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RADAR WAVEFORM SYNTHESIS FOR TARGET IDENTIFICATION

Abstract

new scheme for radar detection and discrimination, the
radar waveform synthesis method, is investigated. This scheme
consists of synthesizing the waveform of an incident radar

signal which excites the target in such a way that the return

radar signal from the target contains only a single natural

resonance mode of the target. When the synthesized incident

radar signal for a known, preselected target is applied to a
wrong target, the return radar signal will be significantly

different from that of a natural mode of resonance, thus, the
wrong target can be sensitively discriminated. The study on

a simple geometry of a thin wire illuminated by a radar signal

at normal incidence has been completed. The induced current on

the target and the backscattered field from the target are
obtained in terms of natural resonance modes. The required

waveforms for the incident radar signal for exciting return

radar signals which contain various single natural mode of
resonance are obtained. When an incident radar signal, which

is synthesized to excite a natural resonance mode of a thin

wire, is applied to a slightly shorter or longer thin wire,

the return radar signal from the wrong target is shown to be
significantly different from that of a pure natural mode of

resonance. Other studies on the cases of an infinite cylinder,

a sphere, and a thin wire under an oblique excitation are in

progress.
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1i. Introduction

Research on the target identification utilizing a short

radar signal has been conducted in recent years by a number of

workers (1-81. Initially, the study on the scattering of a

radar target has been determined either by time harmonic

analysis coupled with Fourier inversion, or by direct time

domain solution. After the Singularity Expansion Method (SEM)

[9-12] was developed, the scattering behavior of a radar tar-

get became better understood. From numerous theoretical and

experimental studies on the scattering of a transient wave

from a metallic target, it is now commonly accepted that the

scattered field from a radar target irradiated by a short

radar signal can be expressed as a sum of natural modes of

resonance of the target. The research based on this concept

of natural resonance modes has since been intensified, however,

all the work appears to be analysis. That is, to irradiate

a target with a simple waveform, such as an impulse, a step

function or a ramp function, and then analyze the scattered

field in terms of natural modes of resonance or complex pole

resonances. To discriminate between two targets, two sets of

complex poles belonging to the two targets are compared.

In this research program, a new scheme for radar detection
i ! iI and discrimination, th( radar waveform synthesis method, is

investigated. Instead of analyzing the scattered field from

the target in terms of natural resonance modes, this new scheme

synthesizes the waveform of an incident radar signal in such

a way that when it excites the target, the return radar signal

from the target contains only a simple natural resonance mode

of the target. Thus, when the synthesized incident radar

signal for a known, preselected target is applied to a wrong

target, the return radar signal will be significantly different

from that of a natural resonance mode. Consequently, the

wrong target can be sensitively discriminated.

To demonstrate the feasibility of this scheme, we have

completed the study on the case of a thin wire illuminated
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by a radar signal at normal incidence. Other studies on the

cases of an infinite cylinder, a sphere and a wire under an

oblique excitation are in progress.

2. Accomplished Work

The results of the study on a thin wire with the normal

incident excitation are described in this section.

As the first step, the induced current on the wire and

the backscattered electric field from the wire are obtained

in terms of natural resonance modes. The required waveforms

for the incident radar signal for exciting return radar sig-

nals which contain various single natural mode of resonance

are then determined. It is then demonstrated that when an

incident radar signal, which is synthesized to excite a

particular natural mode of the wire, is applied to a wrong

target, a slightly shorter or longer wire, the return radar

signal from the wrong target becomes significantly different

from that of a pure damped sinusoid. Thus, the wrong target

can be easily discriminated. Details of the study follow.

2.1 Induced Current on the Target

The geometry of the problem is shown in fig. 1, where a

thin wire of length L and a radius a is illuminated by an

incident radar signal at normal incidence. The electric field

of the incident radar signal at the wire, in its Laplace

transform, is assumed to be

-incE (z,s) = z F(s) (1)

where F(s) is the unknown function which describes the required

waveform for the incident radar signal for exciting a return

radar signal which contains only a single natural mode of

resonance of the target. F(s) is independent of z because

the incident electric field is in parallel with the wire.

The induced current on the wire, I(z,s), can be deter-

mined from the Pocklington's integral equation:

3



2 sR/c
fO s- 4 4 - I(z ,s)dz = S F(S) (2)

where R 2+ 2

(z-zi) +a

For convenience, we consider first the case of impulse

excitation. That is, F(s) - 1 corresponding to E (z,s) =

z 6 (t). For this case, eq. (2) is reduced to

jL r(z,z-,s) ii(z',s)dz' = _S = V(s) (3)

0

where 2 2 -sR/c/ s e -kre h[ZZ',s = 2
-4 R - kernel of the integral

V(s) = -Eos = excitation

After the induced current 11 (z,s) due to the impulse

excitation is obtained, the induced current I(z,s) due to an

arbitrary excitation F(s) will be simply equal to II(z,s) F(s).

Based on physical intuition, the induced current I1 (z,s)

can be assumed to be the sum of all the natural resonance

modes of the wire (9]:

N
1(Z,s) = aava(z )(s-sa)- + W(z,s) (4)

where a is the amplitude of the ath natural resonance mode,

v (z') is the ath natural resonance mode, sa is the ath natural

resonance frequency, N is the maximum number of modes to be

considered, and W(z',s) is some function other than natural

modes. The function W(zo,s) is usually assumed to be zero.

