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ABSTRACT

By two-phase flow theory, a new mathematical model of the ice dynamics in Arctic Ocean
is formulated. The theory is developed from both microscopic and macroscopic approaches.
The effective two-dimensional fundamental equations of ice circulation in Arctic Ocean are de-
rived and compared with other models used in literature. Our model is the most general one
in literature and it gives many new insights of various important terms in the compactness
equation and in the equations of motion of ice dynamics. Further development and application
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of thl} model to specific cases in Polar Ocean are recommended,




N ST &
i— m m R e

UNCLASSIFIED (ﬁ/ z”
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 7 F 5) 2) ~ Sé) ﬁ/yéj
REPORT DOCUMENTATION PAGE BEFORE m
T REPORT NUMBER GOVY ACCERSION NO] 3. RECIPIENT'S CATALOG NUMBER |
D~A0pf 74P
\ O TUTRE (ond Subtltia) . e . TYPE R
[D Mathematical Model for mnamlcs of &ack Ice in the f]JTechnical Mote, J
Aretic Ocean and lts Surroundlng Seas, . LA -Ma My
= =- o - ’_’/‘ =
A ”Aumoa”(_-g — ~ . CONTRACT OR GRANT NUNBER(s,
m S. /pgi waHuon L1 \ ) No. W
= ORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK |
Naval Oceanographic Laboratory / AREA & WORKUNIT MuMBE TS,
Naval Ocean Research and Development Activity 62 759N ZF52-552 /té /‘53 (J /
Bay St. Louis, Mississippi 39529 002 323 S D
11. CONTROLLING OFFICE NAME AND ADDRESS ’ 12. R e
Naval Oceanographic Lahoratory ‘ (j; ,l ; lj /
Naval Ocean Research and Development Activity 13. NUMBER OF PAGES—

tla yo“niun'ro"nnmccnm!'msmm NCY NAME A'l%on":s!sail different from Controfling Office) | 5. SECURITY CLASS. (of this report)

/%)/Vd/lfb/‘ T/V‘% | ’ ' Unclassified

18a. DECL ASSIFICATION/ DOWNGRADING
SCNEDULE

e e WIS S .
16. DISTRIBUTION STATEMENT (of thie Report)

Unlimited distribution.,

[ DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, i different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse side if necessary and identify by block number)

Arctic Mathematical Model
Sea Ice Dynamics Sea Ice Prediction

oA TRACT (Continue an reverse ofdv if neceseary and identify by block number)

By two-phase flow theory, a new mathematical model of the ice dynamios in the
Arctic Ocean i{s formulated. The theory is developed from both microscopic and
macroscopic approaches. The effective two-dimensional fundamental equations of ice
circulation in the Artic Ocean are derived and compared with other models used in
literature. Our model is the most general one in literature and it gives many new in-
sights of various important terms in the compactness equation and in the equations of _é A

DD .’ 473  cormon or 1 wov 68 1s ossoLETR

UNCLASSIFIED

SECUMTY CLASUFICATION OF THIS PACE Dete Bntered)

....... 370713




SECURITY CLASSIFICATION OF THIS PAGE(When Date Bntssed)

Mt:lflcation____———-

By

Distribution/

Dist.

A

Availebility Codes

Availand/or
special

jon-

Code 103

motion of ice dynamics. Further development and application of this model to
specific cases in the Polar Ocean are recommended.

DTIC

ELECTE
SEP 4 1980

t" .
LR

D

RE:s NORDA-TN--L, Distribution Limitat-

Unlimited per Ms. Lamberskin, NORDA/

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Batered)

*
s
o




I. Introduotion

For the research of the dynamios of the pack ioce in the Arctic Ocean and its surrounding
seas, one of the main purposes is to coordinate theoretical and fleld investigations such that
the forecasting of ice motion (Wittmann-MacDonell, 1964) or knowledge of the general circul-
ation in the Arotic Ocean and its surrounding seas (Campbell, 1965), may be improved. Con-
siderable theoretical research works have been carried out (AIDJEX Bulletins No. 2 and No, 3).
But our knowledge on the dynamics of pack ise is still meager and more theoretical analyses
are needed.

In the Arctic Ocean and its surrounding seas, an enormous number of ice floes of various
sizes and shapes are floating on the surface. Most of these ice floes, under the influence of

winds, ocean currents and tidal waves are fn éonstant but chaotic motion and are continuously

being deformed. However, for many practical reasons, we are interested in the average motion
of sea ice over a large area such as several tens, or hundreds kilometers radius or larger,

and for an extended period of time, say several days, months or years. For such large spatial
areas and long period, the individual properties of ice floes become less important and the

pack ice may be considered as a continuum, In this report, a new mathematical model for the
dynamics of pack ice in Arctic Ocean and its surrounding seas is proposed so that the pack ice
may be treated as a continuum.

The mathematicd model of dynamics of pack ice may be divided into two classes:

In the first class which is used by the majority of the research workers in this field, one
consgiders the pack ice as a pseudo-fluid (Campbell, 1965; Fel'zenbaum, 1958; Doronin, 1970),
while in the second class, one considers the pack ice as an elastic-plastic material (Coon et
al, 1974). Mos; of the computation of ice drift in Arctic Ocean have been carried out by the
first class of mathematical model. Our model {s a most advanced mathematical model of the
first class,

