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LINEAR COMPLEMENTARITY PROBLEMS

by

R.H. Cottle and J.S. Pang

Abstract. This paper develops a reduced block successive over-
relaxation method for solving a class of (large-scale) linear
complementarity problems. The main new feature of the method is that
it contains certain reduction operations at each iteration. Such
reductions are needed in order to ensure the boundedness (and therefore
the existence of accumulation points) of the sequence of iterates
produced by the algorithm. Convergence of the method is established

by using a theorem due to Zangwill.
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ON THE CONVERGENCE OF A BLOCK SUCCESSIVE
OVERRELAXATION METHOD FOR A CLASS OF
LINEAR COMPLEMENTARITY PROBLEMS

R.M. Cottlg and J.S. Pang

1. Introduction. The present research i; motivated by an investigation
(sti1l in progress) of methods for solving a certain class of
“capacitated quadratic transportation problems*. One of these calls
for the application of the block successive overrelaxation (BSOR)
method [4] to the dual of the given problem.  However, a technical problem
is engendered by the unboundedness of the level sets of the dual objective
function and the consequent breakdown of the convergence proof used in [4].
At {ssue is the existence of an accumulation point of the sequence of
iterates produced by the algorithm. Fortunately, the structure of the
problem permits a modification of the algorithm that leads to a remedy for
; this complication. Applying a simple transformation to thé jterates forces
the new points to 1ie in a compact set. Convergence of the algorithm can
then be established by invoking a theorem of Zangwill [8].

Our purpose in this paper is to establish the convergence of the
modified BSOR for a class of problems somewhat larger than that under
. i consideration in the aforementioned study. To be precise, we concentrate
our attention on a (large-scale) linear complementarity problem of the

; l’ form: Find y, v € M such that

v=Ff+FAc + FAF'y >0, y>0, v'y=0. (1)




The following blanket assumptions will be maintained throughout
this paper: _
(A1) The matrix A €RP™P is symmetric and positive semi-definite;
(A2) there exists a vector x such that "
FAx £ 3 @
(A3) there exists an index set a such that for any y satisfying
AF'y = 0
f'y =0 (3)
0O+y>0
it follows that yj >0 if and only if j €a.

Remarks. (A3) holds vacuously if (3) has no solution. In fact, the

nonexistence of a solution to (3) is equivalent to the so-called Slater

condition, i.e. the consistency of the linear inequality system FAx < f.
If (A3) holds nonvacuously, the index set o must be nonempty,

though its cardinality could be as low as 1. In the capacitated quadratic

transportation problem mentioned earlier, (3) does have a solution.

There, the introduction of a seemingly mild additional hypothesis on the

capacities ensures the validity of (A3), and the index set a is easily

{identified. It corresponds to the supply and demand constraints of the

problem. See Section 6 for further discussion of this application.
Under assumption (A1), the linear complementarity problem (1) is
the set of Karush-Kuhn-Tucker conditions for the convex quadratic program
minimize y(y) = (f + FAc)'y + %y'FAF'y (4)
. subject to y > 0.




By a proof 1ike that of Proposition 2.1 below, (A1) and (A2)
imply the existence of a solution to (1) or, equivalently, (4).
If the matrix A is in fact positive definite, then (4) is

essentially the dual of the strictly convex quadratic program

‘minimize  o(x) = c'x + kx'Ax ()
subject to Fx < f.
Note that (A2) implies the feasibility of (5) and thus the
existence of an optimal solution.
In proving the convergence of iterative procedures for nonlinear
programming, it is customary to require that the iterates lie in a
compact set. The set 19 question is often a level set of the function
being minimized. In the context of the quadratic program (4), the

minimand is y. As we shall show later, the level sets of y are not

bounded if the system (3) is consistent.

¢ ' In the present paper, we shall show how the BSOR method described
in [4] can be modified in such a way that the possible unboundedness of
level sets will not affect the convergence of the method for solving

{ i 5 (4) - or, equivalently, (1). Our analysis provides a unified treatment
for both bdunded and unbounded level sets. In particular, the analysis

includes, as a special case, the recent study of Mangasarian [5] who

- — .
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treats the quadratic program (5) under a Slater condition.
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2. Preliminary discussion. Throughout the paper we denote the linear

complementarity problem (LCP)
w=q+M2>0, 220, w'z=0
by the pair (q,M). For a given M, let {(M) be the set of all vectors q
for which (q,M) has a solution. We recall that if M is positive semi-
definite, then q € K(M) 1f and only {f the inequalities
qQq+Mz2>0,220
are consistent. (See {1].)

