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GENERAL INTRODUCTICN

The present final report chronicles various aspects of the
research conducted by the principal Investigator related to the
wavefront deconvolution problem. The material is summarized in
the form of three self-contained sections, each devoted to a

single item. The three sections are:

Section 1: A numerically stable iterative method for
the inversion of wavefront aberrations from measured
point spread function data.

Section 2: Optimum balanced wavefront aberrations
for radially symmetric amplitude distributions;

generalizations of Zernike polynomials,

Section 3: Application of filtered singular value

decomposition to wavefront deconvolution,
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SECTION 1
A NUMERICALLY STABLE ITERATIVE METHOD FOR THE
INVERSION OF WAVEFRONT ABERRATIONS FROM
MEASURED POINT SPREAD FUNCTION DATA

ABSTRACT

This paper outlines a method for the determination of the

unknown wavefront aberration function of an optical system from
nolsy measurements of the corresponding point spread function.
The problem is cast as a nonlinear least squares estimation
problem for the values of the wavefront aberration function at

N polints over the slit aperture, from measurements of the point
spread function at M points with M > N. Newton's method is used

to replace the nonlinear minimization problem with a sequence

of linear problems. Each such problem requires the inversion

of the Hesslan matrix of the error metric which is shown to be

both singular (with rank < N-1) and ill-conditioned. To
overcome singularity, the pseudoinverse 1is used; to overcome

11l-conditioning the pseudoinverse 1is calculated using singular

& value decomposition and the singular values then filtered.
. Attention 1s drawn to difficulties such as nonuniqueness,

sensitivity of algorithms to initilal guess, etc., the

ancillary mathematical detalls being set out in appendices.

Some illustrative numerical results are presented and analyzed.
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1. INTRODUCTION

There are a number of situations of current interest where
one is required to determine the wavefront aberration function of
the optical system from measurements of the corresponding point
spread function (e.g., image forming adaptive optical systems,
laser beam forming, etc.). Published papers specifically devoted
to this problem are: Gonsalves [1] and Southwell [2]. The
general problem of phase retrieval from modulus data, of which
this 1s a typical sltuation, has been attacked by a variety of
methods almost too diverse to catalog and we refer the reader to
the vast literature for details. Some typical references are

[3-10].
Our approach to the problem rests upon two provisos:

1. The aberrated wavefront 1tself is the primary artifact of
the inversion, not an assumed functional form of it. Curve fitting
the reconstructed wavefront can be done after the inversion, if

desired.

2. The inversion of the wavefront from the measured point
spread function involves the solution of a nonlinear integral i
equation of the first kind, Eq. 2.2, with the attendant numerical
instability as befits an i1ll-posed problem [11,12]. The nonlinear

inversion method is therefore tailored to be robust with respect

B S riaituaraiThis i



to noise 1in the measured point spread function.

Given these two provisos, we have chosen to cast the
problem of determining the wavefront as a nonlinear least squares
estimation problem and brought to bear the powerful tools of

modern numerical analysis towards a solution.

The plan of the paper is as follows. Section 2 is devoted
to the necessary preliminary material. 1In section 3 is discussed
the strategy of the nonlinear least squares, while section 4
contalns the tactics (filtered singular value decomposition, the i
scaling conditions, stopping rule, etc.) required for performing
the inversion. The ancillary mathematical details are relegated to
a series of Appendices. Finally some numerical results are

discussed in section 5.

Although our analysis 1s couched 1in the speciflics of wavefront
aberration and point spread function, the formglism 1s independent

of the specific situation and 1s applicable to the phase retrieval

problem in general, for phases having compact support.
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2. PRELIMINARIES

The measured point spread function will be termed T where

m=1,2,..., M are the indexed values. It will be convenient to

write i
~ T,
T = Tl * (2.1)
2
T
m
We take as the diffraction model
+1 2
t(v) = % J et (p) Jivp dp (2.2)
-1
where w(p) = (2n/X)W(p) is the wavefront aberration function measured

in wavenumber units (27/)). Amplitude variations over the exit
pupil are not allowed in this version. Although this can be in-
cluded in the analysis we prefer to umit it in order to focus on

what we believe to be the more important issues.

The diffraction model i1s determined by N free parameters, namely
the values of the wavefront aberration function W(p) at N points
over the slit aperture. The points Pis Pposeces Py need not be

equally spaced. We choose to make them equally spaced and to let

N be an odd integer so as to lnclude the point p=0. The aberration




function must, by definition, satisfy the requirement
W(0) =0 (2.3)

In order to carry out thils program, we discretize the integral
N
bW ) = g < 1v p iw |° 0
m) = = a, e mnen (2.

m
n=1

Here pn are the quadrature points and a, the corresponding welght
factors. Our calculations were performed using a traperzoidal

rule. We.have also set W, o= w(pn).

It is again convenient to write the N wn parameters as a

column vector of length N

In this condensed notation, Eq. 2.4 becomes

tl(W), t2(W), cees tM(W)

indicating that each value of tm 1s related to all the LA In
the direet problem, we are given W and are required to calculate

tm(W).




