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FOREWORD

The content of this report presents results of the first twelve
month period, July 1, 1978 through June 30, 1979, of studies on the
thermal property research on composite materials.

Under the sponsorship of the Air Force Office of Scientific
Research, grant no. 78-3640, the technical monitor was initially Lt.
Steve Lamberson and was subsequently changed to Mr. Donald Russell of
The Flight Dynamics Laboratory, Wright-Patters-n Air Force Base, Dayton,
Ohio.

Steady-state-conduction analyses were performed on composites
made of fibers in resins. Orientations of fibers considered are (1)
uni-directional arrangements in which all fibers are aligned in one
direction and (2) 00 - 900 arrangements in which fibers are arrayed
alternately in mutually perpendicular directions. The method of
analysis is either an exact solution of the conduction heat equation
by boundary collocation or a numerical relaxation of the three-
dimensional heat conduction. The results expressed by an effective
thermal conductivity in three principal directions supersedes the so-
called model equations established by previous investigators.

The report was submitted 24 September 1979 through the contractor,
The Ohio State University Research Foundation, 1314 Kinnear Road,
Columbus, Ohio 43212.
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SECTION I

INTRODUCTION

1.1 COMPOSITE MATERIALS

The idea of a composite material is a very broad one indeed.
Generally speaking, a composite material is any material having more than
one distinct phase which exist together on a mcroscopic scale. This

broad definition covers materials as diverse as concrete, fiberglass,
and even the skeletal structures of animals. In these examples, two
or more components exist together to create a "higher performance"
structure than could be made of one of the components alone. In this
context, higher performance signifies a higher strength-to-weight or
strength-to-volume ratio of the material.

An important class of composite materials today are those in which
high strength fibers are molded into a general matrix material. This
category is still quite broad in that it includes such varied materials
as steel reinforced concrete and fiberglass. This report is concerned
with that general type of engineering material in which continuous
nonwoven fibers are oriented in a matrix in a very specific arrangement
so as to produce a high structural efficiency. The fibers used are

typically extremely strong and possess a high modulus of elasticity.
Some common fiber materials are carbon and boron, for example. The
matrix material ranges from organic materials to those of a ceramic or
metallic nature depending on the purpose of the overall composite.

Typically, the fibers are the load carrying component of the
structure, while the matrix serves to hold the fibers in place and
provide a means of transmitting the load to other parts of the material.

As one example, graphite, which is among the most common fiber
materials in use today, has an ultimate strength on the order of

500,000 psi (1 When it is then noted that its density is one-fifth
that of steel, it is evident that a material made from it can have
extremely good strength-to-weight characteristics. In addition, graphite
has a modulus of elasticity two to three times that of steel, and so these
composite materials are extremely stiff.

becaust is because of the good strength-to-weight and stiffness charac-
teristics that some of the first applications of fibrous composite
materials and the bulk of the research took place, and still do, in the

4 aerospace industry. Aircraft radomes were made of laminated fiberglass
because of the high strength needed and the desirable characteristics
with respect to electromagnetic wave propagation. In some applications,
solid rocket motor casings were made out of glass fibers. Similar
casings are now being designed with much stronger carbon fibers. In

short, composite materials are being used extensively today throughout

" Number in brackets refers to reference number.

i1
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the aerospace industries and are being chosen more and more for the

primary structural components.

These materials can technically be described as nonhomogeneous
because of the distinct phases present and nonisotropic because the
overall properties are dependent on the direction being considered.
However, on the macroscopic scale where the dimensions of the material
are large compared to those of the fibers and the spacings, they can
be considered as homogeneous. Here, this means that properties are
essentially uniform on a macroscopic scale and thus do not vary with
position, although they may still vary with direction.

The properties within each component--fiber or matrix--may vary
with direction although typically they do not, except for a few of the
fiber mechanical properties. The thermal properties of the two com-
ponents typically do not vary with direction, and none of the properties

varies with position within the component. Thus, taken seperately, they
can be considered as homogeneous and isotropic.

Typical composite materials of the type being considered for current
use are constructed of many layers, or laminae. Each lamina is formed
individually with the fibers being laid down in a parallel fashion

and then being covered by the matrix material. These lamina which are
one fiber thick are then stacked together to form a laminate, or

composite. The stacking is done so as to have all the fibers parallel
and thus have very pronounced directional characteristics, or the
layers can be rotated with respect to each other to give more isotropic

characteristics. The term quasi-isotropic is often used when an at-
tempt has been made to arrange the laminae to give a laminate whose
properties are nearly directional-independent.

The simplest composite from the geometrical standpoint is one in
which all the fibers are parallel and are stacked in a square array as
shown below.

; 00()0

00()0

Figure 1. Square array cross-section.

[F 2
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For the arrangement of Figure 1, it can be seen that there are
three mutually perpendicular planes of geometrical symmetry in the
material. In the figure, two planes are shown on edge with the third
laying parallel to the paper. These planes are referred to as the
principal planes with a set of coordinate axes overlayed on them
referred to as the principal axes.

A material which has these three planes of symmetry is said to be
orthotropic on the macroscopic level--a subset of all nonisotropic
materials. It should be noted that a material can be homogeneous, or
of uniform structure, and still have these directionally dependent
properties.

In the simple composite structure shown, the properties such as
strength, elasticity, and conductivity will be different along the three
mutually perpendicular directions since the two components will typically
have quite different properties. For example, for the strong fiber and
weak matrix combination, the strength will be much higher along the
direction parallel to the fibers than the other two directions. When
the fibers are isotropic, the overall composite will be orthotropic,
having the principal axes with respect to the properties the same as
the principal axes with respect to geometry. The vast majority of
composites in use today are orthotropic in this manner. The major
exception is when the fibers are randomly placed such that there are
no planes of symmetry, and consequently it is not orthotropic.

A great deal of effort has been extended toward studying the
mechanical properties of composite materials. This is due to the fact
that it is the mechanical properties which are so outstanding and which
brought composites into widespread use. Studies of thermal properties,
and specifically studies of heat conduction, are lagging in the literature.
However, because of the critical applications for which composites are
being used there is a definite need for studies of heat conduction.
This report will present detailed numerical studies of heat conduction
in the steady state in fibrous composite materials.

1.2 HEAT CONDUCTION IN COMPOSITE MATERIALS

In general, the amount of heat conducted through an orthotropic
material per unit area when in steady state is given by the following4 equations (31:

-T 3T aT

-qx K + K + K
xx xy aT XzDX

-qy Ky - + Ky." + Ky aT--

yx ax yy ay yz az

-qz K +K +K -zX TX zy ay zz az()

i3



In these equations x, y, and z are any arbitrary orthogonal axes,
and the constant Kij gives the heat conducted in the i direction due
to a temperature gradient in the j direction. For an isotropic material,
only the values of Kx, Kyy, and Kzz would be non-zero. The nine values
of K are not found in the literature, however, because of the infinite
number of orientations of the x-y-z coordinate system that can be used.

Let the principal axes of conductivity be denoted by r, s, and t so
that the principal conductivities are denoted as Krr, Kss, and Ktt.
Also, let the cosines of the angles between the principal and the general
sets of axes be denoted by n1j where i is the name of the general axis
and j is the name of the principal axis. In this manner, the heat flow
per unit area can be described by the following equations:

qx = nxrqr + nxs q + nxtqt

q = nyrqr + nysqs + nytqi

q = nzrqr + nZsq + nztqt (2)

The principal axes have the unique characteristic that a temperature
gradient along one axis wilI cause a heat flow only along that axis. In
other words, the values of Krs, Krt, Ksr, Ktr, and Kts are zero. This
means that heat flow along the principal axes is described in the much
simpler manner as shown below. i=

-K

q8 it"s IS

= "Ktt I (3)
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Because temperature is a scalar, the temperature gradients expressed
in these two coordinate systems are related by:

ST n a +
r nxr ax yr C nzr Az

=T -+ n +nas ax x ny8 y n z z
IS X8~ Ys ay

S = Xt + yt 9- + nzT (4)

Now, by combining Equations 2, 3, and 4, the following relationship
is obtained:

x (Krrxr ssnxs tt

+ (Kfrrnxrnyr + Kssnxsnys + Kttnxtnyt) T

+ (Krnfnzr + K nxns + Kttnxtnzt) (5)

Equations for qy and qz are similar but are omitted here.

It is clear that Eluation 5 is of the same form as Equation 1.
Consider the first term of the equation for qx" Then the following
relationship holds:

K K na + K na  + K (6)
Kxx rrnxr ss xs ttnxt

'4

From this and similar reasoning for the other eight conductivities,

an important conclusion can be drawn: when calculating heat flow in any

direction in an orthotropic material, the only conductivities which are

needed are the threc principal conductivities.

5



By knowing the three principal conductivities and the temperature
field, the totaLL heat flux is found by the following integration:

Q = 'Area e.(n)dA - lArea '" • 3r (7)

Here, q is the magnitude of the heat flux vector, q and n is the
cosine of the angle between q and the normal to the area, dA.. Consider
the x direction to be perpendicular to a plane of integration. Since
the x-y-z coordinate system is arbitrary anyway, this is no special
restriction. Then, Equation 7 can be rewritten as follows:

Qx Area qxn dA for n = I

inlArea qxdA

(K T + iT-+ K aT~d 8
= Area XX (8)X y z

Now consider the restrictions that the material be homogeneous
(properties independent of position) and that the temperature gradients
be constant over the area, A. Then the following equation is obtained:

Qx= (-K T--x  iT ~'" A (9)
SX zXy -a xz 5

Therefore, since these three conductivities are dependent solely
on the three principal conductivities and the geometry, the total heat
flux can be easily found if the material is homogeneous and if the
temperature field is uniform.

A composite material can very often be considered homogeneous
when the dimension of temperature resolution is much larger than that
of the fibers or spacings. Then from that practical viewpoint, the
material could be analyzed with proper representation of an effective
conductivity. If a uniform temperature gradient were then imposed
across a large section of composite material, the effective conductivities
could be used with Equation 9 to determine the heat flux.

When nonhomogeneities with a conductivity different from the
matrix material exist in the material, the temperature field will be

very complex as it curves around the nonhomogeneities. However when
the nonhomogeneities are very abundant, the minute details of the heat
flux in the vicinity of each will be repetitious and predictable. An
effective conductivity for the material would then take into account the
net effect that the nonhomogeneities have on the overall heat flux
without having to consider the details of the temperature field in the
vicinity of each inclusion.

6



rrr

Only the principal effective conductivities are necessary since
by using them the effective conductivity in any direction can be
determined. The procedure for calculating these principal effective
conductivities for fibrous composite materials will be discussed in
detail in the following sections.

1.3 STUDIES OF CONDUCTION IN COMPOSITE MATERIALS

The problem of heat conduction in general composite materials can be
divided into three basic groups. The first of these groups includes
layered composites in which continuous layers exist whose properties are
different from adjacent layers. The second group includes those materials
where various shaped particles are dispersed randomly throughout a
matrix material. The last group includes fibrous composites with
specific orientations which is the subject of this report.