In the next three results, we present some properties of the LCP (1).

Proposition 2.1. For all vectors a, the linear complementarity
problem
(f + FAa, FAF') (6)

has a solution.

Proof. As FAF' is (symmetric and) positive semi-definite, only
consistency need be verified. If the LCP (f + FAa, FAF') is inconsistent,
there must exist a vector u such that
u'(f+ FAa) <0, u'FAF' <0, u>0,
In tﬁe presence of (A1), the latter implies
u'f <0, u'FA=0, u>0, (7)
But (A2) implies the existence of a vector x such that (2) holds.

Clearly (2) and (7) cannot both hold simultaneously, so (6) must be

consistent. O




The theorem below characterizes the boundedness (and, consequently,
the compactness) of the level sgts of certain convex quadratic functions
¥y of interest in the present study. Part of its proof relies on a much
more qgeneral result of Rockafellar.

Theorem 2.1. Suppose (A1) and (A2) are satisfied. For any a, the
following statements are equivalent for the quadratic function

¥(y): = (f + FAa)'y + %y'FAF'y.
(1°) For each AER, the set

Y(A): = {y 2 0: ¥ly) <A}
is compact;

(2°) f + FAa € int K(FAF');
(3°) there exists; no vector y such that

AF'y =0, f'y=0, 0%y>0; (8)
(4°) there exists a vector X such that

FAX < f;

(5°) the LCP (f + FAa, FAF') has a bounded solution set.

Proof. Define

wWly) ify20
¥(y) =

+o otherwise

Then (1°) holds if and only if the level sets of ¥ are bounded. By
[7, Corollary 14.2.2], this is so if and only if O € int dom v*

where v* denotes the convex conjugate of Y. Now for any y* we have




v*(y*) = sup {y'y* - ¥(y) : y arbitrary}
= sup {y'y* - y(y) : y 2 0}
-inf {y'(q - y*) + 4y'My : y > 0}
%y'My if y solves (g-y*,M)
{- if (q-y*,M) has no solution

where q = f + FAa and M = FAF'. It therefore follows that
dom v* ' {y* : q - y* €EK(M)}

From this it is apparent that 0 €int dom ¥* if and only if q € int K(M).
Thus (1°) is equivalent to (2°). It is known from [2] that- (2°) fis
equivalent to the condition that q € K(M) and the only solution of the
system

u'q=0, u'M=0, ux0 (9)
is the zero vector. By Proposition 2.1, q € K(M) is implied by (A1)
and (A2) which are in force here. By the definitions of q and M and
the assumed properties of A, ( g ) becomes

u'f=0, u'FA=0, uz0.
Hence the equivalence of (2°) and (3°) follows. Combined with (A1)
and (A2), condition (3°) is equivalent to the fact that

u'f<0, u'FA=0, ux0
has only the zero solution. By an alternative theorem, this is

equivalent to (4°). The equivalence of (4°) and (5°) is a direct

consequence of [2, Theorem 3.1]. O




Theorem 2.1 has much in common with some characterizations
obtained by Mangasarian [6]. Our work along these lines was done
independently, however.

Theorem 2.1 implies among other things that if the system in
(3°) has a non-zero solution, then the level sets of the function ¢
are unbounded. In fact, the following stronger result obviously holds.
Proposition 2.2, Let y*’be any solution of the system

AF'y = 0, f'y = 0.
Then

7% e S TIE TS S e

v(y + 8y*) = y(y)
for all y and 6. O

To describe the BSOR method, we let the rows of the matrix F be
partitioned into blocks Fi (i =1,...,m). This induces a partitioning

of M = FAF' into submatrices Mij = FiAFj'. Let the vector f be

partitioned accordingly. Let Ji denote the set of indices of the rows
? in F, (and fi)’ Let n, denote the cardinality of J;, and finally

(referring to (A3)) let

ay = mﬂJ,i i=1,...m.

Obviously, the following implication holds:
AFi'yi =0

fi'yy =0 - (yi)j >0 if and only if j Ea, (10)

0%y, 20
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Once the partitioning above is introduced, then for i = 1,...,m
Proposition 2.1, Theorem 2.1, and Proposition 2.2 apply to the sub- .
problems (fi + F;ha, FiAFi') and quadratic functions

vilyy) = (F; + FAa)'y, + gy, "FAAF. 'y, .