The Znverse (or inversion) problem relates the unknown wave-
front values W to the known (measured)point spread function data

Tys Toeers Ty via the nonlinear functional relation

— tm(W), m=1,

This can be set into the more succinct form

upon defining the additional vector

£(W) = tl(v})

t, (W)

(W)

Equation 2.8 is to be interpreted as a nonlinear system of M

equations in N unknowns. Enough data 1 must be given to allow
smoothing of the experimental errdrs in the diffraction model.
Consequently, M > N (or at the least M > N) so the system in

Eq. 2.8 1s formally overdetermined.
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3. NONLINEAR LEAST SQUARES: STRATEGY

L

We will attempt to "solve" the inverse problem by requiring

that t (W) matches 1 in the .- -:.=2 that

!
!
i
|
3

v

E(W) = Z;Tm - tmw}n? (3.1)

mn=. ~

1

be »inimired when considercd &s a function of . 1In other words,

we arproach the inversion as an unconstrained, nonlinear least squares

»
provler.  (“he fact that w,,, - = 0, iIs nct a real constraint since ;
(N=1)/2
4 i

iv armounts t¢ translatine the entire % yector by a constant and it 1is

~

~

shown in Appendix .- that t(W) is invariant under such a translation).

Upon definins the vector
i

;(@) = t(W) - 1 (3.2)
it is a simple matter to rewrite E as
E(W) = ¢ (W) (W) (3.3)

Iterative methods will be employed in that we will replace

E
the nonlilnear problem ot M eguations in N unknowns by a sequence i
of linear least squares proovlems.
The Taylor series of the objective function E(W) can be used
to approximate the minimum value of E from polnts W near to the
minimum wmin by setting wmin = W + 'w. Consequently }

o N iy AE(W)
ol > \ ALl AW
r‘(wmin) ~ EW) 4 Z 3\\'Xn T n

§
i
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upon neglecting cubic and higher powers of AW. The vector AW is

b
i
j
i
1
.
e
H

as yet unknown and our object is to determine this vector (of

parameter corrections) which will approximate the minimum of E from

the point W.

As before, it will be convenient to work in matrix notation.

R T

Let us define g, the Jacobian gradient vector, of E as

o B
g = awl (3-5)

Q
.

E

awN

and H, the Hessian matrix of E, as

5°E 3°E 3°E
2 SE 3 E
awl Bwlaw2 awlawN
. 3°E 3°E 3°E
H = 2 (3.6)
8w2aw1 3w2 szawN |
3°E 3°E 3°E
. 5
awNawl awNaw2 3wN

Note that H is a symmetric NxN matrix. A further matrix which

we will utilize is the Jacobian matrix

1-7
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20 0y 20y
Bwl 3w2 awN
awl 3w2 : BwN :
20y 2%y 2oy
awl 3w2 awN

This matrix is generally not square because M > N. Given these

matrices, we can rewrite Eq. 3.4 in matrix form as

E(wmin) v E(W) + g AW + SAW HAW (3.8)

The elements of g and H can be expressed directly in terms

of ¢m' Now

_ m
D DN a (3.9

which can be cast into matrix form as

g = 28+$ (3.10)

The corresponding elements of the NxN Hessian matrix of E are




o 2 Ny dey 2:M 6 m (3.11)
e = - T —— 3.11
awjawZ m; awJ awZ - m awjawZ

with j, I =1, 2, ... N. In some versions of least squares, the

second term is neglected so that H can be approximated by 2G+G.

However, we will not make this approximation. See Appendix A for
the explicit expressions in terms of our diffraction model, Eq.

2.4,

To determine that value of AW which makes E stationary, we
equate to zero the gradient of E keeping g and H fixed. The result

is

HAW + g = 0 (3.12)

or

HAW = -2G7¢ (3.13)

where H, G, and ¢ are evaluated at W. The solution AW of this
system of linear equations gives the fundamental second order

increment towards the minimum of E.

Equation 3.13 was established from a linearization of the
basic system, Eq. 2.8. The nonlinear least square solution will

(hopefully!) be reached after a sequence of iterations. After each

iteration, Eq. 3.11, is used to obtain a new Hess;ian of partial

derivatives and the process is repeated until the error metric E

stabilizes (i.e., until no further diffraction model parameter

improvements can be usefully made). Although this

1-9
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procedure looks straightforward, it abounds with basic computa-

tional pitfalls which we discuss in the next section.

i
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NONLINEAR LEAST SQUARES: TACTICS

The previous sectlion was devoted to strategy, the present
section with the tactics of solving Egs. 3.13 and 2.8. The basic
difficulty in the calculations is the fact that the Hessian matrix

~

H, although N x N, is at most of rank (N-1). See Appendix B for

A A A AR ol 31+ M o R AT 11 G 2 e At e el S

~

details. Consequently, the formal inverse H_1 does nnt exist and
more sophisticated procedures must be employed in order to "invert"
Eq. 3.13. Furthermore H is i1l conditioned (see Eq. 4.h).

