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Technical Narrative

Charles L. Dolph and Alexander G. Ramm

1. Scientific Area, Central Objectives, Main Approach to the Problem.

Scalar and electromagnetic wave scattering is of great interest in physics

and technology. In the open system theory in the framework of the traditional ap-

proach one should deal with operators with continuous spectrum. From the computa-

tional point of view it is much more convenient to deal with operators with discrete

spectrum. Furthermore in many practical problems the systems have resonant proper-

ties so that only one or two terms in an appropriate representation of solutions to

scattering problems are of importance. These ideas were extensively studied in the

physics and engineering literature (2-5]. Engineering study was initiated by

Kacenelenbaum (1968) [2] in the USSR and by C. Baum (1973) [3] in the USA. Mathe-

matical study was initiated by Ramm (1969) [4]; a review paper which includes a

discussion of the gEM is Dolph-Scott [5]. The ideas are used in any scientific

area where wave scattering is under study. The objective of the theory is to give

a computational approach to scattering problems which uses eigenfunction expansions

(of nonclassical type) for those operators with discrete spectrum. These operators

are nonselfadjoint in most cases, because in open systems there are some losses

(radiation losses etc.) which lead to dissipation. Therefore, from the mathematical

point of view, the scientific area is the spectral theory of nonselfadjoint operators

and the objective is the study of eigenfunction expansions for nonselfadjoint opera-

tors. These questions have been insufficiently studied in the literature [1]. For

example, nothing is known about eigenfunction expansions for the basic operator of

laser theory:
-1

FAf a f expi(x-y) f(y)dy

Fi

the above problems consists of the use of integral or, more generally, pseudo-dif-

ferential equations on the boundary of the scatterer. This approach requires the

study of spectral properties of the corresponding nonselfadjoint operators.

I.
,
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2. Air Force Relevance of the Research.

While such relevance is already clear from the nature of the problems men-

tioned in Section 1, it is worthwhile to point out that the Singularity Expansion

Method (SEM) and the Eigenmode Expansion Method (EEM) can both be considered as

examples of the general theory mentioned in Section 1. Also, the problem of target

identification which consists of the identification of the obstacle (target) from the

transient field scattered by this obstacle, can be treated within the framework of

the general theory.

3. Main Results.

The following results were obtained during the contractual period:

1) A criterion for the validity of the SEM and EEM was established.

2) The basic relation between the SEM and the EEM was given in that

the poles of the Green's function of the SEM were shown to be in

one-to-one correspondence with the zeros of the eigenvalues of

the EEM.

3) A constructive numerical process for determining the poles of the

Green's function was developed.

4) The continuous dependence on the poles was established for a class

of boundary perturbations.

5) Sufficient conditions for the root vectors in the EEM to form a

Riesz basis [3] and a Riesz basis with brackets (2] have been found.

6) Variational principles for the spectrum of compact nonselfadjoint

operators have been established.

We do not formulate these results in detail because they were reported to

AFOSR earlier ([6] - [10]) and presented in the series of talks listed in the

Appendix.

4. Open Problems, Directions for Future Research.

There are many open problems in this field. Many of them are of immediate

practical interest. We mention some of the open problems.

1) To what extent do the complex poles of Green's functions determine

the shape of the body?

-2-



2) To what extent do purely imaginary poles of Green's functions

determine the shape of the body?

3) When is it more convenient to use the single layer potential for

field representations rather than the double layer potential?

4) What is the short wave asymptotic distribution of the complex poles?

5) What stationary principles exist for the complex poles?

6) What is the relation between multiplicities of the complex poles and

of the zeros of the eigenvalues of the corresponding integral equations?

7) To prove that the root system of the integral operators in scattering

theory forms a Riesz basis without brackets.

8) Whether the complex poles of Green's functions for convex lossless

bodies are simple?

9) Consideration of electromagnetic scattering problems.

5. Suggestions.

It would be interesting and useful to organize some numerical experiments

(e.g., calculation of the complex poles) for a practical evaluation of some of the

algorithms obtained in the course of this research. To this end a couple of graduate

students and a postdoctoral fellow could be incorporated.
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Appendix I

Talks on Nonselfadjoint Operators and Scattering Theory Given by A. G. Ramn

Symposium on Scattering June 1979 Columbus, Ohio

Colloquium September 1979 University of Delaware

Colloquium September 1979 Iowa State University

Symposium on Ill-Posed October 1979 Newark, Delaware
Problems

Colloquium and Workshop October 1979 Naval Research Laboratory
Mathematics Research Center

Technical Report October 1979 Univers ofsWiscnsinUniversity of Wisconsin

American Mathematical Society,November 1979 Kent State University

4 Colloquium November 1979 Princeton University

Colloquium November 1979 Cornell University

Seminar Talk November 1979 University of Michigan

Colloquium and
Talk for Geophysics Dept. November 1979 University of Utah

Seminar Talk November 1979 University of Michigan

Colloquium December 1979 Texas A & M

Seminar Talk January 1980 University of Kansas
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Colloquium February 1980 Brown University

