
AD-AG" 601 STANFORD RESEARCH INST MENLO PARK CALIF F/G 15/3
A PROVABLY SECURE OPERATING SYSTEM.(U)
JUN 75 P 6 NEUMANN, L ROBINSON, K N LEVITT OAA803-73-C-1454

UNCLASSIFIED "L'.iE nninEEEE nnEE
-EEEIIIE-EEE
-ElllElhEI.EiimEli
-EIIIEI-EI
-EElllEE--.

r una Reot1 ue17
0

0

A PROVABLY SECUREOPPERATNGSYSTEM,

By: P. G. NEUMANN (Principal Investigator)
L. ROBINSON, K. N. LEVITT,

R. S. BOYER, and A. R. SAXENA

Prepared for:

USA ECOM

CONTRACT DAABO3-73-C-1454

SRI Project 2581

SRI STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 -U.S.A.

80 92 08

Final Rempt. 13 June M75'

APROVABLY SECUREOPERATING SYSTEM,1

By:, P. GA/EUMANN fPinia 'nvetgtr
L. A68INSON, K. N. ,tEVITT,.
R.'S./B0YER,LA.d A. R./SAXENA

Prepared for:

USAECOM

CONTRACT AABO3-73-C-1454

SRI Project 2581

r7

---- ABSTRACT

This report summarizes work to date toward the development of a

provably secure operating system. Discussed here are

I) a methodology for the design, implementation, and proof

of properties of large computing systems,

i s the design of a secure operating system using this

methodology,

... the security properties to be proven about this system,

i considerations for implementing such a system, and

v an approach to monitoring security and performance.

i Y'

~iii

- i

CONTENTS

No. of

Pages

ABSTRACT........................... (1)

LIST OF ILLUSTRATIONS..............................vii (1)

LIST OF TABLES...................................ix (1)

INDEX OF TERMS...................................xi (5)

PREFACE......................................xvii (1)

ACKNOWLEDGMENTS...............................xix (1)

A DESIGN FOR A PROVABLY SECURE OPERATING SYSTEM:

TECHNICAL SUMMARY............................0-1 (9)

1 INTRODUCTION............................1-1 (27)

2 DESIGN ALTERNATES............................2-1 (6)

3 THE METHODOLOGY...........................3-1 (31)

4 PROTECTION IN THE OPERATING SYSTEM 4-1 (1.3)

5 THE STRUCTURE OF THE SYSTEM.....................5-1 (20)

6 USE OF THE SYSTEM..............................6-1 (9)

7 IMPLEMENTATION CONSIDERATIONS 7-1 (8)

8 SECURITY ASSERTIONS...........................8-1 (33)

9 MONITORING OF SECURITY AND PERFORMANCE 9-1 (11)

10 SYSTEM INITIALIZATION, BACKUP, AND FAULT RECOVERY. 10-1 (2)

11 CONCLUSIONS................................1-1 (2)

REFERENCES..................................R-1 (8)

V

No. of
Pages

APPENDICES

A SPECIFICATIONS FOR THE SYSTEM..................A-i (6)

A.0 Level 0: Capabilities, Addressing, and Interrupts . A.0-1 (10)

A.1 Level 1: Generalized Memory Addressing.........A.1-1 (11)

A.2 Level 2: Scheduled Process Manager...........A.2-1 (13)

A.3 Level 3: Fixed-VK Segments...............A.3-1 (5)

A.4 Level 4: Segments and Revocation A.4-1 (9)

A.5 Level 5: Extended Object Manager A.5-1 (13)

A.6 Level 6: Directory Management...............A.6-1 (10)

A.7 Level 7: User Object Manager...............A.7-1 (5)

A.8 Level 8: Linkage Maintainer................A.8-1 (7)

A.9 Level 9: Linkage Manager (Linker). A.9-1 (2)

A.10 Level 10: Scheduling A.10-1 (13)

B DATA REPRESENTATIONS......................B-i (13)

C THE SECURE DOCUMENT MANAGER...................C-i (13)

vi

LIST OF ILLUSTRATIONS

1.1 Summary of the Methodology for Computer System Development 1-9

3.1 Two Views of a Hierarchy with Multi-Level Visibility 3-3

3.2 Mapping Function f Relating the States of Two

Abstract Machines 3-11

3.3 Flowchart and Assertions of Program "INSERTSORTED".. 3-19

3.4 Cases in the Proof of a Verification Condition3-23

3.5 Flowchart Diagrams for Programs Implementing a V-Function

and an O-Function Showing Input and Output Assertions 3-25

5.1 Referencing an Object via the Linkage Section 5-8

A.I Effects of "push", "pop", "call", and "return" A.1-4

A.2 Revocable Capabilities and RevocationA.4-5

B.1 Representation of a Directory as a Segment with uid u . . . B-6

B.2 Data Structures for Sl and S2 B-8

B.3 Data Structures for S3 and S4 B-9

B.4 Data Structures for Level 5 Segments B-13

vii

TABLE S

I Overview of System Structure....................0-4

1.1 Summary of the Operating System Structure 1-15

3.1 Register Module..........................3-29

3.2 Array Module..............................3-30

3.3 Mapping Functions Between Register Module

and Array Module.............................3-31

6.1 User-Visible Operating System Functions. 6-6

6.2 a Commands Derived Directly from Lower-Level Functions . . 6-8

b Other Illustrative Commands.....................6-9

9.1 Summary of the Three Types of Monitoring Operations M

with Respect to a Function or Set of Functions F. 9-4

9.2 Lower-Level Monitoring Functions' Related to Security . . . 9-11

A.0 Functions of Level 0.........................A.0-4

A.1 Functions of Level 1...........................A.1-5

A.2 Functions of Level 2.......................A.2-5

A.3 Functions of Level 3.......................A.3-3

A.4 Functions of Level 4.....................A.4-5

A.5 Functions of Level 5.......................A.5-7

A.6 Functions of Level 6.......................A.6-4

A.7 Functions of Level 7.........................A.7-2

A.8 Functions of Level 8.........................A.8-2

A.9 Functions of Level 9.........................A.9-2

A.10 Functions of Level 10.......................A.10-2

B.1 Mapping Functions for Directories. B-7

B.2 Mapping Functions for Segments....................B-10

B.3 Mapping Function Expressions.....................B-12

C.1 Functions of the SDM C-

ix .

INDEX OF TERMS

(Terms and Page Numbers)

abilities A.0-1

abstract implementation 1-1

abstract machine 3-2

abstract program 1-6

access code (access vector, access mode) 1-12, 4-1, 5-3, 8-16

Access Right Principle 8-17, 8-22

activation 4-9, 5-10

ADEPT-50 C-I

address A.1-1

effective A.1-1

address map A.0-2

address space 5-10

Alteration Principle 0-6, 1-22, 8-3, 8-13, 8-16, 8-18, 8-22

argument

implicit A-v

array module 3-12

assertions 0-6, 1-7, 3-5

antecedent 3-15

consequent 3-15

global 3-7

invariant 8-6

variant 8-9

assignment 3-15, 3-18

authorization 1-23, 6-3, 8-4

Bell and LaPadula model C-2

"bibliographics" 4-3, A.5-1

call 3-16, 4-8, 7-6, 8-24

capability 1-12, 4-4, 5-2, A.0-1

implementation 5-6, A.5-2

offset A.0-1, A.1-1

revocable 1-13, 4-11, 5-4, 8-19, A.4-1

simple capability system 4-5

generalized capability system 4-5

capability channels 4-10

capability manager 5-3, A.0-1

xi4

capability map A.0-2

clearance C-4

clearance condition C-4

clearance level C-1, C-4

limiting C-5

current C-5

C-list 4-4

command 6-1

command interpretation 6-3

condition variables A.2-2
confinement 0-7, 1-22

Confinement Principle 0-7, 1-22, 8-7, 8-26
correctness

partial 3-14

data exclusion 4-10

deductive system 3-14

delegation 4-9
denial of service 0-7, 1-21, 2-4, 8-8

design 0-4, 1-7
Detection Principle 0-6, 1-22, 8-3, 8-15, 8-19

directory 5-6
directory entry 1-16, 5-7, A.6-1

directory manager A.6-1
dispatching A.2-1

displacement A.0-1

distinguished entry 1-16, 4-12, 5-7, A.6-1

domain 5-10, A.2-1
called 4-8, 5-10, A. 2-1

generalized 4-7
parameter 5-10

template 5-10

dynamic linking 1-17, 5-9, A.9-1

effects 3-4, 3-9

effective address A.1-1

encapsulator 2-3
entry 1-16, 5-7, A.6-1

environment 8-4, A.2-1

exception conditions 3-4, 3-9

extended type 1-11, 4-6, 5-5, A.5-1

extended-type manager 4-2, 5-5

formal snecifications 1-5

frame A.1-2

xii

FRI.

function

0- 1-5, 3-3
V- 1-5, 3-4

OV- 1-6, 3-5
hidden V- 3-5

derived V- 3-5

grains of time 5-13

Guaranteed Service Principle 0-7, 8-8

hardware 7-5

hierarchical design 1-5, 3-3

hierarchical relations 5-11

hierarchy

calling 5-11

design 1-5, 3-3

implementation 1-7, 7-1

implicit argument (implicit parameter) A-v, A.2-3

indirection A.0-1, A.1-1

initialization 1-23, 3-8, 6-3, 10-1

inference 8-7

information 8-4

kernel 2-3

key 5-7, A.6-2

leakage 0-7, 1-22, 2-4

level 3-2

linkage fault 5-9

linkage section 5-7, 5-9, A.8-1

linkage template 5-8, A.8-1

linking 1-17

lock 5-7, A.6-2

login 6-3, C-7

lost objects 1-13, 4-11, A.7-1

mapping functions 1-6, 3-9, 3-10

mediated access 1-20

memoryless operation 1-20, 8-26

methodology 0-2, 1-3, 3-1, 8-1
module (Parnas) 1-5

monitor (Hoare) A.2-2

monitoring 9-1

mutual suspicion 1-20

xiii

name space 5-9

virtual 5-9

need-to-know 1-20, C-i

non-compromising condition C-4

object 1-il, 4-1, 8-5

implementation 5-6

representation 5-6

offset A.0-2

page identification pair A.0-3

paging A.0-1, A.3-1

parameter

implicit A-v, A.2-3

predicate 3-20

prelinking 5-8, A.8-l

procedure 4-8

procedure activation 4-9
process 1-17, 5-10, 8-4, A.2-1, A.10-1

active A.2-1

blocked A.2-1

potentially available A.2-1

process state A.2-1

protection 4-1, 8-7

protection system 4-2

recovery states 10-1

register module 3-8

return 4-8, 5-12, 7-6, 8-24

revocable capability 1-13, 4-11, 5-4, A.4-1, 8-19

revocation l-il, 4-11, 8-19, A.4-3

selective (Redell) 4-11

right's condition C-4

rings 4-8, 5-10

scheduling 5-20

secure document manager C-5

security 0-5, 1-18, 2-4, 4-1, 8-1

security classifications 1-20

security kernel 2-4

security models 8-1, C-I

segment 1-15, 5-4, A.3-1, A.4-1

signal A.2-2
simple path 3-14

xiv

specification 1-5, A-i

conventions for A-8

mapped 3-12

stack A.1-2, A.2-1

parameter A.1-2

return A.1-2

staged development 1-5

stage 1 3-6

stage 2 3-7

stage 3 3-9

stage 4 3-13

stage 5 3-25

subject 4-1

substitution

forward 3-15

backward 3-15

symbolic naming 4-13, A.6-1

Trojan horse 1-19, 6-3, C-2

type 4-2

extended 4-6, 5-5, A.5-1
primitive 4-6

type function 4-6

type manager 1-12, 4-2, A.5-1

unique identifier (uid) 1-12, 5-2, A.0-1
usage A.0-3

virgin A.0-3

user 8-4

user interface 3-8, 6-1

user-visible interface 6-1

verification condition 3-14

verification system 3-24

virtual machine 2-3

virtual machine monitor 2-3

wait A.2-2

word 5-4

*-property 1-25, C-4

xv

p_ _ _

PREFACE

The reader should begin this report with the technical summary that

follows and then proceed to Chapter 1, which provides a more detailed

overview of the report. The reader concerned with the system design

will find Chapters 2, 4, 5, and 7 of primary interest, along with Appen-

dices A and B. The reader more interested in the methodology may wish

to concentrate initially on Chapter 3. The reader concerned with the

statement of security properties will wish to read Chapter 8, probably

first reading Chapter 3, and skimming Chapters 4, 5, and 6. Appendix C

provides an illustration of an application of the system and shows that

the methodology is also extendable to such applications. Although the

material in the appendices is not in final form, its inclusion is essen-

tial for a thorough appreciation of the methodology and the system design.

xvii

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of various people who have

contributed in many ways to the work described here. Professor Robert S.

Fabry was of great assistance in the first stage of design, and provided

significant useful experience. John H. Wensley also contributed to the

system design. Dr. Robert E. Shostak contributeO to the formalization of

the security properties in Chapter 8. We are very grateful to Jack Gold-

berg, our Group Manager, for his support as well as for his constructive

criticism. We thank Dr. Theodore A. Linden for his steadfast encourage-

ment and enthusiasm, as well as for his technical influence on the project.

We also wish to express our gratitude to Mildred A. Kelley and Norinne Cox

for their skills and good nature in providing secretarial and moral support.

xix

A DESIGN FOR A PROVABLY SECURE OPERATING SYSTEM:

TECHNICAL SUMMARY

Introduction

This document summarizes work to date on the development of a design

for a general-purpose computing system intended for secure operation.

The design facilitates the formal verification of properties about system

behavior, including those defining system security.

The results of the work provide significant innovations in the fol-

lowing areas:

* A methodology that greatly facilitates the development of

computer systems in general, and that also facilitates the

formal statement and proofs of relevant system properties.

" A design for a secure computer operating system. This

structured design, which has been formally specified,

appears to lend itself to various efficient and reliable

system implementations in hardware and software, and per-

mits widely varying user interfaces. It also accommodates

system initialization, fault recovery, and the monitoring

of security and performance, relating these system aspects

to the structure of the system.

"system design that is intended to support stringentI

security requirements. Special security environments can

be efficiently implemented that cannot be so implemented

in existing systems.

Future work is needed in various areas to demonstrate the feasibility

of this approach. The following areas are identified here:

0-1

Prove the validity)f specific system properties relating

to system security.

0 Exhibit the design of specific efficient hardware imple-

mentations to support the operating system, and explore

the possibilities of retrofitting these implementations

onto existing hardware.

* Show how specific secure subsystems and applications can

be efficiently realized, using the operating system.

The Methodology

The methodology used in this work is addressed at unifying the vari-

ous phases of system development. As it exists today, it facilitates

design, implementation, verification, and monitoring. It integrates

these phases, using a unified design medium and a common assertion lan-

guage. The methodology provides two dimensions of structure: a structure

for the system, and a structure for the system development. Both dimen-

sions, a hierarchy of system functions and a staged development, seem to

simplify the development and operation of systems.

The first dimension of structure involves a hierarchy of system

functions, with a collection of related functions at each level. The

functions at one level depend for their implementation exclusively on

lower-level functions. Each level in the hierarchy is called an "abstract

machine," and is specified independently from other levels. Hierarchical

structure in a system contributes to the understandability and manageabil-

ity of the development. It also facilitates system recovery, reliability,

initialization, and monitoring, because each of these tasks can then be

distributed and made hierarchical. Although hierarchical structures have

been used previously, this work is the first attempt to formalize such

structure on a large scale. In particular, it uses formal specifications

0-2

to describe the desired behavior of each system function, and an abstract

assertion language in which to express desired properties of overall sys-

tem behavior.

The second dimension involves the partitioning of the design and

implementation phases into five stages, progressing in roughly sequential

order from a loosely defined system structure (i.e., functional decomposi-

tion) to a completely specified implementation. This staging encourages

decisions to be made as they are needed, in a reasonable order, and at a

time appropriate to the development. It permits considerable overlapping

of effort, with different portions of the effort able to proceed in paral-

lel at different stages. It also contributes to the understandability and

manageability of the development. Associated with each stage are asser-

tions of properties stated in an assertion language common to all stages.

Proofs at each stage provide incremental confidence in the appropriate-

ness of the design and implementation.

This approach simplifies the statement of system properties in ab-

stract form. It also simplifies the proof of these system properties,

since it reduces the proof to a collection of relatively much simpler

proofs. In this way, it seems feasible to prove meaningful properties

of a system developed according to the methodology. In the work described

here, properties relating to security are of primary interest.

The methodology also facilitates incremental proofs following system

alterations. This approach avoids having to repeat the entire proof ef-

fort following system alterations, requiring only new proofs of those

properties that are affected by the alterations.

The methodology unifies and uses to advantage many concepts currently

being considered in efforts to approach software on more of an engineering

basis. Both the hierarchical structure and the staging of the development

are expected to facilitate debugging, testing, operating, monitoring,

optimizing, tuning, maintaining, and long-term system evolution.

0-3

. ... - ,.... ... _ _._ _ _ _ _ _ _ Il A ..

The System Design

The methodology outlined above has been applied to the design of a

general-purpose operating system whose security properties can be formally

proven. This operating system design is represented by formal specifica-

tions for 11 levels, level 0 to level 10, level 0 being the most primitive.

The functions at each of these levels are summarized in Table I. Many of

these functions are accessible only to a few immediately higher levels.

Those that are accessible above level 10 constitute the user-visible oper-

ating system interface.

Table 1

OVERVIEW OF SYSTEM STRUCTURE

Level Function

12 Commands

11 User environments

10 User process management (scheduling, interprocess communica-

tion, and synchronization)

9 Directory search management and linker (name-space manager)

8 Linkage table management (providing fast access via capabili-

ties after initial symbolic access)

7 Symbolic object management (assuring that symbolically named

objects have directory entries)

6 Directory management (mapping symbolic names to capabilities)

5 Creation of extended types and extended-type objects

4 Management of virtual storage objects (segments) and revocation

3 Physical storage management (for all on-line storage) and

input-output

2 Process dispatching and system event management

1 Effective address calculation, indirection and indexing

0 Creation of capabilities, recognition of interrupts, address

interpretations, and the remaining primitive machine operations

0-4

The main structures available to system users are objects of various

types. These include memory objects (segments) and directories, the lat-

ter providing catalogues for symbolically named objects. Each type has

associated with it a set of rules for use and protection of objects of

that type. All objects of any particular type are treated uniformly,

and are maintained by a collection of programs called a type manager.

Creation of new types and their corresponding type managers is facilitated

by the extended-type manager.

In the operating system design, all objects are referenced by means

of capabilities. A capability is a protected piece of data which refers

to a particular object. Each capability is protected in the sense that

it cannot be modified or forged; new capabilities are obtainable only from

the system (level 0). Each capability contains protection information

(access rights) which indicates how the corresponding object may be used.

This protection information may not be altered, although a new capability

may be created (again at level 0) with fewer access rights than the origi-

nal capability. Interpretation of the access rights for a given object

is done by the type manager for that object. A type manager has exclusive

control over the interpretation of access rights for objects of the corre-

sponding type. In all cases, possession of an appropriate capability is

necessary for access to an object.

The design as specified provides a framework for a family of operat-

ing system implementations. The basis for the operating systems is found

in the mechanisms for virtual memory (level 4), capability creation (level

0), and capability recognition. The system design lends itself to effi-

cient implementation in various ways, by supporting in hardware those

functions most frequently used, independent of the level at which they

appear. For example, some functions at level 10 (procedure calls) along

with many functions at levels 2, 3 and 4 (including segment accessing),

and all functions of levels 0 and I, can be realized primarily in terms

0-5 h

of single hardware instructions. Functions can also be implemented as

microprograms. Thus there is a flexibility in how the system design may

be implemented, with various strategies possible for constructing new

hardware and for retrofitting the operating system onto existing systems.

System Security

The desired behavior of the system with regard to security (or other

properties) can be formally stated and proven according to the methodology.

The use of capabilities as the basis of the mechanism for accessing all

objects contributes to the understandability of both the assertions and

their proofs.

There are two types of assertions describing the desired security,

those characterizing what the system must not do, and what the system

must do. Both are necessary for satisfactory operation.

For the system under consideration, these two types of security as-

sertions are invariant assertions, which specify state information that

must not change, and variant assertions, which specify exactly how the

protection state of the system must change. Proof involves showing the

consistency of these assertions with the specifications.

With respect to the visible interface at any level of the system

(e.g., the user-visible interface above level 10), two basic principles

describe what the system may not do:

PI: There shall be no unauthorized alteration of information
(the Alteration Principle)

P2: There shall be no unauthorized acquisition of information
(the DeLUtLLnn Principle)

0-6

In this system, "authorization" has meaning only with respect to a mapping

from capabilities to the information in the system. Then the authorization

to access a particular piece of information implies having access to an

appropriate capability (itself obtained in an authorized way). Authorized

passage of capabilities is strictly limited to two mechanisms, having a

capability placed by another user in an object for which a capability is

available, or being passed a capability in a call to or a return from a

procedure. (Note that the return from creating an object provides the

capability for that object.) In both cases this passage is itself con-

trolled by capabilities. As in other systems, a user's authorization thus

depends largely on what is made available initially to the user at login.

The identification and initial authorization are thus critical to security,

but are beyond the scope of the operating system design--apart from the

fact that this initial authorization can itself be made secure as a part

of the operating system. (Numerous new developments seem to make the

identification problem tractible.)

For each relevant system function, P1 and P2 are stated formally in

terms of two corresponding invariant assertions involving capabilities.

In addition to these invariant assertions for security, there are formally

stated variant assertions. For each function in the system these variant

security assertions define the precise meaning of acquisition and altera-

tion as effects upon the security state, in terms of access to capabilities

(and therefore to their corresponding objects).

There are two additional security principles, which are successively

harder to state formally. The first of these is the Guaranteed Service

Principle:

P3: There shall be no unauthorized denial of service.

0-7

This principle states that users should never be denied access to objects

(i.e., use of resources) to which they are entitled. For example, an

error in a scheduling algorithm might prevent certain programs or pro-

cesses from ever executing. Many meaningful cases of guaranteed service

can be formally covered by specific assertions (e.g., regarding fairness

of resource allocation) and proven as for P1.

The second additional security principle refers to preventing unau-

thorized leakage of information by inference on visible interfaces. Such

leakage may occur from the system to a user, or from one user to another.

In certain cases it is possible to deduce (e.g., by repeated statistical

sampling) certain information (or properties of it) whose acquisition is

otherwise impossible. This can be stated intuitively by the following

Confinement Principle:

SP4: There shall be no unauthorized leakage of information.

Note that the confinement principle P4 deals with the unauthorized acqui-

sition of information, similar to P2. The difference is that P2 refers

to access by normal paths (i.e., values of calls to system functions),

while P4 refers to access by deductive or other inference. Although some

cases of this principle can be covered by formal assertions, rigorous en-

forcement is unattainable in a theoretically complete sense. Nevertheless,

it appears that the methodology can permit a characterization of many

threats of such leakage.

The above dis ussion on system security has concerned the operating

system (i.e., levels up to level 10). Given the need to develop a par-

ticular user environment on top of the operating system (e.g., levels Ii

and 12), the methodology also applies to the design and implementation of

such an environment, and to the statement and proof of the relevant secur-

ity properties of that environment, above and beyond those already covered

0-8

by the operating system. An example of such an environment is one which

enforces the military classification system, with levels of classifica-

tion and categories of relevance. Additional security assertions can be

stated and proven that precisely reflect the requirements of such an en-

vironment. Other such special security environments that can be supported

by the operating system involve systems with special interpretive autho-

rization of access, or where different users or subsystems are suspicious

of each other.

Conclusions

At present, a set of specifications exists for all functions visible

at the interface to each level from level 0 to level 10, as well as for

certain functions internal to these levels. Various efficient implemen-

tations seem possible. The task of proving that the system satisfies the

two basic security principles P1 and P2 has been defined sufficiently to

conclude that it seems feasible. Further, various complex security envi-

ronments seem to be efficiently implementable. The proof methodology per-

mits the proving of additional properties about the security of such en-

vironments.

Future work is needed in several areas to demonstrate conclusively

the usefulness of the methodology and the suitability of the design. This

work should include proving that the security assertions are satisfied by

the specifications for the operating system, examining various strategies

for hardware realization of the system, and investigating the implementa-

tion of several secure application environments.

Other work at SRI is also using the methodology to develop a hardware-

fault-tolerant computing system for commercial aircraft (sponsored by NASA).

Initial results are extremely promising. Additional work at SRI is aimed

at extending the methodology and developing a semiautomatic verifier. Work

at MITRE is using a similar approach, aimed at implementing a version of

Multics that supports the military classification scheme.

0-9

Chapter 1

INTRODUCTION

The effort described here involves the design and implementation of

a family of general-purpose computer systems, and formal proofs of sig-

nificant security properties concerning these systems. This report sum-

marizes the work to date.)t includes a new methodology for the design,

implementation and proof of large systems. It also includes the structure

for and representation of a general design for an operating system and

supporting hardware, thereby illustrating the use of the methodology.

Specific properties about the security of the system are formally stated,

and it is shown how these properties can be formally verified. It is

emphasized that even if no proofs are attempted, the methodology can con-

tribute significantly to the suitability of systems developed according

to it.

Future work is needed to verify that the design satisfies the

security-related assertions, to show how the design can be used efficiently

for various subsystems and user environments, to show how the system may

be implemented efficiently in software and hardware, and to verify that

such an implementation is itself correct.

Efforts to develop large operating systems have typically been very

protracted and hard to control. In addition, it has been virtually impos-

sible to prove the correctness of meaningful system properties. The meth-

odology described here appears to make feasible the design of realistic

general-purpose secure computer systems as well as formal statements and

proofs of their properties. The design framework defined here covers a

family of systems. For descriptive simplicity it is thought of as includ-

ing a single operating system, with various possible command interfaces

1-1

....-.. ..

and various hardware support. In fact, a collection of visible operating

systems functions is specified here, although neither an actual command

interface nor a specific machine implementation is specified. However,

the cotmmand structure of most conventional operating systems (e.g., 05/370,

Multics, MCP, SCOPE, etc.) could he implemented approximately compatible

with our system design. The system design provides

" a flexible protection mechanism, supporting controlled

sharing of system- and user-defined objects, and the

establishment of specialized protection domains,

" an on-line storage system for all user-defined objects known

to the system,

" a framework for attaining high availability and maintaining

security in the presence of hardware faults, including facil-

ities for backup and recovery for user and system objects,

" support for multi-programming and multi-processing, and

" a framework for monitoring performance and security.

Although the operating system is not described here in terms of par-

ticular hardware, essentially all security-relevant basic instructions

have been specified. However, various alternatives are possible for

supporting hardware, which is not limited to any particular architecture

or machine. The system appears capable of competitively efficient imple-

mentation, in terms of microcode or other interpretation or existing hard-

ware, or in terms of specially designed or modified hardware, or both.

In pursuing general goals for system operation and for proof of se-

curity, the initial research has focused on the following three problem

areas:

(Al) the development of a suitable formal methodology for the

design and implementation of complex computer systems,

1-2

IMA
and for the statement and proof of properties of the

design and the implementation;

(A2) the design and formal specification of a secure system

using the methodology;

(A3) the development of a formally defined language for stating

security-related assertions, and the statement of these

assertions.

Work on the above areas is basically complete. From the results re-

ported here, it appears possible to design an operating system that can be

shown to satisfy stated security assertions. Further work should address

(A4) verification that the design of (A2) satisfies the

security assertions;

(A5) implementation of the design of (A2), i.e., the implemen-

tation of the system on existing hardware, and/or on some

hypothetical (albeit formally specified) hardware system;

(A6) implementation of typical applications, and proof of

their correctness.

Section 1.2 briefly summarizes a new methodology for design, imple-

mentation, and proof. Section 1.3 summarizes the operating system design

according to the methodology. Section 1.4 summarizes the approach to

stating and proving security assertions. These topics are discussed

in greater detail in subsequent chapters. A short self-contained descrip-

tion of much of the work is found in Robinson et al. [751.

1.2 The Methodology for Design, Implementation and Proof

Although many operating systems have been developed, there have been

no serious attempts to state (much less to prove) explicit properties of

any of these systems. In fact, there is a general skepticism about the

1-3 If

feasibility of ever proving a large-scale operating system--because of

the sheer complexity of the programs, the problems of concurrency, and

the difficulties of stating assertions on what the system is intended

to do. The skepticism is certainly justified with regard to contemporary

systems such as OS/370 or the present version of Multics. Every existing

system has had its security compromised at vt'-ious times--in some cases

with far-reaching consequences. Nevertheless, it appears realistic to

us to prove properties of an operating system that is designed according

to a methodology that facilitates such proofs. This is particularly sig-

nificant when the security of the system is involved, for which proofs

can be of great value. With respect to proof, the requirements for our

methodology include the following:

" The proof of a system should reduce to the proofs of small

programs (e.g., 30-line programs), although there may be

many such programs.

" The assertions for each of these programs should be concise

and relevant to the context of each program.

In addition to enhancing provability, other goals are as follows:

" The methodology should enhance the cost-effectiveness and

desired behavior of the resulting systems (e.g., with re-

spect to efficiency, reliability, security, and recovery).

" The methodology should enhance the development of each

system or family of systems.

To achieve these primary goals, the methodology should:

* enhance each phase of the overall effort, including design,

implementation, debugging, testing, verification, operation,

fault recovery, monitoring, tuning, maintenance, and evolu-

tion of the resulting systems.

1-4

* integrate these phases--e.g., using common languages and

common formalizations.

0 provide successively increasing confidence throughout the

development as to the appropriateness of the design and the

implementation, and to the thoroughness of the verification.

0 inspire good management--e.g., by simplifying the job of

management, and improving the identification of parts of

the work.

0 support relevant human needs (of users, system programmers,

maintainers, and managers).

These goals are all addressed by the methodology. This methodology

uses a staged development, and is based upon decomposing the system into

a hierarchy of formally specified abstract machines Mop MI, Mn.

Each abstract machine is self-contained in its specifications. M0 is

the most primitive machine under consideration. For each abstract machine

M., a set of abstract programs (P.I can be thought of as interpretively
1 1

executed to implement M i+l (In fact, the actual implementation may be

much more efficient.) The specification method for the abstract machines

is based upon Parnas' method for "module specification" (Parnas [72a, 72b,

72c, and 72d], and Parnas and Siewiorek (72]). An abstract machine M. is1

characterized by its state and by operations that change its state.

The state for the abstract machine M. is represented by a set of
I

V-functions (Value-returning) [Vi}, which are somewhat analogous to state

variables of a sequential machine, except that V-functions can have argu-

ments over an arbitrary domain. A caller of an abstract machine can use

the V-functions to learn about the state of a machine, but not to change

the state. The state changes of M. are effected by calling 0-functions

(Operations) [0.}; however, a call on an 0-function does not return a1

value. There are significant advantages to separating the function into

1-5

0- and V-functions, with respect to design and proof (see below). However,

in certain cases, there is a need for an OV-function, which accomplishes

a state change and also returns a value in one indivisible operation.

(By being careful about the use of OV-functions, the advantages of the

separation between 0-functions and V-functions can be retained.)

This hierarchy of abstract machines forms the basis for the staged

development. It also helps to decompose the proofs of operating system

properties into proofs of small programs (P], each P. running on M. and

implementing the 0-, V-, and OV-functions of M The staged development

involves five stages of design and implementation (Sl to S5) and five asso-

ciated stages of verification (V1 to V5), as follows:

(Sl) decomposition of the system into a hierarchy of abstract

machines, selection of functions for each machine, and

determination of which functions are available at which

levels in the hierarchy.

(S2) formal specification of each function in terms of the

value returned and/or the state changes. These specifi-

cations take the form of assertions in a nonprocedural

assertion language.

(S3) correspondence between the state of each machine M. and
1

the state of M. for i > 0. In particular, this stage

involves writing assertions (written in the assertion

language of S2), called mapping functions, that constrain

the V-functions of one level relative to those of lower

levels.

(S4) implementation of each of the functions of each machine

M i as a program using the functions of M i I for i > 0.

The implementations are called abstract programs.

1-6

(S5) implementation of all primitive functions as programs in

the instruction set of the hardware in some compiler or

other language.

The results of stage S3 provide a design; the structure of the system,

the function of each abstract machine operation, and the interrelationships

among the states of the abstract machines are specified but not implemented.

The results of stage S4 provide an abstract implementation, since each op-

eration is implemented in an abstract programming language out of lower-

level operations not necessarily directly supported by any hardware. The

results of stage S5 are called a complete implementation, for indeed the

system is capable of execution.

This staged design-and-implementation methodology is functionally

oriented rather than either software driven or hardware driven. However,

awareness of hardware concepts arises in the early stages (particularly

at the lowest levels).

The expression "top-down" is normally used to describe successive

refinement, from a high-level representation to an implementation. The

methodology can be essentially "top-down" with respect to the stages of

increasing implementation specificity, S1 to S5. However, backtracking

to earlier stages is normal. Neither the design nor the implementation

at any stage need be top-down with respect to the levels.

The verification phase of the methodology is closely integrated with

the design-and-implementation phase, with five stages associated with SI

to S5.

(Vl) Establishment of global assertions about the desired

system behavior to be proven. One use of global asser-

tions is to define the necessary constraints for the se-

curity of the system, as done here. (Global assertions

may also be used to define requirements for reliability

and recovery.)

1-7

(V2) Verification of S2: Verification that the specifications

are self-consistent at each level, and that the global

assertions of Vl follow logically from the specifications

of S2. Note that any relations among levels (e.g., the

mapping functions of S3 or the abstract implementations

of S4) that are consistent with the specifications of S2

are therefore also consistent with the global assertions.

(V3) Verification of S3: Verification that the mapping func-

tions defined in S3 are consistent with each other and

with the specifications in S2.

(V4) Verification of S4: Verification that the abstract pro-

grams in S4 are correct with respect to the specifica-

tions and mappings of S2 and S3, respectively. S2 and

S3 are used to derive the correctness criteria for the

abstract implementation of each function.

(V5) Verification of S5: Verification that the abstract pro-

grams in stage S4 are correctly implemented in the hard-

ware instructions (stage S5). This stage guarantees that

the system assertions are satisfied by the system as im-

plemented. Verification of the correctness of the hard-

ware is also feasible.

The stages of verification are discussed in detail in Chapter 3,

along with the associated stages for design and implementation. The

statements of specific assertions about the behavior of the system, es-

pecially with regard to security, are presented in Chapter 8.

The relationships among the stages are shown diagrammatically in

Figure 1. In this figure, each circle denotes an abstract machine whose

interface (i.e., a set of operations visible at that level) is symbolized

by an arrow. The state of each abstract machine is symbolized by a square.

1-8

Si: DECOMPOSITION INTO S2: SPECIFICATION OF EACH S3: MAPPINGS AMONG STATES
OPERATIONS OF OPERATION IN TERMS OF OF ABSTRACT MACHINES
ABSTRACT MACHINES STATES OF ABSTRACT

MACHINES

HIGHEST =OperationsM
LEVEL'

MAPPING

ABSTRACT .= State
MACHINES

LOWEST ('
LEVEL

VI: ESTABLISHMENT OF V2: VERIFICATION OF V3: PROOF OF CONSISTENCY
GLOBAL ASSERTIONS GLOBAL ASSERTIONS OF MAPPING FUNCTIONS

(a) (b) (c)

S4: ABSTRACT IMPLEMENTATION
OF EACH OPERATION IN TERMS S5: ACTUAL IMPLEMENTATION
OF LOWER-LEVEL OPERATIONS

ABSTRACT
IMPLEMENTATION

HA REALIZATION

IN TERMS OFV4: VERIFICATION OF HARDWARE

ABSTRACT IMPLEMENTATION HARDWAR

(d) V5: VERIFICATION OF
ACTUAL IMPLEMENTATION

(e)
SA-2581-5

FIGURE 1.1 SUMMARY OF THE METHODOLOGY FOR COMPUTER SYSTEM DEVELOPMENT

1-9

Note that up to stage 2, the abstract machine at each level appears to be

independent of those at other levels, although the intent of eventual im-

plementation is at least partially implicit in the decomposition of stage

1. The mappings between states are symbolized by the arcs interconnecting

the states, and provide the basis for the state representation at each

level in terms of lower-level states. The abstract implementations and

the real implementation at stages 4 and 5 are symbolized by rectangles,

relating the implementation of the operations at each level to the next

lower level. (As noted in Chapter 3, this figure is somewhat oversimpli-

fied- For example, the hardware interface may be distributed over several

levels, although it is symbolized in the figure at the lowest level.)

In summary, then, the methodology has the following properties:

* The methodology facilitates the choice of an appropriate

hierarchical design structure that in turn contributes to

simplifying implementation and proof. This also can con-

tribuLo to the anticipation and simplification of optimi-

zation, maintenance, and long-term evolution of the system.

Staging of the design and implementation phases permits

unnecessary binding of implementation details to be de-

ferred, and provides additional structure for the devel-

opment of the system.

• Formal specification of the design facilities understand-

ability and proof.

The methodology associates proofs with the design and imple-

mentation, so that proofs of correctness are meaningful at

each stage, with successive stages providing incremental

confidence in the development.

I-10

The methodology permits incremental proofs after system

alterations, taking advantage of earlier proofs of previous

stages and of lower levels that are unaffected by the alter-

ations, rather than requiring proof from scratch.

There has been much work recently on design structure (e.g., Simon

[62], Dijkstra [68a,b,c,72], Hoare [71,74], Parnas [74]), although there

has been considerable skepticism regarding the design of hierarchical sys-

tems. The next section illustrates our design, which is hierarchical

(according to the methodology). The design seems to have suffered rela-

tively little by being constrained to be hierarchical. Thus much of the

skepticism may be misplaced.

1.3 The Design of the System

The design of the operating system has followed the methodology of

Section 1.2. The decomposition (stage 1) of the system into a hierarchy

of abstract machines is summarized in this section. The selection of

functions (completing stage 1) is given in Appendix A, along with speci-

fications of each function (stage 2). Mapping functions (stage 3) are

given in Appendix B. Specifications of the security-relevant portions

of the hardware are included in Appendix A as a part of the specifications

of the lowest-level functions. Abstract implementations (stage 4) are il-

lustrated in Appendix A, Section 7. Implementation details (stages 4 and

5) are found in Chapter 7.

The Use of Capabilities

The unit of protection, sharing and naming is an object. Types of

objects include segments, processes, directories, and input-output devices.

New types (i.e., extended types) may be defined for which objects may be

created, maintained, and deleted. The design of the operating system is

1-11

based on the use of capabilities (Dennis and Van Horn [66], Fabry [67,

74], Lampson [69a, 69b], Needham [72], Sevcik et al. [72], Jones [73],

Sturgis [73], and Wulf et al. [74]) to provide protection for all objects.

A capability is a protected piece of data that serves as both a name

and address for an object. A capability is protected in that it is cre-

ated by the system and cannot be modified or forged. It includes a unique

identifier (uid) that is a nonreusable system-generated number derived

from such a source as the instantaneous reading of a fine-quantum clock

or a systemwide nonrecycling counter. The capability for an object also

includes an access code (ac). The access code specifies which types of

access to an object are permitted for a user presenting a capability for

that object. When a capability is presented, it is interpreted by an ac-

cessing mechanism appropriate to the object referred to by the capability,

namely, the type manager for the type of the object. Protection results

from the enforcement of the rule that access to an object is permitted

only upon presentation of an appropriate capability corresponding to that

object.

The use of capabilities greatly aids the effort to achieve a provably

secure operating system. The most notable advantages are that

* Capabilities provide a uniform and noncircumventable means

of accessing and protecting all objects. Their use has a

significant impact, unifying the design, and simplifying

the proof process.

" Capabilities are well suited to hierarchical design, and

lead naturally to the use of extended-type objects (see

below) to provide layers of abstraction and protection.

While the protection afforded to capabilities and the crea-

tion of capabilities are centralized, the interpretation of

capabilities (i.e., the protection afforded y capabilities)

1-12

is distributed as appropriate. Thus capabilities facilitate

the separation of mechanism and policy.

The design differs from previous capability-based systems in that

great care has been taken to structure the system hierarchically into

conceptually simple modules, to use a formal design medium, and to an-

ticipate the need for (hierarchical) proofs of correctness. System ini-

tialization and fault recovery are carefully integrated with the hierar-

chical structure, and proceed hierarchically. In addition, solutions are

included for two traditionally difficult problems of capability-based

systems:

* The revocation problem (how to invalidate a subset of the

existing capabilities for an object, regardless of their

whereabouts) is solved by the approach of Redell (Redell and

Fabry [74]). When the need for revocation of access to a

particular object is anticipated, a revocable capability is

created for the object. When revocation is desired, execu-

tion of the revoking operation makes the revocable capability

invalid (as well as any copies of it).

" The lost-object problem (or preventing the presence of any

objects for which capabilities no longer exist) is avoided

by ensuring that essentially all user-created objects have

at least one valid entry in the directory system.

An Overview of the Design

A simplified outline of the design sotructure is now given, which

includes thirteen hierarchical levels of design. The operations at each

level are used only by higher levels. Beginning with the highest level

(i.e.; the level least dependent on the hardware), the levels are as

fo I lows:

1-13

12. Commands

11. User environments

10. User process management (scheduling, interprocess communi-

cation, and synchronization)

9. Directory search management and linker (name-space manager)

8. Linkage table management (providing fast access via capa-

bilities after initial symbolic access)

7. Symbolic object management (assuring that symbolically

named objects have directory entries)

6. Directory management (mapping symbolic names to capabilities)

5. Creation of extended types and extended-type objects

4. Management of virtual storage (segments) and revocation

3. Physical storage management (for all on-line storage) and

input-output

2. Process dispatching and system event management

1. Effective address calculation, indirection, and indexing

0. Creation of capabilities, recognition of interrupts, address

interpretations, and the remaining primitive machine operations.

For each of these levels, Table 1.1 provides a summary of what operations

are performed, what objects are primitive, and what concepts are made in-

visible by that level.

Discussion begins with some of the objects provided by the operating

system. The basic unit of data protection in the system is a segment,

which is a contiguously addressable unit of virtual storage. Data and

capabilities are self-identifying (e.g., tagged), and may be freely inter-

mixed with a segment. Segment objects are maintained at level 4. The

physical location of each segment is invisible above level 4. (At any

one time, its physical storage residence may be on various devices, or

totally on one device, at the discretion of the system.) A segment is

1-14

0, .11

V~ C)

>- $1 U) 4 :) C)
0. r. m 4 w4 E , a

.-i C) (U o M 4CL 4 A

-4 a, 41 "0 (n
.0 Ai 41 w C U a,
.A c4 a, 4 C)) C) 0C u

U3 0 ' U) C) 44 (1) a, 44
-4 $4 *-4 C) ,4 to (U (,U C) 0 0 4

>) -44 (4 C1 H "0 0mC$4
C: a, t - *.. C) 4) a, 4 -0 $4
w0 co W z' C3 "o4 U) ,4C

-4 C , C) 4- C CO 4 C) w w- C
W, >) C 0 (0 0~ C) ca 0 > w

41 0 0. C)r) 4 0 - , $4

-i 54 C %0 (& Q)~~ C ("4
C: -W ,. '. (0 CO 1 4 (U C4 p

0 to 0 $4 -0 44 ,U 0 4 o
u- Q an A4 U3C - 0a *4

E-4 ' U U 4- $ 4 1$ C) 0

U) ~ ~ U) -A r = c
o 0 -4 40 - '4) 0U C)4 CV $u w44-, ~ C 4~ -u -A 0 0o (z Z

41 w w CL
m 4ca C1f 0 0

E. -k (0 SO C 0 --
En > Ca r. U) w 4i "
Q) w V *a 0) U) Q) 0

C44 A4U"4 ' CO C 4J
-U 4 0) C o 0 C

C $4 (4 C 1 () w V1
14 z-. (u) V)Clo .-

o ' H) $4 4 ' 1 (0 'C4 cu a) U) C (

(A 0)(0(~ (-4 41
() a, $o 0 44 w C L () $4 'C 44

r-4 41 V4 0. U 0(
0 - C wC CUi c 0 C) -1 w b 4 4 (U C) - 4-

(V E- - 4 1a -Y . 0 "44 -0 C) -4 .0 " -4 0.C
w 0 U C1 $4 C $4 rd 0 C

4d C 4-A u (
k) Q) 'C 0 - 4 44 $4

CU A43 4- a a 0 0 -4 (CO C 0 C) $4 4
0 z4 - 0 a w) (U U C co C $4 "0

C U C0-0 (4 411 -A r-4 $4 C
-4 C) (U -4 'C CO 4 C . 4-' -

(U 0 C C -,4 (0 4 4 'C 'C4 -4 -.4 Uw)

1 C) C) (U o4 a. "o'C -A (Uw
d.4 C ' - .) -A C) C) S- w IV 0 c-4

0O "4 0a C 4-J -, (4 0 $4

-- 4~ ~ CO ' U CO C 44 (n V4(U.
-4 -, C) V 0 .

J) U)- ") g4 w- rn 44a

'C () 0 >- 44 4 $ U * U$I i (~ C (U (U W 'C 0.
M- C), C) (U

toU CD c

(U 0 C i >140
41 Cd -A >$ C

44 wO 00 $4 (0 $
U4 - '. --4 461 Cn) ca 4C

w0 C $4 C)j U CL -ACO -

0i VI) a, - c 1 .0) $ 4 0 0. ca to)

>4 a, -4 0 N 00 $4 44 a, I 4 C) Cl *-4
C C C $4 C U 4 0 -4 C) -4a

"4 C C) . C O 4 (U C 0.1-C15C

ultimately accessed only by the presentation of a capability for it, just

as is any other object, and thus a segment may be named, accessed, and

protected, independently of any other segment. Creation of revocable

capabilities and of revoking capabilities, and the handling of revocation

itself, are also handled at level 4. Physical storage management, includ-

ing page placement and replacement, is done by level 3.

Level 5 records the definition of each extended type, and handles

the creation and deletion of objects of these types. The interpretation

of an extended type includes its implementation in terms of segments and/

or other objects, As an example, we choose to implement a directory as

an extended-type object, each entry of which is an association of a sym-

bolic name with a capability. Directories are maintained by level 6.

Above this level, objects may be referred to by a symbolic name for the

directory entry, rather than by a capability.

To solve the lost-object problem, essentially every user-created

object is created with a symbolic name and included in some directory.

To create an object, users must employ level 7, which in turn uses segment

creation and/or extended-type object creation (levels 4 and 5, respectively)

and directories (level 6). For each object, there is one directory entry

(called a distinguished entry) that cannot be deleted unless the object

has been deleted. (Distinguished entries may be moved and renamed--except

those for directories.) Other entries that are not distinguished may be

freely deleted.

The directory system is tree structured with respect to distiiguished

entries, since each directory must itself have a distinguished entry in

some other directory. (The nondistinguished entries serve a purpose simi-

lar to the file system "links" in Multics.) However, several disjoint

tree structures may exist simultaneously.

1-16

For system efficiency, symbolic names are used only on initial access.

This is achieved with dynamic linking (cf. Multics; Organick [72]), via

an indirection through a linkage table. After the first (symbolic) access,

the appropriate linkage table contains a capability for the desired object,

Linkage tables are maintained by level 8.

To permit the knowledge of specific directories to be invisible, a

search strategy may be used (as in Multics). Searching the directory

system for a given symbolic name is done by level 9 in response to an

attempt to access a previously unlinked object. In this way, capabilities

may be made totally invisible to users of the system.

A process may be conveniently thought of as an instance of the execu-

tion of a program by a processor (physical or virtual). Many processes

may exist on the system at one time. Below level 2, there are at most as

.nany processes executing as there are physical processors. At level 2,

there is a (larger) fixed number of processes (called scheduled processes),

all of which have been authorized to run by level 10 (the scheduler). At

level 10, there is a variable number of processes (called user processes),

createable as needed at that level. Level 10 is also responsible for com-

munication among user processes, and for control of process sync~hronization.

Levels 0 and 1 provide the basic addressing mechanisms, as well as

all of the logical, arithmetic, and control operations required for pro-

cessing. For a highly efficient implementation, the operations of levels

0 and 1 are expected to be realized in hardware. Some higher-level opera-

tions are also expected to be implemented in or assisted by hardware.

A more complete view of the operating system design and its motiva-

tion is provided by Chapters 4 through 7 of this report. Appendixes A

and B provide formal specifications and state representations for the

design.

1-17

The use of capabilities as the mechanism for accessing and protect-

ing objects in a hierarchically structured system is of great help in

stating assertions about security. Since a capability is the only means

of accessing an object, and since capabilities are nonforgeable (e.g.,

tagged by the hardware), the only way to access an object that already

exists is to have a capability for the object. The next section gives

an intuitive overview to the nature of security and the role of assertions

about security, discussed further in Chapter 8.

1.4 The Meaning of Security

A computing system is expected to have well-defined behavior, includ-

ing availability of desired facilities, correctness of operation, suitable

performance, and recovery from hardware malfunctions. It should include

appropriate mechanisms for isolating users altogether, except where con-

trolled sharing of resources is desired. These mechanisms pertain, for

example, to preventing the unauthorized accessing and modification of in-

formation. The question "Is the system secure?" is meaningful only with

respect to precisely stated (formal) assertions defining what is meant by

security. Thus there are two key steps to being able to prove anything

about system security, the ability to specify formally the design of a

system, and the ability to specify what is meant by the security of a

system.

This section is concerned with the meaning of system security and

how it applies to our system. It presents

* some general situations that have permitted the security of

existing systems to be violated,

a several typical user environments that should be supportable

by a meaningfully secure system to overcome these violations,

I 1-18

* the meaning of security relative to such a system, and what

it means to a user, and

* the role of proofs and the sense in which they are complete

(e.g., under correct hardware operation).

In general, security is facilitated by a combination of factors, including

the methodology itself, the design of the system and the design of user

subsystems, their implementation, various administrative and other poli-

cies, and run-time monitoring.

With regard to the use and operation of systems that permit the flex-

ible sharing of objects and the establishment of special security domains,

there are numerous significant generic problems whose solutions are de-

sired. Examples of these are as follows. (See, for example, Anderson

and Edwards, quoted in Branstad [73].)

Prevention of bypasses of the system protection mechanisms

and the security policy, including the hardware enforcement

mechanisms and software authorization (e.g., passwords and

other identification or logic).

* Prevention of "Trojan horse" attacks upon the system, or

upon unsuspecting users. These may involve the implantation

of clandestine side effects in a compiler, in a system rou-

tine, or in a user-produced subsystem that gains acceptance

and use by other users.

* Prevention of tampering with the live version of the system

which could introduce arbitrary new possibilities for security

violations.

0 Prevention of improper design and/or implementation. Many

types of potential violations arise from the visibility of

implementation-dependent information that can implicitly or

1-19

______ ____

explicitly give away other supposedly invisible information.

Such examples may arise through timing idiosyncracies, through

sequential dependences within an implementation, through in-

complete parameter checking on calling or returning from a

particular function, and through incomplete interrupt han-

dling. Violations may also arise through incompleLe clearing

of residues, such as permitting newly allocated storage to be

allocated before it is erased, or else to be read before it

is overwritten.

These problems are all addressed by the methodology and by the design.

To illustrate this, four particularly important security situations that

can be attacked by the system are given below. These examples illustrate

the properties to be proven about the system.

" Mediated access--sophisticated environments should be con-

structable, for example, permitting access authorization

on a bit-by-bit basis within a data entity, depending on

the user's identity, the time of day, what operation is

being performed, and how often that operation or related

operations have recently been performed. Such mediated

access controls are easily handled by extended-type object

managers.

* Mutual suspicion--each of two subjects (e.g., users or pro-

gram environments) can permit controlled and revocable access

by the other subject to only a specified subset of his objects.

(Solutions permit the prevention of various forms of security

bypass and Trojan horse attacks.) (See Schroeder [72].)

* Memoryless operation--one subject can allow another subject

to operate on some of his objects in such a way that the

other subject can neither retain nor transmit those objects

1-20

or transform any of those objects. Attaining such an

environment is known as the confinement problem (e.g.,

Lampson [73]).

0 Military Security Classification and Need-to-Know--reading,

appending and writing of classified documents are to be com-

mensurate with established rules governing levels of subject

clearance (top-secret, secret, etc.), levels of object clas-

sification, categories and "need-to-know." Access is to be

nontamperable and nonbypassable (see Appendix C).

