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FOREWORD

This technical report was prepared by Harry M. Dobbins and Michael
J. Noviskey of the Fire Control Technology Group, Fire Control Branch,
Reconnaissance & Weapon Delivery Division under Project/Task/Work Unit
number 7629/08/41. It is the final repurt for the period January 1978
to October 1979 and was submitted for publication in December 1979.
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SECTION I
INTRODUCTION

1.  STATEMENT OF THE PRUBLEM

In an airborne engagement in which a defending platform is subject
to multiple simultaneous attack, decisions must be made concerning which
threats must be countered and the order in which they must be countered.
These decisions can be based on the time of arrival of the individual
threats and the probability of survival of the defending platform based
on extrapolation of the current threat trajectories.

It is important to note that the errors associated with extrapola-
tion of threat trajectories are a function of two major error sources.

Measurement uncertainties, and

Model inaccuracies

Given, measurements and estimates of a threats position, velocity,
and acceleration, estimates of the future threat state can be made by
selecting a suitably sophisticated trajectory model. The problem lies
in selecting a model which is useful in the sense that it is both
computationally efficient and reasonably representative of the process
involved. The effective use of this extrapolation approach requires
evaluation of the error inherent in the model. In using this approach
the estimate of the error must be included in the algorithm itself or
decisions must be made depending on the specific scenario and knowledge
of the algorithm's Timitations.

Estimation of error places additional computational burden on the
system, but provides a more generic algorithm in the sense that all
scenarios may be treated by the same algorithm. The second approach
requires a_priori knowledge of error effects for classes of scenarios,
the algorithms used, and the usually detailed identification information,
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Figure 1 illustrates a typical engagement. The predicted miss
distances depend on the assumptions made about the trajectory and noise
in measurements. The constant velocity assumption (dashed straight line
in the figure from missile (1)) indicates the trajectory when the missile
had found an intercept course and is flying at essentially constant
velocity. The errors inherent in the assumptions would not provide
accurate miss distance estimates for missile (1) in the figure which is
not on an intercept course but is still correcting to an intercept
course,

The constant acceleration assumption (curved 1ine in the figure
from missile (1)) provides an improved estimate of miss distance. But
now noise in the acceleration estimates and actual acceleration due to
differences from a constant velocity course would degrade the prediction
for missile (2).

Finally, for missile (3) both assumptions would fail, since the
threat is not on an intercept course but is executing a high g maneuver
to correct. To assume a constant velocity fails to take into account
the high normal acceleration. However, to assume that the acceleration
will remain constant throughout the entire trajectory produces an
overcorrection. The assumptions, error sources, and possible solutions
to these probiems will be discussed more fully in Sections 2 and 3,

Since the prediction of miss distance is sensitive to both the
measurements and inherent assumptions about the threat trajectory, a
highly sophisticated threat model would not solve the problem. Such a
model would not only increase the computational burden of the system
but would also be subject to its own set of a priori assumptions and
measurement noise.
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Figure 1.

A Typical Engagement Scenario
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An alternative solution would be to provide an estimate of the
standard deviation for a number of successive predictions. If the threat
trajectory is accurately determined by the model, the differences in
prediction will be relatively small, and so will the standard deviation.

If the acceleration states are rapidly changing or the time-to-go
value is large the standard deviation will be correspondingly large.
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SECTION II
TECHNICAL STUDIES

1. COMPARISON OF TRAJECTORY ASSESSMENT METHODS

The purpose of the trajectory assessment function is to evaluate
and rank targets with respect to the dangers they present to the defend-
ing platform, and the expected time of intercept or closest approach.
These functions are based upon the state estimates of position, and the
velocity and acceleration estimates provided by the sensors and tracking
filters which can be used to predict or model its behavior.

a. Constant Velocity Assumption

Time-to-go and predicted miss distance are based on the
assumption that both the defending platform and the threat missile
‘maintain a constant relative velocity vector. The predicted miss dis-
tance is, then, the distancz at the point of closest approach and the
time-to-go is the time of closest approach. This calculation is some-
what simplified by adapting an intercept-plane coordinate frame. This
plane is defined by the relative position and velocity vectors of the
defender-threat pair. The aircraft and missile velocities normal to the
intercept are equal, by definition. Furthermore, if all significant
accelerations occur in the intercept plane the orientation of the
intercept plane will not change as the scenario unfolds.

