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fiber composites under states of cyclic stress are established in

terms of quadratic stress polynomials which are expressed in terms

of the transversely isotropic invariants of the cyclic stress.

Two distinct fatigue failure modes, fiber mode and matrix mode,

are modelled separately. Material information needed for the

failure criteria are the S - N curves for single stress components.

A preliminary approach to incorporate scatter into the failure
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1. INTRODUCTION

A fundamental problem concerning the engineering uses of

fiber composites is the determination of their resistance to

combined states of cyclic stress. This problem is of much

greater importance for fiber composites than for metals. For

the latter there are many applications where the predominant

state of stress is one dimensional. Then the fatigue resistance

for constant amplitude cycling is defined by the S - N curve

for this stress component.

By contrast, even in the simplest fiber composite laminate

the unidirectionally reinforced laminae are in states of combined

stress. In many applications it is sufficient to deal with plane

stress while in others, however, a full three-dimensional state

of stress must be considered. The latter case arises predominantly

near holes in laminates and at laminate edges. These are compli-

cated cases which require stress analysis by finite element methods.

Analysis of fatigue failure based on the stresses obtained is not

possible without failure criteria for three dimensional cyclic

stress.

In view of the complexity of micro-structural damage accumu-

lation during fatigue cycling there is little hope for resolving

such problems by micromechanics methods, even for the simpler

case of cycling by one stress component only. It therefore

appears that at the present time the only realistic approach to

such problems is to construct fatigue failure criteria for

combined cyclic stress in terms of fatigue failure criteria for

simple states of stress, e. g. the S - N curves for single cyclic

stress components.

Wil



2

In this sense the problem has first been considered in [1]

but only for the case of cyclic plane stress with tensile normal

stresses.

Fatigue failure under combined stress has been extensively

investigated in the context of metal fatigue. Early work was

mostly based on such simple assumptions that principal normal

stress, principal shear stress, strain energy density or

distortional strain energy density associated with the cyclic

stresses determinethe fatigue failure. A more rational approach

to the problem, of curve fitting nature, was introduced in [21.

For review of these and other approaches see e.g. [3,4]. A

systematic approach to the problem has recently been given in [5].

This was based on isotropy of the material which is a reasonable

assumption for metals. Consequently, the failure criteria were

developed in terms of isotropic invariants of the stress tensor.

The present case is much more complicated because of the pro-

nounced anisotropy of fiber composites. However, a related

approach is still feasible based on the transverse isotropy of

the unidirectional material nd recognition of its different

failure modes. This approach is closely related to a recent

method of establishment of static failure criteria, [6].

2. GENERAL CONSIDERATIONS

The present discussion is concerned with some general

characteristics of phenomenological failure criteria for combined

cyclic stress. It is assumed that the average cyclic stress a..

is statistically homogeneous. Averages are defined over repre-

sentative volume elements (RVE) and the statistical homogeneity

I
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implies that averages are independent of RVE location. It is

further assumed that all stresses cycle at same frequency and

that the maximum and minimum amplitudes, denoted c
2  and a!

respectively, of each stress component remain constant during

m
the cycling, fig. 1. The mean stresses a1

m and alternating

stresses a . are defined by

a m 1 2 1 (2.1)

a =1 2 1
a. (a. a..oii = 2 ° j - ij)

If the stress cycles are sinusoidal then the cyclic state

of stress is uniquely defined by the magnitudes of (2.1) and the

phase lags 6ij of the individual stress components. It is thus

assumed that for any given specimen the number of cycles to

failure N is determined by the stress amplitudes and the phase

lags. In general, therefore, the failure condition is

m a

F( a.j , ij j 6 N) = 1 (2.2)Si' ii'

It may be noted in passing that the problem may be further

complicated by allowing stress cycle amplitudes to change during

cycling. An important special case is application of one stress

cycle component first and then another. This situation would

require cumulative damage theory under combined stress and will

not be considered here.

Phase lags are encountered when the stresses are due to a

number of cyclic forces which are not in phase. The writer is

not aware of consideration in the literature of their influence

on failure under combined stress. It will be henceforth assumed

...............................
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that all stresses cycle in phase and thus the 6ij vanish. Then

(2.2) becomes

F(ao .a j N) = 1 (2.3)

It should be noted that sign reversal of any a produces

a cycling which is half a cycle out of phase with respect to

other cycling. Thus this specific out of phase cycling is

included in the formulation.