To solve eq. (3), let's consider the behavior of eq. (3)

near s =s As s approaches to sa , I(z',s) is dominated by

the ath natural mode, so that we can write

4



11(z',s) =a v, ()S s s)- + W'(z',s) (5)

where N -
W'(z',s) = a a v(z,)(s- s) + WWz,s) (6)

= analytic around s sa

We can also expand the kernel of integral r(z,z',s) and

the excitation V(s) in Taylar series around s s=O

r(z,z,,s) = (s- s r 1' z' (7)

w h e e r (z , z ) 1 a r ( , " )(8 )
Za k astk ]zZ S=__

tt

V(s) = -C 0 5 = I (s - S a)V z (9)
Z=o

where a

Vta P. I~ X V(s) (10

asa

It is noted that r(z,z',s) and V(s) can be expanded into Taylar

series' because these two functions are analytic at s = scx

Substituting eqs. (5), (7) and (9) in eq. (3) gives

co

fL I s scX) r ,(z,z')]Ea v a(z')(s -Sa) 1 + W(z,s)]dz'
0 Z=o x c

I (s S a) zVt 11
t=o

Equating (s - s ) terms of eq. (11), we have

-lLf ac a~ s a) r oa (z,z)v a(z')dz = o
0
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From eq. (8), r oa(z,z,) =[r(z,z,,s)i S= r(z,z,s a).

Therefore, we have

fjL r(z,z,,s a)v (z')dz' = o (12)
0

Equation (12) is the basic definition of the ath natural mode

of the wire. It is also the special case of eq. (2), when

I(z~s) = v (z') and zero excitation is needed to excite this

current.

If (s -sa 0 terms of eq. (11) are equated, we have

aa f la (z,z')v, (z')dz' + foa0(z,z')W'(zis)dz' ox(3

If we multiply 'va(z) to eq. (13) and integrate it over z from

o to L, we have

a !Ldzva (z) ~f Lrl(Z,Z')v (z')dzj4IfLdzv (z) [JfLr (z,z')W'(z',s)dzj

= Ldzv (zV (14)

The second term of the left-hand side of eq. (14) is zero,

because

f d zva(z) oa (z,z,) = jLdzv ,(z) r (zz s = 0

based on eq. (12). Therefore, the amplitude of the ath natural

mode a acan be determined from eq. (14) as

fLdzv a(z)Vo~

a a ~z r(~'v('d'(15)

0 dzvz) [f 0la~zzv~~z
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From eq. (10),

V = [V(s)] = -eoSOct ~S=S 0a
oa

and from eq. (8),

(zz,) a [( a_ S2)e - SR/c

For a thin wire, it is reasonable to assume the natural modes as

v (z) = sin L (16)

A real sinusoidal natural mode for v (z) as given in eq. (16)

appears to be an approximate solution because another worker

[10] found v.(z) for a thin wire to contain a small imaginary
a

component based on a numerical method. On the other hand,

V (z) is a pure real function for a conducting sphere, there-

fore, the small imaginary component of v a (z) may be the result

of numerical error and eq. (16) may be nearly exact.

The numerator of eq. (15) can be easily obtained as

-sa !L for a = oddfLdzN) a(Z)V oa = 1(17)
0 o for a = even

The denominator of eq. (15) requires a tedious integration

and it can be shown to be approximately equal to

f dz( - [2 log (-)-11 (18)
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We can then express a as

a s a

ao = K(-) for a odd
a (19)

= 0 for a = even

where K = (20)(o2 log(L_]

This result implies that only the odd modes (a = odd) of the

current are excited on the wire by the impulse incident elec-

tric field.

The induced current on the wire due to the impulse exci-

tation can now be expressed as

N 1 sin c(rrz 1 1
Ii(z,s) = K 1 (---) s + *] (21)

a=odd aa a
-i

where the conjugate term of (s-s) was added because they

should appear in pair to produce a real solution of 11 (z,t).

The induced current on the wire due to the excitation of
-incA
E (z's) = z F(s) is simply given by

N 1 arrz 1 1
I(z,s) = K F(s)- sin (-) [ +

a=odd a L a s a (22)

Up to this point, the induced current on the wire is completely

determined in a closed form. The excitation function F(s) is

still an unknown function to be determined based on our re-

quirement of exciting a single natural mode of backscattered

field.

It is noted that the results obtained above correspond to

the Class 1 coupling coefficient of Baum [9]. A somewhat

different derivation can be applied to obtain an alternative

solution for the amplitude of the ath natural mode a as a

function of s, corresponding to the Class 2 coupling coefficient

of Baum [9]. This alternative solution of a will lead to

8
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somewhat different solutions for the induced current and the

backscattered field. Details of this alternative solution

and the reasons for not using it in this study are given in

Appendix B.

An equivalent circuit for the target can be constructed

as shown in fig. 2 based on the expression of the induced

current given in eq. (22). Equation (22) can be rearranged as

N a z 1 1 1I(z,s) = [L F(s)] I sin( -) (I)-[- + (22a)a=odd La S-s S-5 a

where [L F(s)] represents the applied voltage across the length

of the wire maintained by the incident electric field.