Our main concept of the mathematical model is the two-phase flow approach. We consider
the Arctic pack ice as a mixture of solid (ice) and a fluid (sea water). Let the depth of the ice
be H(x,y,t) which is in general a function of x and y, the two spatial coordinates on the surface
of the ocean, and the time t. The maximum thickness of the ice Ho is of the order of ten
meters, We choose a typical length of the ocean L, to represent the dimenstion of the surface of
the ocean which we are interested in such as x ~L and y~L. The representative length L. may
be of the order of 1,000 kilometers. Hence L is much larger than Ho. We may divide the ice
packed ocean into two layers., In the upper layer, {.e., z s Ho. where z is the coordinate per-
pendicular to the surface of the ocean measured from the surface of the ice and positive

1
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downward, we have a mixture of ice floes and sea water. Since L»Ho. the ice floes may be
considered as small solid particles in a fluid (sea water). In our mathematical model, we use
the concept of fluidization of solid particles in a fluid (Pal, 1971). Hence these ice floes may
be considered as a pseudo-fluid, For z £ Ho’ we have a mixture of two fluids; one is the sea‘
water and the other is the pseudo-fluid of ice floes. We may extend the theory of two-phase
flows of a mixture of small solid particles and a fluid to study the fundamental equations of ice
dynamics for the pack ice. We derive rigorously the fundamental equations of ice dynamics
from the two-phase flow theory (Pai, 1971), particularly the equation of continuity of pack ice
in which the source term depends on the freezing and melting of ice floes and which is coupled
with the energy equation.

It should be noted that the three-dimensional fundamental equations just mentioned are not
the fundamental equations of ice circulation used by many authors in the literature (Campbell,
1965; Fel'zenbaum, 1958; Doronin, 1970), The fundaments] equations used in literature by
these authors are the integrated forms of the two-phase flow equations of three dimensions.
Because of the fact that L ») Ho’ we may integrate the three-dimensional equations of ice dyna-
mics with respect to z, the vertical coordinate, with the limits from z = 0 to z = H(x,y,t). The
resultant equations depend only on two spatial coordinates x and y and time, t, with the thick-
ness of ice H(x,y, t) as an unknown parameter to be determined. This procedure is similar to
the integral method which has been extensively used in boundary layer flow (Pai, 1956). Even
though these integrated equations have been generally used, it seems to us that no one has pre-
viously presented the fundamental equations of the effective two-dimensional ice flow in this
manner,

The integrated equations of motion of ice floes are of a form similar to the equations of
motion for a single floe used by Campbell (Campbell, 1965) and others (Fel'zenbaum, 1958;
Doronin, 1970; Rothrock, 1970), But the integrated equations give us much more information,
In the integrated equations of motion, the shearing stresses on the ice surfaces z =O and z =
H occur such that at z = O, the shearing stresses are equal to the wind stresses Tt a while at
z = H, the shearing stresses are equal to the water current stresses Tw' Conceptually, the
integrated forms of the fundamental equations are consistent with the mathematical model of
pack ice. We cannot justify the derivation of the equations of motion of a continuum model of
pack ice by using the equations of motion of a single ice floe. From the equations of motion
for a single ice floe, we cannot obtain the effect of compaotness. Furthermore, we have a
better understanding of various terms in the integrated forms of the fundamental equations
such as the source terms and the interaction terms. We also expect some new information

2
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about the effective two~-dimensional equations such as the interaction forces between ice floes

PRre-re

L and the effects due to the heat transfer and mass transfer,
. For z 2 H, our equations of two-phase flow will be reduced to those of ocean water where '
i. the compactness is zero. Hence we need only to derive the fundamental equations for the upper

layer, z S H, Those in the lower layer where z >H are a special case of those of the upper
i. layer with zero compactness.

We shall apply the modern technique of fluid mechanics from both the macroscopic (the
continuum theory) and the microscopic (the kinetic theory) point of view to derive the funda-
mental equations of two-phase flow of a mixture of {ce and water. Special attention will be
; . given to the effect of heat transfer and mass transfer between ice, water and air,

e
v

From the kinetic theory of gases, the fundamental equations of fluid dynamics may be de-

e A an -, it

: t : rived as the transfer equations of the Boltzmann equation of a gas and some insights of various
E b terms by these equations may be obtained. The continuum theory of fluid dynamics cannot
x - give us any insights of these terms. On the other hand, because of the mathematical and phy-
sical complexity, we can only deal successfully with Boltzmann equation for simple kinetic
picture and for very simple configurations. For practical problems, we have to use the mac-

roscopic variables and the continuum theory. We postulate the fundamental equations of fluid-
particle system based on the conservation laws of mass, momentum and energy. These fun-
damental equations should be consistent wlth those derived from the kinetic theory, We are
especially interested in those new terms of interaction between the fluid and solid particles,
which may be obtained by the kinetic theory but may be ignored in the ordinary derivation of

-

the fundamental equations by the continuum theory. Since the complete kinetic theory of the
fluid-particle system has not yet been developed, it is appropriate to use both the macroscopic

l and microscopic approaches to derive a general set of the three-dimensional fundamental

3 - equations of ice dynamics. From these three dimensional equations, the effective two-dimen-

sional equations of pack ice may be obtained,

‘ : ' With these effective two-dimensional equations of pack ice, we calculate the ice circula-

‘ tion in the Polar Ocean and compare these results with those in the literature and with the

! ‘ field observations. We also compare our model with AIDJEX's model for the similarities and

1 ’ the differences, and briefly discuss how to use AIDJEX's experimental data to verify the

essential points of our model.

