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Abstract

The inner (singular) integral in the inverse Radon transform for paral-
lel beam computerized tomography devices can be integrated analytical-

1y if the Radon transform considered as a function of the ray position
along the detector, is a cubic palynomial spline, Furthermore by using
some spline identities, large terms that cancel can be eliminated ana-
lTytically and the calculation of the resulting expression for the inner
integral done in a numerically stable fashion. We suggest using smoo-
thing splines to smooth each set of projection data and by so doing ob-
tain the Radon transform in the above spline form. The resulting analy-
tic expression for the inner integral in the inverse transform is then
readily evaluated, and the outer (periodic) integral is replaced by a
sum. The work involved to obtain the inverse transform appears to be
within the capability of existing computing equipment for typical large
data sets. In this regularized transform method the regularization is
controlled by the smoothing parameter in the splines. The regularization
is directed against data errors and not to prevent unstable numerical
operations. Strip integral as well as line integral.data can be hand-
led by this method. The method is shown to be closely related to the i
Tihonov form of reqularization.

[. Introduction
Consider a thin “slice" of the human head. In modern computerized ]
tomography (CT) with parallel beam geometry the equivalent of an array
1 of 2M+1 X-ray beams is directed through the slice and the amount of
3 attenuation of each beam is measured. This procedure is repeated as
the array is rotated through M positions, S0 a Sy about the head
b (see Fig.1) to give attenuation factors for a total of n=(2N+1)M beams
E through the slice. The log of the attenuation
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factor for the ith beam when the array is in the jth position is
given approximately by

Lijf = f wij(x,y)f(x.y)dxdy (1.1)
where f(x,y) 1is the X-ray density of the head slice at the point
(x,y) and LI is a non:negative weight function which is 0 outside
a strip surrounding the 1ij th beam and represents the non-uniform
effective distribution of the beam intensity across its narrow width.
The formula makes the approximation that the X-ray attenuation coeffi-
cient is constant over the spread of energies present in the (nearly)
monochromatic beam. In this report we model the data as

Zij = Lijf+€ij Y ig’Ng-.-,N‘
3=1,2, ..M,

where the €53 are independent zero mean random variables with approxi-
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mately the same variance which model counting noise and any other
(hopefull] non-systematic) errors inherent in the measuring device

and the approximations being made. The number n(2N+1)M of data points
may be of the order of magnitude of 105.

In practice, various methods are used to estimate f from the data
vector z=(z_N’],...,,zN'M). The results are usually presented on a
video display with different values of the estimate of f(x,y) repre-
sented by different levels on a gray scale, For more detailed discus-
sions of the subject, see, for example Shepp and Logan (1974), Herman
and Naparstek (1977),

In Section 2 we review briefly the estimation of a function f by
Tihonaov regularization given data zi=Lif+ei,i=l,2,...,n, where the
Li are arbitrary continuous linear functionals on some appropriate
Hilbert space. This approach is not usual in human head and body (T
because of the apparent numerical difficulty and the computational
convenience of transform methods. See, however Natterer (1980), Artzy,
E1fving and Herman (1979). For our purposes, a close examination of
this form of reqgularization will serve to clarify the resolution-noi-
s2 sensitivity tradeoff common to most regularization methods for dea-
ling with discrete, noisy data. The method is highly appealing in
many mildly {11 posed problems (as is the CT problem} whenever it is
feasible to implement it.

Most modern human CT devices use methods for estimating f based on
an approximate numerical evaluation of a reqularized inverse Radon
transform. For a recent description of one such a\éorithm, see Herman
Naparstek (1977), Chang and Herman {(1978). 1In Section 3 we present a
new approach for the approximate numerical integration of the inverse
Radon transform from discrete, noisy data. The work was motivated by

a study of, but is apparently quite different from the method described
in the above two references. It is in fact quite close to the Tihonov
form of reqgularization with moment discretization. The method entails
using a cubic smoothing spline to obtain a smooth function represen-
ting each set of projection data, that is, each set
zj=(z-N,j'z-(N-l),j""’ZN,j) where j is fixed. Then the inner
(singular) integral in the Radon transform can be evaluated analytically.
After using certain relations between the coefficients in cubic splines,
one obtains a computationally stable mumerical inversion formula which
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appears feasible to implement with data sets with N and M of the

order order of 102'5.

