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ON THE CONVERGENCE OF A BLOCK SUCCESSIVE
OVERRELAXATION METHOD FOR A CLASS OF

LINEAR COMPLEMENTARITY PROBLEMS

by

R.W. Cottle and J.S. Pang

Abstract. This paper develops a reduced block successive over-

relaxation method for solving a class of (large-scale) linear

complementarity problems. The main new feature of the method is that

it contains certain reduction operations at each iteration. Such

reductions are needed in order to ensure the boundedness (and therefore

the existence of accumulation points) of the sequence of iterates

produced by the algorithm. Convergence of the method is established

by using a theorem due to Zangwll.
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ON THE CONVERGENCE OF A BLOCK SUCCESSIVE
OVERRELAXATION METHOD FOR A CLASS OF

LINEAR COMPLENENTARITY PROBLEMS

R.W. Cottle and J.S. Pang

1. Introduction. The present research is motivated by an investigation

(still in progress) of methods for solving a certain class of

"capacitated quadratic transportation problems". One of these calls

for the application of the block successive overrelaxation (BSOR)

method [4) to the dual of the given problem. However, a technical problem

is engendered by the unboundedness of the level sets of the dual objective

function and the consequent breakdown of the convergence proof used in [4].

At Issue is the existence of an accumulation point of the sequence of

iterates produced by the algorithm. Fortunately, the structure of the

problem permits a modification of the algorithm that leads to a remedy for

this complication. Applying a simple transformation to the iterates forces

the new points to lie in a compact set. Convergence of the algorithm can

then be established by invoking a theorem of Zangwill [8].

Our purpose in this paper is to establish the convergence of the

modified BSOR for a class of problems somewhat larger than that under

consideration in the aforementioned study. To be precise, we concentrate

our attention on a (large-scale) linear complementarity problem of the

form: Find y, v ERN such that

v * f + FAc + FAF'y ,0, y 0, v'y 0 0. (1)



The following blanket assumptions will be maintained throughout

this paper:

(Al) The matrix A 'ERPXP is symmetric and positive semi-definite;

(A2) there exists a vector x such that

FAx I f; (2)

(A3) there exists an index set a such that for any y satisfying

AFly a 0

f'y M 0 (3)

0 * y > 0
it follows that y j > 0 if and only if j E.

Remarks. (A3) holds vacuously if (3) has no solution. In fact, the

nonexistence of a solution to (3) is equivalent to the so-called Slater

condition, i.e. the consistency of the linear inequality system FAx < f.

If (A3) holds nonvacuously, the index set a must be nonempty,

though its cardinality could be as low as 1, In the capacitated quadratic

transportation, problem mentioned earlier, (3) does have a solution.

There, the introduction of a seemingly mild additional hypothesis on the

capacities ensures the validity of (A3), and the index set a is easily

identified. It corresponds to the supply and demand constraints of the

problem. See Section 6 for further discussion of this application.

Under assumption (Al), the linear complementarity problem (1) is

the set of Karush-Kuhn-Tucker conditions for the convex quadratic program

minimize *(y) - (f + FAc)'y + ky'FAF'y (4)

subject to y _ 0.
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By a proof like that of Proposition 2.1 below, (Al) and (A2)

imply the existence of a solution to (1) or, equivalently, (4).

If the matrix A is in fact positive definite, then (4) is

essentially the dual of the strictly convex quadratic program

minimize *(x) - c'x + %x'A 1x (5)

subject to Fx I f.

Note that (A2) implies the feasibility of (5) and thus the

existence of an optimal solution.

In proving the convergence of iterative procedures for nonlinear

programming, it is customary to require that the iterates lie in a

compact set. The set in question is often a level set of the function

being minimized. In the context of the quadratic program (4), the

minimand is 0. As we shall show later, the level sets of 0 are not

bounded if the system (3) is consistent.

In the present paper, we shall show how the BSOR method described

in [4] can be modified in such a way that the possible unboundedness of

level sets will not affect the convergence of the method for solving

(4) - or, equivalently, (1). Our analysis provides a unified treatment

* I for both bounded and unbounded level sets. In particular, the analysis

includes, as a special case, the recent study of Mangasarian [5] who

treats the quadratic program (5) under a Slater condition.

