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Abstract

The inner (singular) integral in the inverse Radon transform for paral-

lel beam computerized tomography devices can be integrated analytical-

ly if the Radon transform considered as a function of the ray position

along the detector, is a cubic polynomial spline. Furthermore by using
some spline identities, large terms that cancel can be eliminated ana-

lytically and the calculation of the resulting expression for the inner

integral done in a numerically stable fashion. We suggest using smoo-
thing splines to smooth each set of projection data and by so doing ob-

tain the Radon transform in the above spline form. The resulting analy-

tic expression for the inner integral in the inverse transform is then
readily evaluated, and the outer (periodic) integral is replaced by a

sum. The work involved to obtain the inverse transform appears to be

within the capability of existing computing equipment for typical large
data sets. In this regularized transform method the regularization is

controlled by the smoothing parameter in the splines. The regularization

is directed against data errors and not to prevent unstable numerical

operations. Strip integral as well as line integral.data can be hand-

led by this method. The method is shown to be closely related to the
Tihonov form of regularization.

I. Introduction

Consider a thin "slice" of the human head. In modern computerized

tomography (CT) with parallel beam geometry the equivalent of an array

of 2N+l X-ray beams is directed through the slice and the amount of

attenuation of each beam is measured. This procedure is repeated as

the array is rotated through M positions, sl,...,SM, about the head
(see Fig.l) to give attenuation factors for a total of n=(2N+I)M beams

through the slice. The log of the attenuation
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factor for the ith beam when the array is in the jth position is

given approximately by

Lijf = f wij(x,y)f(x,y)dxdy (1.1)

where f(x,y) is the X-ray density of the head slice at the point

(x,y) and w i is a non-negative weight function which is 0 outside

a strip surrounding the ij th beam and represents the non-uniform

effective distribution of the beam intensity across its narrow width.

The formula makes the approximation that the X-ray attenuation coeffi-

cient is constant over the spread of energies present in the (nearly)

monochromatic beam. In this report we model the data as

zii = Lijf+ci ,

where the ci are independent zero mean random variables with approxi-
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mately the same variance which model counting noise and any other

(hopefully non-systematic) errors inherent in the measuring device

and the approximations being made. The number n(2N+I)M of data points

may be of the order of magnitude of 105.

In practice, various methods are used to estimate f from the data

vector z=(z.N,1 ...... ZN,M). The results are usually presented on a

video display with different values of the estimate of f(x,y) repre-

sented by different levels on a gray scale. For more detailed discus-

sions of the subject, see, for example Shepp and Logan (1974), Herman

and Naparstek (1977).

In Section 2 we review briefly the estimation of a function f by
Tihonov regularization given data ziLif+ci,i=1,2,...,n, where the

L i are arbitrary continuous linear functionals on some appropriate

Hilbert space. This approach is not usual in human head and body CT

because of the apparent numerical difficulty and the computational

convenience of transform methods. See, however Natterer (1980), Artzy,

Elfving and Herman (1979). For our purposes, a close examination of

this form of regularization will serve to clari.fy the resolution-noi-

so sensitivity tradeoff common to most regularization methods for dea-

ling with discrete, noisy data. The method is highly appealing in

many mildly ill posed problems (as is the CT problem) whenever it is

feasible to implement it.

Most modern human CT devices use methods for estimating f based on

an approximate numerical evaluation of a regularized inverse Radon

transform. For a recent description of one such algorithm, see Herman

Naparstek (1977), Chang and Herman (1978). In Section 3 we present a

new approach for the approximate numerical integration of the inverse

Radon transform from discrete, noisy data. The work was motivated by

a study of, but is apparently quite different from the method described

in the above two references. It is in fact quite close to the Tihonov

form of regularization with moment discretization. The method entails

using a cubic smoothing spline to obtain a smooth function represen-

ting each set of projection data, that is, each set

zj=(z NjZ.(Nl),j .. ZN, j ) where j is fixed. Then the inner

(singular) integral in the Radon transform can be evaluated analytically.