In each case, the methodology itself contributes to realizations for

these situations. The specific design contributes still more, particularly

the use of capabilities and extended-type objects (see Linden [74]). The

methodology supports formal proofs of both invariant properties of what

must not change, and variant properties about how the security state of

the system is permitted to change. The nature of proof is that the sys-

tem should do what is expected of it, and nothing else.

With respect to the operating system, there are two basic types of

security violations, namely:

(TI) unauthorized modification of information, and

(T2) unauthorized acquisition of information.

The formal axiomatization of these principles is discussed in Chapter 8.

Here "information" is used to mean programs, or data, or both. Programs

implementing the operating system itself are of course included. Another

type of violation beyond TI and T2 involves

(T3) unauthorized denial of service.

Denial of service may arise from the unavilability of various classes of

system resources, whether intentionally or unintentionally caused. Cer-

tain instances of denial of service are covered by TI (i.e., unauthorized

1-21

d

deletion), and need not be formalized independently of TI. A final type

of violation involves

(T4) inference about apparently secure information.

The first line of defense against such violations is available in

the stages of design and implementation. The next line of defense in-

volves proofs. However, there are two particular cases in which such

prevention is not always possible. One important case involves hardware

errors, although detection of the most critical of these errors can be

achieved by good (fault-tolerant) hardware design. The other case involves

type T4, i.e., lack of confinement in a would-be memoryless environment,

in which low-bandwidth signaling is achieved by statistical or deductive

inference about information otherwise thought to be hidden (see Lampson

[73]). Effects of the type T4 are intrinsically impossible to prevent

completely, but can be reduced considerably by strict enforcement of the

hierarchical structure and the doctrine of invisibility of implementation

detail (including timing information). Finally, the third line of defense

involves run-time monitoring of usage (see Chapter 9). Monitoring is of

special interest in those areas where proofs are lacking or deficient,

e.g., under circumstances involving potential errors due to hardware

faults, and when denial of service is not explicitly prevented by the

design. Monitoring is of course also of interest to security officers who

wish to observe system usage.

The axiomatization of security assertions defining the nonoccurrence

of Tl and T2 in terms of the O-functions and V-functions of the system

and in terms of capabilities for objects is given in Chapter 8. This re-

sults in two corresponding principles that must be maintained:

P1: There shall be no unauthorized alteration of information

(the Alteration Principle).

P2: There shall be no unauthorized acquisition of information

(the Detection Principle).

1-22

Here "authorization" has meaning only with respect to a mapping from

capabilities to the information in the system. Then the authorization

to access a particular piece of information implies having access to an

appropriate capability (itself obtained in an authorized way). Autho-

rized passage of capabilities is strictly limited to two mechanisms, ob-

taining an object that contains a capability, or being passed a capability

as a parameter of the call to or return from a procedure. (Note that the

return from creating an object provides the capability for that object.)

For both mechanisms, this passage is itself controlled by capabilities.

As in other systems, a user's authorization thus ultimately depends on

what is made available initially to the user upon logging into the system.

(Additional constraints on authorization may of course also be enforced

by the system, e.g., those of the multi-level security classification

system.) The identification and initial authorization are thus critical

to security, but are beyond the scope of the operating system design--

apart from the fact that this initial authorization can itself be made

secure. (See Chapter 6 for a further discussion of initial authorization.)

Formalization of the nonoccurrence of T3 i beyond the scope of the

present effort, but analogous global assertions can be constructed for

this case (denial of service), e.g., covering issues of termination (such

as the fairness and noncompromisability of the scheduler) and prevention

of deadlock. The issues are seemingly more difficult to state than for

TI and T2. Nonoccurrence of T4 is also beyond the present scope, although

it appears to be partially amenable to formal treatment within the frame-

work of the methodology and the system design.

The invariant security assertions P1 and P2 and corresponding variant

assertions provide necessary conditions for security. However, security

is in practice meaningful only with respect to specific use of the system.

Thus for a given application (such as the multi-level classification sys-

tem of Appendix C), it is desirable to define additional assertions relevant

1-23

to that specific application. In each case, proofs of the satisfaction of

these assertions rest on the existence of formal specifications for the

appropriate level of the system.

We now consider the notion of security in the context of the specific

system obtained, applying the methodology. With regard to each of the

security assertions characterized by PI and P2, the correctness of the

security of the system relies on two considerations:

(CI) the correctness of the implementation of the model of

interpreting 0-, V- and OV-functions, e.g., with regard

to indivisibility, invisibility, maintenance of the order-

ings among levels, and error handling; and

(C2) the correctness of the security assertions with respect

to the specifications of each function (stage S2).

With regard to Cl, we have hypothesized a model for the interpreta-

tion of V-, 0-, and OV-functions that relates the two global security

assertions to the possession of capabilities. This includes the follow-

ing properties:

" Using a V-function cannot increase a user's intrinsic

access rights of any object.

" Using an 0-function cannot increase a user's access rights

to any previously existing object.

" Using an OV-function or 0-function to create a new object

can increase a user's access rights; however, it provides

access only to the newly created object, and not to any

other object.

With regard to C2, the security assertions are appropriate for all

functions (V, 0, and OV) that are visible up to the user-visible operating

system interface (level 10). As software to support specific applications

1-24

is added, further assertions appropriate to each application must be added

if proofs are desired for these applications. As an example, consider the

multilevel security classification system mentioned above. In the MITRE

work (Bell and LaPadula [74]), the following assertion is basic:

(P*) The content of a given object may be derived only from

other objects whose classification level is at most

that of the given object.

For example, a secret document may not include information taken out of

a top-secret document. This assertion is called the "*-property" by Bell

and LaPadula (see Appendix C).

For the system, eventual proofs of P1 and P2 (formally axiomatized)

will require consideration of the hardware as well as the software. For

example, the following steps contribute to proving that the basic protec-

tion mechanisms (capability creation in the hardware, and capability in-

terpretation in hardware and software) are adequate:

* The generation of a capability is guaranteed to produce a

new unique identifier.

" The only operation permitted on an existing capability is

to reduce the access rights associated with it.

* The mechanism for accessing system-defined objects by means

of capabilities cannot be bypassed or compromised.

Proofs of the security of a user application environment (e.g., the

military security environment) are incremental to proofs of the security

of the basic system. However, great care must be taken in stating appro-

priate security assertions. In the MITRE example above, it is not ade-

quate to prove just the *-.property, for nothing is said about the reclas-

sification, declassification, or deletion of objects.

1-25

We intend to accomplish proofs manually, but we see the use of proof

checkers (e.g., Boyer[74]) useful in the future in detecting errors in

the proofs. Semiautomatic proving may also provide substantial help in

the future. An on-line facility for interactive editing of specifications

and their formal manipulation is considered vital to any future work.

1.5 Preliminary Conclusions

As a result of the work to date, the following conclusions are in

order:

(1) The methodology has the potential to provide significant

benefits to the design, implementation, integration, verifi-

cation, monitoring, operation, maintenance, understandability,

and evolution of an operating system designed according to it.

It also permits the uniform treatment of a family of related

systems, and enhances the portability of the design. These

benefits result, among other things, from

* an integrated approach,

0 use of formal specifications,

* use of hierarchical design structure and of hierarchical

proofs,

0 staging of design, implementation, and proof, and

* avoiding unnecessary hardware dependence in the design.

The methodology has already had impact on other work, and

is being used in two other projects, one a MITRE project on

redesigning the Multics kernel (for the Air Force), the other

an SRI project on developing an ultrareliable computing sys-

tem (hardware and software) for commercial aircraft (for

NASA). Several other applications are currently being consid-

ered at SRI and at the University of Texas. Further work on

1-26

the methodology is required in the area of concurrency and

synchronization and in implementation.

(2) The use of capabilities presented here as the basis for the

system design is of great help in

* structuring and unifying the design,

* providing solutions to hitherto difficult security

problems, and

" proving the correct implementation of security.

In addition, capabilities are in general compatible with

high-level authority-based designs.

(3) The design defined here has the following attributes:

" The system appears to be efficiently implementable with

reasonable hardware constraints.

* The cost of building suitable hardware appears to be

competitive with conventional designs.

* Security is attainable that can be more convincingly

demonstrated than in existing systems.

" Problems whose solutions have appeared difficult in other

systems can be solved efficiently.

* Proof of system security seems feasible with a reasonable

amount of effort.

* System initialization, system alteration, recovery from

faults and run-time monitoring of system security appear

to be greatly simplified.

All in all it appears that the methodology has significant potential

impact on the computer field, for both the short-term and long-term future.

The secure operating system design has significant potential impact on new

systems emerging in the future, as well as impact on existing efforts

(e.g., at MIT and at MITRE).

1-27

Chapter 2

DESIGN ALTERNATIVES

In approaching the task of designing a secure operating system about

whose design and implementation certain properties can be proven, it is

first useful to examine various design alternatives and their suitability

for attaining the goals set forth in the previous chapter. Three basic

approaches are immediately evident, and are summarized as follows.

(1) Patching--Use an existing system, detect its deficiencies

(possibly by penetration studies), and patch it.

(2) Language design--Design a language that can intrinsically

enforce security via its own restrictiveness, or via com-

pilation or interpretation, and implement a translator for

it in a way that enforces its use for all users.

(3) System design--Design or redesign a system, and implement it.

Approach (3) comes in several varieties, with various degrees of sharing

permitted, and various degrees of new design. The following examples are

cited here:

(3a) Kernel redesign--Redesign the central part (kernel) of an

existing system (MITRE; MIT-Multics modifications).

(3b) Virtual machine--Design the kernel of a system so that

each user has an independent virtual machine. This is

the "hypervisor" approach, and usually has highly restricted

sharing of resources. An implementation of this kernel in

separate hardware is called "encapsulation" (Lipner [74],

Popek and Kline [74], Bisbey and Popek (74], Randell [751).

2-1

(3c) Kernel design--Design a system kernel that handles the most

primitive security functions (without the separate hardware

restriction of 3b), but leaves much of the system undesigned

(Hydra: Wulf et al. [74); Burke [741).

(3d) System design--Design a total system (Multics: Organick [72];

Plessey 250; CAP: Needham [72]; BCC 250).

Existing work on the design approaches is summarized in Section 2.1.

Early in the present work, approach (3d) was chosen. The reasons are

already implicit in the preceding section and in Chapter 1, but are worth

summarizing here.

" A general-purpose system is desired, with significant future

impact, especially in the long term. (The two efforts to

evolve Multics have near-future impact, namely the MITRE

effort and the MIT-Honeywell effort. The MITRE-Multics

effort is using a methodology similar to the work described

here and has hopes of proving properties about a multilevel

security classification system.)

" Specification of all visible system functions is necessary to

make proofs of user-oriented security properties meaningful.

For this reason, kernel approaches and partial designs were

eschewed.

* A strongly hierarchical system is desired to facilitate proofs.

Thus existing systems are mostly inappropriate.

2.1 Comparison of Various Approaches

A useful reference surveying various efforts to develop secure oper-

ating systems is given by (Saltzer [741). Some of these efforts are re-

sulting in systems in which sharing is not flexible and in which special

2-2

security problems are not Lfficiently solved, but which can be proved

correct using current technology. There are two such approaches:

(1) The encapsulator (Lipner [74], Bisbey and Popek [74])

ensures total isolation by externally managed swapping

of operating systems running on a given machine. Integ-

rity of secondary storage is ensured by requiring the

encapsulator to switch disc packs on-line, depending on

which operating system is running.

(2) The virtual-machine monitor (Goldberg [74], Popek and

Kline [74]) is a software system that provides a virtual

machine (a copy of the hardware machine) for a user by

allowing most hardware instructions in nonprivileged mode

and by trapping all sensitive hardware instructions (such

as I/O) to be simulated by the virtual-machine monitor.

Popek and Kline have isolated a small portion of the

virtual-machine monitor, called the kernel, the verifi-

cation of which is sufficient to guarantee the security

of the virtual-machine monitor.

However, these methods provide only a small subset of the services that

would be expected of an operating system. For example, they do not pro-

vide facilities for sharing or for the solution of the special security

problems. Still, they represent viable short-term solutions to verifiable

security in some form.

The Multics system (Organick [72]) represents the best existing sys-

tem that satisfies many of the properties desired here. Relative to other

systems, Multics contains few loopholes for penetration. However, Multics,

in its present form, does not permit the efficient solution of the special

security problems mentioned in Chapter 1; and its sheer size and lack of

structure preclude any possibility of proof.

2-3

There are two current projects--one at MIT .,id the other at MITRE--

ained at isolating the functions of Multics relevant to security (see

Saltzer [74]). The hope is that the residue (a security kernel) will be

small enough to verify by inspection (the MIT approach), or to prove for-

mally (the MITRE approach). Another security kernel effort is the Hydra

system (Wulf et al. [74]), which appe.rs to have sufficient mechanism to

solve a wide variety of special security problems but is not appropriate

for verification, due to the lack of formal specifications, formal asser-

tions, and suitable structure. Another effort exists at MITRE (Burke [74]),

aimed at proving a security kernel for the PDP-1I.

A security kernel, in addition to arbitrating all references to re-

sources (which it must do to guarantee isolation of users), also provides

primitives for the use of the normal operating system features that were

pruned off to form the kernel. Such eliminated features include subsystems

that theoretically affect o ly system performance, e.g., page-replacement

programs and process scheduling programs. However, some aspects of these

programs could result in damaging effects, since they stand between a user

(or set of users) and the kernel. In particular, efforts in non-kernel

operating system programs could result in:

" Denial of service--With unfair algorithms, certain isers

could be excluded from their share of computing time.

" Leakage of information (which L~pson [73] calls lack of

confinement)--Here these programs have knowledge of many

of the operations performed by users (e.g., file opening,

requests for I/O), and can act as information channels be-

tween users.

The present approach is to produce a complete operating system for

which formal specifications are provided for all functions that a user

can call. Thus it is theoretically possible that any security-related

2-4

property of the system could be derived. In addition, it should be pos-

sible to state and prove properties of the programs that implement the

special security subsystems. As noted in Chapter 1, however, denial of

service seems amenable to formal treatment, while leakage of information

is only partially amenable to such trLeatment.

In scope, the present work is more similar to Multics than any of

the other work mentioned above. Nevertheless, it is significantly dif-

ferent from Multics, with respect to the use of formal specifications,

the use of an explicit hierarchical structure of the operating system,

the use of capabilities rather than descriptors, and with respect to

having been begun with both proof and formally definable security in mind

from the beginning. (Further, the work has taken significant advantage

of the Multics experience.) As far as the use of capabilities is concerned,

it appears that no complete design for a general-purpose capability-based

operating system has previous been developed.

The methodology bears a resemblance in its goals to the LOGOS project

(Glaser et al. [72]), which is also aimed at systematizing the design pro-

cess, modeling a system (or at least parts of a system), and demonstrating

consistency. However, LOGOS deals primarily with graphical representations

for individual pieces of a system, e.g., focusing on determinancy and termi-

nation properties of particular algorithms. It lacks sufficiently formal

abstract representations to handle the entire system at different levels.

As noted in Chapter 1, the methodology presented here greatly reduces

the effort in realizing a total system. The system emerging therefrom ap-

pears to be suitably general, demonstrably secure, and realistically and

efficiently implementable. It is of course possible to use the user-

visible operating system interface (i.e., level 10) in many application

areas, creating totally distinct command interfaces.

2-5

Perhaps even more significant in the long run, the methodology itself

appears to be readily transportable to manufacturers, software houses, and

other developers of hardware and software. The system design also appears

to be transportable in a sense not hitherto available, e.g., by using as

many of the higher levels as desired down to an interface appropriate to

the hardware in question.

At this point, the reader interested in a formal exposition of the

methodology should proceed to Chapter 3. The reader not so inclined, but

interested in the design of the operating system, may wish to skim over

Chapter 3, and then move on to Chapter 4 and following chapters. A reader

seeking an intermediate level of detail may wish to read Robinson et al.

[75].

2-6

Chapter 3

THE METHODOLOGY

The methodology as described in Chapter I is an extension of the

techniques presented in Robinson and Levitt [751. As stated earlier, the

hierarchical methodology for design, implementation, and proof utilizes

(i) decomposition of the system into a hierarchy of abstract

machines,

(2) formal specifications for each abstract machine as a Parnas

module,

(3) assertions concerning representations of the status of each

abstract machine in terms of the states of machines at lower

levels,

(4) abstract programs using lower-level functions, and

(5) realization of the most primitive machine and the abstract

machine operations in terms of hardware or a programming

language.

In this chapter, the use of Parnas modules and hierarchical decomposition

is motivated. The stages of development are then discussed in detail.

Finally, a simple example is given.

In recent years there has been increased recognition of the benefits

of using programming methods that introduce several refinements (i.e.,

layers of abstraction) between the statement of the programming task and

the ultimate runnable code. The stepwise refinement method (Dijkstra

[72]) allows a programmer to elaborate his concept of a program in suc-

cessively finer detail and to make convincing arguments of the program's

correctness.
3-1

Our methodology is based on a formalization of the refinement con-

cept.,. We hypothesize a sequence of abstract machines (Mop M, M.,
n

with M being the most primitive layer (possibly the hardware or a pro-
0

gramming language). Viewed externally, each abstract machine contains

various functions that a user of the machine can call (either returning

data structure values or performing operations that modify the data struc-

tures). If M0 is realized as hardware, the data structures are the regis-

00

represented by a programming language, the data structures are the program-

variables, and the operations are the assignment and control mechanisms.

Consider the task of writing a program P that is to run on M 0* In

the hierarchical methodology, we write a program P nthat will run on Mn

Then we write, for each i, 0 i <n, a sequence of programs [P]}. that

implement M and run on M.. Each of the pairs ([Pj., M.) constitutes
i+l L

an abstraction, or equivalently, a level.

It is clear that in a hierarchy, an abstract machine should not be

able to call functions of machines at a higher level. However, there are

two possible views concerning the calling of lower-level functions.

In the first view, MN. can potentially call functions of all machines

below it. In this view, in order to preserve a hierarchy, MN, (for 1 < i

s n) may call functions of M i, 0 - j < i-l1, only if M i can call them as

j i-l

M' (the machine just below M'). We prefer to describe a hierarchical
i-l 1

system according to the first view, because it simplifies the formal

description of the machines, and because it actually reflects the imple-

mentation of the operating system. On the other hand, we use the second

view to prove properties of the system. There is a construction, shown

in Figure 3.1, to convert a hierarchy of the first view (Figure 3.1a)

into an equivalent one of the second view (Figure 3.1b). In this con-

struction, the machine M' at level i consists of the union of (up to)
1

3-2

M3 MM: W W

M2 M : M M2 M

(a) (b)

SA-2581-6

FIGURE 3.1 TWO VIEWS OF A HIERARCHY WITH
MULTI-LEVEL VISIBILITY

i i
i machines M., 0 <- j -< i, where each M. contains precisely those functions

.11 i': M1 M

of M (in the first view) that are visible at level i. (Note that M. is

thus identical to M. of the first view.) Also nte that N., 0 < j < i

1 0

Ii-i V

contains only a subset of the visible functions of M oj

The hierarchical methodology requires a medium for formally describ-

ing each of the abstract machines. To achieve this, we represent each

machine as a Parnas module (Parnas [72a,b]) that can be viewed as a gener-

alization of a finite-state machine. A module has a state, and some ex-

ternally visible operations to change the state. The state of the machine

can be derived by calling a set of V-functions (value-returning), which

3-3

can have arguments over a potentially infinite domain and can have a

potentially infinite range. The state of the module is changed by call-

ing a member of the set of 0-functions (operation), which can also have

arguments over a potentially infinite domain.

The semantics of a module is described by a formal specification

that shows tha result of either an 0-function or a V-function call.

For a V-function, the specification includes: the type of the

V-function value--integer, boolean, etc.; a listing of the parameters

and their types; the initial value of the V-function; and a list of ex-

ception conditions. The value of the V-function for particular arguments

could be the special value UNDEFINED. An exception condition is an ex-

pression which, if satisfied at the time of a V-function call, implies

that no value will be returned. Instead, an appropriate error routine

(supplied by the caller and executing in the caller's domain) is invoked.

Parnas envisaged several reasons for associating exception conditions

with a call on a V-function, one of which is to ensure that no call is

allowed such that the value UNDEFINED would be returned. That is, a

V-function should never return the value UNDEFINED, but the user should

be alerted, by an invocation of an error routine, if he calls a V-function

out of range. In the operating system. an exception condition is also

triggered when a protection violation would occur if the V-function were

allowed to return a value.

For an 0-function, the specification includes: the parameters and

their respective types; the exception conditions; and the effects section.

Here, Parnas envisaged exception conditions as expressions defining 0-

function argument values whose use would be improper, e.g., to cause the

range of a V-function to be exceeded. An 0-function call that triggers

an exception results in no state change to the module. As in the case

of V-function exceptions, the satisfaction of an exception condition

3-4

causes the invocation of an error routine. We also use an exception

condition to detect a protection violation, i.e., a call wherein the

caller does not have sufficient rights. The "effects" section defines

the state change due to the O-function call by giving the new values of

V-functions in terms of V-function values prior to the call. Both the

effects and the exception conditions are described by assertions, written

in terms of the V-functions of the module and a base assertion language

that can be formally defined.

The 0- and V-functions provide the interface that the module presents

to a caller. It is possible that certain V-functions are not to be made

available at the interface. We call these hidden V-functions. They have

a specification analogous to ordinary V-functions (since they are a part

of the module state), but do not possess exception conditions since there

is no means for a user of a module to call them.

Another special type of V-function is the derived V-function. Its

specification possesses exception conditions, but its value is expressed

in terms of the values of nonderived V-functions (possibly including

hidden V-functions). A derived V-function never appears in the effects

section of an 0-function, since its value is always derivable from other

V-functions. In our operating system specifications, most of the user-

visible V-functions are derived (with the appropriate exception condi-

tions).

One additional special function is an OV-function, which returns a

value (like a V-function) and performs a state change (like an O-function).

An OV function is needed as an indivisible operation in a multiprogram-

ming environment where a module is shared among several users. Here a

state change is to be effected, and some values depending on the new

state are to be returned to the caller--before another user can call an

O-function that will change the state again. The use of OV-functions

3-5

provides a convenient abstraction that would necessitate a more complex

specification if not allowed. (In the system specified in Appendix A,

user-visible OV-functions are used only for the creation of capabilities.)

Each function is indivisible to the caller. During an 0-function

call, the V-function values associated with the call form a "critical

section" that excludes V-function calls or other O-function calls affect-

ing the critical V-function values.

We have outlined above how we intend to decompose a system into a

hierarchical layering of abstract machines (and implementations of ab-

stract machines) similar to the method of Dijkstra 168c]. We have also

provided an additional degree of decomposition to separate the tasks of

specification, design, and implementation. There is also a separate proof

effort associated with each task. In particular, the methodology involves

five stages as follows.

Stage 1--In this stage the generalized facilities visible to the user

of the software system are first determined. Then several steps occur,

not necessarily in order: the set of facilities are grouped into modules;

the functions (V, 0, and OV) associated with each module are determined;

and the modules are arranged in a hierarchical ordering. This is a very

critical stage (especially the ordering of modules), because at this point

the general configuration of the system has been determined.

In our system we first decided that we wanted capabilities, virtual

memory, extended types, directories, process management, and dynamic link-

ing. We then determined the approximate relationship among machines in

the hierarchy, and finally wrote out the functions. The most important

decision was to put capabilities and memory mapping at the lowest system

levels. The virtual memory is in effect "divided" into several levels,

as is process management (see Chapter 5). Other examples of difficult

design decisions at this stage are:

3-6

(i) the placement of revocation at the same level as segment

management.

(2) the placement of user processes immediately below command

level.

(3) the placement of extended types immediately above segments,

enabling the use of the extended type mechanism to define

operating system structures, and

(4) the creation of a separate level to solve the lost-object

problem, together with a careful choice of functions at

levels 4, 5, 6, and 7 to work out a consistent solution.

Also at this stage is the formulation of global assertions for each

level. These assertions represent general properties that the specifica-

tions at a given level must adhere to. An example of a global assertion

is the lost-object assertion: for every object above level 7, there must

be a distinguished directory entry corresponding to it. For the present

work, the global assertions of interest are those relating to security

(see Chapter 8).

Stage 2--Each module is formally specified, according to our exten-

sion of Parnas' methodology described above. Based on the specifications

for a module, it is possible to attempt to prove that the specifications

are self-consistent and that certain global assertions are true. A proof

of self-consistency involves demonstrating that no set of assertions in

the effects section is self-contradictory over the domain of definition

for the V-functions. In general, this proof is done almost by inspection,

In general, an inconsistent module specification prevents a proof of the

implementation of the module from being successful, and thus a proof of

inconsistency need not be explicitly carried out. However, for diagnostic

purposes, it is useful to do consistency checking at this stage. Global

assertions (see Price [73]) are expressions written in terms of the

3-7

V-functions of the module. To show that they apply to the module, it

must be shown that they are true for the initial state of the module and

also after any sequence of O-function calls. Global assertions describe

general properties of a module, and thus may be used as lemmas to simplify

proofs of abstract programs that call functions of the module. In Stage

2 we state and prove potentially useful global assertions for each of the

modules with respect to the specifications. General system properties

(e.g., those pertaining to security) can be represented as global asser-

tions. General system properties are associated with a module called the

user interface. In a hierarchical system as described by the view of Fig-

ure 3.1a, the user interface corresponds to machine M' in Figure 3.1b,
n

containing functions of machines initially defined at many levels.

An example of a module specification is shown in Table 3.1. The

module (called a Register Module) maintains a register and was originally

used by Parnas ([72a]) to execute Markov algorithms.

A module specification has four parts: PARAMETERS, DEFINITIONS,

EXCEPTIONS, and FUNCTIONS. The PARAMETERS section contains the type in-

formation for variables used i-i the module, as well as module resource

limits that have been parameterized (none in this example). DEFINITIONS

are module-wide macros (none in this example). EXCEPTIONS are the macro-

definitions for the named exception condition. The FUNCTIONS section con-

tains the specifications for the functions of the module. Using the Reg-

ister Module, one can find the number of elements in the register (length)

or the value of a particular element in the register (char), and one can

insert (insert) an element into the register or delete (delete) an element

from the register.

Both the V-functions and the parameters have types--either integer,

boolean, or character in this case. The purpose is a description of the

function in natural language. Each V-function has an initial value, which

3-8

is described by an expression. Calls to both V-functions and 0-functions

of a module are restricted by exception conditions, which represent calls

that cannot be handled by the module. For example, the call char(length+l)

would yield an undefined value if allowed to proceed, and the call

insert(i,j) with a length 1 1000 would--if permitted--overflow the register.

We can often prove that a calling program never triggers an exception con-

dition, as we do in the example of this paper, and thus preclude the neces-

sity to perform a run-time check for exception conditions. However, it is

often useful to construct programs that do trigger exception conditions

(Parnas [72d]). In that case, the exception-handling program--and the

accompanying transfer of control--must be considered in the verification.

The state transformations are described in the EFFECTS section of an

0-function. The initial values, exception conditions, and effects are all

written as assertions. V-function names within single quotes ('...') rep-

resent values of V-functions prior to the 0-function call, while unquoted

names represent new function values at the completion of the call.

Several examples of global assertions for the Register Module are:

0 "-- LENGTH 1 1000;

Vi (0 < i LENGTH - defined(CHAR(i)));

Vi (defined(CIV.R(i)) D 0 < CHAR(i) - 255);

clefined(LENGTH).

(The predicate defined means that a V-function has a value not equal to

the distinguished value undefined.) These invariants can be used as lemmas

to shorten the proof of programs that call the module.

Stage 3--In this stage, decisions are made regarding the representa-

tions (or mappings) of the data structures of level i (characterized by

the V-functions of level i) in terms of data structures (V-functions) of

lower levels. We can also state and prove properties of the representa-

tions. This work is related to that of Hoare [721. For simplicity we

3-9

-4

discuss in detail the case where the data structures of each machine M'
i

are represented solely in terms of the data structures of the single

lower-level machine M' . The generalization to the hierarchy of Figure
i-l

3.1a is straightforward.

The set of possible V-function values for an abstract machine can

be viewed as the state space for that abstract machine. In terms of the

state space S of M i and the state space T of Mil, we define a mapping

function of level i as an "onto" partial function from T to S. We first

show that this concept of a mapping function conforms to the desired prop-

erties of the data representation. We then give a method for writing re-

lations among V-function values of TM. and those of M. in a manner that

ensures that the corresponding state functions constitute a mapping func-

tion.

With regard to the state mappings from T to S, we observe the fol-

lowing:

* Numerous states in M i i can map to a single state in M., as

depicted in Figure 3.2a, due to the possibility of delaying

the decision on the precise representation of a data struc-

ture of M.. In Appendix B we illustrate a representation for1

directories in terms of segments, in which the segment dis-

placement that corresponds to a particular entry is not bound

(i.e., the specifications and the mapping functions describe

directory entries in an order-independent way). Of course,

when all implementation decisions are made, the nondeterminism

in the mapping disappears.

* Not all states of Mi I have images in M i . As illustrated in

Figure 3.2b, a direct transition (SI ,S) in M* might corre-

spond to a transition (TI,T) in 'M that traverses several1 i-i

intermediate states that need not necessarily map to states

3-10

S1 = f(T 1) S 1 = f(T 1)
$1 = f(T 2) S2 = f(T 2)

Si Si S Si S

Ti T3

T2-- 2 1

T, T2

(a) (b) (c)
SA-2581-7

FIGURE 3.2 MAPPING FUNCTION f RELATING THE STATES
OF TWO ABSTRACT MACHINES

in M.. Moreover, there might be numerous possible paths
1

between TI and T2 (as shown) corresponding to different

implementation algorithms.

* The most general case is that in which each of the states

in a direct -ransition pair of M. corresponds to several
1

states in Mi I. In Figure 3.2c, SI corresponds to T and

T2f and S2 corresponds to T3 and T4. A correct implementa-

tion of the direct transition (Si,$2) in M. could be any of

the following transitions in Ml: (T1T3), (T1,) , (T2Ti-l (1 ,T3 (1 ,T4 T2 PT3)
or (T2 T4). Note that T1 may be equal to T or T3 may be

equal to T4 .

We write a mapping function for level i as a set of expressions con-

taining the V-function values of machines Mi and Mi I. Each expression,

3-11

called a mapping function expression, is of the form (V.): iexpression)
1

where Vi is a V-function value of M i (with formal parameters), and

"(expression)" is written in terms of V-function values of M A map-

ping function expression states the value of the higher-level V-function

in terms of the lower-level V-function values.

Once mapping function expressions have been defined for each of the

V-functions of M, it remains to be determined if they characterize the
1

properties of a mapping function, as enumerated in the state-space de-

scription of abstract machines. We call the mapping function expressions

consistent if such is the case. If mapping function expressions are in-

consistent, it is impossible to find an implementation satisfying the

specifications of the modules M. and M . We prove the consistency ofi i-l"

mapping function expressions between M i and M '-l, with respect to the

specifications of M. by creating mapped specifications for Mi, i.e.,11

substituting each V-function reference in the specification of M. by its
1

instantiated mapping function expression. The mapped specifications can

be proved consistent or inspected to check consistency, in the same manner

used to show the consistency of a module specification in stage 2.

As we discuss below, mapping function expressions are used to trans-

form module specifications of M. into assertions expressed in terms of
1

only V-functions of Mi_. Also, a mapping function expression for a V-

function of M. serves as the output assertion for the program that imple-

ments the V-function.

We describe an implementation of a register in terms of an Array

Module, described in Table 3.2. The functions of the array module permit

the retrieval of the value of a position in a one-dimensional integer

array of 1000 elements ("access"), and the changing of the value of an

array position ("change"). The mapping function expressions for the Reg-

ister Module are as follows:

3-12

I---- bUL~~

length: k (is a program variable)

char(i): IF 1 _ i 5 1 THEN access(i)

ELSE UNDEFINED

Mapped specifications for the Register Module are shown in Table 3.3. The

mapped specifications, when simplified, yield easily readable assertions

for the implementing programs. For example, the simplified output asser-

tion for "insert(i,c)" is

Vj(l ! j i)[access(j) = 'access'(j)],%

access(i+l) = c A

Vj(i+2 ! j '.'+l)[access(j) = 'access'(j,l)]

The effort in the first three stages results in what we call a design

for a system. In our notion of a design, many of the important system

properties can be stated and proved before any code is written. The speci-

fication of M. and mapping function of level i are sufficient to generate1

the correctness criteria (i.e., input and output assertions) for the im-

plementation of M..1

ii
Stage 4--Each of the functions of M, i > 0, is implemented as an

abstract program using the functions of Mi_ (as in Stage 3, levels lower

than i-I are omitted for ease of description), and the control constructs

of some formally-defined programming language. These programs complete

the binding of the decisions that were left incomplete by the mapping

functions of Stage 3. Each of these abstract programs must be proven

to be a "successful" implementation,-with respect to the specifications

of M i and to the mapping functions between M.i and Mi. We accomplish

this by deriving input and output assertions for the implementing programs,

which (if satisfied) imply such a "s'iccessful" implementation. The input

and output assertions for the implementing programs are simply the mapped

specifications of M.. Then we prove the correctness of the implementing

programs with respect to these assertions using an extension of Floyd's

3-13

method described below. The extension defines correctness criteria for

programs calling O-functions.

The problem of verifying (or proving the correctness of) an abstract

program is similar to that of verifying any program, except that calls to

0- and V-functions must be included in the semantics of the programming

language and of the verification process. We will illustrate the verifi-

cation of an abstract program, with emphasis on how a semi-automatic ver-

ification system might find a proof.

Floyd's method (Floyd [671) is used in most automated verification

systems (e.g., Elspas et al. 1731), and is the basis for the following

discussions. The goal is to prove the correctness of a program, P, with

respect to an input assertion, y, and an output assertion, .. Verifica-

tion requires the insertion of inductive assertions, iqi}, into the pro-

gram's flowchart, breaking the program into simple paths. Each simple

path has one entry and one exit, and between these a fixed number of exe-

cutable statements. For each simple path, a formula called a verification

condition (VC) must be stated, and proved to be a theorem. The validity

of all the VCs for a program is sufficient to demonstrate the partial

correctness of a program--i.e., for all inputs satisfying the input asser-

tion, the output assertion is satisfied if the program terminates. Termi-

nation can be proven by inductive assertions (usually different from those

used to prove partial correctness) that bound the number of loop executions

(Manna and Pnueli [74] and Dijkstra [74]).

VCs can be generated mechanically by a part of the verification system

called the verification condition generator, which contains knowledge about

the programming language and the assertion language, and takes as input the

code for a simple path and the bracketing assertions. Proof of the VCs is

attempted by a part of the verification system called the deductive system

(i.e., a theorem prover for formulas in the assertion language).

3-14

In Floyd's method, each VC must be built from the antecedent asser-

tion, qi, which applies to the beginning of a simple path, and the conse-

quent assertion, q., which applies to the end of the path. The goal is
J

to arrive at a formula ii D qj where qi and qj are the results of trans-
th

formations reflecting the effects of intervening program steps.
The n

transformation (n 0) takes the form [q - q n+l n n. After the

last such transformation, we set qi = qinal and qinal, defining

the verification condition. For simplicity, we group the transformations

handled by current verifiers into three types corresponding to those pro-

gramming language constructs.

In assignment, the code associates new values with program

variables, so that qi and q. may be referring to the same

variable name but to different values. The updating of

values is reflected in the consequent assertion by substi-

tution:
n+l1

x e >q = [qlx
j e

where f }x indicates replacement in e of all occurrences
e

of the variable x with the expression e. Two different

methods of substitution are used, differing in the order

in which the code is scanned but yielding the same VCs:

backward substitution (King [69], Igarashi et al. [731,

Elspas et al. [73], and forward substitution (Deutsch

[73]).

* The results of a test yield terms A that are conjoined to

the antecedent assertion in a manner depending on the di-

rection of the branch:

n+l n
test: A (true) => = qiA A

n+ i n
test: A (false) : q i qi A- A

3-15

* Procedure calls (Hoare [71]) yield transformations in both

antecedent and consequent assertions:

ca l p a . .a qn+l qn A fl'''',fm
cal pm i i i P a ,. .

n+l

p al,...,am

where yp and p are the input and output assertions, respec-

tively, of a procedure p. fl' ' ' f are the formal parameters

of the procedure, for which the actual parameters al,'...a of

the call must be substituted in cp and * (the notation above
p p

indicates multiple substitution). This scheme works for call-

by-value parameter passing, but does not work for call-by-

reference unless there are restrictions on the choice of

actual parameters (Hoare [711).

We now describe the semantics of an O-function call in the generation

of verification conditions. An O-function can be described as an asser-

tion pair, with input assertion O corresponding to the complement of the

exception conditions for the O-function, and output assertion 'O corre-

sponding to the effects of the O-function. An 0-function call changes

the values returned by V-functions. In the specification of an 0-function,

V-function values before the call are enclosed in single quotation marks,

and V-function values after the call are unquoted. Thus, after each 0-

function call, a completely different set of V-function values comes into

existence, and must be distinguished from the old set when verification

conditions are generated. The problem is complicated by the fact that a

simple path may have more than one 0-function call: each 0-function in-

troduces a new set of V-function values into the universe of discourse.

Our solution is to have the last set of V-function values (i.e., those

3-16

th

at the point of the consequent assertion) be unquoted and the n set of

V-function values before that be surrounded by n levels of single quota-

tion marks. For example, if the antecedent assertion for a path is

Vx(l -< x -< 10) [F(x) = x],* followed by the execution of two 0-functions--

first to change the value of F(2) to 3 and then to change the value of

F(3) to 2, the antecedent assertion would be modified to look like this:

Vx(l x IO)["F"(x) = x] A

Vx(l x 1 O)['F'(x) = if x = 2 then 3

else "F"(x)] A

Vx(l _ x l0)[F(x) = if x = 3 then 2

else 'F](x)]

(Initially the antecedent and consequent assertions look like this:

initialq i = qi

initialq. = true .)

The effects of each 0-function call in the path are applied one at a time

as the path is scanned in the forward direction. The antecedent assertion

above can be simplified to the following:

Vx(l x - 10) [F(x) = if x = 2 then 3

else if x = 3 then 2

else x]

For describing the general effect of increasing the level of quotation

in an assertion, we use the function BUMPQUOTE(q) to indicate an increase

of I in the quotation nesting levels for every V-function call of asser-

tion q. For an 0-function call O(al, ... a), where the 0-function input
1' 'm

This means for all values of x such that i x 1 10, then F(x) = x.

3-17

assertion P00 and output assertion *0, the assertion transformations are

as follows:

qi BUMPQUOTE(q0) A V' . j
n+l= BUMPQUOTE(qn) A (i'V '. m

i al, ... ,am

This formulation of verification conditions assumes that an 0-function

call will never trigger an exception condition. In fact, this is guaran-

teed by the conjunction of cO to the consequent assertion. This assumes

f '...f0
that I 0l'* m has all V-function calls in a single level of quotes.

0 al,...,am

The maximum level of quoting refers to V-function values prior to the

first 0-function call, the next largest level to V-function values prior

to the second 0-function call, and so on. After the last 0-function inn n
the path is handled (when the assertions are q. and q n), the final trans-

formation is as follows:

n
q q.

a= q . A q.

If the assertions in the effects section of an 0-function define a unique

assignment of V-function values, then the simplification performed above

in the example can be made immediately. This substitution, which resembles

the semantics of an assignment statement, is called functional assignment.

In the next example, we prove the correctness of INSERTSORTED, a pro-

gram that inserts a character c (denoted by an integer code) into a previ-

ously sorted register, while maintaining its sorted state, and returns the

index of the inserted character. The program uses the Register Module

described in the previous section. The flowchart and assertions for

INSERTSORTED are shown in Figure 3.3. The input assertion, y, expresses

3-18

-~~~~~~~~~~~~.... -

F: lengt 'Tx>length + 1

TET char<+ch)ar

p:lpred (1, (length-), k, (char(k) cte

els chhar+1 = 'car'())

q: length ='length' +A
Ipred (1, (length-, k, (char(k) 'hr())

Ipred (,(length-1), k, (i char'(k) < chrthen)

Ipredls (1,~~l =x1) k, (car'k)K c)

x < length + 1
SA-2581-8

FIGURE 3.3 FLOWCHART AND ASSERTIONS OF PROGRAM
"INSERTSORTED"

3-19

the fact that the register is initially sorted. The function LPRED

(x, y, k, rel(k)), called the linear predicate, means that the sequence

of predicates rel(x), rel(x+l),..., rel(y) are all true,* where rel(k)

is a formula containing a free variable k. This special case of universal

quantification is easier to process automatically, because special rules

of inference can be used that would not apply to the general case of uni-

versally quantified expressions. Two examples of such rules are:

x > y D LPRED (x, y, k, rel(k))

and

LPRED (x, y, k, rel(k)) A rel(y + 1)

LPRED(x, (y + 1), k, rel(k)).

The output assertion, , expresses the following conditions: (I) the

length of the register has been incremented, (2) the register is sorted,

(3) all values of the original register are in the final register--the

conservation condition, and (4) the given character was actually inserted.

Since only one path contains an 0-function call, a V-function name in sin-

gle quotes ('...') within any assertion refers to the value of the V-function

at program entry.

Insertion of the inductive assertion, q, enables a description of the

flowchart as a set of simple paths. To illustrate the proof technique,

we describe the verification of a path from q to * through the "false"

exit of the first test, through the "true" exit of the second test. We

must show that no function call along the path satisfies an exception con-

dition, which follows from (x < length + 1)--the results of the first test.

The verification condition for this path is derived by substitution into

the consequent assertion of the effects of the call insert(x-l, c), and

by conjoining the effects of the two tests to the antecedent assertion of

Vk(x < k - y)[rel(k)].

3-20

the path. The following formula shows only the part of the substituted

consequent assertion corresponding to the second conjunct of I:

[LPRED (1, length-l), k, (char(k) -< char(k+l))) A (1)

LPRED (1, (x-l), k, (char(k) < c)) A (2)

(x < length+l) A (3)

(c char(x)) A (4)

((x _> length+l))] D (5)

LPRED (i, length, k, f(if k ! x-l then char(k) (A) (6)

else if k x-l+l then c (B)

else char(k-l)) < (C)

(if k+l -< x-1 then char(k+l) (i)

else if k+l = x-l+l then c (ii)

else char(k+l-l))}) (iii)

Antecedent conjuncts (l)-(3) are from q; (4)-(5) are the results of the

two tests; (6) comes from the second conjunct of 4.

Such a formula can be proven by an automatic theorem proving program.

An example of such a program is the deductive system of the SRI verifier.

We use rules similar to those of this system to present a sample proof

here.

The SRI verifier, which uses a natural-induction approach to theorem

proving, is implemented in the high-level, problem-solving language QLISP

(Reboh and Sacerdoti [73]), a successor to QA4 (Rulifson et al. [72]).

For more details on the deductive system of the SRI verifier, see Waldinger

and Levitt [73]. This deductive system works primarily in a goal-directed

manner. The consequent of the VC becomes the goal, and the conjuncts of

the antecedent of the VC are put into the data base (i.e., facts the system

3-21

knows). A step is proven by performing operations on the goal (such as

substitution of data-base items, simplification, or breakdown into sub-

goals), corresponding to heuristics or rules of inference. The proof

is complete when all the derived goals are equivalent to items in the

data base. Of course, a heuristic search of proof sequences must be made

in order to find a valid proof. An example of a simple but effective in-

ference rule is: If it is required to prove f(a) = f(b), first try to

prove a = b.

The verifier would try to prove goal (6) by breaking it up into nine

cases: the combinations of the three cases of each of its two conditional

expressions, A, B, C, and i, ii, iii. It would make use of the context

mechanism in QLISP, a feature that enables incremental changes to the data

base depending on some past context. The deductive system can build a

tree of contexts in which the "if" relations are asserted to be appropri-

ately true or false. For example, in one context we can assert

k x-l (7)

and
k+l x-l (8)

in addition to conjuncts (l)-(5). In this context we would try to prove

LPRED (1, length, k, (char(k) char(k+l))) (9)

However, from (5), (7), and (8) we can deduce

k < length-i,

in which case the range of k in (9) is subsumed by the range of k in (1).

Thus (9) is true. Of the nine cases, five are trivially true because in-

tervals in the LPRED are null. The other four cases are displayed in

Figure 3.4. The ordered pair corresponding to each case indicates the

output indices of the two conditional expressions. For example, the sub-

condition associated with the ordered pair consisting of the second and

third cases (B, iii) looks like

3-22

Either of these sub-registers could be null

AIA

char(l.... char(x-1) c char(x) .char(length)

I 0

Case 2 Case -3Case 3
IL

Case 1 Case 4

Case 1: Ipred (1, (x-2), k, (char(k)
< char (k+l))) (A,i)

Case 2: char (x-1) < c (A,ii)

Case 3: c < char (x) (B,iii)

Case 4: Ipred ((x+l), length, k,
(char (k-i) < char (k))) (C'iii)

*The ordered pairs indicate the relevant subcases of expression (6).

SA-2581-9

FIGURE 3.4 CASES IN THE PROOF OF A VERIFICATION
CONDITION

LPRED(I, length, k, (k > x - I

k= x- I+ 1 A

k+ I> x- IA

k + I x - 1 + 1) D

c ! char(k))

This reduces to k = x D c - char(k), simplifying further to the formula

shown in Figure 3.4 (case 3). Thus the structure of the proof mimics the

structure of the verification condition--something to be desired when auto-

matic verification is attempted.

An automated verification system based on the hierarchical proof

methodology need not have knowledge of the particular problem domains

3-23

incorporated into its rules of inference. The abstract machine specifi-

cation is all the domain information needed by the system. The deductive

system of the current SRI verifier could perform this proof if it were

given knowledge about the assertion language primitives, e.g., LPRED and

conditional expressions. The program of Figure 3.3 can be enclosed within

another loop to extend it to a full sorting program that resembles a

bubble-sort algorithm. We have completed a proof of this extended program

and compared it with a proof of a corresponding program, where the bubble

sort is implemented in a nonstructured manner. The verification conditions

for the latter are longer and more difficult to prove. We have also com-

pleted a proof of Floyd's TREESORT (Robinson [73b]) in which the comparison

is even more convincing.

We are in the process of developing an assertion language that is

well-suited to hierarchical proofs. Our language will be very simple,

containing little more than integers, booleans, quantifiers, sets, and

functions. The extension mechanism will be via abstract machines, which

can be used to specify constructs not included in the assertion language.

A final choice of an assertion language will also be motivated by the ease

with which an automatic deductive system can process expressions written

in the language.

Although automatic verification is a desirable goal, it may be impos-

sible to achieve in practice. The deductive system might choose the wrong

branch of a proof tree, leading to an infinite search, which is destined

to fail. As a partial solution, it should be possible for the user of a

verification system to observe and guide the proof process as much as he

desires (or needs). This is the concept of a semi-automatic verification

system, which we advocate for current work in program verification.

In stage 4, each implementing program has an entry point with no

preconditions (i.e., an input assertion of TRUE) and several exits. The

3-24

program can exist without a precondition, because it is assumed to have

its own machinery for detecting exceptions and for reporting them back

to the caller (via the multiple exits). If the function has n exception

conditions, there are n + 1 exits, n for each of the exception conditions

(with the mapped exception conditions serving as respective output asser-

tions) and I for the normal exit. In the case of a V-function V (Figure

3.5a), the output assertion for the normal exit states that the program

returns a value equal to the instantiated mapping function expression for

V. In the case of an 0-function 0 (Figure 3.5b), the output assertion

for the normal exit consists of the "effects" section of 0 of the mapped

specification for 0.

Stage 5--Each of the primitive functions, both of M0 and of the ab-

stract programming language used in Stage 4, is implemented in terms of

programs in an available well-defined implementation language, e.g., the

V 0
TRUE TRUE

ex 1 ex1

ex 2 * ex2

exm * ex n

normal normal
- return return

MAPPING FUNCTION MAPPED EFFECTS OF 0
EXPRESSION FOR V

(a) (b)
ex i = Mapped Exception Condition

SA-2581-10

FIGURE 3.5 FLOWCHART DIAGRAMS FOR PROGRAMS
IMPLEMENTING A V-FUNCTION AND AN
O-FUNCTION SHOWING INPUT AND
OUTPUT ASSERTIONS

3-25

instruction set of the hardware of a high-level programming language.

Associated proofs concern the consistency of the implementation, e.g.,

of the compiler translation.

Note that stage 4 described the verification of a program containing

exception conditions, by treating the conditions as multiple exits or re-

turn points. We must match the structure of a function's implementation

by a corresponding structure in the calling program. We have come up with

a control structure for a function call as follows:

,call);

begin call

NORMAL: so;

EXI: s 1

EXn: s
n

end call;

The semantics of this control structure is to enter a CASE statement de-

pending on the result of the call. Verification of calling programs would

then be straightforward. However, this is very inconvenient for the pro-

grammer, who would have to account for a lot of unexpected exception con-

ditions in the code. A suitable default structure, with routines generic

to a particular kind of error, would reduce the programmer's effort, but

keep the hierarchical formalism intact.

Another effort not directly mentioned as part of the methodology is

the handling of concurrency in the proofs of the system. Several specific

problems present themselves:

(1) proof of correct implementation of synchronization primitives

of various levels of the system,

3-26

(2) proof of "indivisibility" of the functions of an abstract

machine, and

(3) proof of properties of cooperating sequential programs.

One of the important steps in dealing with concurrency has been to be able

to specify and prove properties of synchronization primitives and of pro-

cesses containing them. Such work has been done in connection wita our

methodology by Robinson and Holt [73]. We have yet to precisely formu-

late the notion of "indivisiblity" for an abstract machine function, and p
the correctness of implementation for abstractly specified synchronization

primitives. However, we can achieve proofs based on restrictions of these

notions that will suffice for the operating system but we wish to estab-

lish the general criteria as part of the methodology.

In conclusion, we would like to emphasize that this hierarchical

methodology for design, implementation, and proof is by no means a blind

stab into software methodology. Besides the work of Parnas [72a,b,c,d,

74], the thesis of Price [73] developed the specifications as a design

medium for part of an operating system. This virtual memory mechanism

comprises the naming, addressing, protection, and sequential control fa-

cilities for an operating system. This. was clearly a major achievement,

and showed how the specifications could be used as a tool to present inno- 4

vative ideas for system design. Furthermore, Price developed a technique

for proving theorems, or global invariants, about a module specification.

This resembles the generator induction principle independently developed

by Wegbreit and Spitzen [75]. Parnas [72c] had performed some preliminary

studies concerning the interconnection of several modules to form a soft-

ware system--his KWIC index. Later work (Gerhardt and Parnas [73], Robinson

[73a]) focused on the notion of a multi-level system using a hierarchy, but

failed to capture any formal properties. Floyd's method [67] was first

extended to the proof of programs containing 0- and V-function calls by

3-27

Robinson 173b] in his proof of TREESORT. The idea of mapping functions

(Robinson and Levitt 1751) was the last logical step to the formalization

of the hierarchical methodology. Concepts similar to mapping functions

have been independently developed by Hoare [721 and Spitzen 1741, but their

approaches concern individual data structures in a programming language.

In their methods, precise specifications of each operation and access do

not seem as important as widely-known mathematical concepts (the set of

Hoare) or invariants (the stack and queue of Spitzen). The methodology

appears to be gaining acceptance--both MITRE and Texas University will

be using it in system design work, as well as other work within SRI.

Other efforts, such as SOFTECH, are using a specification-related approach

based partially on Parnas methodology.

In this chapter we have described a methodology for the design, im-

plementation, and proof of large programming systems. The methodology

localizes design issues to the relevant context, and it separates the

issues of data representation and implementation. This localization and

separation is attractive because it reduces the complexity to be dealt

with at a given level. The methodology seems to lead to systems whose

designs are understandable and whose properties are intuitively evident,

even in the absence of proofs. We feel that the methodology is advanta-

geous for proof because it reduces the proof of a large program to the

proofs of numerous small programs, and because it simplifies the input

and output assertions that are applied to each program. Due to the data

abstraction provided by the hierarchy, the assertions tend to be expressed

in terms of functions relevant to a particular level. Currently the main

impediments to proving large programs involve the difficulty of framing

assertions for the program and the difficulty of carrying out the deduc-

tions for large unstructured programs. We feel that this methodology holds

attractive prospects for the proof of large software systems.