1. Microscopic Approach: Kinetic Theory of Ice Dynamios.

Since the kinetic theory of gases gives us the Navier-Stokes equations of a viscous fluid

as a first approximation, we would expect that the kinetic theory of a gas-particle system




(Pai, 1971; Kuentzmann, 1973) would give the fundamental equations of ice dynamics (a mix-
ture of ice floes and sca water) as a first approximation. We consider an ideal case of a gas
(which may represent the water in our final result) and many small solid particles (which may
represent the elementary ice particles as we will define later). The kinetic theory of this gas-
particle system may be treated by using a single particle distribution function for the gas,

fg, and that for the solid particles, fp. Each of these distribution functions is governed by a
Boltzmann equation,

The distribution function for the solid particles, fp, is different from that of gas mole-
cules, fg. because we have to consider the different sizes, shapes and physical properties of
the solid particles. In general, the shapes of the solid particles are arbitrary. However, if
we were to consider the arbitrary shapes of the solid pérticles, the results would be too com-~
plicated and too detailed. Hence we will assume that the shapes of these solid particles are
similar. Thus, we need to use one of its dimensions as its size. With these approximations,
the distribution function of the solid particles may be defined as follows:

The number density of solid particles, dnp, with the size range hi and hi + dhi’ in the vol-
ume xj and xj + dxj, having the particle instantaneous velocity, cj, in the range of cj and cj +

dcj’ and the {nstantaneous temperature © of the particle in the range of © and © +d@ is

3
dn =f x,,¢,0,h, t)d
p~ %y o i D9y

where np is the number density of the solid particles, xj is the jth spatial coordinate of the

point considered, cj is the jth component of the instantaneous velocity of the solid particle in

de dhl @

the direction of xj, d3°j is the elementary volume of the velocity space, © is the instantaneous

temperature of a solid particle which may be varied from particle to particle, and hl is the
length scale of the particle which represents the size of the particle and which may be different
for different particles. For ice dynamics, we should choose the scale of hi such that an ele-
mentary ice particle would have uniform physical properties such as salinity, porosity, etc.
Hence the elementary ice particle in the microscopic analysis is much smaller than an ice
floe. In fact, an ice floe may be considered as a group of a large number of our elementary
solid ice particles. The rate of change of the size of our elementary ice particle depends on
the physical and mechanical processes such as evaporation, condensation, freezing, melting,
disintegration, hummocking, etc. Hence hl is a random variable in the microscopic analysis.
The distribution function of the gas, fg, may be considered as a special case of fp. in

which the variation of the distribution function with size parameter hl’ and with temperature 6
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may be dropped. Hence from now on, we shall consider only the distribution function, fp,

{ except where specified otherwise,
I The distribution function, fp, is governed by the Boltzmann equation which shows that the
1]

total rate of change of fp with time must equal the change of the number of particles per unit
volume by collision effects in the range of variation considered, i.e.,

Bl

i 0_f2+acf .y ET N + 8 th >+ ? Mf =(8_fp_) +(f_fp-) )
i at axj mp acj ae,(mpcs ahi kmp 11 it /g

where ﬁj is the jth component of the body force on a solid particle of size hi’ and mass mp.

S )
.

which is a function of hi; Qh is the heat transfer rate from a particle of size hl; cg is the

specific heat of the particle; Mp is the mass transfer rate of the pa rticle of stze hl which may
be due to the thermal and mechanical effects, and k is a constant depending on the shape of the
particle. If the particle is of spherical shape and h‘ is its radius, k =3,

The right-hand side terms of (2) are the collision terms. The first term is the collision

between solid particles and the second term is the collision between gas molecules and a solid
particle of the size hl' We shall study these two terms in detail because they have not been

’ previously examined thoroughly, We are especially interested in the study of collisions be-

' tween ice floes such as hummocking and rafting. The first collision term between solid par-
i ticles has been briefly studied by Kuentzmann (1973). But for ice dynamics, many additional
: effects such as hummocking, etc., should be included.

i The collision terms for gas molecules and solid particle may be split into two parts: one
i is due to the mean flow of the gas molecule, {.e., the fluid is considered as a continuum, and
l‘ the other is due to the random motion of the gas molecules, Thus
L 8\ _ (of 5f
N C S-S
it / g ot /gm ot /gr @)

the first term (éfp/ ) t)gm’ may be expressed as a body force on the solid particle, ¢]. Hence

l | we should use the continuum concept to find out the proper body force which contain a drag

} ) force similar to the Stokes formula, but, also including other effects such as volume fraction,
Reynolds number, pressure gradient, and other effects. (Pai-Hsieh, 1973) This is the area
where simultaneous studies of the microscopic and the macroscopic point of view would yield

useful information.
L‘ ' The other use of (2) is to derive the fundamental equations for the macroscopic approach #

k : from the transfer equations. Before we derive the macroscopic fundamental equations, we
: must define the macroscopic variables in terms of the distribution function, fp, as follows:
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The macroscopic variables are the moments of the distribution function. We have
(i) For zeroth momeni, we obtain the number density and the mass density.
The number density, np, of the solid particles is

3
= ’ » ©, h, t d de dh 4
0 j]fp(xj, op O by b doy , @)

and the mass density, 5p’ of the pseudo-~fluid of solid particles is

- 3
p =fffm (h)f (x,, ¢, © h, t)yd e, dOdh
p/] p™ o 3 i 99 i

=m nh = Z
PP pSP ©)

where 5p = pspz is the partial density of the pseudo-fluid of the solid particles in the mix-
ture, mp(hi) is the mass of a particle of size hi’ r’r‘xp is the mean mass of solid particles in
the pseudo-fluid, psp is the species density of the particle, i.e., the density of the particle it-
self without considering it as a part of the mixture, and Z is the volume fraction of the solid
particles in the mixture, In two-phase flow, the partial density should be used as we shall
show later.

