390 L=1,GRANTOUR(KVAR,2)+1
390 NTOUR(L)=TOUR(L)
64
IF (IDIDTIVIS) GO TO 700
PSAVINGS = SAVINGS - (OULENGTH + THISLCTH)
KVAR = KVAR + PLUS
IDIDTIVIS = .T.
GO TO 620
700 IDIDTIVIS = .F.
PSAVINGS = SAVINGS - OULENGTH + THISLCTH
IF (PSAVINGS GT 0.00) GO TO 720
IF (PSAVINGS LT 0.00) GO TO 740
720 KVAR = KVAR + PLUS
DO 710 L = 1, GRANTOUR(KVAR, 2) + 1
710 CARGOES = CARGOES + BASES(NTOUR(L), 5) - BASES(NTOUR(L), 4)
C CHECK IF ADDING BASE J TO K+1 WILL EXCEED ACFT CAPACITY
IF (CARGOES GT ACFT.CAPACITY) GO TO 610
C ADD BASE J TO ROUTE K+1
DO 750 L = 1, GRANTOUR(KVAR, 2) + 1
750 GRANTOUR(KVAR, L+4) = NTOUR(L)
C UPDATE THE NUMBER OF BASES IN ROUTE K+1
GRANTOUR(KVAR, 2) = GRANTOUR(KVAR, 2) + 1
GO TO 760
740 DO 730 L = 1, GRANTOUR(KVAR, 2) + 1
730 CARGOES = CARGOES + BASES(NTOUR(SETHEAD, L+4), 5) - BASES(NTOUR(SETHEAD, 6L+4), 4)
C CHECK IF ADDING BASE J TO ROUTE K+1 WILL EXCEED ACFT CAPACITY
IF (CARGOES GT ACFT.CAPACITY) GO TO 610
IF (GRANTOUR(KVAR, 2) LE 2) GO TO 770
DO 780 L = 1, GRANTOUR(KVAR, 2) + 1
780 GRANTOUR(KVAR, L+4) = NTOUR(NTOUR(SETHEAD, L+4))
790 GRANTOUR(KVAR, 2) = GRANTOUR(KVAR, 2) + 1
GO TO 760
770 DO 7702 L = 1, GRANTOUR(KVAR, 2) + 1
7702 GRANTOUR(KVAR, L+4) = NTOUR(L)
GO TO 790
C ELIMINATE BASE J FROM ROUTE K
760 L = 1
DO 640 L = 1, GRANTOUR(K, 2)
640 CONTINUE
ROUTOTAL = ROUTOTAL + PSAVE
GRANTOUR(K, 2) = GRANTOUR(K, 2) + SAVING
GRANTOUR(KVAR, 3) = THISLCTH
610 CONTINUE
600 CONTINUE
RETURN
END
SUBROUTINE DOUBLE(HUB)
INTEGER HUB, ACFTYLE, TOURS, TOUR, SETHEAD, GRANTOUR, NTOUR(20)
LOGICAL IDIDTIVIS / .T. /
COMMON / PETALS/ GRANTOUR(20, 25), LUMIPETAL/TOTALS/QDISTOTL, ROUTOTAL/SETID/
IF(GRANT(), P, 2) LE 2)

IF(K.LU.1.KPLUS=1)

IF(K.EQ.KPLUS) KPLUS=1

DO 610 J=1, GRANTOUR(I, 2)

IF(YPLUS(J)-J+2) GO TO 660

JPLUS=5

JPLUS2=5

GO TO 3603

430 JPLUS=J+5

IF(GRANTOUR(I, 2)-J, GE. 2) GO TO 3603

JPLUS2=5

3603 IF(J-3) 440, 450, 460

440 IF(J.LE.1) GO TO 460

JPLUS2=GRANTOUR(I, 2)

GO TO 470

460 JPLUS=GRANTOUR(I, 2)

JPLUS2=JPLUS-1

GO TO 470

450 JPLUS=J-1+4

JPLUS2=J-2+4

470 IF(GRANTOUR(I, JPLUS) .EQ. HUB .OR. GRANTOUR(I, JPLUS) = HUB)

GO TO 610

Savings = DISTANCE(GRANTOUR(I, JPLUS), GRANTOUR(I, JPLUS)-1) - (DISTANCE(GRANTOUR(I, JPLUS), GRANTOUR(I, JPLUS)) + DISTANCE(GRANTOUR(I, JPLUS), GRANTOUR(I, JPLUS))

KVAR=JPLUS

620 OLENGTH=GRANTOUR(KVAR, 2)

DO 630 I=1, GRANTOUR(KVAR, 2)

630 TOUR(I+2)=GRANTOUR(KVAR, I+3)

TOUR(1)=GRANTOUR(I, JPLUS)

TOUR(2)=GRANTOUR(I, JPLUS)

CALL LINSTSP(GRANTOUR(KVAR, 2)+2, ACITYPE)

IF(IDIDTHIS) GO TO 670

GO 660 L=1, GRANTOUR(KVAR, 2)+2

660 NTOUR(L)=TOURS(SETHEAD, L+4)

670 THISLTH=TOURS(SETHEAD, 1)

IF(IDIDTHIS) GO TO 700

PSAVINGS=SAVINGS-(OLENGTH-THISLTH)

KVAR=JPLUS

IDIDTHIS=I.

GO TO 620

700 IDIDTHIS=-F.

:SAVINGS=SAVINGS-(OLENGTH-THISLTH)