3-28

Table 3.1

REGISTER MODULE

PARAMETERS

i,j: integer
c: character

EXCEPTIONS

INDEX RANGE(i): i < 0 V i > length
INSERT RANGE(i): i-< 0 V i > length
MAX LENGTH: length> 1000

FUNCTIONS

V-FUNCTION i = lengt

PURPOSE: returns length of register
INITIALLY: 0
EXCEPTIONS: NONE

V-FUNCTION c = char(iO

PURPOSE: returns the character in place i of the register
INITIALLY: UNDEFINED
EXCEPTIONS: INDEX RANGE(i)

0-FUNCTION insert (i,c)

PURPOSE: inserts character c after position i in the register
EXCEPTIONS: INSERT RANGE(i);

MAX LENGTH

EFFECTS: V. (jhar(j) = IF j < i THEN 'char'(j)
ELSE -F j = i + 1 THEN c
ELSE 'char'(j - 1));

length = 'length' + 1

r O-FUNCTION delete(i)!

PURPOSE: deletes the ith character of register
EXCEPTIONS: INDEX RANGE(i);
EFFECTS: Vj (char(j) = IF j < i THEN 'char'(j)

ELSE 'char'(j + 1));
length = 'length' - 1

3-29

Table 3. 2

ARRAY MODULE

PARAMETERS

i,j,k: integer

FUNCTION S

ARBOUNDS(i): i< 0 V j > 1000

EXCEPTIONS

V-FUNCTION i = accessWj

PURPOSE: returns the value of the jth array position
INITIALLY: 0
EXCEPTIONS: ARBOUNDS(i)

OFUNETION change(j,i)

PURPOSE: changes the jth element of the array to i
EXCEPTIONS: ARBOUNDS(i)
EFFECTS: Vk(access(k) =IF k = j THEN i

ELSE 'access'(k))

3-30

+ +i

Z (U
U) I. U)w z) V 'R

VU VI "4 V) VIV (U 4 VI4

-i V . w A . r
A4 IlkI).. .4 (4 -4 .4 +k . k4

w VI-. VIO-F)F) F)F)'V .

F.)~~~~ ~~ </ JF. / / I V i /

E- 2 E- W~

VI" - +

4J W b/2

ba -4- ca-1

I F.I
4 -Cd cdoo Q 4...

E - VI4-+V
-4 to

0.c: ~ . T

0.. i-3-31

Chapter 4

PROTECTION IN THE OPERATING SYSTEM

This chapter considers the protection of resources in the operating

system. Section 4.1 is a brief tutorial on protection, with an emphasis

on the notion of a type manager as the enforcer of protection rules within

the system. Section 4.2 presents a description of a user-created type

manager to implement bibliographies. Section 4.3 is a discussion of capa-

bilities, presenting the advantages and disadvantages of their use as the

basis of protection in an operating system.

4.1 Basics of Protection

In any operating system there is a distinction between objects, which

are the resources provided by the system, and subjects, which are the en-

tities that can request the system to manipulate objects. An object could

be a segment, a file directory, or a program, for example. A subject is

a computatioo (i.e., an instance of a program execution), presumably act-

ing on the behalf of a user. A subject is also an object, since a compu-

tation can be created, started, stopped, or deleted (by some other compu-

tation). An object has a state, and a subject can obtain information

related to or can effect a change in the state of an object, i.e., perform

an access on the object. Different operations have correspondingly differ-

ent access modes. Suppose that there is a function in the system,

access: subject x object x mode - (TRUE, FALSE)

which states whether--for a given subject, object, and access mode--access

is permitted. The mechanism that restricts the operations in the system

4-1

to those permitted by the access function, and that updates the access

function according to certain rules, is called the protection system.

Each object has a type. Objects of the same type have the same

access modes. In general, the protection system may be centralized in

the operating system, or distributed throughout the system structure ac-

cording to types. In the latter case, which is adopted here, each type

is supported by a set of programs called a type manager. In the operat-

ing system, type managers exist at every level of the system. In fact,

the entire operating system can be considered as a hierarchy of type man-

agers. Since a type is characterized by its operations and its state, we

find it particularly convenient to specify the behavior of a type manager

as a Parnas module.

In the set of types supported by the operating system, all objects

are assumed to be primitive as far as specifications are concerned (al-

though some objects, such as directories, are implemented in terms of

lower-level objects). The operating system also provides the facilities

for a user to create his own abstract types, choose the implementation of

an object of each of these new types as an aggregate of objects of more

primitive types, and code the procedures that implement the access modes

for the new type. This is done by having a data base maintained by the

extended-type manager that maps from names of objects to aggregates of

names of more primitive objects. In the next section we describe the

operation of a user-created type manager.

In summary, the type manager for a given type has exclusive control

over the creation, use, and deletion of objects of that type. It uses

capabilities as the primitive means of identifying objects of that type.

The access modes for this type are interpreted by the type manager, which

is the only type manager to whom they are meaningful. The use of levels

of successive type managers adds to the usefulness of abstraction in a

4-2

I
hierarchical design, providing just those operations required at the level

of each type manager.

i

4.2 Bibliographies--An Example of a Type Manager

As an example of a user-created type manager, consider the bibliog-

raphy example of Wulf et al. [74]. Here, the objects of concern are bib-

liographies, the subjects are programs desiring to perform operations on

particular bibliographies. The possible operations are to:

0 Create a bibliography,

0 Add (delete) an item to (from) a bibliography,

* Merge two bibliographies,

* Print a bibliography, possibly without annotations that

are private to the creator of the bibliography, and

* Delete a bibliography.

To perform any of these operations on a bibliography, a subject calls

one of the set of programs that constitute the type manager for bibliogra-

phies. Before this program carries out the intended operation, it first

ensures that it is being asked to manipulate a bibliography--and not an

object of another type--and then ensures that the subject has suitable

rights to the bibliography. The subject's rights are authorized if the

subject is the creator of the bibliography, or if the subject retained

the rights (through authorized channels) from another subject holding

authorized rights. (As discussed below, a subject being authorized is

equivalent to his holding a capability for the bibliography.)

The bibliography manager uses lower-level objects (supported by the

system or possibly by other user-created type managers) to implement each

of the bibliographies. The possessor of a right to a bibliography has

neither rights to, nor knowledge of, the objects that impler". ut the bib-

liography. Two reasons for hiding the representation of bibliographies

4-3

- J

are (1) that the type manager of bibliographies defines an abstraction

that should not be circumvented by allowing users access to the represen-

tation; and (2) that a security violation might ensue, if user access to

representations is allowed when multiple bibliographies share a common

representation object.

It is relatively easy to use the generic facilities of a Parnas

module to represent a type manager. The exception conditions for all

functions visible at the interface of the module--O, V and OV--can check

the rights of the caller. The V-function values can characterize the

state of the objects maintained by the manager. For example, in the bib-

liography case, there would probably be V-functions defining for a caller

(with adequate rights): (1) whether a bibliography exists (referenced by

name), (2) the number of entries in an existing bibliography, (3) the con-

tents of a particular bibliography entry--say, referenced by lexical posi-

tion. The 0-functions are the operations (given above) that a subject can

call to modify a bibliography. The mapping functions between the bibliog-

raphy level and the segment level characterize the representation of bib-

liography objects in terms of segment objects. (See Chapter 3.)

4.3 The Rationale for Capabilities

A capability is a token associated with a unique object in the system.

A set of access modes is part of each capability. If capabilities are

kept by a subject only in a particular structure (called a C-list), and

can be used by subjects to gain access to the objects associated with them,

possession of a capability by a subject implies the right to access the

associated object in the modes specified by the capability. Since objects

may be shared among many subjects, many capabilities (or copies of a capa-

bility) may exist for a particular object. Capabilities can be passed

among subjects in various ways. Usually the possession of a capability

implies that its owner has the right to pass it (or a copy of it) to other

4-4

subjects. A simple capability system is a protection system in which

the access function for a subject is TRUE for the objects and accesses

indicated by the capabilities stored in its C-list.

Unfortunately, most interesting capability systems are not this

simple. By allowing the storage of capabilities within objects, the

description of the access function becomes much more difficult. However,

this complexity is useful if a capability for an object is to survive

the termination of its creating process. A much less restricted form of

a capability system, defined below, is called a generalized capabiliL

system.

Some form of capabilities exists in most operating system, particu-

larly in virtual memory systems. For example, the descriptor segments of

Multics (Organick [72]) and the virtual spaces, transfer vectors, and ad-

dress space lists of Price [73] correspond to capability lists. However,

there are restrictions on the manner in which these "capabilities" are

manipulated. Furthermore, such capabilities apply to a very small set

of types, and cannot be stored in objects that are not subjects. This

prohibits type extension and the application of capabilities to more gen-

eral protection problems such as data bases. Examples of more general

systems are the Chicago machine (Fabry [67]), the Cal system (Lampson [69a],

Plessey/250 (Cosserat [72]), HYDRA (Wulf et al. [74]), the CAP system (Need-

ham [72]), and the system described here.

We shall refer here only Lu generalized capability systems. A gener-

alized capability system is a system with a unified naming, access, and

protection mechanism for objects. A generalized capability system has the

following properties. (The first four are also found in simple capability

systems.)

4-5

• . ° . , ,, ,

(Gl) Every object in the system has at least one name (or

capability). Subjects are entities that can store and

use capabilities for objects.

(G2) Possession of the capability for an object is necessary

(and in most cases sufficient) to guarantee access.

(G3) The mapping from capabilities to objects is a function.

(G4) Information defining a subject's permitted mode of access

to an object is included in a capability.

G5) Capabilities may be stored in objects that may be subjects

or objects.

(G6) Capabilities may be passed to subjects and stored in ob-

jects, in some well-defined way. The passing of the capa-

bility for an object to a subject is thus the means for

conferring access to that object upon the subject. The

storage of the capability for an object in another object

is a means for conferring access to the former object upon

all subjects having access (in a particular set of modes)

to the latter object.

(G7) There exists a function from objects to objects called the

type function. The range of this function forms the set

of types for the system.

(G8) The enforcement of protection (i.e., the interpretation of

the access information contained in capabilities) is divided

between the basic system, which guarantees some predefined

rules for access to all objects whose type is among a fixed

set of primitive types, and the subsystems, which can be

programmed to guarantee some user-defined rulet for access

to all objects whose type is among a user-definel set of

extended types.

4-6

Properties G1 through G8 are found in HYDRA and in the system described

here, and to some extent in CAL. The important properties to prove about

capability systems involve the rifles for passing capabilities to subjects

and objects (G6), and the rules for access to primitive types (G8).

The advantages of generalized capabilities can be summarized in three

points:

" Generalized capabilities facilitate efficient dynamic crea-

tion of protection domains on a fine-grain time scale. This

encourages the use of small domains to solve various special

security problems.

* Generalized capabilities permit a powerful approach for attack-

ing protection problems, namely the use of extended types.

Interpretation of protection can be distributed in a uniformly

controlled way.

" Generalized capabilities enhance the system by fostering a

hierarchical system structure, by increasing the understand-

ability of the system design, and by simplifying proof.

The operating system described here offers many features not found in other

capability systems, making it a useful general-purpose facility.

In a generalized capability system, every resource in the system can

be protected and accessed in the same manner. I/0 devices, files, virtual

memory, processes, and message buffers can all be considered as types.

Accesses on objects of these types can be made by calling the appropriate

type manager. The access can be implemented as a single machine instruc-

tion or as a procedure call to a program that implements the access, but

in either case a capability is required.

Close to the notion of a type manager is the concept of generalized

domains. At a given moment in time, a process executes in a domain (or

4-7

environment) that describes the set of objects accessible to the process

and the ways in which the process can access them. In many operating sys-

tems, a process operates in a single domain and can change only the compo-

nents of that domain. This mode of operation is not very reliable, because

different subunits of the program operate on only a small subset of the

objects in the domain of the process. Certainly if a user program operated

in the same domain as all system programs, the operating system would not

be secure. Even having multiple user programs operating in the same domain

violates the important precepts of modularity and need-to-know.

Multics has attacked the problem by allowing a process to operate in

one of a set of nested domains called rings. A process can change its cur-

rent ring by calling the operating system. Thus, the operating system can

reside in the lowest (and most powerful) rings, whereas subsystems and user

programs can operate in progressively higher rings so that they do not ad-

versely affect the operation of the operating system. However, it would

be advantageous to allow domains to be disjoint, in order to enable straight-

forward solutions to such problems as the Trojan horse problems and the

mutual suspicion problem.

The call and return mechanism, as implemented in HYDRA and in the

present system, can conveniently allow a process to switch control among

possibly disjoint domains. A call switches control in a process from the

domain of the calling program to the called domain, which is formed at call

time. The called domain is the union of two domains--that of the pure pro-

cedui, and that of the parameters. The return switches control in the pro-

cess to the calling domain, and augments the calling domain with the domain

of the returned values. Of course, domaits for procedures, parameters, and

return values are implemented via sets of capabilities. Thus, a pure pro-

cedure can contain the set of capabilities for the "own" objects of the

procedure. These capabilities combined with the parameter capabilities

4-8

and capabilities for objects created after the call (i.e., "local" objects),

constitute the domain of a procedure activation. In the operating system,

a process is considered to be a sequence of domains. In the implementa-

tion, each process corresponds to a stack of activations.

A domain is a useful construct for implementing a type manager in

software. All extended types and some primitive types are implemented

in this way. The presence of domains has important implications for the

structuring and proof of the operating system.

The use of capabilities involves a general approach to the protection

of objects in an operating system in which capabilities may be passed among

subjects, but may also be revoked (see below). In authority-based systems,

a single subject (or a fixed set of them) has control over an object's au-

thority list. For example, stppose a subject "A" has access to an object.

"A" cannot pass access to another subject "B" without the consent of the

object's owner. Thus, delegation of tasks is very difficult in an authority-

based system. In the c ase of capabilities, the possession of a capability

normally implies the right to pass that capability to any subject "known"

to the original subject. Even if the passage of the capability is re-

stricted, it is an all-or-nothing proposition: either the capability can

be passed to any subject, or to none. Thus, it is usually impossible for

an object's "owner" to know exactly what subjects have access to the object.

This fact hinders the centralized enumeration of the protection state, bult

makes possible the delegation philosophy for capabilities. This means that

if a subject is trusted to access a given object, then the subject can also

confer access to any subject that it trusts. This enables a subject to

delegate to other subjects the tasks entrusted to it.

The passage of capabilities among subjects is in fact not unrestricted.

It is possible to initialize a capability system in such a way that two

subjects can never conunicate, because they have access to disjoint sets

4-9

AD-Ao88 601 STANFORD RESEARCH INST MENLO PARK CALIF F/6 15/3
A PROVABLY SECURE OPERATING SYSTEM.(U)
JUN 75 P 6 NEUMANN. L ROBINSON, K N LEVITT OAAB03-73-C-IBSA

UCLASSIFIED ML-EmmEEEEEEEEE,.
-.. nhhhhh.-.mmmmmmmmm.
-ImmmmEmm-.
-- El..--.mm-- Ill.--.

of objects and have no paths across which to transfer capabilities. Such

paths are called capability channels. A message buffer and a directory

are examples of capability channels, but even segments can act as capa-

bility channels if the hardware supports tagged capabilities that can be

intermixed with data words in segments (as recommended here).

The operating system described here is structured hierarchically,

in order to take advantage of the formal methodology for the design and

proof of large system (see Chapter 3). Capabilities facilitate the use

and enforcement of a hierarchical design. Programs at level n can refer-

ence only procedures at levels n-l and below. Furthermore, a hierarchical

structure enables a level to hide from higher levels those constructs that

are available to it through lower levels. The "loss of transparency"' can

be easily implemented by not passing to the higher level at implementation

time the capabilities to call the hidden functions.

Capabilities make assembly language programming possible and even

enjoyable (Cosserat [741)! This saves us from the task of proving a com-

piler for a higher-level language as part of the operating system design.

The reason for the ease of assembly language programming is that abstract -

operations are implemented through the call mechanism. Thus, the system

structure provides data abstraction, leaving only control abstraction to

be put into a very simple compiler/assembler to be used in the system.

Capabilities and hierarchical structure enable the distribution of

operating system resources (and the protection mechanism) throughout the

levels of the system. The hierarchical proof methodology of Robinson and

Levitt [741 enables the structure of the proof to be distributed in a man-

ner similar to the structure of the design. In addition, the number of

parallel programs that have to be proved and the complexity of the proofs,

are each reduced by the use of capabilities. This phenomenon, called data

exclusion, means that a type manager does not have to maintain synchroniza-

tion for disjoint capabilities. Since the representations for disjoint

4-10

capabilities are presumably disjoint, then the representations are not

in the same critical section and mutual exclusion is not necessary.

The division of a system into small domains increases understanda-

bility. Capabilities provide the information that links the domains (i.e.,

the capabilities "shared" by separate domains). Thus, capabilities are a

tool for understanding the system structure in a manner analogous to a

formal specification. In fact, capabilities are included in the formal

specification language for the system because they are so primitive in the

design.

The system design has permitted the solution of several "classical"

problems in capability systems; namely handling revocation, preventing

lost objects, facilitating small segments, achieving generality in pro-

tection, and achieving a capability-free user interface. These are dis-

cussed next.

A capability may not be withdrawn once it has been given away. How-

ever, it is possible to provide a mechanism called selective revocation

(Redell and Fabry [74]). If a subject anticipates the need to revoke a

capability, a revocable copy of the capability can be created. The sub-

ject can turn off the "revoke" bit on the revocable copy and pass that.

In order to revoke the access conferred by the revokable copy, the subject

calls "revoke(rk)" where rk is the revocable capability with the "revoke"

bit on. The use of the revocable capability to access the object is dis-

abled, leaving the function of the original capability intact (see Chapter

5).

The lost object problem arises when an object exists but all of its

capabilities have been deleted. If lost objects can occur, system garbage

collection must take place--an inefficient and potentially nonsecure oper-

ation. HYDRA solves the problem by having reference counts associated with

each object. When a capability for an object is copied or erased, the

4-11

reference count is incremented or decremented, respectively. An object

is deleted when its reference count reaches zero. This is a low-level

solution and is also inefficient. It involves the lookup of an object's *
representation (in a large paged hash table) whenever a capability for

the object is referenced. Our operating system solves this problem by

having a special type of directory entry called a distinguished entry.

A directory entry contains a capability, and the directory system will

not delete a distinguished entry unless the object corresponding to the

entry's capability has been deleted. A higher level of the system forces

a distinguished entry to be created for each object created above that

level. Thus, at least one capability (the distinguished entry) exists

for each user-level object in the system. Furthermore, the capability

in a distinguished entry always has "delete" access, so that the object

can be deleted as well as referenced.

In most capability systems, protection is quantized at a coarser

grain than that of a single object (i.e., repositories for a small number

of capabilities). The capability segments of CAL and the objects of HYDRA

are examples of repositories for capabilities. The problem is that these

repositories are objects themselves. Since the repositories are extremely

small, there is a proliferation of small objects in the system. In a sys-

tem designed to permit the use of extremely large objects, the prolifera-

tion of small ones rapidly creates havoc. This is especially true when

each repository is a single segment. We attempt to ameliorate this prob-

lem by providing useful large data structures to hold many small sets of

capabilities for short or long term. Examples of these are process stacks,

bound linkage sections, the extended object mechanism, and directories (see

Chapter 5).

Some protection problems are not easily solvable by capabilities alone.

These are problems for which it is absolutely necessary to know the identity

(or some attribute) of the caller, e.g., the military security problem. In

4-12

most operating systems (including ours), the identity of the caller is

needed for reasons other than the solution of high-level protection prob-

lems. Dispatching, scheduling, and process synchronization need to be

able to identify the processes under their control. These functions need

an authority-based mechanism to identify the process calling them.

One big question left largely unanswered by previous capability sys-

tems is, "Can capabilities present a reasonable user interface?" This

question is unanswered because no generalized capability system has been

running long enough to provide adequate statistics. Our system design

provides some facilities, in addition to the basic required mechanisms,

to facilitate user interaction. Extended objects, directories, and link-

age sections are examples of such facilities. Extended objects do not

occur in the CAL system, directories are not in the HYDRA kernel, and

linkage sections are absent from both systems. Linkage sections and

directories provide a complete facility for symbolic naming of system

entities (see Chapter 5).

In conclusion, it seems that capabilities represent more of an im-

plementation decision than a design decision in our system. After evalu-

ating the goals of the project and the mechanisms needed to achieve these

goals, we decided that capabilities were the best common denominator avail-

able. The most pleasant surprise, however, has been that capabilities can

provide all of the features of a Multics-like user interface, and--at the

same time--can meet the more general goals of the project.

4-13

Chapter 5

THE STRUCTURE OF THE SYSTEM

In this chapter we introduce the types of objects that are visible

to a user of the system and the functions that manipulate objects of these

types. We also discuss the design decisions made in ordering the managers

for these types in a hierarchy.

A major challenge in design is to decide on an ordering of the types

to satisfy optimally certain criteria, such as the efficient use of re-

sources. Section 5.1 presents the visible types of the system. Section

5.2 defines the properties of the particular kind of hierarchy that has

motivated the design, and discusses the implications of this definition

on the different levels of an abstract system. The main aspect of the

definition is that level A is above B if A is permitted to use the facil-

ities provided by B. In Section 5.3 we present a partial ordering of the

visible types, such that type A being placed above type B means that type

A can effectively use the services of type B to implement itself. This

ordering, in some sense, results from "obvious" design decisions. In

Section 5.4 we discuss the final ordering of the types that results from

resolving a few major conflicts in placement and from introducing a few

hidden types. These hidden types, in almost all cases, are needed to

provide more efficient operation. Specifications for the system are given

in Appendix A.

5.1 The Visible System Objects

In this section we describe the desired properties of the objects

visible in the operating system. The discussion will be confined to design

decisions for single objects.

5-1 S~. mmm

The objects are as follows:

(1) Capabilities, which provide the basis for protection as

implemented by the type managers throughout the system.

Capabilities are also a type.

(2) Segments, the major storage medium for the operating sys-

tem. Segments can contain code or data, and thus can serve

as procedures. Most file I/O is done using segments as

files.

(3) User-defined and extended types, the mechanism whereby the

user can create a type manager of his own.

(4) Directories, the permanent storage medium for capabilities.

References to objects in directories are made by symbolic

name.

(5) Linkage sections, a temporary storage medium for capabili-

ties referenced by symbolic name. Each procedure activation

has a separate linkage section.

(6) Processes and activations, the units of sequential control

in the operating system.

Capabilities. Motivations and definitions for capabilities as the

basis for protection are presented in Section 4.2. In our system, a capa-

bility for an object is implemented as a two-tuple Kuid, access-vector),

where uid (the unique identifier) is a systemwide unique name for the

object in question. For the purposes of this description, a given uid

can correspond to only one object in the system. The access vector is a

boolean n-tuple, where each of the n-positions corresponds to operations

that can be performed on the object. A TRUE in one position indicates

that the corresponding operation can be performed, and FALSE that it cannot.

The association of positions in the access vector with operations is done

5-2

by the type manager for objects of the type in question. A FALSE in a

given position in the access vector can never imply greater access than

that of an access vector with a TRUE in the same position. Except for

this restriction, the access vector bit patterns have no meaning apart

from their interpretation by the type manager. If a subject possesses

a capability with a uid corresponding to object x and a TRUE in the posi-

tion corresponding to operation y, then we say that the subject has "y-

access" for x, and equivalently, "y" abilities.

The possession of a capability by a subject is in most cases suffi-

cient for accessing the pertinent object. Thus it is necessary for the

system, in particular the capability manager, to protect the capabilities.

A subject is not permitted to

* Create an arbitrary capability, since this might give him

unwarranted access to some existing object. (A subject can

call the capability manager to return a new capability which

results in a new uid and an all-TRUE access vector. The

capability manager can use the system clock or a counter to

generate the uid's.)

0 Modify the uid of some capability that he holds.

* Replace a FALSE in some position in the access vector by a

TRUE. The replacement of TRUE by FALSE is an operation pro-

vided by the capability manager.

A subject in possession of a capability c can pass the capability

via a channel for which he has a capability, e.g., via a shared segment

or directory. Since the segment or directory might be readable by other

subjects, this reiresents one approach for sharing in the system. A

subject calls on the appropriate type manager to have an operation per-

formed on an object. The calling mechanism involves the passing of a

capability c as a parameter to the 0-function (or the V-function if the

5-3

Oda.-1

-7

state of the object is requested) that will carry out the operation. The

subject's rights to the object, as embodied in c, are checked. The excep-

tion conditions in the function specification portray the type to which c

must correspond, and the rights that are expected. For example, a call

on the bibliography manager to append a bibliography represented by capa-

bility c would require that "append" rights be associated with c.

The specifications of the capability manager hide the implementation

of the capability functions. However, we envision their being realized

in hardware, since practically every instruction will require the process-

ing of capabilities.

Revocable Capabilities--If an ordinary capability c has been dele-

gated, the access thus permitted cannot be withdrawn without deleting the

object to which it refers. A revocable capability c' for a capability c

can be rendered ineffective by revocation without deleting the object, as

follows. Given a capability c, a revoking capability cr can be created

which refers to the same object, but which implies the ability to revoke

any revocable capabilities derived from cr. A revocable capability c'

may then be derived from cr by removing the ability to revoke. Although

- cr, and c' are all capabilities for the same object, revoking of cr

ses invalidation of c' (and cr itself), but not c. (See Section 4 of

Appendix A.)

Segments--One of the major design decisions was to provide virtual

memory as the "memory" visible at the system interface. The primitive

addressable unit in the virtual memory, visible to the users, is the seg-

ment. A word in a segment is identified by a name (i.e., uid for the

segment) and an offset. The size of a segment can range from 0 to "max-

size".

The segment manager provides functions to create a segment of some

initial size, change the length of a segment, delete a segment, write a word

5-4

into a position of a segment, determine the size of a segment, and read

the value of a position of a segment. When a user calls on the "create"

function, he is returned a capability for that segment with the access

vector containing TRUE in the positions corresponding to the operations

"read", "write", and "delete". The creator of a segm~ent can pass the

capability to other users, possibly with reduced access rights. For ex-

ample, a call on the segment manager to write on a segment requires that

a "write" ability for a segment be passed as a parameter. If the "write"

ability is not passed, or if other exception c.nditions are satisfied

(e.g., the segment no longer exists or the offset is out of bounds), then

the call is denied and an error routine is invoked.

The segment is the primary storage entity, representing virtual stor-

age for procedure code, data and capabilities. In addition, the segment

is the primitive object type from which more complex objects are synthe-

sized. As demonstrated in Appendix B, each directory object is imple-

mented as a segment.

This description hides the implementation of segments in terms of

physical memory units. Another module (at a lower level than the segment

manager) decomposes segments into pages and allocates pages in primary and

secondary memory. The mapping from uids to page addresses is done in hard-

ware, as is the rapid access to pages in main memory on the basis of seg-

ment uid and offset.

Extended-type objects--As we indicated previously, one important

feature of the system is that users can establish their own type managers

in order to provide a service for maintaining and protecting a particular

class of objects. The operating system itself contains a module, called

the extended-type manager, that supports the creation and maintenance of

these abstract types and objects. The extended-type manager serves exter-

nal users as well as system levels above segment manager. Each abstract

5-5

into a position of a segment, determine the size of a segment, and read

the value of a position of a segment. When a user calls on the "create"

function, he is returned a capability for that segment with the access

vector containing TRUE in the positions corresponding to the operations

"read", "write", and "delete". The creator of a segment can pass the

capability to other users, possibly with reduced access rights. For ex-

ample, a call on the segment manager to write on a segment requires that

a "write" ability for a segmen. be passed as a parameter. If the "write"

ability is not passed, or if other exception conditions are satisfied

(e.g., the segment no longer exists or the offset is out of bounds), then

the call is denied and an error routine is invoked.

The segment is the primary storage entity, representing virtual stor-

age for procedure code, data and capabilities. In addition, the segment

is the primitive object type from which more complex objects are synthe-

sized. As demonstrated in Appendix B, each directory object is imple-

mented as a segment.

This description hides the implementation of segments in terms of

physical memory units. Another module (at a lower level than the segment

manager) decomposes segments into pages and allocates pages in primary and

secondary memory. The mapping from uids to page addresses is done in hard-

ware, as is the rapid access to pages in main memory on the basis of seg-

ment uid and offset.

Extended-type objects--As we indicated previously, one important

feature of the system is that users can establish their own type managers

in order to provide a service for maintaining and protecting a particular

class of objects. The operating system itself contains a module, called

the extended-type manager, that supports the creation and maintenance of

these abstract types and objects. The extended-type manager serves exter-

nal users as well as system levels above segment manager. Each abstract

5-5

(or extended) object has a type and a representation in terms of more

primitive objects, called representation objects. For a given abstracL

type, the correspondences between the objects and their respective repre-

sentation objects constitute an object of type 'TYPE'. The type manager

for objects of type 'TYPE' is the extended-type module. Thus, the

extended-type module keeps a data base containing associations between

abstract objects and capabilities (called implementation capabilities)

for representation objects. For example, a bibliography object could be

represented as one or two segments. In either case the association of a

capability for each bibliography with the one or two corresponding capa-

bilities is maintained by the extended-type manager.

Users can call the extended-type manager to create objects. To

create a new type, a user calls "createobject," presenting the type-

creation capability. The user receives a type manager's capability for

the new type. When the new object is created, the user receives a capa-

bility for the new object. The type manager must then determine the rep-

resentation for an abstract object by defining a tuple of implementation

objects, which are represented by implementation capabilities. This can

be done in two ways:

(I) by adding capabilities for already existing objects, or

(2) by telling the extended type manager to create new repre-

sentation obj-cts.

These implementation capabilities are retrieved from the extended type

manager by the appropriate type manager. Implementation capabilities may

be freely added and deleted during the life of the object, thus supporting

variable length objects.

Directories--The primary role of a directory is to act as a repository

for capabilities. For each capability stored in his directory, a user can

associate a name of his choosing. Above the directory level it is thus

5-6

possible to refer to objects either by a symbolic name or by a capability.

A directory consists of a set of entries, each of which is a two-tuple

[name, capability].

In order to provide these services, the directory manager has func-

tions for creating or deleting a directory object; for creating a direc-

tory entry, i.e., appending an entry to the set of existing directory

entries; deleting an entry; retrieving all of the symbolic names in a

directory; retrieving the capability associated with a given symbolic

name; and moving an entry from one directory to another. Note that a

directory can contain a capability for another directory.

The lost-object problem (Chapter 4) is solved by having a special

type of directory entry called a distinguished entry, which cannot be

deleted unless the object associated with its capability is first deleted.

The problem can then be solved by having some higher level force all ob-

ject creations to include the establishment of a distinguished entry as

well (see Appendix A).

It is also desirable to have protection on a finer grain than direc-

tories, or else small directories will proliferate. Thus each directory

entry has associated with it a set of uid's called locks. When a user

wishes to get an entry out of the directory, he must present a key capa-

bility whose uid matches one of the entries for the directory, or a direc-

tory capability with "load" ability. Either one suffices.

Linkage sections--Linkage sections are short-term repositories for

capabilities that allow per-process symbolic referencing of objects, and

subsequently allow fast referencing via indirection through the linkage

section. Linkage may thus be deferred until the last possible moment,

i.e., when an object is first referenced by a procedure. There is one

linkage section per calling procedure per process, and one entry for each

called procedure.

5-7

Normal referencing of an object via the linkage section occurs as

follows (Figure 5.1): in the source program, the reference is symbolic

(e.g., "A"); the symbol table maps it to an offset in the linkage section

("offset"); that position in the linkage section contains a capability "c";

the capability refers to an object "obj". The hardware can use indirection

through the linkage section to obtain the capability c just as if c were

in a register.

When a compiler produces a symbol table, the list of symbols for ex-

ternal references is accumulated in a segment called a linkage template.

Some of the symbolic references are directly resolved, so that a capability

is placed in those positions. Those positions are called prelinked. Other

references are left unresolved, with only a symbolic name in those positions.

LINKAGE REGISTER

LINKAGE SECTION

OOBJECT

j c OBJECT

PROCEDURE

SYMBOL TABLE: REFERENCE A
A - OFFSET

SA-2581-11

FIGURE 5.1 REFERENCING AN OBJECT VIA THE LINKAGE SECTION

5-8

Those positions are called unlinked. The first call from a given procedure

results in the creation of a linkage section for that procedure, with one

entry for each entry in the corresponding template. The linkage section

contains capabilities from the linkage template in the prelinked positions,

and some special symbol in the unlinked positions (perhaps a special tagged

word). If the program attempts to use an unlinked reference, the hardware

detects this (via the special tagged word) and creates a linkage fault.

Control is passed upward to a routine called the linkage fault handler,

which attempts to resolve the reference using the symbol in the linkage

template. The reference can be resolved against a small data base for a

user called the name space, or by searching through directories designated

by the user. If the reference is resolved to a capability, the capability

is inserted into the linkage section (i.e., the linkage section position

becomes linked dynamically), and the reference is retried. Any prelinked

or dynamically linked position in a linkage section is accounted for by

the hardware as described in the previous paragraph. Linking can be done

mranually (under explicit program control) at any time after a linkage sec-

tion is created. A reference may be unlinked (if it has not been prelinked)

so that it can be bound to another object. A linkage section may be used

(with or without unlinking) for repeated and recursive calls to the same

procedure (in a single process). Thus dynamic linking may be required only

once for an object used in many different calls to the same procedure.

The use of linkage sections and directories by the linkage fault han-

dler makes available to the user a very large virtual name space, that can

be easily used by programs with linkage sections. This facility is very

similar to that provided by Multics. In a computational model related to

block-structured programming languages, capabilities in linkage sections

correspond to global or own variables; and objects created by the procedure

and placed on the stack (see section on processes) correspond to local

variables.

5-9

Processes and activations--A process is a unit of sequential control

in an operating system (see Horning and Randell [731). At any given point

in time, a process has an address space or domain associated with it, cor-

responding to the resources currently under its control. Some conceptions

of a process have a single domain associated with it, so that domains may

be switched only by having inter-process communication. Multics provides

a slight improvement, in which several nested domains called rings may be

associated with a process. The operating system uses the innermost, or

most powerful ring; subsystems use rings above that; and user programs

execute in the outer rings. This domain structure is not adequate for

solving the mutual suspicion problem (Schroeder [72]). We wanted a situa-

tion in which domains of execution could be disjoint, and in which param-

eters are passed in order to achieve communication. We chose a call and

return mechanism to achieve this, because such a mechanism is relatively

easy to implement in hardware, and because it is a naturally hierarchical

one. Each call creates a new domain (an activation, or called domain),

which is the union of a template domain (of the procedure called) and a

parameter domain (the parameters passed to the procedure). Domains are

easily implemented in our operating system by sets of capabilities. A

process is considered to be a sequence of activations (implemented as a

stack of activations).

Processes communicate with one another in a straightforward way using

monitors (Hoare [74]). The protection associated with processes is inter-

esting. Activations represent the smallest entity that can perform opera-

tions on other objects, so that activations were chosen as the subjects

in the system. Processes can be created, deleted, stopped, and started.

Activations can be examined (and perhaps changed) for debugging purposes.

Access is permitted only if the process containing the activation is stopped,

and the subject has a capability for both the process and the activation.

5-10

I

5.2 Our Concept of a Hierarchy

Our concern here is with defining the concept of a hierarchy of

abstract machines, each machine of which is represented as a Parnas mod-

ule. We present son2 general implications of a hierarchy on the design

of an operating syste.zm. In a hierarchical ordering of Parnas modules,

we say that module A is above module B if

(i) the V-functions of A (characterizing the data structures)

are represented in terms of the V-functions .f B, or if

(2) 0- and V-functions of A can use O- and V-functions of B

in their implementation.

(To be hierarchical, we do not allow B to be above A if A is above B.)

Parnas [74] has contended that for all alleged hierarchies the parts and

the relation among the parts should be defined precisely. In our hierarchy

the parts can be (1) V-functions (of two or more levels), in which case the

relation is "represents" (i.e., B represents A); or (2) 0- and V-functions,

in which case the relation is "implements" (i.e., B implements A). It is

also possible to view the ordering as a calling hierarchy if we view the

higher-level parts as "implementation programs for 0- and V-functions" and

the lower-level parts asO- and V-functions.

Another possible relation is "trust". Module A, in calling on a lower-

level module B to manipulate an object, trusts B to perform the specified

operations on the object and nothing more. A also trusts B to return con-

trol to A when B is finished. On the other hand, we do not wish to have

B trust A. In order to enforce this criterion, it is necessary to ensure

that the state of B can be modified only via the interface 0- or V-functions

provided by B. In Section 5.3 we discuss ways in which we ensure that this

trust cannot be violated for particular modules in the system.

5-11

One additional relation is "knowledge of the semantics." That is,

module B can have no information in its data base about the semantics of

higher-level m~odules.

Many operating system experts have felt that it is not possible tq

design an operating system as a hierarchical ordering. Two primary rea-

sons for this pessimism are (1) all systems require upward transfer of

information, which "seems" to imply upward calls, and (2) hierarchical

realizations have tended to be extremely inefficient.

Our solution with regard to complaint (1) is to allow upward transfer

of control as a possible return from a call on an 0- or V-function. Recall

Figure 3.3 (for a general 0- or V-function) which shows the entry and exit

points. One exit point corresponds to a normal return, while the remaining

exit points are in one-to-one correspondence with the exception conditions

for the function. In the case of a return corresponding to an exception

condition, we envision that the calling program provides a return address

for each possible exception condition. The called module returns control

to the appropriate address. The state of the called module is not altered

by the call.

In order to illustrate the use of this upward transfer, consider a

simple example that occurs in page fault processing. For a conventional

system, assume a hardware level residing below a page-manager level. All

instructions involve reference to a logical page and an offset within the

page. The execution of machine instructions can be viewed as calling the

hardware level. If a reference to a logical page cannot be handled by the

hardware (because the page is not in main memory), the hardware must call

the page fault handler--a call that violates the hierarchy. In our view

of instruction processing for such a simple two-level hierarchy, all user

calls to execute instructions correspond to calls in the page manager--not

the hardware. The implementation of the page manager (hidden from the user)

5-12

contains a table of the absolute location of all logical pages. Thus the

page manager itself can call the hardware and either have the hardware re-

turn an exception if the logical page is not in main memory, or have the

hardware successfully process the instruction. If control is returned to

the page manager due to a page exception, the page manager can initiate a

transfer of the referenced page to main memory, and then modify the page

table. This modification of the page table involves calling on the hard-

ware to modify the state of the hardware. The caller of the page manager

is unaware of any of these hardware state changes.

The second complaint against hierarchies is that they lead to ineffi-

cient operation. This problem is partially mitigated by followi.g the

principle of grains of time. That is, the time required to process an

instruction at level i should be significantly less than that for a level

i+l instruction. An order of magnitude difference has been suggested, but

a 13 level system clearly precludes such a large difference. However, we

have decomposed the system such that the most frequently used low-level

instructions can be efficient.

One possible cause of inefficiency in a hierarchy results from the

apparent need for multi-level interpretation of instructions, particularly

those originating at high levels. This is true for system instructions

that must filter down through many levels of implementation. In some cases

the instructions appearing at multiple levels are almost the same.

In particular, our system provides "read" operations at three differ-

ent levels. It would thus appear that there is much redundant mechanism

among the three levels, and that all "read" operations from the user level

would involve three nested calls. This phenomenon is known as duplication

of mechanism, and has been the undoing of many hierarchical systems with

regard to efficiency. We employ two solutions to this kind of problem:

5-13

(i) We allow duplication of mechanism with regard to specifi-

cation but not with regard to implementation. That is,

we have the implementation of all three levels of "read"

instruction involve calls to the lowest, and most effi-

cient level. Most of the higher-level calls can be han-

dled at this low level. A "read" operation that needs

higher-level software (e.g., a page fault handling) will

trigger an exception, handled by the higher-level soft-

ware (the page fault handling routine). The net effect

would be as if the higher level had received the call.

(2) Where multiple nested calls are required for implementa-

tion where there is no duplication (such as the creation

of an object), we provide an extremely fast hardware call

mechanism (a single instruction) to make these nested

calls efficient.

We thus avoid duplication of mechanism among levels of implementation,

and minimize the time spent when higher-level functions must be imple-

mented by multiple nested calls. Both mechanisms involve the incorpora-

tion of special hardware features, which are novel but well within the

state of the art. This is one major advantage of designing the hardware

as well as the operating system. In Section 5.3 we complete the hierarchy

by introducing a few extra modules, mainly for efficient execution of basic

segment operations and for the handling of processes.

5.3 Initial Ordering of Visible Types

In this section we present a partial ordering of the types introduced

in Chapter 4 based on "obvious" design decisions. We are concerned with

the following types: capabilities, segments, types (extended types), di-

rectories, linkage sections, linkage templates, processes, activations,

5-14

monitors, and I/O devices. Besides these types there is a need for two

visible functions to solve particular problems, namely the function that

ensures that all objects are pointed to by at least one capability and

the function that handles linkage faults and inserts capabilities within

linkage sections. It is convenient to associate distinct system levels

with those two functions. The ordering decisions of this section involve

placing module A above module B if A can more effectively use the services

of B for implementation than vice versa.

(1) Capabilities are at the lowest level. All type managers

in the system enforce protection rules based upon the uids

and the access rights associated with capabilities presented

by a subject calling the type manager. Thus it is clear that

capability creation, modification, and decoding should be at

the lowest protection level.

(2) Segments are below any types that have large, variable stor-

age requirements. A segment is the natural primitive object

from which other objects can be synthesized. Revocation is

handled at the same level as segments for symmetry of accessing.

(3) Extended-types should be used to implement some system types.

Since the extended-type manager can maintain the representa-

tion capabilities for all non-segment objects, it seems natural

to provide this service to all types, both system-defined and

user-defined. The extended-type module should be above the

segment manager, since it will use the segment mechanism to

realize the data-base of representation capabilities.

(4) Directories are below the level that ensures each object has

a capability. Since a directory is easily represented as an

extended object, the directory module should be above the

extended-type module. One way to solve the lost-object problem

5-15

L '-' ,,_'-:" _ I IIJ .MN M

is to place a capability for each object in a directory,

such that its directory entry (a distinguished entry) is

deleted only when the object has been deleted. Thus, the

lost-object module uses the directory module, and must be

above it in this solution. Also, object creation is used

by the lost-object module so that all object creation must

take place below it, no higher than the extended object module.

(5) Linkage sections and directories should be below the linkage-

fault handler. The linkage-fault handler will search appro-

priate directories in order to locate an entry that contains

a presented symbolic name. The capability associated with

this entry is placed in the linkage section by the linkage-

fault handler.

(6) Processes and activations are extended objects. It is con-

venient to realize both a process and the activations within

a process as extended objects, thus the process module should

be above the extended-object module.

(7) I/0 device signaling should be above monitors. It is conven-

ient to use a special type of monitor to control the communi-

cation and synchronization associated with I/0 devices. Thus

an I/0 operation is manifested as either an attempt to enter

a monitor, or to do a "visit" or "signal" on a condition var-

iable of a monitor.

5.4 Resolution of Conflicts in Module Placement

In Section 5.3 we produced a partial ordering of the principal system

types. In this section we identify our design decisions th3L led to the

decomposition shown in Table I.I.

5-16

5.4.1 Segment addressing within the virtual memory. At the inter-

face of the segment module, functions are provided to perform basic manip-

ulations of segments: read, write, change segment size, etc. The user

is able to view a segment as a block of virtual memory without regard for

the underlying mechanisms associated with addressing the segment, e.g.,

its actual location on physical storage. One important aspect of the im-

plementation of segments is the allocation of pages of main store and sec-

ondary store that hold the segments. We have decided that a segment can

reside in one or more pages, but a page will never hold the contents of

more than one segment. For convenience in addressing, the allocation of

a segment to pages is as follows: if the page size is p, the first p words

of the segment are allocated to page I for that segment, the next p words

to page 2, etc. If the last page is not filled to capacity, a bounds-check

mechanism prevents any accesses beyond the limits of the segment on the

last page. (If we discover at some later time that many small segments

will occur, then we might change the above decision.)

With regard to the handling of paged segments, we have decided

on three levels of segments:

" (user) segments (level 4), which provide a variable size

virtual memory. The segments visible above level 4 are

these active segments.

* fixed-VM segments (level 3), which provide a small virtual

memory that remains fixed with respect to the number of

segments and size of each segment. As we discuss below,

fixed-VM segments are used only to implement the level 4

functions.

* main memory pages (level 0) which provide a fixed physical

memory.

5-17

The objects of level 4 are all of the segments that are currently

active, i.e., that have been created but not deleted. Level 4 maintains

a data base, not visible at the module interface, that associates with

each segment uid a location area in secondary storage where the segment

is found, and a main memory page location for any pages of the segment

that are in main memory.

The objects of level 3 (fixed-VM segments) are used only for

holding the data bases and procedure of level 4. For all such segments,

there exists a segment in main memory that gives the correspondence be-

tween the fixed-VM segment uid and its location in secondary memory. This

property guarantees that no more than one page fault will occur for any

reference to a fixed-VM segment, or equivalently for any instruction in

the implementation of level 4. (See also Saxena and Bredt [75].)

The objects of level 0 are pages of segments (i.e., subsegments)

that are in primary memory. In order to maintain these objects, level 0

has a data base that gives the main memory page address for each page in

primary memory. Since this data base is accessed every time a segment is

accessed, it is desirable to keep a portion of it in very fast memory, e.g.,

associative memory. The data base is modified by levels 3 or 4 in trans-

ferring a page of virtual memory from secondary to main memory. It is

clear that level 3 data base and the programs of level 3 will reside in

main memory segments. Other segments, i.e., fixed-VM segments or segments

belonging to modules above level 4, will become main memory segments as

they become referenced.

The three levels 0, 3, and 4 constitute a three-level memory hierarchy.

A two-level memory hierarchy would suffice for situations where mapping

tables that hold the location of each unit of virtual memory could be main-

tained in main memory. However, in our system we envision that the number

of segments will exceed the main memory space, hence requiring that mapping

tables themselves be paged.

5-18

Each of the levels provides operations at its interface to

reference and modify the contents of segments of that level. For example,

each level provides "read" and "write" functions. The system would be

intolerably inefficient if a call on the level 4 read was first inter-

preted (e.g., by software) as a level 3 "read" which in turn was finally

interpreted as a level 0 "read." We provide an efficient implementation

of the basic segment operations that avails the multi-level interpreta-

tion. Chapter 7 discusses this and other implementation decisions.

5.4.2 Fixed vs. variable number of processes. One of our basic

design decisions is to accommodate a potentially large number of processes.

There is a large number of user process ,, plus a small fixed number of

processes to handle i/0 devices and the system clock.

A given process can also create other processes as needed.

We say a process is dispatched if it is currently executing instructions

on some processor--a cpu or possibly an I/O processor. A process is not

in the "dispatched" state if it is blocked on some condition, e.g., a page

fault.

If a dispatched process suffers an interrupt, there should be

one or more processes that can be readily dispatched. It is clear that a

process is a candidate for being rapidly dispatched only if some informa-

tion associated with the process is in main memory. This main memory in-

formation must contain

" the status of the process including the location of

next instruction, and

* a location of this status information. (This knowledge

of the process is maintained by the process manager.)

It is not possible to allocate sufficient main memory to handle

a potentially large number of processes. Our solution is to have two sepa-

rate levels concerned with process management. Level 2, called the

5-19

scheduled process manager, manages a fixed number of processes and controls

the dispatching of these processes. All of the segments that implement

level 2, in addition to some information about the fixed number of pro-

cesses that level 2 manages, are in main memory.

There is a need for another module, which we call the scheduler,

to manage all of the user-created processes. (The need for two levels to

accommodate a variable number of processes is also discussed in Bredt and

Saxena [74].)

The scheduler is called by users for all operations or pro-

cesses, e.g., "create", "block", "kill"; the scheduler also maintains the

activations associated with the processes it manages. To make a process

dispatchable, or to block or stop a dispatchable process, the scheduler will

call level 2. It is obvious that this module must be able to use the ser-

vices of the variable size virtual memory, which means it must be above

level 4. There are conflicting arguments for placing the scheduler immedi-

ately above level 4 or at a high level of the operating system. The next

paragraph discusses these conflicts and the reasons why we favor the choice

of level 10.

We must design the two levels of processes so that the higher-

level process manager (level 10) never gets control of a process that is

active at level 2. In addition, when a process executing at level 2 is

stopped by level 10, the state of the stopped process must not contain in-

formation about activations between level 2 and level 10. This would vio-

late the hierarchy, allowing level 10 to inspect and change the states of

lower levels without calling them.

5-20

Chapter 6

USE OF THE SYSTEM

The purpose of this chapter is to provide an overview of how the

system appears to its users. Two views are given--the view from the user-

visible operating system functions (level 10), and the view from command

level (here considered as level 12). The establishment of initial user

authorization is discussed as part of the "login" command.

6.1 User-Visible Operating System Functions

The set of operating system functions visible at the operating system

interface (level 10) is given in Table 6.1, along with the level at which

the function is defined. Descriptions of these functions are found in

Appendix A, along with specifications of these and other functions at each

level.

6.2 Cormands

A command is simply a procedure or set of procedures conforming to

some collection of command standards, e.g., for arguments, macros, and

symbolic error returns. Some commands directly reflect lower-level func-

tions (e.g., "restrict ac" or "createprocess"), or provide other useful

system functions such as "login", "logout", or "print". Additional com-

mands provide user-oriented functions such as compiling, editing or debug-

ging. Command level hides most of the details concerning the implementa-

tion of the operating system, e.g., directory formats, linkage sections,

object creation, and perhaps even capabilities.

6-1

A summary of various illustrative commands is given in Table 6.2.

For purposes of the examples, the argument "name" is a symbolic entry

name or a path of entry names relative to some fixed directory, except

in the case of "ioname", which is a symbolic stream name representing a

device or pseudodevice. (This command set bears some resemblance to

Multics, for descriptive simplicity.)

As an example, the input-output commands can be thought of as those

of the Multics system (Feiertag and Organick [71]), with dynamic attach-

ment of ionames to other ionames. Some ionames are dedicated to particu-

lar devices, and some represent type managers for pseudodevices such as

a deferred printer, or a logical formatter, or a multidirectional broad-

caster (which in turn issues replicated "write" calls for different

devices).

Another example is the "delete object" command, including deletion

of objects of type "segment" and "directory". Various forms of deletion

are desirable. For example, a user may wish an object to disappear in-

stantaneously (with potentially annoying effects on current users), or

when no longer in use. He may wish to rename an entry for that object

in a directory, so that new users will not be able to link dynamically

to the object by its expected symbolic name. By renaming an entry with

name n (representing capability c, in directory d) to n.old, for example,

and deleting any object previously named n.old, a "deferred delete" of

depth one is obtained. Deferred deletes of specific time delays (e.g.,

until 4 AM, or after 24 hours) can also be obtained in such a way that the

object referred to by n.old (with capability c) is no longer available to

any user except those already dynamically linked to it. Thus the "delete

object" command may have a variety of options associated with it.

6-2

6.3 Command Interpretation

Command interpretation involves the expansion of command macros, and

the invocation of any systemwide or user-imposed conventions. Command in-

terpretation takes place at level 11. Examples of what may occur at this

level include:

* interpreting delimiters for deconcatenating command streams

0 argument conventions regarding interpretation of directory

names, i.e., relative to the visible root, or relative to

the working directory

a expansion of macro commands, and substitution of interpreted

values for expandable argument macros

* argument conventions regarding access control list specifica-

tions, e.g., with known sets of users and multipart identifiers

* interpretation of return arguments, especially with regard to

error conditions.

(The Multics command interpreter is a good model for what might happen

here.)

A user may provide his own command interpreter if he is unsatisfied

with the system standard one. However, a user should beware of accepting

someone else's private command interpreter, since this provides a poten-

tial Trojan horse condition.

6.4 Initial Authorization

As far as security is concerned, the starting point for discussion

is the "login" command. Logging into the system requires some form of

user identification--a password, a palmprint, the maidenname of some

maternal grandmother, or perhaps the physical identification of being

6-3

recognized by a security officer. As far as the operating system design

is concerned, such identification is outside the design, although the in-

tegrity of the identification is of course itself subject to protection

as if it were a part of the system. Thus, for the present discussion,

successful identification and authorization of login is assumed. At this

point, the crucial issue is how to specify the initial authorization to

be given to the user whose identity has just been verified.