Because of the simplicity of layered composites, exact methods can
be employed to solve for effective conductivities. Their solutions

are in the form of relatively simple expressions and can be used as
simplified problems for more complex geometries. There has been a

great deal of work concerned with the effects of thin films
and interface resistances. This is not considered in this effort.

Materials in which particles are distributed randomly through a
matrix are by their nature not suitable to exact studies, and a
statistical approach is much more productive. Hashin and Shtrikman [9]
developed bounds for cases where only the volume ratio and component
conductivities are known and where the geometry is quite arbitrary.
These bounds are quite close for low volume ratios but diverge very
rapidly for higher values. Other bounds in which the particles are
specified to be spheres or in which a well dispersed random mixture is
specified are discussed by Hale [10]. For dilute suspensions of a
powder within a matrix, he has presented equations to predict the

thermal conductivity. All of the work in this area points to the fact
that with large volume ratios the geometry of the material is critical,
and accurate predictions of effective conductivity cannot be made
without that information.

For fiber-reinforced materials, the Hashin [9] bounds are of course
applicable since they allow for any fiber and packing geometries.
Beran and Silnutzer [U1] developed improved bounds for parallel fiber
composites where the fiber geometry was specified although no attempt
was made to consider the packing geometry. Elsayed and McCoy [12] then
developed better bounds for cases when the packing geometry is completely
defined. These bounds showed that packing geometry is absolutely
critical for volume ratios greater than 10 percent.

Tsou, Chou, and Singh [8] approximated a fibrous material by
averaging the properties for each layer and then treating them as con-
tinuous homogeneous regions with heat flow transverse and parallel to



them. This approximation is satisfactory for volume ratios of less
than 20 percent, but it deteriorates rapidly for higher values.

Springer and Tsai [13] refined this approach by assuming one-
dimensional heat flow through the material. They were then able to
integrate across a layer of the material and arrive at an expression
for the effective thermal conductivity. For a cylindrical fiber and
a square packing array with heat flow transverse to all fibers, the
equation is as follows:

2'KtanR,, 4 t7n- (10)
matrix

B = 2 ( Kma t r iX -1) (1)
K fiber

As with other methods, these equations are good for low volume
ratios but are inaccurate for high volume ratios.

Behrens [141 developed a simpler expression (Equation 12) which
incorporates volume ratio and fiber geometry information but says
nothing of the packing geometry. For circular fibers his equation is
as follows:

K matrix I ~i)(2

This equation is also developed by analogy to the equations for ef-
fective shear modulus [1]. A comparison of these two equations is shown
below for a square array, (Figure 2).

,4 Springer and Tsai, s equation gives a somewhat lower thermal con-
ductivity than that of Behrens. They do however agree with each other
within 5 percent up to volume ratios of 50 percent.

Because the effective shear modulus in a composite is governed by
equations analogous to those for heat conduction, any results obtained
for the shear modulus are directly applicable to those for heat con-
duction. Adams and Donner [161 used a finite-difference approach to
determine the effective shear modulus for the square array. Fiber-to-
matrix shear modulus ratios and volume ratios were varied considerably.
The results they obtained compare well with those presented in the ap-
pendix to this report. They were however restricted to the square
packing array.
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3
.0

~Equation 12

,,., - Equation 12

0

Kfiber/Kmatrix = 1.1

0 .00o .25 .50 .75

Fiber Volume/Total Volume

Figure 2. Comparison of equations for square array.

Thus, a number of methods have been used to predict the effective
conductivity of a parallel fiber composite material. However, most
were restricted to the simplest packing geometry and made broad
simplifying assumptions. Reference 1 contains a good review of these
various methods. No attempt has been made to study the 00 -90 case in
which adjacent layers of fibers lie at right angles to each other.
The present report will present complete parametric studies in each of
these areas without the use of broad simplifying assumptions.

1.4 SCOPE OF THE PROJECT

It is the purpose of this study to analyze the principal effective
conductivities for various geometrical arrangements of fiber reinforced
composite materials. The following basic types of geometries will be
analyzed:

1.) Unidirectional fibers with all regular packing patterns.
I 2.) Layers of fibers perpendiculaa to adjacent layers with

selected values of layer separation-to-fiber separation
to be studied.

For these cases the following quantities will be varied in these
parametric studies:

i.) Ratio of fiber to matrix conductivity.
ii.) Ratio of fiber to total volume.

9 /
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SECTION II

PARALLEL FIBER MATERIALS

2.1 PROBLEM DEFINITION

The simplest class of composite materials is that in which all the
fibers are parallel to each other and which behaves according to the
assumptions discussed in section 1.3. The geometry for these materials
can be described in two dimensions, and when a uniform temperature
gradient exists across the fibers, the temperature field that exists is
two-dimensional.

The configurations of this class fall into two basic categories.
Cross-sections of each are shown in Figure 3. The first category is
referred to as the rectangular array. The second is referred to as
the staggered array because every other layer is staggered horizontally
by one-half of the distance between fibers. For both, the independent
variables from the geometric point of view are the vertical distance
between layers, the horizontal distance between fibers in each layer,
and the volume ratio which is the ratio of fiber volume to totalvolume.

0000 0000
0000 000
0000 0000
0000 000
Rectangular Array Staggered Array

Figure 3. Parallel fiber arrays

It is desired to find the heat flux across a plane within a

particular composite material. As discussed in Section I, the heat flux
for an isotropic material is given by the following equation:

-(KA-)da (3)

LAi3)
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Here, n is the direction normal to the plane of integration. On a macro
scale a composite is definitely not isotropic. However, each component
is so this equation is valid when integrating across a particular
component.

To find the effective conductivity for a composite, a uniform (one-
dimensional) temperature gradient on the macro scale must be imposed
across a section of uniform thickness. The heat flux across a plane
in the material must then be determined according to Equation 13. The
effective conductivity is then given by Equation 14. Here, AT/An is
the uniform temperature gradient across the section on the macro scale.

= ef f  Q/(A-) (14)

It is therefore necessary to find the temperature field in the material
on the scale of the fiber and spacing size so as to perform the integration
of Equation 13.

The rectangular array will be considered first as it is the simplest
arrangement for a composite material. Consider a uniform temperature
gradient (from the top to the bottom) to be imposed over a section of
this material. To do this, let the top face and the bottom face be at
constant temperature so that in general heat flows from top to bottom.
Then, on horizontal lines of symmetry the temperature will be constant.
This can be seen to be true because on lines of symmetry where the
general temperature gradient is perpendicular to the line, effects of
changing conductivity above exactly cancel the effects of changing con-
ductivity below. Then the temperature along the line becomes uniform
as the overall temperature gradient is uniform.

On vertical lines of symmetry, lines which trace the heat flow through
the material will be vertical. In other words, the temperature gradient
in the horizontal direction along vertical lines of symmetry will be
constant at zero. This is the case because the effects of changing con-
ductivity to the left exactly cancel the effects to the right, and so
there is no net effect to cause the flow of heat to deviate from a
vertical path. This of course assumes that the material has large
numbers of fibers. Lines of symmetry are superimposed on a section of
rectangular array below.

Based on the one-dimensional vertical temperature gradient, a
repeating pattern can be identified as that inside the heavy lines.
It is repeated below with the previously discussed temperature
boundary conditions along the edges indicated. The obvious restrictions
at the fiber-matrix interface are that the temperature is the same in
each region and the heat flux normal to the interface is the same in
each region.

12



Heat Flow

Direction
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Figure 4. Rectangular array repeating cell.

IY
T = Constant

Matrix

aTi

Fiber

Fie

T Constant

Figure 5. Rectangular array boundary conditions.
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Therefore, the temperature field needs to be found in this area
so that the heat flux can be obtained by integrating across some plane.
The heat flux will be the same as that for all the other repeating
cells in the material and so the effective conductivity found for this
area is the same as that for the material as a whole. The rest of this
section is devoted to finding the temperature field given these boundary
conditions and performing the subsequent integration. Figure 6 shows a
typical set of constant temperature lines for a rectangular array with
the particular constants given.

T - 1.0

T -0.8

T -0.6

T 0.4

T 0.2

T 0.0

Kfiber/Kmatrix = 4 Volume Ratio .442

Figure 6. Rectangular array constant temperature lines.

The staggered array is considered next and is assumed to have the
same one-dimensional vertical temperature gradient imposed on it. The
lines of symmetry then appear as shown in Figure 7.

As with the rectangular array, a repeating pattern appears as
outlined by the heavy line. The temperature field behaves along these
lines of symmetry as it did with those of the rectangular array and so
these conditions are shown in the sketch of the repeating area in

Figure 8.

14
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4%Heat Fl~ow
Direction

Figure 7. Staggered array repeating cell.

T-Constant
Fiber

Matrix
3T 0

Fiber -T-Contant

*~i.

Figure 8. Staggered arrayr boundary conditions.
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As in the case of the rectangular array, the temperature field

must. now be found so that the heat flux can be found across a plane.

Figure 9 shows a typical set of constant temperature lines for a

staggered array having the indicated constants.

T = +1.0

T "o.6

T = +0.2

T = -0.2

T = -0.6

T= -1.0

Kfiber/Kmatrjx 4 Volume Ratio = .42

Figure 9. Staggered array constant temperature lines.

2.2 RECTANGULAR ARRAY

The general thermal energy balance equation for a solid material

is the Fourier equation:

' 3T
pC 7 =7(k7T) (15)

Here, the first term is the energy storage term, and the second is the
heat transfer term.

When the problem is assumed to be steady state with no heat gen-
eration and with conductivity independent of temperature as it is here,

the equation reduces to that below:

16
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VaT =0 (16)

This is commonly referred to as the Laplace equation and is valid for
both the fiber and matrix regions. When this is written out in polar
coordinates, the following expression is obtained:

(17)
7r7 r aO r )r

The general solution to this two-dimensional equation is that shown
below where A, B, C, and D are constants.

00 n -T =nE r (Ancosne + Bnsinne) + r'(C cosne + Dnsinne) (18)
n=1 nnn

Now, consider the rectangular array which is the simpler of the
two parallel-fiber arrangements. The problem to be solved is that
shown in Figure 10. The temperatures across the top and bottom edges
are arbitrarily taken as +1 and 0 respectively and the value of dT/dx
must equal zero along the left and right sides. The horizontal side
is of length a and the vertical of length b. The fiber radius is
arbitrarily taken as 1.

T=1

i b

aTa

OX 0

rr

' T=0

ax

Figure 10. Rectangular array problem.
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The conductivities of the fiber and matrix are Kf and Km res-
pectively and the conductivity ratio, Kf/Km is called 13. Consider
first the region I which is that region inside the fiber. On the lower
edge where e = 0, then T = 0 and so the constants An and Cn of
Equation 18 must both be zero. Furthur, at the origin the temperature
is finite and so Dn must be zero so as not to have a singularity at
that point. For the matrix (region II), An and Cn must be zero but
there is no such restriction on D .