-3-



2. Preliminary discussion. Throughout the paper we denote the linear

complementarity problem (LCP)

w - q + Mz > O, z > O, w'z - 0

by the pair (qM). For a given t, let (M) be the set of all vectors q

for which (q,M) has a solution. We recall that if MI is positive semi-

definite, then q E K(M) if and only if the inequalities

q + Mz > 0, z >O

are consistent. (See [1].)

In the next three results, we present some properties of the LCP (1).

Proposition 2.1. For all vectors a, the linear complementarity

probl em

(f + FAa, FAF') (6)

has a solution.

Proof. As FAF' is (symetric and) positive semi-definite, only

consistency need be verified. If the LCP (f + FAa, FAF') is inconsistent,

there must exist a vector u such that

u'(f + FAa) < 0, u'FAF' < 0, u > 0.

In the presence of (Al), the latter impliesI
u'f 0 , u'FA - 0, u > 0. (7)

But (A2) implies the existence of a vector x such that (2) holds.

Clearly (2) and (7) cannot both hold simultaneously, so (6) must be

consistent. 3

-4-
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The theorem below characterizes the boundedness (and, consequently,

the compactness) of the level sets of certain convex quadratic functions

of interest in the present study. Part of its proof relies on a much

more general result of Rockafellar.

Theorem 2.1. Suppose (Al) and (A2) are satisfied. For any a, the

following statements are equivalent for the quadratic function

,(y): -.(f + FAa)'y + I,.y'FAF'y.

(10) For each XE R, the set

yO(): y1: *(y) 70_

is compact;

(20) f + FAa Eint K(FAF');

(30) there exists no vector y such that

AF'y - O, f'y O, O*y ; (8)

(40) there exists a vector x such that

FAex < f;
(50) the LCP (f + FAa, FAF') has a bounded solution set.

Proof. Define

v (Y) .(() if L

otherwise

71 Then (10) holds if and only if the level sets of It are bounded. By

[7, Corollary 14.2.2], this is so if and only if 0 e int dora Y*

where '* denotes the convex conjugate of T. Now for any y* we have

1" -5-
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y*(y*) = sup {y'y* - T(y) : y arbitrary)

a sup {yy* - *(y) : y > 01

a -inf (y' (q - y*) + If'y : y Z 01

if j solves (q-y*,M)

if (q-y*,M) has no solution

where q = f + FAa and M= FAF'. It therefore follows that

dom 7* - {y* : q - y* 6K(M)}

From this it is apparent that 0 int dom f* if and only if q 6 int K(M).

Thus (1) is equivalent to (20). It is known from [2] that (2°) is

equivalent to the condition that q 6 K(M) and the only solution of the

system

u'q = 0, u'M = 0, u > 0 (9)

is the zero vector. By Proposition 2.1, q E K(M) is implied by (Al)

and (A2) which are in force here. By the definitions of q and M1 and

the assumed properties of A, (9) becomes

u'f -0, u'FA = 0, u >0.

Hence the equivalence of (20) and (30) follows. Combined with (Al)

and (A2), condition (30) is equivalent to the fact that

ulf <.0, u'FA a 0, u > 0

has only the zero solution. By an alternative theorem, this is

Vequivalent to (4*). The equivalence of (4*) and (5*) is a direct

consequence of [2, Theorem 3.1]. 0
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Theorem 2.1 has much in common with some characterizations

obtained by Mangasarian [6). Our work along these lines was done

independently, however.

Theorem 2.1 implies among other things that if the system in

(3*) has a non-zero solution, then the level sets of the function *
are unbounded. In fact, the following stronger result obviously holds.

Proposition 2.2. Let y* be any solution of the system

AF'y = 0, f'y = 0.

Then

*(y + ey*) - *(y)

for all y and 8. 03

To describe the BSOR method, we let the rows of the matrix F be

partitioned into blocks Fi (i = 1,...,m). This induces a partitioning

of M = FAF' into submatrices M. F.AF.'. Let the vector f be

partitioned accordingly. Let Ji denote the set of indices of the rows

in F, (and fi). Let ni denote the cardinality of Ji, and finally

(referring to (A3)) let

a, = ani, i ,..

Obviously, the following implication holds:

AF'yi =01

fi'Yl 0? (yl)j > 0 if and only if j Ca I  (10)

0 Y, i 0

-7-



Once the partitioning above is introduced, then for i 1,...,m

Proposition 2.1, Theorem 2.1, and Proposition 2.2 apply to the sub-

problems (fi + FtAa, FiAFi') and quadratic functions

*t(Y ) - (fi + FiAa)'yi + Y'FtAFiY -

In particular, as we shall show (Proposition 2.4), assumption (A) implies

that at most one of these subproblems can have an unbounded solution set.