After using certain relations between the coefficients in cubic splines,

one obtains a computationally stable rumerical inversion formula which

• -..m - . ..
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appears feasible to implement with data sets with N and M of the

order order of 1O25

The smoothing parameter in the cubic smoothing splines controls the

resolution noise sensitivity tradeoff. The suggested approach bypasses

most of the usual discretization, quadrature and aliasing errors common

to other methods. Unlike smoothing approaches which are, at least in

part, directed against numerical problems connected with evaluating a

singular integrand, the present approach directs the smoothing against

the noisy data in such a way that the singularity can be integrated

out analytically.

In Section 4 we indicate the relationship between the transform method

proposed, and Tihonov regularization.

2. Tihonov regularization

Let H be a Hilbert space of functions defined on some domain a, let

fEH and suppose one observes

zi = Lif+E i , i1,2,....n (2.1)

where the Li are continuous linear functionals on H , and the Ei are

errors. It is supposed that the ci are uncorrelated zero mean random

variables with common variance.

Having chosen H, the (Tihonov) regularized estimate f n, of f given

the data z=(z. ...z n)' is the solution to the problem: Find feH to

minimize

1 n 2f-zi) + Xllfl 2 (2.2)

The first term represents the "infidelity" of the solution to the data

and, assuming H is a space of "smooth" runctions, 11f n,112 represents

the "roughness" of the solution. The parameter X controls this tradeoff.

Equivalently A controls th e tradeoff between sensitivity to noise, and resolution.

If A is large lf n,1 11 will be small, and the solution will have low

resolution but the sensitivity to noise will also be less, since
I n 2

i (Lifn ,A-zi) can be larger. A small X will allow 11f n AX to be

large and corrrespondingly require Lifn, X  to match the data better

in mean square.
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Since the Li are continuous linear functionals on H , there exist

representers nl, . n elnCH such that Lif=.cni ,f> , where <. , .>

is the inner product in H. Then the minimizer of (2.2) can be

shown to be given by

fni= (nI ..... nn)(Q+n lI)'z , (2.3)

where Q is the nxn gram matrix of the representers, with ijth

entry Qij

Qij = i

Equivalently,

f Kn(K K*+nAIz (2.4)

where Kn: H )En is defined by K f=(L f ...,L f), and K is then nn 1' n n
adjoint of Kn in the sense that (zKnf)=<K*z',f>,, all zeE ,fcHnn n n
where ( , ) is the Euclidean inner product. (K K* is the operator

n nof matrix multiplication by Q) Results are available concerning the

convergence of f n,x when x is chosen appropriately and are stated

in a little more detail in Section 4.

We remark that if H=L 2 then K*(K K*+XI) is essentially a back2 ~n n nprojection operator, see Natterer (1980), however in this case should

be thought of as controlling the scale or dynamic range of the solution
rather than its smoothness, and it is then not very important parameter

for tumor detection.

We make some remarks on choosing X and the space H. Natterer (1980)
has suggested that for computerized tomography, If should be chosen as

the space H(

H"07) - {f:ff(l+I1& 2)a If(&)1 2d& < -, supp fc5}

where f(&) is the Fourier transform of f and a Is close to 1/2.
Ideally, one should choose H so that it "just" cintains the true solu-
tions. If one looks at the problem in "frequency Space" (see Craven and

Wahha (1979)) or "elgenfunction space" (see Wahba (1979a)), one can see

that the regularized estimate f n, can be thought of as passing the
data through a "low pass filter" where A controls the half power point

(or "bandwidth") of the filter ind a controls the "shape", or steepness
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of the "roll off" of the filter. For H fixed the method of genera-

lized cross validation (GCV) can be used to estimate a good value of

A, or in the case of computerized tomography, to obtain good starting

values for human "fine tuning". See Wahba (1979b) and references

cited there. In the typical tomography problem it will be necessary

to utilize the special structure of the problem and possibly to do

GCV on a subset of the data. See the appendix.