IF(PSAVINGS.GT.:SAVINGS) PSAVEIND=SAVINGS

IF(PSAVINGS.GT.:SAVINGS) GO TO 610

IF(PSAVINGS=SAVINGS) 720, 740, 740

720 KVAR=JPLUS
DO 710 L=1,GRANTOUR(KVAR,2) +2
710 CARGOES=CARGOES+BASES(GROUT (L),5)-BASES(GROUT (L),4)
C CHECK IF ADDING J & J+1 TO ROUTE K+1 EXCEEDS CAPACITY
IF(CARGOES.GT.CAPACITY) GO TO 610
C ADD J & J+1 TO ROUTE K+1
DO 750 L=1,GRANTOUR(KVAR,2)+2
750 GRANTOUR(KVAR, L+4)=TOUR (L)
C UPDATE NUMBER OF BASES IN TOUR K+1
GRANTOUR(KVAR, 2)=GRANTOUR(KVAR, 2)+2
GO TO 510
740 DO 730 L=1,GRANTOUR(KVAR,2)+2
730 CARGOES=CARGOES+BASES(TOURS(SETHEAD, L+4), 5)-BASES(TOURS(SETHEAD, L+4)
&), 4)
IF(CARGOES.GT.CAPACITY) GO TO 610
DO 780 L=1,GRANTOUR(KVAR,2)+2
780 GRANTOUR(KVAR, L+4)=TOURS(SETHEAD, L+4)
GRANTOUR(KVAR, 2)=GRANTOUR(KVAR, 2)+2
C ELIMINATE BASES J & J+1 FROM ROUTE K
510 H=1
DO 640 L=1,GRANTOUR(K,2)
640 IF(GROUT (K, L+4).EQ.GROUT (K, J+4)) GO TO 640
IF(GROUT (K, L+4).EQ.GROUT (K, J+4)) GO TO 640
GRANTOUR(K, L+4)=GRANTOUR(K, L+4)
GRANTOUR(K, 2)=!
H=H+1
640 CONTINUE
ROUTOTAL=ROUTOTAL+PSAVINGS
GRANTOUR(K, 3)=GRANTOUR(K, 3)+SAVINGS
GRANTOUR(KVAR, 3)=THISLTH
610 CONTINUE
600 CONTINUE
RETURN
END
$ EXECUTE
$ LIMITS 20,25K
$ FILE 12,X11R,5L
$ DATA I*
$ SELECTA BASEDATA
$ ENDJOB
APPENDIX B

SINGLE-HUB LOGAIR ROUTE SYSTEM

SIMULATION PROGRAM
PROGRAM PLUG
LIMIT 6,646,2K
FILE R*,R.E.CAC1/SU:2.5
FILE *1
FILE *2
FILE R*,DIS
SYSOUT C*

PORTABLE
NORMALLY MODE IS REAL AND DIMENSION IS 0
DEFINE SHIPYR, LANDINGS, FLT.RUT, HYM, NARY, BASES AS INTEGER VARIABLES
DEFINE I, J, JJ, K, IJ, INGRESS AS INTEGER VARIABLES
DEFINE WATL, VACT, X AS VARIABLES
DEFINE SAMPLE.LIST AS A 2-DIMENSIONAL, INTEGER ARRAY

PERMANENT ENTITIES.....
EVERY ROUTE OWNS A NODE.LIST, SOME WAIT.FREIGHT, MAY
BELONG TO A FLIGHT.PLAN.
EVERY BASE HAS A (RTE.RUT(1/3), ID.RUT(2/3), RHORDER(3/3)),
A FST.DST, A SEC.DST, PELONGS TO A NODE.LIST,
AND OWNS A WAREHOUSE
DEFINE RTE.RUT, ID.RUT, RHORDER AS INTEGER VARIABLES
EVERY ALC HAS AN ID
DEFINE ID AS AN INTEGER VARIABLE

temporary entities.....
EVERY AIRPLANE HAS A CAPACITY, A LOAD MAY
OWN A MANIFEST, AND A FLIGHT.PLAN.
EVERY SHIPMENT HAS A (D.ROUTE(1/2), D.BASE(2/2), DESTINATION),
A WEIGHT, A FLS.TIME, A SOURCE, MAY BELONG TO A
WAREHOUSE, A WAIT.FREIGHT, AND A MANIFEST
DEFINE DESTINATION, D.ROUTE, D.BASE, SOURCE AS INTEGER VARIABLE

EVENT NOTICES INCLUDE PULSE, STOP, SIMULATION, GEN.CARGO
EVERY ARRIVAL HAS AN AIRPLANE AND A BASE
EVERY DEPARTURE HAS A AIRPLANE AND A DROUTE
EVERY TERMINATION HAS A AIRPLANE

TALLY TOT.TRANSL.TIME AS THE SUM, AV.TRANSIT.TIME AS
THE AVG, THISTO(0 TO 4 BY .5) AS THE HISTOGRAM, DIGHTIME AS THE MAX,
AND SMALLTIME AS THE MIN OF TRANSIT.TIME

TALLY TON.DAYS AS THE SUM OF TONDAY
TALLY TOTAL.TONNAGE AS THE SUM OF TONNAGE
TALLY AIR.MILES AS THE SUM OF MILES.FLOW
DEFINE TRANSIT.TIME, TONDAY AS VARIABLES
DEFINE MILES.FLOW AS A DUMMY VARIABLE
DEFINE TONNAGE AS A DUMMY VARIABLE
DEFINE T.MILES AS A DUMMY VARIABLE

THE SYSTEM HAS A RNDVAR RANDOM LINEAR VARIABLE
THE SYSTEM HAS A HUB, A DEBASE, AN SOBASE
DEFINE HUB, DEBASE, SOBASE AS INTEGER VARIABLES
DEFINE RCAP.GO.TABLE AS A 2-DIMENSIONAL, INTEGER ARRAY
DEFINE INFO.TABLE AS A 1-DIMENSIONAL, INTEGER ARRAY

(Continued on next page)
READ N.ALC
CREATE EACH ALC
READ IT
RESERVE SAMPLE.LIST AS N.ALC BY 10
READ SAMPLE.LIST
LET JJ=1
LET KF=0
READ N.ROUTE,U.BASE
LET N.BASE=N.BASE+22
CREATE EACH ROUTE
CREATE EACH BASE
FOR EACH ROUTE, DO
READ HOW MANY BASES
LET KK=KK+HOW MANY BASES
FOR EACH BASE, DO
IF JJ LE BASE LE KK
LET REZ.NUM(BASE)=ROUTE
READ ID.NUM(BASE),RاكORDER(BASE),FST.DST(BASE)
,SEC.DST(BASE)
FILE BASE IN NODE.LIST
ALWAYS
LOOP
LET JJ=JJ+HOW MANY BASES
LOOP
LET N.BASE=N.BASE-22
RESERVE RCARGO.TABLE AS N BASE BY N BASE
RESERVE INFO.TABLE AS N BASE
FOR DEBASE=1 TO N.BASE,DO
FOR SOBASE=1 TO N.BASE,DO
READ RCARGO.TABLE(SOBASE,DEBASE)
LET RCARGO.LINE(SOBASE,DEBASE)=RCARGO.LINE(SOBASE,DEBASE)-1
LOOP
FOR DEBASE=1 TO N.BASE,DO
READ INFO.TABLE(DEBASE)
LOOP
LET N.BASE=N.BASE+22
SCHEDULE A STOP SIMULATION IN 93 DAYS
SCHEDULE A PULSE IN 15 MINUTES
SCHEDULE A GEN.CARGO NOW
```
```
```
START SIMULATION
```
```
```
END OF SIMULATION REPORT
LET LT.D.TRANS.TIME+TON DAYS/TOTAL.TONNAGE
START NEW PAGE
IF LINE.V=1
PRINT 5 LINES LIKE THIS