(ii) For the first moment of the distribution function, we have the following macroscopic
variables:

The temperature of the solid particle, Tp, is

3
m (h) © [ d'c, do dh, ©)

The jth component of the flow velocity of the solid particles is

/]m )cfdcjdedh @)

(iil) For the second moment, we have the jkth component of the stress tensor of the pseudo-
fluid of the solid particles:

3
Sk -fff m B (€~ V) (@, - v ) £ dc dodn, @)

The stress tensor spjk consists of the partial pressure pp of the pseudo-fluid of solid particles

and the viscous stress tensor of the pseudo-fluid of solid particles due to the random montion
such that

= 5 -
otk “Po ‘i " Tpik ®

swg vy
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where sjk =11ifj=k and ij =0 ifj £#k. 'The jkth component of the viscous stress tensor is

T .
pik
Similarly, we may define other macroscopic variables such as the hea flux due to con-

duction, the interaction forces exerted upon solid particles by the pseudo-fluid, work done on
the fluid by the entire particle cloud, etc., as shown in reference by Pai (1973).

The equation of continuity of a species in the mixture may be obtained by taking the zeroth
moment of the Boltzmann equatlon. We multiply (2) by m (h ) and integrate the resultant
equation with respect to d cJ over the whole velocity space, with respect to © over the whole

temperature space, and with respect to h, over the whole size space. We may write the re-

i
sultant equation of continuity of the pseudo-fluid of solid particles (pack ice) as follows:

0Py o 9Py , PV, , OBV
at 9x ay 9z

where p = p min1 Dt Zi, Dl is the species density of the pack ice, and 5i is the partial

density of the pack ice in the mixture of ice and sea water., We have two different definitions
of density for each species in the mixture. Let V = Vi + Vw be the elementary volume of the

i

water, LetM = Ml + Mw be the total mass of the mixture of ice and water in V where Mi is the

mixture where V, is the volume occupied by the ice, and Vw is the volume occupied by the sea

mass of ice in V and Mw is the mass of water in V. The species density of ice is

R = i = oi (Tl’ pl’ Si’ £) (1)
where pl is in general a function of ice temperature Ti’ ice pressure pi, ice salinity Si' and
ice porosity €, The partial density of the ice, 51, in the mixture, which is the value of den~
sity used in the two-phase flow theory, e.g., in (10), is

=M =M Y -apz a2)
v Vl Vv
where
Zi = Vi = volume fraction of ice in the mixture (13)
A"

The source term, o, depends on the mass transfer Mp and the integral of the collision
terms. We shall study this term in detail in the near future.
The equation of motion 1s associated with the first moment of the Boltzmann equation. We

multiply (2) by mpcj and integrate the resultant equation with respect to d3°j de dhl and obtain




the equation of motion of the pseudo-fluid of the pack ice as follows:

2
azi piui + azi piui + azi ou.v azl piu

111+ i - Zp v, + ;

at ox ay oz |
+2Z_ p.w, Qcosh =- Z op + aTlxy + aT[xy + 3T1xz + i
i 1 ax ax 9y dz |

- 4 ;

+ 0 F, +K(Z) @ -u) (14) L

; where [ = 2 Qsin@ = coriolis force factor, @ is the latitude, and Q is the angular velocity of
' the Earth.

The factor K(Zi) is the friction coefficient of ice floes in water which is a function of the

IO

compactness or volume fraction Zi’ We should study it in detail. For a first approximation,

we may write

K(z,) = CZ, (15)

where C is a constant.

| gvenlih |

The factor Fui is the momentum transfer per unit mass due to the source term, which may

be obtained by studying the mass transfer term and collision terms in the Boltzmann equation.

| touuons |

i = ui, i. e., new ice has the same velocity

as the local flow velocity of the pseudo-fluid of pack ice.

For a first approximation, we may assume that Fu

In a similar form, we have the equations of motion in the y- and z-directions.

e T

The stress tensor of the pack ice with component Tixx’ etc., [as defined in (9) and (10)]
is due to the random motion of the ice particles. Since the determination of these stress tensors
is very difficult or nearly impossible from Boltzmann equation, particularly for the turbulent
; ] flow, we have to postulate the expression of such stress in terms of macroscopic variables

such as velocity gradient, etc. For instance, Doronin (1970) used the form similar to the con-

I
l ‘ ventional expression of turbulent stress. We may also assume that the pseudo-fluid of pack

! ice is a non-Newtonian fluid or even as an elastic-plastic material as AIDJEX modeling group
! did (Coon et al, 1974). The final decision should be made by checking with experimental re-
| sults as those will be obtained by AIDJEX experiment, We may use various expressions for :
. ‘ the stress tensor to calculate the ice circulation in the Arctic Ocean to find out the difference

due to these expressions and check them with field observations.

| swapee+ S

If we multiply (2) by mpcse and integrate over the spaces d3cj de dhl’ we obtain the tem-

perature or energy equation of the pseudo-fluid of solid particles. This temperature equation

|
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- with the kinetic temperature equation of the particles gives us the energy equation (Pai, 1973)

ar of the pack ice. We will study this energy equation in detail in the near future.
- III. Macroscopic Approach: Effective Two-Dimensional Equation of Ice Dynamics.
b In the macroscopic approach, we consider the mixture of solid particles and a fluid as a

mixture of two fluids: one is the pseudo-fluid of solid particles and the other is the real

ol fluid, gas or liquid. For each species r in the mixture, we would like to know its velocity
vector'tfr with components, ur, vr and wr, its temperature Tr’ its partial pressure pr and {ts
partial density Br' Hence for each species, we have six fundamental equations, i.e., one
equation of state, one equation of continuity, three equations of motion and one equation of
energy. These fundamental equations may be derived from thermodynamics (for equation of
state), and conservation laws of mass, momentum and energy (for the other five equations),
These fundamental equations should be consistent with those derived from the microscopic
approach, i.e., the various transfer equations of the Boltzmann equation (2)., This is the point
where we may compare the results of the microscopic and the macroscopic approaches.