Figure 2 illustrates the geometric relationships involved,
when it is assumed that the defending platform and threat maintain a
constant velocity. The velocity of the threat relative to the platform
is

(1)
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where r is the velocity along the line of sight (LOS) and Vn is the
velocity normal to the line of sight and is given by

v = r(&2 + é cosz4>)1/2 (2)

The heading error (a) is defined to be the angle of the LOS and the
relative velocity vector as

sina =V /V, (3)

From the geometry of the fiqgure,

sin a

X,/ (4)

where X0 is the predicted miss distance, or point of closest approach,

and r is the range. Then n can be calculated from

X0 =r Vn/Vt (5)

and the time-to-go is, then,

T =-r eyl (6)

In practice, however, a guiding threat does not maintain
a constant velocity relative to the LOS. Small deviations from the
true collision course would induce changes in V and r, due to the

missile guidance, even if the total velocity did remain constant. Since
the total velocity actually changes due to boost and drag, the intercept

course does change.

ke f2.
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then, from Equation 5,

and, from Equation 6,

and
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Assuming these changes in velocity are relatively small and
the greatest source of error will be the measurement or estimate error,

Sy My, b My o
X V r "V,
0 n t
AT A y 28V
Tgo r r

Then, for a.small heading error a, Vr will be large, compared to th

and r, and r will be large compared to ar and ar. However, the normal
velocity Vn will be of the same order of magnitude as aVn. By definition
of constant velocity intercept trajectory, Vn = 0. Small errors in the
estimates of Vn will dramatically affect the miss distance prediction.

b. Constant Acceleration Assumption

The approach taken and discussed by the Charles Stark Draper
Laboratories (Reference 2) includes the use of constant velocity and
assumptions of both small axial and normal acceleration. Then the miss
distance and time-to-go are expressed as

- Yo <2
o ° Vngo + AT % (9)
+> -+
go - (IlLLjﬁl) (10)
2
1Yo |

g V‘
R L R
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where
r_ is the missile initial position
V. is the initial velocity

A 1is the initial and assumed constant
acceleration

Equations 9 and 10 will provide exact results in the event that a
coasting missile approaches the defending platform along its implied
constant velocity vector. Any deviation from this set of circumstances
would result in an undetermined error associated with the estimator.
Reference 2 details a more complicated version of Equation 9 which would
provide an enhanced computation of multi-aspect threat arrivals, but
drag and staging will still result in accelerations not modeled by the
estimator (Reference 3). This approach also suffers because it does
not attempt to model the missile guidance. The normal acceleration will
not remain constant, due to guidance, but will tend toward zero as the
intercept course is attained.

¢. Decreasing Acceleration Assumption

To account for decreasing normal acceleration as the intercept
course is attained the following assumptions are made. The normal
acceleration decreases linearly with time and at Tgo the normal velocity
reaches zero. Then the normal velocity becomes

Vo= f A1 = T/T )y (1)
= 2
Vn = AnT - }QAn T /Tgo + Vo (12)
and the miss distance becomes
Vn
Xo =f Vn dt (13)
vo

fuekid
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Too 2

- f (AT = 3 AT /Ty + Ve, (14)
0

- opa 2 3 Tg0

= A t?- 1/6(AnT /Tgo)+ V., (15)

0
At T,
Xy = 1/3(AnTgo)+ VTeo (16)

Then the time-to-go can be calculated from the radial acceleration and
velocities (assumed constant) by

2
Tgo = vo +\/w 0 * ZArro (7))
Ar

Although this method attempts to account for missile guidance, no
specific guidance 1s modeled, and the effects of staging and nonlinear
drag effects are still not modeled.

2.  COMPARISON OF METHODS

A1l of the methods discussed are based on a polynomial approxima-
tion of the threat trajectory and extrapolation to the point of closest
approach. The constant-velocity method is based on linear or straight-
1ine approximation, and does not account for acceleration. The constant-
acceleration method uses a quadratic approximation, but does not account
for guidance. The decreasing acceleration method s based on a cubic
approximation, which is reduced to a quadratic expression by making
assumptions about the threat trajectory.