The induced current can also be expressed as

N
I(z,s) = [L F(s)] I sin(---) Y (s) (23)a=odd a

Equation (23) then implies a network of N parallel circuits

with the admittance of each circuit represented by Y (s).

Comparing eqs. (23) and (22a), we have

K 2s + 2a
Y (s) = (-) (---+ , I s2+2)[ (24)
a L C -s s-s * Ls+(2 2 2

a a s +2a s+ (o3+uw

where s a - +jw

Y (s) can be synthesized with a capacitor C , an inductor L-,

a series resistor R, and a resistor r connected across C
a Caas shown in fig. 2. The values of these equivalent circuit

! elements are

2
=, (K) 2 (L- an)2 1 (L)L " , R-- 2 - n t 2 '  and r

L 2 KL

wliere K = [2 log ( )-1]L o (henry).
K 8 a 0

9
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Now in terms of the induced current, the target can be

considered as a network of N resonant circuits, each repre-

senting a natural mode of resonance, connected in parallel.

The incident radar signal excites in each resonant circuit a. rz.
current which has a spatial variation of sin (---) and a

temporal variation of F(s) [ + s_- ]. As an example,
a a

the spatial and temporal variations of inducee currents in

this equivalent network for the case of impulse excitation,

F(s) = 1, are depicted in fig. 3. It is noted that for other

excitations, only the temporal variation of the induaced cur-

rent in each resonant circuit changes while its spatial vari-

ation remains the same.

It is evident to observe from eq. (22) that it is not

possible to excite only a single natural mode of induced cur-

rent on the target with the radar signal of eq. (1) which is

independent of z at the target. However, it is possible to

excite a single natural mode of backscattered electric field

in the return radar signal with an appropriate choice of F(s)

as shown in a later section.

2.2 Backscattered Field from the Target

After the induced current on the target is obtained, it

is easy to determine the scattered field from the target.

For simplicity, only the backscattered electric field main-

tained by the induced current on the target will be considered

here.
In the present case, the incident radar signal is incident

upon the wire normally, so that the backscattered field in

the far zone of the target is simply given by

E (t) = - A(t) = z A (t)

or in its Laplace transform,

E (s) = z E (s) = Z(-SA(s)) (25)

10



where A(t) is the vector potential maintained by the induced

current on the target. Since A(t) at the radar receiving

antenna located at a distance R from the wire can be obtained

as
PI ; I(z I t-R./c)

A(t) R dz'

its Laplace transform can be found to be

A =s Po esRo/c 1L I(zA,s)dz' (26)

Therefore, the backscattered electric field is

E s(s) PO- esR.c s L I(z',s)dz 1 (27)

Substituting I(z',s) of eq. (22) in eq. (27) yields

s e sROOc N1 11
E (s) K1  R s (s) - + - (2 8)

oo a=odd a a OL

P'O2 -4Lwhere K = (w)(-)K 2
1 IT Tr12[2 log (E)-1]

*To investigate the nature of E s(s), and avoiding the

difficulty of Rm--c, let's consider the quantity of

RoE (s) K1 es.cEs(s) (9

where E (s) s N ~ s 2 1 +1 (30)
1 odd 2 a 5sa*

The relationship between E5 (tM and ES(t) is evident based on

Shifting theorm:

R,,E s(t) K E s(t -R.,/c)u(t- R./c) (31)



This implies that there is a retarded time of R/c between

E S(t) and El(t). Thus, if we desire to synthesize E S(s), it

is only necessary to synthesize E1 (s). At this point, we are

in a position to choose appropriate F(s)'s to produce desired5 Es

backscattered fields of El(s) or E (s).

2.3 Required Waveform for Exciting Single Natural Mode

If we desire to have the backscattered electric field

containing only a single natural mode of resonance (the jth

mode), ES(s) should have the following forms:

To have a single natural mode with a maximum initial value,

E (s) = 1 + 1 (32)

corresponding to

-a .t
El(t) = 2 e I coswjt (where s.'= -oJ+jW9)

To have a single natural mode with a zero initial value,

E (s) + (33)1lS S-S. S-S.'
J 3

corresponding to

-0.t
El(t) = 2 e J sinw .t.

The required waveform, Fj(s), for the incident radar

signal for exciting a backscattered electric field which con-

tains only the jth natural mode of resonance can then be

determined by equating eq. (30) to eq. (32) or to eq. (33):

12



s N 1 1 + *+(4
E 1 (S) I s F. (S) 8 - .* (4a=odd a a aj

or =+ (35)
J J -

Prom eq. (34), we have

F S)s-s. S-S.*

aod a Sa a -

N
(S-S) r 1 (s-s )(s-s *

1aodd a a

N aj1 N (36)

(s-st) nI (s-s a~ (s-s a *)+ .(S-S 3 TI (s-s a' (s-s aI
aodd at=odd

a#3

+ 1 SSr(- ss(- r NT (-SH -

aodd a Naodd
S5 a#N

rwhere s a = Re[sa]

From eq. (35),, we have

13



S-S. S-

1 11

a=odd a a a

N
R (s-s )(s-sc*

a=odd

a#j

N N (37)

(s-sr) n (s-s ) (s-s *)+ (,-,r) . (s-s)(s-sa=odd a a V 3 a odd a (
acl a;3

s
1 r N 1 N

+ r (S-S5) n (s-s ) s-s *)+...+ N r(s-s ) N (s-s ) (s-s *)

a=odd N a=odd
a#5 a#N

where s. = Im s

The expression of Fj(s) in eqs. (36) or (37) is a ratio of

two polynomials of s. This expression can be directly inverted
back to the real-time function Fj(t) using a method based on

the state-space approach and a digital computer. This method

developed by Liou (13] will be briefly outlined in the Appendix A.