On the left side 3T/dx must be zero in both regions. This is
equivalent to saying that 3T/de must be zero at e = v/2. Since T con-
sists strictly on sine terms, the derivative will consist strictly of

cosine terms, and all coefficients where n is even must consequently be
zero to satisfy the boundary condition. Therefore, the temperature
in each region can be described as shown below where the constants
have been redefined to avoid confusion between the two equations.

TI =_Anr sin(ne) (19)

TI n [Bnrn + Cnr-n]sin(ne) (20)

Consider now the interface between the fiber and the matrix. At
this line where the radius, r, was chosen to be 1, the temperature in
each region must be the same.

at r = 1, TI = TII

niA sin(ne) = n= (B + C )sin(ne) (21)
n -1 n n=1 nl n
odd odd

From this expression, it can be seen that

A =B +C nSn n n

for all n. Therefore, An c n be eliminated from the expression for T,

to give the following equations for temperature:

T = (Bn + Cn)rnsin(ne) (22)
nj (B

TI n (B rn + C r'n)sin(ne) (23)
n=1 n n
odd
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The second condition that must be met at the interface is that the
heat flux normal to the interface in region I must equal the heat flux
normal to the interface in region II. This condition is described by
the following equation:

KI -r= KIITII (24)

When Equations 22 and 23 are differentiated with respect to r and
the values for r = 1 substituted into Equation 24, then Equation 26 is
obtained.

Kf nE n(Bn + Cn )rn'I sin(ne)] =

0 =K E n(Bnr n- - Cn r-nl)sin(ne)] (25)

odd
[ n(B - C )sin

Kfj 1 n(Bn + Cn)sin(ne)] = (ne) ] (26)

This can now be simplified to the expression of Equation 29. Here,
the ratio Kf/Km is referred to as o.

n [n(B n + Cn)sin(ne)] = E In(B - C )sin(ne)] (27)

O(Bn + C) = B - Cn  (28)

Cn = -B( 1 ) (29)n n A+ I

* Using this equation for Cn, the equations for the temperatures can
now be written in terms of one constant for each value of n as shown
in Equations 30 and 31.

T = B-( 2-)rnsin(ne) (30)

odd n-n]
TBnCr ( T 1)r'nsn(ne) (31)

odd
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A new constant En is now defined so as to give the equations for
temperature in their final form.

2B
E n -(32)

Enr sli(ne) (33)
n1
odd

+ n r( )r -(9---- (34)T n 2 ) nr )r2

These are the general equations for temperature where the origin
is placed at the center of the fiber. They incorporate the boundary
conditions that T = 0 on the bottom and that dT/dx = 0 on the left side.

Now, the values of En have to be found. To do this, more boundary
conditions are needed. All possible boundary conditions have been
utilized in region I, but there are still two available in region II.
These are namely that the temperature is constant at a value of 1 on
the top edge and dT/dx is zero on the right edge. These conditions
cannot be satisfied exactly at all points since polar coordinates are
used in Equations 33 and 34. They can however be satisfied exactly
at a finite number of points with the view point that they will be
very closely satisfied at all other points along those edges. Let the
boundary conditions be satisfied at five, or M + 1, equally spaced
discrete points for the constant temperature condition and at four, or
M, equally spaced discrete points for the constant dT/dx condition as
shown below. At the top right corner point, both conditions are to be
satisfied. In addition dT/dx is already made to equal zero in
Equation 34 at the lower right corner and so this need not be one of
the discrete points.

The expression for dT/dx in region II is found according to the
following procedure using Equation 34.

kT # Tr + (T 35)Jx &r Ix he ax
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Figure 11. Rectangular array matching points.

IT W nn-1n -n-

E n +1 )-. + ( ) ]sin€.,) (36)
ir f=. n ~ n 2 )2

odd

&T nn )~l-( 1)r"nJcos(ne)
be n

hr = 1 os(6) (38)

Arr

;.

JIG =-sin(e)
A-- r (39)
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nT = ' )r n- + (ZJ)r -n-][sil(fl)Cos(O)] +
ax- n=. n

odd )

6T r)rf -" sinl(l1)() +
ad B-l -flsinC(n + * (1

Therefore, Equation 141 can be set equal to zero for the coordinates
of the M points shown in Figure 11 to give M equations. Similarly,

Equation 34 for TI, can be set equal to 1 for the coordinates of the
(M + 1) points where it applies to give another (M + 1) equation. This
gives a total of (2M + 1) equations. Now, if each equation is carried
out to include (2M + 1) terms, there will be (2M + 1) unknowns in the
(2M + 1) equations. These unknowns are El, E3 , E5, ---, E 4  , E4M+l.
Thus, the equations can be solved for these unknowns by various methods.

They can then be substituted back into the temperature equations (33 and
34) to give the temperature at any point. The only approximation that
has been made is to treat the power series as that of only (2M + 1)

terms instead of an infinite number. The assumption here is that the
terms not included contribute to a negligible value compared with the

sum of the first (2M + 1) terms. As was shown earlier, this temperature

field can then be used to calculate the effective conductivity which

will be done in Section 2.4.

2.3 STAGGERED ARRAY

The problem to be solved for the staggered array is that shown in

Figure 12. For reasons that will be discussed below, the temperature
across the top will be taken as +1 and that across the bottom as -1.

Consider now the analysis in Section 2.2 for the rectangular array.
The analysis leading to the general equations for temperature (Equations
33 and 34) is valid for the staggered array shown except that one minor

change must be made. That change is that now the temperature across the
bottom edge is taken as -1 instead of 0. To compensate for this, the

constant 1 must be subtracted from the rectangular array equations to

give the following equations for the staggered array:

22

I,



fY T=+1

bx 
x 0

a

Figure 12. Staggered array problem.

T = -1 n E nr sin(ne) (42)I' n=if

T1  -1 (l + £r + (1 -A)r-n)sin(nO) (4i3)
odd

t ,Because of the added complexity of region III, a similar equation

cannot be written for the temperature in that region. However, an

analytical solution similar to that used for the rectangular array is
still possible and will now be discussed.

A typical plot of the constant temperature lines for a staggered

array with a value of 0 = 4 and a volume ratio (fiber volume/total
volume) of .442 was shown in Figure 9 previously. It is noted that a

temperature field symmetry exists in this area. The symmetry is such

* that the temperature field in the top half is a mirror image of that

in the bottom half. Figure 13 illustrates this symmetry.
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Figure 13. Staggered array temperature symmetry.

Consider points F and G which are located the same distance above

and below the midplane respectively. They are also displaced by equal

amounts horizontally from the center as shown. Thus, they are sym-

metric to point O at the center.

Because of symmetry, point 0 can be seen to have a temperature of

zero because there are equal changes in conductivity above and below
and to the left and right. By similar reasoning, points F and G can be
seen to have opposite temperatures.

Tf = -Tg (44)

This demonstrates the advantage of choosing the top and bottom

temperatures as they were.

It can also be seen that symnetric points such as F and G have

equal values of oT/oy.

24
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This can be reasoned in a way similar to that used in looking at the
temperatures. Because the lines of constant temperature are symmetric,
the gradient T/)y) values must be the same. If T/3y varied, then
the spacing between the constant temperature lines would have to vary
accordingly which would cause at least some of the temperatures to be
unsymmetric.

Because of this symmetry, if the temperature field is known in

one-half of the area, then it is also known in the other half. Further,
it does not matter which half of the area is studied so long as one
of every pair of symmetric points is included in that half. It can be
seen that any straight line drawn through the center point will separate
the area into halves which will each include exactly one of every sym-
metric pair of points. Because points F and G are symmetric with respect
to the center, it is impossible to draw a line through the center and
have both points in the same half of the area.

The solution to the staggered array is similar to that for the
rectangular array except that the discrete points will now be located
on a line through the center. At these points, the symmetry discussed
above will be enforced on pairs of symmetric points along this line.
This will provide adequate boundary conditions for an area which in-
cludes the lower left fiber to be solved to get its temperature field.

In this way the expressions for the temperature in areas I and II are
all that is needed to solve for the entire temperature field, and the
complexities of region III are now dispensed with.

'there are a large number of choices as to which line through the
center should be used for the discrete points. The only restriction
on this choice is that the line should not cut across the fibers
because no point may be used which exists in region III.

Consider the three possible geometries in which the volume ratio
is made as large as is physically possible (see Figure 14) for a given

ratio of the sides of the area. The cases shown are where the fibers
are in contact along vertical, diagonal, and horizontal lines res-

pectively. The best lines for the matching points are sketched on the
~figures as dashed lines.

In geometries where the fibers touch on the diagonal the only

matching line that can be used is the one perpendicular to the diagonal
that runs from the lower left to the upper right corners. Thus, this

matching line is used for all geometries because it can never intersect

the fiber. Then in cases where fibers touch along horizontal lines,
additional points are used on the right side. When fibers touch along
vertical lines, additional points are added along the top. These points
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Figure 14. Staggered array matching lines.

that are on the top or right side introduce boundary condition equations

identical to those that were derived for the square array. For complete-
ness, these equations are repeated below.

For points on the top edge:

T + = E [(' ' )r - 1j-)r-n)sin(nO) (4t6)

odd
Along the right side:

-II = 0 nE 1(- -)rnisin(n-1)e] +1 n=1 n 2

odd
13 -1)r n-jsnC~nj)9](47)

T f -1+ nE E n(LiI)rn + O'j-)rn)sin (nof) (I4.)

ad-'lf
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Figure 15. Staggered array matching points.

Tf -Tg (50)

+ Brl+ (L.~f~i~G)+

odd

2 f 2 .)r f lsn(ne = +2 (51')

Everything in Equation 51 is known except-for En. Therefore,
this can be used to produce one equation with the required number of

terms for every pair of points used. Further, another equation is

4 produced by using Equation 43 to specify the temperature of point 0 at

the center.
4

"-1 + EE E( ")r +s (no (52)I =o -I+ o+ (Lj )r ]i~n 0
odd
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Now, the value of 3T/qy must be made equal for the pai-: of points

on the matching line. This calls for an expression for 6T/2y in region

II, and it is therefore formulated below.

IT U B k- 1,T )~r (53)

arn 22
: odd

-bT E nE + I(rn )r -ncos(ne)(5

odd

= in(e) 
(56)

C)y

,,= 8(O) (57)

3T = E )r9n (Ij...&)rflIcos(nO)c22(I6tln2

, 
+

C ~ 8r - 6 )rft1)sjin(nO)9in(O) (58)

+ 
(Lj&) r-n-leosC r nl)e)} (59)
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Equation 59 is the simplest form for 3T/dy in region II. Now the
condition of symmetry will be imposed on points F and G in the same
manner that the temperature symmetry was imposed to give Equation 61
below.

3TI~j (60)

TnE~ f(1 + B)rn-1cOsE(n-1)9f] + (1 - 8)rfl'lcosE(n+1)Gf)

required number of terms for every pair of points used.