Initial authorization thus reduces to the question of what capabil-

ities are made available to the user. Many of the issues that arise here

are policy issues, which will differ from one installation to another.

However, the basic mechanism remains the same. At least one process must

be created (or allocated) in which the user may execute. Each such process

must be given an initial set of capabilities suitable for his authorization.

The minimal set involves capabilities to access the process stack and a

working directory appropriate to the login request. Capabilities to access

some subject of system library directories may also be appropriate, depend-

ing on how restricted the user's access is to be. In principle, any machine

instruction may itself require a capability, although this is an extreme

policy, and might be invoked only for a few instructions. Initialization

may also set up user profiles containing private standards, abbreviations,

and protocols.

Once a user process has been initialized and returns to command level,

it is then ready for executing user commands. From then on, the notion of

authorized access (either acquisition of information, or alteration of in-

formation) is explicitly related to the capabilities that may be obtained

by using the system. Thus capabilities provide the basis for the statement

and proof of properties of security (see Chapter 8).

6-4

6.5 Special User Subsystems

As noted above, the process created for a user at login may be given

an initial authorization that is arbitrarily restrictive. One example of

interest here is that of a secure document manager, supporting a multi-

level classification system (top secret, secret, etc.) with categories

and "need-to-know." In order to assure sufficient compartmentalization

of different levels, it may be desirable to make a new login necessary in

order to change the working classification level (and the corresponding

working directory). This example is considered in greater detail in Ap-

pendix C.

6-5

Table 6. 1

UISER-VISIBLE OPERATING SYSTEM FUNCTIONS

SLevel V-Functions 0-, OV-Functions

10 j=read-env (i,c) c =create~process (st)

start (c)
stop (c)
delete process (c)

call (f,n)

return (n)

push (f,n)

pop (f,n)

write out of env (f,i)

write-into_env (f,i)

set upper bound (n)

write-env (f,i,c)

decrease -env_length (c,n)

append env (f,c)

c =create monitor (cm,n)

delete monitor (c)

enter monitor (c)

exit monitor (c)

wait (c,cv)
signal (c,cv)

8 b = 2template -exists (1 0) &t =create_ ;templaite t,,j)

j =get-size ("'t) deletek'tomplate i_)
b = name defined (~~) define_ 'name Ut,i,n)
n = get_;name Oit,i) prelink ti, c)

b = prelink-exists (t,i)

c =get-prelink (tji)

7 c = get_cap (d,n) c = create-object (d,n,t)

s = create-segment (d,n)
dl = create directory (d,n)

delete-object (d,n)
delete_segment (d,n)

delete directory (d,n)
ck= create revocable_cap(dk,nk,c)

revoke (ck)

6-6o

Table 6.1 (Concluded)

Level V-Functions O-,OV-Functions

6 b = valid dir (d) create-entry (d,n,c)

twI = get locks (d,n) remove_entry (d,n)

b = entryexists (d,n) move entry (d,n,dl,nl)

[n) = dir (d) add locks (d,n,k)
i = dir size (d) remove-locks (d,n,w)

i = lock set size (d,n)

5 i = object_type c = create implobject (cl,c2,c3)

b = exists (c) insert_impl cap (cl,c2,c3)
b = initialized (c) delete_implcap (cl,c2,c3)

[c] = impl_cap (cl)

4 i = read (a) write (c,j,i)

i = seg_size (c) change_segsize (c,i)
b = seg_exists (c)

u = chase ind (c)

u = real ind (c)

0c = create cap

cl = restrict ac (c,i)

6-7

Table 6.2a

COMMANDS DERIVED DIRECTLY FROM LOWER-LEVEL FUNCTIONS

Level command name arguments

Used

10 quit IGO TO quit handler/

createprocess name /for additional processes/

delete_process name

8 link procedure-name called-name called tree name

7 create-directory dir name

delete directory dir name
copy_directory dir name

copysegment name

createsegment name

delete_segment name

createobject name type
deleteobject name

create revocable name c name k name

revoke k name

6 list directory dir name options /locks are an option/

copy_entry name new-name

renameentry name new-name

move-entry name new-name
remove-entry name

add-locks name key

remove locks name key

6-8

Table 6.2b

OTHER ILLUSTRATIVE COMMANDS

command name arguments

login user-name /options/

logout /options/

"editor-name" source /edit-requests/ /options/

"compilername" source-name

"name" /arguments/

[/note: this executes a program named "name"/]

"debuggername" sourcename /options/

bind object-name object namel objectname2

changeworkingdirectory new dir name

"io function name" ioname /args/

/cf. Multics command "iocall"/

[e.g.,

print ioname /options/;
attach ioname ionamel /options/;

read ioname /options/;

write ioname /options/;]

send-mail

openmail

executein memoryles senvironment

6-9

Chapter 7

IMPLEMENTATION CONSIDERATIONS

This section presents an approach toward producing an implementation

of the operating system. Since most of the effort on implementation is

beyond the scope of the work described here, the discussion of this chap-

ter should be treated as preliminary. Its main purpose is to illustrate

the techniques for expressing representation and implementation decisions

within the hierarchical methodology, and to give a few of the implementa-

tion decisions that have been confronted.

Section 7.1 discusses briefly the meaning of representations and

implementations within the methodology. Section 7.2 discusses implemen-

tation decisions. These relate primarily to ensuring efficient operation

of the system. Section 7.3 presents some preliminary thoughts on possible

hardware that matches some of the design decisions. Most of the suggested

features support the special protection mechanisms to avoid severe software

interpretation penalties.

Appendix B gives examples for the system specified in Appendix A.

In particular, Section 1 of Appendix B illustrates the methodology by

presenting a representation of directories in terms of segments and objects

of type "type", i.e., the representation of level 6 in terms of levels 4

and 5. Section 2 of Appendix B gives the representation of level 5 in terms

of level 4.

1.1 Methodology for Representation and Implementation

' As we indicate in Chapter 3, representation and implementation are

confined to Stage 3 and to Stages 4 and 5, respectively. In Stage 3 we

7-1

represent the data structures of level i in terms of level i-i (and pos-

sibly lower levels) by writing mapping function expressions for each V-

function of level i. Each such mapping expression is an assertion relat-

ing a particular V-function of level i to V-functions of the appropriate

lower levels.

These mapping function expressions bind some of the representation

decisions, but not all of them. For example, in Section I of Appendix B

we give mapping function expressions for the V-functions of the directory

module that represent the set of entries in a directory as a linking of

words in a segment. However, the mapping function expressions do not bind

the order of the elements of the list. That is, any ordering within the

list will satisfy the mapping function expressions.

In Stage 4, abstract programs are written to implement the 0- and

V-functions of each level i (i > 0) in terms of level i-I (and again pos-

sibly lower levels). These programs complete the binding process begun

in Stage 3, and remove any of the nondeterminacies illustrated in Figure

3.2(c).

We envision that each level of the system will be shared by many

users. That is, each of the 0- and V-functions can be subjected to a

call by one user before the processing of the call on behalf of another

user is completed. Each module is required to enforce mutual exclusion

rules that are appropriate to its resources. We envision that a module

provides a program implementing an 0-function with exclusive use to the

V-function values that are subject to change by that 0-function. Calls

on 0- and V-functions are allowed to proceed provided they do not require

access to any of these V-function values. The calls that are not allowed

to proceed can be deferred, but in a manner hidden from the caller. The

monitor facilities of level 2 can be used by the operating system modules

to implement the synchronization of function calls.

7-2

If users wish to create their own subsystems, and represent them as

a sub-hierarchy of modules, they can use the monitor facilities of level

10 to achieve synchronization and exclusion.

Another issue with regard to implementation of the modules is the

handling of error calls. At present we have not selected a mechanism for

this, but (as noted in Figure 3.5) we envision that a call on a module will

include in its parameter list the return addresses for each possible error

condition anticipated, in addition to a return address for the normal re-

turn. Level 2 provides the functions for calls between system levels.

The level 10 "call" serves the same role for calls initiated above that

level (e.g., user calls). As we discuss in Section 7.3, we envision sig-

nificant hardware support for all calls.

7.2 Sample Implementation Decisions

In this subsection we outline some of the important implementation

decisions that we have confronted, in the course of developing the design.

Although we have suggested that in the methodology the design logically

precedes the implementation, it is sometimes essential to keep in mind

when specifying the module how a module is to be used. We present here

some of the decisions on how a particular module makes use of another

module, although we urge the reader to keep in mind that these decisions

are subject to change.

Handling of interrupts in a chain of indirect addresses--The purpose

of level 0 is to execute instructions that require a small fixed number

of memory accesses, for example to write the contents of one memory word

into another word. These instructions are indivisible with regard to any

interrupts. We envision a basic instruction set in which an arbitrary

number of indirections might occur for a given instruction set. We do

not wish to defer all interrupts until the completion of an instruction

7-3

that might incur a long sequence of indirections. Hence, level 1 provides

an abstraction in which arbitrary indirections can occur. The implementa-

tion of level 1 involves a sequence of calls on level 0, with interrupts

possibly occurring at the completion of each call.

Efficient handling of basic segment operations--As indicated in Chap-

ter 5, all user segments are accessed via level 4, although levels 3, 1

and 0 all support segment operations--the latter two levels supporting

segments in main memory. Since practically every user instruction will

be manifested as a segment "read" or "write", it is necessary to implement

the level 4 "read" and "write" as efficiently as possible. Although the

basis of the implementation scheme for functions is the hierarchy, it ap-

pears that a multi-level interpretation of these operations occurs. How-

ever, it is possible to implement the functions, so that in most cases

they are interpreted directly and rapidly in hardware.

Consider a user-initiated call on the level 4 "read" function. A

portion of level 4 in hardware maps this to a level I read. Level I de-

termines if the referenced page is in main memory by consulting the map-

ping table, a portion of which will be in high-speed memory. It is also

determined if "read" abilities are presented. If these checks are success-

ful, as they should be most of the time, level 0 read is called and in most

cases a value is returned within a single machine instruction.

On the other hand, if an entry is not found in the mapping table for

the referenced segment, there are three possible causes:

" There is no segment corresponding to the uid presented.

" The requestor's access rights have been revoked.

" The referenced page is on secondary store, signifying a

page fault.

With regard to the last alternative, an error trap provides return of con-

trol to level 4, which implies that now a level 4 instruction is to be

7-4

executed. This will precipitate a call again to level 1, but this time

on behalf of level 4. If the call on level 1 and the resultant call on

level 0 are successful, then the processing of the page fault is initiated.

Ultimately the referenced page will be brought into main memory, the map-

ping tables updated and the original read on level 4 completed.

However, the trap return instruction, or any succeeding instruction

can precipitate a page fault. In this case, the trap return goes to level

3, which is guaranteed to have the location of the referenced page in the

level 3 data base. Thus level 3 initiates a transfer of the page needed

by level 4 to main store, and level 4 can continue its processing of the

original page fault.

Thus we see that most segment operations will be efficiently handled

in one machine instruction. Those that require access to secondary storage

will incur upward transfers that do not propagate above level 4. The user

is thus unaware of the implementation of his instruction. The operation

is handled by interpretation through level 4 whenever a call on level 4

is not handled initially by levels 1 and 0. Level 3 is invoked whenever

level 4 processing incurs a page fault.

7.3 Preliminary Hardware Considerations

Although the specification of the hardware is a major task of the

next phase of our work, some of the hardware requirements have become

evident as a result of some of our design decisions. Among these are

the following:

Capability creation and manipulation--The entire security of the

system is predicated on the nonviolability of the capability mechanism.

Hence special hardware is needed to prevent the conversion of a data word

to a capability, the modification of the uid of a capability, the conver-

sion of O's in the access vector to P's. Since capabilities will be

7-5

interpreted on every instruction execution, it is clear that their inter-

pretation must be rapid. A convenient approach is to have all capabili-

ties be specially tagged and provide hardware to perform special logical

operations on words that have the tag present. The system clock can be

used to generate new values of uid.

Mapping tables--As indicated in Section 7.2, level 0 contains tables

that give the correspondence between the segment uid and offset and the

page location, for all pages in main memory. It is clear that this table

will be referenced by every instruction. A portion of this table should

be in very fast memory, say associative memory to expedite the access.

The remainder can be in main memory.

Call and return instructions--One defect of current capability-based

systems is the excessive overhead associated with the call instruction.

In our system a call on a module is a frequent occurrence, particularly

for low-level modules. There is a significant overhead expense associated

with such calls, involving the checking of exception conditions, passing

of parameters, and the creation of new activation. We envision instruc-

tions in the hardware to support all of the operations associated with

"call" and return".

Tagging--There are several benefits to designing a processor that

recognizes tagged capabilities. Most of these are related to increased

efficiency. Efficiency is not a trivial problem, because most operating

systems in which capabilities are maintained by software are almost pro-

hibitively slow. An implication of tagged capabilities is that capabili-

ties and data may be freely intermixed. This eliminates the overhead in-

volved in maintaining capabilities and data separately. (In HYDRA, every

object must have two parts: a capability part and a data part. In the

CAL system, for example, capabilities may be placed only in a special

capability segment.)

7-6

Another advantage to hardware recognition of capabilities is that

capabilities can be used in address translation without an interface to

any other representation. Address translation includes linkage in our

system. Most machines have hardware-assisted relocation. There must be

a special interface to this mechanism if capabilities are implemented in

software. The interfaces between the system and both I/O devices and pro-

cess representations are also improved if the hardware can directly pro-

cess capabilities for both processes and I/0 devices. Not only can the

system be faster, but it can also be smaller, because there is less mecha-

nism to be programmed.

Another important reason for hardware recognition of capabilities can

be found in the call and return mechanism. In HYDRA, on the average, 300

instructions are executed for each call. The system described here pro-

vides a single-instruction "call". At this point in the design this call

omits the relatively small effort needed to save registers and push param-

eters (operations done by the HYDRA call), purposely leaving the "calling

conventions" up to the language designer for now. (Saving and pushing may

at a later date be added to the "call", if this is desirable.) This makes

it feasible to have many small domains--a situation that is tolerated but

not encouraged in other capability systems.

Certain types may also be recognized in hardware. Candidates include

segments, stacks, and revocable capabilities.

For an efficient hardware realization of the system design described

here, it is expected that all of the functions of levels 0 and I would be

hardware instructions, along with the traditional processing instructions

(arithmetic, logical, etc.). Also all error conditions at levels 0 and I

are implemented as hardware traps. In addition, other functions of higher

levels may advantageously be implemented directly as hardware instructions,

or via special hardware instructions not required by lower levels. Exam-

ples include:

7-7

if

level 2: clock operations, an indivisible lock instruction

(similar to the "real alter rewrite" Multics STAC

instruction on the 6180), call, return, push, pop

level 3: multilevel storage operations, input-output (relo-

catable and subject to the protection of capabilities);

level 4: read, write;

level 10: call, return, push, pop, write out of env, write into

env (the latter two are forms of "move").

Furthermore, instructions supporting monitors for levels 2 and 10 are also

feasible.

Less efficient realizations may be achieved by implementing the func-

tions of levels 0 and 1 interpretively or via microprograms, using exist-

ing hardware.

It should be remembered that the functions of the user-visible inter-

face (Table 6.1) are those that are of primary interest in considering

implementations. The nonvisible functions included here could be changed

without affecting the user-visible interface, and thus represent a possi-

ble internal system design. In that certain higher-level functions may

be implemented directly in hardware, as noted above, some of the nonvis-

ible functions specified in Appendix A may actually be changed by or dis-

appear into an actual hardware implementation. Thus different systems

belonging to the family specified in Appendix A may have widely differing

implementations. In addition, each system may have its own command struc-

ture, with correspondingly different user interfaces and efficiency of

implementation.

7-8

...........

Chapter 8

SECURITY ASSERTIONS

8.1 Introduction

This chapter presents a preliminary discussion of what it means for

an operating system to be secure, and how security properties of the sys-

tem can be proven. Section 8.2 discusses the meaning of security in intu-

itive terms. In particular, it surmmarizes what we believe is the strong-

est possible concept of security in terms of four principles that relate

to the nonoccurrence of certain undesirable events, and a set of variant

assertions that relate to changes in the system's protection state as a

result of operations. If it can be shown that the specification of each

function in the operating system satisfies the principles and the variant

assertions, then the design is said to be secure. Intuitive justification

is given for the completeness of these principles in ruling out various

types of penetration. Section 8.3 presents the first two principles in

formal terms, relating to the unauthorized alteration and the unauthorized

detection of information. These two principles, slightly generalized, are

satisfied completely by each of the functions of the operating system, with

the exception of a few cases where the specifications as given in Appendix

A need to be modified. The generalizations and the exceptions are discussed

in Section 8.4. Principles P3 and P4 have not yet been formalized. How-

ever, Section 8.5 provides a discussion of tentative approaches to formal-

ization of the confinement principle (P4). The confinement principle is

not satisfied completely by the system (nor is it theoretically attainable

in a complete sense), but there is justification for asserting that the

communication channels are of very low capacity.

8-1

As is shown below, these four principles (stated as invariants) are

negative in that they indicate that certain undesirable events do not

occur. A potential user of the system should also be interested in the

positive aspects of the protection state, and how it is changed by invok-

ing system operations. This is the subject of Section 8.6, which dis-

cusses the role of variant assertions.

We believe that the system can be proven correct with respect to the

first two principles and the variant assertions, with only a few modifica-

tions in the design. The satisfaction of the first two principles and the

variant assertions guarantees properties of security that are generally

accepted by the "security community." That is, as we show later they

rule out penetrations of the system and provide for acceptable change to

the protection state of the system. Hence we will define the system to

be secure if its implementation satisfies the first two principles and

the variant assertions. It appears that achieving satisfaction of the

last two principles may be extremely difficult, although little effort

has been made thus far.

8.2 The Meaning of Security

One goal of this project has been to formulate the problem of proving

the correctness of the operating system with respect to desired properties

of security. As in the case of any proof of correctness, the credibility

of the proof is bounded by how well the formal specifications characterize

the intended behavior of the program. In the literature there are numer-

ous examples of program proofs that seem to be correct with respect to

assertions that do not correspond to the goals of the program. For oper-

ating systems, as opposed to well-understood numerical programs, it is

particularly difficult to state formally the desired behavioral properties,

for example, those of a scheduler or a page manager.

8-2

We recognize that such a discrepancy between intent and assertions

is indeed possible with regard to the security of the system. In partic-

ular, it is possible that any set of security assertions is incomplete.

In order to avoid this undesirable event we have attempted to cast the

security of the system in terms of a few believable assertions. In par-

ticular, four relatively simple principles are stated that are intended

to prevent any possible security violation, along with a set of variant

assertions that guarantee desired system behavior. It should be possible

to prove that the specifications of each user-visible system function

satisfy these principles. It is only necessary to handle the user-visible

functions here; initially, a user will not be able to call nonvisible sys-

tem functions immediately following login because of the initialization

and authorization; second, a user will never obtain the right to call such

functions during the course of execution, because of the principles dis-

cussed below.

Among the ways that a system might possibly be nonsecure, the most

basic ones deal with the unauthorized modification or detection of infor-

mation. Such violations are precluded by the following two principles:

PI: It is impossible for a user to alter information without

authorization (Alteration Principle)

P2: It is impossible for a user to obtain information without

authorization (Detection Principle)

The "information" in PI and P2 can either belong to the system (e.g.,

passwords of all users) or can belong to an individual user (e.g., a seg-

ment or a directory). Both of these principles can be expressed as invar-

iants. For example, PI could be written as "Any information in the system

will remain unchanged by any operations called by unauthorized users."

8-3

These two principles are discussed formally in the next section, but

it is convenient here to justify them relative to our computational model.

For these principles to be useful, it is necessary to understand and be-

lieve the meaning of user, information, alter, detect, and authorize.

The most simplistic view of a "user" is that it is the process run-

ning on behalf of some applications program. However, this definition

is not adequate for characterizing the protection aspects of a user. For

the purposes of this discussion, the most important property of a user is

"his" access rights; the particular instructions that are being executed

on his behalf are not important. At login, a process and an environment

are created, and access rights are stored within the environment. Among

the instructions that can be executed within this environment is "call"

to an environment (or procedure) which gives control to the called envi-

ronment. The rights stored within this new environment are a combination

of those passed by the old environment and those that the called segment

possessed prior to the call; the called environment still runs on behalf

of the original process. The access rights that the calling environment

possessed but did not pass are irrelevant to the execution of the called

environment. Hence, a user for security purposes is viewed as an environ-

ment.

,"Information" in our system is represented as the outputs of V-functions.

An environment obtains (or detects) information by calling V-functions and

having the output values delivered to the calling environment. Information

can be altered only by calling an 0-function or an OV-function.

"Authorization" requires somewhat more effort to define, but is inti-

mately associated with possessing an appropriate capability. Let us assume

that in order to perform any operation an environment must have (1) a capa-

bility to cause execution of the operation and (2) capabilities for the

parameters of the operation. At login, an environment is created and ini-

tialized with capabilities to call some of the external system functions.

8-4

Also at login the environment is likely to be initialized with a capabil-

ity for some system directory or process directory that itself might con-

tain capabilities for language processors, library routines, etc., and

possibly capabilities that can enable the environment to call V-function

outputs shared with other environments. An environment e can obtain a

capability that it never possessed only by calling a function that gener-

ates a brand-new capability, or by being passed the capability from some

environment el that possesses it, or by having el place the capability

into an object for which both e and el possess a capability.

The notion of an "object" is not fundamental for PI and P2, but it

is often more convenient and more intuitively meaningful to refer to a

user as having access rights to an object rather than to V-functions.

For our purpose here, an object associated with a module is defined

as a set of V-function outputs of that module. Two distinct objects

of a module have no V-functions in common. If one of the V-function out-

puts associated with an object returns a capability c, then we say that

c is stored within the object. An environment is said to possess access

rights to an object if the environment possesses all of the capabilities

needed to call the 0- and V-functions associated with the access rights.

For example, if an environment possesses a segment capability s with ac-

cess code ("read," "write"), then it can call the 0-function "write(s,i,j)"

and "read(s,i')". Thus the environment is said to possess "write" and

"read" access rights to the segment identified by "getuid(s)".

It is important at this point for the reader to become convinced

that P1 and P2, if satisfied, rule out all abuses of the system that in-

volve unauthorized modification of objects maintained by the system. They

also rule out most user attempts to illegally obtain information from the

system or from another user. The principles, in themselves, do not rule

out all security violations, for example

8-5

(a) Those that arise from errors in implementations. Our

concern in this chapter is entirely with proofs of

specifications.

(b) The inferring of information from supposedly confined

environments (see P4 below, and Section 8.5).

(c) Those that arise from users' programming errors.

The invarianit principles P1 and P2 are fundamental to the protection

of information in that they explicitly cover everything that a user can

do to the information contained within an object, namely modify the in-

formation, or read values that represent the information. The formal

statement of P1 in the next section guarantees that a user cannot call

an O-function to alter the value of any V-function output unless he pos-

sesses the capability (or capabilities) required to call those V-functions.

The only exception involves an object newly created by the O-function.

The formal statement of P2 guarantees that the new values obtained by a

V-function after an 0-function call will not be dependent on V-function

values for which the user does not possess a capability, unless (as above)

the O-function creates a new object. These two principles, if proven to

be satisfied by the system functions, guarantee that a user cannot "break

the system." This can be seen as follows. In order to manipulate an ob-

ject, a user must present a capability (or capabilities) for the object;

P1 excludes any alteration without a capability. Thus a user cannot alter,

say, a segment unless he possesses a capability cl for that segment. As-

suming that the user's environment is not initialized with such an unwar-

ranted capability cl, then a user could only get such a capability by call-

ing on some system V-function V which could return cl, where the user

possesses a capability c2 for calling V. However, by P1 and P2 the V-

function V will yield only the "information" cl as a value if some user

who possessed cl called on some O-function that modifies V, presenting cl.

8-6

Thus if no user possessed cl initially, then no user can call on any

function that will give him cl.

The remaining invariant principles, P3 (denial of service) and P4

(confinement) are discussed next, although this time in the opposite

order.

The formal statement of the detection principle in the next section

is carefully worded to exclude V-functions that do not have capabilities

as arguments or V-function values associated with objects created as an

effect of an 0-function call. By calling such V-functions it is indeed

possible for a user to detect some information belonging to the system

or to communicate illegally with another user. Such behavior violates

the Confinement Principle:

P4: There shall be no inferring of protected information.

By "protected" information we mean objects for which the caller does

not possess a capability. The principle can be stated as an invariant as

follows: The information that user A has about some object for which A

does not possess a capability (possibly belonging to the system) cannot

increase by A calling any system function or any properly written user

function.

As discussed in Section 8.5, it usually takes an "inference" process

to obtain any protected information, since direct detection is ruled out

by P2. Such inference can be accomplished by a combination of observing

pertinent V-function outputs together with using a knowledge of the algo-

rithm that generated the values of these V-functions. It appears that the

only channels for communication in the present system will be via observ-

ing the time required for operations and the unique identifiers associated

with capabilities. If the latter channel is considered harmful, it is

8-7

possible to seal off all operations on unique identifiers except deter-

mining the equivalence of two arbitrary unique identifiers.

The other invariant principle is the Guaranteed Service Principle:

SP3: There shall be no unauthorized denial of service.

This principle is intended to ensure that each user will receive

some form of service from the system. That is, it is desired to prove,

for example, that the scheduling and page replacement algorithms do not

ignore any users. This principle has not been precisely formulated; in

fact, difficulties are expected in the attempt. It is difficult to pro-

vide a precise formulation of service for a system which can serve a num-

ber of processes in a time-varying fashion. In particular, most contem-

porary time-sharing systems do not guarantee each user a fixed share of

the cpu and main memory, but only a percentage of such resources averaged

over some time frame. Thus it is difficult to even specify the service

that a user should get in the absence of any unauthorized attempt to deny

him service.

These four invariant principles are intended to exclude erroneous

behavior on the part of inter-user interactions or user-system interac-

tions. It is also desirable to guarantee correct behavior of the system.

That is, it is useful to know what is the effect of carrying out some op-

eration besides its not causing any security violation. In general it should

be possible to state and prove properties about the operating system, e.g.,

that files are stored reliably. Since in this chapter we are only con-

cerned with security properties, we wish to formulate some properties

about a security state, and to assert how the protection state is modified

by calling system functions. We achieve this by writing assertions for

each system function that characterize the expected change in the protec-

tion state due to a call on the function. (These assertions are called

8-8

variant assertions since they refer to expected variations in the state,

as compared with the four invariant principles that refer to non-changes.)

Since the accessing of information is accomplished in the system by

presenting capabilities to functions, it is natural to define the protec-

tion state of an environment as the set of capabilities accessible to the

environment.

Two auxiliary functions are defined for purposes of concisely char-

acterizing the protection state: one which defines the set of capabili-

ties within an environment (at any instant), and the other which defines

the total set of capabilities which an environment can obtain by calling

system V-functions. The first function gives all of the capabilities that

an environment has immediate access to, while the second function gives

the capabilities that an environment can ultimately obtain, i.e., store

in the environment, without being passed new capabilities from other en-

vironments. A typical way that an environment can augment its set of

capabilities is to read a segment location where a capability has been

previously stored.

The variant assertions are of importance since they define the mean-

ing of the protection state, and characterize the positive effects of each

system function on the protection state. A user of the system can apply

the variant assertions in bounding the effect of giving away a capability

to another environment.

The following comments serve mainly to contrast with other approaches

the present approach to formalizing security. The reader who is not famil-

iar with prior work may wish to ignore these points until he has completed

the chapter.

0 The results discussed here are preliminary. For example,

more formal statements of the four principles are required

in order to carry out "believable" proofs.

8-9

*The first two principles are stated as global assertions

which can be proved from the system specifications by the

induction mcthod discussed in Chapter 3.

*There is a strong relationship between the four principles

and Lhe variant assertions, and the degree to which the sys-

term is certified. If just the first two principles are con-

sidered, then it is guaranteed that the system is protected

from abuse ana that a user can have some confidence that other

users cannot get access to his information, except through low

bandwidth channels. The satisfaction of these negative prin-

ciples is the main goal of security kernels. We feel that

these two principles are not complecely adequate in themselves,

since, as a system goal, they do not guarantee that the system

will carry out any useful work. The remaining two principles,

P3 and P4, guarantee much stronger properties but are harder

to formulate and prove. The third principle, P3, guarantees

that each user will get a "tfair" share of the system. The

variant assertions formally specify the positive effect of an

operation on the protection state. For example, they describe

the effect of a urcer giving a capability to an object.

*The formal statements of the alteration and detection princi-

ples can be viewed as an axiomatization of the properties of

capabilities in a formally specified system. The statements

define what an object is relative to V-function values, and

give properties that capabilities should have in order to

provide protection for their associated objects against abuse

by 0-function calls. A reader who believes the formal state-

ments of these principles and the model of capability interpre-

tation and generation should believe that the system provides

protection of objects.

8-10

" It is useful to contrast the statement of the principles

with the standard access matrix approach to describing

protection (Graham and Denning [72]). The access matrix

is a data structure storing the access rights of users to

objects, and is basically a static formulation of protection.

The access matrix was originally suggested as a system table

for storing the protection state of the system. This idea

in its "pure" form has since been rejected because the access

to the table contents is inefficient due to the sheer size of

the table. The matrix is not adequate for stating formal

properties of protection because it is too cumbersome.

Instead we represent access in terms of functions, which can

be interpreted as defining an access matrix when all elements

in the domain and range are considered.

" The effort here is concerned with stating properties of the

operating system design, i.e., of the specifications. There

still remains the (substantial) effort to prove that these

properties are valid, and to prove that the implementation

is correct with respect to the specifications.

* The proof of the security afforded by the design is contingent

on the proper initialization of each user's environment of

login. If the initial state does not allow a user to violate

the security rules, then there is no function that can be

called (by the user or by other users) that will produce a

state in which security can be violated.

* There is no fundamental distinction between accidental and

malicious violation of security. For example, an error in a

scheduler, however unintentional, might be exploited by a user

to deny service to other users.

8-11

8.3 The First Two Security Principles

This section gives precise statements of the alteration and detection

principles. Because the statement of these principles is abstract, they

will be motivated by considering several examples of actions that are

clearly violations of security.

Suppose that c is a capability corresponding to a segment and that

"read(c,i)" is defined. Suppose further that c' is also a segment capa-

bility and that "read(c',j)" is defined.

Security Violation 1. Suppose that, contrary to fact, there existed

an 0-function in the operating system called "illegal writel," which had

the effect that when "illegal-writel(c',j,x)" is called, the value of

"read(c',j)" is set equal to c for c c' and c x. Clearly, "illegal_

writel" has violated security if the environment that executed the call

of "illegalwritel" did not have c within its environment, because the

environment may now obtain the capability c merely by calling "read(c',j)".

Security Violation 2. Suppose that, contrary to fact, there existed

an operation in the operating system called "illegal write2," which had

the effect that when "illegal-write2(c',i,y)" is called, then "read(c,i)"

is set to 5 for c i c' and c y. Clearly, we would reject the idea that

such an operating system were secure, because it contains a classic exam-

ple of altering "someone else's" data.

Security Violation 3. Finally, suppose that, contrary to fact, there

existed an operation called "illegalwrite3" which had the effect that

when "illegalwrite3(c,i,j)" is called, then "read(c,i) is set to I if

"read(c',i)" is 0 for c c'. Such an operation would also violate secur-

ity because, even though no illegal alteration was performed (the author

of the action does have c), the outcome of the operation depended upon

something not accessible from the capability passed as an argument to the

operation.

8-12

As seen below, security violations 1 and 3 violate the detection '1

principle, and violation 2 violates the alteration principle. One aspect

of security amounts to forbidding actions such as those described by se-

curity violations 1, 2, and 3. The difficult part of the definition of

security is in accurately generalizing from such examples to a clear

principle.

At any moment, there exists a set of capabilities called NEW, which

is the set of all capabilities that are not and never have been either

the values of any user-accessible V-function, or members of an argument

list of a V-function, or the value of any OV-function call. This defini-

tion of NEW is required in the statement of the alteration principle.

Wherever the system returns a capability c for a newly created object,

c must be a member of NEW. After the return from the call that returns

the capability c, NEW is diminished by c.

The Alteration Principle

Given an O-function call "O(al,a2,...)", suppose that the

V-function value "ans= V(bl,b2,...)" after the O-function call

is different from the value of the same function with the same

arguments before the call. Then any member x of {ans,bl,b21
that is a capability must be either a member of {al,a2,... 3 or

a member of the set NEW before the call. After the calls, all 4

such x cannot be members of the resultant set NEW. The restric-

tion for V-functions as a result of the OV-function call "ans=

OV(al,a 2,...)" must be the same as for an O-function call. Also

the effect of an 0- or OV-function call on the value returned by

an OV-function must be the same as that for the 0- or OV-function

call on the value returned by V-functions.

8-13

It is important to understand precisely what the alteration principle

guarantees relative to protection. If a system 0- or OV-function modifies

any V-function that requires a capability c to call, then c must be either

a new capability or a capability that the caller of the 0-function must

himself have presented. Thus a user cannot call any system function that

requires a capability to modify any information, unless he has a capability

for the V-functions associated with that information. Furthermore, if a

V-function output is modified by an 0-function to a capability value cl,

then the caller of the 0-function must have possessed and presented cl.

This guarantees that if a V-function returns to a caller a capability cl,

then either the caller possessed cl to begin with, or received rights to

the object that holds the capability cl from a user who possessed cl.

To show that it is possible to prove that specifications can satisfy

the alteration principle, consider the 0-function "write" and the V-function

"read". "write(c,j,w)" causes the values of "read(c,j)" to change. That

is acceptable under the alteration principle because the capability c, which

occurs as an argument to "read" occurs as an argument to "write," and since

the new value of "read(c,j)" does occur as one of the arguments of "write".

We have not yet attempted to prove that the specifications for all functions

satisfy the alteration principle. However, we feel that only a straight-

forward invocation of the specifications is needed to accomplish this ver-

ification.

This should give to the reader a rough understanding of what is a

reasonable effect for an 0-function to have. To illustrate how an 0-function

might violate the alteration principle, suppose that the effect of "write

(c,j,w)" were to alter "read(c',j)", where c' is a different segment capa-

bility from c. Then such an instruction would violate the alteration prin-

ciple.

Prohibiting the undesirable alteration of the state of the machine,

however, is only one aspect of the idea of security. Another aspect that

8-14

can be formulated is the exclusion of the detection of parts of the system

or of other users that the environment issuing the instruction is not au-

thorized to detect.

The Detection Principle

Given an 0-function call "O(al,a2,...)", suppose that the state

of the abstract machine changes as a result of the call. If the

state change that results is dependent on the prior value (before

the call) of some system V-function V (bl,b2,...), then all of

the bi that are capabilities are in {al,a2,...}, or are members

of NEW before the call and are not members of NEW after the call.

A similar statement applies to an OV-function call "ans = OV

(al,a2,...)" as to "O(al,a2,...)".

The detection principle states simply that any information modified

as a result of an 0-function call can depend only on information for which

the caller presented capabilities, on newly created information, or on in-

formation which does not require a capability. Note that the detection

principle is not concerned with a V-function value being modified to re-

turn a capability. The alteration principle gives precise conditions

under which a V-function can be so modified.

Another viewpoint of the detection principle is related to the limi-

tations it places on unauthorized communication between users. The primary

channel for user A sending information to user B in the system is by user

A changing the value of some V-function that user B can call. The detec-

tior principle rules out such communication via a V-function that requires

a capability as an argument unless A and B have a capability in common.

The detection principle does not apply to V-functions that do not include

a capability as an argument. However, there are no such functions visible

to users of the operating system. The detection principle also does not

cover subtle issues of the confinement problem (see also Section 8.5).

8-15

In summary, the detection and alteration principles certainly guar-

antee that the system will not give away crucial information, for example,

capabilities for its tables, but a user might be able to infer some system

information (for example, the average workload), although it should always

be minimal and noncritical.

8.4 Extension for Access Codes, Revocation, Call, and Return

The alteration and detection principles as stated above are credible

statements that capture the intuitive meaning of unauthorized alteration

and detection of information. The principles can be viewed as an axiomat-

ization of one aspect of capabilities--namely their role in uniquely iden-

tifying objects. For conciseness, the previous section does not address

the role of the access code portion of the capability or the role of revo-

cation. This section presents slightly more detailed statements of the

two principles, to reflect these additional roles. It also shows that

the present specifications for "call" and "return" and a few other func-

tions do not satisfy the principles, but that the specifications can be

revised to conform thereto.

8.4.1 The Alteration Principle Revised to Accommodate Access Codes

If the unique identifier (uid) portion of a capability uniquely

identifies an object, then the access code portion of the capability iden-

tifies the set of operations that the user of the capability may perform

on the object. For the present discussion, two capabilities which have

different uid's are considered to be completely unrelated. That is, the

operation "write(c,j,w)" and "write(cl,j,w)", where the uid of c is dif-

ferent from the uid of cl, should produce entirely different effects--in

particular, the two operations correspond to distinct segments. However,

if the uid of c is equal to the uid of cl, and the access vector of c is

1"write," "enter"] and the access vector of cl is ["write"J, then the

8-16

operations "write(c,j,w)" and "write(cl,j,w)" should have the same effect.

If, on the other hand, the access vector of cl is ("read," "enter"), then

the operation "write(cl,d,w)" will produce an error. Similarly, if c2 and

c3 have the same uid but the access vector of c2 is ["read"} and the access

vector of c3 is t"read," "write"], then the operations "read(c2,j)" and

"read(c3,j") will produce the same effect.

We can now state the Access Right Principle:

If a V-function is defined (i.e., returns a value) for

some argument list, and if one of the arguments is re-

placed by a capability with the same uniqueid but a

bigger set of access bits, then the V-function returns

the same value. Similarly, consider an 0-function or

OV-function "f" whose execution does not cause an error

(i.e., has an effect). Suppose c is a capability in the

argument list for function "f", and is also a member of

the argument list of some V-function that is modified by

the execution of f. Suppose c' is a capability with the

same unique_id as c, but with a larger set of access bits.

Then the same effect could be achieved by replacing c with

c/ as an argument to "lf".

Note that the statement of the Access Right Principle for 0-

and OV-functions would not be correct if it said that any capability in the

argument list of the 0-function is replaced by a capability with the same

unique_id but a bigger set of access bits. For example, consider the op-

eration "write(c,j,w)" where w is itself a capability. Clearly, replacing

w by a capability with a larger set of access bits could produce a differ-

ent effect on the segment word being written.

The Access Right Principle is merely a formal restatement of

our intuitive understanding of how uid's and bits in the access code are

8-17

interpreted by a type manager for accessing an object. If a capability

with a "I" in a particular access bit position is required for an opera-

tion, then the operation will be carried out successfully independent of

the values in other access bit positions. The alteration principle is

now restated to account for the role of access bits. (Note all members

of the set NEW are assumed to possess distinct unique id's.)

The Alteration Principle (with Access Codes)

Given an 0-function call "O(al,a2,...)", suppose that

the V-function value "ans = V(bl,b2,...)" after the 0-

function call is different from the value of the same

function with the same arguments before the call. Then

any member x of lans,bl,b2,...I that is a capability is

a member of the set NEW before the 0-function call, or

it has a unique_id portion that is identical to that of

a capability of fal,a2,...}. After the call, all such x

cannot be members of the resultant set NEW. The effect

on the V-functions as a result of an OV-function call

"ans = OV(al,a 2,...)" must be the same as for an 0-

function call.

It should be clear that the revised statement of the altera-

tion principle states that the unique_id portion of a capability is ade-

quate for bounding the V-function values that are allowed to be modified

as a result of an 0-function call. As an example, the operation "write

(c,j,w)" where the access vector of c is I"write"I causes the value of

"read(cl,j)" to become w, where cl has the same unique_id as c, but has

an access vector ["read"). This does not violate the revised alteration

principle, even though c 0 cl.

8-18

The detection principle must also be slightly revised in order

to account for the unique rule of the uniqueid in bounding the permitted

values that V-functions can attain.

The Detection Principle (with Access Codes)

Given an 0-function call "O(al,a2,...)", suppose that

the state of the abstract machine changes as a result

of the call. If the state change that results is de-

pendent on the prior value (before the call) of some

system V-function V(bl,b2,...), then all of the bi that

are capabilities must have a unique_id portion that is

identical to that of a capability in [al,a2,...}I, or

must be members of NEW before the call and are not mem-

bers of NEW after the call. A similar statement applies

to OV-function calls.

To see the application of the revised statement, consider an

0-function which could have been in the system: "writes(c,j,cl,jl)" which

stores the contents of location jl of segment cl into location j of segment

c. Assuming the capability cl has access code ["read"), then the effect

of the call is to have read(c,j) = 'read'(cl,jl). If there is another

capability c2 in the system with the same unique id as cl, but access code

("read," "enter"), then the modified value of "read(c,j)" appears also to

depend on "read(c2,jl)". Since the unique id's of cl and c2 are equal,

the above revised statement of the detection principle is not violated in

this case.

8.4.2 The Significance of Revocable Capabilities and "Revoke"

Until the recent work of Redell and Fabry [74), it was a com-

mon criticism of capability-based operating systems thct once a user had

8-19

possession of a capability, there existed no convenient way to later deny

that user access to the values of V-functions accessible via that capa-

bility. However, based on work of Redell and Fabry, the present operat-

ing system incorporates a convenient mechanism for "provisionally" giving

a capability to an environment; the provision is that one can use the 0-

function "revoke" to invalidate the capability given away. The existence

of revocation, while convenient, does slightly complicate the statement

of the security principles.

A user who wishes to give away provisional access rights asso-

ciated with the capability c initially calls the function "cr = create

revocablecap(c)". Externally the capabilities c and cr appear to be

virtually identical, in that if c is accepted as an argument to an 0- or

V-function, then cr will also be accepted. The uniqueid's of c and cr

are different, but the interpretation by system functions is based on the

value of "chase uid", and since chaseuid(c) = chase_uid(cr), the capabil-

ities seem to be interchangeable.

However, besides the difference in uid values, there are other

differences between c and cr. The access code of the capability cr is aug-

mented with the ability "revoke." Assuming that the original possessor of

cr does not wish to pass the "revoke" rights to other users, he can call

the function "cl = restrict access(cr,i)" where i is the access code of c.

At this point, cl and c appear to be virtually identical for access to ob-

jects. Until "revoke(cr)" is performed, the capabilities c, cl, and cr are

equal as far as can be determined by the user. However, once "revoke(cr)"

is performed, neither cr nor cl can serve successfully as the argument to

any V-function (i.e., any V-function value will forever become undefined

for any argument list which contains cr or cl).

Let us now consider the effect of revocable capabilities on

the alteration principle. The act of calling "revoke(cr)" has the effect

8-20

of modifying all V-functions that have the capabilities cr and cl as

arguments. The effect of the modification is to cause these calls to

return an error condition. This does not violate the revised alteration

principle, since cr is a member of the argument list of "revoke" and has

the same uid as the capability arguments of the affected V-functions.

However, consider the case of two or more levels of revocable capabili-

ties. Let cr result from calling "create revocablecap(c)", and let crl

result from calling "create revocablecap(cr)". Then the act of calling

"revoke(cr)" modifies all V-functions that have crl as an argument (even

though crl is not an argument to "revoke(cr)") and thus violates the al-

teration principle since the uid of cr1 is not the same as the uid of cr.

Besides "revoke," other 0-function specifications do not satisfy the alter-

ation principle assuming revocable capabilities as arguments. An 0-function

call will change V-function values for all capability arguments that have

identical values of "chase uid". Thus a restatement of the alteration

principle can be formulated to account for revocable capabilities, also

subsuming access codes.

The following restatements of the alteration principle and

the access right principle are most easily performed by introducing the

concept of "REQUAL(n,m)". Two uniqueid's n and m are REQUAL if, in the

language of LEVEL 4 of the operating system design, last(linktuple(n)) =

last(linktuple(m)). An interpretation of this statement is that the uid's

n and m are on the same indirection tree, where each call on "cr' = create_

revocablecap(c')" introduces another level of indirection emanating from

the uid associated with c . For the capabilities cl, c2 associated with

n, m, an equivalent interpretation of REQUAL(n,m) is that chase uid(cl)

= chase uid(c2).

8-21

.... ... I

The Alteration Principle (with Revocable Capabilities)

Given an 0-function call "O(al,a2,...)", suppose that

the V-function value "ans = V(bl,b2,...)" after the

0-function call is different from the value of the same

function with the same arguments before the call. Then

any member x of the set [bl,b2,...} that is a capability

has a unique id that is REQUAL to the unique id of some

member of the set {al,a2,... 3, or is a member of the set

NEW before the 0-function call occurred. After the call,

all such x cannot be members of the resultant set NEW.

If "ans" is a capability, then it is a member of the set

fal,a2,... . Given an OV-function call "ans =

OV(al,a2,...)", the same properties are required as in

the case of an 0-function call.

The access right principle can also be restated to account

for revocable capabilities. We assume that a V-function will become

"undefined" if one of its arguments that is a revocable capability is

revoked by another user.

The Access Right Principle (Modified for Revocable

Capabilities

If a V-function is defined (i.e., returns a value) for

some argument list, and one of the capability arguments

c is replaced by a capability cl with an REQUAL unique_

id and a bigger set of access bits, then the V-function,

if it is defined with cl as an argument, returns the

same value. Similarly, consider an 0-function or Ov-

function "f" whose execution does not cause an error.

Suppose c is a capability in the argument list for "f"

8-22

and is also a member of the argument list of some V-

function that is modified by the execution of "f".

Suppose c' is a capability with a unique id REQUAL

to c, but a bigger set of access bits. Then the same

effect could be achieved by replacing c with c' as an

argument to "f".

At present there are a few user-visible 0-functions and OV-

functions that do not satisfy the above alteration principle. To show

the current lack of conformity in the case of "revoke", consider any V-

function that requires two (or more) capabilities in its argument list,

e.g., the level 5 function [c] = implcap(cl,c3). If cl is a revocable

capability, then the 0-function call "revoke(cl)" clearly modifies the

value of "impl_cap(cl,c3)". This is in violation of the alteration prin-

ciple, since chase uid(c3) is not in the argument list of "revoke(cl)".

This violation of the alteration principle does not appear to be signifi-

cant, since intuitively "revoke" does perform as intended. More effort

is needed to develop a revised statement of the alteration principle that

circumvents this conflict with revocation.

There is an additional lack of conformity to the alteration

principle in the case of "revoke". The purpose of calling "revoke(c)" is

to cause all V-functions to become undefined that have as an argument any

revocable capability ci that is a result of calling the function "create_

revocable_cap" with an argument c, or with some ci that is itself a revoc-

able capability corresponding to c. The state change that results from

calling "revoke(c)" violates the statement of the alteration principle in

that the V-functions that are affected do not necessarily have c as an

argument. (Note that the concept of REQUAL unique-id's does not apply

here since "revoke(c)" will not have any effect on a capability cl if c

is a revocable version of cl.) It appears that a solution is to define

a new relation INDIRECT(c2,c3) among the capabilities c2 and c3 that

8-23

reflects c3 being a revocable version of c2. Then the alteration princi-

ple can be modified to account for the effect of revoke(c2) on all V-

functions that take as arguments capability cj such that INDIRECT(c2,cj)

is true.

At first glance, it appears that the statement of the detec-

tion principle is violated by the function "revoke(c)", since the speci-

fications indicate that the resultant state change is dependent on the

values of the hidden V-functions "linktuple" and "revocable-set", and that

the capability argument c of "revoke" is not a capability for "linktuple"

or "revocable-set". However, the uniqueid's contained within these V-

functions are associated with capabilities [cil that satisfy the relation

INDIRECT(c,ci). It thus appears that a simple augmentation of the detec-

tion principle results in its being satisfied by the function "revoke".

8.4.3 The Significance of "call" and "return"

One reason for having the functions "call" and "return" is to

solve the following problem. Assume a pair of users A and B such that B

has written a program and A wishes to use the program, but certain con-

straints are desired:

1. A does not want the program to have any way of obtain-

ing any of A's capabilities except those particular

capabilities that A is willing to pass to the program.

2. B does not want A to know anything about the details

of the program and does not want A to be able to

obtain the capabilities that may be embedded in the

program.

These two objectives are achieved by the use of "call" and

"return", and by the "enter" access right for segments. When B creates

his program, he writes it into a segment and he gives to A a capability

8-24

for the segment with only the "enter" ability. There is only one way

that A can use such a capability, and that is to use "call"; "call"

creates a new environment to which A does not have any original access,

and begins the execution of the program. A is allowed to pass to the

program certain arguments, among which may be capabilities.

Among the capabilities that are passed is a capability to

return back to A when B is finished. Thus the arguments of "call" are

(a,b,[p]) where a is the entry capability, b is the return capability, and

[p] is the tuple of passed capabilities. (The specifications of level

10 differ slightly in format from that discussed here, for descriptive

simplicity.) The capability "a" points to the address where B's program

is to begin execution--typically the beginning of the segment. The capa-

bility "b" points to the address in the calling program where execution

is to continue when control is returned.

When B's program is finished processing A's data, control is

to be returned to the original calling environment. At this time B's

program executes the instruction "return(bp'j)" where [p'] is a tuple

of capabilities to be passed back to the original environment.

The function "call(a,b,[p])" does not violate the alteration

principle by causing the creation of a new environment associated with a

unique capability contained within NEW. The fact that the capabilities

[p] are stored witain the new environment is again not a violation of the

principles. However, the fact that the new environment begins executing

from the segment that contains B's program is apparently a violation of

the detection principle. This violation arises from A not having any

capability for the contents of the segment, in particular the starting

address. The new state of the system, in particular the program counter,

is dependent on functions for which A does not possess a capability. How-

ever, it appears that the detection principle will be satisfied under the

proper interpretation of the "enter" capability "a". In particular, the

8-25

I

"enter" capability can be interpreted as giving the caller certain access

rights to the new environrient, namely to cause it to commence executing

the program associated with "a" at the indicated entry point.

The function "return (b,[p'])" causes a modification of the

original calling environment, in particular by augmenting that environ-

ment with the elements of [p']. This is not a violation of the altera-

tion principle if we interpret the capability "b" as giving the returning

program "append" rights to the original environment at return time.

The detection principle is in question for "return" since the

value of the program counter is dependent on the instruction address just

beyond the calling instruction in the calling program, a location to which

the called environment has no apparent capability. However, again under

the proper interpretations of the "return" capability"b" there is no vio-

lation.

In general, work is still necessary to formalize the notions

of "enter" and "return" capabilities so as to lead to conformity with the

two principles. However, there do not appear to be any intrinsically

difficult problems.

8.5 Discussion of the Confinement Principle (P4)

A particular problem that all allegedly secure operating systems

should be able to solve efficiently is the realization of a memoryless

subsystem. User A wishes to have his data processed by a program written

by B. However, A does not wish B to have any access to A's data after B

has completed the processing. If A does not trust B's program to conform

to this desire, then the normal method of A calling B does not work. The

only solution is to have execution take place in a special memoryless

environment e. The primary feature of e is that it will not commence

processing if it is passed a capability for permanent storage, e.g., with

"write" ability for a segment.

8-26

Thus at first glance it appears that the problem is easily solved,

although there remain some unresolved issues relating to efficiency and

nested calls within the memoryless environment e. It does not seem that

B can retain any of A's data or give the data to some other cooperating

user C (for later retrieval by B) since B, within the environment e, is

guaranteed not to share a capability with any other user C. However,

there are ways for two users to commnunicate other than via some object

for which each possesses capabilities.

Lampson [73] describes a possible communication channel whereby in-

formation is transmitted by B opening a particular file and C testing the

status of the file. We do not envision the existence of this particular

channel in our system since any operation on a file will require a capa-

bility. However, we do anticipate that two users, B and C, could commu-

nicate by observing the time required for operations. User B could invoke

an operation that is likely to require a long time to complete, and pos-

sibly cause an operation of C's to get delayed. If B and C are cooperat-

ing, then it is possible for B to send information to C via this channel.

(Even if the system clock is not accessible, a small amount of informa-

t~on can be transmitted if C has other means for observing how long he

is delayed, e.g., his wristwatch.)