We have chosen to employ the method of singular value decom-
positiohf(with an important modification) to evaluate the psuedo-
inverse of fl. Singular value decomposition has among its several
virtues the ability to determine the rank of H during the computa-
tion. For those readers not familiar with singular value decom-
position, we have outlined a version appropriate to the N x N

Hessian in Appendix C.

The solution to Eq. 3.13 is given by Eq. B.8

k
) . (4.1)
=1

L

where ﬁz and 92 are the lth column vectors of U and V, respectively.

Equation 4.1 shows that the solution AW is a linear

+

combination of k matrices, Gl’ each of rank one since ﬁg

AdA
G ¢ 1s a

scalar.




The 1ill-posed nature of the inversion is directly evident in
Eq. 4.1. The smaller singular values entering into the denominator
of the terms of the expansion tend to magnify greatly any error
in the data vector 8 resulting in a spurious solution. To correct
this state of affairs, the expansion is terminated in a rational

fashion before the contamination due to the numerically small singu-

lar values sets 1in.

Qur cholce to accomplish this 1is to use a filtering procedure.
We rewrite Eq. 4.1 in the form

k ~ ~ ~ ~
A= - ] £(o,) (,676)V, (4.2)

=1

where f(oz) 1s a "filter function" depending on the singular
values Oy f(ol) is required to act like l/c2 for large Ogs
approach 0 for very small Ogs and, finally, to decrease from

1/01 to zero smoothly in the intermediate range. A useful candi-

date, evidently first used by Crone [13],1s

o

(4.3)
0IE+1 + qttl

L
2

f(oz) =

where L 1s some non-negative integer and q is a non-negative real

parameter.

Corem gt
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Another way to view the desirability of using a filter
function is to note that the components of AW that lie in the
direction correspondling to large singular values are the important

ones insofar as reducing E. It is the remaining components of

AW that cause numerical instability because they lie in directions

that allow very large changes with little effect on the actual

— approximation. The filter function given in Eq. 4.3 attenuates
these parasitic components of AW. Thus, q plays the role of a
variable metric and is to be chosen reasonably large, g=0(.1),

when far from the least squares solution and decreased as the

iterations are seqguenced.

Given an initial estimate (really a guess!) of ﬁ, say ﬁ(l);
we first perform a singular value decomposition of the Hessian .
matrix ﬁ evaluated at ﬁ(l). We solve for the search_direction
AQ using Eq. 3.13 employing a predetermined filter function and g
and search along this direction a distance s, for the minimum

k
~(2
w(-). Unlike the usual steepest descent method which forces one

to search for a minlmum in the direction of the negative gradient
of E, the present method modifies this direction by the
peuedoinverse of the Hesslan, which contains gradient and slope
information. The new estimate &(2) i1s then iterated to obtain

w(3) decreasing q as “Awu decreases.

Due to changes in H, the filter must be modified at each

1-13




stage in actual calculations. The Hesslan H 1s almost always

111 conditioned in the sense that

>>
0max / cmin 1

where ¢ and o, are the largest and smallest positive

max in

singular values.

The first consideration 1s scaling, Onax varies with M, N and

k. Since 111 conditlioning is defined relative to om the

ax?
filter function f(cl) defined in Eq. 4.3 imust also be defined

relative to o by appropriate scaling. We set L = 2 in Eq. 4.3

ax
in all the calculations reported in this paper. Furthermore,

f(oz) is scaled thusly

2

p
£o,) = = L (4.5)
max pp + a?

where p, = (02 / Gmax)‘ The scaled filter is made to depend upon

the kth iteration by choosing q in Eq. 4.3 to depend on k(i.e.,

q > qk)'

A reasonable definition of . must depend upon the following

two requirements:

1. As w(k) converges to the minimum , we want the filtered

inverse Hessian to converge to the true inverse Hessian (i.e.,

© oml
f(cz) > o, ). We monitor such convergence by notling the size




of the relative change Yk in w(k)

ﬁ(k)"

Ye T T
k W k

defined by

I|'s a
= K (4.6)

From theory [14,15], the convergence near the minimum should be
quadratic, so the filter convergence is made superlinear to take
some advantage of this fact.

~

2. As shown in Appendix D, a minimizer W(O) exits in the
region {ﬁ:'-w Sw < m}. Consequently it is desirable to keep
Aﬁ(k) of this order of magnitude to ensure iterates stay in this
region. So if Yk is large, we choose the Q. to pass only the

larger singular values.

With these considerations in mind, qk is chosen to be

q = min{.l, 30(Yk)1'5} (4.7)

These parameters were found by trial and error.

A deeper understanding of the effects and advantages of
filtering comes from the observation that filtering is equivalent
to Tikhonov regularization [171,12]. If no filter is used then by
statements A and B of Appendix C)Aﬁ(k) will minimize
||ﬁ(k)A&(k) + é(k)H . If a filter is used, then there exists a

1-15

ol B e R i e G b b ,
WAl AR, rfoded:d B - - - T T A N R
. Ly ¥ g o o R
y 4 bl it B a

L SR

[




scalar xk and matrix A(k)

such that Aﬁ(k) will minimize
1500000 4 GO 4 a | 200,50 | (4.8)

i.e., antk)

is a regularized least squares solution. According
to the Tikhonov agpproach the regularized solution that minimizes

Eq. 4.8 will be "smoother" than the least squares solution.