SIMULATION OF A SINGLE HUB LOCAL SYSTEM:

THE HUB IS LOCATED AT TINKER AFB, OK
70
SIMULATION RESULT FOR THE 4TH QTR. 1979--
PRINT 1 LINE LIKE THIS

SKIP 3 LINES
ALWAYS
PRINT 5 LINES WITH: TOTAL, SMALL TIME, LANDINGS, AVG. TRANSIT TIME, WTD. TRANSIT TIME LIKE THIS
MAX TRANSIT TIME-- **,*** MIL. TRANSIT TIME-- **,***
NUMBER OF LANDINGS-- *****
AVG TRANSIT TIME-- **,**, DAYS
WEIGHTED AVG TRANSIT TIME-- **,**, DAYS

PRINT 4 LINES LIKE THIS
TRANSIT TIME DISTRIBUTION--

<table>
<thead>
<tr>
<th>DAYS</th>
<th>DAYS</th>
<th>DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1.01</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2.01</td>
<td>2.5</td>
<td></td>
</tr>
</tbody>
</table>

PRINT 1 LINE WITH THISTO(1), THISTO(2), THISTO(3), THISTO(4), THISTO(5) LIKE THIS

*** * * * * * * *

SKIP 2 LINES
PRINT 2 LINES LIKE THIS

<table>
<thead>
<tr>
<th>DAYS</th>
<th>DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.51</td>
<td>3.0</td>
</tr>
<tr>
<td>3.01</td>
<td>3.5</td>
</tr>
<tr>
<td>3.51</td>
<td>4.0</td>
</tr>
</tbody>
</table>

SKIP 1 LINE
PRINT 1 LINE WITH THISTO(6), THISTO(7), THISTO(8) LIKE THIS

*** * * * * * *

STOP
END

EVENT PULSE
DEFINE SHIPNT, VISIT AS INTEGER VARIABLES
FOR EACH ROUTE
DO
LET FLT.NU=FLT.NU+1
CREATE AN AIRPLANE CALLED FLT.NU
IF ROUTE=1 GO TO C130 ELSE
IF ROUTE=2 GO TO C130 ELSE
IF ROUTE=6 GO TO C130 ELSE
IF ROUTE=9 GO TO C130 ELSE
IF ROUTE=19 GO TO C130 ELSE
LET CAPACITY(FLT.NU)=15.4
GO TO NEXT
'C130' LET CAPACITY(FLT.NU)=23.5
'NEXT' IF WAIT.FREIGHT(ROUTE) IS NOT EMPTY
REMOVE THE FIRST SHIPNT FROM WAIT.FREIGHT(ROUTE)
IF LOAD(FLT.NU)+WEIGHT(SHIPNT) GT CAPACITY(FLT.NU) GO TO THERE ELSE
LET LOAD(FLT.NU)=LOAD(FLT.NU)+WEIGHT(SHIPNT)
FILE SHIPNT IN MANIFEST(FLT.NU)
IF LOAD(FLT.NU) GT CAPACITY(FLT.NU) GO TO EXIT ELSE
GO TO NEXT
ELSE
'EXIT' TILE ROUTE IN FLIGHT PLAN (FLT.NUM)
REMOVE THE FIRST VISIT FROM NODE LIST (ROUTE)
IF WEEKDAY.F(TIME.V)=1 GO TO SKIP ELSE
IF WEEKDAY.F(TIME.V)=7 GO TO SKIP ELSE
'BACK' SCHEDULE AN ARRIVAL (FLT.NUM, VISIT) IN FST.DST(VISIT) HOURS
FILE VISIT FIRST IN NODE LIST (ROUTE)
CYCLE
'SKIP' IF SEC.DST(VISIT) LE 0 GO TO BACK ELSE
LET X=SEC.DST(VISIT)
FILE VISIT LAST IN NODE LIST (ROUTE)
REMOVE FIRST VISIT FROM NODE LIST (ROUTE)
SCHEDULE AN ARRIVAL (FLT.NUM, VISIT) IN X HOURS
FILE VISIT FIRST IN NODE LIST (ROUTE)
CYCLE
'THERE' LET VATE=LOAD (FLT.NUM)+WEIGHT-CAPACITY (FLT.NUM)
IF VATE GE WEIGHT(SHIP.MNT) GO TO EXIT ELSE
CALL SPLIT (SHIP. MNT, VATE, FLT.NUM)
FILE SHIPMENT FIRST IN WAIT.FREIGHT (ROUTE)
GO TO NEXT
LOOP
SCHEDULE A PULSE IN 24 HOURS
RETURN
END

UPON ARRIVAL (AAIRPLANE, ABASE)
DEFINE AAIRPLANE, ABASE, AROUTE, SHIP.MNT AS INTEGER VARIABLES
LET LANDINGS=LANDINGS+1
REMOVE THE FIRST AROUTE FROM FLIGHT PLAN (AAIRPLANE)
REMOVE THIS ABASE FROM NODE LIST (ARoute)
IF MANIFEST (AAIRPLANE) IS EMPTY GO TO SKIP ELSE
FOR EVERY SHIP.MNT IN MANIFEST (AAIRPLANE)
,DO
IF BASE (SHIP.MNT) HE ID.NE(ABASE) CYCLE ELSE
FOR EACH ALC, DO
IF SOURCE (SHIP.MNT) HE ID CYCLE ELSE
FOR IJ = 1 TO 10, WITH SAMPLE LIST (ALC, IJ)=BASE (SHIP.MNT),
FIND THE FIRST CASE IF FOUND GO TO LDL3 ELSE
LOOP
GO TO TEST
'LBL3' LET TRANSIT.TIME=TIME.V-RLS.TIME (SHIP.MNT)
LET TONNAGE=WEIGHT (SHIP.MNT)
'LET' LET LOAD (AAIRPLANE)=LOAD (AAIRPLANE)-WEIGHT (SHIP.MNT)
REMOVE SHIP.MNT FROM MANIFEST (AAIRPLANE)
DESTROY THE SHIPMENT CALLED SHIP.MNT
LOOP
'SKIP'