i The smoothing parameter in the cubic smoothing splines controls the
resolution noise sensitivity tradeoff. The suggested approach bypasses
most of the usual discretization, quadrature and aliasing errors common
4 to other methods. Unlike smoothing approaches which are, at least in
part, directed against numerical problems connected with evaluating a
singular integrand, the present approach directs the smoothing against
the noisy data in such a way that the singularity can be integrated
out analytically.

In Section 4 we indicate the relationship between the transform method
proposed, and Tihonov regularization.

2. Tihonov regularization
Let H be a Hilbert space of functions defined on some domain @, let
feH and suppose one observes

z, = L.f+e, , i=1,2,...,n . (2.1)

where the L, are continuous linear functionals on H , and the e; are
errors. It is supposed that the ¢, are uncorrelated zero mean random

i
variables with common variance.

Having chosen M, the (Tihonov) regularized estimate fo, of f given
.

the data z=(z],...,zn)’is the solution to the problem: Find feH to

minimize

n
CRNLENLERTUIEN (2.2)

The first term represents the "infidelity" of the solution t6 the data
and, assuming H is a space of "smooth" Ffunctions, an'kll2 represents
the "roughness" of the solution. The parameter X controls this tradeoff.
Equivalently A controls the tradeoff between sensitivity to noise, and resolution.

‘ If A is large ||fn’A|| will be small, and the solution will have low

4 resolution but the sensitivity to noise will also be less, since

18 2 .
ﬁiz1(Lifn,A'zi) can be larger. A small 1 will allow Ilfn.k" to be

large and corrrespondingly require Lif
in mean square.

to match the data better

n,

g
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Since the Li are continuous linear functionals on H , there exist
representers n].....nncH such that Lif’<"i'f> ,» wWhere <. , .»>»
is the inner product in H. Then the minimizer of (2.2) can be
shown to be given by

. fn'x= (n1.---.nn)(q+“11)-]l > (2-3)

i i

where Q is the nxn gram matrix of the representers, with ijth
entry Qij

Q

ij = <ni.nj> .

Equivalently,

fa ® KE(K KEenal) 7'z, (2.4)

where K. : H »En is defined by an=(L]f,...,Lnf), and K* is the
adjoint of K, in the sense that (z,K f)=<Kxz',f>, all 2z¢E ,fefl
where ( , ) is the Euclidean inner product. (KnK; is the operator
of matrix multiplication by Q) Results are available concerning the

convergence of fn N when 2 1is chosen appropriately and arc stated
’
in a little more detail in Section 4.

We remark that if H=L, then K;(KnK;+AI)'] is essentially a back
projection operator, see Natterer (1980), however in this case ) should
be thought of as controliing the scale or dynamic range of the solution
rather than its smoothness, and it is then not very important parameter
for tumor detection.

We make some remarks on choosing X and the space H. Natterer (1980)

has suggested that for computerized tomography, H should be chosen as
the space H®%(Q), l

HO(R) = (F:ffO1+1€12)® |F(6)|%dE < =, supp feit}

where ?(5) is the Fourier transform of f and «a
Ideally, one should choose H
tions.

is close to 1/2.
so that it "just" cuntains the true solu-
If one looks at the problem in "frequency Space" (see Craven and
Wahba (1979)) or "eigenfunction space” (see Wahba (1979a}), one can see
that the reqularized estimate f

n,\ can be thought of as passing the
controls the half power point ]
controls the "shape", or steepness ~3

data through a "low pass filter" where 2
(or "bandwidth") of the filter and g
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q of the "roll off" of the filter. For H fixed the method of genera-
1ized cross v$1idation (GCV) «can be used to estimate a good value of
A, oar in the case of computerized tomography, to obtain good starting
values for human "fine tuning". See Wahba (1979b) and references
cited there. In the typical tomography problem it will be necessary
to utilize the special structure of the problem and possibly to do
GCV on a subset of the data. See the appendix.