10
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The major problem associated with each of these methods is a
divergence of the predicted miss distance from the actual miss distance
for large time-to-g6. Since the value of function of t and its derivi-
ties are specified, the error associated with this type of extrapolation
has an error of the form (Reference 6).

e = F(t) - P(t) (18)
AT AT L LAy (19)
€ = F(t)'—n]—- - -'(n—_]—)]— n

If P(t) is an accurate representation of F(t), the error grows
in accordance with the power of the number of steps extrapolated forward
multiplied by the error in the coefficients. Figure 2 illustrates the
error associated with the methods discussed. As indicated, the constant
velocity assumption generally gives poorer estimates than either a con-
stant or a decreasing acceleration assumption. The constant acceleration
assumption provides the best estimate when the threat mus: actually main-
tain constant acceleration to arrive at the point of closest approach,
otherwise the decreasing acceleration assumption provides a better esti-
mate. The major disadvantage to using these approaches is the lack of
inherent measure of validity. That is, there is no measure of °tgo and
o (Reference 3). However, since the miss distance must be repetitively
evaluated in real time, the average and standard deviations associated
with the miss distance can also be calculated by
X X 2

( ?zv- ]3 01) (20)

n
ag = T
X .

0 i=1

where X01 is the ith estimate of miss distance

Xo is the average value of the last N estimates
av

N is the number of estimates

oy {s the standard deviation over the last N estimates
0

N
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Actual

Constant An
[

Predicted
Constant An

Decreasing An

+

Constant Vn

Figure 3. A Comparison of Actual Constant A, Missile Trajectory and
Predicted Miss Distances With Constant Velocity Normal to

LOS, a Constant An. and Decreasing A, 1in Aircraft-to-Missile
LOS Frame
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The standard deviation calculated, not only provides a measure of

validity of the model used, but can also be used directly in the calcu-
lation of probability of survival. :

3. PROBABILITY OF SURVIVAL WHEN GIVEN NO ACTION (PS/NA)

When given that a missile detonates at a distance x from an air-
craft, we can assume the probability of survival depends on the detona-
tion distance x and the warhead lethality range 7 and express it as

2 2
PS/NA = 1 - e X /To (21)

For simplicity, assume that r, is not a function of the angular
position of the missile relative to the aircraft's velocity vector.
Then the value of r, defines the 1 sigma radius for a given lethality.
Without identification information the value of ry would be unknown.
In this case ry would be selected as a maximum desirable keep-out-of-
range.

A defensive system does not have absolute knowledge of what the
value of x is before the detonation of the missile. The defensive sys-
tem can make an estimate of the point of closest approach and can make
an estimate of the time-to-go before the missile is at the point of
closest approach. The error between the estimated point of closest
approach and the actual point of detonation results because the defensive
system cannot accurately predict the dynamic motion of the missile for
long periods of time. In general, the higher the value of the standard
deviation of x before the missile is at the point of closest approach,

the more uncertain the estimate of the point of closest approach (xo)
will be.

Assume the probability density of a missile having a detonation

iistance of x to be: (X-xo) 2
X

13
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1.0

0.5p-

PS/NA

1 |
0 R 2R 3R
PREDICTED MISS DISTANCES

0.0

Figure 4, Probability of Survival as a Function of Miss Distance for
Various Lethality Ranges
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where g 1s the standard deviation of the value of Xg and N is'the

0
normalization coefficient. If g, = 0, then
: 0
dP(x) _ -
dx 8 (x xo)

The value of N can be determined because the total probability
over all values of x from 0 to « must be one

2
()
00 B O'x
1 =N j. e ° dx
0
Let
X=X, _y
= o
X, 2
Then 9y
dx = "o dy
2
and
Oy
2 g 2/
-y 2
1. o e dy
N 2
2xo
T T O0x
0
-] 2 2/
g -y /2 -(y 2)
1.% " 2 e &y , 2% e dy
N 2 T T gy
o 0

15
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The error function is defined as

t 2 : e_yz/z d (29)
o (). ¢ y
0
ERF () = 3 (30)
1 _ ct m
N 20 (31)
T e ()
N = 2
o { 1o+ ERF( 2: )} (32)
0
2 e'(;;:_o)z
%o “{1 + ERF (;—;’)}

0

The probability of survival (given that no action is taken) is,

the integrated product of the probability density of the point of
detonation occurring at x and the probability of survivi
at x, and can be written

then,

ng the detonation

; dP(x -(&;rs) .
PS/NA = f 4lx) (. ) dx (34)
0

Thus,
2
(22—
roe rzo * ozxo rox (35)
PS/NA {s ] , }{H ERF(-9-°——-—- )}
Z 2 Y 2. 7 3
To T 0% {1+ERF(L)} 7o T %%
ot

go
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PROBABILITY OF SURVIVAL
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| | | =
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Figure 5. Probability of Survival vs Predicted Miss Distance for
Varied Standard Deviation of Xo
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PS/NA
0,250 0,375 0,500 0,625 0,750 0,875 1.00

0,125

0.00

Figure 6.