Therefore, for a given geometric arrangement the matching line is
drawn as was discussed earlier. Then discrete points are placed along

this line and either the top or right side--whichever is appropriate.
For each pair of symmetric points, two equations are written (51 and 61).
For the center point, Equation 52 is written. Then for each point on
the top or right side, either Equation 46 or Equation 47 is written.
Each equation is carried out to the same number of terms as there are
equations so that the number of unknowns will equal the number of tqua-
tions. The equations can then be solved for the unknowns which are
El, E3 , E , --- , E2M_, E2 1=I for M equations. They can then be put
back in te original iemperature equations \42 and 43) to obtain the
temperature field at any point. As with the rectangular array, the
only approximation that has been made is that the power series has been
reduced to a finite number of terms. This temperature field can then
be used to calculate the effective conductivity in Section 2.4.

2.4 EFFECTIVE CONDUCTIVITY

Using the procedures described in the two previous Sections, the
temperature field can be determined for both the rectangular and the

• 'staggered arrays. This temperature field can then be used to obtain
the effective conductivity.

4 2.4.1 Rectangular Array

The temperature field for the rectangular array is given by the
following equations:
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TI = 2 -1E rnsirn(n*) (62)
n

T1-=_[(I + I )rn+ (I - )r-n]s in(n) (63)

II = 1 n 2

odd

Here, M is the number of matching points that are used to satisfy the

boundary conditions. The value of TII is good for the entire region
II for the rectangular array.

The heat flux must now be found through the unit area. As dis-

cussed previously, it can be found by Equation 64 by integrating
across any line that cuts across the unit area.

=-J(K -)dr (64)

Here, n is the direction normal to the line of integration.ISince the heat flux will be the same across any line, the bottom
edge will be used since it produces the simplest expressions. Thus,
the normal direction is the y direction and the analysis proceeds as
follows:

Q =)dr - j-(K 1(K_= )dr (65)

Here the integration has been split up into the two regions since
their conductivities differ. As was the case before, "a" is the length

of the horizontal side. An expression for 6T/c~y can be found as shown
below.

; _ T ST r + TaeY O + (66)

S sn )(67)
Sy

. cos( ) (68)
by r
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However, the integration is being performed along the line e 0
so the following expressions are obtained:

a Ij o (69)

Q= Kfo R~I 0 )dr - K1  a( 6 ,TI )dr (70)

Differentiating the expressions for temperature in each region

with respect to e gives Equations 71 and 72.

e2 L nEnr~cosn)

2M-1 (71- n ( r (n e) (71)
n-= n
odd

TI = lE [ _)r n + -)r'n~cos~ne) (72)

ae n=1
odd

For e = 0 the integration can now be carried out to give Equation
73 for the heat flux.

Q -I2M-1E 214-1 1 + 8(nl
n1 - i lE n 2 - 2

odd o (73)

The effective conductivity is defined by Equation 74 where AT/An
is the overall temperature gradient across the entire unit area under
study.

Keff AreQ aT (74)
~an

K Q - (75)
ef a(=L)

K 'f! bJ 2-1I +K 2 TE L€ 8€( " - €Ian-1)

l-odd odd (6)
(76)
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By nondimensionalizing this expression by dividing through by the
matrix conductivity, KII, the following simplified expression can be
obtained:

K =f b 2 -IE (l+ aB)n - wn (77)
1  a nn=l 2 2

odd

Therefore, once the constants, En, have been determined as was
discussed in Section 2.2, they can immediately be inserted into
Equation 77 to give the effective conductivity.

2.4.2 St a ered Array

Consider now the staggered array discussed in Section 2.3. In
that analysis the temperature field was determined in only half of the
rectangular unit area while symmetry was used to give the field in the
other half. The two basic types of divisions of the rectangular area
are repeated in Figure 16.

i ---0

Figure 16. Staggered array solution regions.

The temperature within the regions outlined by heavy lines was
found directly by the equations of 2.3 which are given below. The

expression for TI, is not valid outside of the heavily outlined
regions.

T -i + E-Enrnsin(ne) (78)

TII -1 + 21-1 U +k

odd
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It can be seen that as long as a is greater than or equal to 45
degrees, the entire bottom line is included in the region for which
the equations are applicable. It can be seen that the effective con-
ductivity for these cases can be analyzed in exactly the same manner
as was done for the rectangular array. The expressions for temperature
are the same except for a constant, and this constant does not affect
the value of 6T/6e which is used to calculate the heat flux across the
region. The only other change that must be made in that analysis is
that the overall temperature gradient across the rectangular unit area,
AT/b, is now -2/b instead of -1/b. This produces the following ex-
pression for the effective conductivity for staggered arrays where a
is greater than or equal to 45 degrees:

-f b 2 M-1 ni (I B - (8,
K11  2a n nL( 2 2a

Consider now the other case for the staggered array where a is
less than 45 degrees. Equations 78 and 79 are not valid along the
entire bottom line and so they cannot be integrated along it to give a
valid result. However it should be noted that the center point, 0,
and the line from it to the origin are always included in the region
for which the equations are valid. Thus, an integration can be performed
along this line to five the total heat flux across it. Further, because
of the symmetry in the temperature field with respect to the center
point, the heat flux across the line from the center to the top-right
corner will be the same as that across the line segment just discussed.
The major steps to this integration are shown below where z represents
the distance from the origin to the center.

Q = E-fZ (K M r()(81)o n J2

Q = Q yCos(a) - Qx sin(a)](2) (82)

Here, the integration is being performed along a line of constant
a while QX and ( refer to the s and y components of Q respectively.
Equation 81 can then be rewritten as follows:

,,K= -o m;(ST

Q -cosWa) (K aTY-1. r - sin(.)f (K )drj(2) (83)

These integrations are performed in the same manner as was done

for the rectangular array. Then, the following expression for Q is
obtained:
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)Z Wn~os-a (84&)

The effective conductivity can now be found in the same manner as
was done before.

K~f (85)
Area(dl)a n

Kf f  (86)
a(~

K II a n E (. W D) 5 fl)() (87)

By inserting the previously obtained values of En into this
equation, the effective conductivity can now be found. This is of a
similar form as that obtained before, although now the angle a enters
into the expression where as before it was made equal to zero.

2.5 EOMETRIC RESTRICTIONS

The solution method evolved in this investigation for the stag-
gered and the rectangular arrays was devised in such a way that the
effective conductivity could be calculated for any physical arrangement.
The equations that were derived will of course give numerical answers
no matter what volume ratio (fiber volume/total volume is used. It is
therefore desirable to know the maximum physical volume ratio for each
of these arrays for various angles a.

For the rectangular array, the maximum volume ratio occurs when
the radius of the fiber is made equal to either of the sides of the
unit area. The two cases are shown below.

For the first case, where a is greater than 45 degrees, the
critical volume ratio is given by Equation 88. For the case where a
is less than 45 degrees, Equation 89 is the valid equation. It should
be noted that at 45 degrees the two expressions are identical.
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Figure 17. Rectangular array maximum volume ratios.

Vcritical - 4tan(a) a <45 (8)

j Vcritical = a 450 (89)

For the staggered array, three different situations occur which

physically limit the value of the volume ratio. The limiting conditions

are shown below.

C. CI
ka

!1.L

Figure 18. Staggered array maximum volume ratios.

The first case occurs for angles greater than 60 degrees when the
fibers are in contact along a horizontal line. If the volume ratio
were made any greater, the fibers would overlap, and this of course is
impossible. The second case occurs for angles between 30 and 60 degrees
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and is characterized by contact along diagnal lines. Finally, the
third case shows contact along vertical lines and occurs for angles
less than 30 degrees. The expressions for these critical volume ratios
are given below.

Vcritical = > 60° (90)

Vcritical = 8cos(aa)in(a)" =o.= 30 (91)

r Itan (a) < 30, (92)
Vcritical 2

Table 1 is a short table of the values of critical volume ratio.
It should be noted that there is a large variation in these values
demonstrating that some materials are much more efficient than others
in terms of the quantity of fiber that can be included in the composite.

TABLE 1. CRITICAL VOLUME RATIOS

a Critical Volume Ratio

degrees Staggered Rectangular

25 .733 .366
30 .907 .453
35 .836 .550
40 .798 .659
45 .785 .785
50 .798 .659
55 .836 .550

60 .907 .453
65 .733 .366

2.6 REsuLs

The results for the rectangular arrays and the staggered arrays
are presented in graphical form in Appendix A to this report. For both

cases the value of Kfiber/Kmatrix was varied from 0.1 to 100. The
volume ratio was varied from 0.3 through the highest possible value.

Finally, the fiber angle, a, was varied in 5 degree increments from 25
degrees through 65 degrees.
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The accuracy of the data used to produce these graphs was good to
three significant figures. This was deemed to be quite satisfactory
from an engineering point of view.

Figures A-1 through A-7 for the rectangular array and A-21 through
A-29 for the staggered array represent complete parametric studies.
Equation 12 has been plotted on these graphs as this equation is by
far the most common equation found in the literature for predicting ef-
fective conductivities. This equation does not take into account the
varying packing geometry and so it is independent of Cf. Thus, only one
curve for this equation is shown on each graph.

Equation 12 gives accurate effective conductivities for conductivity
ratios below 5 or for volume ratios below 0.2. For values greater than
these it is obvious it cannot be used because of the critical role that
the angle a plays in the effective conductivity.

It is evident that at high conductivity ratios changes in the
packing geometry (the angle a) can change the effective conductivity
by an order of magnitude. This reflects the fact that the upper and
lower bounds for the conditions [9, 11, 12] diverge greatly. More
specifically, it can be seen that it is the spacings between fibers
which are critically important.

For the high conductivity ratios, almost all the resistance to the
heat flow is in the matrix material. Thus, the length of the path
through which it must flow in the matrix is the most important factor.
As an example, refer to Figure A-2 which is for the rectangular array
with a volume ratio of 0.4. The 30 degree and the 35 degree geometries
are shown below drawn to scale.

00 00
0 0 00~0 0 O

0300300 350

Figure 19. Rectangular arrays for volume ratio of 0.4.
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For both cases, most of the heat is flowing vertically through the
fibers. But the vertical distance between fibers for the 35 degree
case is three-times the distance for the 30 degree case and so there
is a large difference in the effective conductivities. It should be
realized that a volume ratio of 0.4+0 for the 30 degree case is very
near the maximum possible value of 0.45. This fact alone indicates
that the fibers are almost touching and that a high effective con-
ductivity should be expected.

For the rectangular array, the curves for the effective con-
ductivity line up in order of increasing angle, a, whereas this does
not occur for the staggered array. This can be explained by considering
which fiber spacings affect the effective conductivity for each case.
With the rectangular array, heat is flowing almost entirely across the
vertical spacings between fibers. Some heat will be flowing across
the diagonal spacings but they are a great deal larger and thus a
great deal more resistive so the heat flow across these spacings will
be a small fraction of the total. Thus, changes in these spacings
will affect the total heat flow very little. Then because the vertical
spacings are strictly increasing with increasing a, the thermal con-
ductivity wili be strictly decreasing as is evident from the graphs.
A list of spacings normalized to the fiber radius for an arbitrary
volume ratio of 0.3 for both rectangular and staggered arrays is shown
below. These are the distances between fiber edges and not those
between fiber centers.