Two important special cases are vanishing alternating

stress and vanishing mean stress. In the first case

F(a. , N) = F(o = 1 (2.4)

which is the static failure criterion, while in the second

F(O, a W N) = 1 (2.5)

which is a failure criterion for reversed cycling.

The situation is now further simplified by assuming

that the ratio

0.

H Ra 2 (2.6)
, -1j

has the same value R for all stress component cycles. This is

the case when the body remains elastic under cycling since then

all stresses vary linearly with the instantaneous values of the

applied cyclic forces. In view of (2.1) and (2.6),(2.3) can be

written as

2 12F o~j(1+R). . 0G. (1-R), N) = 1 (2.7)

which will from now on be written

F(aij, R, N) = 1 (2.8)
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where it is understood that aij represent the maximum amplitudes

of stress cycles, and that (2.8) is independent of the value of

R. Therefore, any single component S-N curve to be used in

obtaining information about the failure criterion must have this

same R.

It is useful to note that bythedefinition (2.6) different

cases of cyclic stress are defined by numerical ranges of R as

follows:

R < 0 tension - compression

0 R < 1 tension - tension

1 < R compression - compression

R = - 1 reversed cycling

R = 1 static stress

It appears that all previous work on the subject is based on

the form (2.8) thus tacitly incorporating the assumptions which

have been pointed out above. Consideration of failure criteria

of type (2.3) would introduce tremendous additional complexity.

It is conceptually helpful to adopt the usual stress space

representation of failure criteria. In such a description (2.8)

for a fixed N is a surface in six dimensional stress space (or in

three dimensional principal stress space). The surface is the

locus of all cyclic stress states (with same frequency and same

R ratio) which produce failure after N cycles. When N varies

(2.8) becomes a parametric family of surfaces with parameter N,

fig. 2. The static failure criterion is defined by the surface

N=O. At the other extremity are states of cyclic stress which

will not produce failure for any practically attainable,
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theoretically infinite, number of cycles. These define a region

in stress space which contains no failure points and may be called

the fatigue limit region, fig. 2.

A state of stress a jwhich produces failure after N cycles

may be regarded as a vector in stress space connecting the origin

to the appropriate point on the N failure surface. It is to be

expected on physical grounds that if all a. are increased in fixed

mutual ratios the number of cycles to failure will decrease. It

follows that the failure surface for N 2 is contained within the

failure surface for N 1 < N 2. Consequently (2.8) is a non-inter-

secting family of surfaces which are all contained within the

static failure surface, fig. 2. (It should be noted that the

foregoing reasoning disregards scatter.)

Since infinite failure stresses do not occur in nature the

failure surfaces should be closed. However, an infinite failure

stress may at times be a convenient mathematical idealization to

express the fact that a failure stress for one situation is

larger by an order of magnitude than for another. For example:

failure under hydrostatic compression as compared to failure

under uniaxial stress. A well known case is the Mises, represen-

tation of a plasticity yield surface as a cylinder which extends

to infinity in octahedral direction.

3. FAILURE CRITERIA

For the purpose of establishment of failure criteria tinder

combined cyclic stress it is essential to recognize the different

fatigue failure modes of unidirectional fiber composites.

The most common fiber composite consists of polymeric matrix

L reinforced by Glass, Graphite, Carbon or Boron fibers. When a
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specimen of such a composite is subjected to tension -tension

cycling in fiber direction it is mostly observed that damage

accumulates randomly in the form of many small cracks in fiber

direction (axial) and normal to the fibers (transverse). The

axial cracks are in the matrix while the transverse cracks

rupture fibers and matrix. It is the accumulation of the latter

which reduces the carrying capacity of the specimen resulting

finally in specimen failure with a jagged irregular failure

surface, fig. 3. This kind of failure mode is very different

from a metal fatigue failure mode which consists of the

initiation and propagation of a single crack.

No doubt transverse crack propagation in a fiber composite

is inhibited by the fibers since they are much stiffer and

stronger than the matrix. But it must be borne in mind that the

transverse properties of the fibers are the ones which arc

important here. Glass and Boron fibers are reasonably isotropic,

thus have high transverse stiffness. By contrast carbon and

graphite are very anisotropic and have low transverse stiffness -

at times as low as twice the polymeric matrix stiffness. Indeed,

the damage accumulation mode is mostly observed in the case of

Glass and Boron fibers while for Carbon and Graphite a sudden

transverse crack propagation mode also occurs. The common

feature of the two modes is that failure takes place by fiber

rupture through transverse cracks. Thus this type of failure

Will be called fiber mode.