'BACK' IF LOAD (AAIRPLANE)+WEIGHT (SHIP.MNT) CT CAPACITY (AAIRPLANE)

72
GO TO THENE ELSE
LET LOAD(AIRPLANE)=LOAD(AIRPLANE)+WEIGHT(SHIPNUN)
LET FLS.TIME(SHIPNUN)=TIME.V
FILE SHIPNUN IN MANIFEST(AIRPLANE)
IF LOAD(AIRPLANE) GE CAPACITY(AIRPLANE) GO TO LEAF ELSE
LOOP
GO TO LEAF
'THERE' LET KATE=LOAD(AIRPLANE)+WEIGHT(SHIPNUN)-CAPACITY(AIRPLANE)
CALL SPLIT(SHIPNUN,KATE,AIRPLANE)
FILE SHIPNUN FIRST IN WAREHOUSE(ABASE)
'LEAP' FILE ABASE LAST IN NODE.LIST(AROUTE)
FILE ROUTE IN FLIGHT.PLAN(AIRPLANE)
SCHEDULE A DEPARTURE(AIRPLANE,AROUTE) IN 1.5 HOURS
RETURN
END
````

EVENT GEN.CARGO
FOR SOBASE=1 TO 60, DO
  FOR DEBASE=1 TO 60, DO
    IF CARGO.TABLE(SOBASE,DEBASE) LT 0.005 CYCLE ELSE
      LET SHIPNUM=SHIPNUM+1
      CREATE A SHIPMENT CALLED SHIPNUM!
      LET (WEIGHT(SHIPNUM)=RD:VAR*CARGO.TABLE(SOBASE,DEBASE)
      LET D.ROUTE(SHIPNUM)=INFO.TABLE(DEBASE)
      LET D.BASE(SHIPNUM)=DEBASE
      LET SOURCE(SHIPNUM)=SOBASE
      IF SOBASE=15 LET ROUTE=D.ROUTE(SHIPNUM)
      LET FLS.TIME(SHIPNUM)=TIME.V
      FILE SHIPNUM IN WAIT.FREIGHT(ROUTE)
      CYCLE ELSE
      FOR EACH BASE,DO IF ID.NUM(BASE)=SOURCE(SHIPNUM) JUMP AHEAD ELSE LOOP
      PRINT 1 LINE LIKE THIS
      ERROR IN GEN.CARGO
      TRACE
STOP HERE
FILE SHIPNUM IN WAREHOUSE(BASE)
LOOP
SCHEDULE A GEN.CARGO IN 24 HOURS
RETURN
END
````

UPON DEPARTURE(DAIRPLANE,DROUTE)
DEFINE DAIPLANE, DBASE, NEASE AS INTEGER VARIABLES
REMOVE FIRST DBASE FROM NODE.LIST(AROUTE)
IF ID.NUM(DBASE)=HUB SCHEDULE A TERMINATION(DAIRPLANE) IN
FST.DST(DBASE) HOURS
GO TO LBL
ELSE

73
IF SEC.DST(DBASE) GT 0 GO TO SKIP ELSE
'BACK' SCHEDULE AN ARRIVAL(FAIRPLANE,BASE) IN FIRST.DST(DBASE) HOURS
'FILE' DBASE LAST IN NODE.LIST(DBREATE)
RETURN
'SKIP' IF WEEKDAY.F(TIME.V) NE 1
IF WEEKDAY.F(TIME.V) NE 7
 GO TO BACK
ELSE
 ALWAYS
 REMOVE FIRST BASE FROM NODE.LIST(DBROUTE)
 IF ID.NUM(DBASE)=HUB SCHEDULE A TERMINATION(FAIRPLANE)
 IN SEC.DST(DBASE) HOURS
 GO TO PLACE
ELSE SCHEDULE AN ARRIVAL(FAIRPLANE, BASE) IN SEC.DST(DBASE) HOURS
 'PLACE' FILE DBASE LAST IN NODE.LIST(DBROUTE)
 FILE DBASE AFTER DBASE IN NODE.LIST(DBROUTE)
RETURN
END

UPON STOP.SIMULATION
FOR EACH GEN.CARGO IN EV.S(I,GEN.CARGO),DO
 CANCEL THE GEN.CARGO
 DESTROY THE GEN.CARGO
LOOP
FOR EACH PULSE IN EV.S(I,PULSE),DO
 CANCEL THE PULSE
 DESTROY THE PULSE
LOOP
RETURN
END

UPON TERMINATION(TAIRPLANE)
DEFINE TAIRPLANE,SHIPMT,ROUTE AS INTEGER VARIABLES
IF MANIFEST(TAIRPLANE) IS EMPTY GO TO SKIP ELSE
FOR EVERY SHIPMT IN MANIFEST(TAIRPLANE),DO
 IF DBASE(SHIPMT)=HUB
 FOR EACH ALC,DO
 IF SOURCE(SHIPMT) NE ID CYCLE ELSE
 FOR IJ=1 TO 10, WITH SAMPLE.LIST(ALC,IJ)=DBASE(SHIPMT),
 FIND THE FIRST CASE IF FOUND GO TO LBL2 ELSE
 LOOP
 GO TO TEST
 LBL2: LET TRANSIT.TIME=TOLL.V-TOL.TIMES(SHIPMT)
 LET TODAY=TRANSIT.WEIGHT(SHIPMT)
 LET TONNAGE=WEIGHT(SHIPMT)
 'TEST' REMOVE THE SHIPMT FROM MANIFEST(TAIRPLANE)
 DESTROY THE SHIPMT CALLED SHIPMT CYCLE
 ELSE
 REMOVE THE SHIPMT FROM MANIFEST(TAIRPLANE)
 LET ROUTE=ROUTE(SHIPMT)
 FILE SHIPMT IN WAIT.FREIGHT(ROUTE)