> P T

3. A novel reqularized transform method using smoothing splines.
Herman and Naparstek (1977) and Chang and Herman (1978) have recently
studied regularized transform methods for CT reconstruction for a

fan beam device. In this section we suggest a new numerical approach

to the regularized inversion of the Radon transform for a parallel beam
device. A similar but more involved analysis can be carried out for

the fan beam inverse transform discussed by Herman and Naparstek but

we do not do it here. The method to be given appears to have the
advantage of introducing discretization errors and quadrature appro-
ximations relatively late in the numerical procedure, and, intuitively,
the regularization parameter of the method appears to affact the reso-
lution - noise sensitivity tradeoff in an appropriate manner. The ncise

suppresion filtering acts directly on the raw data. The resulting
smoothed data is in such a form that the singular integrand is evalua- !
ted analytically, and large terms which cancel are subtracted analytically.

L T R TR T ——

Unstable numerical calculations and further discretization do not appear .
and thus their effect does not have to be suppressed with further filte-
ring.

The object to be reconstructed is assumed to be within a circle of ra-
dius D. The device can be considered to be the equivalent of a raster
of parallel rays, which are rotated about the axis. Let 0O inder the
angular position of the raster, £ the distance from the axis to a
parallel ray, and let the location of a point inside the circle be
given in polar coordinates as {r,$). (See Fig.1). Then f{r,s) is ]
the X-ray absorption coefficient at the point (r,3). Let p(t,p) be -
the line integral over f taken over the ray indexed by (2,0).

We begin with the Radon inversion formula for parallel beams as quoted

by Herman and Naparstek (1977), equ. (6).
2 k(e-2)
T E‘ED(Q,O YdrdoO (3.1)

D
/

(=R

. 1
f(r,¢) = Vim
o 4l

e~ D
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where kc(u) = if u|>e¢ and k‘(u)so otherwise, and

L' = r cos(0-¢).

We first consider the idealized case where the beams are infinitely
narrow. Then the data {zij) consist of noise contaminated measurements
of p(zi,oj) , that is , :

2,5 = p(zi,ej) + € i=-N,...,N
i=l,...,M
It is desired to estimate f(r,¢) on a grid of points
{rk,¢j}, from this data. It will simplify matters if we let ¢j=2wj/M
j=1,2,...,M. MWithout loss of generality, we may derive our formulas
by setting ¢=0 since the formulas for ¢=0, may be obtained by
relabeling the data.

First fix 0=0j. The inner integral in (3.1) becomes

.Q';E 1 d ( )
lim S == p(2,0,) di +
€+0 -0 L'-2 do J

D
1 d
{ mﬁp\l,ej)dl (3.2)

£'+e

The idea is as follows. Qne first obtains a cubic smocthing spline

approximation, call it px(z,ej) to p(z,ej). pX(L’ej) is the
minimizer of

ne~12=x

1
N .

2, D 2
(f(zi)-zij) + Af (f*(2))“de (3.3)
i -0

-N

in N%[-D,D]. Px(l.ej) has a representation

= 2 3
px(l’ej) = a, +b, L+c 27/2+d, 27/3 , ze[nk,zk+]] ,

where ak,bk,ck and dk are (for fixed 1), linear functions of the
data zij’ i=-N,...,N, and P has two continuous derijvatives'in 2
If X 1is chosen well, then under circumstances that are likely to be
satisfied here.bﬁt is known that f% q‘l,ej) is a good estimate of

d . d

It p(l,oj) . See Craven and Wahba (1979). We estimate T p(z,ej) by
4 b (2,0,) = b, +c, 2+d, 22 1T (3.4)
de Patt9; kxRt k*fkerd o :

There exfist coefficients ":i ' "ﬁi and wai independent of the data
and depending on A and {lf} such that

1/ but see last paragraph below.
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N
. b
b = (2 i P
Nz‘ (3.5)
c, = Woo Zs: .5
ko ey ki T '
N
. d
dy i‘EN”ki Zij

These coefficients can be determined and stored once and fO( all

{(after A 1is selected), requiring 3(2N)(2N+1) storage locations.