We have shown that for ice movement in the polar region, because two dimensions along
the surface of the ocean are much larger than the thickness of the ice, it is convenient to
treat the ice movement as an effective two-dimensional problem. As shown in reference by
Pai-Li (1971), the correct way to derive the fundamental equations of these effective two-
dimensional equations is to integrate the three-dimensjonal equations such as (11) and (14) r
etc., with respect to the vertical coordinate z from z = O to z = H(x,y, t), where H is the
average thickness of the pack ice over an elementary area at the point (x,y,t).

We are going to show some details for such derivations which will give us new information
for ice dynamics.

(a) Equation of continuity of pack ice - compactness of pack ice, N.

3 Equation (10) may be written as follows:
v 8Z, Py | 2o, 3T/ L OZOW o (10a)
I at ax oy 8z i
, Now we integrate (10a) with respect to z from z = O to z = H(x,y, t) and have the following
{ equation:
H H H H H

i. fa.z_i_"i dz + f’zt"’tut dz +J'azt‘°1"1 at j”zi"iwz dz = fdidz (16)

. o ¥ 24 6 o o
} Since the ice remains on the top layer of the ocean, we may assume that at z = O and z = H,
,. w, = O or, if we consider freezing and melting l:e. the rate of Increase or decrease at the
L.
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surface z = O and z = H are approximately equal, then the fourth term on the left-hand side
of (16) varhlshes. We have also the following relation:

0z, 0
2 _ 8H + P an
atjzlpi 2=ZP ot at

<]
and similar relations for the second and the third terms on the left-hand side of (16). Further-
more, since H(x,y,t) i3 small with respect to the horizontal dimension L, we may assume

that the variations of Di’ Zi' u, and v, with respect to z are negligibly small and we may re-

i
place their values by the average values of these variables between the limits z =O to z = H,

Henlc;e, we have the following relations:

J'ziaoi & =HND (182)
¢
H
Jzipiul dz =HNp, u (18b)
H
dz =
Jzipivi z =HNp, v, _ (18¢)
H

g, dz=HO =E (18d)

where N is the compacitness of the pack ice which is the average volume fraction of the pack
ice between z = O to z = H(x,y, t) at any point on the surface of the ocean (x,y) and at a given
time t.

Substituting (17) and (18) into (16), we have the equation of continuity of pack ice in the

effective two-dimensional flow of ice dynamics in polar ocean as follows:

SNHp, , oNHPu, | 3NHPYV, NP, D,H +E, (19)
at ax Y "' Dt
where

21__ = 2+ u, & +v 2 (20)
Dt at 2x 2y

Equation (19) may be written as an equation for compactneas N as follows:
pH DN _ . P, NH( 24y 4+ % _ xm PPy E, @1)

Dt ax ay Dt

It is interesting to compare our equation of compactness N, (21) with those equations of com-~
pactness usually found in literature.
Rothrock (1970) gave the following equation for compactness:
PN DN - P,NH( . _a_v_l ) - PNH v+ ¢2 (22)
Dt 8x ay )
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The differences between (21) and (22) are tri-fold: (i) on the left-hand side of these equations,
H in (21) replaces N on Rothrock's equation (22). It is evident that N in (22) must be a print-
ing error because the dimensions of this term are not the same as those of all the other terms
in (22). (i1) NH(Dt pt/Dt) of (21) replaces NH p i ¢ of (22). Rothrock gave little information
about his function$ . We have no problem in explaining our term, NH(Dl pl/Dt). (tit) There
are some basic differences in concept between (21) and (22). In general, the velocities of ice
(ui and vi) are different from those of water (uw and vw) in the top layer, O SzSH, The
distinction between these velocities should be noted, and in (21), the use of the operator
(Dl/Dt) should be kept in mind, In Rothrock's analysis, such a distinction was not mentioned,
Rothrock separated the source term into two parts, and in (22), only one part of the source
term, i.e., the rate of formation of ice by freezing open water is included. In Rothrock's
analysis, if one makes the distinction between the freezing at the surface z = O and freezing
at0<z S H, one cannot use the effective two-dimensional approach. For an effective two-
dimensional approach, the source term should be the average source due to freezing or melt-
ing at the point (x,y). As a result, our Ei = Hol is different from Rothrock's ¢2.

We see that the thickness H occurs in every term of (21) if we write El =H ol, and the
compactness equation is independent of the thickness of the ice. This result is essential so
that the pack ice may be considered as a two-dimensianal continuum,

Various Russian authors have used simplified equations for compactness. We are going
to compare their simplified equations with our exact equation of compactness, (21),

Drogaitsev (1956) considered the conservation of the mass of ice per unit area and obtained
the following equation for the two~dimensional ice dynamics.