74
ROUTINE FOR SPLIT(SSHIP,POUNDS,SACIT)
DEFINE SSHIP,SACIT AS INTEGER VARIABLES
LET SHPNUM=SHPNUM+1
CREATE A SHIPMENT CALLED SSHIP!
LET DESTINATION(SHPNUM)=DESTINATION(SSHIP)
LET RLS.TIME(SHPNUM)=RLS.TIME(SSHIP)
LET SOURCE(SHPNUM)=SOURCE(SSHIP)
LET WEIGHT(SSHIP)=POUNDS
LET WEIGHT(SSHIP)=WEIGHT(SSHIP)-POUNDS
FILE SHPNUM IN MANIFEST(SACIT)
RETURN
END

$ LOLOAD
$ OPTION FORTRAN,GO
$ LIBRARY SL
$ SOURCE
$ EXECUTE
$ LIMITS 30,70K 3K,4K
$ FILE B*,M1R
$ PRMFL SL,R,S,CACI/SINLIB
$ PRMFL 17,R,S,CACI/SINERR
$ DATA I*
$ SELECTA BIGNATIX
$ ENJOBB
APPENDIX C
SINGLE-HUB ROUTE ITINERARY
<table>
<thead>
<tr>
<th>Route ID</th>
<th>Type A/c</th>
<th>Station</th>
<th>Zulu Time</th>
<th>Cargo Tons</th>
<th>% WT Utilization</th>
<th>NM From Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-100</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>110</td>
<td>21.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kelly 1230</td>
<td>1400</td>
<td>21.5</td>
<td>100</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 1530</td>
<td>Term</td>
<td>21.5</td>
<td>100</td>
<td>358</td>
</tr>
<tr>
<td>2</td>
<td>L-100</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>110</td>
<td>21.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barksdale 1215</td>
<td>1345</td>
<td>21.5</td>
<td>100</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>England 1425</td>
<td>1555</td>
<td>21.5</td>
<td>100</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kelly 1725</td>
<td>1855</td>
<td>21.5</td>
<td>100</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 2025</td>
<td>Term</td>
<td>21.5</td>
<td>100</td>
<td>358</td>
</tr>
<tr>
<td>3</td>
<td>L-188</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>110</td>
<td>21.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Davis-Monthan</td>
<td>1320</td>
<td>1550</td>
<td>5.48</td>
<td>35.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holloman 1650</td>
<td>1820</td>
<td>3.91</td>
<td>25.4</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kelly 1940</td>
<td>2150</td>
<td>3.39</td>
<td>22.0</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 2230</td>
<td>Term</td>
<td>11.63</td>
<td>75.5</td>
<td>358</td>
</tr>
<tr>
<td>4</td>
<td>L-188</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>110</td>
<td>21.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MacDill 1400</td>
<td>1530</td>
<td>14.94</td>
<td>97.0</td>
<td>882</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homestead 1622</td>
<td>1752</td>
<td>10.62</td>
<td>69.0</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Key West* 1827</td>
<td>1957</td>
<td>11.63</td>
<td>75.5</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 2317</td>
<td>Term</td>
<td>11.52</td>
<td>74.8</td>
<td>1045</td>
</tr>
</tbody>
</table>

*Weekday service only; Route 4 reduced by 69 NM on weekends
<table>
<thead>
<tr>
<th>Route ID</th>
<th>Type A/C</th>
<th>Station</th>
<th>Zulu Time</th>
<th>Cargo Inbound</th>
<th>%WT Utilization</th>
<th>NM From Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARR</td>
<td>DEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L-188</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eglin</td>
<td>1310</td>
<td>1440</td>
<td>14.76</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tyndall</td>
<td>1510</td>
<td>1640</td>
<td>13.29</td>
<td>86.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patrick</td>
<td>1750</td>
<td>1920</td>
<td>10.07</td>
<td>65.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jacksonville</td>
<td>2005</td>
<td>2135</td>
<td>9.49</td>
<td>61.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>0025</td>
<td>Term 11.26</td>
<td>73.1</td>
<td>860</td>
</tr>
<tr>
<td>6</td>
<td>L-100</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robins</td>
<td>1400</td>
<td>1530</td>
<td>21.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>1830</td>
<td>Term 21.5</td>
<td>100</td>
<td>711</td>
</tr>
<tr>
<td>7</td>
<td>L-188</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Columbus</td>
<td>1240</td>
<td>1410</td>
<td>14.8</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robins</td>
<td>1515</td>
<td>1645</td>
<td>14.04</td>
<td>91.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Charleston</td>
<td>1735</td>
<td>1905</td>
<td>6.27</td>
<td>40.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>2155</td>
<td>Term 3.23</td>
<td>20.9</td>
<td>883</td>
</tr>
<tr>
<td>8</td>
<td>L-188</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Little Rock</td>
<td>1205</td>
<td>1335</td>
<td>10.79</td>
<td>70.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shaw</td>
<td>1535</td>
<td>1705</td>
<td>10.16</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seymour-Johnson</td>
<td>1800</td>
<td>1930</td>
<td>10.38</td>
<td>67.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blytheville</td>
<td>2130</td>
<td>2300</td>
<td>7.65</td>
<td>49.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>0020</td>
<td>Term 7.49</td>
<td>48.6</td>
<td>365</td>
</tr>
</tbody>
</table>