Consider a homogeneous anisotropic elastic brittle specimen

which has the elastic symmetry of a unidirectional fiber composite,



thus is transversely isotropic, fig. 4, and contains transverse

cracks. Let the specimen be subjected to a homogeneous stress

state a ij* Evidently, the cracks have no effect on the stress

components a022, a033 and o 23' Therefore crack criticality

depends only on the stress components a 1 il0a12 and a 13* it is

an open question whether cracks in a fiber composite obey the

laws of anisotropic fracture mechanics, but it may be expected

that the situation with respect to the effect of the average

components 0 22, 0 33 and 0 23 will be similar. It will consequently

he assumed that the fiber failure mode depends only on the

average stress components 01a 0la12 and o013'

When the cycling is other than tension-tension the situation

is less clear. It may be reasoned that for tension-compression

cycling the preceding arguments are still acceptable because of

the presence of the tension component and thus the assumption of

independence of failure of 022 a3 and 02 can be retained.

The failure mechanisms in compression-compression cycling

are much less understood than foil tension-tension. There is

sufficient evidence that in static compression in fiber direction

the composite fails because of fiber buckling. Approximate

stability analyses [7,S] have indicateu that the compressive

strength is proportional to the matrix shear modulus. The matter

of the failure mechanism in compression-cor~pression cycling is an

open question. It is possible that the fibers will buckle at

cyclic load much lower than static buckling load because of
deterioration of matrix shear modulus due to cycling and/or due
to opening of longitudinal cracks at fiber/matrix interfaces.



In view of all of these uncertainties it is difficult to form an

opinion whether or not transverse cyclic normal and shear stress

will affect the longitudinal compressive cyclic failure stress.

The second primary failure mode of a unidirectional

composite consists of a planar crack in fiber direction, in

between the fibers, and is called the matrix mode. This occurs

in static and cyclic loading and is best demonstrated with off-

axis specimens (see e. g. [11). Such cracks occur suddenly with-

out warning and propagate at once through the specimen. This is

in contrast to fatigue cracks in metals which grow slowly with

the cycling.

In a thin flat specimen in plane stress the fracture

surface of the matrix mode is plane perpendicular to the specimen

plane. It is to be expected, that for a three-dimensional state

of stress the fracture surface will be a plane in fiber direction

oriented at some angle in the transverse plane, fig. S. The

stress G 1 has no effect on the propagation of such a crack and

it is therefore assumed that it does not enter into the matrix

failure criterion.

There arises again the question whether the failure mode

described also occurs for tension-compression and compression-

compression fatigue. Pending thorough experimental investigation

of this question it seems reasonable to expect that the direction-

ality oF fibers will lead also in these cases to the same kind of

plane matrix failure mode.

Assuming that all stress components cycle in phase with same

R ratios the failure criteria are of the form (2.8). In view of
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the above discussion of failure modes the fiber and matrix

failure criteria have the forms

Ff(0 1 1,o12,"1 3, R, N) = 1 (a) (3.1

Fm(o 2 2 ,o3 3 ,a12,1 2 3 ,G13 ,  R, N) = 1 (b)

where subscripts f and m indicate fiber and matrix modes,

respectively, and all stresses are maximum amplitudes. It should

be recalled that the reasoning leading to (3.1a) does not neces-

sarily apply to compression-compression fatigue.

A unidirectional fiber composite is initially transversely

isotropic in the macrosense with respect to the x1  axis in

fiber direction. It is not unreasonable to assume that the

material will retain this macro-symmetry during the cycling until

failure occurs. It follows that the failure criteria must be

functions of the transversely isotropic invariants of the cyclic

stress tensor and thus can be developed by a method similar to

one employed in [6]. The invariants are

I1 01a (a) (3.2)

12 = 022 + a33 (b)

=02 0 o 1 2 +02 (c)
3 23 22 33 4 (o 2 2 - 3 3 ) 23

I4 = a2 + 02 (d)4 12 13

I= 2 12023 13 0 a220 2 (e)
15 12 -313 2 13 33 12(e

The second of (c) and (d) are squares of principal shear stresses

in transverse and axial planes respectively. It follows that

(3.1) assume the forms



Ff(I 1,I 4 ,R,N) 1 (3.3)

Fm(1 2,I 3,14,15 ,R,N) = 1

Assuming failure criteria which are quadratic in the stresses

(see [6] for discussion of this common approximation) (3.3)

reduce to
2

AfI1 + BfI1  + DfI4  = 1 (3.4)

AmI2 + m2 + Cml3 + Dmi4 = 1

where the coefficients are functions of R and N.