Before proving this, we give a geometrical interpretation of the assumption.

Let C denote the set of all vectors y satisfying the system (3) and also

containing the zero vector. The next result shows that assumption (A3)

holds if and only if the set C is a ray emerging from the origin.

Proposition 2.3. Assumption (A3) holds if and only if there exists a non-

negative vector y such that

C = fy : y = xy for some x >} .

Proof. Suppose C is of this form. If the system (3) is inconsistent,

there is nothing to prove, so suppose it is consistent. This implies

that the vector y must be nonzero. Let be the set of indices which

correspond to the nonzero components of y (i.e., its support). Obviously,

if y E C \ {0}, then yj > 0 if and only if j E.

Conversely, suppose that assumption (A3) holds. If (3) is inconsistent

it suffices to let y* be the zero vector. On the other hand, if (3) is

consistent, let y be any one of its solutions. Let y r C \ {0. Con-

sider the vector y - Xy. For suitable x 10, the vector y - Xy will be-

long to C and have at least one zero component, say the J-th one with j e a.

By (A3) this is impossible unless y - xy is the zero vector. This proves

the proposition. 0

-8-
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Proposition 2.4. Let assumption (A3) hold. Then for any partitioning of

the rows of F, there can exist at most one index i for which the system

AFi'y i * 0, fiyi = 0, 0 # Y1 Z'O (11)j

is consistent.

Proof. Indeed, if there are indices I1 # 12 for which (11)i and (11)i2

are consistent, let y and be solutions of these systems, respec-

1 2 y1 2 (
tively. Obviously, the vectors yl= y and y2 = 2 with

2

y~ytY{.l ift --i1  {12 if i : i 2

satisfy the system (3). By (A3), we must have a C Jil J. = 0. This

contradiction establishes the proposition. 0

.1

- 9-
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3. Closedness of the component maps. The main tool used in our convergence

resul t for--the modi-fi ed OSeR matho'- is' tnvergenceTheffemok 67 TZhgw'Tll

[8]. To apply the theorem, it is necessary to show that the "algorithmic

map" involved is closed. In this section, we establish some preliminary

results useful for this purpose.

The total number of rows in the matrix F is N = n1. For each
Sni

i = 1,...,m let y E R be either a fixed vector satisfying

the system (11) i if the system is consistent or the zero vector it if is

inconsistent. Let y = yl,...,ym). Then obviously, y is either 0 or

it satisfies the system (3).

A vector yi E R+] is said to be reduced (with respect to the index

set ci) if at least one component in the subvector (yi),i is equal to

zero. Then by (ll) i, yi is either zero or not reduced. Let Si denotei ~~ni . t e u t o athe set of all reduced vectors in R+. The i-th reduction map
ni

Ri : R+ - Si is defined as follows:

Ri(yi) = Yi " PiYi

where

minQyi i/(Yi) j a)if Y4

Ii = pi(Yi) ={in {( J/(Y') : i } otherwise

' The reduction map Ri is well defined and continuous. If yi = 0,

then is just the identity map. Similarly, by dropping the sub-

script i, we may define the reduced vectors in RN as well as the

complete reduction map R: RN -S, where S is the set of all reduced

vectors in R+.

-10-



N N
We define the i-th complementarit map Ci : R - R x Si as

.... £ .. ffollows. Given y= (Y."Ym)e R+N. C.(y) denotes the set of all

points (y, R(jt)) where -i solves the LCP (fi + FiAa, FiAF,') where

a ac + i F A y  * I

In general, C1 is a point-to-set map. By Proposition 2.1, Ci(y) is

nonempty for each i.

Note that if the subproblem has a unique solution, then by

Theorem 2.1, Rt.(yi) - ;i so that the i-th reduction is unnecessary.

Roughly speaking, the motivation for including the reduction step in

defining the map Ci is to ensure that Ci maps bounded sets into

bounded sets.

Let w < 2 be a given positive scalar. Define the i-th
N ni N N n

relaxation map Pi : R+ x R+ - NR as follows. For (y,1i) E R+ x R ,

the set Pi(Y,9i) consists of all vectors of the form

(Y '" "" Yi-I 'Yi'Yi+i "'" 'Ym)

where Yi m Yi + i Yi) for some w such that

min {(w ,} w W< and Yi '> O.