The storage requirements can be reduced at the cost of time by exploiting
recursion relations between the {"ki} , we omit the details.

By substituting (3.4) into (3.2) the inner integral can be evaluated
analytically and the limit as e-»0 taken.

First, let 1'=rcosej be in the interior of [Lm,2m+]]. Then (3.2)
becomes
Ni] ‘}+1 byte, brd, £
—_—— d L
=N el 1i-2
ifm
- 2 L 2
£'-€ b tc_R+d_ £ m+l b_+c _2+d ¢ -
+ lim k [ A+ o AR B dL] (3.6)
€-+0 Lo L'+e
= Jr(ej) » Say
Upon carrying out the indicated integrations, one obtains
-1 ' 2 R - ' o frt-n,
= ! !
.Jr(ej) iZ-N (bi+cig +di1 )an ET:T;:T +(bm+cm1 +dm£ Yen E;:T:ET
N-1 . 7 N 2 2’
— '- - l-
1 (er2di0t ) (R q-0g) + 3 T di((et-e ) (000 00)
juaN i=-N
(3.7)
These calculations are all stable except possibly for the two terms invol-
LA AR
ingln(z———frrr) and either ln(ET:TT—-— ) {(if &' is near ¢_) or
m+l ” m m
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L' -2 -
_,T__ﬂil) (if &' s near

an{ AR £m+1)' We give the details for 1
L' close to zm.
Let £ .,-2,=h and let

' = g +h (3.8)

where 0<6<1/2 . The possibly offending terms from (3.,7) are

Lt~ £'-1
(b ,*C gitd )zn(-T——-——)+(b tc,t'td z‘z)zn(—-————r) (3.9)
m-1 "m-1 Lo m 1‘1
Since the cubic smoothing spline has continuous first and second
derivatives at zm, we always have the relations
2 .
(bm'bm-])+(Cm'cm-])1m+(dm'dm-l)lm =0
(3.10)
(cm-c

m_]) +2(d-d _{)2,= 0

Substituting {3.8) and (3.10) into (3.9) gives that (3.9) is equal
to

2(d_-d 2

m m-l)h

6%an(25) + (bpre eted 2t an(1) | (3.11)
If 1/2<6<1, a similar expression may be obtained by summing the
mth and m+]1 st terms,.

Subtituting (3.11) into (3.7) one obtains, provided 0<é<1/2, (and

assuming the 2, are equally spaced)

N-1 .
g - . . 2.2 S+ (m-1i
J . Lo5) -ing (bi+(1+a)pci+(1+c) h®d;) en(—ZmaaTs

T (i 1. N L vn2
+h'=§N (ci+2(1+6)d1)+ 2 i=§N di[2(m+6)h-(21-1)h ]

+2(dy-dyIhs2an(ds)

+ byt (mes)hedy (m+5)2en ('*6 . (3.12)

Since Gznn(rrg) and zn(‘ 6)-»0 as §+0 , this expression is
computed in a straightforward manner for e0<6fl/2

, for some suitable
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€ o and set equal to 0 if 0§6<eo . A similar expression is obtained

for 1/2<8<1.

Having evaluated Jr(ei)' the estimate of f(r,p) is

M
fr.0) = J.Z]J‘r‘%) : (3.13)

Thus, one can process each set of projection data (i.e. the data for
fixed oj) in parallel. For each j one collects zj=(z-N,')"'zN,j) .
computes the (b}, (ck} and {dk} from (3.5) , Jr(oj) from (3.12) or
the corresponding expression for 1/2<6<l, and f(r,0) from (3.13).

To obtain f{(r,o0. ), @pfo, one repeats the calculations with each data
set zj relabeled as Zj-p' Note that the coeffients bk’ck and dk
depend only on Z;- They can be computed in parallel once for each set
of projection data and then the projection data discarded.