At this point, a question arises: with all the modes of

induced current excited, why the backscattered field contains

only the jth natural mode? The answer can be found after a

careful examination of eqs. (22), (28), (36) and (37) and

with a help of the equivalent circuit: in the jth mode

resonant circuit, two components of induced current are ex-

cited. One component is a pure natural mode which has natural

spatial and temporal variations; the other component has the

natural spatial variation but a forced temporal variation

(forced by Fj(s)). In all other resonant circuits, the in-

duced current has a natural spatial variation but a forced

temporal variation. When the effects of N modes of induced

14



currents with natural spatial variations but forced temporal

variations are added up, they maintain a zero backscattered

electric field. Therefore, only the component of induced

current in the jth mode resonant circuit which has both natural

spatial and temporal variations will maintain a pure jth

natural mode of the backscattered field. This type of cancel-

lation is possible only if the incident radar signal has a

temporal variation described by F.(s).

Some numerical examples are given here. We will consider

a thin wire with the dimension of L/a = 100, and consider only

the first ten natural resonance modes in the wire. Because

the radar signal is incident normally to the wire only the

odd natural resonance modes (a = odd) are excited. The

natural frequencies of these excited modes are:

S1  = (-.0828 + j.9251) ( )

nc

S = (-.1491 + j2.8835) (L--)
3 L

S = (-.1909 + j4.8536) (L--)
5 L

S = (-.2240 + j6.8286) (2--)
7 L

S9 = (-.2552 + j8.8068) (I)

With these values of S substituted in eqs. (36) or (37),

F (s) can be expressed explicitly as a ratio of two polynomials

of S. We have developed a computer program to directly invert

F.(s) into the real-time function of Fi(t). Four numerical

examples are given in figs. 4 to 7.

Figure 4 shows the required waveform of the incident radar

signal for exciting a return radar signal which contains only

the first natural resonance mode (with a maximum initial value)

of the wire, and the waveform of the return radar signal which

indeed exhibits the first natural resonance mode with a maxi-

mum initial value. It is noticed that the relative amplitude

of the required waveform for the incident radar signal F (t)

is plotted as a function of the normalized time t (-), and

15
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the relative amplitude of the waveform of the return radar

signal E1 (t) is plotted as a function of the normalized re-
2R

tarded time (t - -) The waveform of Fl(t) is somewhat
like a step function modulated with a damped oscillating

function, while the return radar signal is a pure damped sinu-

soidal function with a maximum initial value.

Figure 5 shows the required waveform F3 (t) of the incident

radar signal for exciting a return radar signal which contains

only the third natural resonance mode (with a maximum initial

value) of the wire, and the waveform E3 (t) of the return radar

signal. The waveforms of F3(t) and E3 (t) are similar, but

with some difference in the periodicity and the steady state

value.

Figure 6 shows the required waveform Fl(t) of the incident

radar signal for exciting a return radar signal which contains

only the first natural resonance mode (with a zero initial

value) of the wire, and the waveform El(t) of the return radar

signal which indeed exhibits the first natural resonance mode

with a zero initial value. It is observed that the required

waveform Fl(t) resembles a ramp function for small t but it

reaches a steady-state value exponentially at large t. The

whole waveform of Fl(t) resembles that of the charging voltage

across a capacitor. The return radar signal El(t) is a pure

damped sinusoidal function with a zero initial value. This

is an interesting finding because a number of workers [1,2,4]

have observed the phenomenon that with a ramp radar pulse,

the return radar signal from a target usually exhibits a

damped sinusoidal waveform. Our finding provides a theoretical

support for this phenomenon.

Figure 7 shows the required waveform F3 (t) of the incident

radar signal for exciting a return radar signal which contains

only the third natural resonance mode (with a zero initial

value), and the waveform E3 (t) of the return radar signal

which exhibits the third natural resonance mode with a zero

initial value. It is interesting to observe that the waveform

F3 (t) looks like a damped sinusoidal function superimposed on

16



the waveform F1 (t) of fig. 6. The waveform E3 (t) is a pure

damped sinusoidal function with a zero initial value. It is

noted that there is a slight difference between the periodi-

cities of F3 (t) and E3 (t) in fig. 7.

2.4 Discrimination of Wrong Targets

When an incident radar signal with a synthesized waveform

for exciting a natural resonance mode of a preselected target,

which resonant frequencies are assumed to be known, is applied

to a different target, the return radar signal is expected

to be significantly different from that of a pure natural

resonance mode, a damped sinusoidal function. Three examples

are given here to demonstrate this phenomenon.