In particular, as we shall show (Proposition 2.4), assumption (A) implies

that at most one of these subproblems can have an unbounded solution set.
Before proving this, we giye a geometrical interpretation of the assumption.
Let C denote the set of all vectors y satisfying the system (3) and also
containing the zero vector. The next result shows that assumption (A3)
holds if and only if the set C is a ray emerging from the origin.
Proposition 2.3. Assumption (A3) holds if and only if there exists a non-
negative vector y* such that

C={y:y-= Ay* for some x > 0} .
Proof. Suppose C is of this form. If the system (3) is inconsistent,
there is nothing to prove, so suppose it is consistent. This implies
that the vector y* must be nonzero. Let a be the set of indices which
correspond to the nonzero components of y* (i.e., its support). Obviously,
ifyec\ {0},~ then ¥s > 0 if and only if j € a.

Conversely, suppose that assumption (A3) holds. If (3) is inconsistent
it suffices to let y* be the zero vector. On the other hand, if (3) is
consistent, let y* be any one of its solutions. Let y € C\ {0}. Con-
sider the vector y - xy*. For suitable A > 0, the vector y - xy* will be-
long to C and have at least one zero component, say the j-th one with j € a.

By (A3) this is impossible unless y - xy* is the zero vector. This proves

the proposition. O
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Proposition 2.4. Let assumption (A3) hold. Then for any partitioning of

the rows of F, there can exist at most one index i for which the system
AFi'yi = 0, fi'yi =0, 0# 2 20 (11)1.
is consistent.

Proof. Indeed, if there are indices i; # i, for which (]])i] and (11)12
are consistent, let y:] and y:z be solutions of these systems, respec-

tively. Obviously, the vectors y] = (yl) and y2 = (yi) with

: 0 ifg# i1 ) 0 if 2 # 12
R PETy T
1 1 i, 2 ‘
satisfy the system (3). By (A3), we must have a C Ji] N Jiz = p. This

contradiction establishes the proposition. O
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3. Closedness of the component maps. The main tool used in our convergence

result for-the modified 8SOR method istdnvergence* ThePem”A' 67 ZangwTi1™
[8]. To apply the theorem, it is necessary to show that the “algorithmic
map" involved is closed. In this section, we establiish some preliminary
results useful for this purpose.

The total number of rows in the matrix F is N = Z? n;. For each
i=1,...,m let y: € Rn'i be either a fixed vector satisfying
the system (11), if the system is consistent or the zero vector it if is
inconsistent. Let y* = (y;,...,y;). Then obviously, y* is either 0 or
it satisfies the system (3).

A vector Y5 € R:i is said to be reduced (with respect to the index

set ai) if at least one component in the subvector (yi)a_ is equal to
i

*
zero. Then by (]])i’ y; is either zero or not reduced. Let S; denote

n;
the set of all reduced vectors in R+’. The i-th reduction map

n, :
Ri : R+1-* Si is defined as follows:

*

R‘i(‘yi) =Yy - Py

where

o { * PN T *

min {y;)5/(y;d; : 3€a37 ify; £ 0

pi = °i(y1) =
0 otherwise
*

The reduction map Ri is well defined and continuous. If ¥i = o,

then ay is just the identity map. Similarly,'by dropping the sub-

- H well as the

script i, we may define the reduced vectors in R

complete reduction map R: Rﬁ'* S, where S is the set of all reduced

vectors in Rﬁ.

-10 -




We define the i-th complementarity map ¢ : RE I RE x S; as

follows. Giveny = (y;,....¥;) € R,,- C;(y) denotes the set of all

points (y, R;(y;)) where y; solves the LCP (f; + FiRa, F.AF.') where
a=c+ z;i Fz‘yz .

In general, C; is a point-to-set map. By Proposition 2.1, ci(y) is

nonempty for each i.

Note that if the subproblem has a unique solution, then by
Theorem 2.1, Ri(yk) = ?} so that the i-th reduction is unnecessary.
Roughly speaking, the motivation for including the reduction step in
defining the map G is to ensure that C; maps bounded sets into
bounded sets.

Let w* < 2 be a given positive scalar. Define the i-th

N N

" . N
+ xR, =R  as follows. For (y.yi) ER, xR

retaxation map Pi : R "

the set 1§(y,§i) consists of all vectors of the form
(g5 e es¥ypa¥is¥qagse o o¥p)
where 91 =y 4 ;(91 - y;) for some w such that

* ~ * -~
min {w 1} gwgw and y; >0.