Colloquium March 1980 Argonne Laboratory

Organizer of Special Session April 1980 Indiana University
American Mathematical Society

University of California
Special Lectures May 1980 at San Diego and Berkeley

Special Lectures May 1980 Stanford University
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Appendix II

Invited Talk: "Nonselfadjoint operators in diffraction and scattering"
by C. L. Dolph and A. G. Ruam; presented at Meeting of
American Mathematical Society, Boulder, Colorado, March 1980

NONSELFADJOINT OPERATORS IN DIFFRACTION AND SCATTERING

C. L. Dolph and A. G. Ramn

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109

1. In many problems of interest for physicists and engineers non-

selfadjoint operators arise naturally. For example the EEM

(eigenmode expansion method) can be described as follows. Let 0

be an exterior domain with a smooth closed compact boundary r,

(A + k2)u = 0 in fl, ur= f. lxl -u - iku) - 0

as lxi - • k > 0

Let us look for a solution of (1) in the form

u - fra(t) expCikrxt)(41rxt) dt , rxt Ix - ti . .(2)

For the unknown a we get equation

-1Ac -- fr exp(ikrst )(4 wr st) " a~t)dt - fCx) •(3)

4 Operator A is nonselfadjoint in L2 (r). Suppose that its root

system forms a basis of II = [.2(r). Then we can look for a solu-

tion of (3) in tie ro-n of the series, expanding o(t) and f(x)

according to the roor v,'ctors of A(k). This is called EliM for

solution of (I). Thus we have question 1) Does the root system

of A(k) form a basis of I1?

It is easy to prove that the Green function G(x,y,k) of the

exterior Dirichlet (or Neumann) problem can be meromorphically

-6-
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continued on the whole complex plane k and its poles k lie

in the lower half-plane Tm k < 0. If f is a smooth function

with compact support, v =fG(x,y,k)f(y)dy, f=L and

(*) Jvj < C(I - Ikla) " , a > O.S, C = const., C = C(Imu k), then

the solution of the problem

= Au in n, t > 0, ul. 0, ulto=OIt1t t=O =f(x) (4)

can be represented in the form

u (X,t) = n 1 exp(-ik t)vj(xt) +o(exp (-11m k nt),t (5)

where v.(x,t) grow not faster than tm  as t - + and m is

some integer. Expansion (5) is an example of SED(singularity

expansion method). This leads to questions: 2) What can be

said about location of the poles k. ?; 3) When is (*) valid?;

J4) to what extent does the set {k} determine the obstacle?; S)how

can the k. be calculated?; 6)whether the poles k. are simple?
J

2. The answer to question 1) is given in [1] and is described

below. In [2]-[4] some results about bases with brackets are

given. Some answers to question 2) are given in [5]-[7].Ansivers

to question 3) are given in [8]-[10]. Answer to question 4) is

unknown. Answer to question S) is given in [11],[12]. Answer to

6) is unknown, but some engineers (C.E. Baum e.g.) think that if

r is convex then the Green function of the exterior Dirichlet

problem has simple poles. Some particular cases when this is

true are discussed in [13]. In (14], a survey of the SEM is given

and [15] presents an engineering point of view. In [16] a survey

of what is known about questions l)-6) is given and in [17] somei relevant results can he found. In [18] the relation between SEMt

and thc nmatchmaticaml scattering theory is discussed. In [19],[20]

variational principles are discussed for nonscifadjoint problems.

3. In this section we answer question 1). If A = L + T, where

L is a selfadjoint operator on a Hilbert space I!, the spectrum

(A.] of 1. is discrete, X = cnP(1 * O(n- 8)) where c,p,6 are
n

- 7



some positive constants, and ITfl- < c1 fL fl, c1 > 0o a < 1 for

all f e D(L), D(La)CD(T), then: 1) the root system of A

forms a Riesz basis of H (A 6 R) if a > I and j(l -a) > 2;

2) if 6 > 0, p(l - a) > I it forms a Riesz basis of H with
brackets, (A 6 Rb); 3) if A (n+ A 2 - 0 as n ,

n ntl nl
then A e R. Let us give the definition of the Riesz basis with

brackets. Let the system (f.) form an orthonormal basis of H,

m < m < ... m < .. is a sequence of integers, (F.) is
1 2 n

the sequence of the subspaces, where F. is the linear span ofi
f1  f.l'" ' f  -i Let (hj} be a minimal and complete

j j+l ..

system in H, H. is the linear span of he ,... ,h M - 1if

there exists a map B G L(H), BH. = F., j = 1,2,..., then the
3 j

system [h.} is called a Riesz basis of H with brackets and

the number5 m. define the bracketing. By LQH) we denote the
3

set of linear bounded invertible operators which map II onto H.