In the first example, the incident radar signal is syn-

thesized to have a waveform F1 (s) which will produce the first

natural mode (with a maximum initial value) in the return radar

signal from a thin wire of length L and radius a. F1 (S) is

given by eq. (36) when j is set to be 1 in its numerator, and

F1 (t) is depicted in fig. 4. Assuming that this incident

radar signal with the waveform of F1 (s) is applied to a wrong

target, a slightly shorter wire with length L' and radius a'

where

L aL-- - =m = 1. 05.

Natural resonant frequencies s' of the wrong target are given
a

by

s =ms a

The return radar signal from the wrong target will be

N +- 1 N-- 1 (s))E (s) s F (S) N (S)

e~d 2  s-se s-s-* DI(s)a=odd a a a D1() 38

17
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where r N
(s-ns 1  (s-ms ) (s-ms *)

a=odd
api1

r N r N(39
N (s)-(s-s) 11 (S-s a (s-sa*) +_9(s-ns3) 11 (s-msa) (s-ms*) 139)

a=odd a=odd

. ..... . 3... .... .. ....
N

+ r)Nod (s-ms (s-ms *
N x=Odd,

a#N

N(s-s IT (s-s a) (s-s a

a=odd

N N
= (s-ms (s-ms ) +1(s-s) (s-s) (s-s *)
a=odd a a a=odd a a40;

a#3

4........................

NIIssr (ss)(s,*
N2N aodd aS- aX)SS(

a#N

The real-time function of the return radar signal from

the wrong target can be obtained by inverting eq. (38) with

our computer program. The result is shown in fig. 8 in com-

parison with the return radar signal from the right target,

which is a pure damped sinusoidal function. It is noted that

when the synthesized incident radar signal is applied to the

18



right target, its return signal will be

(s-s ) pure damped sinusoidal function
E (S) % = with a maximum initial value.

It is observed in fig. 8 that the return radar signal from

the wrong target is significantly different from a pure damped

sinusoidal function; different waveforms around the peaks and

a changed periodicity. It is evident that if the dimensions

of the wrong target are different from that of the right target

by a greater margin than this example, the difference in the

waveforms of the return radar signals from the right and the

wrong target will be more outstanding.

The second example as depicted in fig. 9 shows the wave-

forms of return radar signals from the right and the wrong

target when they are illuminated by an incident radar signal

with a synthesized waveform of F3 (s) which will produce the

third natural resonance mode (with a maximum initial value) in

the return radar signal from the right target. The waveform
F3 (s) of the incident radar signal is given by eq. (36) when

j is set to be 3 in its numerator, and F3 (t) is depicted in

fig. 5. The return radar signal from the wrong target can be

expressed as

Es) N3 (s)

3(s
E E3(S) AV - (41)

where

N3(s) = NI(s) (s-sr) (s-s 3) (s.s)*)

D3 (s) = Dl (s) (43)

The return radar signal from the right target is

(s-s ) pure damped sinusoidal functionE3(s) 3 = with a maximum initial value.
(S-s 3) (S-S3
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As observed in fig. 9, the return radar signal from the

wrong target damps faster than that from the right target,

and in the late-time stage, the phase of the former becomes

opposite to that of the latter. The difference between the

waveforms of these two return radar signals is quite signifi-

cant and can be easily identified.

The third example considers the waveforms of return radar

signals from the right target and two wrong targets, one is

about 5% longer and the other about 5% shorter than the right

target, when they are illuminated by an incident radar signal

with a synthesized waveform of F1 (s) which will produce the

first natural resonance mode (with a zero initial value) in

the return radar signal from the right target. The waveform

F1 (s) of the incident radar signal is given by eq. (37) when

j is set to be 1 in its numerator, and F1 (t) is depicted in

fig. 6. The waveforms of return radar signals from these

three targets are shown in fig. 10. It is observed that the

periodicities of the return radar signals from the wrong tar-

gets have been significantly altered from that of the right

target. This should lead to an easy discrimination of wrong

targets.

It is noted that in the calculation of the waveform for

the longer target, its natural resonant frequencies s' have

been assumed to be s = 0.95 s where s represents the natural

resonant frequencies of the right target. For the shorter

target, the identical natural resonant frequencies as used in

the first example have been adapted.

3. Work in Progress

Studies on an infinite cylinder, a sphere and a wire

under oblique excitation are being conducted, and some prelim-

inary results are outlined in this section.
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3.1 An Infinite Cylinder

The case of a perfectly conducting, infinite cylinder

with a radius a illuminated by a radar signal of TM polari-

zation as shown in fig. 11 is studied.

The incident electric field is assumed to be

-'inc
E (r,t) = y F (t-(x+a)/c]U(t-(x+a)/c)

= tr sin # + * cos co) F at-

• u~t - t--r--ocosc c
*t a _rCo

-c cs

and in its Laplace transform

-n ^sa sr

E (r,s) (r sin € cos €) F(s)e c e c (44)

where F(s) represents the time function which describes the

waveform of the incident radar signal.