In the method used here although each linear problem is

regularized by filtering, as'k increases xk + 0 so the

nonlinear problem is not regularized, i.e., we are minimizing

EEL LIS

iteratively the nonlinear function E(ﬁ), not the regularized
function E(&) + AIIQ]|. Viewing the filter as a regularizer
shows us clearly that filtering places emphasis on those
directions in which E(ﬁ) 1s fastest in decreasing, and neglects
directions in which E(&) is slowly decreasing, thereby trading

these off for a AW of small norm. Thus w(k)

k-l, a good policy if Ne

stays as close as

possible to W is a good 1nitial guess.

Newton's method performs well as long as care is taken in
inverting the Hessian and a "good" initial guess for &<;L
available. There are bounds on an initial guess, expressed in
terms of the higher derivatives of E(ﬁ), which guarantee the

convergence of Newton's method from that guess; this is the

essence of the Newton-Kantorovich theorem [15,16]. Such bounds are




generally very conservative and also hard to evaluate. However
due to the simple analytical form of E(&) the calculations can be
done although we have as yet not performed this task. There is
an algorithm due to Kung [77] which makes use of these bounds

to generate a succession of Newton iterates that will converge

from ary initial guess.

There are available other methods which produce a sequence
that decreases E(ﬁ) until a sufficiently good starting point for
Newton;s method is reached (e.g., the simplex method of Nelder
and Mead [18] as described in Daniels [19]). However the
difficulty is to determine when such a point 1is reached without

calculating the bounds mentioned above.

To circumvent this aspect of the problem and avoid using
another minimizing algorithm, we applied the following

procedure:

1. Run Newton's method for N very small from an arbitrary
initial guess to achieve a minimum éO).

A.l
2. Increase N to N', produce WN, by interpolation over
o (0)
wN .

~(1)
3. Run Newton's method with wN, as an initial guess until

it converges on wé?). Return to 2.




The algorithm is repeated until a sufficiently large N is

reached. In practice 1t was found that N = 5 was a reasonable
starting N value. However N' could not be increased markedly
over N. Limits on available computation time did not allow us

to experiment to determine optimal procedures.

The final problem to be discussed is the stopping

rule (i.e., the criterion used to decide when W(k) is sufficiently

~(0)

close to W so that the iterative algorithm can be halted). The
stopping rule was made independent of E(@) for two reasons. The
first is that the shape and magnitude of the surface defined by
E(&) depends on N,M and the measurement noise in ;, so that
criteria using E(&) would be too problem dependent to allow

comparison of results.

The second reason is that E(W) can be insensitive to large

N RIS TS "t YT R

changes in W (this is indicated by the 1ill conditioning of H).

Thus a stopping rule based on changes in E(W) only, can halt the

e g e -

lterative algorithm far from a minimum.

For these reasons, a relative error based on w(k) was

first considered manely: halt iteration algorithm when

Y, <€




where Yy is given by Eq. 4.6 and ¢ is a specified constant. Trial

calculations showed that the iterative algorithm often took a
small step followed by a large step (typical behavior of a
minimization algorithm descending a long, curving valley with

steep walls, e.g., Rosenbrook function [20]). Thus to avoid

stopping after a small step while still far from the minimum,
the stopping rule finally adopted was: halt iteration algorithm

when

Vel T Y <€ (4.10)

- After some numerical experimentation, € = .005 was chosen.
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5. SOME NUMERICAL RESULTS
To test the numerical workings of the entire algorithm, we
considered a known wavefront aberration function W{(p) and from it

caiculated the diffraction model point spread function t(vm) using

Eq. 2.4. Noise was introduced into the measured point spread

function T in a multiplicative fashion

~

T = (1+8u)t (5.1)

noisy

where § is a positive constant less than unity and p is a random

variable uniformly distributed over (-1, +1)

: ’ £(u) lu] <1

|

;.
o a1 S PN IOIDEIISIE St i P PSP IR

=0 [u] > 1 . (5.2)
Values of § used in the present calculations are 6§ = 0.025 and

§ = .05 described loosely as 5% and 10% noise.

The sampled values v, were taken to be Vi = mn/2 in accord-

ance with the sampling expansion [21] appropriate to slit aper-

ture. Furthermore, the number M of sampled values was taken to
be odd in order to take the maximum value of % as m = 0. All

calculations reported are for N = 21 and M = 21 or 31.

S

The wavefront aberration function was taken to consist of

coma and spherical aberration




w(p) = %Tﬂ- W(p)

= 2n[W, S, (p) + W, S, (p)]

= anlW (p® - 2 p) + W (" - :6(—p2)3 (5.3)

where W3 and W _ are measured in wavelength units (i.e., wa/x,
w“/x are dimensionless). Sa(p) for coma and Sk(p) for spherical
aberration are the slit aperture versions [22] of the Zernike

polynomials. The numerical calculations were carried out for
W = W =g'>\ . (5.“)

The true wavefront aberration function is shown as a solid line

in the succeeding figures.