ONPH , aNHpw  ONHPY  _ o 23)

at dx oy

Comparing (23) with our exact (19), we see that Drogaitsev neglected the source term El'
Furthermore, he missed the important term due to the variation of the thickness of ice, H.
This is the main difference between the effective two~dimensional treatment of ice dynamics
and the ordinary two-dimensional approach obtained by simply dropping the variation with z-
coordinate. As we shall show later, if we simply drop the z- variation in the three-dimensional
equations of motion, we will never get the terms due to the air and water stresses on the sur-
face of the ice. Thus, such a simple equation of continuity (23) is not consistent with the
correct two-dimensional equations of motion of ice dynamies, Therefore, (23) {s correct only
if we neglect the source term and if we assume that the thickness of the {ce, H, is a constant,
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Nikoforov (1957) and Doronin (1970) used the following equation for compactness:
aN = - ( oMy, ONv, @4)
ot ax ay
If we compare (24) with our (21), we see that both Nikiforov and Doronin neglected the saurce

term o and the variation of the specles density of ice, p ¢ Thus (24) is valid only if we

assume that there is no source term and that the variation of the species density of ice, p i
is negligible.
Similarly, the three-dimensional equation of continuity of the water in the mixture is
2(1-Z)p,, , 9(1-2)) plul + 2Q-2) Po'w + b(l-Zl) Pow — T, =-T,  (25)
at ax ay 8z d

Where the subscript w refers to the value of water in the mixture, and we assume © w
oi, i.e., we neglect the evaporation or condensation of water vapor in the mixture,

If we integrate (25) with respect to z from z = O to z = H, and use the same arguments as
in the case of ice and similar notations, we have the equation of continuity of water in the

effective two-dimensional flow of ice dynamics as follows:

P H DWN = (1-N) pwn(au_w + ﬂ) +(1-N) H E!v_Py +H°‘ + (1-N) (F’w“"‘“’)H 26)
Y Dt ox 2y Dt
where
Dt at Y ex 3y

and (waw)H is the value of (pwww) at z = H which may or may not be negligible, The value
of (waw) at z = O is negligible in our case. The difference between (Di/Dt) and (Dw/Dt) in
(21) and (25) should be noted. In general, Y, is not equal to u, and \f is not equal to Vo' The
source term E‘ = Hat in (21) and (26) are the same. Equation (26) shows that the vertical com~
ponent of the water at the bottom of the ice, z = H may affect the compactness of the ice. This
is a point which has not been extensively investigated.

() Equations of motion of pack ice: Interaction forces between ice floes,

Similar to the analysis of the equation of continuity, we may obtain the three-dimensional
equations of motion of ice dynamics from the first moment of the Boltzmann equation (2). The
complete three-dimensional equations of motion including heat and mass transfer, and the
general collision terms have not been studied. Some simple models of two-phase flow, how-
ever, have been worked out (Pai, 1973; Kuentzmann, 1973). We shall study the general three-
dimensional equations of motion of ice dynamics in the near future. We will now derive the
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effective two-dimensional equations from the simple three-dimensional equations of motion
for the two-phase flow of ice dynamics by integrating the three-dimensional equations of ice
dynamics (Pai, 1973; Kuentzmann, 1973) with respect to z fromz=O to z = H. We are es-
pecially interested in the new information obtained in this manner as compared with the deri-
vation of the effective two-dimensional equations of motion from the force balance of a single

.AWJ‘.

E ice floe,
. The three-dimensional equations of motion of the pseudo-fluid of pack ice in the mixture
‘, of ice and sea water are given in (14).
New we will derive the equations of motion of the effective two-dimensional dynamics of
i pack ice by integrating (14) with respect to z from z = O to z = H. With the same arguments as
in the case of derivation of the continuity equation (19), we have the following effective two-

dimensional equations of motion for the pseudo-fluid of pack ice:

A e Aa—

; DYy -fv=-1 ap+_1 ( OTixx + ®Tixy) - ¥Tixzo 4+
] . Dt Pi ox N;:'l ax ' ay NH Pi
3 T
+ ixzH +K(N)
T u, -u) @7
NHP! Npl i
Dy +t'ul =- 1 _02+_1(’Tbgy +“lyy) - lezo +
Dt 1 9 Np, ox 2y NHp,
_ + TiyzH  + _K(N) v -v) e
1 Nle Npi w i )
. The source terms disappear because we assume Ful = “l’ etc, The terms Tlxzo and T lyzo
l_ are respectively the corresponding wind stresses on the top of the surface of ice floes, z = O,

5 : A in the direction of x and y. The terms Tisz and T iyzH are respectively the water stresses
: . acting on the lower surface of the ice, z = H, in the direction of x and y.
There are two types of interaction forces in (27) and (28): (i) one is the friction force due

. to the difference in velocities between ice and water, i.e.,

R N

= K(N) -
’
. ' where ‘6w and q‘ are respectively the velocity vector of water and ice in the mixture. This is
‘ ) the drag force of the ice floes moving in water, which is mainly due to the collision between
the mean water force and the ice floes as we mentioned in II. This force was first proposed

. by Sverdrup (1928) but neglected in much of the literature (Campbell, 1965; Doronin, 1970;
, - 1 3
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Feltzenbaum, 1961). In Sverdrup's original proposal, the water velocity Hw (uw, vw) has

been neglected. In our general mathematical model, the water velocity components (uw, vw)
are retained, which may or may not be negligible to ice velocity components (ul, vi). If the
ice motion is mainly due to the wind stress, the velocity of the ice (ui. and/or vi) may be much
larger than the water velocity (uw and/or vw). This is the reason why Sverdrup neglected the
water velocity in his formula. On the other hand, if we study the tidal effect of ice, the water
velocity due to the tidal waves may s much larger than that part of velocity of ice due to the
tidal force. Thus, we have to include the water velocity in the formula of the friction forces.
(ii) The other interaction force is the internal stresses of ice floes due to their random motion.
One of the main objectives of AIDJEX is to find the proper expression of these internal stres~
ses, Acc&dlng to Doronin (1970), we may write

ek + Tixy =_a(, Npif_l y + _2 (e, Np, %) (30a)
ax 2y x t ax 2y 2y
ax 2y ax ox 2y oy

where ¢ ¢ is the turbulent exchange coefficient to be determined by experiment or estimated by
current knowledge on turbulent flow. One of the new features of Doronin's formula is that he
includes the effect of compactness., His formula is consistent with the two-phase approach be-
cause in two-phase flow analysis, the partial density Np‘ should be used in all equations in-
stead of the species density Pi. We think that (30) may be used in (27) and (28) as a first
approximation, but there is a difference between our equations and those of Doronin., In our
equations (27) and (28), the stress terms (30) are divided by N Pi‘ while in Doronin's equations
of motion, they are divided by Py only, When we consider the mixture of ice and water, we
should use the partial density Npi in the equations of motion. Hence, Doronin's equations of
motion were not correct by using the species density p i in the inertial terms,

Similarly, we may derive the effective two-dimensional equations of motion of water from
two-phase flow, three-dimensional equations.