Calculation of Probability of Survival Dependence on
Standard Deviation for Various Miss Distances
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Let x_ and Oy

5 be expressed in units of ro? SO that

0

(72
o, x
s/ ={1 - ( = How ERF(E———%—;—&—)} (36)

X
1+0 xo) [1 +(ERF_JQ)] go X,

O)(
0

Figures 5 and 6 illustrate the effect of uncertainty or model error
for various miss distances. Figure 5 shows that as estimated miss dis-

tance increases the probability of survival also increases. Figure 6

shows that as the estimate improves (the modeled behavior of the threat
resembles the actual behavior), better estimates of probability of

survival are generated. As oy becomes very large compared to miss

0 1
distance the estimated probability of survival becomes PS/NA = 1-e”.

Figure 7 gives a contour plot of the probability of survival for

miss distance and Oy -

0

9, increase, the probability of survival estimate is less sensitive to
0

variations in miss distance.

Note that as the predicted miss distance and

4.  THREAT PRIORITIZATION

The priority of tue threat is based on the probability of survival
and Tact and the time or range at which a defensive action can be taken.

The time at which defensive action can begin can be calculated
from

Tact = (R - Ract)/l/2

19
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For the constant velocity assumption, where

R is the range,
Ract is the range at which action can begin, and

VL is the velocity along the 1ine of sight.

Or, in the constant acceleration case

v2 - 2(R-R._,)A

act AL A

act’ 'L

L
where

AL is the acceleration along the LOS.
Then the priority can be expressed as

P = (1 - PS/NA) ERF ((T ) = Toct)/Tgo)

The error function rapidly increases towards unity as T o becomes

9

less than T in which case the priority is then determined by the

act’
probability of kill due to the threat.

20
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SECTION III
CONCLUSION

The methods developed for deterministic extrapolation of threat
trajectories to perform probability of survival and prioritization have
several positive features:

- relative simplicity

- indication of relatively good accuracy over a range of test
scenario (References 1 and 2).

The problems associated with use of these methods are error sources:

- measurement errors and estimation inaccuracies

- minor model inaccuracies (the missile guidance laws are not
directly modeled) which cause divergence of the extrapolated trajectory
from the actual trajectory.

- major model inaccuracies, such as staging and nonlinear drag
effects.

The major problem associated with deterministic extrapolation has
been the lack of statistical measurement of the validity of the model.
The statistical information, standard deviation of miss distance, can be
directly calculated from N sequential estimations and directly used to
determine probability of survival by the method developed in Section II.3.
This reduces the sensitivity of the probability of survival calculation
when the trajectory model is inaccurate or is giving rapidly N changing
results.

The model inaccuracies associated with missile guidance, staging
and drag, would require detailed and complex models. This type of model
would either require some type of identification information or methods
of determining the missile's guidance gain in real time. There are

21
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nonlinearities associated with staging and uncertainties in prediéting
when it would occur. Since the current techniques provide reasonable
results, the additional complexities and increased computational burden
of a more detailed model would seem to preclude the possibility of a
real-time solution using a more complex model at this time.

The measurement errors and state estimation inaccuracies would be
inherent in any system, but they become more critical when polynominal
extrapolation techniques are used, since the error in estimation grows
as the product of the error and a power of the number of time steps
extrapolated forward.

Methods for reducing the effect of this error could include various
data smoothing techniques, such as, the least-squares polynominal fit or
the Chebyshev min-max polynominal fit. These techniques are attractive
since the number of data points necessary to calculate the standard
deviation required for the probability of survival estimation could also
be used for data smoothing. This would reduce the more critical errors
associated with the polynominal approximation.

Few data points are required since the degree of the polynominal
approximation is low. For example, only four da*a points would be
required to generate a Chebyshev min-max paraboia, which is the highest
degree polynominal discussed.

Although these techniques reduce the measurement error, they do
add computatiopal burden and do not eliminate model inaccuracies. Since
model inaccuracies exist, repetitive calculations are necessary. Addi-
tional trade studies would be required to determine the benefit associated

with increased accuracy versus increased computational burden for a parti-
cular system.
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APPENDIX

Figures Il1lustrating Nominal Test Cases
Using the Algorithms Developed Using the
Constant Velocity Assumption and Acceleration
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