4. Problems.

1. Find an asymptotic formula for k. as Ik.I * - where

(ks} are the poles with minimal imaginary parts. For purely

imaginary poles some information about asymptotic distribution is

given in 17].

2. To what extent does the set {k.} determine the

obstacle?

3. Is it true that the complexopoles of the Green function

of the exterior Dirichlet problem are simple provided that r is

convex?

~REFERENCES
1. A.G. Ramm, On the ba.is property for the rooi vectors of
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Appendix III

Other Papers Written by A. G. Ramm During the Period: 1 June 1979 - 31 May 1980

1. Electromagnetic wave scattering by small bodies. Proc. International
Symposium on Scattering and T-atrix, Columbus, Ohio, June 1979,
Pergamon Press, N.Y. (1980).

2. Investigation of a class of systems of integral equations, J. Math.
Anal. Appl. (1980).

3. Perturbations preserving asymptotic of spectrum of linear operators,
J. Math. Anal. Appl. (1980).

4. Uniqueness theorem of use in general relativity (with P. Mishnaevsky),
J. Math. Anal. Appl. (1980).

5. On the quasistatic boundary value problem of electrodynamics (with
C. L. Dolph), J. Math. Anal. Appl. (1980).

6. Two sided estimates of the scattering amplitude at low energies, to
appear in J. Math. Physics, (1980).

7. Stable solutions of some ill-posed problems, submitted to Tech. Reports
of Naval Research Laboratory, (1980).

8. A new proof of the absence of a positive discrete spectrum of the
Schrddinger operator (with B. A. Taylor), J. Math. Physics, (1980).
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Technical Narrative

C. T. Tai

During the contract period I have directed my effort to the study

of the singularity behavior of the eigenfunction expansions of various

Green's functions in electromagnetic theory; they include the Green's

function for Poisson's equation and the dyadic Green's function for

Maxwell's equations. The discontinuous behavior of the eigenfunction

expansion of these functions is discussed with the aid of equivalent

layers of surface charge, current sheet, and surface polarization. The

principal result shows that in an eigenfunction of a typical Green's

function the point singularity of a Green's function is represented equi-

valently by a layer of surface singularity. This characteristic is

analogous to the Gibbs' phenomenon where the representation of a discon-

tinuous function by an orthogonal expansion (Fourier series) creates

the spikes which is absent in the original function. The only difference

is that in our case the surface discontinuity has replaced the point

singularity in the eigenfunction expansion.

In the case of the dyadic Green's function we have examined in

detail the function pertaining to a rectangular waveguide. Similar studies

are currently being done for functions associated with other diffracting

bodies.

A paper, "Equivalent Layers of Surface Charge, Current Sheet and

Polarization in the Eigenfunction Expansions of Green's Functions in Electro-

magnetic Theory", based on this research has been written. It has been

submitted to the IEEE Transaction on Antennas and Propagation for publication.

'I It is my hope that this research will be continuously supported by

the Air Force Office of Scientific Research so the singularity behavior of

various Green's function in electromagnetic theory will be better understood.

F -1iN-
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A communication has been written to comment on the recent paper by

A. D. YaghJian ("Electrical dyadic Green's functions in the source region",

Proc. IEEE, Vol. 68, No. 2, pp. 248-263, February, 1980). A copy of the com-

munication, which has been accepted by IEEE for publication, is also attached

to this report. It seems clear that much of the confusion created by that

article is due to the lack of understanding of the singularity behavior of

dyadic Green's functions. For this reason, it is desirable that further work

should be done to educate the public as well as to consolidate the concept and

the foundation of this discipline.

,t
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ELECTRIC DYADIC GREEN'S FUNCTIONS IN SOURCE REGION*

C. T. Tai

Radiation Laboratory
The University of Michigan

Ann Arbor, MI 48109

The author of a recent article [l] bearing the above title has

criticized severely the derivation and interpretation of the well

established formula

0 f e dv(1)
V3

obtained by the delta function technique. Using the classical function

technique he has derived a formula of the form

- 1o m . go 3 dv' + E.3 (2)

where go denotes what he calls the conventional electric dyadic Green'se

function and Is the source dyadic. There are several ambiguities in

his paper that we would like to call attention to.

For convenience the function 9e in (1) will be designated as the

standard electric dyadic Green's function as distinct from go in (2).

Some comments on the characterization of ge as described by that

author will be given later. If go in (2) is replaced by 9e then

the equation represents the so-called regularized version of

-13 -



rn 7
(1) as first discussed by Van Bladel [2) who only considers a principal

volume, Vd, in the shape of a sphere. In 1972 this correspondent, with

help from Dr. Olov Einarsson, also studied the source dyadic for bodies

of different shape. Although the work was not published the information

was passed verbally to various people including the author of [1].