We shall also study the three-dimensional equations of energy for both water and ice from
the Boltzmann equatfon and their effective two-dimensional form for a complete study of ioe

dynamics. We may also derive equations for salinity for the two-phase analysis. The equation
of salinity of water is the diffusion equation of salt in water. The salinity of ice depends on

the salinity of water from which the ice is formed and other processes (Zubov, 1945), such as
the rate of ice formation, the state of sea during the ice formation, and the age of the foce.
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IV. Comparison of our mathematical model with other models.

Now we compare our model with those other models in the literature (Campbell, 1965;
Doronin, 1970; Fel'zenbaum, 1961; Coon, et al, 1974). In general, there are two different
types of mathematical models for pack ice. One is the fluidized model in which the pack ice
is considered as a pseudo-fluid. Our model is essentially a very generalized version of this
model. Those models in references by Campbell (1965), Doronin (1970), Fel'zenbaum (1961)
and Sverdrup (1928) belong to this type. We are going to discuss the relationship between our
model and those other fluidized models in detail in the following sections. The other type is
the elastic-plastic model in which the pack ice is considered as an elastic-plastic material
known as AIDJEX's model (Coon, et al, 1974). We shall discuss the similarities and differ-
ences of our model and the AIDJEX's model later,

a. Fluidized Model.

In our two-phase flow model, we consider the mixture of ice and water as a mixture of
two fluids that have the following variables:

?r’ T P ﬁr’ sr @
The species r may be the pseudo-fluid of pack ice (r = 1) or the water (r = w); q is the mean
flow velocity vector with component u, v and w; hence there are six velocity components
U, V,, W

D A |
and pw) which may be expressed in terms of the total pressure of the mixture p and the vol-

, uw, vw, v.'w). There are two temperature ('rl and Tw)’ and two pressures (}:oi

ume fraction 2, i.e., p, =Zp andp_ = (1 - Z,) p. There are two partial density Bt and Bw'
which are respectively Py = zl P, and Py = a- Zl) Pw The species density Py (pl or pw) is
given by the equation of state, {.e.,

Pr= Pp (Tpr Ppo Sr) (£3Y)
where sr is the salinity of the species r.

In the most general case, we should consider the 14 variables represented by (I). But
because of the fact that the dimensions along the ocean surface, L, are much larger than the
thickness of the ice, we may consider the effective two-dimensional flow of ice dynamics as
shown in Section ITI. In this effective two-dimensional flow, we consider the total pressure
p as a known function given by the atmospheric pressure above the pack ice and the inclination
of the ocean and the vertical velocity component W which is much smaller than the horizontal

velocity components u, and/or v.» may be eliminated by taking the mean values across the
thickness of the ice layer, Thus, we have to deal only with 11 variables, i.e.,

|
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Y Ve Y Ve Tp T Py Py N, 8 Sy an
Our model (I) is governed by 11 fundamental equations for the 11 variables (II). These funda-
mental equations are:

(1) Equation of compactness (21)

(if) Four equations of motion (27) and (28)

(iii) Two equations of state (31)

(iv) Two equations of energy ('I‘i and Tw)
and (v) Two equations of salinity (Sl and Sw)

The authors believe that such a complete analysis has not been studied yet. It is our in-
tention to study such a complete model eventually.

We may simplify our complete model (II) by various approximations. Since the salinity of
ice depends on the salinity of sea water from which the ice is formed, the rate of ice forma-
tion, the state of sea during the ice formation and the age of ice, no simple relationship for
the determination of ice salinity has been found in connection with pack ice circulation. Hence,
in most analysis, we may assume S, and Sw as constants or simple functions of Pr and Tr’

1
Then we have only nine variables:

Uy Voo Wy Voo T[’ Tw’ Pi, Pw. N am
We feel that model (IIT) should give good results for ice circulation in the polar ocean by solv-
ing the equation of compactness, four equations of motion, two equations of energy, and two
equations of state together with the equations for air above the ice and the equations of water
below the ice.

Most of the analyses in the literature are much simpler than our model (III). Our model
may be reduced to these simplified models as follows:

(1) The simplest fluid model,

The simplest fluid model considers only the four variables:

Upp Vo ULy Vo aw

In references by Campbell (1965), Fel'zenbaum (1961) and Sverdrup (1928), this model has
been used. In order to reduce our model (III) to the simplest model (IV), we have to assume
that the temperatures Tr and the density Pr are constant. We also assume N = constant. For
instance, in references by Campbell (1965), Fel'zenbaum (1961) and Sverdrup (1928), the
compactness is implicitly assumed to be unity. Furthermore in these references, different
types of equations of motion have been used. In reference by Campbell (1965), only the viscous
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stresses (with N = 1) of (30) are used but not the interaction force (29), while in reference by
Sverdrup (1928), the interaction force (29) with 'dw = O but not the viscous stresses (30) have
been used. In reference by Fel'zenbaum (1961), both interaction force (29) and the viscous

stresses (30) are neglected. In our simplest model, we would like to use both interaction
force (29) and the internal stresses (30) with N =1,

(ii) Doronin Model.