Our problem is to determine the wavefront aberratioh function
from the noisy sampled point spread function, Eq. 5.1, and compare

it with the true wavefront, Eg. 5.3.

In the first set of calculations, the noise level was set at
5% and the number of sampling points M was taken to be 31. Follow-
ing the procedure described in the previous section, an initial
guess was lterated until a satisfactory E was achieved as per
the stopping algorithm discussed in the previous section with
€ = .005. Approximately twenty iteratives were performed to

achieve these levels of E. The results of three typlical sample
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realization reconstructions of w(p) are shown in Figs. 1-3 along
with the corresponding values of E. The reconstructed values are
in excellent agreement with the true values and do not require

any detailed comment.

In order to test the stablility of the al-crithm with respect
to the number of sampling points, we next set M=21 (so that the number
of sampling points equals the number of reccnstructed wavefront
points) and kept the same noise level of 5%. Two sample realiza-
tion reconstructions are displayed in Figs. 4,5. Overall these
results are ol about the same accuracy as Lhose with more sampling

points.

Finally, we ran calculations for 10% noise with 31 sampling
points. Two reconstructions are shown in Figs. 6 and 7. The
results in Fig. 6 are extremely good, even those in Fig. 7 are

respectable.

It 1s of scme interest to list the final iterate singular
values corresponding tc Figs. 1-3, see Table 1, As discussed in
Appendix B, the Hessian is singular which 1is reflected in the
fact that o, 2 0. The first few ordered sinsular values are
roushly equal for the three cases 1in question; however, the higher
order ¢, are very small and hirhly irregular in their behavior as

L
can be seen ty comparison of the first and third columns. The
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other cases behave in much the same manner, always with S,

e ] Attt s Sl S T il

Calculations were also performed on two special férms of

W(p):

a. even parity, W(p) = W(-p), (e.g., spherical aberration)
b. odd parity, W(p) = W(-p), (e.g., coma).

Observed behavior led to the establishment of the following

results (the proofs are omitted for brevity).

(%)

are odd for

1. If ﬁ(k) is odd, then all subsequent W

L > k.

2. If W(k) is even and t is even, then all subsequent

W(l) are odd for 2 > k.

3. If w(o) minimize E(W) and W(o) is even, then -W(o) |

also minimizes E(W). :

An odd or even ﬁ(k) does not imply that the Hessian ﬁ[ﬁ(k)]

1 is degenerate, rather that the spaces of odd vectors and even

{ vectors are eigenspaces of f. If, for example, at any stage ﬁ(k)
is odd then condition 2 implies that Newton's method is hence-
forth restricted to a (N-1)/2 dimensional subspace of possible
solutions which may not contain the true minimum of E(W), even

though the range of ﬁ(@) may be larger than this subspace. Con- ]

dition 3 raises the point that althourh singular value decomposition b

-——

e i e e s et




and filtering ensure that Aw(k) is uniquely defined for each sub-
problem, the problem as a whole can have several solutions, each

of which 1s a potential point of convergence for Newton's method.

Rapid convergence from aﬁy initial state was observed for
t's calculated from even or odd W(p); especilally so if the initial

guess has the same parlty. In some of these cases the rank of

H reduced to (N-1)/2.

¢ A

~ car>




APPENDIX A

~ A

The matrices g, G and H defined in Section 3 are given in

LN LR PRV NGO UV e S T

Y

terms of derivatives of E via Egs. 3.9 and 3.11. The derivatives

of E, in turn, requlire a knowledge of $(W)and its first two deriva-

tives.

The explicit expression for $(W), as defined in Eq. 3.2, for

our model is

]
NS
[[Mare b=

Q

)

[¢2]

|

~

¢m(w)
N
= %{[ Z o, cos(vmpn + wn)]2

N
+[) ansin(vmpn + wn)]2} - T (A.1)

[ I e B

_m _ 1
5 akcos(vmpk + wk)

N ' ansin(vmpn + wn)

1

k

nes1 =2

a + . [E
ak°in(vmpk W, ) L o, cos(vmpn + wn) (A.2) |

where k=1, ..., N. The second partial derviatlves of ¢m are

T e T T = R AR
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a
}
? 32¢m 1l a [v ( )+ (w -w,)] k#L
awkawZ

(A.3)

N
= -1 z' ukanc05[vm(pk-pn) + (wk—wn)], k=L

—
4
L i o

where the prime on the summation sign implies that the term n=k

. . SRy

is to be omitted.
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APPENDIX B

A major factor in the difficulty of numerically finding a
~ o ~
minimizer w( )(say) of E(W) is that many such minimizers exist.

Consequently each is a potential point of attraction for the

ot A AR C o 1 b0 T

algorithm. In this appendix the existence of a one-dimensional
subspace of minimizers 1s demonstrated; furthermore this ensures
that the rank of the Hessian H(W) is always less than or equal to

(N-1).