The relaxation step in [4] is a particular realization of the relaxa-

tion map where w Is chosen as the largest possible value of w for which

wIw * and yi + w(Yi - Yi) -0.

A point to set map M: U -+ V is bounded if for every subset T C U,

the image u{M(t) t r T) is a bounded subset of V.

~-11 -
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....... ... ..........

Let 8, = P1 0 C1 denote the composition of the i-th complemen-

tarity and relaxation maps. In what follows, we show that Bi is a

closed and bounded map from RN into itself. We first prove this for

Ci.

For each index I and vector a e RP let Xi(a) denote the set of

all solutions of the LCP (fl + FAa, FIAF i ' ).

Lemm 3.1. Ri(Xi(a)) - (Yi E Xi(a) : T (Yj)j - 0)

Proof. For brevity, let Ti be the set on the right. Since p1(y1 ) - 0

for each yi 6 Ti, it follows that Ti C Ri(Xi(a)). Conversely, let

Yi a Ri(7j) where Yi e Xl(a). Then obviously, T (y1 )j - 0.

It can easily be shown that Yi also solves the LCP

(fi + FAa, FiAFi ' ). 0

Proposition 3.1. The i-th complementarity map CI is both closed and

bounded.

Proof. To show that Ci is closed, let

y k y YkG RN

-0 Z - (y,y), z (yk, R(yi)) 6 Ci(yk).

As Yi is the limit of a sequence of reduced vectors ^k Ri(y), It Is

itself reduced. It therefore suffices to prove that Yi e X1(a) where

- 12-



a - +ijyj. Lemma 3.1 implies that for each k

yA > 0, ;k f + F Aak F AF iyk .(k)(k

where ak = c +JiFtYk. Passing to the limit as k -> -, we obtain

0 f, + FiAa + FIAFI'I 40, (V)'( )) = 0.

This establishes the closedness of Ci. It is also bounded, for suppose the
N

contrary. Then there exists a bounded subset T C RN such that

u(Ci(t) : tGTI is unbounded. Hence there exists sequences

kk k kk kk
(yk}CT and (z ) y, RI( 1) I with zkEci(yk) such that Izkl ->

k k
Since fy I is bounded, it has a convergent subsequence (y "I tending to

some vector y CERN. Le R Since 1z k I > and ykis

bounded, we must have I1 -- > . However, the normalized sequence
k k{ykv/l;kiV} has a limit point, Yi' and clearly i is reduced. Without

k k
loss of generality, we may assume ji"/fylj"I -> . For each kv we

have by Lemma 3.1

k k k
(i",(fi~ + F1Aa " + FiAFi, )iV) . 0

Sk k • kv,

where a v a c +,IiF,'Y.v" Dividing the above equation by yt 12 and

passing to the limit we obtain

(;i)'FiAFi'yi 0

- 13-



By (Al) it follows that

AFiY I * 0 . (12)

Furthermore, we have

0 > (,) )a(fl + FiAa )

k
Dividing by iji and passing to the limit as -> we obtain

(in view of (12))

fi j .0

By Proposition 2.1, we conclude that satisfies

0 Y i 0 , (ji)'fi = 0 , AFI' iy 0.

Consequently, it follows that (y1)l > 0 . But this contradicts the

fact that Yis reduced. E

Proposition 3.2. The i-th relaxation map Pi is both closed and
bounded.

Prof.- The boundedness is obvious. To show that P1 is closed,

let (yki) - (y,.,) and zk ->z where

z (- c,.. .,, _9ks k. ,+, , ... , k) 6,p (,,k)
1 Y Y

and

- 14 -
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It suffices io Oshowth&t there -exist.,a-scalar W with min F*,l} _

such that Yt " Yt w Y,- Yt)"  But for each k, there exists a scalar
1%k k k %,k,;k_ k) 1

E [min{w*,l),w*J such that Yi = k + i + ". Since the

k lie in a compact interval they have a limit point . This w will

do. 0

Lemma 3.2. The composition of two bounded (point-to-set) maps is

bounded.

Proof. Indeed, if M1 : U ->V and M2 : V -> are two bounded (point-

to-set) maps and T is a bounded subset of U, then the set

M2 oMI(T) ' UlM2(s) : s 6 M(T)}

Is obviously bounded. 0

Combining these results, we obtain immediately

Proposition 3.3. The map 8 is both closed and bounded.