TABLE 2. FIBER SPACINGS NORMALIZED TO FIBER RADIUS

Rectangular Array Staggered Array

hor. vert. diag. hor. vert. diag.

25 2.74+ .21 3.23 4.70 1.12 1.70
30 2.26 .46 2.92 4.02 1.48 1.48
35 1.87 .70 2.72 3.47 1.83 1.34
40 1.53 .96 2.61 3.00 2.19 1.26
45 1.24 1.24 2.58 2.58 2.58 1.24
50 .96 1.53 2.61 3.00 2.19 1.26
55 .70 1.87 2.72 3.47 1.83 1.34
60 .46 2.26 2.92 4.02 1.48 1.48

65 .21 2.74 3.23 4.70 1.120 1.70

For both arrays the horizontal spacings are irrelevant since they

diagonal spacings are much larger than the vertical spacings and so

they are relatively insignificant. However, for the staggered array
the vertical diagonal spacings are of the same order of magnitude and
so both influence the effective conductivity. This is the reason why
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the staggered array curves do not stack up according to increasing a.
At different times different spacings carry most of the heat flow.
Whenever either of the spacings becomes very small (fibers almost
touching) the effective conductivity will become large no matter what
the other spacing is like. Thus the 25-degree curve lies above the

30-degree curve because of the smaller vertical spacing, but the 45-
degree curve lies above the 30 degree curve because of a smaller
diagonal spacing.

It can be seen that in general the rectangular arrays produce~~higher effective conductivities than do the staggered arrays for the sam

volume ratios and conductivity ratios. This is the case because the
fibers are stacked in rows parallel to the heat flow which naturally

tends to give small fiber spacings in that direction. Thus, these
materials provide low resistance paths for the heat flow. The staggered
arrays however tend to have larger fiber spacings and thus lower ef-
fective conductivities. There is some overlap between the region

covered by the staggered array and that covered by the equivalent rec-

tangular array.

For a given type of array and a given volume ratio, consider the
various pairs of angles which are complementary to each other such as
35 and 55, 25 and 65, and so forth. For a staggered array with a

volume ratio of 0.2, the 25-degree and 65-degree cases are shown below
in Figure 20.

00
000 001 0
250 650

Figure 20. Complementary geometries for staggered array.
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It is evident that these are really the same physical geometry
which has merely been rotated by 90 degrees. Thus, the two effective

conductivities which are given in the graphs for these values are in

fact two of the three principal conductivities for the same material.
The third principal conductivity is that for which heat is flowing into

the paper parallel to the fibers. That effective conductivity is
merely the weighted average of the individual conductivities based on
the volume ratio and is given by the following equation:

Keff_ +I- (93)
K matrix Kmatrix

Figures A-8 through A-20 for the rectangular array and A-30
through A-56 for the staggered array present the three principal con-
ductivities together for various materials. It should be noted that
the effective conductivity parallel to the fibers for high conductivity
ratios is always greater than both of the transverse conductivities
because the high conductivity fibers provide an excellent heat con-

duction path. Further, the transverse conductivity curves level off

at high conductivity ratios because most of the resistance is then in
the matrix, and increasing the fiber conductivity does little to de-
crease the total resistance. However, for flow parallel to the fibers
the curves become more and more linear at high conductivity ratios
because more and more of the heat is flowing strictly through the fibers

and the only resistance it sees is the fiber resistance.

It may be noted that the 45-degree curves for the staggered arrays
are identical to the 45-degree curves for the rectangular arrays. The
two cases are shown in Figure 21.

These are really the same configuration vith the heat flow
directions differing by an angle of 45 degrees. Further, it should be
realized that the horizontal effective conductivities of these materials

are the same due to geometric symmetry. By the equations of Section I,

the reasoning can be extended to state that the effective conductivities
of these materials will be the same for heat flow in any direction
perpendicular to the fibers.
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'igure 21. 45-Degree configurations for parallel fibers.
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CHAPTER III

0O-900 FIBER MATERIALS

3.1 PROBLEM DESCRIPTION

3.1.1 General Discussion

Composite materials in which the fibers are not all parallel will
now be considered. In particular, that group in which adjacent layers
of fibers are laid down at 90-degree angles to each other will be
studied. A sketch of a typical arrangement in this group is shown in
Figure 22.

From a geometric point of view, the independent variables are the
horizontal spacing between fibers, the vertical spacing between layers,
and the volume ratio. As was the case with the parallel fiber arrange-
ment, only those arrangements in which the horizontal spacing of all
layers is the same will be studied. Since the whole geometry can be
scaled up or down without changing the effective conductivity, only the
ratio of vertical spacing (between layers) to the horizontal spacing
(between fibers in a layer) is needed in addition to the volume ratio
to describe the geometry. This ratio will henceforth be referred to
as the aspect ratio.

The last variable which is needed is the ratio of fiber conductivity
to the matrix conductivity. Thus, when these three variables are
specified, there exists a unique value of the ratio of effective con-

ductivity to matrix conductivity which can be assigned to the material.
That effective conductivity ratio will then be valid for any geometrically
similar material which has the same ratio of fiber to matrix con-
ductivity.1As with the parallel fiber arrangements, it is first necessary to

find the temperature field in the material so that it can be integrated
across a plane to give the net heat flow through the material. The ef-
fective conductivity can then be seen to be given by Equation 94 where
AT/An refers to the uniform temperature gradient which exists over a
large section of the material.

= --- (94)
Keff A6T

An
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Figure 22. 0°-9 00 Fiber material.

3.1.2 Heat F'low Perpendicular to Both Fibers

First the case where heat flow is transverse to both directions of
fibers will be considered. As with the parallel fiber arrays, a
repeating unit cell can be isolated in which the temperature field is
identical to, or a mirror image of that of every other unit cell. A
typical unit cell is shown in Figure 23 where heat flow is along the
y-axis.

Note that the two horizontal spacings are equal as this analysis
is restricted to that case. Since the aspect ratio was defined as

vertical spacing divided by horizontal spacing, and the horizontal

spacing between fibers is 2(a), the aspect ratio is the quantity b/(2a).

For a one-dimensional uniform temperature field, the top and bottom

surfaces will be at a constant temperature. This is due to the fact

that the geometric symmetry would not permit the temperature to vary
on these planes since a conductivity change above the plane is exactly
balanced by a conductivity change below the plane. By a similar
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Heat Flow
Direction

- T=Constant

b

T=Constant

Figure 23. 0o-900 Array problem
\transverse-transverse).

reasoning, the four vertical planes of symmetry will be planes of zero
normal heat flux. Thus, the boundary conditions on these planes are
such that they can be considered perfectly insulated planes.

The obvious conditions which must be satisfied in the interior of
this unit cell are that at the fiber-matrix interfaces the temperature

* in each region must be the same and the heat flux normal to the inter-
face must be the same. Therefore, a well defined boundary value problem
has been presented such that a unique temperature field exists. The

* solution to this problem is presented in Section 3.2.
I

3.1.3 Heat Flow Perpendicular to One Fiber

Consider now the case where the one-dimensional uniform temperature
field is rotated 90 degrees so that heat flow is transverse to one
layer of fibers and axial to the adjacent layers. The same repeating
unit cell can be isolated although the boundary conditions are now
different. This cell is shown in Figure 24. It should be noted that
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T=Constant

IIfE

b

SFi 
ur e 24 . 0 -9 0 Ar ray pr oblem

SCaxial-stransverse)a

in this figure heat 
flow is along the z-axis. However, because the

hoiotlsaig 
r h ae h aewt etfo tedirection 

is a similar problem 
and would therefore 

have the same ef-

fective 
conductivity.

The aspect ratio i 
dfined as before 

and is equal to the 
quantity

b/,2a). By similar reasoning as 
was done for the previous 

case, the

boundary conditions on 
this unit cell can b( 

described. On the front

and back planes which 
are normal to the 

heat flow, a constant

temperature condition 
exists. On the other four sides 

there is no

heat flow normal to 
the surface and they 

can be consider.d as planes

. having perfect insulation 
on their surfaces. Ihe interface conditions

~in the interior ae of course 
the same as for the other 

cases.

hus, this constitutes another 
well defined boundary value 

problem

~which can now be solved for 
the unique temperature 

field and from

.[which th e he cat flux can sub equently be determined . lh r, once the

heat flux is known, the 
effective conductivity can 

be readily obtained.
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3.2 GENERAL EQUATIONS

The general thermal energy balance equation for a solid material

is the Fourier equation:

TPc T = V (KvT) (95)

For the problems being considered, Equation 95 simplifies to:

V2T = 0 (96)

This is commonly referred to as the Laplac - equation and is valid
for both the fiber and the matrix regions. ihis equation can be re-
written in the following more conventional manner:

2 2 2
a aT a T= = 0 (97)
ax ay 9z

In the previous cases where all the fibers were parallel to each

other, a general solution was written in the form of a power series.

The constants of the power series were then found by use of the boundary
conditions and the temperaturc field was al proximated by a finite
number of terms.

In the problem being considered in this section, the boundary
conditions are more complicated and there are two fiber-matrix interfaces

that must be accounted for. This added complexity of the problem and
made it impossible to satisfy all the conditions of the problem by a

finite number of discrete points. Thus, an entirely different method

of solution must be employed.

When it is not possible to satisfy all the boundary conditions at

once by Equation 97, one must turn to a numerical method in which the
original problem is broken up into a large number of smaller problems.

Consider here that the large unit cell is broken up into thousands of
smaller cells. Then these cells will have very simple boundary con-

ditions which are imposed on them, and Equation 97 can be written for
each one. If enough cells are used, then they can be considered to

have constant temperatures throughout, and the temperatures can be

solved for. The boundary conditions for the cell in question are the
temperatures of the bordering cells. Becauze of this arrangement, the

temperatures of all the cells must be solved for simualtaneously and so

an iterative solution is called for. This method is commonly referred
to as the finite-difference method.
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Consider a rectangular grid to be superimposed on the unit cell.
It is layed down so that the intersection points lie at the center of
the small cells, and thus the temperature at the center is the temperature
of the entire cell. Thus, the Laplace equation must be satisfied for
each of these points in finite-difference form. Figure 25 shows an
arbitrary point as it is surrounded by its six nearest neighbors with
subscripting included to identify the points.

i, j+1 ,k

AY i, j,k+l

Az/ Y

/ z
-1,j,k. x AX - i+1, ,k 'Z x

S ijk
/t;Z
z

w

i, j,k-1

i, j-l,k

Figure 25. Interior grid point.