Using the differential equation and the separation of

variable approach, the induced current on the cylinder sur-
face, KV, and the scattered electric field in the far zone,

E , can be obtained as

(¢,S) -F(s) _ e -sa/c (-1) En

K=a S K' (sa/c) os n4 (45)

and

sr --c -S(r+a)/c
Er (rs) -F(s) e 2-/

OD (-n Ei (sa/c)
n n

n=0 K' (sa/c) cosn¢ (46)

where Kn (sa/c) and In (sa/c) are modified Bessel functions and

the prime sign represents the derivative of the function.
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The induced current K can also be obtained from the

following integral equation:

-sa -saCo

f K 4 ("s) r(4,V),s)d' =-E 0asF(s)e c e c Cos 4

-IT (47)

where

r(4),4),s)2 - 2 2o()-))

K~~ a- /2cos(4)')]

0 c

Ci 2 nn A co n c012rn=O c2 n c
(48)

To analyze the transient behavior of the target, the

induced current and the scattered electric field are expressed

in terms of natural modes as follow.

K 0 (0),s) E E A nm(s) cos n4) (s-s nm )l (49)
n=0 mn=0

where A nm (s) is the amplitude or the coupling coefficient of

the ninth natural mode, cos n4) is the nth natural mode, and

s is the ninth natural frequency of the resonance. We can

show that

A (S) c e-sa/c (_) SSnm s (0

A ~ -F(s) t a S 1 ) En'~ (!sa)S ~ (50
0 fl' C

s is the mth root of ' (Pa-) function.nm n c
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Similarly, we can show that

OD OD

(ss) sr C (s) cos no(s-s (51)

n=O m=0 nm nm

where

c -sr~a)c sas-s

C (s) = -F(s) T-- e (-l) n EI'n() [ nm
nm 2sr n c sa s=s(c) nm

(52)

Now, if we desire to obtain a backscattered field

Esr (0=,s) which contains only a single natural mode (the

jlth mode), the required waveform F j(s) can be determined as

+ 1 -[ + ]= sjl s5 sjl. jr[+l -

Fl (s) = - ji s-sj1S j S-S*
Inm - nm s s -1]

E [ (,aS) + ( S ) +.s (n0 n n K(sa srs K sa s=srin= --(C) nm n (--) nm

(53)

F I(s) involves an infinite series of Modified Bessel

functions and its inverse Laplace transform is quite compli-

cated. We will seek for an appropriate method to evaluate

the real-time function of F j(t) in the future.

3.2 A Sphere

We have also initiated the study on a perfectly conducting

sphere of radius a being illuminated by a radar signal propa-

gating in the + z-direction. The geometry is depicted in

fig. 12, and the incident electric field can be expressed as

E (r,t) = xF[t-(z+a)/c] U[t-(z+a)/cl, (54)
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and in its Laplace transform as
-*inc -y vaA yR costE (r,s) = F(s)e 'Ixe'(5

where y = s/c, and F(s) represents the waveform of the inci-

dent radar signal.

After a long derivation, the scattered electric field

E (r,s) at any point in space can be found, based on the

boundary condition on the spherical surface, as

-y n 2n+l ina (k)E (r, s) -F ~(s) ea E (-1) 1) ( _ -)i
n1l n(n+l Wn(yaO) olin

- R ( fl(k)

[Rkn yR]-R=a Neln (56)

where

-~k 1 1kg (yR)P(cs )os 8oln sine n n (o )O

-k n (yR) *ri (co 8) Aio

4(k n(n+l) k(' 1' )o4
eln YR n n~cosR

DP1(Cos 8)A
+ R~ [R k (yR)] no cos4

yRsin8- _ [R k n(yR)]P n(cos O)sino 4

and n (C) and k n(C) are the modified spherical Bessel functions

of order n, andnp1 (o )i h soitdLgnr ucin~n (o )i h soitdLgnr ucin
The backscattered electric field in the far zone of the

sphere can be obtained as
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-*sr ~ .2 e- (R.+a)
(S) (",s)] x F (s) R

CO 2n + l

(57)

where R,, is the distance between the center of the sphere and

the observation point. Equation (19) can be further simpli-

fied to

-sr - a e-y(Rcra)

E ()- X 2 R0  E 1 (S) (58)

where

E (S) -F(s) (2n+l)C (59)
n~ n n

and

C ya = sa/c.

To synthesize F(S) so that the backscattered field

contains only a single natural mode (the ath mode), we can

equate E (S) to 1 1 o + 3. With this
1S-sa 5 55a S5S*

step we can determine the required waveform F a(s) as
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r +.+ *+ +  +i+ - +  - - _ _ _. .... . ... -.. .-

N1
Zf n(4 )gn( + s-

F = n=l a- - +  )
NN or (2n+)C. 2n _r f m(C )gm( or

n=l m=l +
rain (s-se  s-s*,

(60)

where

n (nB,!n-B
f n R E _=8Z '(n-)! 2 (61)

n

n (n+) 2 i
6=0 a!. (n-1)! 21

s is a root of f () = 0 or g n() 0.
n

N is the maximum number of terms to be considered in
the numerical calculation.

At present, efforts are being made to invert E1 (s) for

some typical waveforms of F(s) from Equation (59), and to

evaluate the real-time function of the required waveform

Fa (t) by inverting Equation (60).