Proof. This follows from Propositions 3.1 and 3.2 by applying

Lemma 3.2 and [8, Lemma 4.2]. 0

Remark. The boundedness of the complementarity map Cf is crucial

in order to apply Lemma 4.2 in [8] to deduce that 8 is closed. For

the same reason, the boundedness of 8 is important in proving the

,I closedness of the algorithmic map to be given later. The role played

by the reduction maps R in these deductions should now be very

transparent.

We point out that a vector z 6 81(y) might not be reduced with

respect to a*. This is because the relaxation map P1 does not necessarily

preserve "reducedness".

,, - 15-



4. The Reduced BSOR Algorithm. In its simplest form, the modified

version of the BSOR method for solving the LCP (1) can be described

by its associated algorithmic map

A- R 0 Im 0 BI (13)

More precisely, given an arbitrary non-negative vector y , the

algorithm generates a sequence k of vectors as follows. If

solves the problem (1), stop; Otherwise pick a vector y E A(k)

and repeat. For an obvious reason, we call this the Reduced BSOR

Algorithm. It is clear that any fixed point of the map A solves the

LCP (1).

There are essentially two new features in this Reduced BSOR

Algorithm. First, a (possibly unnecessary) reduction is performed

after each linear complementarity subproblem is solved. (The precise

manner in which these subproblems are solved is optional.) Second,

at the end of each iteration, a complete reduction (defined by the

map R) is performed. We have seen how reductions of the first kind

are useful. Basically, the second kind of reduction is needed for

a similar reason; namely, to ensure the boundedness of the sequence

y ) generated by the algorithm.

is Our principal convergence result for the Reduced BSOR Algorithm
,| is

Theorem 4.1 Applied to the LCP (1) for which (Al), (A2) and (A3)

are satisfied, the Reduced BSOR Algorithm either terminates with a

- 16-
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solution or else the sequence of iterates contains an accumulation

point which solves the problem.

We first establish three preliminary results. The first one

extends Theorem 1 in [4].

Lemma 4.1 Let

#Ill 1 ' 1M2 I +()I (x,
a C2 x J 21 M22) X2 sJ~ kX2/

where Mll, M12 ' M21 , M22' r, and s are given, 141l is symmetric and

positive semi-definite, and x1 , x2 are vector variables.

Let solve the LCP (r + M112 2 9 M11 ) for some vector R2. Then for

all x, > 0 and all w e(0,2)

+ (x+ - xl), 2) *(x, 2)

with equality if and only if xI also solves the LCP (r + M12i2, i *11).

Proof. Let 6 - (*(x1 + w(iI - xl), ) - f(x,.2 ))/w .

By the proof of Theorem 1 in [4], we have

I (R - xl)'(r + M1I 2) + (RI - x1)'M11Xl + Tw(I - xl)'M11 ( 1 " xl)

I (I - Xl)'(r + MI 2) + (RI - x1 )' 11 x1 + (RI - xI)'1411 (RI xl)

* 1 x1'(r + M i  12x2) - x1 '(r + Mll 1 0

If 6 0, then

( ,1 - x I  - x,) x1 (r + Ml1 I  + M 2R2)- 0

4 -17-



Since M11 is symmetric and positive semi-definite, M11xl I M 11 1 and

hence, x solves the linear complementarity problem (r + M12x2 , M11)

as well. 0

Corollary 4.1. For any y ER: and z EA(y),

*(z) < 0(y)

with equality if and only if y solves (1).

Proof. This follows easily from the definition of A and repeated use

of Proposition 2.2 and Lemmas 3.1 and 4.1. 0

Lemma 4.2. The sequence {yk} of iterates generated by the Reduced

BSOR algorithm is bounded.

Proof. By Corollary 4.1, we have for each k
_<, ) -A (yO)

k

The remainder of the proof resembles that of Proposition 4.1 and is

omitted. 03

Proof of Theorem 4.1. By repeated use of Proposition 3.3 and

[8, Lemma 4.2) one can easily show that the algorithmic map is closed.

The desired conclusion now follows from Lemma 4.2, Corollary 4.1 and

Convergence Theorem A in [8].

-18-

ij



5. An extension. It is rather easy to extend the reduced BSOR algorithm

to treat the following generalization of the quadratic program (4):

Find a vector y e RN to

minimize *(y) = q'y + y'My subject to Yi E Yi ,...,m. (14)
n.