The first derivative of the temperature with respect to distance can
now be written in terms of the finite difference in temperature between
adjacent points as follows. Here, only the x direction will be con-
sidered although the other directions are of a similar form. At the
position i + ,j,k the first derivative can be approximated as:

aT Ti+" ,Jok  -T i..J.k (98)
aX" i , +J2 k = 2ax

At the point i - ,j,k the first derivative is:

3TJ T i.J.k - Ti-lik (99)
'X i- ,J,k 2Lx
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The second derivative at the point i,j,k can now be approximated
using the above expressions as follows:

8T 3T

___ - i-4,j,k 1j~,k (100)

6X2 I ijlj,k Ax

b2Ti Ti - 12 j~ k  -2, JJk

F i. 7~ 2 t+.~ x-~ i. (101)

Equation 101 is commonly referred to as a central-difference
equation. By combining the similar equations for the y and z directions,
the Laplace equation can now be written in finite difference form to give
the following expression:

T+.-TT. + k + T i-, - 2T.T i+1.j.k + T i-1,j,k -2T i~j.k T i.J~ .. j

2ax 2ty

T i ,. +T - 2T.

+ Lk+1 1i .k-0 1 L=o (102)

If Ax, Ay, Az are all taken to be equal, then Equation 103
below is obtained.

T ,(T . + Tilik + T + T +ijk i+1.jk k i,j+lk i,J-,k

Ti.jk+l + Tij,k-1)/6  (103)

Thus, the temperature of the point in question (point i,j,k) is

given in terms of the temperatures of the neighboring points. Further,
for the equal spacing here, it is merely the average of the temperature
of these points. This is the finite-difference representation of the
solution to the Laplace equation for these points.

Using Equation 103, the temperature of each point in the regular
grid can be estimated using the estimated temperatures of neighboring
points. By successively re-estimating the temperatures of all the
points and by doing this repeatedly, the temperatLre values assigned
to each point will converge to values such that Equation 103 is as
closely satisfied as is desired at every point simultaneously. Depend-
ing on the number of points chosen, the resulting values will then
approximate the actual temperature at those points in the real material.
A numerical integration can then be performed using these values across
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any plane through the material to determine the heat flux and thus the
effective conductivity.

For the points just described which are in a uniform section of
the material, the Laplace equation can be written for each one by using
the boundary conditions which are the temperatures of the neighboring
points. Thus, a boundary value problem has been defined with very
simple boundary conditions, and a very simple solution has been obtained.
There are however many points to be considered -'hich are affected by the
boundary conditions that are impressed on the large unit cell itself.

These points exist at the sides of the unit cell and next to the fiber-
matrix interfaces. They must reflect those boundary conditions, and
by doing so the effect of those conditions will be impressed on the

problem as a whole and it will be forced to converge to the unique
solution for the temperature field which exists. The finite-difference
representations of the solutions to the Laplace equation for these
various types of boundary points are presented in Section 3.3.

3.3 BOUNDARY CONDITION EQUATIONS

There are basically three types of boundary conditions which must
be impressed on the various points that are being considered in the
finite-difference representation of this problem. They are the fixed
temperature condition on two surfaces of the unit cell, the insulated
condition of four surfaces, and the conditions at the fiber-matrix
interfaces.

3.3.1 Fixed Temperature Boundary Points

The first condition of constant temperature is very easily handled
by the finite-difference method. It is merely necessary to assign the
desired temperature to these points and never include them in the set
of points which will be used in the iteration scheme and made to
satisfy the Laplace equation.

3.3.2 insulated Boundary Points

Consider now an arrangement of these nodal points in the same
regular grid such that Ax = Ay = Az but located at an insulated
boundary (see figure 26). The position i + l,j,k is where a point
would exist were it rot for the fact that the insulated boundary is

4 the edge of the unit cell and no nodal points exist outside of it. A
finite difference solution to the Laplace equation is now desired for
the point i,j,k taking into account the insulated condition.

Consider now the physical situation which exists in the composite
material when many cells exist side by side. The insulated condition
is a representation of the symmetry that exists in the temperature
field across the plane. This symmetry means that the temperature at
the point i + l,j,k which actually exists as a point in the adjacent
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I, J+1,k

1. j.k+l
y z y

/ 

i, j,k-1

, j-ik

Figure 26. Insulated boundary point.

unit cell will be the same as the temperature at the point i - l,j ,k.
Similarly, the temperatures of the points i + 2,j,k and i - 2,j,k will
be the same so that complete symmetry between the cells is achieved.

If a node is considered to be at the point i + l,j,k and to have
the temperature of point i - l,j,k, then the point i,j,k is seen to
have six neighbors for the purpose of calculation. The general finite

difference equation is then applicable here and can be written as
below with the appropriate equality of temperatures introduced.

T i+, j,k i-1, J,k (104)

Ti, j,k= (2 Ti-l,j,k + Ti,j+l, k + Ti,j-l k + Tijk+1 +

Ti,j.k-1)16  (105)

Similar expressions are of course obtained when the insulated con-
dition occurs on a plane other than the x-plane.
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3.3.3 Interface Points

The last condition which must be satisfied occurs at the fiber-

matrix interfaces. The condition is that the temperatures in the

two regions must be the same at the interface and that the heat flux

normal to the interface must be the same in each region.

Consider the following section of an interface in which additional

nodal points have been added where the regular grid lines cross the

interface. The assumption will be made throughout this analysis the

AX AY .

~a

y

II
S X

Yl Ik
axx

Figure 27. Interface point.

It must be kept in mind that the z direction goes into 
the paper,

and thus similar arrangements of nodes lie in front of and behind the

one shown in Figure 27.

It is desired to find the temperature at i,j,k given the temp-

eratures of all other nodal points. The temperature must be based

solely on the temperatures of those points located in the same region

or on the interface. The points in the other region cannot be used

because there is a change in conductivity at the interface. Thus,

the temperature at i,j,k must be found from that at 
points i - 1,j,k*

i,j-l,k; i,j,k+l; i,j,k-l; a; and b. This requires a solution to the

Laplace equation when unequal spacings are involved. 
In this way,

the temperature at the points next to the interface can be found al-

though no effort has yet been made to satisfy the heat flux requirements

at the interface. The temperatures of the points on the interface will

be calculated so as to satisfy those requirements.
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A finite-difference formulation of the Laplace equation using
unequal spacings will now be found. The general result can then be
used to find the temperatures of any points which adjoin points on the
interface and thus have unequal spacings involved.

Consider the general arrangement of a nodal point with six neighbors
positioned on an orthogonal set of axes in Figure 28. The notation is
such that T refers to the temperature at the specified point and D
refers to the distance between points. The subscripts L, R, U, D, F,
and B refer to the directions left, right, up, down, forward, and backward.

TU

DU
TB

BY/ B  y
// / z

TL DL DR DT-i-1, i.k , .jk .J K
i,ji,ki1jl/

DF /
/

d

TF DD

TD

Figure 28. Point with unequal spacings.

The first derivatives at the positions i + !,j,k and i - ,j,k
can be represented in finite-difference form by the following
equations:

AT T TR - T 0  (106)

TI =To -TL
4) i-*j ,k L  (107)
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From these, an expression for the second derivative with respect

co x at the point i,j,k can be obtained.

TI - TI
' jij7k . (108)

TI iTR -T ( T -T

JT 0 0 L
jI .ik = DR DL (109)

' (DR+DL)

similar expressions can be written for the y and the z directions.

These expressions can now be inserted into the Laplace equation to obtain

a representation of that equation in finite-difference form.

*2 +L + = o (=o0

TR-T 0  To-TL Tu-T0  To- T D TB-To To-T F

DD DDBDDR DL U DDF

(DR+DL J(DU D 2(D B+D F) 1

This equation can then be solved to obtain an expression for TO in

terms of the six spacings and six temperatures. That solution is as
follows :

D2D +T

RLUD (DF+D B) I D/I DBDF  R DLDBDF + RLDu'DD (112)

~it can be noted that this equation reduces to the general equation,

103, when all of the spacings are equal. By use of this equation, all

those points next to a fiber-matrix interface can now be 
calculated

according to the governing Laplace equation.

53

fl4



The temperature at the nodal points which lie on the fiber-matrix
interface can be assigned so as to satisfy the condition of equal heat
glux normal to the interface in each region. This condition can be
described as follows where n is the direction normal to the interface:

qI = qjI (13)

K aTI = K aT (114)I rn I I Fn

Refer now to the general section of an interface in Figure 29 where
the temperature at point 0 is to be determined from those nearest
points around it. Since the interface is in the shape of a quarter
circle, the normal direction is the same as the r direction when polar
coordinates are used. Using this fact and simple geometric identities,
Equation 114 can be rewritten as in Equation 115.

K.hTI ax + )  (XTII ax + aT(
4)X S- Oy 6r II ax Y-{ Sy r

It should be noted that the normal direction is perpendicular to
the z direction and so derivatives with respect to the z direction do
not enter into the problem. The expressions for the derivatives below
(116 through 121) can now be inserted into Equation 115 to obtain a
finite-difference representation of that equation. The derivatives
are defined in finite-difference form by the use of the four points
right, left, up, and down with respect to point 0. The point to the
left is point 3, and the point to the right is point 8. The point
above is point 5 and its temperature can be estimated by interpolation

between points 1 and 7. The temperature of point 6 below point 0 can
be estimated in a similar manner.

OT To - T L (116)

DD

,

--T = T "D (117)
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Figure 29. Interface point.

TII= TR - To (118)

C x DR

! T1  - TU " T ° (119)

= cos(e) (120)
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= sin(e) (121)

(T°-TL) (T°-TD)K T -T )cos(e) + T 

TR-To T-T

Kii[( T )cos(e) + ( )sin()](122)
DR DU

This finite-difference representation can now be solved for To
to give the following expression:

TR TU TL TD
K1[I-Cos(e) + -sin(e)] + K 1 [j-coS(e) + DSin(e)]

ToR U -LD
K K1 [oj e) + sin(e) + K [cos(e) + sin(e)j

D R DU D L DD
(123)

By setting the point on the interface to this value, the dif-
ference in conductivities between the materials is taken into account.
Thus, it can be seen that the purpose of putting these points on the
interface was not to improve the accuracy of the solution, but rather
it was simply to institute the boundary condition.

Thus, the basic equations governing every point in the unit cell
have been developed. A computer can now be used to calculate the
temperatures of all points in turn. Then by using the new temperature
estimates, it can keep recalculating all the temperatures until they
converge to stable values which are approximations to the temperatures
at the respective points in the actual composite material.

3.4 SOLUTION MTHOD

I3.4.1 General Discussion

Two Fortran programs were written for the arrangement where

alternate layers of fibers are crossed at 90-degree angles. They both
appear in the appendix to this report.

The first case was where the heat transfer is axial to one layer of
fibers and transverse to the adjacent layers of fibers. This boundary
value problem was presented earlier in this section.

The program models this problem by placing a regular grid on it
where Ax = Ay = Az . The proper equation is used for each point, and
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the computer succesively calculates the temperature of each point while
at all times using the most recent values of temperatures at the
neighboring points.

The computer keeps iterating through the entire set of points
until no temperature of any point changes more than a specified value
in a specified number of iterations. It is then determined that
adequate convergence has been achieved. Then the computer performs a

numerical integratiin across either the top face or the bottom face,
depending on which is more accurate. These factors which affect

accuracy are discussed in detail in the following section.