3.3 A Wire under Oblique Excitation

We are also considering the case of a thin wire being

illuminated by a radar signal at an oblique angle of 6 as

shown in fig. 13. This case is more general than the case

of a thin wire illuminated by a radar signal at normal

incidence as discussed in section 2.

26



if'

We have obtained the required waveform for the incident

radar signal to excite a return radar signal which contains

only a single natural mode of resonance as follows:

1 1 or [-j +
s- ss, .s-s s -s .*

F.(s) N ] ____

N s 2  l-(-l)ae-sLcos6/c 2 1 1

T+. sL cose) 2 s (s-s) S *(s-s *)=+cir

(63)

The denominator of F. (s) contains coefficients which are func-

tions of exponential functions of s. Thus, it is not possible

to express F. (s) as a ratio of two polynomials of s. There-

fore, the real-time function of F (t) cannot be obtained by

our existing Computer Program. Another difficulty encountered

was a positive real root for F. (s) causing Fj (t) to diverge.
We plan to overcome these difficulties by seeking a more

accurate solution for the induced current on the wire, and

developing an appropriate method for inverting F. (s).
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4. Future Plans

We will continue the studies on the infinite cylinder,

the sphere and the wire under oblique excitation as described

in section 3. Other targets with more complex geometries may

also be considered. After these theoretical studies have been

completed, we plan to initiate the experimental study to verify

the theoretical findings.

5. Personnel

The following personnel has participated in this research

program:

1. Kun-Mu Chen, Professor, Principal Investigator

2. Dennis P. Nyquist, Professor, Senior Investigator

3. Che-I Chuang, Graduate Assistant

4. Doug Westmoreland, Graduate Assistant
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Appendix A: A Direct Method of Inverting Laplace Transform

A method developed by Liou [13] for evaluating the tran-

sient response of a linear system can be applied to determine

the real-time waveforms in our study. Since electromagnetists

may not be familiar with this method, it is briefly outlined

here.

Consider a linear differential equation with constant

coefficients

x M(t) + ax"M(t) + xM(t) + yx(t) = o (al)

with initial values x(o+), x'(o+) and x(o+).

Taking the Laplace transform of eq. (al) and rearranging

gives

X(s) = x(o +)s 2+[x'(° +)+x(o +)]s + [x-(o +)+x'(o+ )+Sx(o+)] (a2)

S s3 + a2 + 6s + Y

This is a ratio of two polynomials in s of the proper form

(that is, the degree of the numerator is less than that of

the denominator). In general, if

i rn-sm i am 2m-2
a - s +- + a m 2 s -2 . . . . . .+ a l1s + a 0X(s) aao (a3)

- m + bm- 1  + ............+ b1 s + b0

where m is a positive integer and a's and b's are arbitrary

constants, then the corresponding differential equation is

xm(t) + binlx(m-l)(t) + ....... +b1 x'(t) + b0 x(t) = o (a4)

with initial values

x(o+) = am 1

x'(o+ a m- 2  bmlX (ox

x(o' + ) = a 3 - bm_iX'(o +  b m2X(O +
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(rn-i) (o + a b x (m-2) + (m-3) (o+ blX(O+x m l ) (o+  o aO -b~m -2) (o) - bm_ ()....-bxo

(a5)

The state space equation corresponding to eq. (a4) is

x'(t) A x(t) (a6)

where x(t)

x(t) = x'(t) (a7)

x(m -i) (t)

0 1 0 ... 0 0

0 0 1 ... 0 0 (a8)

A=

0 0 0 0 0

-b0  -bl -b2  ... - -2-bm-i

The elements of the initial vector are given by (a5).

Thus, for a given ratio of two polynomials in s of proper

form, the corresponding state space equation can be formulated

in eq. (a6).

The exact solution of eq. (a6) is

x(t) = eA t x(o+ ) (a9)

where eA t is the transition matrix.

The transition matrix can be expressed by the infinite

matrix series
00 AA °

eAt = I = identity matrix (alO)

k=o

From eq. (a9) and the properties of the transition matrix-,

a recursive formula can be derived as

x[(n+l)T] = eAT x(nT), n = 0,1,2,... (all)

where T is an increment of time.
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Sinte the matrix series of eq. (al0) is uniformly conver-
ATgent in any finite interval, the matrix e in eq. (all) can

be evaluated within prescribed accuracy. Once eA T is deter-

mined, the vector x(t) at any t can be evaluated based on

eq. (all) with the initial vector x(o+ ) as the starting point.

The first element of vector x(t) is the desired transient

response.

We have developed a computer program based on this method

to invert the Laplace transform of the waveform, and another

computer program to evaluate the coefficients of a polynomial

of s which is originally expressed as a product of many factors

of (S-S).

Appendix B: An Alternative Solution for the Induced Current

As mentioned in section 2.1, an alternative solution for

the amplitude of the natural mode of the induced current can

be obtained through a different derivation. This result

corresponds to the Class 2 coupling coefficient of Baum [9].