It 1is convenient to define the quantities

= E:
cm’n = ancos(vmpn + wn) .
Sm,n = ansin(vmpn + wn)
N (B.1)
C Ejz c
m m,n
n=1
N
S EEE s i
m m,n
n=1
From these definitions and the relevant expressions in Appendix
A, it follows that
6 (W) = & (c2 + 82) - ¢ (B.2)
m 4 m m m
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The Hessian H can be written as
M

- (m) (m)
Hip 2:51[ Arp * %n Brp
m=

where
a(m o 2 20
np ~ dW_ oW
n p
= l(Szc - S C s ) ¢
' ~n"m,n m'm m,n’ “m,p
1l A2
+ $(C°s S C.c ) s
4" "m m,n mm m,n m,p
and
2
1 np ~ 3W_3W
n
=i ¢ s_ ) n#p
1 2" 'm,p m,n m,p m,n ?
=3z 452 _ss  -cec ) n=p
2 ,n m,n m m,n m,n ?
Let e be a vector whose entries are all unity. We now show
N 0 A A 0 ~
that 1if w( ) minimizes E(W), then so will the vector w( ) + ce

for any real c¢. The proof will follow from the result that

~

(W) = o(W + ce) VW

(B.5)

(B.6)

(B.T)

g S P TS i e P~

e
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Furthermore this result causes the Hessian to have rank
at most (N-1) by proving that e is in the null space of H(W),

i.e.,
H(W)e = 0 s VW (B.8)

This is equivalent to showing that the determinant of H(W)

vanishes. The formal proof follows by virtue of two lemmas.

Lemma 1’
o(W) = ¢(W + ce) (B.9)
This follows from ;
N 2
~ ~ 1 iv. p iw ic ¢
¢m(w+ce)= EZe mn g e
n=1 :
ic |2 - ;
= | e ¢ (W) ?
= ¢ (W) (B.10)
m
Lemma 2
H(W)e = 0 (B.11)
4
1-29
-

AN 2 e et 51 5o it
A oy i ) MULEREE
Y - . Sl o4 A L .




For the proof,

; H
A ~ ~ t E
Atme - 6 (B.12) i
and 1
~ ~ A 4
BiMg - ¢ (B.13)
Now 1
N f
A(m) 2 - (m)
(aVey = z Anp
p=1
N i
= EE l(Szc - S Cs Je i
$2q I °m*m,n m'm°m,n’ “m,p ;
N 2
1
+g;l E(Cmsm,n Cmsmgm,n)sm,p
2 : .‘
= E(Smcm,n Smcmsm,n)cm i
i
1,.2 ) |
+F(Cmsm,n Cmsmcm,n)sm '

T Y T e

1t suffices to show that




Also

N
(g(m);)n = z B(m)
p=

it
o

(B.15)

In the program a particular &(°> of this subspace is chosen
due to the constraint w(0) = 0 or in discrete form Win-1)/2 T 0.
Since given any minimum Q(o), a ﬁ(l) which satisfies the above
constraint can be constructed by choosing a particular constant

¢ and letting

WD W)y e (B.16)




then the constraint w(0) = 0 can never be a binding constraint.

A0
However, choice of a particular w( ) does not remove the

| difficulties caused by the exlistence of an infinite set of such
a0

g
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APPENDIX C

The Hessian matrix H, Eq. 3.6, can be expressed as the pro-

duct of three matrices (singular value decomposition of H)

AAA

H = usv’ (C.1)

A A AN /\+A -~
where U and V are NxN orthogonal matrices (ie, UU+ = U U=1I,

the same for V) and S is an NxN diagonal matrix.

S =11 (c.2)

2 1 =1,2,..., N (C.3)

This 1s the mathematical definition of the singular values, but
they are calculated by an entirely different procedure which
guarantees their numerical stability. The o's can be numerically

ordered

01205> ...20>0 (c.d)

If H is of rank k, where k<N, then the last N-k of the o's are zero.




The solution to the minimal least squares problem posed 1in
Eq. 3.7 can be cast directly into a form involving the singular !
values and their corresponding singularvectors. Substitution of

Eq. 2.1 into Eq. 3.13 yilelds after some matrix manipulations

s o= 209890 6te = —on®6ty c.5)

The matrix He’E A U+ is termed the Moore-Penrose psuedolnverse

o e S A i

of H. Here

§e = ot (C.6)
1
+ ]
i o) ' %
H . %
c§ :
with
1
+ _—
g =0 if ¢ >0

It is not our intent to give a full discusslon of the
Moore-Penrose psuedolnverse for detalls are avallable in the ;
literature [23-2¢4]. Suffice it to say that it produces a AW which

satisfles the two minimum conditicns with respect to our linear

problem:

1-34 -




o T ks . = ¢

4

R O A

A) It achieves the unique minimum of
|| Haw = 265 ||

B) If there are any other Aﬁ which satisfy Egq. 3.13, then
Eq. C.5 is characterized among them by having the
smallest norm; in other words, Eq. C.5 minimizes IIA&H

among the solutions.

The solution given by Eq. C.5 becomes somewhat more trans-
parent if the right hand side of Eq. B.5 is written out more

explicitly
k A+A+A
~ u,G ¢.
MW= - E L'y, k<N (Cc.8)
=1 ¢!