Weekday service only; Route 5 reduced by 36 NM on weekends.
<table>
<thead>
<tr>
<th>Route ID</th>
<th>Type A/C</th>
<th>Station</th>
<th>Zulu ARR</th>
<th>Time DEP</th>
<th>Cargo tons Inbound</th>
<th>% WT Utilization</th>
<th>NM From Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>L-188</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McGuire 1430</td>
<td>1600</td>
<td>8.2</td>
<td>53.2</td>
<td>1117</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 1930</td>
<td>Term</td>
<td>15.4</td>
<td>100</td>
<td>1117</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>L-188</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dover 1430</td>
<td>1600</td>
<td>12.51</td>
<td>1070</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 1930</td>
<td>Term</td>
<td>15.4</td>
<td>100</td>
<td>1070</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>L-188</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Langley 1420</td>
<td>1550</td>
<td>3.15</td>
<td>20.4</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dover 1635</td>
<td>1805</td>
<td>1.5</td>
<td>9.7</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>McGuire 1825</td>
<td>1955</td>
<td>9.67</td>
<td>62.8</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 2325</td>
<td>Term</td>
<td>14.04</td>
<td>91.2</td>
<td>1117</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>L-188</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scott 1230</td>
<td>1400</td>
<td>5.36</td>
<td>34.8</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plattsburgh 1640</td>
<td>1810</td>
<td>3.72</td>
<td>24.2</td>
<td>819</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loring 1915</td>
<td>2045</td>
<td>2.66</td>
<td>17.3</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 0115</td>
<td>Term</td>
<td>2.95</td>
<td>19.2</td>
<td>1495</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>L-188</td>
<td>Tinker Orig</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wurtsmith 1340</td>
<td>1510</td>
<td>5.36</td>
<td>34.8</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selfridge 1600</td>
<td>1730</td>
<td>4.15</td>
<td>26.9</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Griffiss 1850</td>
<td>2020</td>
<td>3.7</td>
<td>24.0</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker 2350</td>
<td>Term</td>
<td>12.11</td>
<td>78.6</td>
<td>1118</td>
<td></td>
</tr>
<tr>
<td>Route ID</td>
<td>Type A/C</td>
<td>Station</td>
<td>Zulu Time</td>
<td>Cargo Tons</td>
<td>% WT Utilization</td>
<td>NM From Dep.</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orig</td>
<td>ARR</td>
<td>DEP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>L-188</td>
<td>Tinker</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whiteman</td>
<td>1205</td>
<td>1335</td>
<td>8.38</td>
<td>54.4</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K.I.Sawyer</td>
<td>1520</td>
<td>1650</td>
<td>7.62</td>
<td>49.5</td>
<td>536</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duluth</td>
<td>1745</td>
<td>1915</td>
<td>7.24</td>
<td>47.0</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grand Forks</td>
<td>2015</td>
<td>2145</td>
<td>7.05</td>
<td>45.8</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Offutt</td>
<td>2315</td>
<td>0045</td>
<td>6.79</td>
<td>44.1</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>0205</td>
<td>Term</td>
<td>5.38</td>
<td>35.0</td>
<td>346</td>
</tr>
<tr>
<td>16</td>
<td>L-188</td>
<td>Tinker</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ellsworth</td>
<td>1300</td>
<td>1430</td>
<td>7.87</td>
<td>51.1</td>
<td>588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minot</td>
<td>1535</td>
<td>1705</td>
<td>7.5</td>
<td>48.7</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malmstrom</td>
<td>1835</td>
<td>2005</td>
<td>7.24</td>
<td>47.0</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F.E.Warren</td>
<td>2145</td>
<td>2315</td>
<td>5.69</td>
<td>36.9</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>0100</td>
<td>Term</td>
<td>4.12</td>
<td>26.8</td>
<td>490</td>
</tr>
<tr>
<td>17</td>
<td>L-188</td>
<td>Tinker</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fairchild</td>
<td>1430</td>
<td>1600</td>
<td>12.34</td>
<td>80.1</td>
<td>1164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McChord</td>
<td>1655</td>
<td>1825</td>
<td>11.78</td>
<td>76.5</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mt. Home</td>
<td>1945</td>
<td>2115</td>
<td>8.64</td>
<td>56.1</td>
<td>374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>0025</td>
<td>Term</td>
<td>7.53</td>
<td>48.9</td>
<td>972</td>
</tr>
<tr>
<td>18</td>
<td>L-100</td>
<td>Tinker</td>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hill</td>
<td>1430</td>
<td>1600</td>
<td>21.5</td>
<td>100</td>
<td>766</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>1930</td>
<td>Term</td>
<td>21.5</td>
<td>100</td>
<td>766</td>
</tr>
</tbody>
</table>

80
<table>
<thead>
<tr>
<th>Route ID</th>
<th>Type A/C</th>
<th>Station</th>
<th>Zulu Time</th>
<th>Cargo Tons</th>
<th>% WT Utilization</th>
<th>NM From Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>L-100</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McClellan</td>
<td>1530 1700</td>
<td>18.57</td>
<td>86.4</td>
<td>1165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>2130 Term</td>
<td>21.5</td>
<td>100</td>
<td>1165</td>
</tr>
<tr>
<td>20</td>
<td>L-188</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travis</td>
<td>1450 1620</td>
<td>12.71</td>
<td>82.5</td>
<td>1208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McClellan</td>
<td>1650 1820</td>
<td>1.28</td>
<td>8.3</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>2200 Term</td>
<td>15.4</td>
<td>100</td>
<td>1165</td>
</tr>
<tr>
<td>21</td>
<td>L-188</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peterson</td>
<td>1230 1400</td>
<td>1.84</td>
<td>11.9</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hill</td>
<td>1540 1710</td>
<td>2.19</td>
<td>14.2</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td></td>
<td>McClellan</td>
<td>1850 2020</td>
<td>9.24</td>
<td>60.0</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>2400 Term</td>
<td>10.97</td>
<td>71.2</td>
<td>1165</td>
</tr>
<tr>
<td>22</td>
<td>L-188</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norton</td>
<td>1415 1545</td>
<td>15.05</td>
<td>97.7</td>
<td>986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nellis</td>
<td>1635 1805</td>
<td>10.45</td>
<td>67.9</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>2055 Term</td>
<td>9.24</td>
<td>60.0</td>
<td>863</td>
</tr>
<tr>
<td>23</td>
<td>L-188</td>
<td>Tinker</td>
<td>Orig 1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cannon</td>
<td>1210 1340</td>
<td>7.41</td>
<td>48.1</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luke</td>
<td>1520 1650</td>
<td>6.76</td>
<td>43.9</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kirtland</td>
<td>1800 1930</td>
<td>5.53</td>
<td>35.9</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>2110 Term</td>
<td>4.96</td>
<td>32.2</td>
<td>453</td>
</tr>
</tbody>
</table>

81
APPENDIX D
ANALYSIS OF RANDOM SAMPLE OF LOGAIR
SHIPMENT WEIGHTS DURING
OCT, NOV, DEC 1979 (20)
RANSPACE ADDED. INCREASE LIMITS FOR NEXT RUN ****