We are aware of the existence of one other channel bv which two

user.; who are not supposed to communicate can possibly communicate--albeit

at a low rate. Just as all users may in some ways be able to share the

system clock, all users in our system share the mechanism that creates

unique id's. The algorithm that generates a new value of uniqueid when-

ever "create cap" is called has not been specified, but among the possi-

bilities for the set NEW are: (1) an ordered sequence of integers, (2)

values derived from the system clocK, (3) a more complex encoding. In

any event, since a fixed value is not returned, the uniqueid creation

8-27

mechanism is a source of information. It is possible for two users to

communicate, if they have some knowledge of the algorithm.

We believe that these two channels are the only ones that will be

present in the final system. The channel capacity for such communication

will probably be low, but it is recommended that the rate be studied from

an information theoretic viewpoint for better understanding of the problem.

8.6 Variant Security Assertions

The previous discussion is concerned with global assertions at the

user-visible interface, describing the nonoccurrence of undesirable events.

This is only part of the requirement for security. It is also important

to know precisely how each operation affects security, e.g., writing a

capability into a segment. The approach here is to define a security

state in terms of auxiliary functions, and then to state the effects of

system functions on the "value" of these auxiliary functions. These ef-

fects are expressed as variant assertions. Ultimately such assertions

will exist for each of the functions of the system; a few illustrations

are given here. A user of the system should be able to read these asser-

tions, and easily be convinced of the proper behavior of the system func-

tions with regard to their effect on the security state.

The following auxiliary functions serve to define the protection

state of the system:

(1) object: [c] - (TRUE, FALSEJ. This function indicates

whether the given tuple Ic] of capabilities denotes an

object.

(2) imm access: Ic] {c'}. This function has as a value the

set of capabilities fc'J contained in the object denoted

by [c]. Some system objects, e.g., segments and directories,

can serve as repositories for capabilities.

8-28

(3) iter access: [ci - [c'). For a set of capabilities {c},

this function gives the set of capabilities [c' } that are

obtainable by calling system V-functions with one (or more)

capabilities contained in [c). Initially [c'J = [c). Each

such V-function call may expand (c . Repeated calls are

made with the expanded capability set, until no further

augmentation is possible.

(4) env iter access: e - [c). This function has as a value

the set of capabilities [c} that can be iteratively ob-

tained from the set of capabilities initially in the en-

vironment denoted by e.

The effects of various system functions on these four auxiliary func-

tions are now considered. The only effects that need be described are

those on the two functions "object" and "imm access". The effects on

"iter access" and "env iter access" can be derived from the other two

functions as follows:

LET x = tic'] I object([c/]) A (tuple_set([c'1) C fc})};

/Comment: The function "tupleset([c'])" transforms a

tuple Ic'I into a set [c'}; it eliminates all replicas
of a capability and disregards the order of the elements.

Thus x is the set of all capability tuples that denote

objects in jc i./

LET y = Ic 1 3 Ic'] (c e imm access ([c']) A ([c'] Gx))}

/Cor nent: Thus y is the set of all capabilities that are

contained in objects pointed to by a tuple of capabilities

Ic'] contained in x./

iteraccess([c}) =

IF [c) = y . [c) THEN [c)
ELSE iter access (y [ci);

env iter access(e) =

IF gettype(e) = "environment" THEN iter access(imm access(|e])

ELSE UNDEFINED

8-29

For the present, access bits and revocation are ignored. The reduction

of access that occurs during a call is also omitted.

All V-function calls of the system change the environment that calls

them. Let e be the calling environment. Then the variant assertion for

the call of the system V-function V(cl,c2,...) that returns a capability

c is as follows:

EFFECT: imm access([e]) C 'imm access'([e]) J c.

Let us now consider the more interesting case of variant assertions

for O-functions.

insertimpl_cap(c,t,cl) /level 5/

EFFECT: imm access([c,t]) 'imm access'([c,t]) U cl

This assertion states that the object of extended type, maintained by

level 5, defined by [c,t] is augmented with the implementation capability

cl.

insertentry(d,n,c) /level 6/

EFFECT: imm access([d]) M 'imm access'([d]) U c

moveentry(d,n,dl,nl) /level 6/

EFFECT: imm access([dl])-= 'imnmnaccess'([dlI) U 'getcap'(d,n);

imm access([d]) C 'immaccess'([d])

Object creation is accomplished by OV-functions and by "call." These

operations do not add any capabilities to the objects, except to place a

capability for the new object in the calling environment. Let e be the

calling environment in the following security assertions:

c = createobject(t) /level 5/

EFFECT: imm access([e]) C 'imm access'([e]) U c;

object([c,t]) = TRUE

8-30

s = createsegment /level 4/

EFFECT: immaccess([el) _ 'imm access'([el) s;

object([s]) = TRUE

d = createdirectory /level 6/

EFFECT: imm access([el) C 'imm access'([e]) U d;

object([d]) = TRUF

Each of the above is an OV-function, in which cases the returned capabil-

ity could overwrite a prior capability in the environment. Thus "C"

is used instead of

call(c,c,C 2 ,c) /level I0/

PURPOSE: c is the procedure segment and

cl ,. .. , cn are the parameters passed on the stack

EFFECT: CHOOSE new e I

object(e') = TRUE;

immaccess([e']) E 'immaccess'([c]) {'[c1 ... cCn

returnenv(e') = e; /level 10/

Note that "return-env" is a V-function of level 10.

Deleting an object destroys the object, but does not increase access;

thus the effects are not interesting.

The function "return" destroys an environment (the environment call-

ing "return") and passes capabilities back to the return environment.

return(cc
2 P ... c)

EFFECT: object(e) = FALSE;

imm-access(e) = UNDEFINED;

LET e' = 'returnenv'(e); /level 10/

imm acc([e'l) C 'immacc'([e'l) U {c1 c

Many O-functions have no effect on the security state (e.g., wait,

signal, enter-monitor, exit-monitor). Further work is required on variant

assertions to handle access bits and revocable capabilities, and to produce

a comprehensive list of variant assertions for all the functions in the

system.

8-31

8.7 Conclusions

In this chapter we have made a preliminary attempt to define some

statements that characterize what it means for a system to be secure.

It appears that these statements are satisfied by most of the functions

of the system. The existence of a few exceptions does not mean that the

operating system is insecure, but that either the specifications or the

security statements will have to be slightly modified.

The security statements are organized as five classes of statements,

which if all satisfied mean that the system is totally secure. For the

first two classes we have defined two principles which relate to the al-

teration and detection of information that can be accessed only via capa-

bilities. If these two principles are satisfied, all such information is

guaranteed to be protected. We expect that the system can be proven cor-

rect with respect to these principles.

The third principle relates to the system being secure with respect

to providing service to users. Until we formulate a model of service in

a many-process system, we will not be able to guarantee that there is no

unauthorized denial of service. The fourth principle relates to leakage

of information from one user to another--loss of confinement. The confine-

ment problem is made difficult whenever system resources are available to

all users. In our system, the only channels that seem to permit leakage

are the uniqueid creation mechanism and the observation of the time re-

quired for an operation. Although leakage can take place, it appears that

the bandwidth of such leakage can be determined to be extremely low.

The fifth class relates to ensuring that positive security behavior

is exhibited by the system. A set of assertions has been developed that

describes the changes in the security state for each system function.

Since the third and fourth principles do not relate to the modification

or detection of crucial information in system objects, we say the system

8-32

is secure if the first two principles and the variant assertions are

satisfied.

The proof of security when completed does not in itself guarantee

absolute protection. The security of the system is dependent on the

proper initialization of environments created at login. Also a user's

programs can be in error and thus unintentionally give away capabilities.

However, since the system is completely specified, a user can always de-

termine the effect of giving away a capability to another user.

8-33

__

Chapter 9

MONITORING OF SECURITY AND PERFORMANCE

Monitoring in general has two basic aspects, concerning security and

performance. Although these two aspects are related in considering denial

of service, they are otherwise rather distinct, and thus they are treated

separately here. We consider monitoring of system alterations, monitoring

of performance, monitoring of security in normal operation, monitoring of

security during recovery (if necessary), and monitoring of denial of ser-

vice. Monicoring of performance is related to accounting, resource allo-

cation, and charging. These relations are also discussed.

Monitoring of security has a role in our system similar to that in

most other systems. Traditional auditing of system usage is expected.

However, those properties of the system that have been formally proven

may not require as elaborate monitoring facilities as previously. In

general, monitoring is greatly simplified by the existence of any asser-

tions that have in fact been proven, and by the explicit nature of what

is visible at each system level. As more and more proofs become available

in a given system, corresponding monitoring functions may tend to be sim-

plified.

This chapter is divided into two parts, the first being generally

applicable to systems designed according to our methodology (Section 9.1),

and the second being specifically relevant to the system described in this

report (Section 9.2).

9-1

i

9.1 General Considerations for onitoring Hierarchical Systems

Monitoring in a hierarchical system can be distributed and done at

levels appropriate to the needs for detailed information. There are two

basic modes in which monitoring may occur: monitoring of properties of

the system as a whole, and monitoring of properties of individual pro-

cesses (or of usage of specific users). Either mode may take place

asynchronously by processes devoted to monitoring, or may be done inter-

actively on request - authorized users. Individuals may monitor their

own processes and in certain cases may also monitor other users (e.g.,

users subsidiary to them in a collaborative environment). In general,

monitoring takes place at command level, although in some cases lower-

level monitoring primitives may be used. Monitoring operations are in

no essential way different from other operations in the system, and are

subject to normal access via capabilities. Thus the ability to use moni-

toring operations may be selectively controlled, as desired. In essence,

these operations involve obtaining the states of lower levels (i.e., using

lower-level V-functions), but do not permit any state changes. In this

way, proof that security is maintained despite monitoring becomes extremely

simple in a system structured and specified according to our methodology.

Note that certain state information may have to be made visible external

to a level, in order to implement monitoring. However, such information

is visible only in an abstracted form and then only to higher-level moni-

toring functions. Thus at command level, each unit of abstracted state

information is available just to certain users (e.g., the security offi-

cers in the case of security monitoring).

Whether self-imposed or externally imposed, there are three types of

monitoring:

(Ml) monitoring as a part of the implementation of a function

F being monitored, e.g., by including monitoring arguments

9-2

Chapter 9

MONITORING OF SECURITY AND PERFORMANCE

Monitoring in general has two basic aspects, concerning security and

performance. Although these two aspects are related in considering denial

of service, they are otherwise rather distinct, and thus they are treated

separately here. We consider monitoring of system alterations, monitoring

of performance, monitoring of security in normal operation, monitoring of

security during recovery (if necessary), and monitoring of denial of ser-

vice. Monitoring of performance is related to accounting, resource allo-

cation, and charging. These relations are also discussed.

Monitoring of security has a role in our system similar to that in

most other systems. Traditional auditing of system usage is expected.

However, those properties of the system that have been formally proven

may not require as elaborate monitoring facilities as previously. In

general, monitoring is greatly simplified by the existence of any asser-

tions that have in fact been proven, and by the explicit nature of what

is visible at each system level. As more and more proofs become available

in a given system, corresponding monitoring functions may tend to be sim-

plified.

This chapter is divided into two parts, the first being generally

applicable to systems designed according to our methodology (Section 9.1),

and the second being specifically relevant to the system described in this

report (Section 9.2).

9-1

in the call to and return from the function, or by creat-

ing new effects to the function (explicitly, rather than

as side effects).

(M2) monitoring by enforcing the (synchronous) interposition

of a monitoring operation M upon each invocation (or upon

selected invocations) of a function F to be monitored.

The interposition of M does not alter the implementation

of the function F, but may examine the arguments of the

call and the arguments of the return. One simple way such

interposition may be achieved is by introducing monitoring

functions as exception-handling routines, and explicitly

triggering the corresponding exception conditions as re-

quired. Furthermore, a particular monitoring operation

may be allowed to gain control on the occurrence of any

exception whatsoever. This monitor could then be a uni-

fied and combined first-level handler for recovery, secur-

ity monitoring and performance monitoring.

(M3) monitoring by a separate monitoring operation, typically

asynchronous to the function(s) being monitored, whether

external to or within any process(es) being monitored.

These three cases are summarized in Table 9.1.

9.1.1 Monitoring of Security for System Alterations

In general, it is assumed that, prior to their installation,

all would-be system changes are proven to be consistent with the desired

properties of the existing system. It is further assumed that there is

a rigorous, and rigidly enforced, protocol on the part of the system and

its administrators, guaranteeing that each would-be alteration has been

proved or otherwise deemed worthy of installation, that the version

9-3

Table 9.1

SUMMARY OF THE THREE TYPES OF MONITORING OPERATIONS M

WITH RESPECT TO A FUNCTION OR SET OF FUNCTIONS F

Type With Respect to F With Respect to "call F" and "return"

Ml Internal to F Internal to "call F" and "return"
Usually visible to F* Synchronous with F

M2 External to F Internal to "call F" and "return"
Invisible to F Synchronous with F

M3 External to F External to "call F" and "return"

Invisible to F Usually asynchronous with F

Ml may be invisible to F's source code via an interpreter or a
compiler.

M3 may be synchronous with F via external locking.

installed is in fact the proved version (rather than a forgery), and that

any necessary reinitialization of the system to accommodate the alteration

is itself correct. This can be achieved by using special directories or

directory-like objects for system alterations, and by doing all alterations

by a single command (e.g., "alter_system"), accessible only to the security-

officer-for-alterations. (Note that the capability mechanism makes it pos-

sible to prevent unauthorized alterations, and to prove that they are im-

possible.) In some cases,of course (e.g., where the lower levels are

themselves being changed), system alterations cannot be made while the

system is itself in control. (See Chapter 10 for a discussion of hierar-

chical reinitialization during and after alteration.) In any event, system

changes that affect all users should never be installed while the system is

available to normal users.

9-4

In general, it is desirable that the mechanisms for effecting

system alterations be uniform, irrespective of whether they are done in a

no-user bootstrap-generated system, in a one-user restricted-access system

(the security officer alone), or in normal operation. Thus the role of

hierarchical alteration should be closely related to hierarchical initial-

ization.

Note that changes by a user affecting only himself or a class

of subordinate users are not covered by the above discussion. However,

the protocols above are of course available to the developer(s) of a sub-

system, to assure that their alterations are similarly controlled.

It is important to note that debugging of new system versions

can in many cases be done compatibly on the existing system, as in a par-

titioned system, just as if user programs were being debugged. In certain

cases involving the debugging of the lowest levels, a separate system (in

space or time) must be used. However, in no case should debugging of sys-

tem changes be permitted in a mode that changes the live system for all

users.

9.1.2 Monitoring of Performance

Monitoring of performance is closely related to monitoring of

security in terms of its implementation, but very different in its intent

and information requirements.

Examples of performance monitoring include:

* real time elapsed during execution (e.g., during a

command, or during a request within a command)

0 chargeable units expended during execution

* measures of overhead attributable to certain classes

of system functions (e.g., linkage faults, page faults)

9-5

0 measures of relative execution attributable to differ-

ent procedures, user-created and/or system-supported,

or instructions

0 measures of input-output performance

* measures of process thrashing for the system

* measures of page thrashing for the system, or for a

particular subset of processes

0 trace of linkage faults for a process

* trace of page faults for a process

• trace of occurrence of various classes of events.

Integrally related to performance monitoring are issues of

accounting and charging for resource usage, and any restrictions on re-

source allocation that may ensue. Numerous examples of such restrictions

involve a command being rejected or a user being interrupted due to a quota

being exceeded (e.g., the maximum number of creatable processes, the maxi-

mum size of a directory, the maximum number of directories, the maximum

execution time expended on a given command or operation).

As noted below in the discussions of security monitoring, such

performance issues may be relevant to security, especially where denial of

service is concerned. Furthermore, monitoring information must not violate

security, e.g., supposedly hidden information must remain hidden.

9.1.3 Monitoring of Security Under Normal Operation

As noted above, monitoring for violations is not needed whenever

the desired security is clearly covered by proved assertions for the operat-

ing system and other software, except insofar as hardware unreliability is

concerned. However, monitoring of usage patterns is still desirable. For

user applications, and for heavily used subsystems that are unproved,

9-6

monitoring functions can be provided as a part of the program, using

monitoring functions supported by the system itself. Thus monitoring may

play an important initial role in a new piece of software, a role that

will diminish as proofs are made.

Examples of things that might be monitored include

" excessive attempts to login as a particular user,

or to login from a particular terminal

" excessive attempts to use other mechanisms requiring

special authorization (e.g., changing the working

directory)

" status of system parameters visible to the security

officer

• occurrence of certain exception conditions

" attempts to cause denial of service (see Section 9.1.4)

* use of certain time-critical functions that must be

maintained (for special users) during recovery (see

Section 9.1.5)

" an audit trail of all logins, logouts, with user and

terminal identification

" who is currently logged in, and what function they are

executing (e.g., by symbolic procedure name)

* a trace of working directories (or attempts to change

working directory) for a given process

• a trace of every procedure call for a particular process

" a log of all operator requests

* detection of resource usage patterns indicating potential

9-7

Under correct operations, certain statically proved properties

will of course be satisfied. However, the detection of abnormal behavior

can be facilitated by certain monitoring activities. Examples correspond-

ing to the four principles of security are

" detection of unauthorized acquisition,

" detection of unauthorized modification,

* detection of denials of service,

" detection of loss of confinement.

In many cases this detection may be derived from more primitive testing

of correct system behavior, and prevented before the security violation

occurs--for example through the hardware and software redundancy of fault-

tolerant design.

9.1.4 Denial of Service

In general, denial of service may be attempted in many ways,

either by a single user or in collaboration with others. It may affect

service to all users, or just specific users. It may cause a mild incon-

venience, or may increase in seriousness to prohibit totally the use of

any resources (e.g., processing, memory, input-output).

At certain places in such a multi-dimensional spectrum, denial

of service becomes a security violation, and thus is of concern here. It

may be made possible by a security violation not otherwise considered to

be harmful (because it does not permit the unauthorized acquisition or

modification of information), e.g., if a user can fill up a critical sys-

tem table by creating certain objects ad nauseam. However, this example

is clearly one that can be avoided by good design. In general, there

should be adequate quotas on the use of each type of resource to prevent

denial of service by saturation. Nevertheless, abnormal resource usage

should be monitored.

9-8

It is also necessary to interrelate the usages of various

types of resources, to prevent deadlocks involving multiple resources

and resulting cases of denial of service (e.g., as a result of having

deadlocks in critical system tables). Thus designing against deadlocks

is important as are monitoring of their occurrence and recovering there-

from. Although there is much research on this problem (e.g., Dijkstra

[68a], Habermann [69]), the problem is by no means solved in general.

The use of a hierarchical design permits the generic proof that no dead-

locks can occur between levels (again, Dijkstra [681 and Habermann r69]).

However, specific proofs that no deadlocks can arise within a level are

still required to guarantee avoidance of this type of denial of service,

unless detection and backtracking can be guaranteed to work--which may be

still more difficult. In general, a combination of good design, monitor-

ing for deadlocks, and recovering from deadlocks seems desirable.

A somewhat simpler case (actually a special case of the above)

involves making a particular vital resource unavailable (whether to one

user or to all). Thus all lockouts of duration longer than expected should

be monitored.

9.1.5 Security Monitoring During Recovery

In general, as soon as malfunctions are detected, it is desir-

able to block all user processes and to examine what the effects may have

been between the occurrence of any faults and the time of the blockade.

If no damage can have occurred, all processes may be restarted, assuming

successful recovery. If only a subset of processes can have been affected,

all others may be restarted, and further action taken with respect to the

affected processes.

In certain real-time applications, it may be necessary during

recovery to maintain response for certain special processes (e.g., control-

ling special equipment), whenever possible. In these cases, a special

9-9

monitoring mode may be invoked to assure no violations of security. On

the other hand, careful design may in certain cases assure that violations

are so improbable as to make this monitoring mode unnecessary. For the

present we are not concerned with real-time operation (although we have

not excluded it), and thus we have not pursued the problem of maintaining

secure response during recovery any further. Nevertheless, it can be a

significant problem in certain environments.

9.2 Monitoring in the Operating System

The foregoing of course applies directly to the system described here.

Monitoring exists at each level, and results in values of various existing

or additional V-functions being available in certain ways. In general, the

occurrence of any exception condition for any O-function or V-function may

be monitored. In addition, monitoring derived V-functions may be provided

to represent desired monitoring information.

In the system described here, capabilities provide the basis for

specifying who has access to what monitoring information, and when. How-

ever, access to lower-level capabilities is forbidden. Specifically, it

must be guaranteed that no capability can be obtained via monitoring by

which the state of a lower level could be changed. Thus monitoring--whether

of security or performance--can be readily shown not to compromise system

security. Note that most monitoring (whether on-line or off-line) is re-

quested at command level, although lower-level monitoring functions (V-

functions) are of course invoked. The design of monitoring commands is

not included here, although various commands will exist to serve the func-

tions outlined generally in Section 9.1. Exemplary monitoring functions

of lower levels that are related to security are given in Table 9.2.

9-10

Table 9.2

LOWER-LEVEL MONITORING FUNCTIONS RELATED TO SECURITY

Level 7 Detection of the creation by a single process of an

or above inordinate number of objects, e.g., segments, direc-

tories, objects, or revocable capabilities.

Level 4 Detection of the occurrence of the exception condition

and above NOABILITY(c, "ability"), for any desired function.

Level 3 Detection of errors in secondary storage maps (e.g., two
uid's pointing to the same physical storage, or to none!)

Level 0 Detection of any reuse of unique identifiers, e.g., due
to a malfunction of the system clock or uid counter, or

an improper recovery. Monitoring of corrected memory

errors, e.g., resulting from error-correcting codes in
memory. (Note that a multiple error in a single-error

correcting code can produce an apparently correct word.)

9-11

Chapter 10

SYSTEM INITIALIZATION, BACKUP, AND FAULT RECOVERY

A hierarchical system is considered to be properly initialized if

each level can support all higher-level functions. In terms of the ab-

stract machine specifications of Appendix A, the value of each V-function

should be the specified initial value (in general UNDEFINED). Each level

will contain initialization operations (not discussed here) that are used

only during initialization. In general, each of these operations is im-

plemented just as any other operation, using only lower-level operations.

Initialization begins at level 0, proceeding upward one level at a time.

Recovery from faults is similar to initialization. In this section,

we consider only hardware faults. For each valid state of an abstract

machine, a set of consistent states (recovery states) can be described.

If a fault occurs, an abstract machine can be placed in one of its recovery

states by recovery procedures within the abstract machine. Part of these

recovery procedures may involve calling upon lower-level abstract machines

to put themselves into a recovery state. For a given abstract machine,

there is an ordering among recovery states that corresponds to varying

degrees of failure. For levels with large data bases (e.g., level 4),

the initial state is not a satisfactory recovery state. As a result,

recovery procedures at these levels seek to minimize the data loss. In

our system, object backup exists solely at level 4 (in terms of segments),

and is similar to the incremental techniques used in Multics. Recovery

at lower levels is relatively simple.

If a level is implemented in hardware, its recovery procedures may

involve reconfiguration of the resources available at that level. Rele-

vant fault detection and reconfiguration techniques are discussed in Neumann

(721 and Neumann et al. [73].

10-i

The functions for initialization, backup, and fault recovery are not

included in this presentation of the design. Some of the low-level func-

tions may in fact be implemented in hardware.

10-2

Chapter 11

CONCLUSIONS

There are many positive conclusions emerging from the work reported

in the preceding chapters. There is also much future work needed to pro-

vide a definitive evaluation of this work. However, in general, the ap-

proach and the results are both very promising. Various conclusions are

noted throughout the report, e.g., at the end of Chapter 1. The most

notable conclusions are as follows:

0 The methodology has contributed greatly to the system design,

and can contribute similarly to future work--both on this sys-

tem and on others. The methodology contributes to the entire

spectrum of system development, including design, implementa-

tion, debugging, integration, maintenance, optimization, evo-

lution, and management, as well as to proving properties of

a system designed according to the methodology. (Early efforts

on a related project at SRI for NASA-Langley show that the

methodology is directly applicable to the design of an ultra-

reliable airborne computing system, where properties of the

fault-coverage of the system are to be proven.)

a The system design given here has enormous potential for future

applications where security is crucial. In particular, the

design seems well suited to the efficient solution of special

security problems that have been difficult to solve on exist-

ing systems. It also has use where security is merely one of

a set of system requirements (security, fault-tolerance, effi-

ciency, flexibility, generality, ease of use, etc.). The sys-

tem appears to be realistically implementable.

Il-i

* Further work is needed to demonstrate the feasibility of

efficient hardware implementation of the system, to verify

that the system is in fact secure in the desired senses,

and to evaluate the system's applicability for various

security applications.

11-2

REFERENCES

Cited

Bell and LaPadula[74] D. E. Bell and L. J. LaPadula, 1-25, C-I

Secure Computer Systems: Mathematical Foundations

and Model, MITRE Corp., Bedford, MA (September

1974).

Bisbey and Popek[74] R. L. Bisbey II and G. J. Popek, 2-1, 2-3

Encapsulation: An Approach to Operating System

Security, Proc. ACM Annual Conf., pp. 666-675

(December 1974).

Boyer[74] R. S. Boyer, Private Communication, Docu- 1-26

menting an On-Line Proof Checker (December 1974).

Branstad[731 D. K. Branstad, Privacy and Protection in 1-19

Operating Systems, Report of IEEE Committee on

Operating Systems Workshop, Princeton, New Jersey,

Vol. 1, June 12-14, 1972. In IEEE Computer, Vol. 6,

No. 1, pp. 43-46 (January 1973).

Bredt and Saxena[74] T. H. Bredt and A. R. Saxena, 5-20

Hierarchical Design Methods for Operating Systems,

Digest IEEE Computer Society International Con-

ferepce, pp. 153-156 (September 1974).

Burke[741 E. L. Burke, Synthesis of a Software Security 2-2, 2-4

System, Proc. ACM Annual Conf., pp. 648-50

(November 1974).

Cosserat[72] D. C. Cosserat, A Capability Oriented 4-5

Multiprocessor System for Real-Time Applications,

I.C.C. Conference, Washington, D.C. (October 1972).

Cosserat[741 D. C. Cosserat, A Data Model Based on the 4-10

Capability Protection Mechanism, Proc. Workshop on

Protection in Operating Systems, IRIA, Rocquencourt,

France, pp. 35-53 (August 1974).

R-I

Cited

Dennis and Van Horn[66] J. B. Dennis, and E. C. Van 1-12

Horn, Programming Semantics for Multiprogrammed

Computations, Comm. ACM 9, pp. 143-155 (March

1966).

Deutsch[73] L. P. Deutsch, "An Interactive Program 3-15

Verifier," Ph.D. Thesis, University of

California, Berkeley, California (June 1973).

Dijkstra[68a] E. W. Dijkstra, "The Structure of the 1-11, 9-9

THE Multiprogramming System," Comm. ACM, Vol. II,

No. 5, pp. 341-346 (May 1968).

Dijkstra[68b] E. W. Dijkstra, "Co-operating Sequential 1-11

Processes," in Programming Languages, F. Genuys,

ed., pp. 43-112, Academic Press (1968)

Dijkstra[68c] E. W. Dijkstra, Complexity Controlled by 1-11, 3-1,

Hierarchical Ordering of Function and Variability, 3-6

in Report on a Conference on Software Engineering

(Randell and Naur, eds.), NATO (1968).

Dijkstra[72] E. W. Dijkstra, Notes on Structured Pro- 1-11, 3-1

gramming, in Structured Programming (0. J. Dahl,

E. W. Dijkstra, C.A.R. Hoare), Academic Press,

N.Y., pp. 1-82 (1972).

Dijkstra[74] E. W. Dijkstra, "Guarded Commands, Non- 3-14

Determinacy and a Calculus for the Derivation of

Programs," Nuenen, the Netherlands (June 26, 1974).

Elspas et ai.[73] B. Elspas, K. N. Levitt, and R. J. 3-14, 3-15

Waldinger, An Interactive System for the Verifica-

tion of Computer Programs. Final Report, SRI

Project 1891, Stanford Research Institute, Menlo

Park, California (1973).

Fabry[67] R. S. Fabry, A User's View of Capabilities, 1-12, 4-5

ICR Quarterly Report No. 15, ICR, U. of Chicago,
Chicago, Ill., Sec. 1C (November 1967).

Fabry[74] R. S. Fabry, Capability-Based Addressing, 1-12

Comm. ACM 17, pp. 403-412 (July 1974).

R-2

Cited

Feiertag and Organick[71] R. J. Feiertag and E. I. 6-2

Organick, The Multics Input/Output System, Proc.
Third Symp. Operating Systems Principles,

pp. 35-41 (October 18-20, 1971).

Floyd[67] R. W. Floyd, Assigning Meaning to Programs, 3-14
Mathematical Aspects of Computer Science, Vol. 19
(J. T. Schwartz, ed.), American Mathematics Society,

Providence, RI, pp. 19-32 (1967).

Gerhardt and Parnas[73] D. Gerhardt and D. L. Parnas, 3-27
WINDOW: A Formally-Specified Graphics-Based Text
Editor, Computer Science Department, Carnegie-Mellon,

Pittsburgh, Pennsylvania (June 1973).

Glaser et al.[721 E. L. Glaser, The LOGOS System, Session 2-5
of 5 Papers by E. L. Glaser, F. G. Heath, C. W. Rose,

F. T. Bradshaw, S. W. Katzke, DIGEST, IEEE Computer
Society Int. Conf. (COMPCON). San Francisco,

pp. 175-192 (September 13, 1972).

Goldberg[741 R. P. Goldberg, A Survey of Virtual Machine 2-3
Research, IEEE Computer, pp. 34-45 (June 1974).

Graham and Denning[72] G. S. Graham and P. J. Denning, 8-11
Protection--Principles and Practice, Proc. AFIPS SJCC

40, pp. 417-429 (1972).

Habermann[69l A. N. Habermann,Prevention of System Dead- 9-9
locks, Comm. ACM, Vol. 12, pp. 373-377,385 (July

1969).

Hoare[71] C.A.R. Hoare, Procedures and Parameters: An 1-11
Axiomatic Approach, Symposium on Semantics of

Algorithmic Languages. E. Engeler (Ed.) Springer

Verlag (1971), pp. 102-116.

Hoare[72] C.A.R. Hoare, Proof of Correctness of Data Repre- 3-9,3-28
sentations, ACTA Informatica 1, pp. 271-281 (1972).

R-3

Cited

Hoare[74] C.A.R. Hoare, Monitors: An Operating System 1-11,A.2-2

Structuring Concept, Comm. ACM 17, pp. 549-557

(October 1974).

Horning and Randell[73] J. J. Horning and B. Randell, 5-10

Process Structuring, Computing Surveys, Vol. 5,

No. 1, pp. 5-30 (March 1973).

Igarashi et ai.[731 S. Igarashi, R. London, and 3-15
D. Luckham, "Automatic Verification of Programs I:

A Logical Basis and Implementation," Memo AIM-200,

Stanford Artificial Intelligence Lab., Stanford,

California (May 1973).

Janson[74] P. A. Janson, Removing the Dynamic Liner from A.8-1

the Security Kernel of a Computing Utility (Master's

Thesis), MAC TR-132, MIT, Cambridge, Mass. (June

1974).

Jones[73] A. K. Jones, Protection Structures, Ph.D. 1-12

Thesis, Carnegie-Mellon University (1973).

King[69] J. C. King, A Program Verifier, Ph.D. Thesis, 3-15

Carnegie-Mellon University, Pittsburgh, Pennsylvania

(September 1969).

Lampson[69a] B. W. Lampson, Dynamic Protection Structures, 4-5

Proc. AFIPS 1969 FJCC, 35, AFIPS Press, Montvale,

N.J., pp. 27-38 (1969).

Lampson[69b] B. W. Lampson, On Reliable and Extendable 1-12

Operating Systems, Software Engineering Techniques,
NATO Science Committee Working Paper (September 1969).

Lampson[73] B. W. Lampson, A Note on the Confinement 1-12,1-21

Problem, Comm. ACM 16, pp. 613-614 (October 1973). 1-22,2-4

8-27

Linden[74] T. A. Linden, "Capability-Based Addressing 1-21

to Support Software Engineering and System Security,"

Third Texas Conf. on Computing Systems, Austin, Texas,

pp. 8-5-1 to 8-5-6 (November 7-8, 1974).

R-4

Cited

Lipner[74] S. B. Lipner, A Minicomputer Security Control 2-1,2-3

System, COMPCON, pp. 26-28 (1974).

Manna and Pnueli[74] Z. Manna, and A. Pnueli, Axiomatic 3-14

Approach to Total Correctness of Programs, Acta

Informatica. 3, No. 3 (1974), 243-264.

Needham[72] R. M. Needham, Protection Systems and Pro- 1-12,2-2

tection Implications, Proc. AFIPS 1972 FJCC, 41. 4-5
AFIPS Press, Montvale, N.J., pp. 571-578 (1972).

Neumann[72] P. G. Neumann, A Hierarchical Framework 10-1

for Fault-Tolerant Computing Systems, Digest of

IEEE Computer Society Internat. Conf. (COMPCON 72),

pp. 337-340 (September 1972).

Neumann et ai.[73] P. G. Neumann, J. Goldberg, K. N. 10-1

Levitt and J. H. Wensley, A Study of Fault-Tolerant

Computing, SRI Report (July 31, 1973). AD 766974.

Neumann et al.[74] P. G. Neumann, R. S. Fabry, K. N. A-vi

Levitt, L. Robinson, and J. H. Wensley, On the

Design of a Provably Secure Operating System,

Proc. Workshop on Protection in Operating Systems,

IRIA, Rocquencourt, France, pp. 161-175 (August

1974).

Organick[72] E. I. Organick, The Multics System: An 2-2,2-3

Examination of its Structure, MIT Press, Cambridge, 4-5

MA (1972).

Parnas[72a] D. L. Parnas, "A Technique for Software 1-5,3-3

Module Specification with Examples," Comm. ACM 15, 3-8,3-29

pp. 330-336 (May 1972).

Parnas[72b] D. L. Parnas, "On the Criteria to be Used in 1-5,3-3
Decomposing Systems into Modules," Comm. ACM 15, 3-27

pp. 1053-58 (December 1972).

Parnas[72c] D. L. Parnas, "Some Conclusions from an Ex- 1-5,3-27
periment in Software Engineering Techniques," Proc.

FJCC, pp. 325-329 (1972).

R-5

. i , ; I
.. n l II . .*l .. . " " :.: 1

"AD-A088 601 STANFORD RESEARCH INST MENLO PARK CALIF FIG 15/3
A PROVABLY SECURE OPERATING SYSTEM.(U)
JUN 75 P B NEUMANN, L ROBINSON, K N LEVITT OAA83-73-C-14S5

UNCLASSIFIED NL

3ll EEEEElhllEEE
-- EEEE~hEEE
-EllEE.......EhiimEEliI

-- Illll---mE..'--.

I

Cited

Parnas[72d] D. L. Parnas, "Response to Detected Errors in 1-5,3-9

Well-Structured Programs," Technical Report, Depart- 3-27

ment of Computer Science, Carnegie-Mellon University

(July 1972).

Parnas and Siewiorek[72] D. L. Parnas, and D. P. Siewiorek, 1-5

Use of the Concept of Transparency in the Design of

Hierarchically Structured Systems. Technical Report,

Department of Computer Science, Carnegie-Mellon Uni-

versity; Pittsburgh, Pennsylvania (November 1972).

Parnas[74] D. L. Parnas, "On a Buzzword: Hierarchical 1-11,3-27

Structure," Information Processing 74 (IFIP), Vol. 2, 5-11

pp. 336-339, North-Holland Publishing (1974).

Popek and Kline[74] G. J. Popek and C. Kline, The Design 2-1,2-3

of a Verified Protection System, Proc. Workshop on

Protection in Operating Systems, IRIA, Rocquencourt,

France, pp. 183-196 (August 1974).

Price[73] W. R. Price, Implications of a Virtual Memory 3-7,3-27

Mechanism for Implementing Protection in a Family of 4-5

Operating Systems, Ph.D. Thesis Carnegie-Mellon Uni-

versity, Department of Computer Science (June 1973).

Randell[75] B. Randell, System Structure for Software Fault 2-1

Tolerance, Int. Conf. on Reliable Software, Los

Angeles, California, pp. 437-449 (April 1975).

Reboh and Sacerdoti[73] R. Reboh, and E. Sacerdoti, A Pre- 3-21

liminary QLISP Manual, Technical Note 8. Artiiicial

Intelligence Center, Stanford Research Institute,

Menlo Park, California (August 1973).

Redell[74] D. D. Redell, Naming and Protection in Ex- A.4-3

tendible Operating Systems (Ph.D. Thesis UC

Berkeley), MAC TR-140, MIT, Cambridge, Mass.

(November 1974).

Redell and Fabry[74] D. D. Redell and R. S. Fabry, Selec- 1-13,4-11

tive Revocation of Capabilities, Proc. Workshop on 8-19

Protection in Operating Systems, IRIA, Rocquencourt,

France, pp. 197-209 (August 1974).

R-6

Cited

Robinson[73a] L. Robinson, Design and Implementation of a 3-27

Multilevel System Using Software Modules. Technical

Report, Department of Computer Science, Carnegie-

Mellon University, Pittsburgh, Pennsylvania (July

1973).

Robinson[73b] L. Robinson, Hierarchical Proof of TREESORT. 3-24,3-28

SRI unpublished paper (November 1973).

Robinson and Holt[731 L. Robinson and R. C. Holt, Formal 3-27

Specifications for Solutions to Synchronization

Problems. SRI Report, Computer Science Group (November

1973).

Robinson and Levitt[75] L. Robinson and K. N. Levitt, Proof 3-1,3-28

Techniques for Hierarchically Structured Programs, SRI 4-10

(January 1975). Submitted for publication.

Robinson et al.[75] L. Robinson, K. N. Levitt, Peter G. 1-3,2-6

Neumann, A. R. Saxena, On Attaining Reliable Software

for a Secure Operating System, Int. Conf. on Reliable

Software, pp. 267-284, Los Angeles, California (21-23

April 1975).

Rulifson et al.[72] J. F. Rulifson, J. A. Derksen, and R. 3-21

J. Waldinger, QA4: A Procedural Calculus for Intuitive

Reasoning. Technical Note 73, Artificial Intelligence

Center, Stanford Research Institute, Menlo Park,

California (1972).

Saltzer[74] J. H. Saltzer, Ongoing Research and Development 2-2,2-4

on Information Protection, ACM Operating Systems Re-

view 8, pp. 8-24 (July 1974).

Saxena and Bredt[75] A. R. Saxena and T. H. Bredt, A Struc- 5-18

tural Specification of a Hierarchical Operating System,

Proc. 1975 International Conference on Reliable Soft-

ware, pp. 310-318 (April 1975).

Schroeder [72] M. D. Schroeder, Cooperation of Mutually 1-20

Suspicious Subsystems in a Computer Utility, Ph.D.

rhesis, MIT (September 1972). MAC TR-104.

R-7

Amami

Cited

Sevcik et al.[72] K. C. Sevcik et al., Project SUE as a 1-12
Learning Experience, Proc. AFIPS 1972 FJCC, 41, AFIPS
Press, Montvale, N.J., pp. 331-339 (1972).

Simon[62] H. A. Simon, "The Architecture of Complexity," 1-11
Proc. Am. Phil. Soc., Vol. 106, pp. 467-82 (December

1962).

Spitzen[74] J. M. Spitzen, Approaches to Automatic Pro- 3-28

gramming (Ph.D. Thesis), Center for Research in Com-
puting Technology, Harvard University, Cambridge,

Mass. (May 1974).

Sturgis[73] H. E. Sturgis, A Postmortem of a Time-Sharing 1-12
System, Ph.D. Thesis, University of California,

Berkeley (1973).

Waldinger and Levitt[73] R. J. Waldinger, Reasoning about 3-21
Programs, Proc. SIGACT/SIGPLAN Symposium on Principles
of Programming Languages, October 1-3, 1973. Boston,

Massachusetts (1973); also in Artificial Intelligence,
Vol. 5, pp. 235-316 (1974).

Wegbreit and Spitzen[75] B. Wegbreit and J. M. Spitzen, 3-27

Proving Properties of Complex Data Structures, Sub-

mitted for publication (1975).

Weissman[69] C. Weissman, Security Controls in the ADEPT-50 C-I
Time Sharing System, FJCC 1969, pp. 119-133.

Wulf et al.[741 W. A. Wulf et al., HYDRA: The Kernel of a 1-12,2-2
Multiprocessor Operating System, Comm. ACM 17, pp. 337- 2-4,4-3

345 (July 1974). 4-5,A.5-1

R-8

Appendix A

SPECIFICATIONS FOR THE SYSTEM

The structure of the system is outlined in Table 1.1, and discussed

in Chapter 5. The functions visible to the user-interface to the operat-

ing bystem (level 10) are summarized in Table 6.1. This appendix provides

descriptions and formal specifications for all functions visible at the

interface to each level (up through level 10), along with certain non-

visible (hidden) V-functions whose existence simplifies the specifications

of the visible functions. There is one section for each level, including

a written description of the functions at that level and specifications

for that level. The levels are given in order of increasing level number,

Sections A.O to A.10 corresponding to levels 0 to 10, respectively. The

functions specified here are summarized in Tables A.0 to A.1O for levels

0 to 10, respectively. It is recommended that the descriptions preceding

the specifications be read bottom-up, i.e., from A.0 to A.1O. The reader

may then wish to read the specifications in a different order, e.g., top-

down (A.1O to A.O). In that lower levels are more illustrative of pos-

sible implementations than higher levels, some readers may wish to begin

at level 4 and work upward to level 10. In general, those functions form-

ing the usr-visible operating system interface (i.e., Table 6.1) are the

most important functions to be understood.

Specifications for functions relating to establishing special security

environments, to monitoring of security and performance, and to initili-

zation, recovery and fault-tolerance are not included in this report.

The language and notation used for the specifications are given next.

(For further background, see Chapter 3.)

A-i

The module specifications of Sections A.O to A.10 are written in terms

of assertions. The assertion language closely resembles predicate calculus,

so that only its departures from predicate calculus are explained. The

primitive types are integers (i), booleans (b), capabilities (c), unique

identifiers (u), and machine words (w). These abbreviations are used in

lieu of declarations. V-functions may return the distinguished value UN-

DEFINED for some subset of their domain. The compound structures of sets

and tuples also exist. The following primitives apply to sets (where a is

an element and S is a set).

b = a e S (elementhood)

i = cardinality (S) (number of elements in 3)

[aIP(a)} = [the set of all "a" having property P(a)]

[a} = (a set of arbitrary elements each of which is of the

same type as "a").

The following primitives apply to tuples (where a is an element, S is a

set, and T is a tuple):

b = a e T (elementhood)

i = length(T) (length of tuple T)

T = set to tuple(S) (a tuple made from set S)

a = T[i], I < i length(T) (indexing)

[a] = (a tuple of arbitrary elements each of which is of the

same type as "a").

The scope of a variable is limited to the function in which the vari-

able is declared: A variable is declared by either:

(1) being a formal parameter to the function, or

(2) following any of the symbols V, 3, LET, or CHOOSE.

We assume the expressions

Vx(Px) I [Q(x) I and

vx(P(x) D Q(x))

A-fi

to be equivalent, except that in the former expression, the predicate P(x)

must be defined over all x, but the predicate Q(x) need only be defined

for values for which P(x) is true. "LET x = exp" simply defines a new

variable "x" to be replaceable by the expression "exp," in the fashion

of a macro. "CHOOSE x (assertion (x))" selects exactly one value of x

satisfying the properties of "assertion(x)". This is an imperative state-

ment for use in the "EFFECTS" sections of O-functions.

The specifications of a level contain four parts: PARAMETERS, DEFI-

NITIONS, EXCEPTIONS, and FUNCTIONS. The PARAMETERS section contains type

descriptions for names of variables that appear later in the specifications.

Also appearing in the PARAMETERS section are some module values that depend

on the particular instance of the module being implemented (e.g., maximum

segment size). The DEFINITIONS section contains macros global to all of

the functions of the level. The EXCEPTIONS section contains the macro

definitions of exception conditions for the 0- and V-functions of that

level, saving the writer the ordeal of repeating exception conditions

that appear in many functions. All the V-function values in the EXCEPTIONS

apply to values before the call. Names of exception conditions are given

in upper case.

The FUNCTIONS section of a module specification contains the asser-

tions that formally specify each function of the system. Specifications

of HIDDEN V-functions have the following parts: PURPOSE and INITIAL VALUE

(denoted as "INITIALLY"). PURPOSE states the significance of the function

in natural language. INITIALLY is an expression characterizing the initial

value for the function. Non-HIDDEN V-functions have an EXCEPTIONS section

as well. The EXCEPTIONS are assumed to be tested in order; the first one

flagged corresponds to the exception routine invoked. Some non-HIDDEN V-

functions are DERIVED; and these functions have a DERIVATION section, an

expression to state how they can be derived from other (non-DERIVED) V-

functions. The specifications of 0- and OV-functions have many of the

A-iii

same parts as those of V-functions. However, the EFFECTS section is

unique to 0- and OV-functions. The EFFECTS are assertions containing

V-function values before the call (in single quotes: '...') and V-function

values following the return (unquoted). The EFFECTS of an O-function call

are all assumed to occur simultaneously. All V-function values not explic-

itly referenced in the EFFECTS section remain the same for an O-function

call.

In certain low-level 0-Jnctions (namely at levels 0 and 2), a DELAY

section is included specifying that the effects cannot take place UNTIL

the condition given in the DELAY section is satisfied. DELAY implies that

some other process must first act to make the UNTIL condition TRUE. (It

is of course desirable to prove at the given level that the stated condi-

tion must eventually occur.)

Primitive functions of the specification language are also designated

as upper-case letters and symbols, e.g., IF, THEN, ELSE, TRUE, FALSE, LET,

CHOOSE. An asterisk on the right-hand side of an effect section (in an

O-function) is used as an abbreviation for the left-hand-side function in

quotes. If no arguments are given, the arguments are those of the left-

hand side.

Examples:

function(x,y,z) = * + w;

is equivalent to writing

function(x,y,z) = 'function'(x,y,z) + w;

while function(x,y,z) = *(x,y,z+w);

is equivalent to writing

function(x,y,z) = 'function'(x,y,z+w).

A-iv

Certain levels are defined in terms of state representations, whereby

several (hidden) V-functions are collected into a single tuple-valued

function. Although this may put an initial burden on the reader to remem-

ber or look back for the order of the functions in the tuple, it greatly

simplifies the specifications of O-functions. The asterisk convention

also applies componentwise. For example, a triple-valued V-function

"Ifl,f2,f3] = function(x,y)" may appear in an 0-function effect as

function(x,y) = [*,*+3,*],

equivalent to

function(x,y) = ['fl'(x,y), 'f2'(x,y)+ 3, 'f3'(x,y)]

i.e.,

fl(x,y) =*

f2(x,y) = *+3

f3(x,y) = *

Some of the arguments to functions are not explicitly provided by

the caller, but are implicitly provided by the system. Implicit arguments

la" are denoted by angle brackets as "\a>".

As of the present writing, we are still experimenting with various

different styles for specifications. Thus, for example, level 6 uses a

state representation for the set of hidden V-functions associated with

each entry, and treats it as a single tuple-valued hidden V-function.

For other levels, each hidden V-function is specified separately. We

have found many tradeoffs in the various ways of writing specifications.

For example, the style of level 6 seems easiest to write, somewhat harder

to read the first time, but then much easier to read once understood.

An important aspect of this approach is the case with which the de-

si4n can be (and has been) revised. Because each level is specified in-

dependently from other levels, changes in level dependency are easily

handled. Furthermore, most of the design improvements made over the last

A-v

few months (typically involving a single level) have been reflected in

changes of only a few lines in the specifications of one or two functioas.

As of this writing, there may still be inconsistencies in the specifica-

tions, although most of these appear to be notational or stylistic. (For

historical comparability with an earlier preliminary design, see Neumann

et al. [74].)

A-vi

A.0 Level 0: Capabilities, Addressing and Interrupts

Level 0 is the most primitive level specified here. Together with

level 1, it is presumably implemented entirely in hardware. Level 0 han-

dles capability creation, detection of interrupts, primitive address

mapping, and the most primitive functions used by other levels (e.g.,

arithmetic instructions). Indexing and indirection are handled at

level 1 through which level all instructions are executed. When a capa-

bility is created, all access bits are set to i. The derived V-function

"restrict access(c,i)" may be used to change any access bit(s) of the

capability c to 0. When an interrupt is recognized, the machine gets

into an interrupt mode and transfers control to a predetermined location.

The location is determined by the kind of interrupt detected. The inter-

rupt signal is to be sent by an asynchronous device external to the pro-

cessor. The routine beginning at the location to which the control is

transferred is expected to save the current state and transform the in-

terrupt into a signal operation on a condition variable. This routine

operates at level 2. The interrupt system is disabled whenever an inter-

rupt signal is recognized by level 0, and has to be enabled by the inter-

rupt routine after the state is saved. The interrupt system is enabled

in the "normal" mode and disabled in the "interrupt" mode.

At this level, interrupts may be masked and unmasked under program

control. The masks on the interrupts are part of the state of a process.

An interrupt which is masked is recorded, but is not recognized until it

is unmasked.

Primitive Address Mapping

The basic address format is referred to as an offset capability f.

It is applicable only for segments. It is a structure which consists of

the following fields: abilities, uid, page no, displacement, and indirection.

A.0-1

..Ii .. . I......I II:H.. .1 . . '

The syntax for referring to a particular field of an offset capability f

is "field(f)",e.g., abilities(f) means the "abilities" field of the off-

set capability f. The page no field concatenated with the displacement

field is referred to as the offset field. It is permissible to perform

add and subtract operations on the offset field but not on the access or

uid fields. From the offset, the pageno can be extracted by the function

"pageno(offset)". The search of the capmaptable, and the adr maptable

(described below) is performed using the uid and the pageno of an offset

capability.

As an abbreviation, we will write f + i to mean that integer i is

added to the offset part of f.

Level 0 contains two mappings for calculating physical addresses from

segment unique id's and page number. A virgin uid is one that refers di-

rectly to a segment. The first mapping is a capability map, which maps

from revocable id's to virgin uid's (and from virgin id's onto themselves--

for simplicity of specification, although not necessarily in implementation).

The second memory mapping is an address map from virgin id's and page num-

bers to start addresses for the page. This feature allows the handling of

revocation without removing the page entry from the table (and the page

from core). The tables can be implemented by an associative memory, by

core tables, or by a combination of both.

Address Translation

The address translation takes place at level 0, in hardware. It uses

the capmap and adrmap mentioned earlier. The uid of the offset capabil-

itv is matched against the entries in the cap_map. If no match is found,

then the cap-map fault is signaled back. If a match is found, then the

associated entry in the table is the rootid of the object. The adr map

is searched for a match against the root id concatentated with pageno.

If no match is found, then an address-map fault is returned. If a match

A.0-2

~I.

is found, then the associated entry is the starting address of the page

in the main memory. To this address the displacement is added to obtain

the required main memory address.

To insert a page address into the address map, the function enter

adr_map(u,h,adr,bounds) is used. This associates the start address adr

with the page identification pair (u,h) and the address bound for the

page (of interest primarily for the last page of the segment). Here u

is the virgin segment unique id, and h is the page number within segment

u. Boundary checks for addressing beyond the address bound can be made

against bounds(u,h). When the page is removed, delete_adrmap(u,h) is

called. The unique id of the segment first making a page reference is

inserted into the capability map by calling entercap_map(uu,vu). The

usage uid uu is associated with the virgin uid vu. When revocation

takes place all usage uid's for virgin uid u are deleted by calling delete_

capmap(u). All usage uid's must be deleted because level 4 doesn't have

back pointers to determine which uid's should be revoked. Thus, all uid's

are temporarily invalidated and relinking of the valid uid's through level

4 can take place when access is desired.

Address translation takes place when the hardware chains through both

tables to get the desired address. Several errors can occur in address

translation: BOUNDSCHECK, an out-of-bounds address; CAPMAPFAULT, a

missing entity in the capability map; and ADDRESSMAPFAULT, a missing

entry in the address map.

All storage is treated uniformly in this fashion, even if invisible

to higher levels, e.g., as in the case of the level 2 storage which is

invisible to levels 3 and above. Storage for levels below 3 is maintained

in a partition of the maps that, once initialized, is not changed. (This

is not shown in the specifications.)