3. A novel regularized transform method using smoothing splines.

Herman and Naparstek (1977) and Chang and Herman (1978) have recently

studied regularized transform methods for CT reconstruction for a

fan beam device. In this section we suggest a new numerical approach

to the regularized inversion of the Radon transform for a parallel beam

device. A similar but more involved analysis can be carried out for

the fan beam inverse transform discussed by Herman and Naparstek but

we do not do it here. The method to be given appears to have the

advantage of introducing discretization errors and quadrature appro-

ximations relatively late in the numerical procedure, and, intuitively,

the regularization parameter of the method appears to affect the reso-
lution - noise sensitivity tradeoff in an appropriate manner. The ncise

suppresion filtering acts directly on the raw data. The resulting

smoothed data is in such a form that the singular integrand is evalua-

ted analytically, and large terms which cancel are subtracted analytically.

Unstable numerical calculations and further discretization do not appear

and thus their effect does not have to be suppressed with further filte-

ring.

The object to be reconstructed is assumed to be within a circle of ra-

dius D. The device can be considered to be the equivalent of a raster

of parallel rays, which are rotated about the axis. Let 0 index the

angular position of the raster, X the distance from the axis to a

parallel ray, and let the location of a point inside the circle be

given in polar coordinates as (r,.). (See Fig.l). Then f(r,O) is

the X-ray absorption coefficient at the point (r,). Let p(t,i) be

the line integral over f taken over the ray indexed by (L,O).

We begin with the Radon inversion formula for parallel beams as quoted

by Herman and Naparstek (1977), equ. (6).

f(r, 6) lim o f fD d p , )d- (3.1)6-o 41 o -D '£ d (, dd 3 1
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where k,(u) if IuI!. and k,(u)=O otherwise, and

V r cos(e-*).

We first consider the idealized case where the beams are infinitely
narrow. Then the data {zij) consist of noise contaminated measurements

of p(lio ) , that is

zij = p(eieQ) + ij i=-N, .... N

j-l,...,M
It is desired to estimate f(r,o) on a grid of points
{rkoi}, from this data. It will simplify matters if we let *.2rj/M

j=l,2,...,M. Without loss of generality, we may derive our formulas
by setting 0=0 since the formulas for *=0k may be obtained by
relabeling the data.

First fix 0=0j. The inner integral in (3.1) becomes

1i d D 1 d
lim f I d p(1,0 dt + I d p(L,0)dZ (3.2)
e-o -D £'e

The idea is as follows. One first obtains a cubic smoothing spline
approximation, call it p (,0j) to P(LOj), pX(.,i) is the

minimizer of

1 N 2 D
N (f(ld-z. ) + Af (f"(1)) 2 dt (3.3)i=-N 1)13 -0

in W2[-D,D]. pX(t.0j) has a representation

pX(11, ) = ak+bkL+ckz2/2+dk.3/3 , £e[k,tk+l] I

where akbkck and dk are (for fixed X), linear functions of the
data zij, i=-N, .... N, and p, has two continuous derivatives'in I.
If X is chosen well, then under circumstances that are likely to be
satisfied here,yit is known that d is a good estimate of
d dl~dd p(to.) See Craven and Wahba (1979). We estimate t p(L,0.) by

d p(i,) bk+ckt+dkt2 , e[ktk+l] (3.4)

b c d
There exist coefficients w and wk independent of the dataThee xis ceficint wi 'Wki ki

and depending on A and {ti) such that

but see last paragraph below.



-8-

bk i I~N ki Zij

dk =j ki Zij

These coefficients can be determined and stored once and for all

(after X is selected), requiring 3(2N)(2N+l) storage locations.

The storage requirements can be reduced at the cost of time by exploiting

recursion relations between the {w kl }, we omit the details.

By substituting (3.4) into (3.2) the inner integral can be evaluated

analytically and the limit as e-'O taken.