IF (WEIGHT LE 500) VAR=11
COMPUTE NEWVAR=LN(WEIGHT)
VALUE LARELS VAR (1) LT 50 (2) 50-100 (3) 100-150
(4) 150-200 (5) 200-250 (6) 250-300 (7) 300-350
(8) 350-400 (9) 400-450 (10) 450-500
(11) OVER 500
FREQUENCIES INTEGER=VAR(1,11)
F WORKSPACE ARE AVAILABLE TO THIS PROCEDURE ****
OPTIONS A
STATISTICS ALL
EM REQUIRES 67 WORDS OF SPACE
READ INPUT DATA
<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>CODE</th>
<th>ABSOLUTE FREQUENCY</th>
<th>RELATIVE FREQUENCY (PERCENT)</th>
<th>ADJUSTED FREQUENCY (PERCENT)</th>
<th>CUMULATIVE FREQUENCY (PERCENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-50</td>
<td>1</td>
<td>583</td>
<td>75.9</td>
<td>75.9</td>
<td>75.9</td>
</tr>
<tr>
<td>50-100</td>
<td>2</td>
<td>74</td>
<td>9.6</td>
<td>9.6</td>
<td>85.5</td>
</tr>
<tr>
<td>100-150</td>
<td>3</td>
<td>34</td>
<td>4.4</td>
<td>4.4</td>
<td>98.0</td>
</tr>
<tr>
<td>150-200</td>
<td>4</td>
<td>16</td>
<td>2.1</td>
<td>2.1</td>
<td>92.1</td>
</tr>
<tr>
<td>240-250</td>
<td>5</td>
<td>19</td>
<td>2.5</td>
<td>2.5</td>
<td>94.6</td>
</tr>
<tr>
<td>250-300</td>
<td>6</td>
<td>4</td>
<td>0.5</td>
<td>0.5</td>
<td>95.1</td>
</tr>
<tr>
<td>310-350</td>
<td>7</td>
<td>4</td>
<td>0.5</td>
<td>0.5</td>
<td>95.6</td>
</tr>
<tr>
<td>350-400</td>
<td>8</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>95.7</td>
</tr>
<tr>
<td>400-450</td>
<td>9</td>
<td>4</td>
<td>0.5</td>
<td>0.5</td>
<td>96.2</td>
</tr>
<tr>
<td>450-500</td>
<td>10</td>
<td>2</td>
<td>0.3</td>
<td>0.3</td>
<td>96.5</td>
</tr>
<tr>
<td>OVER 500</td>
<td>11</td>
<td>27</td>
<td>3.5</td>
<td>3.5</td>
<td>100.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>768</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Mean

Median

Range

Valid Cases

Missing Cases 0
1: L7 50
2: 74
3: 34
4: 16
5: 19
6: 4
7: 4
8: 1
9: 4
10: 2
11: 27

<table>
<thead>
<tr>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

583
APPENDIX E

SYSTEM TRANSIT TIME*: FY 79 LOGAIR

ROUTE STRUCTURE

(Actual Performance - Oct, Nov, Dec 79)

(25; 26; 32)

*System Transit Time adjusted for Hold Time
<table>
<thead>
<tr>
<th>Origin: Wright-Patterson AFB</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipments/Week</td>
<td>Avg. Reported Hold Time</td>
</tr>
<tr>
<td>(Sij)</td>
<td>(TTij)</td>
</tr>
<tr>
<td>Homestead</td>
<td>106.28</td>
</tr>
<tr>
<td>Selfridge</td>
<td>186</td>
</tr>
<tr>
<td>Tyndall</td>
<td>86</td>
</tr>
<tr>
<td>Plattsburgh</td>
<td>680</td>
</tr>
<tr>
<td>Pease</td>
<td>522</td>
</tr>
<tr>
<td>Blytheville</td>
<td>180</td>
</tr>
<tr>
<td>Norton</td>
<td>289</td>
</tr>
<tr>
<td>Fairchild</td>
<td>411</td>
</tr>
<tr>
<td>McChord</td>
<td>57</td>
</tr>
<tr>
<td>Destination</td>
<td>S_{ij}</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Barksdale</td>
<td>103</td>
</tr>
<tr>
<td>Blytheville</td>
<td>58</td>
</tr>
<tr>
<td>Charleston</td>
<td>262</td>
</tr>
<tr>
<td>Duluth</td>
<td>96</td>
</tr>
<tr>
<td>Davis-Monthan</td>
<td>253</td>
</tr>
<tr>
<td>F.E. Warren</td>
<td>224</td>
</tr>
<tr>
<td>Langley</td>
<td>381</td>
</tr>
<tr>
<td>Luke</td>
<td>1370</td>
</tr>
<tr>
<td>MacDill</td>
<td>537</td>
</tr>
<tr>
<td>Destination</td>
<td>S_{ij}</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Kirtland</td>
<td>119</td>
</tr>
<tr>
<td>Duluth</td>
<td>146</td>
</tr>
<tr>
<td>Hill</td>
<td>2000</td>
</tr>
<tr>
<td>Holloman</td>
<td>244</td>
</tr>
<tr>
<td>Langley</td>
<td>274</td>
</tr>
<tr>
<td>MacDill</td>
<td>655</td>
</tr>
<tr>
<td>Wurtsmith</td>
<td>203</td>
</tr>
<tr>
<td>Plattsburgh</td>
<td>802</td>
</tr>
<tr>
<td>McChord</td>
<td>161</td>
</tr>
<tr>
<td>Tinker</td>
<td>315</td>
</tr>
<tr>
<td>Destination</td>
<td>S_{ij}</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Cannon</td>
<td>346</td>
</tr>
<tr>
<td>Davis-Monthan</td>
<td>463</td>
</tr>
<tr>
<td>F.E. Warren</td>
<td>53</td>
</tr>
<tr>
<td>Wright-Patt.</td>
<td>1063</td>
</tr>
<tr>
<td>Little Rock</td>
<td>1280</td>
</tr>
<tr>
<td>MacDill</td>
<td>296</td>
</tr>
<tr>
<td>Wurtsmith</td>
<td>147</td>
</tr>
<tr>
<td>Plattsburgh</td>
<td>381</td>
</tr>
<tr>
<td>McChord</td>
<td>955</td>
</tr>
<tr>
<td>Tinker</td>
<td>52</td>
</tr>
<tr>
<td>Destination</td>
<td>S_{ij}</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>Kirtland</td>
<td>235</td>
</tr>
<tr>
<td>Duluth</td>
<td>194</td>
</tr>
<tr>
<td>Dover</td>
<td>1296</td>
</tr>
<tr>
<td>Malmstrom</td>
<td>114</td>
</tr>
<tr>
<td>Hill</td>
<td>1881</td>
</tr>
<tr>
<td>Minot</td>
<td>404</td>
</tr>
<tr>
<td>Selfridge</td>
<td>329</td>
</tr>
<tr>
<td>Plattsburgh</td>
<td>785</td>
</tr>
<tr>
<td>Norton</td>
<td>2205</td>
</tr>
<tr>
<td>Shaw</td>
<td>501</td>
</tr>
</tbody>
</table>