The regularization parameter here is ) {the choice of ¢
is condary). If A is fixed the

0* if reasonable,
W of (3.5) <can be stored.

The ultimate choice of A (or several values of A to provide alterna-
tive pictures), should, of course be chosen by examining pictures with
competitive X for their medical usefulness. Since A controls the
smoothness-fidelity tradeoff, varying A 1is likely to have the visual
effect of bringing the picture in and out of "focus". A too large X .
should result in an oversmoothed,bjurred picture while a too small )
should result in an overly grainy or "streaky" picture. A good set of
candidate A's should be obtainable at the design stage by using the

method of ‘generalized cross validation (GCV), on data from typical subjects
with the parameters (e.g. number of photons, number (2N+1) of rays, etc.)
that will be used in practice. Transportable code is available for doing
this (Merz (1979), Utreras (1979), Fleisher {((1979)). Given A, the coef~
ficients Wi Mmay be obtained from standard spline theory (e.g. Reinsch
(1967)). Numerical results on the estimation of the derivative from noisy
data by this method may be found in Craven and Wahba (1979).

We now consider the case where a line jnteaqral approximation to the data

is not adequate. Swopose it is more appropriate tc assume
tin
zij = f “i(l)P(lnoj)+€ij '
i
say. Then px(i'aj) is estimated by the minimizer of
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3
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2.

N +

T

-1 1 2 D 2
wo(2)f(2)de-z,.)"+2 [ (f*(2))%de
i==N J -0

2O Sy

——
2N
i

If wi(i) is taken as a constant, then px(l’oj) has a representation

2 4
py(2,0;) = 3, +b 1+?k2 /244 23/3+ek2 /8, 2€[2.,%,,,] where Ek,

N
bk.ck,?!k

3 continuous derivatives. Expressions for the gk’gk’%k' Hk and

and ?E are linear functions of the data and Py has

gk can be obtained, for example by using the representation for splines
given in Wahba and Wendelberger (1979). An expression for er(Oj)

is obtained by adding terms corresponding to Ek, to (3.12). wi(l)

can also be modelled as, e.g. a trapezoid, which will still result

in a piecewise polynomial representation for Py. with a sufficient
number of continuous derivatives to carry out a similar analysis.

There will be more pieces to the piecewise polynomial, however,

4. On the relation between the spline transform method and Tihonov
requiarization

In section 3 we have discussed a new method for the numerical inversion
of the Radon transform which essentially consists of smoothing the

data in the range space and then inverting the transform analyticaliy.
ODue to the circular symmetry in 0O, if one obtains pk(i,o) for
9#0],...,0M » by, e.g. any periodic spline interpolant in @ through
px(l,ok) , k=1,2,...,M, and then performs the integrations of (3.1)
exactly, the resuylt will be the same, namely (3.13).

We now discuss the relation of such methods to Tihonov regularization.
Let H be any Hilbert space, let Lt,teT be a family of linearly
independent continuous linear functionals on H and define the opera-
tor K by

(k£)(t) = g(t), glt) = L, f , teTl

Letting X be the range of K, we can make X a Hilbert space with
the norm

sl = inf 1£1|
€
Kf=g

Now consider the data smoothing problem: Find gecX to minimize
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Loy (att)-2)% +allgl? . (4.1)

1

He~13

1

Letting Ny be the representer of Lt’ it can be shown that X s F
é a reproducing kernel space with reproducing kernel Q(s.t)=<ns,nt>H.
(See Nashed and Wahba (1974). It then follows that the minimizer
9n.1 of (4.1) is given by ’ '