First, let Z'=rcosO. be in the interior of I~m91m+1)* Then (3.2)

becomes

N- ki 1 b di .Z~.e

i=-N t. V-2

V-6i b +c +d Z2  2m+l b +c Z+d Z2 (36

+ m f M fl m di + m II d (.6

J (a.)0 , say

Upon carrying out the indicated integrations, one obtains

N-1 z2i

1 ( 0 1 (b +c . 1+ i' 2 ) t lb+- i~ 1 2 E

r' ( c i m+l-L

N-l N-l
+ j (c +2d122)(L z1 i) + .1 di((i'-9,)2 -( i1 1

2 )
i=-N 1=-l 2 i N 10 (. -~

(3.7)

These calculations are all stable except possibly for the two terms invol-

i2-L 11-9n an ihr nr- -. ) (f 2 I er £)o
ingin -- rn an ihr z(m ) i 'i er Z)o1m
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m (if V is near m+l We give the details for

V' close to I
m

Let Xm+l -m=h and let

1' = Lm +6h (3.8)

where 0<6<1/2 . The possibly offending terms from (3.7) are

(bm2l+Cm 1+dm 2 l(b~ ~ M- CM1 dM1')n(Tr,-£m - )+(b m+c m V+d m ')n( LmV£- ) (3.9)

m m+l

Since the cubic smoothing spline has continuous first and second

derivatives at Im" we always have the relations

(bm bml ) + (Cm-Cm- I m 'dinmdn- I ) im
(3.10)

(cm-cml ) +2 (dm-dmn ) m= 0

Substituting (3.8) and (3.10) into (3.9) gives that (3.9) is equal

to

2 (di-d ii )h 2 62 n(-L) + (b +cmZ'+d nL12)In(+6 (3.11)

If 1/2<6<1, a similar expression may be obtained by summing the

mth and m+1 st terms.

Subtituting (3.11) into (3.7) one obtains, provided 0<6<1/2, (and

assuming the Zi are equally spaced)
N-I22

Jr(j) =N I (b i+(i+6)hci+(i+6)2 h 2di)n( -6+(m i)
r j =N 6 + 01-1

N-l N-2
+h. I (ci+2(i+6)di + I I di[2(m+6)h-(2i-l)h ]

1=-N i=-N

+2(dm-d 1 )h
2 6 2in(d)

m M-1 I+6+

+b+C (m+6)h+dm(m+6) 2 t + (3.12)

2 6 1+6

Since 5 en(ms--) and Ln( ! 6) .0 as 6-0 , this expression is

computed in a straightforward mamner for eo<6<l/2 , for some suitable
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eo, and set equal to 0 if O<6<eo  A similar expression is obtained

for 1/2<6<1.

Having evaluated J r(0), the estimate of f(r,o) is

M
f(r,o) it Jh( (3.13)

Thus, one can process each set of projection data (i.e. the data for

fixed 0.) in parallel. For each j one collects zj=(zN,j)...ZN, j ) ,
computes the (bk}, (ckl and {dk} from (3.5) , J r(O) from (3.12) or

the corresponding expression for 1/2<65<, and f(r,O) from (3.13).
To obtain f(r, p ), 0 p O, one repeats the calculations with each data

set z. relabeled as zj. . Note that the coeffients bkck and dk

depend only on z j, They can be computed in parallel once for each set

of projection data and then the projection data discarded.

The regularization parameter here is) ) the choice of eo if reasonable,
is Tcondary). If X is fixed the Wki of (3.5) can be stored.

The ultimate choice of X (or several values of X to provide alterna-
tive pictures), should, of course be chosen by examining pictures with

competitive I for their medical usefulness. Since X controls the
smoothness-fidelity tradeoff, varying X is likely to have the visual
effect of bringing the picture in and out of "focus". A too large A

should result in an oversmoothedblurred picture while a too small A

should result in an overly grainy or "streaky" picture. A good set of

candidate X's should be obtainable at the design stage by using the
method of 'generalized cross validation (GCV), on data from typical subjects

with the parameters (e.g. number of photons, number (2N+I) of rays, etc.)

that will be used in practice. Transportable code is available for doing
this (Merz (1979), Utreras (1979), Fleisher ((1979)). Given X, the coef-

ficients Wki may be obtained from standard spline theory (e.g. Reinsch

(1967)). Numerical results on the estimation of the derivative from noisy

data by this method may be found in Craven and Wahba (1979).