Origin: Tinker AFB
Origin: Robins AFB

<table>
<thead>
<tr>
<th>Destination</th>
<th>S_{ij}</th>
<th>Rpt T.T.</th>
<th>Avg. H.T.</th>
<th>TT_{ij}</th>
<th>W_{ij}</th>
<th>$W_{ij} \times TT_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott</td>
<td>137</td>
<td>90.42</td>
<td>45.69</td>
<td>44.73</td>
<td>0.178</td>
<td>7.962</td>
</tr>
<tr>
<td>Seymour-</td>
<td>2193</td>
<td>70.27</td>
<td>17.19</td>
<td>3.08</td>
<td>0.699</td>
<td>2.153</td>
</tr>
<tr>
<td>Johnson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langley</td>
<td>1837</td>
<td>21.83</td>
<td>16.05</td>
<td>5.78</td>
<td>0.342</td>
<td>1.977</td>
</tr>
<tr>
<td>Minot</td>
<td>257</td>
<td>151.80</td>
<td>22.53</td>
<td>129.27</td>
<td>0.150</td>
<td>19.391</td>
</tr>
<tr>
<td>Nellis</td>
<td>679</td>
<td>93.82</td>
<td>22.53</td>
<td>71.29</td>
<td>0.288</td>
<td>20.532</td>
</tr>
<tr>
<td>Wurtsmith</td>
<td>478</td>
<td>77.10</td>
<td>23.22</td>
<td>53.88</td>
<td>0.214</td>
<td>11.530</td>
</tr>
<tr>
<td>Pease</td>
<td>954</td>
<td>69.52</td>
<td>28.95</td>
<td>40.57</td>
<td>0.384</td>
<td>15.579</td>
</tr>
<tr>
<td>Grand Forks</td>
<td>484</td>
<td>77.46</td>
<td>33.87</td>
<td>43.59</td>
<td>0.142</td>
<td>6.189</td>
</tr>
<tr>
<td>Norton</td>
<td>2567</td>
<td>53.47</td>
<td>34.91</td>
<td>18.56</td>
<td>0.959</td>
<td>17.800</td>
</tr>
<tr>
<td>Shaw</td>
<td>1473</td>
<td>25.72</td>
<td>18.11</td>
<td>7.61</td>
<td>0.233</td>
<td>1.773</td>
</tr>
</tbody>
</table>

Weighted System Transit Time

$$\frac{\sum (W_{ij} \times TT_{ij})}{\sum W_{ij}} = \frac{974.258}{32.956} = 29.56 \text{ hours or } 1.23 \text{ days}$$

Unweighted System Transit Time

$$\frac{\sum (S_{ij} \times TT_{ij})}{\sum S_{ij}} = \frac{1207311}{36863} = 32.75 \text{ hours or } 1.36 \text{ days}$$
<table>
<thead>
<tr>
<th>Description</th>
<th>FY 80 System</th>
<th>Single-Hub System</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-100 Mileage</td>
<td>4,530,714 NM</td>
<td>3,522,980 NM</td>
</tr>
<tr>
<td>L-100 Mileage x $3.5259/mi</td>
<td>$15,975,000</td>
<td>$12,422,000</td>
</tr>
<tr>
<td>L-188 Mileage</td>
<td>8,377,311 NM</td>
<td>13,491,525 NM</td>
</tr>
<tr>
<td>L-188 Mileage x $2.4128/mi</td>
<td>$20,215,000</td>
<td>$32,552,000</td>
</tr>
<tr>
<td>Landings</td>
<td>30,587</td>
<td>29,722</td>
</tr>
<tr>
<td>Landings x $250/landing</td>
<td>$7,647,000</td>
<td>$7,431,000</td>
</tr>
<tr>
<td>5% Revenue Tax</td>
<td>$1,335,000</td>
<td>$1,335,000</td>
</tr>
<tr>
<td>Fuel Cost Above Contract</td>
<td>$2,463,000</td>
<td>$3,247,000</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$47,633,000</td>
<td>$56,987,000</td>
</tr>
</tbody>
</table>

Difference: $9,354,000

or

an increase of 19.6%

NOTE: All dollars to nearest $1,000
APPENDIX G

TRANSIT TIME VARIANCES FOR THE

SINGLE-HUB SYSTEM
DATA
<table>
<thead>
<tr>
<th>CASE</th>
<th>ABSOLUTE FREQUENCY</th>
<th>RELATIVE FREQUENCY (PERCENT)</th>
<th>ADJUSTED FREQUENCY (PERCENT)</th>
<th>CUMULATIVE ADJ. FREQ (PERCENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>3.3</td>
<td>3.3</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>12.4</td>
<td>12.4</td>
<td>22.5</td>
</tr>
<tr>
<td>4</td>
<td>97</td>
<td>46.4</td>
<td>46.4</td>
<td>46.4</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>28.2</td>
<td>28.2</td>
<td>97.1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2.4</td>
<td>2.4</td>
<td>99.5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>100.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Frequency</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid Cases: 200 **Missing Cases:** 0

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.879</td>
</tr>
<tr>
<td>Mode</td>
<td>0.751</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.639</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.350</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.848</td>
</tr>
<tr>
<td>Median</td>
<td>0.918</td>
</tr>
<tr>
<td>Variance</td>
<td>0.879</td>
</tr>
<tr>
<td>Range</td>
<td>1.798</td>
</tr>
</tbody>
</table>
SELECTED BIBLIOGRAPHY
A. REFERENCES CITED

13. Masters, Captain James M., USAF. Assistant Professor, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base OH. Personal interviews. 18-19 October 1979.

35. Van Valkenburgh, Major Nicholas, USAF. "LOGAIR Mark 2--An Alternate Logistics Airlift System." Unpublished Research Study 2470-79, Air Command and Staff College (AU), Maxwell AFB AL, April 1979. ADA039213L.

B. RELATED SOURCES

Bernhart, Major James, USAF. Management Analyst, Reports and Analysis Branch, Directorate of Transportation, Air Force Logistics Command, Wright-Patterson Air Force Base OH. Personal interview. 13 February 1980.