The relaxation step in [4] is a particular realization of the relaxa-

tion map where w is chosen as the largest possible value of w for which

* PS
w<w and Yy +m(y1. -yi);o.

A point to set map M: U -+ V is bounded if for every subset TC U,

the image U(M(t) : t € T} is a bounded subset of V.




!

Let B, = Py° C; denote the composition of the i-th complemen-

tarity and relaxation maps. In what follows, we show that Bi is a
closed and bounded map from R'_: into itself. We first prove this for
ci.

For each index i and vector a € RP 1let Xi(a) denote the set of

all solutions of the LCP (f1 + FAa, FiAFi‘).
Lemma 3.1. R;(X;(a)) = {y; € X;(a) : TT (yi)j =0} .
&y

Proof. For brevity, Tet T, be the set on the right. Since pily;) =0
for each y, € T, it follows that T, C Ri(xi(a))' Conversely, let
‘;i = R,(¥;) where y; € X;(a). Then obviously, TT (;1)j = 0,

i®

i
It can easily be shown that ;'i also solves the LCP

(f; + FAa, F,AF'). O

Proposition 3.1. The i-th complementarity map ci is both closed and
bounded.

Proof. To show that Ci is closed, let

¥y, y"ER,'f
>z (BAN = (v, ei(il{)) € ci(yk)-

As }1 is the 1imit of a sequence of reduced vectors ,9'; = Ri(}'!;), it is

itself reduced. It therefore suffices to prove that 9,‘ € X.‘(a) where




a=c+ ; Fj'yj. Lemma 3.1 implies that for each k
2%

a0, e rrmterary 20, (50D =0

where ak =c 4+ z Fiyt. Passing to the 1imit as k —> =, we obtain
¥

This establishes the closedness of C,. It is also bounded, for suppose the

contrary. Then there exists a bounded subset T C RE such that
U(C,(t) : tET} is unbounded. Hence there exists sequences
'{yk}ET and {zk} = {(yk, Ri(};()} with zKe ¢ (yk) such that Izkl —_ >,

k
Since (yk} is bounded, it has a convergent subsequence {y Y} tending to

some vector y € R': Let 9'; = Ri(;:'()' Since 1z2X4 — = and {yk} is

bounded, we must have l&';l —> o , However, the normalized sequence
k ’ :
Lyivllf'i“l} has a 1imit point, y;, and clearly j, is reduced. Without
k -~ ~
loss of generality, we may assume }i"/llyi"l —> y;. For each k  we

have by Lemma 3.1

k k k
(yiv)’(fi + Fha Vo FiAFi'yiv) =0

k k k
where a ¥ = ¢ + ; Fz'yzv' Dividing the above equation by l9ivlz and
2¥1

passing to the 1imit we obtain

(75) ' F4AFy 'y, = 0 .




By (A1) it follows that
AFi yi =0.

Furthermore, we have

k k
02 (7 ) (f; +Fha)

koo
Dividing by ly.“l and passing to the limit as k —> «» , we obtain
i v

(in view of (12))
b ’
(y;)'f, 0.
By Proposition 2.1, we conclude that 91 satisfies
0+ ¥; 20, (,yi)'f‘_i =0, AFi y'i 0.
Consequently, it follows that (91)0 >0 . But this contradicts the
i

fact that &i is reduced. O

Proposition 3.2. The i-th relaxation map Pi {s both closed and
bounded.
Proof. The boundedness is obvious. To show that Pi is closed,

Tet (.Yk,.;".;) —_> (.Y.S’i) and Zk —>2Z where

k
= (yl...,y,i 1° yioyi_'.]s"')y ) ep (.Y DYi)

4"
zZ = (.Y]...-.y,'_-l -.Yi.}'“]o--uym) .




"N
*
st

It suffices to Show that there exists-a-scalar. o with min {w*,1} <

.o -

such that ?1 = ¥y + 3(91 - yi).‘ But for each k, there exists a scalar

36 € [min@w*,13,0%7 such that 3 = y¥ + 3KGK - yK) 2 0. since tne

k

o° 1ie in a compact interval they have a limit point w. This o will

do. O

Lemma 3.2. The composition of two bounded (point-to-set) maps is
bounded.
Proof. Indeed, if M1 : U~V and Mz : V —>W are two bounded (point-
to-set) maps and T is a bounded subset of U, then the set

Mooty (M) = U{Mz(s) :s €M (T)}

is obviously bounded. O
Combining these results, we obtain immediately

! Proposition 3.3. The map Bi is both closed and bounded.