We now consider the case where a line inteQral approximation to the data

is ;-ot adequate. S,,opose It is more appropriate tc assume
i+l

zij wi(M)P(IO.)+eij ,

say. Then p (,3J) is estimated by the minimizer of



N-1 i+1 2 DI f wi(k)f(Z)dl-z1-j) 2 + A f (f"(M) d q •

N =N Ii -D

If wi(t) is taken as a constant, then pX(Zj has a representation
2 3+e4/

pX(lj k= ak+ k+Ckl /2+ Z /3+ekZ /4 , le[tk,RIk+l] where ak,

kCk' k and e are linear functions of the data and p, has

3 continuous derivatives. Expressions for the ak9bk'ck' 'k and

ek can be obtained, for example by using the representation for splines

given in Wahba and Wendelberger (1979). An expression for Jr(Gi

is obtained by adding terms corresponding to ek to (3.12). wi(t)

can also be modelled as, e.g. a trapezoid, which will still result

in a piecewise polynomial representation for pX. with a sufficient
number of continuous derivatives .to carry out a similar analysis.

There will be more pieces to the piecewise polynomial, however.

4. On the relation between the spline transform method and Tihonov

regularization

In section 3. we have discussed a new method for the numerical inversion

of the Radon transform which essentially consists of smoothing the
data in the range space and then inverting the transform analytically.

Due to the circular symmetry in 0, if one obtains pX(,O) for

0#01 '....0 M , by, e.g. any periodic spline interpolant in 0 through

pX(Zok) , k=l,2,...,M, and then performs the integrations of (3.1)
exactly, the result will be the same, namely (3.13).

We now d.iscuss the relation of such methods to Tihonov regularization.

Let H be any Hilbert space, let LttcT be a family of linearly

independent continuous linear functionals on H and define the opera-

tor K by

(Kf)(t) - g(t), .g(t) = Ltf , tET

Letting X be the range of K, we can make X a Hilbert space with

the norm

11gIX = inf 1lflI
fcH
Kf=g

Now consider the data smoothing problem: Find gcX to minimize



-12-

I n 2 2 (4.1)

-- n 1= g+ 
l l g l l x

Letting n t  be the representer of Lt. it can be shown that X is
a reproducing kernel space with reproducing kernel Q(s,t)=<nsnt> .

(See Mashed and Wahba (1974). It then follows that the minimizer

gn,X of (4.1) is given by

gn,X(t) = (Q(tlt),....Q(tn,t))(Q+nXI) 1z , (4.2)

where Q is the nxn matrix with ijth entry Q(ti.tj)=<nti.rit>H.

Now Q(ti't)=Ltnti=Qti(t) , say , so that

Qi=Kn

Letting L =L we have by inspection of (2.3) that f the

minimizer of
1 (Li f-z i) +XlIN lH
n

satisfies

Kfn =gn

Now t tcT span the orthogonal compliment of the null space of K,

since <nt'f>= O0,tT - Kf=O. Thus fn,X(K)I so that fn is the

unique element of minimal norm satisfying Kf=g and so (by definition+ K+

of the generalized inverse K+ ) fn,fK gn, - Thus miniiial norm smoo-

thing in the range space (endowed with the induced norm), with an exact
inversion is equivalent to Tihonov regularization in the domain space.

Futhrmr E l-g H2 =EIKf- 2Furthermore Ejjg-gn,XAlX EIIK+Kf-fn,X"H I where the expectation is taken
over the Ei and convergence obtains as n- under general conditions

and A=X(n) is chosen correctly. See Wahba (1977).