A~ ~

where u, and v, are the I-th column vectors cf U and V respectively.
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We first prove that E(W) is periodic in each coordinate with

period 2w, i.e.,

3

APPENDIX D %:
In this appendix we establish bounds on the minimum w(o). )
]
i

E(W) = E(W + 2me®) (D.1) )

: where ez is the 2th unit vector. For a proof it suffices to

~A A

show the result for the components of ¢(W), thus ?
N 2,,2
iv p i(wn+2ﬂen)

5

n=1

¢m(w + 2ﬂe2)

PRSI

ivmpn iwn
e e

1

¢ (W) (D.2)

Thls property 1s dependent on the particular discretization
chosen. It establishes the desirable result that there exists

a2 minimum w(O) of E(W) in the region
S={W/| -1m<w <7t (D.3)
Since E(W) has perlod 27, we have

min min

. E(W) = ~  E(W) (D.4)
VIeR

n WeS
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E(W) is continuous and S is a closed set, consequently E(W) attains
its minimum on S at some point w(o) in S. By periodicity, w(o)
is also a global minimum.

~(0)

Periodicity provides bounds for the minimum W which are

helpful in searches for W(O), but at the same time indicates
E(W) is a complicated surface with many maxima, minima, and

saddle points, obviously a surface on which most minimization

algorithms will have difficulty!
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TABLE 1.: FINAL ITERATE SINGULAR VALUES 9 CORRESPONDING

TO FIGS. 1-3 RESPECTIVELY

g o] o

L L L

.1299778 .1293188 .1308360
.0654607 .0663010 .0651481
.0147847 .0148309 .0151498
.0069802 .0059728 .0061527
.0044707 .0040800 .0040639
.0029514 .0025031 .0030560
.0022897 .0014872 .0021063

.0019339 .0014096 .0016379
.0014224 .0010693 .0014751
.0010348 .0008257 .0013507
.0009966 .0007715 .0012386
.0005798 .0005468 .0011485
.0003987 .0005114 .0010666
.0003521 .0004359 .0010383
.0002837 .0003983 .0009781
.0002275 .0003603 .0009411
.0001589 .0003352 .0008945
.0000700 .0003189 .0008881
.0000346 .0002814 .0005131
.0000170 .0002568 .0004882
0 0 0




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE LEGENDS

True wavefront (solid 1line), reconstructed
realization (solid circles): E = .078441,

~

5% noise in T.

True wavefront (solid 1line), reconstructed
realization (solid circles): E = .078154,

5% noise in T.

-True wavefront (solid 1line), reconstructed

realization (solid circles): E = ,089435,

5% noise in T.

True wavefront (solid line), reconstructed
realization (solid circles): E = ,.075563,

5% noise in T.

True wavefront (solid line), reconstructed
realization (solid circles): E = .327351,

A

5% noise in T.

True wavefront (solid 1line), reconstructed
realization (solid circles): E = .097244,

10% noise in t.

True wavefront (solid line), reconstructed

realization (solid circles): E .106523,

10% noise in T.
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True Wavefront (Solid Line), Reconstructed Wavefront
Realization (§olid Circles): E = ,078441, M = 31,
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True Wavefront (Solid Line), Reconstructed WavefrontARealization
(Solid Circles): E = .078154, M = 31, 5% noise in <t .
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True Wavefront (Solid Line)., Reconstructed Wavefront Realization
(Solid Circles): E = ,089435, M = 31, 57 Yoise in t .
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True Wayefrout (Solid Line), Reconstructed V!avefron; Realization
(Solid Circles); E = .075563, M = 21, 5% Noise in 1 .
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True Wavefront (Solid Line), Reconstructed Wavefront Realization
(Solid Circles): - E = .097244, M = 31, 10% Noise in T .
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SECTION 2

OPTIMUM BALANCED WAVEFRONT ABERRATIONS
FOR RADIALLY SYMMETRIC AMPLITUDE
DISTRIBUTIONS: GENERALIZATIONS OF ZERNIKE
POLYNOMIALS

ABSTRACT

The Zernlke aberration theory for constant amplitude
circular apertures is extended to annular apertures having a
Gaussian-like radial taper. Explicit expressions are obtained
for the coptimum balanced wavefront aberrations in terms of
shifted Jacobi polynomials. Properties of the polynomilals
(e.g., Rodrigues formula, recurrence relaticns, derivatives,

etc.) are investigated
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1. INTRODUCTION

The complex diffracted amplitude in the receiving plane,

given that the exit pupil is circular, is

1,27
a(v,¢) = J J Ao(p,e)exp{ikw(p,elxo,yo)+ipvcos(9-¢)}depdp (1.1)
0°¢

where w(p,elxo,yo) is Hamilton's mixed characteristic (wavefront

o o e membman

aberration) function with respect to the object plane coordinates
Xos ¥, and Ao(p,e) is the amplitude distribution over the exit

pupil. The point spread function t(v,¢) is miven by !

t(v,0) = ‘—Z—%?%); ‘ (1.2)

so that 0 < t(v,¢) £ 1.