'he heat flux is found according to the following equation which

can be broken up into that part in the fiber and that part in the

matrix:

Q Area(K-)dA (124)

Q K - A + K matrix A (125)

The value of AT is found by a two point derivative, or just the
difference between the temperatures of the two adjacent points at one
of the sides of the unit cell. These values of AT are summed ac-
cording to Equation 125 and the appropriate values of Ay and AAA,
depending on the grid used, are inserted. The effective conductivity
is then found by Equation 126 where AT is the macro temperature
gradient across the unit cell and An is the unit cell dimension in
the direction of the heat fLow.

Kff Q/A(-) \126)
eff An

I ~'1wo methods were used to reduce the calculation time of the com-
puter. The first was to us;e a very coarse grid with large spacings and
few points and an initial Cuess o' constant temperature to give a quick
estimate. A finer g rid was then established using the values from the
coarse grid as initial eiuestu:;. Ihie computer then iterated through to
the desired level of' convergCice. 'his downsizing of the grid was
performed several times and resulted in a much faster program than if

* the final grid was used from the start with a constant temperature initial
* guess.

The second me:thod of speeding up the program was by a method known
as over-relaxation. H{ere the chlnge, in the estimate of the temperature
at a point is cLlculated according to those equations derived previously.
Tlen, instead o' changing, !hei temperaturt by that wanorat, it is changed
by that iourit plus an additional fraction o' that unount.

5"i
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The general equation (Equation 103) would be altered in the follow-
ing manner, and the other equations from Section 3.3 would be altered
similarly.

Tnew = (T +T + + T +

ijk i+ ,j,k i-1,j,k i,j+1.k ij-lk

i,j,k+l i.j,k- /

(127)

Tn ew  =(+ Ti  T,+ T+,jk Ti+l,j,k -Ilj,k ij+l,k i,j-l,k

) +( X)Told

Ti,jk+l +Ti,j,k-1)/ 6 + ( i,j,k

(128)

Here, 7 is kno .m as the relaxation factor. If it is 1 then
Equation 128 reduces to that of 127. However, if it is between 1 and
2 the temperature, Ti j k, will be changed by a factor of h more than

it would have otherwise. If a value of 2 or greater is used then
numerical oscillations will occur, and the problem will not converge.
A relaxation factor of 1.5 was found to be optimum in terms of the
number of iterations needed to achieve convergence.

3.4.2 Temperature Field Symmetry

The program for the case where heat flow is transverse to both
fibers works in a similar manner to the one described above. There is,
however, one additional feature that can be used to reduce the amount
of computer time that is needed to reach convergence. This feature is
an additional plane of symmetry that exists within the unit cell.

Consider Figure 30 which is the unit cell with the midplane, which
is the plane of symmetry, outlined in heavy lines. Also, shown are
representative lines of constant temperature as they would appear on
the front and left faces of the cell.

The temperature has been arbitrarily taken as +1 on the top
surface and -l on the bottom surface. First, consider point d on the
corner of the cell. It can be seen that due to symmetry the con-
ductivity changes above it exactly counteract the conductivity changes
below it, and so it must be at a temperature of zero. The same reasoning

holds for point b as well as all other points on the heavy line from
d to b.
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I Heat Flow
T=+1 -Direction

i Ib

T=1
aC

Figure 30. Iymmetry for transverse-transverse heat flow.

Consider now two points which lie on the midplane and which are
symmetric with respect to the line b-d. Points a and c are two such
points. It can be seen that the conductivity effects above c are the
same as those below a. imilarly, the conductivity effects below c
are the same as those above a. 'Thus, a symmetry exists in the
temperature field at these two points. It is such that the temperatures
will be symmetric with respect to the temperature on the diagonal b-d,
and this is caused by the constant temperature lines on the faces of the
unit c2ll. Because the boundary condition temperatures were chosen in
such a way so as to make the temperature on the diagonal b-d equal to
zero, then temperatures of symmetric points in the midplane, such as
a and c, will be negatives of each other. In addition, because of
the symmetry in the temperature field at these points the heat flux
will be the same, and so the value of oT/5y will be the same.

Therefore, only one-half of the unit cell needs to be used to
obtain a solution to this problem. 'The above described conditions are
then required of the points on the midplane so that a completely de-
fined boundary value problem exists. This is a very similar approach
to that used to obtain a reduction of the unit area used for the
staggered array with parallel fibers. The benefit of this approach is
that only half as many points need to have their temperatures cal-
culated for each interation. 'Thus, the computer time needed for con-
vergence is reduced by approximately half.
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'iiere aIre a oler f1 artor'5 Whic'h ZIfI'eet the accuracy of the
resn t; t~ir se 'ijnite-di Uferencte calculationz- 'I'hey include the

nutftr f'point-,ued tielan 01' o integration for the I heat fliux cal-

Ila", been acir iteVedi
3.5 1 Niumbe.r of Plointr.

Ile~ ntutiber ' CI ) nt w ed i.. at er i Li ca factor affteting the ac-
cul-acy or' thet r'UrI . ign ':.Itr res;uLt is more accurate for a
larger irli11twrti %.)I 10U itts cars0wr 1-m0 poi ni-z the pacng between

ponsAVO inai-o hi' and o tinw Cinite-kiUfereuct, derivatives more closely
1rprosenit; te Lriri' valziozz. Thirri, one wouild like to ise, a very laxge
number of' pons.IktWever , asz Ut ntiber of' points- inrcrk eISt , thet
comlpulter time11 nee0ded increases- sharply )* tuid eIven tnAli~ tilte rezzaiIt Could
beome worsec dule to round~ot' 1' e rrors. All of' thesew di fI'rences must be
added iii the integration process6 with roundofft occIurringt atfter each
op era ti on, arnd w it.ii tii Inunhr Of 'o )illI be0nt iug Ircrt'd, the number of
Calculations- Is" 1ncreased.

A Lin e-iLTeee rrl 'ai U ;swrittenl t'or tihe rectanguliar U-rav
of' wot ion I i to s tud.,y Liii e~'~ sOf the0 var U10;pu'uet ntr
accuracy of tilte rksu it.. A vi ry g -ood res-ii L t liad been obta ii ti bly other
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aMt~rpl l ta~mtr It W0'4' klp.t,iMW '-li' excet'L tilte number ot'
kiivi sionsr alongt each k it' f Li cc 1.1 was varied.

IANi i .iI'ltV 01 ' WN IBEN O1 V II 0IN2'

Ntiber ot' 1\ Vlfi !ts\ tma tiix I iit~erati oils

per Iide,

10 l 1 u 32
1.0510 1 Cku0

501l-045k) 320

100 le55 W80

Accurzate Value sigOther Method - - ~~fKlzti 1.6520

ilie0se datza demontrate thet decrease in accutracy f'or a amall number
of' divisions and i'or a large inumiber o1' divi 5 ions. l1ite vatue for a higji
number of divisions can, however, be greatly improved by requiring a

better toleranice for each ot' tihe individual temper'atures. PW iterating
throughi more t itmes to obtaini more ni gnit'icwnt figures in each of the
temperature values, the e fect or roundoff errors carl be reduced sub-
stait ially. This will of course increase the computing time even more
than has aireaky accuttulated because, of the large number of points. For
these reasons and becauseo somre of tire f'igures above are correct to
f'our significant tLgui'es a [readkv , it1. doe.-, trot seemn necesszary to use an



extremely large number of points. For the 3-dimensional problem considered
here, 28 points per side were used along the base and the number of points
used along the vertical dimension was determined by the dimensions of the
specific problem.

3.5.2 Convergence Criterion

The criterion that is used to determine when the computer should stop
iterating the temperatures of the points has a significant effect on the
accuracy of the result. he program was designed to stop when every
temperature changed no more than a specified amount in 20 iterations. A
figure of 20 was chosen to guarantee that convergence really had been
reached and that all the temperatu:zes had stopped fluctuating more than
the specified amount. Jhat specified amount will now be referred to as
the tolerance.

If the tolerance is too large, then when the program stops there

will not be enough significant figures in the temperature values to

survive the effects of roundoff in the numerical integration. if the
tolerance is too small, then the time that the program runs may become
excessive. 'the following table shows the effect of tolerance on the
accuracy of the result and the number of iterations required to achieve
it. 'Ibis data is from the 2-dimensional finite-difference program which
models the rectangular array of Section I.

TABI 14. ElI'CT2 0!'OIhANCL

Tolerance Keff/Kmatrix Iterations

OOL 1 .o,489 580
•.ooo1 l. o51o lo6o

i.00005 .65-3 1.160
.00001 1. 6 5-, 1420

Accurate Value Using other Method --- Keff/, matrix = 1.6520

For the result,, presented in tile appendix to this report, a value

of 0.0001 was used. In the table above, this provided a result accurate
to four significant figures. 1,urther, another order of magnitude
improvement in the tolerurice did not provide any more significant
figures. Since three significant figures is adequate, a value of 0.0001
was more than satisfactory, and approximately three-figure accuracy was

obtained for all the results presented in the appendix.

3.5.3 integation Plane

'Ihc other factor that, can aftFect the accuracy of the result is
the choice of which plane to use for the numerical integration to find
the heat flux. 'the surface plancs of the unit cell are the best planes
to use because either 6he fiber-matrix interface is not present there or
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it intersects the plane at a right angle. Either way, these planes provide
for the simplest numerical integration.

The accuracy of the result deteriorates as the volume ratio in-
creases and as the ratio of fiber conductivity to matrix conductivity
is increased. Consider the following 2-dimensional finite-difference
representation which will show the same effects that occur with a 3-
dimensional problem:

T 0

Figure 31. High volume ratio array.

In this case a high volume ratio is used, and only two nodal
points exist on a line from the fiber to the edge of the unit cell.
Assume also that a high conductivity ratio has been used. Because
of these conditions, most of the heat flow along the top surface will
occur in those nodal points on the left. On the bottom surface though,
the heat flow will be spread throughout the fiber, and thus it will
occur through a much highei number of points. For this case, integration
across the bottom surface will give a more accurate answer than across
the top surface. The result from an integration across the top will be
less accurate because there are not as many points to give a description
of the temperature field in that region that will contribute the most
to the heat flux.

Consider now the case where there are more nodes between the fiber
and the top edge in Figure 32. Again, assuming a high conductivity
ratio, the heat flow will now be spread out through the top surface

S6P
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much more uniformly than was the case before. Purther, the integration
across the bottom will be worse. Tiis is because most of the resistance
to the heat flow is occuring in the matrix, so most of the temperature
drop will occur at those points. Thus, the fiber will be very close to
a constant temperature. When the differences are found between the
temperatures on the bottom plane and those on the adjacent plane above
it, the differences will be very small and ;3o roundoff errors will
reduce the accuracy. Threfore, for this case the integration is best
performed along the top edge.

~T=1

................

-46-

T=O

Figure 32. Low volume ratio array.

It should be noted that roundoff errors are less when the case of
only a few points between the fiber and edge is considered. This is
because a higher portion of the resistance to heat flow is then located
in the fiber region. Thus, there will be more of a temperature drop
in the fiber than when almost all of the resistance is located in the
matrix. Thus, the top surface should be used when there are a number
of nodes between the fiber and edge. Otherwise the bottom surface
should be used.