A ' Proof. This follows from Propositions 3.1 and 3.2 by applying
Lemma 3.2 and [8, Lemma 4.2]. O

Remark. The boundedness of the complementarity map Ci is crucial

i in order to apply Lemma 4.2 in [8] to deduce that Bi is closed. For

_I the same reason, the boundedness of Bi is important in proving the
! 3 closedness of the algorithmic map to be given later. The role played
' by the reduction maps Ri in these deductions should now be very
transparent.
. We point out that a vector z € Bi(y) might not be reduced with
respect to a,. This is because the relaxation map Pi does not necessarily

preserve "reducedness”.

- 15 -
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4. The Reduced BSOR Algorithm. In its simplest form, the modified

version of the BSOR method for solving the LCP (1) can be described
by its associated algorithmic map

A = R ° Bm ° LR ] ° 81

More precisely, given an arbitrary non-negative vector }o, the
algorithm generates a sequence {9k} of vectors as follows. If }k
solves the problem (1), stop; Otherwise pick a vector 9“] EA(ik)
and repeat. For an obvious reason, we call this the Reduced 8SOR
Algorithm. It is clear that any fixed point of the map A solves the
Lee (1).

There are essentially two new features in this Reduced BSOR
Algorithm. First, a (possibly unnecessary) reduction is performed
after each linear complementarity subproblem is solved. (The precise
manner in which these subproblems are solved is optional.) Second,
at the end of each iteration, a complete reduction (defined by the
map R) is performed. We have seen how reductions of the first kind

are useful. Basically, the second kind of reduction is needed for

a similar reason; namely, to ensure the boundedness of the sequence

' {Qk} generated by the algorithm.

Our principal convergence result for the Reduced BSOR Algorithm
is |
Theorem 4.1 Applied to the LCP (1) for which (A1), (A2) and (A3)
are satisfied, the Reduced BSOR Algorithm either terminates with a

(13)
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solution or else the sequence of fterates contains an accumulation

point which solves the problem.
We first establish three preliminary results. The first one
extends Theorem 1 in [4].

Lemma 4.1 Let

) My, [T) (%
X3 Moy M2z I %2 s X

¢(X],x2) '%‘
where M]], M12 = MZI.’ HZZ’ r, and s are given, M.n is symmetric and
positive semi-definite, and Xy X, are vector variables.
Let i] solve the LCP (r + M12§2’ H]]) for some vector iz. Then for
al X 2 0 and all 4 €(0,2)
o(xy + 0(X - x1)5%)) 2 4(x),%,) |

with equality if and only if Xy also solves the LCP (r + M]ZRZ’ M]]).
Proof. Let & = (o(x; + u(¥; = x;), %,) - ¢(x1,§2))/w-
By the proof of Theorem 1 in [4], we have
8= (X = %)t {r + Mypkp) + (Ry = xp)'Mypxg + 50Ky = x)) "My (%) - x;)

S (R = 1) e+ Mpko) + (kg - x))'Mygxg + (%) = x) 'y () - xy)

=X (r MRy MpKa) - xy '+ MR+ MpRy) < 0.
If 6 = 0, then

(x] - x])'H”(x1 - x‘) ] x]'(r + Hyaxy # M]sz) =0

-17 -
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Since My, is symmetric and positive semi-definite, MyXy = M“i] and
hence, x; solves the linear complementarity problem (r + M.lziz, H.n)

as well, O

Corollary 4.1. For any y SRE and z €A(y), )

wWz) < wly)
with equality if and only if y solves (1).

Proof. This follows easily from the definition of A and repeated use

of Proposition 2.2 and Lemmas 3.1 and 4.1. O

Lemma 4.2. The sequence Gk} of iterates generated by the Reduced

BSOR algorithm is bounded.

Proof. By Corollary 4.1, we have for each k
W5 < 2= wy%)
The remainder of the proof resembles that of Proposition 4.1 and is {

omitted. O

Proof of Theorem 4.1. By repeated use of Proposition 3.3 and

[8, Lemma 4.2] one can easily show that the algorithmic map is closed.
The desired conclusion now follows from Lemma 4.2, Corollary 4.1 and

Convergence Theorem A in [8].