The functions if level 0 and their specifications are given in

Table A.0.

A.0-3

Table A. 0

FUNCTIONS OF LEVEL 0

Purpose V-Functions OV- and O-Functions

Capa- (c) = hcapset c = create cap

bilities cl restrict access(c,i)

ful = h interrupt set
0 setmask(c)

2

Inter- b = mask(u) reset mask(c)
2

. 0 2
rupts b = interrupt(u) set interrupt(c)

b = mode
0 reset interrupt(c)

2

set mode normal(c)2

ul = entry__capmap(u) enter cap map(uu,vu)

adr = entryadrmap(u,h) delete capmap(u)I

i = bounds(u,h)1 enter_.adrmap(u,h,adr,i)

Address b = h.entryadr(adr)
0 delete adr-map(u,h)

Trans- b = hentry cap(u)
0 set bounds(u,h,i)

1

lation i = available-cap mapspace write(fl,f2)1

(u) = cap-map 1/D/ /no indirection/

[rootid = adr map
1 /D/

i = h read(adr)
0

Note: A superscript denotes the maximum level at which the function is to

be accessible, if such a restriction exists. "/D/" denotes derived
V-functions. "0" denotes a hidden function.

A. 0-4

PARAMETERS FOR LEVEL 0

b: boolean

c: capability (abilities(c)Iluid(c))

u: uniqueid

h: page noI

f: offset capability clloffsetllb /b is ignored at level 0/

/offset = page noil displacement!

i: integer

adr: address in main memory
/0 < adr < max adr/

uu: uid /usage uid!

vu: uid /virgin uid/

DEFINITIONS FOR LEVEL 0

root id(f) = [entry-cap-map(uid(f))Ipage-no(f)1

adr(f) = [entry-adr-map(root -id(f))Ildisplacement(f)J

EXCEPTION CONDITIONS FOR LEVEL 0

INVALIDMASK(fc)): a ci e [c) -) uid(c) 9 interrupt set

INVALIDMASKABILITYtc] ,"a"): a ci c [c) NOABILITIES(cl,"a");

MASKEDdfcI): a ci e [c) -) 'mask'(uid(cl)) =TRUE;

UNMASKEDd(cJ): H cl C [4 'mask'(uid(cl)) = FALSE;

U.NSETTABLE(u): u e 'interrupt set' V 'interrupt'(u) = FALSE;

UNRESETTABLEWu: u e 'interrupt set' V 'interrupt'(u) = TRUE;

INVALID MODE: 'mode' = FALSE;

ENTRYEXISTS(uu): 'entry-cap-map'(uu) = DEFINED;

UNAVAILABLE: 'available < 0;

ADREXISTS(adr): 'Ii-entry-adr'(adr) =TRUE;

UNDEFINED UID(u): 'h-entry -cap'(u) =UNDEFINED;

INVALIDADR(adr): '-'(0 < adr < max-adr);

DEFINEDENTRY(u,h): 'entry-adr'(u,h) = DEFINED;

UNDEFINED_-ENTRY(u,h): 'entry-adr-map'(u,h) = UNDEFINED;

INVALID DISPLACEMENT(i): -1 (0 < ± < max-page-length);

CAPERROR(f): uid(f) 9 'cap-map';

ROOTIDERRORMi: root-ic (i) 0' 'adr -map';

ADR ERROR(f,i): displacement(f) > bounds(root-id(i));

NO ABILITIES(c, "ac"): "ac" 9' 'abilities'(c);

A.0-5

HIDDEN V-FUNCTION (c) h cap-set

PURPOSE: What is the set of all capabilities that have ever existed?

INITIALLY: (unitcap-set

IV-FUNCTION: u = h interrupt set

PURPOSE: What is the set of possible interrupts ?

INITIALLY: (nit ti

V-FUNCTION: b =mask(u)

PURPOSE: Is the interrupt u is masked?

INITIALLY: IF u etinit -i THEN FALSE ELSE UNDEFINED

VISIBLE V-FUNCTION: b = interrupt(u)

PURPOSE: Is an interrupt to be signaled? The interrupt is signaled on

transition from false to true.

INITIALLY: IF u E (init i3THEN FALSE ELSE UNDEFINED

V ISIBLE V-FUNCTION: b - mode

PURPOSE: Is the mode "interrupt"? /TRUE = "interrupt", FALSE = "normal"/

INITIALLY: FALSE

IISIBLE V-FUNCTION: ul = entrycapmap(u)

PURPOSE: value of the cap map entry for the uid u

INITIALLY: Vu [UNDEFINED]

EXCEPTIONS: NONE

VISIBLE V-FUNCTION: adr = entry adr map(u,h)

PURPOSE: value of the adr map entry for the page h of the segment u
segment id, page-id in referred to as the key.

INITIALLY: V(u,h) [UNDEFINED]

A.0-6

VISIBLE V-FUNCTION: i = bounds(uh)

PURPOSE: maximum valid address In the page h of the segment u

INITIALLY: Y(u,h) [UNDEFINED]

IDDEN V-FUNCTION: b = h entry adr(adr)

PURPOSE: Does the main memoryaddress, adr, have an entry in the adr map?

INITIALLY: Vadr[FALSE]

1IDDEN V-FUNCTION: b = hentry-cap(u)

PURPOSE: Is there an entry for the virgin uid u in the cap-map?

INITIALLY: Vu[FALSE]

V-FUNCTION: i = available]

PURPOSE: How many spaces are available in the capmap?

INITIALLY: to be defined later (system dependent)

DERIVED V-FUNCTION: tj=cap map

PURPOSE: What is the set of uid's for which entries exist in the capmaptable?

DERIVATION: (u D entry capmap(u) = DEFINED)

DERIVED V-FUNCTION: !root ia = adr map

PURPOSE: What is the set of rootids for which entries exist in the adr map table?

DERIVATION: (u 3 entry adr map(u) = DEFINED]

HIDDEN V-FUNCTION: i = h read(adr)i

PURPOSE: What is the value in the memory location identified by adr?

INITIALLY: Vadr[UNDEFINED]

PV-FUNCTION c =create. cal

PURPOSE: create a new capability with a new uid, and with abilities ALL.

EFFECT: CHOOSE c, u a [c V 'h.capset';

uid(c) = u;

abilities (c) = ALL;

h_cap set = 'hcap set' + c]

A.0-7

OV-FUNCTION ci restrict access(c,i

PURPOSE: create a capability with restricted abilities (but with same uid as
given). /Note abilities cannot be increaased./

EFFECT: CHOOSE ci 3)[cl e' 'h cap set';

uid(cl = uid(c);

abilities(cl) = abilities~c) A i;

h-cap -set = 'h -cap -set' + ell

/Note duplicate capabilities may thus be created, but are
considered as distinct./

0-FUNCTION: set -mask(tcm,

PURPOSE: to disable interrupts [uid(c)l

EXCEPTIONS: INVALID MASK([c));
INVALID MASK -ABILITY((c3 ,"set- mask");
MASKED(fcl);

EFFECT: Vci E: [ci[mask(uid(c)) = TRUE];

0-FUNCTION: reset mask(cj)

PURPOSE: to enable the interrupts [uid(c)3

EXCEPTIONS: INVALID MASK({ci);
INVALIDMASKABILITYd(c) ,"reset-mask");

UNMASKED({cl);

EFFECT: Vcl E: [mask(uid(ci)) =tFALSE]

PURPOSE: to signal an interrupt and transfers control to a fixed location

LET u = uid(c)

EXCEPTIONS: UNSETTABLE(u)
NO -ABILITY(c,"set interrupt")

DELAY: Imask(u) = TRUE] OR PImode'

EFFECT: mode TRUE;
pc interrupt = u;
interrupt(u) = TRUE;

A. 0-8

1'

FUNCTION: resetinterrupt(c)

PURPOSE: to enable the interrupt to be set

LET u = uid(c)

EXCEPTIONS: UNRESETTABLE(u);
NOABILITY(c,"reset interrupt");

EFFECT: interrupt(u) = false

O-FUNCTION: set mode no rmal(c)

PURPOSE: to enable interrupts, i.e., change from interrupt mode to normal mode

EXCEPTIONS: NOABILITY(c,"set-mode");

INVALIDMODE;

EFFECT: mode = FALSE;

1FUNCTION: enter_ cap map(uu,vu)

PURPOSE: to add an entry to the cap map. The entry will map the usage uid
uu onto the virgin id(root id)-vu. An attempt to add an entry for
an uid uu, that already has an entry will cause an error. An
error indication will also be returned for map overflow.

EXCEPTIONS: ENTRY EXISTS(uu);UNAVAILABLE;

EFFECT: available = 'available' - 1;
entrycap map(uu) = vu;
h_entry cap(vu) = TRUE;

0-FUNCTION: deletecap.map(u)'

PURPOSE: to delete all entries from the capmap, which are mapped onto u.
An attempt to delete undefined entries will cause an error.

EXCEPTION: UNDEFINED UID(u);

EFFECT: Yuu('entry cap map(uu)' = u)
[entry cap-mapTuu) = UNDEFINED;
available-= 'available' + cardinality(uu3];
h entry-cap(u) = FALSE;

A.0o-9

O-FUNCTION: enteradr map(u,h,adr,i)

PURPOSE: to add an entry to the adrmap. The entry will map the page
number h of the segment u onto the main memory address, adr.
An attempt to add an entry for a page that already has an
entry will cause an error, as will an attempt to assign the
same adr to two different pages. The bounds for the page will
be set to i.

EXCEPTIONS: INVALID ADR(adr);

DEFINED ENTRY(u,h);
ADR EXI§TS(adr).

INVALID DISPLACEMENT(i);

EFFECTS: entry adrmap (u,h) = adr;

h entry adr(adr) = TRUE;
bounds(u,h) = i;

10-FUNCTION: deleteadr, map (p-

PURPOSE: to delete an entry from adrmap

EXCEPTIONS: UNDEFINED ENTRY(u,h);

EFFECTS: entry adr map(u,h) = adr
h entry adr(adr) = FALSE;
b;ounds(u,h) = UNDEFINED;

r-FUNCTION: set bounds(u,h,i)

PURPOSE: to set the maximum page displacement for the page h of the segment u

EXCEPTION: UNDEFINED ENTRY(u,h);

INVALID _DISPLACEMENT(i);

EFFECT: bounds((u,h)) = i

O-FUNCTION: write(fl,f2)

PURPOSE: to write the contents of the memory address mapped onto by uid(fl),

into the memory address mapped onto by uid(f2).

EXCEPTIONS: CAP ERROR(fl);

CAP-ERROR(f2);
ROOT ID ERROR(I);
ROOT ID ERROR(2);

ADR ERROR(fl,l);
ADR--ERROR(f2,2);

NO ABILITIES(cl, "read");
NOABILITIES(c2, "write");

EFFECT: hread(adr(f2) = 'h read'(adr(fl))

A.0-10

A.l Level I: Generalized Memory Addressing

Level 1 is an extension of the hardware and handles machine instruc-

tions. Most of the machine instructions will be mapped directly on to

the level below (level 0). The machine instructions that are of special

concern here are indirect load/store, move, push, pop, call, return,

write-out-of, and write-into. These instructions require multiple ac-

cesses to main memory and have to be at a higher level than level 0,

so that they can be interrupted between successive accesses to the main

memory. (Level 0 contains interrupts and single accesses to main memory

as indivisible operations.) The V-functions and 0-functions for address

translation (see Table A.0) at level 0 are replicated at level 1. We now

describe the effective address calculation, using the address translation

in level 0.

Effect Address Calculation

The format for the generalized address of a segment is a = (f 11 x),

where f is an offset capability, f = (c 11 offset I b),

where "c" is a capability, "offset" in the address within

the segment, and "b" is the indirection bit; x is a capa-

bility for an index register.

The contents of the index register are added to the offset part of

f before indirection, indirection taking place if indirection(f) = 1.

Indirection gives a new generalized capability, for which the effective

address calculation process is repeated until no further indirection re-

mains (or the permissible maximum depth is reached). At this point the

ultimate effective address e(a) is obtained.

At this level we consider registers to be memory locations. All

operations consist of transferring the contents of one memory location

to another. Usually one of the memory locations referred to will be a

A.1-I

A.

register. At this level we do not have to specify the number of registers

in our machine. That is decided at implementation time.

We allow many levels of indirection, up to a maximum number of levels,

indirectmax, which is fixed in implementation. A limit on the number of

levels of indirection is necessary to prevent indefinite looping, and to

guarantee that all operations will terminate in finite time. The function

"write (al,a2)" allows the contents of the memory location denoted by the

effective address of a2 to be the same as the contents of the memory loca-

tion denoted by the effective address of al.

The function "move(al,a2,n)" allows the contents of n locations be-

ginning at a2 to be changed to the contents of n locations beginning at

al in a single instruction. This is useful in moving contiguous data from

one place to another.

We assume the existence of two hardware-interpreted stacks, which are

referred to implicitly. One of them is used for passing parameters (and

is called the parameter stack) to procedures and the other (called return

stack) keeps track of the return addresses and other information inacces-

sible to a procedure (i.e., a called procedure can only read or write into

the parameter stack). It can refer to the return stack only via a return

instruction.

The two stacks maintain a data structure for the current procedure

activation called a frame. A frame is a subsegment of the parameter stack

accessible to the current activation (all other stack locations are inac-

cessible). It is delimited by an upper bound and a lower bound. A frame

is used by a procedure activation to receive parameters from its calling

activation, to house local storage, and to pass parameters to procedures

called by the activation. Local maintenance of the frame during the ac-

tivation (besides write-out-of and write-into) is accomplished by the

instructions "push" and "pop"; "push(a,n)" places n entries (from starting

A.1-2

address a) on the stack above the upper bound. The upper bound is in-

creased by n (see Figure A.la). In the illustrations, UB stands for

"upper bound," and LB for "lower bound." The current frame of the stack

is shaded, and old values are in single quotes. The operation "pop(a,n)"

removes n elements from the stack and places them in contiguous locations

starting at a. The upper bound is decremented by n (Figure A.ib).

In order to call a procedure, a program puts the parameters on the

stack using the operation "push". The parameters are now sitting at the

top of the current frame. The instruction "call(a,n)" transfers control

to the location specified by the capability e(a) (with offset = 0), and

changes the lower bound of the stack to the upper bound decremented by n.

This enables the new activation to have a frame consisting of n entries

(see Figure A.ic). "return(n)" changes the lower bound to the lower bound

of the previous frame and changes the upper bound to be n places above the

current lower bound. This means that the bottom n places of the called

environment are returned to the calling environment (Figure A. ld).

The capability for the parameter stack is stored in the register

"p_stack"; the registers "p_stacktop" and "pstack bottom" contain pointers

to the top (upper bound) and the bottom (lower bound) of the parameter stack,

respectively.

The capability for the return stack is stored in the register "r stack",

the pointer to the top of the stack is in the register "rstack top".

The functions of level I and their specifications are given in Table

A.I.

A.1-3

________--4

UB "n
'UB ----

LBLB

Fig. A.Th. Effect of "push(an)" on parameter stack.

'UB' Bn
Fig. A.1b. Effect of "pop(a,n)" on parameter stack.

UB' ---- tB->

LB //////
LB'

Fig. A.lc. Effect of "call(c,fl)"

UB'
FI . Ic. Efe tU

n
1'LB'1

former LB LB 3

Fig. A.Id. Effect of "return(n)"

FIGURE A.1 EFFECTS OF "push", "pop", "call", AND "return"

A. 1-4

Table A. 1

FUNCTIONS OF LEVEL 1

V-functions O-functions

j = h=read(adr) write(al,a2)

j = f read(f) 4 move(al,a2,n)'

J'j II J 2 = a read(f)4 push(a,n)4

pop(a,n)4

call(c,n)

return (n)
2

writeout_of(a,i)4

write into(a,i)4

Note 4" restricted to levels 4 and below.

Parameters for Level 1

J: contents of a memory location

adr: machine address of a memory location

c: capability

f: offset-capability

f = (capability (f) 11 offset (f) I llndirection (f)), where
capability (f) = (abilities (f) I| uld (f)) and
offset (f) = (page no (f) 11 displacement (f))

indirect (f): boolean

offset (f): integer /0 < offset (f) < maximum segment size/

x: index

a: generalized address a = (f 1I x) = f(a) II x(a)

n: integer /stack increment or decrement/

i: integer

A. 1-5

Level 1 Definitions

f + i =(capability(f) IIoffset(f) + i);

indirect(a) = [indirection(f(a) =1);
indexed address(a) = f(a) + 'f read' (x(a));

a + i = indexed address(a)+

root-id(f) = tentry_cap_ map(uid(f)) IIpage_no(f)];
adr(f) = (entry_adr map(root-ii Mf) displacement(f)];

u(a,m) =Vm(D < mn < indirect-max)
IF mn = 0 THEN - -indexed-address(a)

ELSE [IF indirect(u(a,m-l) THEN
indexed -address(a-read(u(a,m-l)
ELSE u(a,in)];

e(a) = u(a, indirect -depth(a)); /effective address!
indirect-depth(a) = miii i 3 (u(a,i) = u~a, indirect-max));

/indirect-max = integer established in hardware/.3

gp-stack = 'f-read'(P-stack) H'f-read'(p_stack-top);
gr stack = 'f read'(r-stack) II'f-read'(r-stack-top);
gp_frame-length = f-read'(p_stack-top) -'f read'(p_stack-bottom)

A. 1-6

Level 1: Exception Conditions

cap _error(f): uid(f) e cap -map;

adr-error(f): root idaf) e adr map;

offset-error(f): displacemeflt~f) > bounds(root-id(f));

overflow(f): offset(f) > maximum segment size

no-ability(f,"a): "a" it abilities(f);

indirect error(u(f,indirect-depth(f)):

-i Ym(O < m < indirect depth(f))
Euid(u(fm)) C cap _map
A root id(u(f,m)) e adr-map
A displacement(u(f,m)) < bounds~entry_adr-map(root_id~u(f,m)))J

indirect-read-error(u(f,k):

-n Vm(O < m < k) no-abilities(U(f,m), "read);

nonpositive(n): n < 0;

move error(f,n):

-- Ym (0 < m < n)
[uid(f) C cap _map
A root id(f+m) e adr-map
A displacement~f+m) < bounds(entry-adr-map(root id(f+m))];

stack -underflowp_stack).

'f read' (p_stack-top) - n < 'f read'(p~stack-bottom);

invalid index(i): - [0 < i < gp-frame-length];

indirection-error~a): indirect-depth (a) = indirect-max;

INVALIDOFFSET(f): offset(f) ;d 0;

(Note: all names of exception conditions should be

upper case throughout.)

A. 1-7

EXCEPTION MACROS:

write-exceptionsl(a)"

Ccap error(a);

adr error(a);
offseterror(a);

overflow(a);
indirect error(e(a)):

indirect read error(e(a));
indirect-error(a)]

write exceptions 2(a):
Fap error(a);

adr error(a);

offseterror(a);

overflow(a);
indirect error(e(a));
indirect read error(e(a)_1);

indirection error(a);
no _abi lities (e (a), "write")]

Level 1: Specifications

V-function: j=h read(adr)l

Purpose: What is the value in the given main memory location:

Initial Value: V adr undefined

Exceptions: None

Derived V-function: j=fread(f)l

Exceptions: cap error(f);

adrerror(f);

Value: h read(adr(f));

Derived V-function: jl j2 a_read(f)

Exception: cap error(f)

adr error(f)

adr error(f+l)

Value: h read(adr(f)) h read(adr(f+l))

A.1-8

0function: write(al,a2)

Purpose: To write the contents of al into a2.
The contents of al remain unchanged.

Exceptions:
write exceptions l(al);
write_exceptions_2 (a2);

Effect:
f read(e(a2)) = 'f read'(e(al));

0,- function: move(al,a2,n) 1

Purpose: To write the contents of ,n locations beginning at al into n
locations beginning at a~l.

Exceptions:
write exceptions_1(al),;
write~exceptions,, (a20;
overflow(e(al) + n)
overflow(e(a2) + n-A);
move-error (e(al),h);
move-error(e(al)),n);

Effect

Vm(0 < m < n)f read(e(a2) + m) ='f read'(e(al) + in);

-function: push(a,n)

Purpose: to push n elements from location a onto the parameter stack.

Exceptions:
write -exceptions 1(a);
nonpositive(n);
no -ability(gp-stack,"write");
overflow(gp stack + n);
move-error(e(a),n);
move-error(gp stack, n);

Effects:
Vm(O < m < n)fread(gp stack + m) ='f read'(e(a) + in)];

f read(p stack top) =*+ n;

A. 1-9

-function: pop(an)

Purpose: to pop n elements from the parameter stack onto location a.

Exceptions:

writeexceptions_2(a);

nonpositive(n);
no ability(gp stack t read");

stack underflow(p stack);

move error(e(a),nT;

move-error(gp stack - n-1, n);

Effects:

Vm(0 < m < n)[f read(e(a) + m) - 'f read'(gp stack - m-1)];
Vm(0 < m < n)[Cf-read(gpstack - -i) = UNDEFINED];
f rea7d(pstack Top) = * - n;

O-function: call(a,n)

Purpose: to increment p stack bottom of the parameter stack by n;
to transfer control to ec'-)to save on the return stack the
old p stack bottom of the parameter stack and the return address.

Exceptions: write exceptionsl(a)

nonposiFlve(n);

stack underflow(gpstack)

offset error(gr stack + 2)

no abilitye ". "call");

Effects: in~alid-offset(e(a));

f read(p stack bottom) = 'f read'(p stack top) - n;

f read(g-_ stack) = 'f read 'program-counter) + 1;
f read(gr stack + 1) = 'f read'(p sJack bottom);

f read(gr stack top) = * + 2;
fCread(program counter) = C;

0-function: re turn(n)I

Purpose: to decrement pstacktop by n;
to restore the old p stack bottom and to return to the
return address stored in the r stack by the corresponding call.

Exceptions:

nonpositive(n);

stack underflow(gp_ stack);

Effects:

f read(p stack-top) = 'f read'(pstack bottom) + n;
f read(gr stack top) = * - 2;
frread(p stack_bottom) = 'f read'(gr stack- 1);
f read(program counter) = 17 read'(gr stack - 2);

A. 1-10

0function: writeinto(a,i)

Purpose: to write the contents of location a into the ith element
(from the top) of the current stack frame.

Exceptions :
write exceptionsl(a);

cap error(gp_stack);
adr error(gp stack - i);
invalid index(i);

Effect:
f read(gpstack - i) = 'fread'(e(a));

function: write out of(a,i)

Purpose: to write the contents of the ith element of the current
stack frame into location a.

Exceptions:

write exceptions_2 (a)
cap_error(gpstack);
adr error(gp stack - i);
invalid index(i);

Effect:
f read(e(a)) = 'fread'(gp stack -i);

I

A. .1

A.2 Level 2. Scheduled Process Manager

Level 2 is in charge of a fixed maximum number of processes. itI
handles 1/0 devices, interrupts,process synchronization, and the system
clock. All interrupts are hidden by level 2, which either handles them

internally or translates them into a signal visible to the level 2 inter-

face. Page faults, linkage faults, overflow, and addressing exceptions

are all traps, which are not handled by level 2. They are all cases of

hardware-detected exceptions, and are discussed in the section on error

handling.

Processes at level 2 are either potentially active or blocked. A

potentially active process may be running (i.e., have a processor assigned

to it) or ready (i.e., eligible to be run by the dispatcher). However,

this distinction (along with the scheduling algorithm) is hidden in the

specifications of level 2. A blocked process may not be assigned to a

processor until it is unblocked. A blocked process may be waiting to

enter a monitor (or critical section), or waiting for a signal from an

1/0 device, the clock, or another process. A process is known at level

2 by its process_id, which can range from 1 to max_process. Process-id's

which are not assigned to a process are available for assignment to pro-

cesses made known to level 2. When a process is stopped, its process-id

becomes available.

A process is defined by a stack segment, and a state. The stack seg-

ment corresponds to the record of activations for the process. Each acti-

vation, created by the hardware call instruction, describes an execution

environment, or domain, for the process. This enables a process to operate

in many possibly disjoint domains during the course of its execution. The

state represents the current values of the processor registers, and must

be saved explicitly when process switching takes place.

A. 2-1

Monitors and condition variables are used for process synchroniza-

tion. A monitor is a critical section of code, in which local variables

pertaining to synchronization can be tested and set. Only one process

can be executing in a monitor at a time. Each monitor may have a number

ot condition variables associated with it. A process may become blocked

on a condition variable by executing a wait on that condition variable.

When a process is blocked on a wait, the monitor is now free to be entered

by some other process. Executing a signal on a condition variable un-

blocks a process waiting on that variable. Unlike semaphores, which re-

cord a V-operation when no process is waiting on a semaphore, a condition

variable is not affected by a signal when no process is waiting. Thus, a

signal is a no-op when there is no process waiting. (See Hoare [74].)

The system clock enables processes to be awakened after a specified

time interval. This is not a real-time capability, because the specifica-

tions indicate that the process will be awakened at some time after the

allotted interval is past, but there is no specification of how soon after

the interval the process will actually get to run. Level 2 also allows

for adding or deleting I/0 devices without stopping the system. Devices

can also be physically switched on and off-line by the operator.

Very little statement is made concerning how processes change their

states as a result of being dispatched. One assertion is that the state

of a process cannot change as long as the process is blocked. The state

of a process can change in an unspecified way when a process is potentially

active. In addition, a process waiting for the system clock may be awak-

ened at some time after it is blocked.

Use of Level 2

Level 2 is used exclusively by the programs on levels 3-10. I/0

drivers operate at level 3; starting and stopping of processes, and use

A. 2-2

of the system clock, is controlled by level 10; and process synchroniza-

tion occurs at all levels.

Level 10 provides scheduling for the large number of processes at

that level, by making processes known and unknown at level 2, according

to a scheduling algorithm. A process is made known to level 2 by calling

"start(cp,st)", where cp is a capability for a process and st is the state

information. The new process is assigned an available process_id, and

assumes a potentially active state. A potentially active process can be

made unknown by calling "stop(cp)", where cp is the process capability.

Note that a process may not be stopped when it is blocked. Furthermore,

a process is not stopped until its activations have popped to a level a

10. In this way level 10 cannot address any activations below itself.

This would violate the correctness hierarchy of the system. For this

purpose, the 0-functions "call" and "return" with the ability to lock

and unlock the process are provided at this level. The functions are

essentially the same as those described at level I (in fact will be im-

plemented using the level 1 functions), except for the locking/unlocking.

Since "stop(cp)" is delayed until process cp is active, level 10

must assume that no level 2 process becomes permanently blocked. This

is ensured by allowing only levels 3-10 to use the level 2 synchroniza-

tion primitives, and levels 3-10 can be proved not to have any deadlocks.

This would also involve a fair scheduling algorithm, because a process can

become permanently blocked with a strict priority algorithm.

A level 2 process can create a monitor by calling "initiate monitor(n)",

which creates a monitor with n condition variables and returns a capability

for it. Similarly, delete monitor(c) deletes the monitor corresponding to

capability c. A monitor can be deleted only when no other process is us-

ing it or waiting to use it. "entermonitor(c,(i0)" is called to allow

process i to enter monitor c, i) is an implicit parameter (i.e., not under

A.2-3

control of the calling program). If a process is in the monitor m (i.e.,

"monitor busy(m)" = TRUE), then the process is blocked and put on the

waiting list for the monitor m (waiting_on monitor(m)). A process leaving

the monitor calls "exit monitor(c,Ki))". Of course, process i must have

been in the monitor to execute this function. If there are one or more

processes waiting on the monitor, one of the waiting processes is unblocked

and allowed to enter.

A process within a monitor can perform operations on the monitor's

condition variables. "wait(m,cv)" allows process i to become blocked on

condition variable cv and put on the waiting list for that condition vari-

able "(waiting oncondition(m,cv)". One process waiting to enter the mon-

itor is also unblocked. "signal(m,cv)", unblocks one of the processes

waiting on the condition variable cv and blocks the signaling process i,

and puts it on the waiting list for the monitor m. The unblocked process

gains access to the monitor m. (Implicit parameters are omitted from the

discussion here.)

A process desiring to receive an interrupt calls the OV-function

receiveinterrupt(c)" where c is the capability for receiving the inter-

rupt and i is the processid. The OV-function "receive_interrupt(c)" re-

turns the old status of the interrupt and changes the status to a null

value. If the status is null, the process is delayed.

The O-function "send interrupt(c,i st)" sets the status of the inter-

rupt c to st and unblocks any process delayed on that interrupt. The

0-function "clear interrupt(c)" sets the status of the interrupt c to null.

The functions of level 2 and their specifications are given in Table

A.2.

A. 2-4

Table A. 2

FUNCTIONS OF LEVEL 2

HIDDEN V-FUNCTIONS 0 and OV FUNCTIONS

(i] = available-set start(cp, st?0

{i) = level-2_processset st = stop(cp# °

st = state(i) c = initiate monitor(n 0

(u) = monitorset delete monitor(c?
0

n = conditions(m) entermonitor(c,(i)f

[i) = waiting_onmonitor)m) exit monitor(c,(iOt °

(i) = waiting_on_condition(m,cv) wait(c,cv,(Oi) °

(i) = blocked signal(c,cv, ()

i = in_monitor(m) addtointerruptset(c? 0

b = monitor busy(m) deletefrom interrupt_set(c

i = process-id(c) i st o- receiveinterrupt(c,(i)t0

t = wake-up-time(i) send interrupt(c,i st,(i) O l

t clock time clearinterrupt(c,(i)?0

(u) = interrupt-set put_tosleep(t, Ki) 0o

i st =i status(u) set clock(t,cW °

(u) = used set call(c,n,(i) 0

j = lock count(i) return (w,<i>) o1

Notes: Superscript indicates highe-q lpvel of accessibility.

" "denotes Implicit argument supplied by the system.

LEVEL 2 PARAMETERS

b: boolean
i: Integer

st: statetuple for a process
i st: state tuple for an interrupt

c: capability / also el, c2, cp/
u: unique._id / also ul, u2, up/
m: unique.id for a monitor

cv: integer / for a condition variable/
t: integer /time/

max-process: maximum number of level 2 processes
start-time: initialization time for level 2
max-monitor: maximum number of monitors
maxcv: maximum number of condition variables in a monitor
st 1: initial state of the initializing process
init set: initial set of interrupt uids.

A.2-5

LEVEL 2 EXCEPTIONS

NO-SLOTS: available-set = EMPTY;

INVALIDPROCESS(i): -'(I < i < max-process) V i e available-set;

NOABILITY(c, "a"): "a" 0' abili ties(c);

INVALIDCAP(cp): process-id(cp) = UNDEFINED;

ALREADY KNOWN(cp): '- (process-id(cp) = UNDEFINED);

TOO MANYMONITORS: cardinality(monitor-set) > max-monitor;

INVALIDCV(n): - (0 < n < max-cv);

INVALID MONITOR(c): u o(monitor-set;

MONITORBUSY(c): monitor-busy(u);

BLOCKEDPROCESSES(c): Hqi a I < i < conditions(u) A -,(waiting on cv(u,i) =EMPTY);

INVALID MONITORPROCESS(c,i): in, monitor(u) #6 i;

INVALIDCONDITION(c,cv): -1 (1 < cv < conditions(u));

INVALID INTERRUPT(c): u 0' interrupt set;

INVALIDCLOCKCAP(c): u P4 clock-uid;

ALREADY IN INTERRUPT SET(c): u e interrupt-set;

A. 2-6

LEVEL 2 SPECIFICATIONS

IDDEN V-FUNCTION: (ij = available_set

PURPOSE: Set of process indentifiers for which no processes exist

INITIALLY: fi) = (2,...,maxprocess)

IERIVED V-FUNCTION: til = level_2_process-seti

PURPOSE: Set of process identifiers for which processes exist at
level 2

DERIVATION: (ii = (i: 1 < i < max-process A i §(available-set)

IDDEN V-FUNCTION: st = state(i)

PURPOSE: State(temporary location contents) for process i

INITIALLY: Vi[(state(i) = IF i = 1 THEN st 1 ELSE UNDEFINED

HIDDEN V-FUNCTION: monitorset

PURPOSE: Set of uids for valid monitors

INITIALLY: EMPTY

rIDDEN V-FUNCTION: n = conditions(m)

PURPOSE: Number of condition variables for monitor with uid m

INITIALLY: Vm: UNDEFINED

IDDEN V-FUNCTION: til = waiting on monitor(m)

PURPOSE: Set of process identifiers of processes waiting on the
monitor with uid m.

INITIALLY: Vm: UNDEFINED

IDDEN V-FUNCTION: til = waiting oncondition(m,cv)

PURPOSE: Set of process ids of processes waiting on the condition
cv of the monitor m.

INITIALLY: V(m,cv): UNDEFINED

DERIVED V-FUNCTION: t il = blocked

PURPOSE: Set of process ids of process waiting on some monitor or
condi ticn variable

DERIVATION: fi: -am(i e waiting on monitor(m)
V acv(i £-wai-ting on condition(m,cv))))

A. 2-7

- - S - i 1m1.*

IDDEN V-FUNCTION: (u) used set

PURPOSE: Set of uids created by level 2

INITIALLY: EMPTY

IDDEN V-FUNCTION: j lock count(i),

PURPOSE: The lock count on process i, which should be zero if a

process is to be stopped at level 2.

INITIALLY: VJ: 0

IDDEN V-FUNCTION: i = in monitor(m)

PURPOSE: The process id of the process currently in monitor m

INITIALLY: Vm: UNDEFINED

rERIVED V-FUNCTION: b = monitor busy(m)

PURPOSE: Is there a process in monitor m

DERIVATION: IV (in monitor(m) = UNDEFINED) ;F . 4 ;-f

IDDEN V-FUNCTION: i = process id(c)

PURPOSE: The process id assigned to process with capability c

INITIALLY: Vc: UNDEFINED

hIDDEN V-FUNCTION: t = wakeuptime(i)

PURPOSE: Time at which process with process index i is to be woken up

INITIALLY: Vi: UNDEFINED

IDDEN V-FUNCTION: t = clock_time

PURPOSE: Absolute time

INITIALLY: start-time

rIDDEN V-FUNCTION: (u) = interrupt set

PURPOSE: Set of uids for interrupts (corresponding to devices etc.)

INITIALLY: init set

A. 2-8

IDDEN V-FUNCTION: i st = i status(u)l

PURPOSE: Status of interrupt with uid u

INITIALLY: Vu: UNDEFINED

D-FUNCTION: start(cp, st)

PURPOSE: To start the process with capability cp and state st. Process

cp is made known to level 2.

EXCEPTIONS: NO SLOTS
ALREADY KNOWN(cp)
NOABILITY(cp, "start")

EFFECTS: CHOOSE i [i O'available set';
available set = *-i;

state(i) : st;

process id(cp) = i]

OV-FUNCTION: st = stop(cp)

PURPOSE: Makes process cp unknown. Returns state of the process cp

EXCEPTIONS: INVALID CAP(cp)

NOABILITY(cp,"stop")

DELAY: UNTIL process id(cp) 0' blocked A lock count(cp) = 0

EFFECT: LET i = processid(cp);

available set = * + i;
state(i) UNDEFINED;
processid(cp) = UNDEFINED;

VALUE: st = 'state'(i)

OV-FUNCTION: c = initiate monitor(n)

PURPOSE: To create a monitor with n condition variables and return
the capability for that monitor

EXCEPTIONS: TOO MANY MONITORS

INVALID CV(n)

EFFECT: CHOOSE c 4 uid(c) = u A abilities(c) = ALL
A [u 0 'used set';

used set * + u;

monitor set = * + u;
conditions(u) = n;

waiting on monitor(u) = EMPTY;
Vi(l < f <"n) (waiting on condition(u,i) EMPTY);
in monitor(u) = UNDEFINEDT

VALUE: c

A. 2-9

41

PM"

0-FUNCTION: delete monitor(c)1

PURPOSE: Deletes monitor with capability c, only if there is no
process in it and there are no processes waiting on any
condition inside the monitor.

EXCEPTIONS: INVALID MONITOR(c)

NO ABILITY(c,"delete")
MONITOR BUSY(c)
BLOCKED-PROCESSES (c)

EFFECT: monitor set = * - u;

conditions(u) = UNDEFINED;
waiting on monitor(u) = UNDEFINED;
Vi(l < 1 < 'conditions'(u)): [waiting on condition(u,i) = UNDEFINED]

-FUNCTION: entermonitor(c, i 1)

PURPOSE: Process i (i is an implicit parameter) desires access to the
monitor with capability c

EXCEPTIONS: INVALID MONITOR(c)

EFFECT: IF - 'monitor busy'(u) THEN in monitor(u) = i
ELSE waiting on monitor(u) = * + i

O-FUNCTION: exit nonitor(c, i

PURPOSE: Called by process i, exiting from the monitor with capability c

EXCEPTIONS: INVALID MONITOR(c)
I NVALI DIONI TORPROCESS (c, i)

EFFECT: IF waiting on monitor(u) = EMPTY
THEN in nonito-(u) = UNDEFINED
ELSE [CHOOSE k3 k E 'waitingonmonitor'(u)

A [waiting on nonitor(u) = *-;

in monitor(u) = ill

O-FUNCTION: wait(c,cv,(i))

PURPOSE: Process i waits on condition cv of the monitor with capability c.
Process i must have been inside the monitor. Access to the
monitor is released

EXCEPTIONS: INVALID MONITOR(c)
INVALID MONITOR PROCESS(c, i)
INVALID--CONDITI ON(c,cv)

EFFECT: waiting on condition(u,cv) * + i;
IF waiting on monitor(u) = EMPTY

THEN in monitor(u) = UNDEFINED

ELSE [CHOOSE i(3 Xe 'waiting on monitor'(u)
A [waiting on-monitor(u) -in monitor(u) =ill

A. 2-10

I
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.

-FUNCTION: signal(c,cv, i)

PURPOSE: Process i, signals condition cv inside monitor u. One of the

processes, if any, waiting on that condition is unblocked and
given access to the monitor u. Process i is added to waiting

on monitor(u).

EXCEPTIONS: INVALID MONITOR(c)

INVALID MONITOR PROCESS(c,i)

INVALIDCONDITION(c,cv)

EFFECT: IF "1 (waiting on condition(u,cv) = EMPTY)

THEN [CHOOSE k k e 'waiting on condition(u,cv)

-, [waiting on condition(u,cv) * -

in monitor(u) = k;

waitingonmonitor(u) = * + i]]

FUNCTION- add to interruptset(c)

PURPOSE: Increment the interrupt-set by the new uid represented by c

EXCEPTIONS: ALREADY IN INTERRUPT SET(c)

NO_ABIL''TYV(c:'add") -

EFFECT: interrupt set = * + u

i statusu) = null

1-FUNCTION: delete from interrupt.set(c)

PURPOSE: To decrement the Interrupt set by the uid of c

EXCEPTIONS: INVALID INTERRUPT(c)

NO AB ILTY (c:'delete")

DELAY: UNTIL i status(u) = null

EFFECT: interrupt set * - u;

i status(u) = UNDEFINED

OV-FUNCTION: ist = receive interrupt(c)

PURPOSE: The working process desires to get the current status

of the interrupt with capability c. The process is delayed I
if the current status is null. At the end of the call, the

status is changed to null.

EXCEPTIONS: INVALID INTERRUPT(c)

NOABILiTY (c:' receive")

DELAY: UNTIL I status(u) i null

EFFECT: i status(u) = null;

VALUE: i st = 'i status'(u);

A.2-1:

O-FUNCTION: send interrupt(c,i st)

PURPOSE: To set the status of the interrupt c to i st

EXCEPTIONS: INVALID INTERRUPT(c)

NO ABILTTY(c ,"send")
EFFECT: i status(u) = i st;

O-FUNCTION: clear interrupt(c, i')

PURPOSE: To set the status of the interrupt c to null

EXCEPTIONS: NOABILITY(c,"clear")

EFFECT: i status(u) = null;

O FUNCTION: put to sleep(t)

PURPOSE: Process wants to sleep for t units of time

DELAY: UNTIL clock time > * + t

0-FUNCTION: set clock(t,c)

PURPOSE: To set the clock time

EXCEPTIONS: INVALIDCLOCKCAP(c)

EFFECT: clock time = t;

O-Function: call(c,n,<i))

Purpose: to increment p-stack bottom of the parameter stack by n;

to transfer control to c; to save on the return stack the

old p stack bottom of the parameter stack and the return address.

Exceptions:

nonpositive(n);
stack underflow(gp_ stack)
offset error(gr stack + 2)

no ability(c, "call");

Effects: IF lock c abilities(c) THEN lock count(1) * + I;
f read(p stack bottom) = 'f read'(p stack top) - n;

f-read(grstack) = 'f read'program- counter) + 1;

f-read(gr stack + 1) - 'f read'(p_stack bottom);

f read(gr-stack top) = * + 2;

fread(program counter) =C;

A.2.12

OFukict CiUoli tr w, '.1)Purpose: to decrement p stack top by n;to restore the old p-stack bottom and to return to thereturn address stored in the r stack by the corresponding call.Exceptions:nonpositive(n);stack underflow(gp stack);Effects:f read(p stack top) If 'read'Cp stack bottom) + n;
f read~gr stack top) *-2;

f read(p stack bottom) = f read'(gr stack -1);

f -read(prograzn-counter) ='f-read'(gr stack -2);

IF unlock e abilities(c) THEN lock count(i) * -

A. 2.13

A.3 Level 3: Fixed-VM Segments

Level 3 handles fixed-VM segments. A fixed-VM segment is a segment

whose state is resident in the main memory. In our operating system,

fixed-VM segments are the segments used by level 4 to maintain the state

of the segments used by levels above level 4. Level 4 uses level 3 in

the same manner as level 4 is used by higher levels. Since level 3 man-

ages segments only for level 4, we do not need the revocation mechanism

at level 3. The absence of revocation is the only difference between

the external interface presented by level 3 and that presented by level

4. This level enables level 4 to address its segments as if they were

in the main memory. It is expected that the data base required by level

4 will be so large that it will be uneconomical to keep it permanently in

the main memory, and it will be necessary to use at least a two level store

for them. Level 3 makes this invisible to level 4.

Decisions

1. Segmentation p .es a two-dimensional virtual address

space, with vari-Ohle-sized segments for level 4.

2. Level 3 hides address translation, paging, multi-level

store.

3. Level 3 provides a (small) fixed number of segments.

When a user wishes to create a segment, he calls create_seg(i), which

returns a capability for a new segment of size i. All positions of the

segment are zeroed out, and zero-length segments are permitted. Primitive

memory operations on a segment denoted by c are performed by calling

read(c,j) and write(c,j,i), where j is the displacement and i is the value

to be written. Bounds checks are made for all read and write operations,

by examining a segment's size (seg size(c)). To change a segment's size,

a call is made on change_segsize(c,i). If this means enlarging the segment,

A. 3-1

then zeros fill out the new elements. When the segment is shrunk, the

data in the shrunk portion goes away. Addressing within segment c is

from 0 to segsize(c)-l. A segment is deleted by calling deleteseg(c).

All V-function values containing information about the segment are made

undefined. There are seveial hidden functions, most of them related to

functions already described. "segset" is the set of unique identifiers

which refer directly to segments.

The tunctions externally visible at level 3 are summarized in Table

A.3, and have specifications equivalent to those in level 4 (see Table

A.4 in the next section).

A.3-2

Table A. 3

Functions of Level 3

HI DDEN V-FUNCTIONS DERI VED V-F UNCTIONS

(u) = level_3_set b = seg exists(c) 4

(u) = seg-set -i = seg-size(c) 4

i = h size(u) i = read(c,j) 4

i = h read(u,j)

OV- and 0-FUNCTIONS

c =create segment(i)4 delete segment(c)4

write(c,.I,i)4 change seg size(c,i)4

Note: Superscript indicates the highest level of
accessibility. All visible functions private
to level 4.

LEVEL 3 PARAMETERS

c: capability /also cl,c2 ,cr/

u: unique id /also ul,u2 ,uv/
b: boolean
i,j: integer
max segs: maximum number of segments
max size: maximum size of segments
ALL: "read", "write", "enter"~, "delete"

LEVEL 3 EXCEPTIONS

INVALID SEGMENT(c): seg exists(c) = FALSE
NO ABIITY(c"a"): "a"~ j abilities(c)
INVALID OFFSET(c,-): j > seg size(c)
TOO MAINSEGS: cardinality(seg set) > max segs
INVALID S§IZE(i): - (0 < i < max size)

LEVEL 3 SPECIFICATIONS

HIDDEN V-FUNCIN (u=lel il

PURPOSE: Set of uids ever created through level 3

INITIALLY: EMPTY

A. 3-3

HIDDEN V-FUNCTION: (u) = seg set

PURPOSE: Set of uids for all segments that exist

INITIALLY: EMPTY

HIDDEN V-FUNCTION: i = hsize(u)

PURPOSE: Size of segment u

INITIALLY: UNDEFINED

HIDDEN V-FUNCTION: i = h read(u,j)i

PURPOSE: Returns the value in the jth word of the segment u

INITIALLY: UNDEFINED

DERIVED V-FUNCTION: b = seg exists(c)

PURPOSE: External form of h segexists. True iff the segment
corresponding to c exists

DERIVATION: get uid(c) e seg set

EXCEPTIONS: NONE

DERIVED V-FUNCTIONS: i = seg size(c)

PURPOSE: External form of h size. Size of segment corresponding

to the capability c

DERIVATION: hsize(getuid(c))

EXCEPTIONS: INVALIDSEGMENT(c)

DERIVED V-FUNCTION: i = read(c,d)

th
PURPOSE: The value in the j word of the segment denoted by c

DERIVATION: h read(get uid(c)),j)

EXCEPTIONS: INVALID SEGMENT(c);

NO ABILITY(c, "read");

INFALID OFFSET(c,j)

O-FUNCTION: change seg size(c,i)J

PURPOSE: Change the size of segment denoted by c to i

EXCEPTIONS: INVALID SEGMENT(c);

INVALID SIZE(i)
LET u = get uid(c) -
EFFECTS: h-size(u) =i;

Vr(r < i)[h read(u,r) = UNDEFINED];
Vr(h-size'(u) < r < i)[h read(u,r) = 0]

A. 3-4

0-FUNCTION: write(c,j 1)!

PURPOSE: To write the value i into the j word of the segment
devoted by c

EXCEPTIONS: INVALID SEGMENT(c);
NO ABILITY~c, "write");
INVALIDOFFSET(c, j)

LET u = get uid(c)
EFFECTS: hfread(u,j) = i

OV-FUNCTION: c = create segment(i)

PURPOSE: Returns a capability for a new segment of size i

EXCEPTIONS: TOO MANY SEGS;

INVALIDS§IZE(i);

EFFECT: CHOOSE c(LET u = get uid(c) A abilities(c) =ALL

u j' level 3 set;
level 3 set7 = * + u;
seg set = * + u;
Vr(O < r < 1)[h read(u,r) =01;

h size(u) =i)

[0-FUNCTION: delete- segment(c)

PURPOSE: To delete the segment denoted by c

EXCEPTIONS: INVALID SEGMENT(c);

NOABILI1TY(c, "delete");

LET u =get -u id(c)

EFFECT: seg set = * - u;

b'r(Od < r < 'h- size'(u))[h- read(u,r) UNDEFINED];

A. 3-5

A.4 Level 4: Segments and Revocation

Level 4 handles both segments and revocation. The segment part of

the level provides a systemwide two-dimensional virtual memory with

variable-sized segments. Since the virtual memory will be much larger

than the physical memory, this level hides the possible existence of a

multi-level memory structure, with or without paging. The user can ad-

dress segments for which he possesses capabilities, as if the segments

were in core.

Revocation provides a facility for creating a version of a capability

(a revocable capability), whose power can be revoked by presenting to level

4 the revocable capability with the ability to "revoke." It is possible

to create revocable copies of revocable capabilities; and it is also pos-

sible to create different revocable capabilities for the same original

capability. Thus, the structure of revocable capabilities for an object can

look like a tree, with many levels of indirection, and multiple revocable

capabilities pointing to a single node one level closer to the object. It

is possible to create revocable capabilities for segments, and for extended

objects defined at higher levels than revocation.

The reason why revocation is at level 4 is two-fold. First, the ad-

dress translation mechanism (performed by the hardware using level 1 tables

set by level 4) must know about revocation. Since address translation is

hidden above segmentation, then revocation must be at or below segmenta-

tion. Second, the revocation mechanism itself need not have its own sep-

arate knowledge of memory mapping, and its tables must be paged (because

they could be quite large), so revocation must not be below segmentation

either.

Following is a list of design decisions relevant to level 4:

A.4-1

* Revocation and segmentation are handled at tie same level.

" Segmentation provides a two-dimensional virtual address

space, with variable-sized segments.

* Level 4 hides address translation, paging, multi-level store.

" Revocation makes it possible to create a revocable copy of a

capability (called a revocable capability) whose power can be

revoked by the presentation of the revocable capability with

the ability to revoke.

" Revocable capabilities and object capabilities have different

unique identifiers.

" Multiple revocable capabilities can correspond to the same

object capability.

* A revocable capability can itself be an object capability,

thus enabling many levels of indirection.

" Revocable copies can be made of capabilities for objects

already defined.

* Addresses within a segment c are from 0 to seg size(c) - 1.

The functions of level 4 are summarized in Table A.4. These are

discussed next.

Segments

When a user wishes to create a segment, he calls create seg(i), which

returns a capability for a new segment of size i. All positions of the

segment are zeroed out, and zero-length segments are permitted. Primitive

memory operations on a segment denoted by c are performced by calling

read(c,j) and write(c,j,i), where j is the displacement and i is the value

to be written. Bounds checks are made for all read and write operations,

A.4-2

by examining a segment's size (segsize(c)). To change a segment's size,

a call is made on change_seg_size(c,i). If this means enlarging the seg-

ment, then zeLos fill out the new elements. When the segment is shrunk,

the data in the shrunk portion goes away. Addressing within segment c

is from 0 to segsize(c)-l. A segment is deleted by calling delete

seg(c). All V-function values containing information about the segment

are made undefined. There are several hidden functions, most of them

related to functions already described. "virgin-set" is the set of unique

identifiers which refer directly to segments.

Revocation

When it is desired to get a revocable copy of a capability c, one

must call the OV-function "cr = createrevocablecap(c)", which returns

a revocable capability cr with the "revoke" ability. This capability

is therefore also a revoking capability for itself and its derivatives.

cr is linked to c. A revocable capability may be passed. A restricted

form of it, a non-revoking revocable capability c', may also be obtained

by removing the "revoke" ability. When the owner of cr wishes to revoke

access via use of the capability cr, he calls "revoke(cr)" (with the abil-

ity to revoke), invalidating cr and any capabilities linked to cr (e.g.,

c'), but not affecting capabilities to which cr was linked (e.g., c).

Multiple levels of linking are possible. This is the approach of Redell

174].

An example might be useful (Figure A.2). Suppose c is a segment

capability with uid = u and Read/Write access (RW). Then "create revocable_

cap(c)" produces a revocable capability with uid = ur and access RWK (where

K denotes "revoke" ability); cr is associated with c by linktuple (ur) =

lur,ul. Whenever the owner of cr wants to access the object or the uid

of cr, it is exactly as if c were being presented. "chaseuid(cr)" hides

the uid(ur) of cr, and returns u. Finally, "revoke(cr)" causes revocation,

A.4-3

so that there is no further association between cr and c. Now any attempt

to use cr will result in an error, as if the object corresponding to cr

had never existed.

The functions of level 4 and their specifications are given in Table

A.4. For historical reasons, the arguments are given as capabilities

(with offset), rather than the generalized capabilities defined at level

1. In fact, it is assumed that level 4 will support generalized capabil-

ities.

A.4-4

uid ac
c = create segment(i) c Fu -RW

linktu~leu [u]
cr = create revocable-cap(c) cr IulR~

linktuple(ur) =[ur,u]

chase uid(cr) =ur

=l restrict ac(cr,"revoke") c'I ur RW

revoke~cr) chase uia(c') = ur

linktuple(ur) =UNDEFINED

Figure A.2 REVOCABLE CAPABILITIES AND REVOCATION

Table A.4

FUNCTIONS OF LEVEL 4

HDEN V-FUNCTIONS VISIBLE__V-FUNCTIONS

(u = revocable-set b = seg exists(c)

(U)= inketi =seg size(c)

[u] = linktuple(ul) i = read(c,j)
1= h size(u)I

i headu)u = chase uid(c)

OV and 0-FUNCTIONS reludc

c =create segment(i)7 delete segment (C)7

change seg size(c,i) write(c,j,i)

cr = create revocable-cap(c)'7 revoke(cr) 7

Note: Superscript indicates the highest level of accessibility.