Specializing (3.4) to the cases of pure transverse and

axial cyclic shears, a2 3 and 012 (or 013), respectively, it

follows at once that

Cm - (3.5)

T

1
Dm = Df 1* 2TA

where

TT = TT (R,N) (3.6)

TA = TA (R,N)

are the fatigue shear failure stresses as represented by the

S-N curves for these stresses. Similarly, let the S-N curves

for cyclic stress Oll in fiber direction and a22 or a33

transverse to fibers be given by
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GA  A (R,N) (3.7)

0 = aT (R,N)

It follows from (3.4) and (3.2) that

AfoA + BfA 2 = 1 (3.8)

A c T + Bc 2  1
m T m T

Since this is insufficient information to determine the co-

efficients it is in general necessary to perform combined

cyclic stress failure tests e. g. cyclic a11, 012 or cyclic

022, 012 to obtain necessary additional equations from (3.4).

Such tests can be carried out by combined torsion-axial force

cycling of thin walled cylinders in which the fibers are

either in axial or in circumferential direction, fig. 6. Such

tests are, however, quite expensive because of the high cost

of the specimens.

It will now be shown that in the case of fully reversed

cycling, i. e. mean stresses vanish, thus R = -1 for all stress

cycles, all of the coefficients in (3.8) are easily determined.

The reason is that a change of sign of reversed cyclic stress

cannot affect the lifetime (number of cycles to failure) for it

merely displaces all cycles by half a period. Consequently

(3.8) must be valid with same coefficients for aAt-'A and

TT. T It follows that

- -~r~J.-
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Af = Am =0 (3.9)

B 1
Bf - 2

A

B1m 2a T

Consequently the failure criteria for reversed cycling are:

fiber mode

11)2 + 0122 + 132 1 (a) (3.10)

A A

matrix mode

(022 + a33 2 + 0232 - a22'33 T122 1 1 (b)
aT  T2  + TA 2 (b

where

aA = aA (-1, N) aT = TT (-1, N) (3.11)

TA = TA (-1, N) T T TT (-I, N)

are the failure stresses for reversed cycling as given by

their S-N curves. For any given state of cyclic stress

(3.10-11) should be regarded as equations with unknown N,

the number of cycles to failure, also called - the fatigue

life. Each of (3.10-11) is solved separately and failure is

determined by the criterion which leads to the smaller N.

This procedure determines fatigue life and failure mode.

In view of the simplicity of (3.10-11) it is tempting

to use them also for the more general case when the mean cyclic
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stresses do not vanish, in which case the cyclic failure stresses

are (3.6-7). It is possible to advance some fracture mechanics

arguments that such a presentation would be appropriate for

tension-tension cycling, but only testing data under combined

stress can form a basis for examination of such an assumption.

Given all the uncertainties and the significant scatter of

fatigue data the writer believes that the failure criteria

(3.10-11) can probably be used on an ad-hoc basis for non-

reversed cycling. Some evidence for this is known for plane

stress and will be shown further below.

An essential problem in the definition of the failure

criteria is the experimental determination of the failure

stresses (3.6-7) or (3.11). The simplest is a A which is

obtained from the S-N curve for stress in fiber direction,

using flat unidirectional specimens. The a T S-N curve can in

principle be obtained with similar specimens in which the fibers

are in transverse (90 0) direction but experience shows that such

specimens are not suitable because of the very large scatter of

the test data. To obtain the T A S-N curve directly it is neces-

sary to employ thin walled tubes in torsion. Since fatigue

testing requires many specimens this is a very expensive

procedure. A better alternative is to obtain the a T andTA

S-N curves is by use of off-axis specimens. This will be dis-

cussed further below.

Experimental determination Of T T is a notoriously difficult

problem even for static loading. The primary difficulties are

that torsion cannot be used and that flat specimens must he made
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with fibers normal to their planes. Such specimens can only be

produced by transverse cuts through unidirectional specimens and

therefore their sizes must be small. One possibility is to

employ a new device for producing pure shear, (91, which can be

used with very small specimens. In the absence of other infor-

mation it is reasonable to assume that TT is the matrix shear

failure stress.