5. An_extension. It is rather easy to extend the reduced BSOR algorithm
to treat the following generalization of the quadratic program (4):
Find a vector y € RN to T ] ST
minimize y(y) = q'y + Jy'My subject to ¥; €Yy i=1,...,m. (18)
n,
Here the vector y is partitioned into subvectors Y; €R ' and each Yi

n
is a nonempty polyhedral set in R 1:

i)

n
Y.i = {y,‘.ER'i : Biyi _gb,i and Eiy'i = f
where Bi and E1 are arbitrary matrices and b.i and fi are arbitrary vectors.
The matrix M in (18) is symmetric and positive semi-definite and is parti-

tioned into submatrices "ij (i,J = 1,...,m) where each M, is n; by n

J 3
The vector q is partitioned accordingly.

Without repeating many of the details, we shall in what follows sim-
ply present the generalized version of (A3), define the component maps
and state the main theorem of convergence for the algorithm. We point
out that the program (14) includes as a special case the one treated in
[3]. In the latter program, each Y; is a closed interval of R and the
matrix M is symmetric and positive definite.

For i = 1,...,m, let J; denote the set of indices in the subvector

y; and Tet O*Yi denote the recession cone [7] of the set Yo .ee,

+

n.
L -

Define
ni . +
c1 = {di €R " 9 di = (0, Mﬁdi =0} NO Yi

and let
N m o+
C=(d€ER :q'd=0, Md=0} N l| 0 Yi‘
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Let B denote the block diagonal matrix whose diagonal blocks are the Bi'

m
Finally, let Y = TT Y; be the feasible set of the program (14). Me
1=

state the generalized version of the assumption (A3):
(A4) There exists a nonempty index set a such that for any vector

deC\ {0} , it follows that (Bd)j < 0 if and only if j € a.

For each i = 1,...,m, let a; *a n J,-. Let d: be a vector in

C; \ (0} if C; # (0} or the zero vector if C; = (0}. Let d” = (d],... d).

A vector ¥; € Yi is said to be reduced (with respect to the index

set a.i) if at least one component in the subvector (bi - Biyi)a. is zero.
i

Let S; denote the set of reduced vectors in Y,. The reduction map

Ri:Yi +S; is defined as follows:
*
Rilys) = ¥y = 049

where ' * *
p; 2 esly;) =

otherwise.
Similarly, by dropping the subscript i, we may define reduced vectors in
Y and the complete reduction map R:Y = S, where S is the set of reduced

vectors in Y.

Extending the i-th complementarity map, we define the i-th sub-

program map S;: Y =Y x S,;. Giveny = (yy,....y,) €Y, S;(y) denotes

the set of all points (y, Ri(:y')) where ii solves the quadratic program

minimize (q1 + j}i M‘.jyj)-zi +32z,'M,.z, subject to z; € Y,. (15)1

It is important to note that the set Yi is included as the feasible

region of the i-th subprogram.
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Finally, the i-th relaxation map Py:Y x Y; =Y is defined as follows.

Letm*<2 be a given positive scalar. For (y,}}) €Y x Yy, the set
P;(y,y;) consists of all vectors of the form

| (yl""’yi-l';i’yi+l""’ym)
where ;i =y; + ;(71. - yi) for some w such that min {m*,]} ;; ;u* and.
jg €Y;.

Let By =Py°S; be the i-th component map. The algorithmic map A is
defined by (13). The main convergence theorem is the following.
Theorem 5.1. Suppose that the quadratic program (14) has an optimal
solution and that assumption (A4) holds. Then, provided that
the initial vector 90 is feasible, the same conclusion of Theorem 4.1 holds
for the reduced BSOR algorithm applied to the program (14).
Remark. The assumption that the program (14) has an optimal solution is
not crucial for the applicability of the algortihm. In fact, without the
assumption, the algorithm can still be applied but may terminate at a
situation where a certain subprogram (15)1 has an unbounded objective
function value. It is easy to show that if this happens, then the ori-

ginal program (14) must have an unbounded objective as well.
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6. Concluding Remarks. This paper is intended to provide the

theoretical foundations for the Reduced BSOR method which is one of
the algorithms being considered in our investigation of computational
procedures for solving the capacitated quadratic transportation problem.
One of the possible formulations of the latter problem leads to a
natural partitioning (of F) withm = 4, It also has the property
that A is positive definite and diagonal.

Preliminary computational experience with problems of considerable
size (e.g. N M 5000) suggests that the Reduced BSOR method may prove
efficient in this application and possibly others as well. We plan to

report on our computational results elsewhere.
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