Consider now the case where heat flow is transverse to both fibers.
The unit cell that was modelled by the computer is shown below.
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T--I

Figure 33. 00-900 Unit cell for heat flow
transverse to both fibers.

This problem is much like the 2-dimensional case described above.

Thus, integration should be performed according to thc considerations
discussed for it. It should be noted though that the two integration
schemes will give better agreement as the conductivity ratio is
reduced.

Consider now the case of heat flow axial to one fiber and transverse
to the other. The axial fiber will carry most of the heat flow for

high conductivity ratios. Because of its orientation, the temperature
drop from front to back will be quite uniform along its length. Also

because of this fiber's dominant effect on the heat transfer, the

temperature drop through the entire cell will tend to be more uniform
than was the case for the previous problem. Thus, the roundoff errors
on the front face will not be as severe as they were across the bottom
face of the previous problem since the temperature differences between

adjacent points are much greater. In addition, with this arrangement
most of the heat flux is occurring across the axial fiber which is a

much larger region than was the case for the previous problem. This
would tend to indicate that integration across the back plane would
provide an accurate result.

The actual results showed that both methods were accurate and that

they agreed to three significant figures for all the results presented

in the appendix to this report. This showed that the effects of roundoff

errors on the front face were just as small as the effects of heat

transfer through a small number of points on the back face.
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3.6 RESULTS

The results for the 0o-900 array are presented in graphical form in
Appendix A. These graphs present the effective conductivities for aspect
ratios of 1 and 2 (layer spacing to fiber spacing). Further, the con-
ductivity ratio is varied from 0.1 to 100, and the volume ratio takes
on the values 0.4, 0.5, 0.6, 0.65 and 0.70. The spacing between fibers
in adjacent layers is taken to be the same throughout the material.

Of the three principal conductivities in these materials, two will
always be the same. These are the two in which heat flow is transverse
to one layer of fibers and parallel to the adjacent layers of fibers.
Parametric curves for these conditions are presented in Figures A-59
and A-60. The third principal conductivity is such that the heat flow
is transverse to all fibers, and these results are presented in
Figures A-57 and A-58. The results from which all of these curves were
drawn were accurate to at least three significant figures.

SFor the cases where heat flow is transverse to both layers of
fibers, it can be seen that the curves level off at high conductivity
ratios. 'Ibis is because all of the heat must pass through a portion
of the matrix, and at high conductivity ratios almost all of the
resistance to heat flow is in the matrix. Thus, decreasing the resist-
ance of the fiber still further affects the total resistance that the
heat passes through very little, and the effective conductivity is
increased very little.

Consider now the case where heat flow is axial to one layer of
fibers and transverse to the other. There the axial fibers provide
a very low resistance path for the heat flow when the conductivity ratio
is high. Most of the heat flow will be within the axial fiber, and as
the conductivity of that fiber is increased, the overall effective
conductivity will increase by the same order of magnitude. Thus, the
curves for the axial-transverse case are steeply sloped at high con-
ductivity ratios and will approach linear lines as the additional con-
tribution of the transverse fibcr becomes negligible.

Consider the graph of transverse-transverse heat flow for an aspect
ratio of 1.0. If aJternate layers of fibers were turned 90 degrees the45 degree case for th(, parall(,. f'ibers in a rectangular array would be

obtained. In this way the 00-900 array is similar to the rectangular
array of 45 degrees.

Iy comparing uie curves of these tvo cases it can be seen that they
are identical for volume ratios less than or equal to 0.40. This shows
that at low volume ratios the orientation of' the fibers does not affect
the effective conductivity significailtly. As the volume ratio is in-
creased, the curves for the 00-90° case fall further and further below
the corresponding curves for the rectangular array. This is because the

US



heat conduction paths in the 00-90 ° array are not as straight, and the
heat is forced to pass through a greater amount of resistive matrix
material. When the fibers are parallel, it can pass much more directly
from one fiber to the next and pass through a minimum amount of matrix
material.

For the 00-9 0 array with an aspect ratio of 2, alternate layers
can be turned to produce a rectangular array with a = 63.40. Thus,
these two materials are much alike. As is expected, the curves for these
materials are identical for volume ratios less than 0.39 which is the
highest value that is physically possible. Thus, for low volume ratios,
the data for parallel fibers can be used for other orientations as the
effective conductivity is almost entirely independent of the orientation.
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APPENDIX A

EFFECTIVE CONDUCTIVITY GRAPHS
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.1 APPENDIX B

PARALLEL FIBER

PROGRAM METHOD
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The computer programs which were written to calculate the effective

conductivity for both the staggered and retangular arrays follow the
methods of Section.; 2.2 through 2.4. In the maimer discussed, a series
of M equations with M unknowns are produced where M is the number of
discrete points which are used to satisfy the boundary conditions.
These equations are solved for the unknowns which are then put into the
appropriate equations to give the effective conductivity for the material
under study.

The coefficients are found by the use of the appropriate boundary
condition equations. The M equations can thel, be written using matrix
notation in the following manner:

[A]MXM(E)Mxl = (C)Mxl

He-'e, A is the M by M coefficient matrix, E is the solution matrix
(actually it is just a vector), and C is the matrix (also a vector)
containing the constants from the boundary conditions.

The program employs a gauss-elimination technique whereby rows are
multiplied through by constants and subtracted in such a way so as to
produce an upper triangular matrix. The unknowns can then b( found one
at a time by starting at the bottom and back-substituting the unknowns
into the equations as they are found. Reference 7 gives a very good
description of this method.

A standard gauss-elimination procedure is not extremely accurate
because of roundoff errors within the computer. This can be greatly
improved by a procedure called pivoting where rows are interchanged
during the elimination process to put the largest terms in each column
on the main diagonal. The programs used here went one step further
and included a double pivoting procedure where throughout the elimination
the largest terms in the entire array are put in the key positions on
the diagonal. This means that columns are interchanged as well as rows.
This procedure requires an intricate bookkeeping scheme within the
program, but it decreases the effects of roundoff err ,i still further
beyond what the single pivoting can do. The details of these methods
will not be discussed here as they are covered in many references
(again, Reference 7 is quite good).

Another method used to decrease the effects of roundoff errors in
these programs was the use of double precision logic. This doubled

the number of digits which were carried throughout ,the calculations
within the computer from 8 to 16 and forced the error to occur in the

• 'last of these digits.

in the manner described above, every possible techniquo has been
used to limit the error due to roundoff after each calculation by the
computer. However, there is another type of error which is due to the
fact that the power series which describe the temperature field are
chopped off after a finite number of terms.
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Theoretically, it is expected that this error in the solution
would be reduced when more and more terms in the power series are
taken into consideration. This would be true if an infinite number of
digits were carried through all the calculations. However, given a
fixed number of digits, a point is reached after which the increase in
accuracy due to added terms in the series is more than offset by in-
creased error due to roundoff. When several terms are added past this
point, the roundoff error increases rapidlj to the point where the method
becomes unstable and the result becomes meaningless.

The error in the solution is high when a small number of discrete
matching points are used due to the chop-off of the power series. It
is again high when a large number of points are used due to roundoff,

and so there is an optimum number of points that should be used. This
optimum number was found to be 15 points for the rectangular array and
approximately that number for the staggered array. The locations of
these points are discussed in Section Il. The number of points for the
staggered array varies somewhat due to the intricacies of the matching
line.

By using this method of exactly satisfying the boundary conditions
at discrete points, it was hoped that they are closely satisfied at the
points between the discrete points. As an example of the accuracy
obtained, consider the rectangular array. Along the top edge the
temperature value deviated from 1 by only ± 0.0001, at most, and the
resulting heat flux distribution along the right side was at most ± 0.01
percent of the average heat flux along the top and bottom edges. For
the staggered array the deviation from exact symmetry was on the order
of ± 0.01 percent of the values for both the temperature and dT/dy
symmetry.

At higher values of 1 (fiber conductivity/matric conductivity) the
error in the effective conductivity becomes greater. In addition, the
error is increased at higher values of the volume ratio. At the highest

possible volume ratios and a P of 100, the value of Keff/Kmatrix is
accurate to three significant figures. Further, this increases to

more than six significant figures for the lower values of 1 and volume
ratio. This conclusion is arrived at by comparing the data with that
from a routine which uses finite difference methods (discussed in
Section III) and by studying the effects of changes in the number of
matching points. This conclusion was further strengthened by comparing
certain data between the staggered and rectangular arrays which happened
to be coincident. Even though the two methods of solution are distinctly
different, the very good agreement between results for certain geometries
added confidence to the results of both methods. These various
relationships are discussed in Section II.

14o

I,

I



t

REFERENCES

1. Ashton, J.E., Halpin, J.C., and Petie, P.H., Primer on Composite
Materials: Analysis, Technomatic Publishing Co., itamford, Conn.

2. Wingert, W., Rockwell International--Los Angeles Division, Personal
Communication (Feb. 1979).

3. Arpaci, V.S., Conduction Heat Transfer, Addison-Wesley Pub. Co.,

Reading, Massachusetts.

4. Myers, G.E., Analytical Methods in Conduction Heat Transfer, McGraw-

Hill, New York (1971).

5. Carslaw, H.S. and Jaeger, Conduction of Heat in Solids, Oxford:
Clarendon Press (1959).

6. Schneider, P.J., Conduction Heat Transfer, McGraw-Hill, New York
(1957).

7. Gerald, C.F., Applied Numerical Analysis, Second Edition, Addison-

Wesley Publishing Company, Philippines (197).

8. Tsou, F.K., Chou, P.C., and Singh, I., "Apparent Tensorial Conductivity
of Layered Composites," AIAA Journal, Vol. 12, No. 12 (Dec. 1974).

9. Hashin, Z., Shtrikman, S., Journal of Applied Physics, Vol. 33,
pp. 3125 (1962).

10. Hale, D.K., "The Physical Properties of Composite Materials,"
Journal of Materials Science, Vol. 11, pp. 2105 (1976).

ll. Beran, M.J., and Silnutzer, N.R., "Effective Electrical, Thermal,
and Magnetic Properties of Fiber Reinforced Materials," Journal of
Composite Materials, Vol. 5 (April 1971).

12. Elsayed, M.A., and McCoy, J.J., "Effect of Fiber Positioning on the

Effective Physical Properties of Composite Materials," Journal of
Composite Materials, Vol. 7 (October 1973).

13. Springer, G.S., and Tsai, S.W., "Thermal Conductivities of Uni-
directional Materials," Journal of Composite Materials, Vol. 1 (1967).

141

tlh

' S. '



14. Behrens, E., "Thermal Conductivities of Composite Materials,"
Journal of Composite Materials, Vol. 2 (January 1968).

15. Amoz, M. B., "Heat Conduction Theory for Composite Materials"
Journal of Applie Mathematics and Physics (ZAK?), Vol. 27 (1976).

~4

14+2
4U..Govrlmwwt P~intino officei 1910 - 657-084/65

A, - - ,-- . -