The basic state of stress of a unidirectional lamina within

a laminate is uniform plane stress. If x1 is in fiber direction,

x2 transverse to it in the plane of the lamina and x3 normal to

the lamina then the plane components of stress are Ol, 22, 012

all others vanish. The failure criteria (3.10-1l) reduce to:

fiber mode

c'11 2 + (0  ) = 1 (a) (3.12)

matrix mode

22 2 + 012 1 (b)

Failure will occur in the mode which corresponds to lower

fatigue lifetime.

Next there is considered the case of a rectangular flat

specimen subjected to cyclic uniform uniaxial stress unidirec-

tionally reinforced at direction 0 with respect to specimen

axis, fig. 7. The stresses with respect to the material

system of axes x1 , x2 are
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all C o (3.13)

0 22 -(7 sin2O

*12 a 0 cos 0 sin 0

Insertion of (3.13) into (3.12) leads to

cos 4 0 + 2 cos o sin 0 = 1 (a) (3.14)

()2 sin4 ()2 cos2e sin20 = 1 (b)
a T TA

When an off-axis specimen is cycled to failure for different

stress levels the test data can be summarized by the S-N curve

o(R,N). Eqs. (3.14) may be regarded as relations among o(R,N),

aA(R,N), GT(R,N) and TT(R,N). It is easily realized that the

fiber failure mode (3.14a) will apply for angles O 050 o while

the matrix mode (3.14b) will apply for angles 0o0 900. The

transition angle 00 is defined by simultaneous satisfaction of

the failure criteria (3.14). This defines 00 as

tan 0 0 T (3.15)

This angle is generally small for polymer matrix composites

since aT <<a A

In order to find the S-N curves oT(R,N) and T A(R,N) it

is best to fail the specimen in matrix modes using specimens with

several different 0. Using two convenient values 6l, 02-(3.14b)

become
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sin 4 01  cos 2 
1 sin 2 01 1

.4 2 2_

a ., =R N T A ( ,.)0-( ,

sin 402 cos 202 sin 02 1

aOT(R,N) 2A(R,N) a 2(R,N)

which can be solved for T and A'

Such a procedure has been successfully used, [1], to

represent unidirectional glass/epoxy test data. In this work

the simple failure criterion a11 = aA was used instead of (3.12a).

Figs. 8-9, taken from (1], show the fit of the failure criteria

to the experimental data for fatigue failure tests of glass/

epoxy off axis specimens with various angles of reinforcement.

It is seen that there is reasonably good agreement with the data

although (3.12) are applicable to reversed cycling and not neces-

sarily for the present case which includes mean stress; R = 0.1.

4. THE PROBLEM OF SCATTER

An intrinsic characteristic of fatigue test data is large

scatter. It is not unusual to observe a decade of scatter for

fatigue lives associated with same cyclic stress. The role of

a deterministic failure criterion vis-a-vis such scattered data

is not clear and does not appear to have been explored. It is

customary to draw the failure locus on a plot of the test data

and to be satisfied when the locus passes "through" the data.

A more rational point of view may be proposed: given the scat-

tered data for simple tests such as expressed by the S-N curves

(3.6-7). To predict statistical aspects such as means and
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variances for failure under combined states of cyclic stress.

A possible approach to this problem is given in the following.

It is reasonable to assume that the scatter in lifetimes

of specimens which are subjected to identical cyclic stress

states is due to the differences in microstructures and conse-

quent different evolution of microfailures in test specimens.

Conversely, it is reasonable to assume that if a specimen could

be reproduced exactly, in all microdetails, in any number of

replicas, the resulting specimens would exhibit no lifetime

scatter whatsoever. In what follows such hypothetical specimens

will be called clones and clones of a certain kind will be called

a clone species.

Evidently a clone species obeys some deterministic failure

criterion which is unknown and can unfortunately not be experi-

mentally investigated since clone specimens are not available.

It is however possible to relate any proposed deterministic

failure criterion to scattered experimental data in indirect

fashion. Suppose that a group of specimens has been tested to

failure under identical cyclic stress states. Each specimen is

regarded as a member of a hypothetical clone species. It there-

fore obeys a deterministic failure criterion which results in an

expression for failure prediction, involving certain parameters

(e.g. one dimensional cyclic failure stresses (3.6-7)). Since

however, such parameters are different for different species,

the failure criterion predicts a different lifetime and different

states of failure stress for each specimen i.e. for it's clone

species. Therefore the predicted failure stress statistics is
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determined by the specimen parameter statistics in terms of the

analytical expressions or procedures resulting from the failure

criterion proposed. Consequently, experimental tests of a

failure criterion should consist of comparisons of such quanti-

ties as probabilities, means and variances of failure stress

components and lifetimes as predicted by the theory and as

determined by experiment.