Here the vector y is partitioned into subvectors yi 6 R and each Yt

is a nonempty polyhedral set in R :

YI fyl ER6n  : Biy1 < bi and Eiy i - fi}

where BI and E, are arbitrary matrices and bI and fi are arbitrary vectors.

The matrix M in (14) is symmetric and positive semi-definite and is parti-

tioned into submatrices MIj (iJ = l,...,m) where each Mij is ni by nj.

The vector q is partitioned accordingly.

Without repeating many of the details, we shall in what follows sim-

ply present the generalized version of (A3), define the component maps

and state the main theorem of convergence for the algorithm. We point

out that the program (14) includes as a special case the one treated in

[3]. In the latter program, each YI is a closed interval of R and the

matrix M is symmetric ard positive definite.

For I - l,...,m, let J denote the set of Indices in the subvector

and let O+YI denote the recession cone [7] of the set Yi, i.e.,

+ n
0 YI (dI R : Bidi 0 and Eid i -0

Y Define:n i

CI - {di ER qi'd 0O M11dI -O 0 O+Yl

and let4m

C (d RN q d a 0, Md -O) Y V

-19 -
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Let B denote the block diagonal matrix whose diagonal blocks are the B1.

m
Finally, let Y 17 Yt be the feasible set of the program (14). We

state the generalized version of the assumption (A3):

(A4) There exists a nonempty index set a such that for any vector

deC\ (0) , it follows that (Bd)j < 0 if and only if jEa.

For each i = l,...,m, let i J . Let d be a vector in

Ci \ (01 if Ci  ( (0) or the zero vector if CI = (0). Let d* - (d***..,dm).

A vector Yi r Yi is said to be reduced (with respect to the index

set mi) if at least one component in the subvector (bi - Biyl)ai is zero.

Let Si denote the set of reduced vectors in Yi. The reduction map

R.:Yi - Si is defined as follows:

Ri(yi) = Y - pidi

where .
a min{(BAiy bi)j/(Bidi)j j G ail if di

0 (otherwise.

Similarly, by dropping the subscript i, we may define reduced vectors in

Y and the complete reduction map R:Y - S, where S is the set of reduced

vectors in Y.
Extending the i-th complementarity map, we define the i-th sub-

program mapSi: Y -.Y x Si. Given y z (yl,...,ym) C Y, S1 (y) denotes

Y the set of all points (y, RI(y)) where 7- solves the quadratic program

minimize (qi + i MJYj)'zi + zi'Miizi subject to zi 6 Yi. (15)1

It is important to note that the set YI is included as the feasible

region of the i-th subprogram.
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Finally, the i-th relaxation map Pi:Y x Y- Y is defined as follows.
,

Letw <2 be a given positive scalar. For (y,yl) E Y x YI, the set

Piy consists of all vectors of the form

(Ylt.".""Yi-1 y'Yi Y+l"'"1Ym)

where y1 = yi + w(yi - y1) for some w such that min (w ,l) I <.w and

Y6 Yi"

Let B a Pi- si be the i-th component map. The algorithmic map A is

defined by (13). The main convergence theorem is the following.

Theorem 5.1. Suppose that the quadratic program (14) has an optimal

solution and that assumption (A4) holds. Then, provided that

the initial vector y is feasible, the same conclusion of Theorem 4.1 holds

for the reduced BSOR algorithm applied to the program (14).

Remark. The assumption that the program (14) has an optimal solution is

not crucial for the applicability of the algortihm. In fact, without the

assumption, the algorithm can still be applied but may terminate at a

situation where a certain subprogram (15) i has an unbounded objective

function value. It is easy to show that if this happens, then the ori-

ginal program (14) must have an unbounded objective as well.

2
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6. Concluding Remarks. This paper is intended to provide the

theoretical foundations for the Reduced BSOR method which is one of

the algorithms being considered in our investigation of computational

procedures for solving the capacitated quadratic transportation problem.

One of the possible formulations of the latter problem leads to a

natural partitioning (of F) with m = 4. It also has the property

that A is positive definite and diagonal.

Preliminary computational experience with problems of considerable

size (e.g. N Q 5000) suggests that the Reduced BSOR method may prove

efficient in this application and possibly others as well. We plan to

report on our computational results elsewhere.

-i
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