In reference by Doronin (1970), the following variables are considered:

ul, vl, uw, vw, N "
Doronin added an equation of compactness (24) to the equations of motion. Furthermore,
Doronin implicitly assumed in his model that the velocity components of ice and water in the

layer O £23Hare equal, f.e., u, =u_, v, = Ve 5° that the equations of motion of ice (27)

and (28) are solved with the equati(l)n o:v oon:pactness (24). Because of the assumption of u =u_
and v, = vw, the friction force (29) is idenl:lcally equal to zero. Doronin also considered the
thermal effects of compactness and the thickness of ice in an empirical manner by assuming
that the temperature is known and given by the temperature of the atmosphere at a certain
height. After he obtained the dynamic effects from (24), (27) and (28), he added the thermal
effects to his results by some empirical relationships. J

We may improve Doronin's model (V) by considering the following variables:

U Vi uw, Vo' T, N (V)

where T = Ti = Tw which may be different from the atmospheric temperature and which is
given by the energy equation of the mixture. Furthermore, we may calculate the case u, # u,
and vi;‘vwlnthe wplayer0§z§H.

b, Comparison of Pai-Li Model with AIDJEX's Model.

The AIDJEX's dynamic model and its relationship to the atmospheric and ocean global
models are shown in Figure 1, Figure 6 of reference by Untersteiner (1974), Our mathematical
model is shown in Figure 2, There are some similarities and some differences between these
two models.

The similarities of these two models are as follows:

In both models, the essential efforts are given to the fundamental equations which govern
the properties of the pack ice as a contimium, such as the ice flow velocity, fce stresses, ice
thickness, etc. The fundamental equations of the foe layer should be solved with the fluid

dynamics of the atmosphere above the ice and that of the ocean current below the ice. Thus,
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in Figures 1 and 2, only the dynamic model part is different.

The primary differences of these two models are as follows:

(i) The distribution functions in these two models are of entirely different concept. In our
model, the distribution function is connected with the microscopic analysis while in AIDJEX's
model, the distribution function is connected with the macroscopic approach, We use the
Boltzmani equation to determine the distribution function. In AIDJEX's model, the equation of
ice distribution is solved simultaneously with the macroscopic equation of ice flow velocity.

(ii) In the Pai-Li model, the pack ice is considered as a mixture of ice and water, and the
compactness of pack ice is considered as a dependent variable, In the AIDJEX model, the
pack ice is considered as an elastic-plastic material. The compactness is not considered as
one of the dependent variables.

(iii) In the AIDJEX model, the constitutive equation is assumed according to the elastic-
plastic material, In Pai-Li's model, the consititutive equation is that of a viscous or turbu-
lent fluid. For instance, a constitutive equation similar to that of Doronin (30) may be used.
Furthermore, in the Pai-Li model, no limitation on the constitutive equation is imposed. If
we assume that the pack ice may be considered as a non-Newtonian fluid, a rather general con-
situtive equation including that of an elastic-plastic material may be used to calculate the ice
circulation in the Polar Ocean.

(iv) In the AIDJEX model, the thermodynamic effect is included by assuming that the
temperature of ice is known, In Pai-Li's model, the temperature of the pack ice will be cal-
culated from the energy equation of the pack ice using the atmospheric and oceanic data as
boundary conditions.

Since there are several significant differences in these two models, numerical solutions
using both models should be carried out and compared with each other and with observational
data.

V. Summary and Conclusions,

The following are the summary and conclusions of our mathematical model:

(1) Based on two-phase flow theory (a mixture of a fluid and small solid particles), a new
mathematical model of the ice dynamics in the Artic Ocean is formulated.

(2) This mathematical model is developed from both the microscopic and the macroscopic
approaches.

(3) In the microscopic approach, the distribution functions for the pack ice and for sea
water are studied and so are the Boltzmann equations which govern these distribution functions.
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The relations between the distribution function and the macroscopic variables are given. The

derivations of the macroscopic equations from the transfer equations of Boltzmann equation
are discussed.

(4) In the macroscopic approach, the derivations of the effective two-dimensional
equations of pack ice are discussed in detail, particularly the equation of compactness, the
equations of motion and the interaction forces between ice and water,

(5) We compare our mathematical model with various models used in literature and show
that our model is the most general one for the fluidized model.

(6) We also show that under various simplified approximations, our model may be reduced
to those models in literature. We also discuss the improvement of those simplified models in

literature based on our mathematical model.

Vi. Recommendations.

The following problems are suggested for further development and application of our
mathematical model.

(1) We will apply some of our simplified models such as (V) to reinvestigate the ice cir-
culation in the central portion of Arctic Basin. The main point is to show the improvements
of our model (V) over those by Campbell (1965) and Fel'zenbaum (1961) where the effect of
compactness is not included. We may also show the effects of various interaction forces such
as given by (29) and (30).

(2) We will apply our model (V) to study the ice movement near the coastal region or in
the marginal zone so that the effect of tidal wave will be included, This problem is very {m-
portant from practical point of view but the numerical calculation has not been carried out.

(3) We shall study the energy equation of the effective two-dimensional ice dynamics in
detail, After we obtain the energy equation, we shall apply our model (VI) to study the ice
circulation in the central portion of Arctic Ocean and compare with Doronin's results (1970)
with ours.

(4) We will apply our model (VI) to the coastal regions. We may contribute to the
improvement of long range ice prediction by considering the thermal effect and the dynamic
effect simultaneously.

(5) From the energy equation of two-phase flow, we will study unsteady ice dynamic
problems such as the growth and decay of the young ice and one-year fce, particularly
those near the coastal region which is a very important practical problem.
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