This approach will be illustrated by a simple example.

Suppose that the state of stress is plane and the specimens all

fail in the matrix mode obeying the failure criterion (3.12b).

Consider stress states for which the ratio G12/a22 is constant.

Thus

a22 = s s22 (4.1)

a12 0 s12

where s22 and s1 2 are given non dimensional numbers and a has

dimensions of stress. Let the mth specimen have cyclic failure

stresses oTm(RN) and TAm(RN). Then from (4.1) the failure

stress Om(RN) for this specimen is given by

s22)2 s12) 2

(RN) [ Tm TAm (4.2)

which defines the failure stresses (4.1) for this specimen and

for its clone species.

If failure tests with cyclic stress (4.1) are conducted

with M specimens then the mean of a is given by
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<0> (RN)ii 1 m[0Tm(RN), T Am (RN)]43

and the variance v is

1 M2v (R,N) = L [am - <(>]2 (4.4)
m=l

The mean (4.3) defines through (4.1) the mean failure stresses

<022> <0> S22 (4.5)

<012> <0> S12

If this procedure is carried out for different values of s22

and s12 there is obtained a mean failure locus defined by the

stresses (4.5) and the associated variances are given by (4.4).

Often static failure criteria such as (3.14) are used

with scattered data by substituting for aA' aT and TA their

means obtained by one dimensional failure experiments. It

should be emphasized that the procedure outlined above is

ent;rely different from such an arbitrary approach. Only when

there is little scatter, thus small variance, can these two

different approaches be expected to give similar results.

It must now be pointed out that the present procedure for

obtaining mean failure stresses and variances for combined cyclic

stress involves a serious practical difficulty. It is seen that

the averaging in (4.3) is carried out for constant N. However,

fatigue tests are carried out for constant stress with the scatter

in associated N since stress can be controlled by a testing
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machine but N cannot. To carry out the required "vertical"

stress average, fig. 10, it is necessary either to have a

very large number of test data or to devise the joint

probability function for a and N. It should, however, be

emphasized that the present method is equally valid for

static failure criteria where that difficulty does not arise.

The problem of obtaining statistical information for

the scattered N associated with given state of cyclic stress

also involves serious difficulties. In order to average N

(4.2) must first be solved for N but this is not possible

since the functional dependence of am, aTm and -i Am on N is

not known for a clone species.

S. CONCLUSIONS

The problem of establishment of fatigue failure criteria

for unidirectional fiber composite subjected to three dimensional

cyclic stress has been considered in terms of quadratic approxi-

mations and on the basis of the transverse isotropy of the

material. A fundamental ingredient of the approach is the

identification of different fatigue failure modes - fiber and

matrix modes, and their individual modeling.

A special interesting situation is reversed cycling for

in this case the one dimensional cycle failure stresses a aT,

and TT as defined by their S-N curves are sufficient information

to determine the failure criteria within the frame of the quadratic

approximation. For cyclic stresses with any R ratio some testing

information for combined stress cycling is needed. It may be

that the simple failure criteria for reversed cycling are suitable

approximations for this more general case. Some experimental

r 4---A
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evidence to this effect, for plane stress cycling, has been

presented.

Fatigue failure criteria for three dimensional cyclic

stress are of particular importance for fatigue failure analysis

of notched laminates, an important aeronautical engineering

problem. The states of stress in the laminae near the notch

are three dimensional and can only be obtained by numerical

methods such as finite element methods. The failure criteria

can be used to predict after how many cycles and at which

location first failure occurs and in which mode. Location

means a specific finite element. If the element fails in the

fiber mode then it may be assumed that its axial (in fiber

direction) Young's modulus is zero. If it fails in the matrix

mode, the transverse Young's modulus and the shear stiffness

may be assumed negligible. The numerical analysis can now be

continued with the new properties until more elements fail, etc.

Such an approach is illustrated by a notched laminate analysis

Igiven in [10].

An important additional failure mode which is specific

to laminates is delamination, that is separation of the bond

between two laminae due to shear and normal stresses. This

failure mode has not been considered here since the work is

concerned with unidirectional materials.

Finally, the incorporation of the statistics of the

failure test data is a most important aspect of fatigue failure

criteria. A preliminary approach to this problem has been given

here but further treatment to overcome the difficulties men-

tioned is needed.
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Fig. 6. Thin-Walled Torsion Specimens
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Fig. 7. Off-Axis Specimen
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