In the procedure we have discussed, smoothing in the 0 direction is

not explicit and any periodic method will give the same result. Let

p(Z,o) be obtained by, say, cubic spline interpolation given pOk),

k=l,2,...,M. If p X(Z,G) were the minimizer of, say

1 2 2 1T 0 a4 9 2
(2M+l)( i to z .) + f -q72 dgdE (4.3)N(2M+I0 i30 ' J 0

in an appropriate space of functions periodic in 0, then the method

being proposed would be exactly equivalent to Tihonov regularization.
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The minimizer of (4.3) and p,(Z,G) do not appear to be exactly the

same function, however, but the resulting inversion appears to be close.

As far as the choice of space is concerned, this method is appropriate

for P(',OEW 2

W2 {f:f,f' continuous, f"eL 2 [-N,N]}22

H... -er, it is more natural to assume p(.,O)cW 2 =f:f continuous,

f'EL 2 [-N,N)} as follows: Consider, for example, head sections f(x,y)

which are continuously differentiable functions of x and y plus a

tumor which is the equivalent of adding a region of, say, constant higher

density. If the boundary of this region is strictly convex and "smooth"

then a little reflection will show that p(Z,G) is a continuous function

of Z and ! p(R.,O) is piecewise continuous, so that p(-,G)cW . The
preceeding analysis with line integrals cannot be carried out to obtain

a stable computational formula because the derivative of the linear spline

is not continuous. However a similar analysis can be carried out with a

double integral over a 0-increment, or, alternatively, doing spline

smoothing assuming p(',')EWI(-N,N) WI (periodic). This'will appear
; "tely. The ability of - px(1,0) to approximate T-p(Z,S) in

the Wj has yet to be established in a practical sense but may be

quite satisfactory lor the present purpose if there is L2 convergence.

Appendix

The GCV estimate of X is-the minimizer of V(X) given by

1 n 2 1  n 2
VWx k ! (zk(XJ-Zk) /(1 n i (

where zk(.)=LkfnA and a(X)= k ) . See Wahba (1979b) andkh r Zk k)= k n,X , n k k) a.---k Lk n ,

references cited there. Letting Lk=Lij where i indexes the ray

number, and j indexes the rotational position of the detector

(i=-N,...,N, j=l,...,M in the notation of Section 3), due to the

rotational symmetry of ,the device one should have a. =ai A) indepen-

dent of j, thus

1 N ) 2 1 N 2

i-N jl i2-N

(I thank F. Natterer for this observation).

#A
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One way of obtaining the denominator Is to compute ai(j) as Li
6ni '1 ,where " Sn is the "picture" when the input is

z=(O,...,O,l,O,...,O) with 1 in the l1th position. As an approxima-

tion to V(X) one might consider

1 N' M' 2 , 1  N' 22N'+)M' I (z. i kit ) k=-N' ak

where fik) and {j.) are either representative or randomly selected

subsets of the indices.

We note that the use of GCV is appropriate to estimate the smoothing

parameter for low pass filtering methods other than Tihonov regulariza-

tion, see Craven and Wahba (1979), Golub, Heath and Wahba (1979).
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The inner (singular) integral in the inverse Radon transform for paral-

lel beam computerized tomography devices can be integrated analytical-

ly if the Radon transform considered as a function of the ray position

along the detector, is a cubic polynomial spline. Furthermore by using

some spline identities, large terms that cancel can be eliminated ana-

lytically and the calculation of the resulting expression for the inner

integral done in a numerically stable fashion. We suggest using s-oo-

thing splines to smooth each set of projection data and by so doing ob-

tain the Radon transform in the above spline form. The resulting analy-

tic expression for the inner integral in the inverse transform is then

readily evaluated, and the outer (periodic) integral is replaced by a

sum. The work involved to obtain the inverse transform appears to be

within the capability of existing computing equipment for typical large

data sets. In this regularized transform method the regularization is

controlled by the smoothing parameter in the splines. The regularization

is directed against data errors and not to prevent unstable numerical

operations. Strip integral as well as line integral data can be hand-

led by this method. The method is shown to be closely related to the

Tihonov form of regularization.
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