If we assume that

Ii(z,s) = a (s)v (z')(s-s) - I  (Bl)

with ae (s) as a function s, and through a somewhat different

derivation than that given in section 2.1, we will have

L
f dz v (z) V(s)

a (s) = 0 (B2)

f dz va(z) frla (z'z') a(z)dz]

This can be evaluated to be

a (s) = K(-)(-) for a=odd (B3)at a 5

= 0 for a=even
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With this a (s), the induced current on the wire due to
inthe excitation of E (z,s) = z F(s) can be obtained as

(X7TZ S S
I(z,s) = K F(S)-a sin(--( )[ s (S- + *)(

a=odd Sa a a a
Ni awz [1 +1 1 l.](4

= K N F(S)I sin( Ls-s ++ + (B4)
a=odd aa a a

It is noted that this solution differs from I(z,s) given in

eq. (22) by a small negative term of
-2 o

N 1 a rz ,1 N 1 -a a
K .1 F(s)- sin(-- )-- + ) = K I F(s)- sin( ) (B5)

a=odd a a a=odd a Isal

The backscattered electric field maintained by I(z,s) can

be determined as

S e-sR/cN 1 1 1 1 1E (s s F(s) j[s + , + -L+ ]- (B6)
E soo 1 a=odd a a s a a a

Based on the expression of I(z,s) given in eq. (B4), an

equivalent circuit for the target can be constructed. It is

a network of N parallel circuits with each circuit synthesized

with a capacitor, an inductor, a series resistor, and a nega-

tive resistance connected across the inductor. This negative

resistance is due to the presence of the negative term of

eq. (B5) in the induced current I(z,s) of eq. (B4). This
negative term leads to a non-physical situation even though

it gives a better asymptotic behavior of I(z,s) for the step

excitation, F(s) = 1/s. The phenomenon of negative resistance

was also observed by other worker [14]. On the other hand,

the backscattered electric field Es (s) given in eq. (B6) gives

the following results: for the impulse excitation, F(s) = 1,

ES (s) exhibits a derivative of a delta function at t=o; for
E s sthe step excitation, F(s) = l/s, E5 (s) exhibits a delta func-

tion at t=o; and for the ramp excitation, F(s) = i/s2, E (s)
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contains a constant component and a finite value at t=o. These

results on the backscattered electric field deviate from ex-

perimental observations.

This alternative solution of I(z,s) has more discrepancies

than the solution of I(z,s) given in eq. (22), even though the

latter is also approximate in nature. For these reasons, this
alternative solution of the induced current is not used in

this study.

It is also noted that with ES (s) as given in eq. (B6), it

is not possible to synthesize a waveform F(s) for producing a

pure natural mode of E (s) because the negative term, (1/s +1/s*),
in eq. (B6) will cause F(s) to diverge. However, if the

incident radar signal with F1 (s) given in eq. (37) is used in
eq. (B6), the backscattered field E1S(s) calculated from eq. (B6)
will exhibit the first natural mode of resonance (with a zero

initial value) modified by a small near-constant term. This

example tends to indicate that the required waveforms F(s)

synthesized in section 2.3 for exciting single natural mode,

return radar signals may remain rather invariant even if a more

accurate induced current is used.
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Einc -inc - z=L
(t)

2a

ES (t)

oft*
SZ=

(a pure natural mode) E Z0

fig. 1. A thin wire illuminated by a radar signal at normal
incidence.
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1st mode 3rd mode 5th mode 7th mode
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fig. 2. An equivalent circuit for the wire target.
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-0.8-
-1.0"

fig. 4. Waveforms of the incident and return radar signals; the
former is synthesized to excite a thin wire to produce
the latter which contains only the first natural resonance
mode (with a maximum initial value) of the wire.
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1.0 fig. 5. Waveforms of the incident and return radar signals; the

former is synthesized to excite a thin wire to produce
i the latter which contains only the third natural resonance

mode (with a maximum initial value) of the wire.
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*fig. 6. Waveforms of the incident and return radar signals; the
former is synthesized to excite a thin wire to produce

the latter which contains only the first natural resonance
mode (with a zero initial value) of the wire.
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fig. 7. Waveforms of the incident and return radar signals; the
former is synthesized to excite a thin wire to produce
the latter which contains only the third natural resonance
mode (with a zero initial value) of the wire.
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fig. 8. Waveforms of return radar signals from the right target
and a wrong target when the incident radar signal is
synthesized to excite the first natural resonance mode
(with a maximum initial value) of the right target.
The wrong target is a thin wire about 5% shorter than
the right target which is also a thin wire.
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fig. 9. Waveforms of return radar signals from the right target
and a wrong target when the incident radar signal is
synthesized to excite the third natural resonance mode
(with a maximum initial value) of the right target.
The right target is a thin wire and the wrong target
is also a thin wire but about 5% shorter.
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fig. 10. Waveforms of return radar signals from the right target
and two wrong targets when the incident radar signal is
synthesized to excite the first natural resonance mode
(with a zero initial value) of the right target. The
right target is a thin wire and the wrong targets are
also thin wires, one is 5% shorter and the other 5%
longer than the right target.

45

-A- C-, I I-



z

oD~ +in~c
H

a

iinc

-~ r(r,)

x

fig. 11. A perfectly conducting, infinite cylinder
is illuminated by a radar signal with TM
polarization.
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fig. 12. A perfectly conducting sphere of radius
a is illuminated by a radar signal propa-
gating in the + z-direction.
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fig. 13. A thin wire is illuminated by a radar
signal at an oblique angle.
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