LEVEL 4 PARAMETERS

c: capability /also cl,c2/,cr/
U: unique -id /also ul,u 2 /4ur/
b: boolean
i,j: integer
max segs: maximum number of segments
max size: maximum size of segments
ALL: "tread", "write", "enter", "delete", "revoke"

A.4-5

LEVEL 4 DEFINITIONS

LET u chase -jidic)

LEVEL 4 EXCEPTIONS

INVALID SEGMENT(c): seg exists(c) = FALSE
NO ABILITY(c"a"): "a" --abilities(c)
INVALID OFFSET(c,i): i > seg size(c)
Too MAN SEGS: cardinality(virgin set) > maxsegsINVALID IZE(i): - (0 < i < max size) --

LEVEL 4 SPECIFICATIONS

IDDEN V-FUNCTION: tul = level 4_set ,

PURPOSE: Set of uids ever created through level 4

INITIALLY: EMPTY

r IDDEN V-FUNCTION: (u! = virgin set

PURPOSE: Set of uids for all virgin segments

INITIALLY: EMPTY

IDDEN V-FUNCTION: tu} = revocable-set

PURPOSE: Set of uids for revokable capabilities

INITIALLY: EMPTY

DERIVED HIDDEN V-FUNCTION: fu) = linkset

PURPOSE: Set of valid uids at this level

DERIVATION: virginset U revokableset

IDDEN V-FUNCTION: [u] = linktuple(ul)

PURPOSE: tuple of revocable links for uid ul

INITIALLY: UNDEFINED

A.4-6

HIDDEN V-FUNCTION: i h hsi ze(u)

PURPOSE: Size of Virgin segment u

INITIALLY: UNDEFINED

IDDEN V-FUNCTION: i = h read(u,j)

PURPOSE: Returns the value in the j thword of the virgin segment u

INITIALLY: UNDEFINED

ERIVED V-FUNCTION: b = seg exists(c)

t
PURPOSE: External form of h seg exists. True if f the segment

corresponding to c exists

DERIVATION: LAST(linktuple(g-et uid(c))) e virgin-set

EXCEPTIONS: NONE

DERIVED V-FUNCTION: i = seg-size(c)

PURPOSE: External form of h size. Size of segment corresponding

to the capability c

DERIVED V-FUNCTION: i = read(c,j)

PUROSE Th vaue n te jthword of the segment denoted by c

DERIVATION: h read(LAST(linktuple(get uid(c))),j)

EXCEPTIONS: INVALID SEGMENT(c);

NO ABIITY(c, "read");

INVALIDOFFSET(c,j);

0-FUNCTION: change-seg-size(c,l)

PURPOSE: Change the size of segment denoted by c to i

EXCEPTIONS: INVALID SEGMENT(c);

INVALIDSIZE(i)

EFFECTS: h,_size(u) =;

Vr(r < i)I[h read(u, r) = UNDEFINED);

Vr('hsize'(u) < r < i)[h-read(u, r)0 0)

A. 4-7

0-FUNCTION: write(c,j,i)

th
2PURPOSE: To write the value i into the j word of the segment

denoted by c

'a, EXCEPTIONS: INVALID SEGMENT(c);
T'r," NO ABIL:ITY(c, "write");

INVALIDOFFSET(c, A)

EFFECTS: h read(u, j) i

DERIVED V-FUNCTION: u chae uidh)

PURPOSE: Returns the virgin uid corresponding to the capabilityc

ELSE get-uid(c)

EXCEPTIONS: NONE

DERIVED V-FUNCTION: u =real uid(c)

PURPOSE: Returns the get uid, if the revoking bit is set else

Returns the chase uid

DERIVATION: IF "revoke" 6 abilities(c) V get-uid(c) % linkset

THEN get-uid(c)

ELSE LAST(inktuple(get uid(c)))

EXCEPTIONS: NONE

1V- FUNCTION: c = create-segment(i)

PURPOSE: Returns a capability for a new segment of sizes

EXCEPTIONS: TOO MANY SEGS;
INVALIDSIZE(i);

EFFECT: choose c(LET u = get uid(c) A abilities~c) ALL -"revoke"

u or level 4 set;
level -4 set7= + u;
virgin set = *+ u;
Vr(O < r < i)[h read(u,r) 0 Oi;
linktuple(u) =[QI;
h size(u) =i)

A.4-8

0-FUNCTION: delete-segment(c)

PURPOSE: To delete the segment denoted by c

EXCEPTIONS: INVALID SEGMENT(c);
NOABILITY (c,"de lete")

LET u). =LAST(linktuple(get uid(c)))

EFFECT: virgin set = *-u;

h size(ul) =UNDEFINED;

Vr(O < r < 'h size'(u)) [h read(u, r) =UNDEFINED];
LET z= (y j LEAST(linktuple(y) =u)
revocable7 set = * - z

Vx(x e z)Llinktuple(x) = UNDEFINED]

OV-FUNCTION: cr =create -revocable cap(c)

PURPOSE: Creates a revocable capability for the object represented by c.

EXCEPTIONS: NONE

EFFECT: CHOOSE cr(LET ur =get uid(cr) A
abilities(cr) = 'albilities'(c) J"revoke";
revocable set =* + ur;
linktuple(ur)=

IF get -uid(c) e linkset THEN fur, linktuple(u)]
ELSE [ur,ul;

ur e' level 4 set;
level 4 set =*+ ur)

0-FUNCTION: revoke(c)

PURPOSE: Revokes the use of capability c
EXCEPTIONS: NO ABILITY(c, "1revoke"
LET u= chase tuid(c)

EFFECT: IF Y~ revocable set THEN
[LET z = (u).I u 6 linktuple(ul)'
revocable set = * - z;
Vul(ul 6 z)[linktuple(ul) =UNDEFINED31

A. 4-9

A.5 Level 5: Extended Object Manager

This level handles the creation and deletion of all objects of

extended type, by which we mean all objects above level 4. It is our

intention in the operating system to provide the facility for users to

create new data types. We call the creator of some new type the type

manager, which in turn can pass to other users the right to create ob-

jects of that type, and to manipulate those objects in specified manners.

The type manager will carry out any manipulations of an extended object

on behalf of the user of the object. The purpose of level 5 is to assume

the burden for storing and distributing the capabilities for the objects.

One motivation for having objects of extended type follows from our

goal, and that of other systems (e.g., HYDRA), to provide mechanisms that

permit and facilitate the solution of special protection problems. For

example, Wulf et al. [741 have devised an extended type called BIBLIOGRAPHY,

and some operations that can be performed on bibliographies, namely CREATE,

DELETE, PRINT, APPEND, PRINTWITHOUTANNOTATIONS. Many users can be al-

lowed to create or (when done) delete their own bibliographies. An owner

of a bibliography may allow someone else to append to a bibliography that

he owns, or to allow someone to print out the bibliography excluding pri-

vate annotations, etc. Under no circumstances should a user be able to

copy or modify the programs that perform these operations on bibliographies;

those programs are private to the bibliography manager. Thus a user will

be allowed to create his bibliography and attain all rights to the bibliog-

raphy. He will subsequently call on the bibliography manager to manipulate

the bibliography. Anybody with capabilities for a bibliography can freely

distribute them to others whom he trusts.

An extended object of a type t will be composed of other objects of

type tl, t2, ..., that are more ,rimitive, i.e., the types tl, t2, ...

were created before t. The most primitive object in the system is a seg-

ment, with the attendant operations on a particular segment being (as

A.5-1

described in Appendix A.4) delete, read, write and enter. A BIBLIOGRAPHY

could be composed of two objects: an ALPHABETIZEDLIST to hold the main

items in order, and a segment to hold the annotations. The ALPHABETIZED_

LIST could in turn be composed of several segments. A tree of capabilities

will correspond to the bibliography and its implementation. A capability

cb for the bibliography will be possessed by the owner of the bibliography

and by anyone who is passed this capability. Level 5 will associate with

cb a capability ca for some alphabetized list and a capability sl for a

segment. Also level 5 will associate, say, two segment capabilities s2,

s3 with ca. The possessor of cb will never get to possess ca or sl. In-

stead he will pass cb to the bibliography manager who will, after present-

ing cb and some manager credentials, i.e., the typ manager's capability,

to level 5, be returned ca and sI for access to the alphabetized list and

annotation segment. Since the alphabetized list is not primitive, the

bibliography manager will need to present ca to an alphabetized list mana-

ger who will in turn attain from level 5, after presenting ca, the primi-

tive segment capabilities s2, s3. We call ca and sl the implementation

capabilities for cb, and we call s2 and s3 the implementation capabilities

for ca. Thus our system supports a hierarchy of data types, and enforces

a protection of the implementation of the data type, similar to that asso-

ciated with some structured programming languages, e.g., ALPHARD (Wulf

1741). The intention of this type of structure for objects, is both to

hide implementation details wherever possible, and to provide facilities

for flexible sharing of object-manipulating programs at any level.

The previous discussion has focused on extended objects that are

created by a user. It should be noted that level 5 also manipulates the

capabilities for objects at higher levels (i.e., above level 5) in the

operating system. For example, level 6 is most appropriately viewed as

a directory manager, for objects of type "directory." Thus level 6 will

use level 5 as a repository for capabilities for all directory objects.

A. 5-2

The notion of extended types is thus useful in the general hierarchical

framework of the operating system design.

The following are the important design decisions regarding the use

of level 5 and its relationship to other system levels.

i. All objects created by users will be represented by a dis-

tinguished entry capability within some directory. However,

those more primitive objects which are created solely to

implement some user created object are not represented

within a directory. These lower level objects are "slaved"

to the user object and will disappear when it is deleted.

This means that the implementations for all extended ob-

jects must be created and deleted through level 5.

2. Level 5 is the only structure needed to store implementa-

tion capabilities for extended objects. The managers need

not store these capabilities.

3. The type-manager is "trusted" by any user desiring some

service for his object. Although (by virtue of (2) above)

the type manager need not retain capabilities for user ob-

jects, no system function prevents him from retaining the

capabilities.

4. Level 5's knowledge of an object is in terms of a tree of

capabilities, the leaves of which correspond to capabilities

for segments and the interior nodes of which correspond to

other extended objects. The capabilities for extended ob-

jects will be of the same form as capabilities for, say,

segments: c = luid, access bits]. In the case of a capa-

bility for an extended object, the type manager interprets

the access bits as the ability to perform operations on the

objects. (In the case of segments, there is hardware mecha-

nism to interpret the access bits.)

A.5-3

A;

5. Operations on an extended object can be performed only by

using the type manager's capability. All 0- and OV-functions

at levels 10 and below are assumed to be indivisible. The

extended type managers above level 10 should use the monitor

facilities of level 10 to assure their having exclusive ac-

cess to their data when needed.

6. The creation of new types is handled by the same functions

that create new objects, i.e., instance of a type. Each

type is known to the system as an object of type "type."

7. Revocation of extended objects (and of course segments) is

effected at level 4. A V-function at level 5 (see below)

is available for determining if an object or capability is

invalid because an object has been revoked, deleted, or simply

does not represent an object known to the system.

Level 5 itself can be viewed as the manager of all objects

of type "type", equivalently as the manager of all of the

type managers.

Access rights (abilities) meaningful to the type manager and/or object

managers include:

"create", the ability to create an extended object or a type,

"delete", the ability to delete an extended object or a type, and

"manage", the ability possessed only by the manager of a type,

needed to access or modify implementation capabilities.

Use of Level 5

The primary use of level 5 is in

* creating new extended types

" creating new objects of some type known to the system

A.5-4

.......~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~Wf I i,'.........Ii I ...}I].. :-

" providing a type manager with the implementation capabilities

associated with some object, and

* deleting objects and types.

In order to create a new type, the OV-function "create type(t)" is

called, where t is a capability with uid(t) = ut,* "create" E abilities

(t). A unique type manager's capability t' will be returned to the caller's

environment with "manage" E abilities(t') and "objecttype(t') = tl." The

"name" of the new type will be uid(t') for the lifetime of the type. An

object is created in an initialized form. On the first attempted use of

the object denoted by the capability c, the type manager gets an error

return as the result of the exception condition UNINITIALIZED(c). The

type manager then initializes the object by calling "c = create_implobject"

which creates an implementation object, with capability c. The type manager

can associate any number of implementation objects with an object of its

type. The implementation objects are in turn created uninitialized, and

will be initialized by their type managers. Existing objects may also be

used to initialize an extended-type object by calling "insert implcap."

For any type t' known to the system, any user with a capability t can

create an object of type t', where that uid(t) = t' and "create" E abilities

(t). This is achieved by calling the OV-function "create object(t)." A new

capability c for the newly created object is returned with "objecttype(c)"

= t' and "abilities(c)" = "all" (or the access rights that the type manager

wishes to distribute). If any of these implementing objects is itself not

a segment, then capabilities must be created for implementing objects of

such objects, and so on, until no extended objects other than segments

remain without associated implementation capabilities. An object can be

deleted only by the manager of that object type. Before an object can be

deleted, all objects needed for its implementation must be deleted.

*

Recall that ut is a special integer corresponding to the uid of the mana-

ger of all type managers.

A.5-5

When an operation is requested on some extended object c, it is the

type manager t for that object that actually carries out the operation

on the implementation of the object. Thus the type manager will require

the implementation capabilities for the object, which are attained by the

manager by calling the function "impl_cap(c,t)."

An object c (which could also be a type) is deleted by calling the

function "deleteobject(c)." The effect is to cause "get_implementation_

cap(t',c)," where "t' = typeobject(c)" to become undefined. It is also

required that any extended objects or segments that compose c also become

deleted. Thus each item in the tree of capabilities becomes disassociated

with any implementation capabilities. In the case of deleting a type t,

no objects of that type or objects implemented using that type can be ini-

tialized. Further, when a type is deleted, all objects of that type are

also deleted.

The functions of level 5 and their specifications are given in Table

A.5.

A.5-6

Table A. 5

FUNCTIONS OF LEVEL 5

VISIBLE (DERIVED) FUNCTIONS JABILITIES HIDDEN FUNCTIONS

Vb = exists(c) b = h-exists(u)

i= object_ type(c) i = h object type(u)

b = initializ'ed(c) b = h initialized(u)

[c]= impi cap(cl,c3) [c] = h_ impi-cap(u)

=i h used set

0v c = create-type(cl) 7 "create" E cl

c = create object(cl)7 create"~ e cl

c = create_ impi object "manage" 6 c3

(cl, c2,c3) ~create"~ e ci
O insert-impi-cap(cl,c2,c3) 'manage" e c3

delete_ impl cap(cl,c2,c3) 'manage" 6 c3

7

delete object(cl,c2) manage" e c2

Note 7: This function restricted to levels 6 and 7.

A. 5-7j

LEVEL 5 PARAMETERS

b: boolean

c: capability "also cl etc/

u : uniqueid

i: integer

max ob: maximum number of objects

max impl cap: maximum number of impl -caps

LEVEL 5 DEFINITION

u = chase uid(c) 'also ul, cl; etc /

= all abilities present

ut = uid for type manager /of type"type"/

LEVEL 5 EXCEPTIONS

INVALID OBJECT(u): h exists(u) = FALSE

INVALIDOBJECT(c): exists(c) = FALSE

UNINITIALIZED(u): h initialized(u) = FALSE

UNINITIALIZED(c): initialized(c) = FALSE

NO ABILITY(c, "a") "a" e abilities(c)

INVALID TYPEMANAGER(ut,c): uid(c) ut

INVALIDTYPE(c): object type(c) Z ut

INVAMID MLANAGER(cl,c2): objecttype(c2) Z chase uid(cl)

INVALIDIA1PL_OBJECT(ul,u2): ul u2 /assumes monotonic uids for specification

INVALID_ IMPLCAP(cl,c2): c2 i impl cap(cl) simplicity only, to prevent imple-
VAD -- (c I E (- mentation loop of A implemented

V' iout of B implemented out of A.

INVALID IMPLCAPS(c): implcap(c) = UNDEFINED Alternate approaches are also

possible. /

OBJECTNOTCREATABLE(c):

cardinality(tclexists(c))) > max obj

TOO MANY IMPL CAPS(c)
- cardinality(implcap(c)) > maximpl cap

A.5-8

Table A. 5

FUNCTIONS OF LEVEL 5

VISIBLE (DERIVED) FUTNCTIONS JABILITIES HIDDEN FUNCTIONS

V b = exists(c) b = h exists (u)

i= object_ type(c) i = h object_ type(u)

b =initiali7ed c) Ib = h initialized(uI)

[c]= impi-cap(cl,c3) [c] = h_ impi-cap(u)

{i) =h used set

Ov c = create_ type(cl) 7 'create" E cl

C = create-object(cl) "create" C cl

c = create_ impi-object "manage" E: c3

(cl,c2,c3) "create" e ci

0 insert_ impi cap(cl,c2,c3) "manage" G c3

delete_ impl cap(cl,c2,c3) "manage" e c3

7

delete-object(cl,c2) "manage" 6 c2

Note 7: This function restricted to levels 6 and 7.

A. 5-7

LEVEL 5 PARAMETERS

b: boolean

c: capability 'also ci etc./

U: unique-id

1: integer

max obj: maximum number of objects

max -impi cap: maximum number of impi _caps

LEVEL 5 DEFINITION

u =chase-uid(c) 1also ul, ci; etc./

= all abilities present

ut = uid for type manager /of type"type"/

LEVEL 5 EXCEPTIONS

INVALIDOI3JECT(u) h exists(u) = FALSE

IN VAL I DOBJECT (c): existS(C) = FALSE

UNIN[ITIAL IZED (u): h initialized(u) = FALSE

UN IN ITIALIZED(c): initialized(c) =FALSE

NO ABILITY'(c, "a"): "a" abilities(c)

INVLI[TYEMNAGR~u~c: uid(c) ; ut

IN VALI D TYPE (c) object_type(c) il ut

INVALID) MAINAGER(cl,c2): object_ tvpe(c2) ;Z chase uid(cl)

INVAID_ IMPL_-OB.JECT(ul,ui2): ulI u2 /assumes monotonic uids for specification

I NVA LI D_ IMIPLCAP (cI, c 2): c2 it impl-cap(cl) simplicity only, to prevent imple-

VALI OBECT[c)) '!(c c eist~c) mentation loop of A implemented
VALI_01.IET~tl): 'Id {c: eist~c) out of B implemented out of A.

INVALID IMPLCAPS(c) : impl-cap(c) = UNDEFINED Alternate approaches are also

possible. /

OBJECTNOT_ CREATABLE(c):
cardinality((clexists(c)]b > max obj

TOO - AWWIMPLCAPS(c)
card~inality(impl cap(c)) > max impi cap

A. 5-8

LEVEL 5 SPECIFICATrIONS

HIDDEN V-FUNCTION: b = h exiss-i)

PURPOSE: Does the object exist?

INITIALLY: IF u = ul THEN TRUE ELSE FALSE;

DERIVED V-FUNCTION: b = exists(c)

DERIVATION: exists(c) =h exists(chase uid(c))

EXCEPTIONS: NONE

HIDDEN V-FUNCTION: i = h object type(u),

PURPOSE: Type of the object

INITIALLY: if ii Ut THEN Ut ELSE UN~DEFINED

DERIVED V-FUNCTION: i = object type(c)

DERIVATION: object-type(c) = h-object-type(chase-uid(c))

EXCEPTION: INVALIDOBJECT(c)

HIDDEN V-FUNCTION : b = h initialized(uO

PURPOSE: Is the object initialized'?

INITIALLY: Vu: False

7-1ERIVED V-FUNCTION : b =initialized(c)j

DERIVATION: initialized(c) =h_ initialized(chase uid(c))

EXCEPTIONS: INVALID OBJECT(c);

HIDDEN V-FUNCTION : ti = used set*

PURPOSE: set of uids that were ever known to this level

INITIALLY: Lu mnit) /initial set of uids/

A. 5-9

HIDDEN Y-FIJNMjON: [c] h - ipi_cap(u)

PURPOSE: the tuple of implementation capabilities for the object u

INITIALLY: Y1u: UINDEF IN ED

DERI'VED V-PUNCTION: [c] -~ im0].cap(cl,c3

DERIVATION: imipi-cap(cl) h_ limpi-cap(chase uid(cl))

EXCEPTIONS: INVALIDOBJECT(cl);

UNINITIALIZED(cI);

INVALIDTYPE(c3);

No ABILITY(c3, "manage");

INVALIDMANAGER(c3,cl);

OV-FUNCTION : c = create tvpe(cl)j

PURPOSE: to create a type manager

EXCEPTIONS: INVALIDTYPEMIANAGER(ut,cl);

NO AI3ILITY(cl, "create");

EFFECT: choose c uid(c) = u1 A abilities(c) =ALLI

A u1 J 'used set'

Ar[usedset=*+ u;

h exists(u) =TRUE;

h-object-type(u) ut;

h-iipl-cap(u) = UNIDEFINED;

h initialized(u) FALSE],

return =c;

J

A. 5-10

OV-FUNCTION: c = create object(cl) I

PURPOSE: to create an uninitialized object of type cl,

and to return c as its capability,

with the abilities of c = ALL

EXCEPTIONS: INVALID TYPE(cl); /excludes segments/

NO ABILITY(cl, "create");

OBJECT NOT CREATABLE(cl);

EFFECT: choose c ? uid(c) = u A abilities(c) = LL

A u % 'used set'

A [used set = * + u

h object type(u) = chase uid(cl);

h exists(u) = TRUE;

h initialized(u) = FALSE;

h impl cap(u) =1h;

return =c;

OV-FUNCTION: c = create impl object(cl,c2,c3

PURPOSE: to create an implementation object of type c2 for the object

cl. c is the capability to be returned for the created object

with abilities (c) = "ALL'. c3 is the type manager's capability

for the object cl.

EXCEPTIONS: INVALID TYPE(c2); /excludes segments/

NOABILITY(cl,"create");

OBJECT NOTCREATABLE;

INVALIDOBJECT(cl);

INVALID TYPE(c3);

NOABILITY(c3, "manage");

TOOMANYIMPL CAPS(cl);

INVALID MANAGER(c3,cl);

INVALID IMPL OBJECT(chase uid(c2), objecttype(cl)

A. 5ol

EFFECTS: choose c I uid(c) = u A abilities(c) = ALL

A u e' 'used set'

A (used set = * + u;

h_object type(u) = chaseuid(c2);

h exists(u) = TRUE;

h initialized(u) = FALSE;

h_implcap(u) = [EMPTY]);

A himplcap(chaseuid(cl)) = [., c];

hIinitialized(ul) = TRUE;

O-FUNCTION: insert_ impl cap(cl,c2,c3)i

PURPOSE: to append c2 to the tuple impl cap(cl). c3 is the type manager's

capability for the objects of type Cl.

EXCEPTION: INVALID OBJECT(cl);

INVALIDOBJECT(c2);

INVALIDTYPE(c3);

NO ABILITY(c3, "manage");
TOO MANY IMPL CAPS(1)
INVALID TfWNAGTER(c3, cl);

INVALID_ I MPLOBJECT(object_type(c2), object_type(cl))

EFFECTS: h_ implcap(chaseuid(cl)) [*, c2]; /appends c2 to tuple/

h initialized(ul) = TRUE;

O-FUNCTION: deleteimplcap(cl,c2.c3)

PURPOSE: to delete the implementation capability c2 from the tuple of

implementation capabilities of cl. c3 is the type manager's

capability for the object represented by cl. The object repre-

sented by c2 must have been deleted earlier.

EXCEPTIONS: INVALID OB. IECT(cl);

VALIDOBJECT(c2);

INVALIDTYPE(c3);

NO ABILITY(c3, "manage");

INVALID MANAGER(c3,cl);

INVALID IMPLCAP(cl,c2);

EFFECT: implcap(chase uid(c)) =L* - c2]:

A.5-12

LO-FUNCTION: delete object(cl,c2)

PURPOSE: to delete the object with capability ci. The correspondence

between the object represented capability cland its imple-

mentation capabilities of cimust have been deleted earlier.

c2 in the type managers capability.

EXCEPTIONS: INVALIDOBJECT(cl);

NO ABILITY(c2, "delete");

IN VAL ID- I MPLCAPS(clI) ;

VALID-OBJECT (imp -cap(cl));

I NVALI DTYPE (c 2

IN VAL I DAL A GER (c 2, clI

EFFECT: h-exist(chase-iiid(c)) =UNDEFINED;

hi-object-type(chase uid(c)) = UNDEFINED;

h initialized(chase uid(c)) = FALSE

ti-impi-cap(chase-uid(c)) = UNDEFINED;

IF 'h-object_ type'(chase_uid(c)) =sl THEN

[SEGEXISTS(c) = FALSE

SEGLENGTH(c) = UNDEFINED];

A. 5-13

A.6 Level 6: Directory Management

Level 6 is responsible for the creation and deletion of directory

entries. The functions of level 6 are summarized in Table A.6.

There are two sets of V-functions for level 6: the hidden V-functions,

which are accessible only within level 6, and the visible V-functions,

which are accessible outside level 6. The visible V-functions have as an

argument a capability d for the directory involved, while the hidden V-

functions have the corresponding unique identifier v for that directory.

These are related by the level 4 V-function v = chase uid(d).

Each directory entry consists of a capability c and a symbolic entry

name n by which that capability may be obtained. A given capability may

be represented by several symbolic names, identical or different, in dif-

ferent directories. (The symbolic names in any one directory must of

course be distinct from one another, irrespective of whether they corre-

spond to the same capability or to different ones.) For each capability,

there must be at least one directory entry that cannot be removed from

its directory unless the object has already been deleted. Such an entry

is said to be distinguished. (Other entries for the given capability are

nondistinguished.) The existence of a distinguished entry for each object

helps to prevent the existence of an object for which there is no directory

entry. (See the lost-object problem, and level 7.) Creation is done by

the functions "create distinguishedentry(d,n,c)" or "createentry(d,n,c),"

ucpending on whether or not the entry is to be distinguished. The two

functions are separate (although almost identical), because the use of

"create distinguished entry" is restricted to level 7. Removal is done

correspondingly by the function "remove distinguished entry(d,n)" or bN

"remove entry(dn)," and requires the "remove" ability in d. As noted

above, removal of a distinguished entry is successful only if the object

with the capability c has already been deleted, i.e., via "delete_object(c)"

A.6-1

at level 5 if c is the capability for an extended-type object, or "delete

seg(c)" if c is the capability for a segment. Removal of a nondistinguished

entry has no such restriction.

In addition to the set of abilities [read, write, enter, delete} rele-

vant for segments, each type of extended object has defined a set of abili-

ties relevant to it. (See level 5.) For directories, these abilities are

{list, load, add, delete, remove, getlocks, addlocks, removelocks}.

(Note that some of these may later be made equivalent.) Table A.6 indi-

cates which abilities are required for each of the functions at level 6.

(Note that in a directory capability d, "delete" is the ability to delete

the directory itself; "remove" is the ability to remove entries from the

directory.)

The V-function c = getcap(d,n,k) returns the capability for the

entry named n in the directory with capability d, and succeeds (assuming

no exception conditions) if and only if either the ability "load" is in d,

or the key k fits a lock associated with the entry (or both). Each key k

is a capability (for a null object); each lock is a unique identifier.

The key k fits the lock u if and only if u = chase uid(k). The access

code of k is ignored. The set of locks is obtainable from the V-function

"locks = getlocks(d,n)." The locks may be changed by the 0-functions

"add lock(d,n,k)" and "remove lock(d,n,w)," where w = chase uidlk).

The 0-functions "createdirectory" and "delete directory" are used

exclusively by level 7. The former in turn uses "create object" at level

5 (with type "directory"). The latter deletes a directory object, but

only if it contains no distinguished entries.

The V-function (ni = dir(d) returns the set of entry names contained

in the directory specified by the capability d. It requires the ability

"list" in d. The V-function b = valid dir(d) returns the value "TRUE" if

and only if there exists a directory defined by the capability d. It

A.6-2

requires the "list" ability in d. The V-function b entrydistinguished

(d,n) returns the value "true" if and only if the entry in d defined by n

exists and that entry is distinguished. It requires the "list" ability

in d. Finally, i = dir size(d) returns the number of entries in d. It

requires the "list" ability in d.

Each directory must itself have a distinguished entry in some (higher-

level) directory (except for a directory called the root directory, with

capability "rootcap"). Thus the set of all distinguished entries corre-

sponding to directories forms a tree. An entry may be moved from one di-

rectory to another by the function "move entry(d,n,dl,nl)." However, if

a (non-) distinguished entry is moved, it must remain a (non-) distin-

guished entry. The "moveentry" function may also be used to rename an

entry in a particular directory, e.g., "moveentry(d,n,d,nl)." Note that

move" must be specified as a primitive operation, that is, indivisible

at level 6, in order to assure conservation of distinguished entries.

Moving of the distinguished entry for a directory is not permitted, in

order to guarantee that the directories remain tree structured. (Note:

this may in fact be an unnecessary restriction, in which case it will be

relaxed later.)

A.6-3

0

4-)

M4 -H -H 4

000 0

4- -r4

Z .> b, 0

OV 0V v,0
o4 w~ co w w t.4

r-4 -- -- -11 ?r- -
-4 cc -H ~~4J - 4-) 4 1 .4) 0 - 0 Q .

CC 0d r-4 a) - 4)
-H b 0 rqv (C 4) bfl 0E- a r-~~~I I rI N - - i dk c 4 C d $

00

-4 4J

U. C .0 t4 z ;

4J r.** 'r -W V 02 V1 U W-0: c.0 0o 0 0 C
a2 u~ Q a V.V V - i
4J 4J 4JQ (4C C: k mo 00 4j W, I

C 0 - 4 0 Co0C0 Q) 4)C. 0 -0) V).
0).. 4 4)-4 0 w 0

Z 40 CU 020 02 02d
0

0 OV 0 Q4)
mC 0- Q4') &W r= >)*4 ~ 0 ~ ~ V V 0)O

E 4 .04 -4 4 r.4 $-4 Wf $.4 2. 0 C C
> - -r4:: : -4u E

0) a

00 4
> 0~ 0

0)z

V '-,A. 6-4

LEVEL 6 PARAMETERS

b: boolean

i: integer

C: capability /object/ (also cl)

d: capability /directory/ (also dl)

n: entername (also nl)

u,v,w: uniqueidentifier (also ul, vl, wl)

k: capability /key/

locks: set unique-id

LEVEL 6 DEFINITIONS

v - chaseuid(d) /also vl, dl; directory uid/

c - hget_cap(vn) lalso cl, vl, nl; cap for entry/

u chaseuid(c) /also ul, cl; uid for entry/

w = chase uid(k)

td directory manager's capability

A.6-5

LEVEL 6 EXCEPTIONS

DIR(v): 'hvalid dir'(v) = TRUE;

NO DIR(v): 'hyalid-dir'(v) =FALSE;

ENTRY(v,n): n e 'hdir'(V);

NOENTRY(v,n): n 0' 'hdir'(v);

NOABILITY~d,"a"): Ita" 9' 'abilities'(d);

NOKEYMATCH(v,n,w): w 9' 'hget -locks'(v,n);

NOACCESS(d,n,k): NOABILITY(d,"Itload"11) A NOKEY_-MATCH(v,n,w);

DIRFULL(v): cardinality('hdir'(v)) > maxd;

MOVEFULL(v, vl): [v ; vil A DIRFULL(vl);

DISTINGUISIEDCv,n): 'hentry-distinguished'(v,n) = TRUE;

NOTDISTINGUISHED(v,n): 'hentry-distinguished'(v,n) = FALSE;

OBJECT EXISTS(v,n): 'object exists'(c) = TRUE; /level 5/

ENTRYNOTREMOVABLE(v,n): DISTINGUISHfED(v, n);

DIRNOTDELETABLE(V): IF am Q'hdir (v)) DISTINGUISHED('(,m) = TRUE;

NOTKEY(k); 'get-type'(k) t "key" V INVALIDOBJECT(k);

NOMORELOCKS(v,n): cardinality('h-get-locks'(v,n) > locks-max;

LEVEL 6 EXCEPTION MACROS

NOUSE(d,n,"a"): NO DIR(v);
NO ENTRY~v,l);
NOABILITY(d, "a");

NO-NEW- USE(d,n,"a"): NO DIR(v);
- - ENTRY(v,n);

NO-ABILITY(d, "a");

A. 6-6

LEVEL 6 SPECIFICATIONS

HIDDEN V-FUNCTION: b hvaliddir(v)

PURPOSE: Does the designated directory exist?

INITIALLY: IF v = chase uid(rootcap) THEN TRUE ELSE FALSE

DERIVED V-FUNCTION: b = valid dir(d)

/LET v = chase uid(d), implied throughout level 6/

DERIVATION: valid dir(d) hvalid dir(v),

EXCEPTION: NO ABILITY(d,"list");

HIDDEN V-FUNCTION: c = get-cap(d,rn,k)

LET w = chase uid(k)

EXCEPTIONS: NO DIR(v);

NOENTRY(v,n);
NOTK-Y(k);

NOACCESS(d,n,k); /ACCESS IF "load" OR IF KEYMATCH/

INITIALLY: HIDDEN

HIDDEN V-FUNCTION: b = entry distinguished(d,n) I

EXCEPTION: NOUSE(d,n,"list");

INITIALLY: UNDEFINED

IDDEN V-FUNCTION: locks = get locks(d,n)

EXCEPTIONS: NOUSE(d,n,"gct locks")

INITIALLY: UNDEFINED

DERIVED HIDDEN V-FUNCTION [c,bjwj = h entry(v,n)

PURPOSE: What is the specified entry?

DERIVATION: tuple: [c=h get cap(v,n), b = h entry distinguished(v,n),
w= h__get_locks(v,n))]

A.6-7

!DERIVED V-FUNCTION b = entry exists(d,n)

DERIVATION: IF n G dir(d) THEN TRUE ELSE FALSE;

EXCEPTIONS: NO USE(d,n, "list");

DERIVED HIDDEN V-FUNCTION: n h dirv

DERIVATION: [n B h get cap(v,n) # UNDEFINED)

/Note: The effects on this function are hot specified,
since it is a derived function./

DERIVED V-FUNCTION: tni = dir(d)

DERIVATION: dir(d) = hdir(v) /Derived initial condition:

EXCEPTION: NO DIR(V) hdir(chase uid(root cap) = A /

NO-ABILITY(d, 'list");

[DERIVED V-FUNCTION: i = dir size(d)

DERIVATION: dir size(d) = cardinality(dir(d))

EXCEPTIONS: NO DIR(v);

NO-ABILITY(d,"list");

DERIVED V-FUNCTION: i = lock setsiedn

DERIVATION: cardinality(get locks(d,n))

EXCEPTIONS: NO LSE(dn,"get locks")

O-FUNCTION: create distinguished.entry(d,n,c)_ /hdir(\') = * + n/

PURPOSE: to create a distinguished entry with the given entry name

in the specified directory, for an object with the given

capability

EXCEPTIONS: NO NEW USE(d,n,"add")
DIR_FULL(v) ;

EFFECTS: h entry(v,n) = (c, TRUE, EMPTY) /capability, distinguished, locks/

A.6-8

O-FIUNCTION: remove distinguished entry(d,n)

PURPOSE: to remove a distinguished entry, but only if the

corresponding object has been ddleted.

EXCEPTIONS: NO use(d,n, "remove")

NOT DISTINGUISHED(v,n)

EFFECTS: hentry(v,n) = UNDEFINED

0-FUNCTION: create entry(d,n,c) /idir() * + n/

PURPOSE: to create a nondistinguished entry

EXCEPTIONS: NO NEW USE(d,n,"add")

DIR FULL(v);

EFFECTS: h entry(v,n) = (c, FALSE, EMPTY)

OFUNCTION: removeentry(d,n) ,hdir(n/

PURPOSE: to remove the named nondistinguished -n' ,. ±,m f-tX specified directory

EXCEPTIONS: NO USE(d,n, "remove");

DISTINGUISHED(v,n);

EFFECTS: h entry(v,n) = UNDEFINED

EO-F-CTION: move entry(d,n,dl.nl) /Move or rename/

PURPOSE: to move an entry from one directory to another (or to rename an
entry in the same directory)

EXCEPTIONS: NO USE(d,n,"load" \ "-.> ");
NO NEW USE(dl, nl, "add")
DIR(U) /directories not movable in order to maintain

tree structure/
MOVEFULL(v,vl);

EFFECTS: IF (v = vl) A (n = nl) THEN EMPTY ELSE

Ch entry(v,n) = UNDEFINED;

h entry(vl,nl) i',]

OV-FUNCTION: d = create directory

EXCEPTIONS: OBJECT NOT CREATABLE /level 5/

EFFECTS: CHOOSE d [h valid dir(v) TRUE;
abilities(d) = ALL

A.6-9

IO-FUNCTION: delete directory(d,n) I

PURPOSE: to delete a directory, but only if (d,n) is a distinguished
entry for the directory, which itself contains no distinguished
entries. (The directory d remains unchanged. Removal of the
entry (d,n) is the subsequent responsibility of level 7.)

EXCEPTIONS: NO DIR(v);

NO ENTRY "
NO-ABILITY(c, "delete");
NOTDISTINGUISHED(v,n); /entry for the directory to be deleted/
NO DIR(u); /v is uid of dir to be deleted/
DIR NOT DELETABLE(u); /v contains a distinguished entry/

EFFECTS: hvalid dir(u) = FALSE;

Vm [h entry(u,m) = UNDEFINED];

O-FUINCTION: add lock(d,n,k)

PURPOSE: to add a lock to the lock set
LET w = chase uid(k);

EXCEPTIONS: NO USE(d,n,"add lock'
NO MORE LOCKS(dn)

EFFECTS: h entry(v,n) = (w,);* +

O-FUNCTION: remove lock(d,n,w)

PURPOSE: to remove a lock from the lock set.

EXCEPTIONS: NO USE(d,n,"remove lock");
NO-KEY- MATCH (v, n,w);

EFFECTS: h entry(v,n) = (*,,, w);

A.6-10

A.7 Level 7: User Object Manager

Level 7 exists solely to guarantee that no objects can be lost in

the course of normal operation. (An object created at level 7 or abovw

would be considered lost if there were no capability for it in any direc-

tory.) The operations at level 7 are given in Table A.7. The operation

"create _object(d,n,t)" creates an object of the appropriate tv:., t and

creates a distinguished directory entry n in directory d for which

lie= get cap(n,d)." The operation "delete _object(d,n)" destrovs the

object, and removes its distinguished directory entry. The comparable

operations for segments and directories are similar to this pair of func-

tions, and are separate primarily because they are implemented quite dif-

ferently. (They could in fact be lumped under the more general first pair

of functions by treating segments and directo7ies as ordinary objects.)

Level 7 has no state information beyond that of the lower levels.

That is, while it provides procedure abstraction, it provides no data

abstraction. Thus level 7 is more understandable if "specified" in terms

of the abstract implementations (and the implicit effects on lower-level

V--functions). It is straightforward to replace these abst-,,t implemen-

tations by specifications, first creating V-functions at level 7 identical

to the relevant lower-level V-functions, then inserting the lower-level

specifications for the relevant lower-level 0-functions, and then adding

to the specifications any consistency requirements on internal variables

ke.g., the invariance of the capability c in "create object"). Specifi-

cations for level 7 functions are given in Table A.7.

Functions to create a revocable capability and to revoke are also

included at level 7, reflecting the corresponding level 4 functions, but

assuring that directory entries are also maintained for the revoking form

of all revocable capabilities. Thus revoking capabilities (with the ability

''revoke") are also objects that cannot be lost. This is of value in sim-

,li -inc 4 Level 4.

A.7-1

Table A. 7

LEVEL 7 FUNCTI)NS
OV-FUNCTIONS O-FUNCTIONS

C = create object(d,n,t) deleteobject(d,n)

s = create segment(d,n,i) delete segment(d,n)

dl = create directory(d,n) delete directory(d,n)

ck = create-revocable cap(dk,nk,c) revoke(ck)

LEVEL 7 PARAMETERS

d,dk: capability /directory/

n,nk: entry name

t,td: capability /type manager/

c: capability

key: capability /with no implementation/

LEVEL 7 DEFINITIONS

v = chase uid(d) /also vk,dk; level 5/

c = get cap(d,n) /level 6/

u = chase uid(c) /level 5/

LEVEL 7 EXCEPTIONS

Appropriate exceptions are defined in levels 6, 5 or 4, as indicated.

A.7-2

LEVEL 7 ABSTRACT IMPLEMENTATION SPECIFICATIONS

O-FUNCTION: c = create object(d,n,t)

PURPOSE: to create catalogued object of the specified type

EXCEPTIONS: INVALID TYPE(t,"seg"); /level 5/
INVALID-TYPL(t,"dir"); /level 5/
OBJECT NOT CREATABLE; /level 5/
NO TYPE(t)? /level 5/
NO ABILITY(t, "create"); /level 5/
NO NEW USE(d,n,"add"); /level 6/
DIR FULL(v) /level 6/

EFFECTS (abstract implementation): /level 5/

BEGIN:

c = create object(t); /level 5/
createdistinguished entry(d,n,c); /level 6/

END;

0-FUNCTION: deleteobject(d,n)

PURPOSE: to delete an object and remove its distinguished entry

EXCEPTIONS: INVALID TYPE(c,"dir"); /level 5/
INVALID TYPE(c, "seg"); /level 5/
NO OBJECT(u); /level 5/
NOT DISTINGUISHED(v,n); /level 6/

NO WBILITY(c,"delete"); /level 5/
NO USE(d,n,"remove") /level 6/

EFFECTS (abstract implementation):
BEGIN:

[delete object(c); /level 5/

removedistinguishedentry(d,n)]; /level 6/

O-FUNCTION: s = create segment(d,n,i)]

PURPOSE: to create a catalogued segment of length i

EXCEPTIONS: SEGMENT NOT CFEATABLE; /level 4/
INVALI DSIZE() /level 4/
NO NEW [-SE(d,n,"add"); /level 6/
DIR_ F L(v) /level 6/

EFFECTS (abstract implementation):
BEGIN:

s = create segment(i); /level 4/
create distinguished entry(d,n,s); /level 6/

END;

A.7-3

O-FUNCTION: delete segment(d,n)l

PURPOSE: to delete a segment and remove its distinguished directory entry;

EXCEPTIONS: NO SEG(u) /level 4/
NOT DISTINGUI SED(v,n) /level 6/

NO-ABILITY(c,"delete") /level 4/
NOUSE(d,n,"remove") /level 6/

EFFECTS: (abstract implementation):
BEGIN:

delete segment(c); /level 4/
remove distinguishedentry(d,n); /level 6/

END;

O-FUNCTION: dl=create directory(d,n)

PURPOSE: to create a new directory and catalogue it.

EXCEPTIONS: OBJECT NOT CREATABLE /level 5/

NO NEW--USE(d, n, "add"); /level 6/
DIR FULL(v) /level 6/

EFFECTS: (abstract implementation)
BEGIN:
dl = create object(td); /level 5/

create distinguished entry(d,n,dl); /level 6/
END;

O-FUNCTION: delete directory(d,n)

PURPOSE: to delete a directory and remove the distinguished entry for it.

EXCEPTIONS: NO DIR(u); /level 6/

NOT DISTINGUISHED(v,n); /level 6/

DIR NOT DELETABLE(u); /dir contains distinguished entries/
NO ABILITY(c, "delete") /level 5/
NO USE(d, n, "remove") ; /level 6/

EFFECTS: (abstract implementation)

BEGIN:
delete directory(d,n); /level 6/

remove distinguishedentry(d,n); /level 6/
END;

A. 7-4

OV-FUNCTION: ck = create revocable cap(dk,nk,c)

PURPOSE: to create a revoking and revocable capability and catalogue it

EXCEPTIONS: NO NEW USE(dk,nk,"add") /level 6/

EFFECTS: (abstract implementation)

BEGIN:

cr = create revocable cap(c); /level 4/

create distinguished entry(dk,nk,cr); /level 6/

O-FUNCTION: revoke(dk,nk, key)

PURPOSE: to revoke a revocable capability

LET ck = get cap(dk,nk)

LET ukey = chase uid(key)

EXCEPTIONS: NO USE(dk,nk,"remove"); /level 6/

NOT KEY(key); /level 6/

NO KEY MATCH(vk,nk,ukey); /level 6/

NOABILITY(ck, "revoke"); /level 4/

NOACCESS(dk,nk,key); /level 6/

NOT DISTINGUISHED(dk,nk); /level 6/

EFFECTS: (abstract implementation)

BEGIN:

ck get cap(dk,nk); /level 6/

revoke(ck) ; /level 4/

remove entry(dk,nk); /level 6/

END;

A.7-5

A.8 Level 8: Linkage Maintainer

Level 8 is responsible for the management of linkage sections whose

use provides efficient normal access to objects while also facilitating

symbolic initial access. For each object (e.g., procedure) requiring

symbolic access to other objects (e.g., other procedures, or data), a

linkage template is created (e.g., by a compiler). The linkage template

is then considered to be pure data, and does not change during execution.

Each entry in a linkage template may contain a symbolic name (to be linked

eventually to a capability) or a capability (if prelinking is desired), or

both. When the object is actually to be used, a linkage section is derived

from the linkage template. (Note that a linkage section need not be created

if the linkage template is completely prelinked.) For any intended sym-

bolic access for which no linkage exists in the linkage section (causing

a linkage fault), the linker (level 9) finds a suitable object. The linker

is driven by a search strategy that employs the directories at level 6 and

that uses the level 8 primitives to maintain the relevant linkage sections.

The capability for the object obtained from the directory system is then

implanted in the appropriate entry of the linkage section. This action

is called dynamic linkage, being done as a part of the first attempt to

use an unlinked entry in a linkage section. (See level 9.) On subsequent

access, the desired capability is obtained in a single instruction via in-

direction through the appropriate linkage section entry. In principle,

the use of linkage here is similar to Multics (Janson [74]).

Level 8 is thus responsible for the creation and management of linkage

templates, and for the creation and management of linkage sections. The

index of each linkage section entry is visible onl i at level 9. The func-

tions available at level 8 are summarized in Table A.8, and are divided

into two parts, those relevant to linkage templates, and those relevant

to linkage sections.

A.8-1

Table A8

FUNCTIONS OF LEVEL 8
(Linkage Maintainer)

V-FUNCTIONS OV, 0-FUNCTIONS

b = ttemplate-exists(2t) It =createL template(t,j)

j = get-.Zsize(fet) deleteL ;template(fZt)

OPERATIONS b - Aname-defined(It,i) define-1name(LZt,i,n)
ON LINKAGE n=ge mmlti rlnltic
TEMPLATES f e~nm~ti rln(tiC

b = prelink-exists(Lt,i)

c = get-prelink(lt,i)

b = Isection-exists(l) I create - section(It)9

9 9
OPERATIONS et =get templcap(.e) deleteLsection(l)
ON LINKAGE b ln xssfdI In~~~)
SECTIONS b=ln-xssli ik.~~)

c = get link(.Z,i)9 unlink(l,i) 9

Note 9: Restricted to level 9

X.8-2

LEVEL 8 PARAMETERS

b: boolean

c: capability /object/

n: name /linkage name/

1: capability /linkage section!

It: capability /linkage template!

i: integer /index into I' or It/

J: integer /size of A or It/

tL: capability /for creating linkage template/

LEVEL 8 DEFINITIONS

A'=get-template- cap(Lt)

Lt entry(Lt,i) = (Iname-exists(Lt,i), getLname(2t,i),
prelink-exists(A't,i), get-prelink(2t,i))

LEVEL 8 EXCEPTIONS

NOABILITY(c,"'"): it a" 0 'abilities'(c);

NOTEMPIATE(Lt): 'Itemplate -exists'(Lt) = FALSE;

INVALIDINDEX(et,i): (i < 0) V (ji > 'getLtsize'(Let));

UNDEFINEDNAME(Lt,i): 'Lname-defined'(1t,i) = FALSE;

DEFINED NAME(tt,i): 'Lname defined'(lt,i) = TRUE;

EXCESSIVESIZE(j): j > Lsize max;

PRELINK(It,i): 'prelink exists"(2t,i) = TRUE;

NOSECTION(l): 'Lsection-exists'(1) = FALSE;

NOLINK(t,i): 'link exists'(L,i) = FALSE;

LINK EXISTS(i,i): 'link exists'(I,i) = TRUE;

A, 8-3

LEVEL 8 SPECIFICATIONS- LINKAGE TEMPLATES

V-FUNCTION: b = Ztemplate - exists(t)

PURPOSE: Does the designated linkage template exist?

INITIALLY: UNDEFINED

EXCEPTION: NOABILITY(2t,"read");

V-FUNCTION: j = get lsize(Lt)

PURPOSEt How many names are linkable in the designated linkage template?

INITIALLY: UNDEFINED

EXCEPTION: NO TEMPLATE(et);

NO-ABILITY(tt, "read");

V-FUNCTION: b = Iname defined(t,i)

PURPOSE: Is the name defined for the ith entry in the given linkage template?

INITIALLY: UNDEFINED

EXCEPTIONS: INVALID INDEX(At,i);

NOABILCTY(-t, "read");

V-FUNCTION: n = get -name(it,i)

PURPOSE: To obtain the name of the ith entry in the given linkage template.

INITIALLY: UNDEFINED

EXCEPTIONS: UNDEFINED NAME(It,i);

ABILITY(kt, "read");

V-FUNCTION: b = prelink exists(t,i)

PURPOSE: Is the specified entry in the given linkage template prelinked?

INITIALLY: UNDEFINED

EXCEPTIONS: INVALID INDEX(It,i);

NO ABIITY(At,"read");

A.8-4

V-FUNCTION: c = get prelink(It,i)

PURPOSE: What is the capability corresponding to the desired entry of
the given linkage template?

INITIALLY: UNDEFINED

EXCEPTIONS: NO PRFLINK(Lt,i);
NOABILITY (It, "read");

OV-FUNCTION: It = create Ztemplate(j,t)

PURPOSE: To create a linkage template.

EXCEPTIONS: EXCESSIVE SIZE(j);
NOABILITY(tL, "create");

EFFECTS: Ieplate exists(It) = TRUE;
get_2size(Lt) = j
Aname exists(2 t,i)=

IF 0 < i < j THEN FALSE ELSE UNDEFINED;
get InameCIt,i) = 'UNDEFINED;
prelink-exists(Lt,i) =

IF 0 < i < j THEN FALSE ELSE UNDEFINED;
get-prelink(2 t,i) = UNDEFINED

0-FUNCTION: delete Itemplate C t)

PURPOSE: To delete a linkage template.

EXCEPTIONS: NO TEMPIATE(It);

NOABILITY(Lt, "delete");

EFFECTS: Itemplate exists(tt) = FALSE
get lsize(It) = UNDEFINED

Vi[~ltentry(lt,i) = UNDEFINED.,;

FUNCTION: def ine_ name(I t, i,n)D

PURPOSE: To establish an unlinked entry in an Ltemplate for a given name.

EXCEPTIONS: NO TEMPIATE(It);

INVALID INDEX(i);
DEFINED NAME(It, i);
NOABILITY(2t, "add");

EFFECTS: Lmame exists(It,i) = TRUE;
get Gname(kt,i) n ;

A.8-5

0-FUNCTION: prelink(t,i,c.

PURPOSE: To establish a link in the given linkage template.

EXCEPTIONS: NO TEMPLATE(lt);

INVALID INDEX(i);

PRELINK(l t, i) ;
NO ABILITY(Lt,"link");

EFFECTS: prelink exists(It,i) = TRUE;

get prelink(Zt,i) =

V-FUNCTION: b = Isection exists(l)

PURPOSE: Does the given linkage section exist?

INITIALLY: UNDEFINED

EXCEPTIONS: .-

-FUNCTION: it = gettemplcap(2)

PURPOSE: What is the template capability corresponding to the given

linkage section?

INITIALLY: UNDEFINED

EXCEPTIONS: NO SECTION(l);

IV-FUNCTION: . = link exists(l,i)

PURPOSE: is the specified entry in the given linkage section linked?