Y

g 2 (1) = (Qltt), .0t ) (eema D)™z, (4.2) '

where Q 1is the nxn matrix with 1ijth entry Q(ti,t.)=<n N, >,.
J ti t. H

L AN ERG

Now Q(ti’t)=Ltnti=Qti(t) , say , S0 that

Q, = Kn
t.
1 ti ‘
Letting Li=Lt , we have by inspection of (2.3) that f

, the
i n,A

minimizer of

n
2 2
LI fez )2 B |
ni:.] [
satisfies ;
- i
Kfn,A ® 9o 3
. i
Now Ne o teT span the orthogonal compliment of the null space of K,
; - - Ry .
since <nt,f>-—0,tsT = Kf=0. Thus fn,xgn(“) , 50 that fn’x is the .
unique element of minimal norm satisfying Kf=g and so (by definition ]
of the generalized inverse Kt ) fn >‘=K+gn A Thus miniial norm smoo- 3

thing in the range space (endowed with the induced norm), with an exact
inversion is equivalent to Tihonov regularization in the domain space.

Furthermore Elm‘gn’xlli =EHK+Kf-fn’AH5 , where the expectation is taken 3
over the € and convergence obtains as n-»= under general conditions 1
and x=x(n) 1is chosen correctly. See Wahba (1977).

In the procedure we have discussed, smoothing in the @ direction is
not explicit and any periodic method will give the same result. Let
px(z.o) be obtained by, say, cubic spline interpolation given px(l'ek)'
k=1,2,...,M. If px(z,o) were the minimizer of, say

2n D 4 2

r]T(er) ,.gj (9(2,-.0J-)-2,-J-)2+ ({ l(—{%ﬁ dode (4.3)

in an appropriate space of functions periodic in 0, then the method
being proposed would be exactly equivalent to Tihonov reqularization.
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The minimizer of (4.3) and pX(Z,O) do not appear to be exactly the
same function, however, but the resulting inversion appears to be close.
As far as the choice of space is concerned, this method is appropriate
for (- ,O)ewg ,

] wg = {f:f,f' continuous, f'el, [-N,N]}

2

He. ver, it is more natural to assume p(-,e)eN;={f:f continuous,
' f'stl-N,N]} as follows: Consider, for example, head sections f(X,y)
j which are continuously differentiable functions of Xx and y plus a
tumor which is the equivalent of adding a region of, say, constant higher
" density. [If the boundary of this region is strictly convex and "smooth"
’ then a little reflection will show that p(%,0) is a continuous function
of % and f% p(2,0) 1is piecewise continuous, so that p(-.G)eN;. The
: preceeding analysis with line integrals cannot be carried out to obtain 11
a stable computational formula because the derivative of the linear spline
is not continuous. However a similar analysis can be carried out with a
double integral over a O-increment, or, alternatively, doing spline
smoothing assuming p(',')eN;(-N,N) o N; (pgriodic). This 'will appear
se, "ately., The ability of 3% py(2,8) to approximate g%p(l,e) in
the wé . '~ has yet to be established in a practical sense but may be 4
quite satisfactory for the present purpose if there is L2 convergence,

Appendix

The GCV estimate of X is-the minimizer of V(A) given by

n . n 1
via) = 1 I'(Zl(zk(x)-zk)zl(l -1 _z]akm)z i
i= '

~ ~ - _ a
where zk(x)—kan’x , and ak(x)- 37 kan,x . See Wahba (1979b) and

references cited there. Letting Lk=Lij where {1 indexes the ray

number, and j indexes the rotational position of the detector %
(i=-N,...,N, j=1,...,4 1in the notation of Section 3), due to the .
rotational symmetry of &he device one should have aij(x)=ai(X) indepen-

dent of j, thus

vir) = ] N Moo ( )2 ) N 2

(1 thank F. Natterer for this observation).
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One way of obtaining the denominator is to compute ai(A) as L

6n1i‘ . where S;Jk is the "picture" when the input is

2=(0,...,0,1,0,...,0) with 1 in the il1th position. As an approxima-
tion to V()A) one might consider

i

v())= ! P ’;' (z, $(2) JTE P R N (x))?
R LA LTSN AL L I AR

where {ik} and {jl} are either representative or randomly selected
subsets of the indices.

We note that the use of gCvy is appropriate to estimate the smoothing
parameter for low pass filtering methods other than Tihonov requlariza-
tion, see Craven and Wahba (1979), Golub, Heath and Wahba (1979).
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