What we have done was to demonstrate the identity

lir C x v x ge - k2 ge] dv = I (3)

V a 0

for several different shapes, V6, including spheres and cylinders.

Equation (3), of course, is simply a statement of the behavior of Ce

in a neighborhood of the source point, and this boundary condition

is implied when one writes the differential equation for e in the form

v x vx e - k2 e = I6(-I) (4)

using the delta function together with the idemfactor as the

inhomogeneous part of that differential equation. The derivation of

(1) based on the delta function technique merely imposes this

characterization in an elegant way as first shown by Levine and

I Schwinger [3]. The formula itself without using the dyadic notation

can also be derived by the method of potentials. It is not clear to

this correspondent why the author of [1] considers (1) to be an

ill-conditioned solution, particularly in view of the existence theorem

,, - 14



for this integral discussed by Fikioris [4]. On the other hand,

it one accepts (2) as the rigorous solution with go replaced bye
e then it certainly can be written in the form of (1) since, bys

definition

lim f e dv' =

V6+O V 
k2

It should be mentioned that for numerical calculations of E(A) involving

a free space Green's function the regularization has to be applied to

finite cells. In this case (1) can be separated into two parts:

i(W) = i f f o J dv' +f e 3 jv' (6)

V j- V V

The value of the second integral in (6) now depends not only on the

shape of V6 but also on its size. In a yet unpublished work [5] this

aspect of the problem is considered in detail but the topic is outside

the scope of the present note. What we want to point out is that the

regularization with an infinitesimal V6 merely gives an interpretation

of (1), and in numerical work it is the finitely regularized version

(6) that must be used.

One of the most confusing aspects of [1] deals with the

characterization of go. According to [I], go satisfies the following

equations:

- oe L[ x~o'( R) (7)

k2 5



V x go go
e m (8)

By eliminating go from (7) and (8), one findsm

Vxvxg eo. k2 O . , g
'-kgde e (9)

The above equations, of course, is contradictory to (4), and the

solution to (9) is not what the author of [1] used in deriving (2),

nor in illustrating its application to the waveguide problem. It is

well known that a Green's function, scalar, vector, or dyadic, is an

entire entity. There is nothing like conventional or unconventional.

It has a unique and pre-specified behavior in the neighborhood of

the singularity, and therefore automatically satisfies a condition such

as the one described by (3). It is, perhaps, the mishandling of this

aspect of the theory that leads the author of (1] to create an

unorthodox 'equation' like (7).

,I ~;We consider now the application of (1) and (2), with go

replaced by ge in the latter formula, to find ( ) inside a waveguide.

The explicit expression for ge is known to have the following form [6]

e - z -, (10)
k2

where the series + applies to z > z', the series " to z < z', and

the source point is located in the plane z z'. The series ! is
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discontinuous at z - z' and it is also singular at We '. e

assume a current distribution which has a z component only.

Substituting (10) into (1) we obtain

( iWio  f * • dv' + ' (11)Vj o

In evaluating the volume integral we use 9+ for z > z' and - for

z < z'. The author of [1] illustrates the application of (2) using

a principal volume in the shape of a needle. He uses our as his

go. The result yields

e

iWU Lim f S t . dv'

= 0[ dv'- Lim f * dv'] (12)

V V 6

The integrals are not carried out in the referenced paper, but in a

private communication to this correspondent Professor Robert E. Collin

has proved analytically that the second integral in (12) is indeed

equal to J z/(iW ) for a typical distribution of Jz in a rectangular
waveguide. The proof for an arbitrary 3 can be done accordingly, though

it is by no means a simple exercise. In fact, this correspondent

' failed to recognize the identity until it was point out

to him by Professor Collin. From this example it is clear that there

is no necessity to use the regularized version of (1) to find 9(A) In

a waveguide. Unlike free space problems a direct application of (1)

-17-
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and (10) avoids the tedious calculation of the explicit term J ztiC 0 )

when the shape of the principal volume is not wisely chosen. Of

course, if a principal volume in the shape of a pill-box is chosen

(2) also yields immediately (11). It should be emphasized again that

one must use the standard ge in (2) and not the one described by

the solution of (9).

There are many other statements in [1] which are not comprehensible

to this correspondent. For example, there is absolutely no discrepancy

between the work of Taiand Ro enfeld and that of Rahmat-Samii.

The author appreciates the many valuable discussions on this

subject with Professor Robert E. Collin. The kindness of Professor S. W.

Lee for sending a prepublication copy of Reference [5] is gratefully

acknowledged. Professor T.B.A. Senior made valuable suggestions in

regard to the preparation of this communication. The comments from the

author's graduate students, particularly Messrs. M. Naor and S. Giles,

* were very helpful in the presentation of this work.

I
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