"TTIALLY: UNDEFINED

EXCEPTIONS: NO SECTION(L)

INDVALID INDEX(i)

NO ABILITIES(l,"load");

V-FUNCTION: c = get link(,i) I

PURPOSE: To obtain the capability corresponding to the desired entry of

the given linkage section.

INITIALLY: UNDEFINED

EXCEPTIONS: NO LINK(1,i)
NO-ABILITY(1, "load");

A.8-6

V-FUNCTION: 2=create_2 section(2 t)

PURPOSE: to create a linkage section from the given template.

EXCEPTIONS: NO TEMPLATE(It);
NOABILITY (kt,"?");

EFFECTS: Lsection exists(i) = TRUE;
get template-cap(Wt = I;

Vi~link exists(2,i) = prelink exists(kt,i)!;
Vi[get link(l,i) = get prelink(It,i)I;

0-FUNCTION: delete
2 section(2)

PURPOSE: To delete a given linkage section.

EXCEPTIONS: NO SECTION(2);
NO ABILITY (I,"?");

EFFECTS: Zsection exists(k) =FALSE;

get template cap(l) =UNDEFINED;
V'i[Ilink-exists(l,i) =UNDEFINED];
VirgetTink(k,i) =UNDEFINED];

I--FUNCTION: link(k,i,c)i

PURPOSE: To link a given entry to a given capability.

EXCEPTIONS: NO SECTION(l);
INVALID INDEX(It,i);
LINK(2 ,i);
NOABILITY (It,"Ilink");

EFFECTS: link exists(I,i) = TRUE;
get-fink(k,i) = c

0-UCTO: unlinkC i)

PURPOSE: To unlink the given entry

EXCEPTIONS: NO SECTION(l);
NOLINK(I.i);
PRELINK (It, i);
ABI LITY (2, "unlink"?);

EFFECTS: link exists(2,i) = UNDEFINED
get link(Z,i) =UNDEFINED

A. 8-7

A.9 Level 9: Linkage Manager (Linker)

Level 9 is responsible for the management of the linkage tables

maintained by level 8. It adds no new state information to the system

beyond what is already part of level 8. As noted in the previous section,

there are two types of linkage, dynamic and static linkage. Static link-

age may be obtained by using prelink (it,i,c) for global linkage, affect-

ing all symbolic accesses, or by using link (i,i,c) for local linkage

relevant only within a particular process. Dynamic linkage is discussed

here.

Dynamic Linkage

A linkage fault occurs when an attempt to use a linkage section entry

results in no capability being obtained--i.e., for a given linkage section

i and entry number i, when linkage-exists (i,i) = FALSE. In response to the

linkage fault, level 9 is invoked. The directories dj = tsearch dir(j)},

j = 1 to j = search-length, are searched in order, until a directory (with

capability d) is found having an entry with the corresponding symbolic

entry name n = get £name(it,i), where it = gettemplatecap(i). From this

directory entry, the capability c = getcap(d,n) is obtained, and entered

into the given linkage section via link(i,i,c). Thus the abstract imple-

mentation for the dynamic linker is as in Table A.9. The function "search

and link" is internal to level 9.

A.9-1

Table A. 9

FUNCTION OF LEVEL 9

(Linker)

O-FUNCTION: search and link(l,i) I /linker/

PURPOSE: to find an appropriate directory entry and link its capability.

LET It = get template cap(l);
n = get_-name(Iti); /desired name to be linked/

dj = search list(j); /jth dir in search/
cj = getcap(dj,n); /desired capability; level 6/

EXCEPTIONS: NO SECTION(i);
INVALID INDEX(et,i);
LINK EXISTS(.,i);
NO ABILITY(2t,"link");
NO_USE(dj,n, "list");

EFFECTS: (abstract implementation)

FOR j = 1 TO j = search-length DO
BEGIN:

IF entry exists(dj,n)THEN[link(2,i,cj);EXIT]
END;

/EXPANDED EFFECTS, for comparison:
FOP j = 1 TO searchlength DO
BEGIN:

IF entry exists(search list(j),getLname(get template cap(j),i))
THEN [link(L,i,get cap(search dir(j),getLname

(get template cap(l),i)));
EXIi]

END; /

/Primitives to modify the search list are omitted for simplicity. Search list

may be established by default for each user, as in Multics, e.g., working

directory, process directories, libraries,.../

A.9-2

FAOAPSG 6601 STANFORD RESEARCH INST MENLO PARK CALIF F/G 5/
A PROVABLY SECURE OPERATING SYSTEM. (U)
jM 75 P 6 NEUANN. L ROBINSON, K N LEVITT DAABO3-73-C-1454

UNCLASSIFIED 4

-I----

A.10 Level 10: Scheduling

Level 10 has the responsibility for managing processes. It provides

the 0-functions for creating, deleting, starting and stopping processes.

It also provides facilities for interprocess communication and for creat-

ing protected environments within a process.

Each process created has a unique identifier. An initial state has

to be specified when a process is created. When a process is created, it

is added to the set of known processes. It is made unknown when it is

deleted. To be eligible to be run, a process has to be started after it

has been added to the set of schedulable processes. A schedulable process

can be in one of three states: scheduled, i.e., known to level 2; ready-

to-be scheduled, i.e., can be made known to level 2; and blocked, i.e.,

waiting on some condition. The distinction between the first two states

is invisible above level 10. A process which is not blocked may be stopped,

at which point it is deleted from the set of schedulable processes. A pro-

cess may be deleted at any time. A deleted process is also made unschedul-

able.

A process consists of a sequence of nested environments of depth at

least 1. The topmost environment of a process is called the current en-

vironment. An environment is a tuple of values.

A process normally accesses the current environment of its own set of

environments. A process may access or change the environments of other

stopped processes by presenting appropriate capabilities. An environment

is created by the 0-function "call" and deleted by the 0-function "return."

Entries may be added or deleted from the environment with a last-in-first-

out discipline, by using the 0-functions "push" and "pop." The contents

of any entry in the environment may be read out of or written into by the

0-functions "write-out-of" and "write-into."

A. 10-1

The interprocess communication facilities, monitors and condition

variables, are identical to those provided at level 2.

The functions of level 10 and their specifications are given in

Table A.10.

Table A.10

FUNCTIONS OF LEVEL 10

HIDDEN V-FUNCTIONS OV AND 0-FUNCTIONS

fu) = hknownprocessset c = createprocess(st)

(u) = hschedulableprocess.set start(c)

st = hstate(up) stop(c)

= hprogramcountercap(up) delete process(c)

i = h-programcounter_offset(up) call(f,n,(ce>)

c = h current_env cap((up) return(n,(ce),(up))

b = h env cap(u,up) push(f,n,(ce))

f = hentry.point_env(u) pop(f,n,(ce)

f = h return address env(u) write out of env(f,i,(ce))

c = h_previous env cap(u) writeinto env(f,i,(ce0)

i = henvlength(u) set_upper-bound(n,(ce')

j = h read env(i,u) writeenv(f,i,c)

(ul = monitor-set truncateenv(c,n)

n = conditions(m) appendenv(f,c)

)u = waitingonmonitor(m) c = createmonitor(cm,n)

[U] = waiting on condition(m,cv) delete-monitor(c)

(u) = blocked enter monitor(c,(cp))

(u) = in monitor(m) exitmonitor(c,(cp>)

b = monitor busy(m) wait(c,cv, (cp))
signal(c,cv,(cp)

VISIBLE V-FUNCTION

j = read env(i,c)

A. 10-2

LEVEL 10 PARAMETERS

b: boolean

i: integer

j: integer

n: integer

C: capability /c /

f: offset capability

U: unique-id /ul,ue,up/

m: uniqueid for a parameter

cv: integer /for a condition variable/

max monitor: maximum number of monitors
max cv: maximum number of condition variables in a monitor

ce: capability /current environment/

cm: capability /monitor creation/

cp: capability /process/

LEVEL 10 DEFINITIONS

u chase uid(c) /also up, cp/

A. 10-3

EXCEPTIONS FOR LEVEL 10

INVALID c(c,cp): h -env -cap(chase -Uid(c),chase -uid(cp))

INVALID-i(i,c): -1(0 < i < h -env-length(chase uid(c))

INVALID n(n): n < 0;

NO-SPACE: cardinality(klowfl-process -set) > max known-processes

UNKNOWN(c): chase-uid(c) 0' known -process -set

NO_ABILITY(c,"a"): "a" e abilit ies~c)

SCHEDUIABLE(c): chase uid(c) e schedulable process set

UNSCHEDULABLE(c): chase-uid(c) %' schedulable-process -set

NOABILITY(f, "a"): "a" 0' abilities(f)

INVALIDOFFSET(f,i): offset(f) # 0;

OFFSET ERROR(f): displacement(f) > seg-length(f)

OVERFLOW(f): offset(f) > max-segment-length

OVERFLOWENV(c,i): h-env-length(u) > max -segment-length -;

INVALID-ENVCAP(c): up 3 [h_env_cap(chase_uid(c),up) A

(up 6 schedulable process set V

up 0' known-process_set]]

TOO MA.LNYMONITORS: cardinalit y(monitor -set) > max m on-itor;

INVALIDCV(n): (0 < n < max cv);

INVALIDMONITOR(c): u 6' monitor set;

MONITORBUSY(c): monitor busy(u);

BLOCKED PROCESSES(c): Zi 1 -1 < i < conditionsCj) A -i (waiting _on cv(u,i) =EMiPTY);

INVAUIDMONITOR_-PROCESS(c,czp in monitor(u) 9_ tAp';

INVALID CONDITION(c,cv): <'(cv < conditjons~u));

A. 10-4

LEVEL 10 SPECIFICATIONS

IIDDEN V-FUNCTION: = h known process-set

PURPOSE: Set of process uids known to this level

INITIALLY: A

IDDEN V-FUNCTION: h schedulable_process set

PURPOSE: Set of process uids that are schedulable

INITIALLY: A

IDDEN V-FUNCTION: st = h state(up)

PURPOSE: The state of process up, up C known process set

INITIALLY: V up: UNDEFINED

IDDEN V-FUNCTION: c = hprogram counter cap(up)

PURPOSE: The capability part of the contents of program counter of

process up

INITIALLY: V up: UNDEFINED

IDDEN V-FUNCTION: i = h program counter offset(up)

PURPOSE: The offset part of the contents of program counter of

process up

INITIALLY: V up: UNDEFINED

1HIDDEN V-FUNCTION: i = h env length(u)

PURPOSE: What is the length of the environment identified by uid u

INITIALLY: V(u): UNDEFINED

rIDDEN V-FUNCTION: j = hread env(i,u)

PURPOSE: To get the value of the it h word in the environment identified

by uid u

INITIALLY: V(i,u): UNDEFINED

A. 10-5

DERIVED V-FUNCTION: j = read env(i,c)

PURPOSE: To get the value of the ith word in the environment c

DERIVATION: j = h read__env(i,chase uid(c))

EXCEPTION: INVALID i(i,c)

IHIDDEN V-FUNCTION: ce = h current env cap(up

PURPOSE: The value, for the process up of the capability for

the current environment.

INITIALLY: V u: UNDEFINED

rIDDEN V-FUNCTION: b = h env cap(u,up)

PURPOSE: Is u a valid environment uid of the process up?

INITIALLY: V(u,up): FALSE

rIDDEN V-FUNCTION: f = h_entrypointenv(u)

PURPOSE: The entry point in the "call" when the environment with uid u

was created

INITIALLY: V(u,up): UNDEFINED

HIDDEN V-FUNCTION: f = h return address env(u)

PURPOSE: The return address specified when the environment with uid u
was created

INITIALLY: V(u,up): UNDEFINED

HIDDEN V-FUNCTION: c = h previousenvcap(u)

PURPOSE: The capability for the environment from within which the
environment with uid u was created

INITIALLY: V(u,up): UNDEFINED

HIDDEN V-FUNCTION: onitor_ set

PURPOSE: Set of uids for valid monitors

INITIALLY: EP'rY

A. 10-6

IDDEN V-FUNCTION: n =conditiosn)

PURPOSE: Number of condition variables for monitor with uid m

INITIALLY: Yin: UNDEFINED

IIDDEN V-FUNCTION: j. waiting on monitor~m)

PURPOSE: Set of process identifiers of processes waiting on the
monitor with uid in.

IN'ITIALLY: Yin: UNDEFINED

:IDDEN V-FUN-'CTI ON: lut waiting- on condition(in,cv)

PURPOSE: Set of process ids of processes waiting on the condition
cv of the monitor mn.

INITIALLY: 'f(i,cv): UNDEFINED

0-2'RIVED V-FUN.\CTION:-.Tu blocked

PUR-POSE: Set of process ids of process waiting on alny. monitor or
conditicn variable

DERIVATION: 1u: Sm(ue waiting on inonitor(m)
V acv(Ue waiting on condition(m,cv))))

IHIDDEN V-FUNCTION: u = ia nonitor(mn)-

PURPOSE: The process id of the process currently in monitor m.

INITIALLY: Vmi: UNDEFINED

PDERIVED V-FUNCTION: b = monitor busy(m)

PURPOSE: Is there a process in monitor m

DERIVATION: I-, (in monitorin) = UNDEFINED) THEN TRUE ELSE FALSE

EFFECT MACRO UNBLOCK(u) /in "stop" and "dlte"/

IF Hm(me'monitor set' A u e'waiting onM'(in))THEN
waiting onM(rn) =* - U;

IF am,cv(nl e 'monitor set' A cv e N CV(m) A
u C 'waiting p onCV' (m,cv)))7EN

waiting onCV(m,cv) =*-U;

A. 10-7

10V-FUNCTION: c = create process (st)j

PURPOSE: To create a process, with initial state st, and to return

its capability

EXCEPTIONS: NO SPACE

EFFECT: CHOOSE c 3 uid(c) = u
A[known process set = * + u;

state(u) = st;]
return = c

0-FUNCTION: start(c) {

PURPOSE: Makes schedulable, the knownprocess identified by the
capability c

EXCEPTIONS: UNKNOWN(c);

SCHEDULABLE(c);
NO ABILITY (c, "start");

EFFECT: schedulable-process set = * + chaseuid(c)

1-FUNCTION: stop(c) I

PURPOSE: To make the schedulable process identified by the capability c,
unschedulable but still known. If a process is blocked, it becomes
unblocked.

EXCEPTIONS: UNKNOWN(c);
UNSCHEDULABLE (c);
NOABILITY(c,"stop");

EFFECTS: UNBLOCK(chaseuid(c)); /see macrospecification/
schedulableprocess set = * - chase uid(c)

O-FUNCTION: delete process(c)

PURPOSE: To delete the process identified by the capability c

EXCEPTIONS: UNKNOWN(c);
NOABILITY(c,"delete");

EFFECT: UNBIL)CK(c); /see macrospecification/

IF chase uid(c) e schedulable process set THEN
schedulableprocess set = *-- chase uid(c);

Known process set = * - chase uid(c);

A. 10-8

IO-FUNCTION: call(f,n,<ce>,uP>))

PURPOSE: To create a new environment, with the topmost n elements of

the current environment as the initial n elements of the new

environment. The topmost n elements are deleted from the

current environment. The capability for the entry point address

i . (up) is the uid of the process, and is an implicit parameter.
ce? is the capability for the current environment, and is also implicit.

EXCEPTIONS: INVALID i(n,ce);

NO ABILITY(f), "call");

INVALID OFFSET(f);

EFFECT: CHOOSE c [uid(c) = u] A

[henvcap(u,up) = true;
h current env cap(up) = c;

h env length(u) = n;
h__envlength(ue) = * - n;

h entrypointenv(u) = f

h return address env(u) = 'program counter(up) + 1;
VT(0 < i-< n)h__readenv(i,u) = h read env('henv length'(ue) - n+i,ue)

h_previous env cap(u) = ce;
program counter(up) = f]

-FUNCTION: return(n, ce), up))

PURPOSE: To return to the previous environment, to append the initial n

elements of the current environment to the previous environment.

(ce) is the capability for the current environment and (up) is

the uid for the process. These are implicit parameters.

EXCEPTION: INVALID i(ce,n);

EFFECT: h env cap(ue,up) = FALSE;

h-current env cap(up) = 'h previous env cap' (ue)

programcount7er(up) = 'hreturnaddress env'(ue)

LET 'h_previousenvcap'(ue) = c

h_env-length(u) = * + n

Vi(O < i < n) h_readenv('h env-length'(u) + i,u) =

h read env(i,ue);

0-FUNCTION: push(.f,n, ce))

PURPOSE: To append n elements starting at location " f to the current

environment,(ce), of the process identified by the uid up.

EXCEPTIONS: INVALID n:
NO ABILITY (f, read)

OVRFLW(offset(f + n));
OVERFLOW env(ce, n)

EFFECT: Yi(O < i < n)[n readenv(h env length(ue) + i,ue) = read(f + i)];

h env-length(ue) * + n;

A. 10-9

-FUNCTION: pop(f,n, ce

PURPOSE: To transfer the contents of the top n elements of the current

environment to the n locations beginning at f the length
of the current environment is decreased by n.

EXCEPTIONS: INVALID i(ce,n) -1

NO ABILITY(f,write)
OFFSETERROR(f + n);

EFFECT: env length(ce) = 'env length(ce)' - n;
Vi(O < i < n)[read(f T i) = 'h read env'('h env length(ue) - i,ue)];

1 0-FNCTON:write-out-of-env(f,4<ce)j
.th

PURPOSE: To write the i element of the current environment ce into the

location f

EXCEPTIONS: INVALID i(i,ce)
NO ABIL-TY(f, "write")
OFFSET ERROR f)

EFFECT: h read(f) = 'h read env'(i,ue)

S-FUNCTION: write intoenv(fc I

PURPOSE: To write the contents of location f into the i element of the

current environment (ce)

EXCEPTIONS: INVALID i(i,ce)
NO ABILITY(f, "read")
OFFSETERROR(f)

EFFECT: h read env(i,ue) = read(f)

-FUNCTION: set upperbound(n, ce)

PURPOSE: To decrease the length of the current environment ce by n

EXCEPTION: INVALID i(n,ce)

EFFECT: h env length(ue) = * -n;

O-FUNCTION: write env(f,i,c)

PURPOSE: To write the contents of the location represented by the offset
capability f, into the ith element of the environment c. The

process to which the environment c belongs must have been stopped.

EXCEPTIONS: INVALID ENV CAP(c);

INVALIDi (ic)
NO ABILITY(f, "read")

NO-ABILITY(c, "write")
OFFSETERROR(f)

EFFECT: h read env(i,u) = read(f)

A. 10-10

O-FUNCTION: truncate env rc,

PURPOSE: To decrease the length of the environment c, by n elements.

The topmost n elements are made undefined. The process to

which the environment c belongs must have been stopped.

EXCEPTIONS: INVALID ENV CAP(c)
INVALID-i (nc)
NO ABILITY(c, "delete")

EFFECT: h env length(u) = * -n;

0-FUNCTION: append env(f,c)

PURPOSE: To append the contents of the location represented f to the

environment with capability c. The process to which the

environment belongs must be unschedulable but known, i.e. stopped.

EXCEPTIONS: INVALID ENV CAP(c)
OVERFLOW ENV(c, 1)
NO ABILITY(e(f), "read")
OFFSET ERROR(e(f))
NO ABILITY(c, "append")

EFFECT: h env length(u) = * + 1;
h-read env('h env length'(u) + 1,u) = read(e(f));

OV-FUtCTION: c = createmonitor(cv,,n)

PURPOSE: To create a monitor with n condition variables and return
the capability for that monitor

EXCEPTIONS: TOO MLNY MONITORS
INVALID CV(n)

EFFECT: CHOOSE c -auid((.) = u A abilities(c) = ALL
A

monitor set = * + u;
conditions(u) = a;
waitin_ on monitor(u) E1TY;
Vi(I < i < n) (waiting on condition(u,i) EMPTY);

in.monitor(u) = UNDEFIEDF)

A. 10-11

0-nCTION: delete monitor(c)

PURPOSE: Deletes monitor with capability c, only if there is no
process in it and there are no processes waiting on any
condition inside the monitor.

EXCEPTIONS: INVALI D ,[ONI TOR (c)
(2LONI TOR BUSY (c)
SB LOCU.DPROCESSES(c)
NO ABILIOA TYW 'delete")

EFFECT: monitor set = * - u;
conditions(u) = UNDEFINED;
waiting on monitor(u) = UPDEFINED;
Vi(l < T <'conditions'(u)): [waiting on condition(u,i) =UNDEFI,7ED]

~i(A CT1ION : enter nioai tor(c,("p

P'-7SE: Process up (cp is an implicit parameter) desires access to the
monitor viith capability c

EXCEPfIONS: INVALID '-,ONITOR(c)

EFFECT: IF -n 'monitor busy' (u) T= N in monitor(u) =? up
ELSE waiting on monitor(u) =- + up

F -F1;CTi ON: exit monito-rc cp

P URPOSE: Called by process up,exiting from the monitor with capability C

EXCEPTIONS: INVALID IONITOR(c)
I NVALI D_--,ONI TOR PROCESS(c cp)

EFFECT: IF waiting on .(u) = EN1PTY
T1EN in monit6r(u) = UNDEFINED
ELSE [CHOOSE k9 k C 'waiting on monitor'(u)

A [waiting on monitor(u) = -
in monitor(-u) =]]

0-FUNCTION: wait(ccv, '(cp),

PURPOSE: Process uV waits on condition cv of the monitor with capability c.
Processup must have been inside the monitor. Access to the
monitor is released

EXCEPTIONS: INVALID MONITOR(c)
INVALID M.!ONITOR PROCESS(c,cp)
I NVALID CONITION(c, cv)

EFFECT: waiting on condition(u,cv) * + up;
IF .i in on monitor(u) = EMPTY

T 7-N in monitor(u) = UNDEFINED
ELSE [CH-OOSE :K9 Xe 'waiting on monitor'(u)

A (waiting on Monltor(u) = *-
in monitor(u) = k

A. 10-12

'UCT lox. signal (ccv

PLR.-POSE: Process up, signals condition cv inside monitor u. one of the
processes, if any, waiting on that condition is unblocked and
given access to the monitor u. Process tipis added to waiting
on monitor(u).

EXCEPTIONS: I NVALI D NOXI TOR (c)
Th'JALIDMONITOR PROCESS (c, cp)
INEVALID COXDITION(c,cv)

EFFECT: IF -1 (waiting on condition(u,cv) =EPY
ITME (ci.oosai k e 'waiting_pa condition(u,cv)

[wsitins~ on_codition(ucv) =*-k

snr monitor(u) = k
waiting on monitor(u) =*+ up]]

A. 10-13

Appendix B

DATA REPRESENTATIONS

This appendix discusses the implementation of the system, illustrat-

ing the use of the methodology. In particular, Section B.1 gives a repre-

sentation of a directory object as an extended-type object (implemented

out of a list-linked segment). Section 13.2 gives representations for

level 5 objects and segments.

B.1 Representation of Directories

In this section we illustrate Stage 3 of the design, implementation,

and proof methodology for our system. In particular, we give a repre-

sentation of each directory in terms of a segment. This representation

is formally described by mapping function expressions that associate

V-functions of the directory module with expressions containing V-functions

of the extended-type module and of the segment module. We give an informal

proof of the consistency of these mapping function expressions.

Figure B-1 displays the representation for a particular directory in

terms of a segment. For ease of description here we have eliminated from

the directory module the lock list and distinguished entry functions. The

following decisions are embodied in this representation:

* The symbolic name and the capability associated with each

entry occupy adjacent positions. For simplicity we assume

here that a name can be no longer than one machine word.

* The segment positions storing entry information are linked

together. The position following that for the capability

B-i

holds the starting address of the next entry. For the last

entry, the value in this link position is 0.

* The link to the first entry is in position 0 of the

segment.

There are several decisions regarding the representation that need

not be made at this stage, and that can be postponed to Stage 4 (the

abstract implementation stage). Among such decisions are the following:

* Ordering of the entries within a segment--the programs that

form the directory manager can order the entries in a par-

ticular way (e.g., sorted according to symbolic name).

" Free space management--within any given segment there might

be unused positions that correspond to deleted entries.

It is possible to link these positions so that they are

available for newly created entries. Another (not very

efficient) possibility would be to have the directory

manager carry out a garbage-collection after each entry

deletion.

As indicated in Chapter 3, we are using mapping function expressions

to characterize the decisions concerning directory representation that

are to be made at Stage 3. Since the state of the directory module is

completely defined by the values of the two HIDDEN V-functions "hgetcap"

and "hvalid-dir", we need only write mapping function expressions for

these functions. Table B.1 gives the mapping function expressions that

characterize the representation of Figure B.I.

We wish to write mapping function expressions to yield a defined

value for a V-function over the domain for which the V-function is defined,

and to yield UNDEFINED otherwise. Consider the representation of "hget_

cap(u,n)", whose purpose is to return the capability associated with a

B-2

symbolic name n in directory with uid u. The function "h_getcap(u,n)"

is defined under the following conditions: (1) an object with uid u is

known to exist, (2) the particular object with uid u is of type

"directory," and (3) there exists an entry in the directory with sym-

bolic name n.

In the mapping function expression as written in Table B.1, the

three conditions mentioned above have been transformed to V-functions of

the extended-type module and the segment module. The conditions (i) and

(2) are written directly in terms of the appropriate extended-type HIDDEN

V-functions. Condition (3) requires that the extended-type manager

associates a segment capability s (having uid ul) with the directory

(with uid u). Within this segment there must be a position x, that is

linked to position 0, and that contains n. The auxiliary function

"address (n2,u2)" returns the displacement of n2 in the segment, if n2

is within the linked portion of the segment, and 0 otherwise. If each

condition for this mapping function expression evaluates to TRUE, then

h get_cap(u,n) is defined, and the associated capability is found in

position x + I of the segment with uid ul.

We now present informal arguments that the two mapping function

expressions are consistent with respect to the specifications of the

three modules. That is, it must be shown that

(1) All defined states of the directory module map down to

states of the segment and extended-type modules;

(2) Let SI and S2 be states of the directory module, TI and

T2 be states of the extended-type module, and WI and W2

be states of the segment module. If (TI,Wl) is an image

of S1, and if (T2,W2) is an image of S2, and if S1 S2,

then (TI,WI) (TI,W2).

B-3

Property I is satisfied easily since the mapping function expressions

yield an UNDEFINED value only for directory V-function values that corre-

spond to exception conditions for the V-functions. The proof for prop-

erty 2 requires two steps. First two distinct directories, with distinct

uid's u and u', will have different segment capabilities, since the two

segment capabilities are represented in the extended-type module as

s = himplcap(u) and s' = h impl_cap(u'). From the specifications of

the extended-type module, it is impossible for two directories with differ-

cnt uids to have the same segment capability, since such capabilities are

created by calling the function "initialize (d,cdt,Kst))" separately for

each of the directories. Here d is a directory capability, cdt is the

type manager's capability for directories, and st is the capability for

creating segments. Second, it remains to show that for a given directory

uid u, distinct sets of entries are transformed to distinct values in the

linked segment positions. However, this is obvious from the mapping

function expression for "hgetcap(u,n)", since the value of each symbolic

name and its associated capability appear respectively as the contents of

the first and second segment positions pointed to by some link.

The abstract implementations of the directory functions and their

proofs of correctness with respect to mapped specifications are not in-

cluded here. These programs are not conceptually complex, but they re-

quire the binding of additional design decisions. For example, the imple-

mentation of "create dir" will involve successive calls by the directory

manager on the extended-type module functions: (I) "create-object," to

create a capability for a new object of type "directory"; (2) "initialize",

to give the directory a segment implementation; (3) "changesegsize",

to make the segment length at least 1 (this initializes position 0 of the

segment to 0, indicating a null list). The implementation of the directory

0-function "removeentry(d,n)" would obviously search for the symbolic name

n in the segment corresponding to d. The program would then modify the

B-4

link pointing to n to point to the successor (if one exists) of this

entry. If we decided to have a "free-list" within each segment, then the

three segment positions associated with n would become zeroed out and

attached to the free-list. Note that the assertions for this program are

not explicitly concerned with the free-list--just the values of segment

positions linked in the list of entries--unless we extend them to refer

to segment utilization.

Initialization is treated briefly in Chapter 10. At level 6, the

directory module can initialize itself by calling the OV-function

"cd = createtype(ct)" of the extended-type manager. The parameter ct

indicates that the caller wishes to establish a new type, in which case

the returned capability cd is the type manager's capability for direc-

tories. By calling this function, the directory manager makes itself

known to the extended-type manager.

This discussion describes the formal basis on which many properties

of the implementation of the system can be stated and proved. The mapping

functions correspond to a "visualized implementation" as shown in Figure

B.I. The remaining details need be bound only at the final coding stage.

B.2 Representation of Segments and Extended Type Objects

The level 4 mapping functions are given in terms of level 3 hread

and the functions at levels 1 and 0. The data local to level 4 is assumed

to be organized in four segments. The segment with uid sl contains the

list of all virgin segment uids, and their size. The segment with uid s2

contains the location of all pages of all segments. The segment with uid

s3 contains the list of all revocable uids and the segment with uid s4

their linktuples. The segments sl, s2, s3 and s4 are maintained by level 3.

That is, the segment operations applicable to segments sl, s2, s3 and s4

are level 3 operations. The data structures for these segments are shown

in Figures B2 and B3.

B-5

We will define four auxiliary functions, list_l, list_2, list_3, and

list_4, list i being defined on segment si. Given the offset for an

element of a list, these functions return the offsets for the remaining

elements of the list. The functions are defined below. Note that the

function "h read" used is the level 3 function "h-read(u,j)".

WORD SEGMENT
NO.

O LINK TO FIRST ENTRY(X
x0 NAME

CAPABILITY FIRST

ENTRY
LINK TO NEXT ENTRY

LIN NAMET

CAPABILITY

LINK TO NEXT ENTRY

m M NAME
LAST

CAPABILITY ENTRY

0

x0 = h read(ul,O)
etc.

SA-2581-13

FIGURE B.1 REPRESENTATION OF A DIRECTORY AS A SEGMENT
WITH UID u

B-6

Table B. 1

MAPPING FUNCTIONS FOR DIRECTORIES

Auxiliary function definitions:

address(n2,u2) = auxaddress(n2,u2,O)

aux address(n3,u3,x3) =

IF h read(u3,x3) = 0 THEN 0
ELSE IF hsegsize(u3) <

h read(u3,x3) + 2

THEN ERROR

ELSE IF hread(u3,hread(u3,x3)) = n3
THEN h read(u3,x3)

ELSE auxaddress(n3,u3,hread(u3,x3) + 2)

/Note: address(n2,u2) returns the displacement of entry n2
in directory u2 if it exists, otherwise 0; aux address is a
recursive function that does the same thing, starting the

search at displacement 0 in segment u3./

Mapping function expressions:

h__getcap(u,n): /level 6/

IF hobjectexists(u) A h_gettype(u) = "dir" /level 5/

A Zx,ul,s
A (s = h_impl__cap(u)

A ul = getuid(s)

AX> 0
A h_seg_size(ul) > x+2 /level 4/
A address(n,ul) = x)

THEN hread(ul,x+l)

ELSE UNDEFINED

h valid dir(u): hobjectexists(u)

A h_get_type(u) = "dir"

A s(s = h implcap(u))

B-7

I

SEGMENT Si SEGMENT S2

LINK TO FIRST ENTRY 0 NOT USED

SEGMENT UID PAGE - ID

SIZE LOCATION

LINK TO PAGE TABLE ADDRESS

LINK TO NEXT ENTRY LINK TO NEXT ENTRY

SEGMENT UID PAGE - ID)LAST
S IZ E LAST LOCATION PAG E

LINK TO PAGE TABLE ENTRY ADDRESS ENTRY

0 0

SA-2581-14

FIGURE B.2 DATA STRUCTURES FOR Sl AND S2

B-8

40Wr- 7

SEGMENT S3 SEGMENT S4

LINK TO FIRST ENTRY 0 NOT USED

____ ____ ____ ____UID

REVOCABLE UID LINK TO NEXT UID
LINK TO LINKTUPLE

LINK TO NEXT ENTRY LAST

UID UID
% 0 IN

REVOCABLE UID UID LINKTUPLE

LINK TO LINKTUPLE LAST

0 ENTRY

SA-2581-15

FIGURE 8.3 DATA STRUCTURES FOR S3 AND S4

B-9

Table B. 2

MAPPING FUNCTIONS FOR SEGMENTS

Auxiliary Function Definitions

listl(sl,x): IF x = 0 THEN[IF hread(sl,x) = 0 THEN EMPTY

ELSE h_read(sl,x) U list_l(sl,h_read(sl,x))]

ELSE[IF hread(sl,x+3) = 0 THEN EMPTY

ELSE h read(sl,x+3) U list-l(sl,h_read(sl,x+3)]

list_2 (s2,x): IF x = 0 THEN EMPTY ELSE x U list 2(h read(s2,x+3))

list 3 (s3 ,x): IF x = 0 THEN [IF hread(s3,x) = 0 THEN EMPTY

ELSE hread(s3,x) j list 3 (hread(s3,x))

ELSE [IF h read(s3,x+2) = 0 THEN EMPTY

ELSE hread(s3,x+2) U list_3(s3,h read(s3,x+2))

list_4(s4,x): IF x = 0 THEN EMPTY ELSE x U list_4(s4,hread(s4,x+l))

/Initially hread(sl,O) = 0 and h read(s3,O) = 0./

Mapping Function Expressions

(u) = virgin set: Cu Hx(x C list_l(sl,O) A h read(sl,x) = u))

(u] = revocableset: [u 3 x(x e list_3(s3,0) A hread(s3,x) = u)}

[u] = linktuple(ul): IF ul e virgin set THEN Cul

ELSE (IF ul e revocable-set THEN

(IF x e list 3(s3,O) A hread(s3,x) = ul

THEN[ul , list_4(s4,hread(s3,x+l))])

ELSE UNDEFINED)

ELSE UNDEFINED

i = h size(u): IF u e virgin-set THEN

[IF x E list_l(sl,O) A h read(sl.x) = u

THEN hread(sl,x+l) ELSE UNDEFINED]

ELSE UNDEFINED

/pageno(-): is a function which returns the pageuid corresponding

to the segment offset ./

/displacement(): is a function which returns the displacement within

the page for the segment offset

B-10

Table B.2 (Concluded)

i h-read(u,1): /Note that this is the level_-4 h-read being defined,

using the levels 3, 1, and 0 h read functionsI

IF (ul Ipage_.oQ) e adr- map A displacement(j)

< bounds (ullpage -io(j))
mREN h read(entry-adr map(ulipage no(j)) Iidisplacement(j)

ELSE

IF u e virgin set MhEN

[IF 3(h size(u) THEN disk-read(secondary address(u,j))J

ELSE UNDEFINED

secondary-address(u,j): (h-read(sZ,y+2) + displacement(J))I

[(h-read(s2,y) = page-no(j))

A(y e list_-2(s2,x)1l

[(h-read(sl,z+2) = x)
A(z e list l (sl,0)) A (ii-read(sl,z) =u)]

disk read(secondary address: the contents of the disk location corresponding

to the secondary address.

B-11

Level 5: Mapping Function Expressions

The data structures for the segments used by level 5 are shown in

Figure B.4. The mapping function expressions for level 5 are given in

Table B.3 in terms of level 4 functions and the auxiliary functions

list(s,x), list l(sl,x) and tuple(x). The segment with uid s is used

for maintaining information about all objects and the segment with uid

sl is used for maintaining their implementation capabilities.

The function list(s,x) returns the offsets of entries for all objects

in the list beginning from offset x. The value 0 is used for indicating

the end of a list. The function listl(s,x) is similar to list(s,x). It

returns the list of implementation capabilities.

Table B.3

LEVEL 5: MAPPING FUNCTION EXPRESSIONS

b = h exists(u): IF Hx(x e list(s,u) A hread(s,x) = u)

THEN TRUE ELSE FALSE

i = h object type(u): IF x(x e list(s,O) A h read(smx) = u

THEN hread(s,x+l) ELSE UNDEFINED

b = h initialized(u): IF dx(x e list(s,0) A h read(s,x) =u) THEN h read(s,x+2)

ELSE FALSE

[c) = h implcap(u): IF ix(x e list(s,0) A h read(s,x) = u) THEN

tuple(h read(s,x+3)

list(sx): IF x = 0 THEN[IF hread(s,x) = 0 THEN EMPTY

ELSE x U list(s,hread(s,x))]

ELSE IF hread(s,x+4) = 0 THEN EMPTY

ELSE h read(s,x+4) J list(s,h read(s,x+4)

tuple(x) = IF x = 0 THEN EMPTY ELSE

(h read(sl,y) I y e x U list l(sl,x)

list l(sl,x): IF hread(sl,x+l) = 0 THEN EMPTY ELSE

h_read(sl,x+l) U listl(sl,hread(sl,x+l))

B-12

Vl)

C-

- z

i CO 0

0 ~ 0

zz
-J -J

U <

FH-

z z 0L
LUD

H H LU N H W-j
z U) a_ a- C

00

cn
--

B-13

Appendix C

THE SECURE DOCUMENT MANAGER

This appendix discusses briefly two models for computer representa-

tion of military security. It also presents specifications for a particu-

lar approach to realizing such a model for military security, illustrating

the utility of the methodology. Two potential implementations are sketched,

illustrating the utility of the operating system. The contents of this

appendix are considered to be preliminary.

Existing Security Models

The two models discussed here are the Weissman model, used in the

ADEPT-50 time-sharing system (Weissman [69]) and the Bell and LaPadula

model (3ell and LoPadula [74]) being used at MITRE for implementation on

a PDP-11 (and for retrofitting into Multics). In the long run, neither

model is really adequate; however, they are representative of what exists

today.

ADEPT-50

The security controls in the ADEPT-50 time sharing system (C. Weissman

[69]) are authority based, as opposed to capability based. ADEPT-50 sup-

ports users of different clearance levels (top-secret, secret, confidential,

and unclassified) and each is able to operate within a set of categories.

"Need-to-know" is implemented by the granting of access rights. An access

list is maintained with each object, which contains the list 3f users with

need-to-know.

C-1

Four types of access are implemented: "read," "write(append),"

"read and write," and "read and write with lockout override." The dele-

gation and revocation of these access rights is restricted to the owner.

A catalogue of objects is maintained but is not accessible to the users.

The access lists are maintained with the objects.

There is no concept of confinement, and it is possible for a user

of higher clearance to transmit information intentionally or unintention-

ally to users of lower classification. Also, programs of different clas-

sification operate at the clearance level of the user (job), and this can

compromise security (e.g., presenting the opportunity for a Trojan horse).

New objects created are classified at the same level as the current

clearance level of the user (job).

The Bell and LaPadula Model (MITRE)

The MITRE model attempts to remove some of the disadvantages of the

Weissman Model, such as the confinement probleia and delegation of access

rights.

The confinement problem is attacked by not permitting any informa-

tion to flow to a user with lower clearance from a user who currently has

access to higher-level classified information. This includes writing into

files that may be read by users of lower classification, granting and deny-

ing access rights to objects of lower classification, as well as creating

and deleting such objects.

The right to delegate access rights is implicit. All documents are

catalogued in directories (which form a hierarchy). The possession of a

"write" access to a directory also gives the right to delegate and revoke

access to objects in the directory.

Delegation of access rights to more than one level is very difficult

(especially with revocation), since it is not easy to determine the chain

C-2

______________________I

of delegated rights. Also, delegation is on a per-directory basis for

multi-level delegation.

The MITRE Model supports the following access rights: "execute," 1

"read," "append," and "write." Their "append" is different from ADEPT's

"append," since it permits overwriting. Also, need-to-know-right to

append is sufficient for append access to objects of higher classification.

All new objects created have the same classification as the current

clearance of the user. A user cannot delete, or rescind rights to objects

for which it does not currently possess potential write access (i.e., the

objects having the same clearance level as the current clearance of the

user). (It is assumed that the system will prevent a user from exercising

an access right for an object o, unless the object is in the access set

of the process for that access right.) New objects created have a clear-

ance level of the creator. This is controlled implicitly by requiring

the object to be catalogued in a directory, with the restriction that all

objects in a directory have clearance levels greater than or equal to the

clearance level of the directory.

The SRI Model

The model for a classified document manager discussed next is essen-

tially the same as the MITRE model. The only difference is that it does

not explicitly maintain the tree structure for directories, and "append"

access rights are not needed. At this point we restrict the classified

documents to be segments, just as in the MITRE model. It seems straight-

forward, however, to extend the model to include sharing of classified

objects other than segments. We feel that this will be important in

achieving general applicability.

Thus in this model each subject or object has a classification (con-

fidential, secret, etc.) and a set of mutually exclusive categories.

C-3

Subjects also have a need-to-know. A necessary condition (i.e., a clear-

ance condition) for a subject to gain access to an object is that the

subject's clearance level be higher than or equal to the object's clear-

ance level. Here the clearance level is defined as the two-tuple [clas-

sification, category-set]. The clearance level of a subject is at least

as great as the clearance level of the object if and only if

subject's classification object's classification AND

subject's category-set Z object's category-set.

A subject's clearance level is equal to an object's clearance level iff

subject's classification = object's classification AND

subject's category-set E object's category-set.

At this point we are considering only segments as classified docu-

ments. We define six access rights for segments, the right to "write"

which allows altering the contents of the segment, the right to "read"

which allows reading the contents of the segment, the right to "execute"

which allows the contents of the segment to be interpreted as instructions

to a processor, the rights to "grant" and "rescind" access rights to other

subjects, and the right to "delete."

Another necessary condition (right's condition) for a subject to gain

a "write," "read" and/or "execute" access to an object is that the .ubject

should possess the necessary right for that object, representing the ap-

propriate need-to-know.

A third necessary condition (non-compromising condition) is that the

subject is granted "wriLw" access for an object iff

the clearance level of the subject = clearance level of the object.

With respect to "write" access, this condition by itself is equivalent to

the union of the "*-property" of Bell and LaPadula and the clearance con-

dition above. The satisfaction of these three necessary conditions is

sufficient for a subject to gain access to an object.

C-4

Each subject is given a limiting clearance level, up to which he may

operate. The clearance level at which the subject is operating is known

as the subject's current clearance level. The necessary conditions to be

satisfied in granting the requests are evaluated in terms of the subject's

current clearance level.

Specifications for this secure document manager (SDM) are given in

Table C.I. Two implementations of this SDM are outlined below. The first

uses linkage sections to prevent any direct use of capabilities. The

second forces copying of any object to be shared for reading only, after

first removing from it all capabilities.

Implementation of a Secure Document Manager Based on Linkage Sections--

Outline

1. The SDM is a subsystem available only via a special login.

2. All objects that are to be accessed or created while operating

under the SDM are done through the SDM. The accessing (creating)

process gets an extended ubject's capability which can be used only

via the SDM. The SDM will map the user-provided capabilities onto

object capabilities.

3. A user may create objects with the same clearance level as its

current clearance level.

4. A user may not have any access to a document or object of a higher

classification (the clearance condition).

5. A user may have only "read" or "execute" access to objects of

lower classification (the complement of the non-compromising

condition).

6. All access to secure objects is via the linkage sections. The

assumption that capabilities may not be read out of linkage sec-

tions is critical here. (This is consistent with Section A.8.)

C-5

7. All segment creation is done through the SDM.

8. A user does not have a capability for his linkage section.

Implementation of a Secure Document Manager Based on Restricted Capa-

bilities--Outline

1. The SDM is a subsystem available only via a special login.

2. Unrestricted (direct) communication is allowed only between users

with exactly the same current classification and current categories.

3. The SDM keeps copies only of read-only, execute-only, and read or

execute-only objects; i.e., all capabilities have only these access

bits set. Further, no user has any other capability for this object.

4. Users may ask for access to these objects by symbolic name. The

SDM returns the appropriate capability.

5. A user may create objects of exactly its own classification and

category.

6. A user may delete objects, but an object is deleted only when

no user has access to it. A user is not given access to an object

declared to be deleted.

7. The access rights to an object may be granted or rescinded at any'

time, but have affect only when a process requests access. (Rescind-

ing is not possible for objects for which a user has current access.)

Efficiency of Implementations

It appears that the opt-rating system provides suitable support to

permit efficient implementation of the specifications of Table C.l. More

work is needed to refine the design and to explore alternative implemen-

tations.

c-6

The Login Process

When a user wishes to work under a security environment, the "login"

command (Chapter 6) checks for appropriate identification and authoriza-

tion. A user may operate at any clearance level up to his limiting clear-

ance level. The current clearance level has to be declared at log-in,

which establishes a process for the user with the current clearance level,

and gives it access to the user's directory with the current clearanc-

level, as well as access to the SDM and other necessary system functions.

Communication Set-Up

Two users with the same current clearance level may set up a communi-

cation link by sharing a common entry in their directories. The function

"send-link (directory name, entry name, user id send)" enables a user with

id user id send to send the capability corresponding to the entry to a

user with user identification "user id rec." The user with id "user id

rec" may obtain the link by "receive-link (directory name, entry name,

user id send)," whereupon the SDM puts the capability in the specified

entry.

C-7

* 4 tC n

Table C. 1

FUNCTIONS OF THE SDM

V-Func tions O-Functions

i classification(o) get access(o,p,"ar")

(ct) = categoryset(o) release access(o,p, "ar")

(ar) = access rights(p,o) grant access(o,pdpa,"ar")

i = current classification(p) rescindaccess(o,pd,pa, iart

(ct} = currentcategory set(p) create object(p,o)

to) = access set("ar",p) delete object(p,o)

(o = object set make process-known(p)

(r) = processset make process unknown(p)

i objectcount(p)

i ref count(p)
p = creator(o)

* set by login.

SDM PARAMETERS

o: symbolic name /object/

p: symbolic name /process/

"ar": access right

pd: symbolic name /donor process/'

pa: symbolic name /acceptor process/

i: integer

ct: category

accessrights: fexecute,read,write,grant,rescind,delete
max catset: the maximum category set

max cl: maximum classification
init o: symbolic names for the initial set of objects
mnitp: symbolic names for the initial set of processes
max-count: maximum number of existing objects created by a process

C-8

EXCEPTIONS FOR SDM

INVALIDOBJECT(o): o 9' object-set

INVALID PROCESS(p): p 9' process set

VALIDPROCESS(p): p e process-set

INVALIDACCESSRIGHT('ar",p,o): "ar" W access rights(p,o)

INVALID CLEARANCE(p,o): (classification(o) > ciassification(p)

V category -set(o) category -set(p)J

INVALID_*_PROPERTY("ar",p,o): "ar" = "write'A [current classification(p)
classification(o)

V current category set(p)
c ate goy (0)]1

INVALIDACCESSSET(o,arp): o of access-set("ar",p)

INVALID GRANT(p,o): grant f' access rights(p,o)
A INVALID * PRO0PERTY("write",p,o)

INVALIDRESCIND(p,o): rescind 9' access rights(p,o)
A INVALID_-*_PROPERTY("w-rite"5 p,o)

OVERFLOWOBJECTLIMIT(p): object count (p) > max -count

NOT FREE-PROCESS(p): 311(o e object -set) A ("ar" e access-rights)]
- -3o e access-set("ar",p)

SPECIFICATIONS FOR THE SDM

rIDDEN V-FUNCTION: i = classific ation(o)I

PURPOSE: The classification of the object o

INITIALLY: for o = mit o: max ci
Vo ?i mit_0: UNDEFINED

EXCEPTIONS: NONE

IDDEN V-FUNCTION: tctl = category set(o

PURPOSE: The category set of the object o

INITIAL VALUE: for o = unit o: max cat
Vo ;d mit 0: UNDEFINED

EXCEPTIONS: NONE

C -9j

IDDEN V-FUNCTION: tar! = access rights(p,o)

PURPOSE: Defines the access rights of process p for the object o

INITIALLY: Vp,o: UNDEFINED

EXCEPTIONS: NONE

V-FUNCTION: i = current classification(p)

PURPOSE: Current-classification of process p

INITIALLY: Vp: UNDEFINED

EXCEPTIONS: NONE

V-FUNCTION: (ct) = current-category set(p)

PURPOSE: Current category set of the process p

INITIALLY: Vp: UNDEFINED

EXCEPTIONS: NONE

HIDDEN V-FUNCTION: to! = access set("ar ,p)

PURPOSE: The set of objects for which process p currently has

the access right ar

INITIALLY: V("ar",p): UNDEFINED

PIDDEN V-FUNCTION: (o) = object setl

PURPOSE: Set of objects known to the secure document manager

INITIALLY: (init o

EXCEPTIONS: NONE

rIDDEN V-FUNCTION: p = creator(o)

PURPOSE: The identity of the process which created the object o

INITIALLY: Vo: UNDEFINED

EXCEPTIONS: NONE

HIDDEN V-FUNCTION: tp] = process-set

PURPOSE: The set of objects known as processes to the secure

document manager

INITIALLY: (initb)

EXCEPTIONS: NONE

C-10

V-FUNCTION: i = object-count(p)

PURPOSE: The number of objects created by process p that still exist

INITIALLY: Vp: o

EXCEPTIONS: NONE

lDERIVED V-FUNCTION: i = ref count(o)

PURPOSE: Number of processes currently having some type of access
to the object o

DERIVATION: cardinality(p I 0 e access set("ar" ,p)
A "ar" e access rights)

O-FUNCTION: get-access(o,p, ar")

PURPOSE: To get access right ar for the object o

EXCEPTIONS: INVALID OBJECT(o)
INVALID PROCESS (p)

INVALID ACCESS RIGHT("ar",p,o)
INVALI D-CLEARAWCE(p, o)
INVALID_*_PROPERTY("ar",p,o)

EFFECTS: access set("ar",p) = 'access set'("ar",p) + o

0FUNCTION release access(o,p,ar)]

PURPOSE: To release access right ar for the object o

EXCEPTIONS: INVALID OBJECT(o)

INVALID -PROCESS(p)
INVALIDACCESS SET(o,"ar",p)

EFFECTS: access set("ar",p) o* -

0-FUNCTION: grant access(o,pd,pa, "atr)

PURPOSE: The donor process pd, wants to give the acceptor process pa,
the right "ar" for the object o

EXCEPTIONS: INVALID OBJECT(o)
INVALID DPROCESS (pd)
INVALI DPROCESS (pa)
INVALID ACCESS RIGHT("ar",pd,o)

INVALIDGRANTpd, O)

EFFECTS: accessrights(pa,o) = * + "ar"

C-II

O-FUNCTION: rescind access(o,pd,pa,"ar")

PURPOSE: The donor process pd wants to rescind the acceptor

process pa's right ar to the object o

EXCEPTIONS: INVALID OBJECT(o)

I NVALI DTPROCE SS (pd)
INVALID _PROCESS (pa)
INVALID ACCESS RIGHT("ar",pd,o)

INVALI D-ACCES -RIGHT("ar", pa,o)

INVALIDRESCIND(pd, o)

EFFECT: access rights(pa,o) = * - "ar";

IF o e 'access set'("ar",pa) THEN

[access set("ar",pa) = * - o];

O-FUNCTION: create object(p,o)I

PURPOSE: To create an object with name o, and to give process p

(creating process) all the rights to the object. The
created object has the same classification and category

as the process p

EXCEPTIONS: INVALID PROCESS(p)
OVERFLOW_OBJECTLIMIT(p)

EFFECT: object set = 'object set' + o];
classification(o) = -current classification(p);

category(o) = current category(o);

access rights(p,o) = T1ar" I "ar" e access rights);
object-count'(p) * + 1;

creator(o) = p;

O-FUNCTION: delete object(po)_

PURPOSE: Process p wants to delete object o

EXCEPTIONS: INVALID OBJECT(o)

INVALI -PROCESS(p)
INVALID ACCESS RIGHT("delete",p,o)

INVALID-* PROPERTY("write",p,o)

DELAY: UNTIL ref.count(o) = 0

EFFECTS: object set = * -o;

creator(o) = UNDEFINED;
'object count'('creator'(o)) = *- I;

access rights (p,o) = UNDEFINED;

FUNCTION: make process-known(p)

PURPOSE: To define p as a process

EXCEPTIONS: VALIDPROCESS(p)

EFFECTS: process set = + p

C-12

I
FUNCTION: make processunknown(p)

PURPOSE: To make process p unknown

EXCEPTIONS: INVALID PROCESS(p)
NOT_FREE_PROCESS(p)

EFFECT: process set = * - p

C-13