For many optical systems, A (p,8) 1s constant over the
aperture. Without loss of generality we set A (p,8) = 1; such
systems are termed Airy systemé. The Zernike polynomlials vnlav a
fundamental role in the diffraction theory of aberratiocons of Airy
systems [,-17]. It 1s also possible to obtain the same results
by direct application of Maréchal aberration balancing theorv

(6,187 although not without considerable effort.

An extension of the Zernike type theory to nonconstant aper-

ture distributions 1s not without interest especially those that

are radially dependent, i.e., Ao(p,e) = Ao(p). We consider the




N Ny . i ke T Sl o o gy GAem oD IR ey ™ &y prr. T
- s e . T e T 311

i iaa, i -

1 case where Ao(p) is given by ]

(1-p2)% €

A

©
A
[

A (p)
0

i
(@]
-

(@]
| A
©
A
m
-

a >0 . (1.3)

e 9

In other words we are considering an annular aperture of inner

radius £ with a Gaussian-like amplitude taper. Note that for

LT

large o, we have (1-p2)% = exp(-~ap?) for small p. The situation
stated in Eq. 1.3 is precisely the one encountered in active
optics using a segmented annular mirrcr that is illuminated by a

laser beam. Two speclal but important cases are:

A. annular aperture A (p) = 1, £ < p <1
= 0, 0 < p <€ (1.4)
4
B. Gaussian aperture A (p) = (1-p2)% (1.5)

Generally speakiny;, small to moderate amounts of wavefront
aberration take enerpy out of the central core of the diffraction
pattern and add it to the diffraction rings. Furthermore, there

is very little change in the gross characteristic width of the

central core of the diffraction pattern. Apodization, however,




competes with aberration effects in case B in that it takes
energy out of the diffraction rings and adds them to the central
core, while simultaneously broadening the characteristic width

of the central core. Case A apodization behaves in a ccoperative
way with the aberration effects by adding even more ener:y tc the
diffraction rings while decreasing the characteristic width of
the central core. The general case is intermediate. These
apodization effects must manifest themselves in the determination
of the optimum balanced wavefront aberrations. Obviously the
nonconstant A, (p) cases lead to functions that differ from the

Zernike polynomials of the usual Alry system.

The purpose of the present paper 1s to obtain general
explicit expressions for the optimum balanced wavefront aberra-
tions. The aberration functions corresponding to Eg. 1.3 are
denoted by Cg(p,e,a). The functions corresponding to case A are

denoted by Ag(p,e), those of case B by B:(p,a). When € = 0 and

o = 0, these functions reduce to the usual radial Zernike pcly-
nomials Rg(p). The method employed in this paper is a general- ;
ization of the elegant (and efficient) procedure developed by

Bhatia and Wolf [4] in their classic paper on Zernike poly-

nomials. Our basic concern 1s with the development of explicilt

expressions, orthogonality conditions, recurrence relations, etc.,




and not with the diffraction imagery associated with the poly-

nomials. However, Sec. 5 is devoted to formulae for the Strehl

criterion. Evaluation of the Hankel transforms of CE, Ag, and

B: 50 necessary for the analytical aspects of diffraction

imagery is under investigation.




2. DERIVATION OF C POLYNOMIALS
Four conditions [5] are imposed on the radial Zernike poly-

nomials RQ(O):

1. R's are orthogonal over (0,1) with weight factor

unity, i.e.,

1

m m — -1
[ BR(o) BDV (o) pap = (2ns2) 6, (2.1)
1]
2. Rﬁ(p) is a polynomial of degree n 1n p and its
lowest term is of degree m in p.
3. Rﬁ(p) is to be even or odd, the parity being the

same as that of n, this means that n-m is always

an even integer.

y, Rg(p) is normalized, Rz(l) =1 for all n and m.
Condition 4 is a corollary to Condition 1.

We require that Cz(p) satisfy a modified version of these
conditions. Condition 1 now becomes

1
m o m _.m
[ emora-022% ¢, (o) pao = Wl q) 8
€

at o (2.2)

where the constant hg(e,a) wlll be evaluated shortly. Condi-

tions 2 and 3 are unchanged, while Condition 4 1s modified

slightly to read Cg(l)

1 for all n and m and for 0<e<l, a>0.




Condition 2 1s the crucial one in that the Zernike poly-
nomials Rg, although orthogonal, do not form a complete set
21,22). The procedure employed by Bhatia and Wolf [4] (and
the standard procedure in such cases as the associated Legendre
polynomials), is to factor out pm so that the remaining polynomial
is of degree (n-m). This polynonial is orthogonal with respect
to the nonnegative weight factor pm. Consequently, by standard
theorems in the theory of classical orthogonal polynomials [22,
23], this polynomial set is complete. OQur procedure is a general-

ization of this.

We factor Cg(p) into two polynomials

C§<o,€,u) = Ng(e,u) clese) po_ (p,e,0) (2.3)

where the subscript denotes the degree of the polynomial. Nﬁ

is a normalization constant. The p-polynomials will now form

a complete orthogonal set with respect to the weight factor
[cm(p,e)]2 over the interval (e,1), provided that c.(p,e) >0

over the same interval. 1In fact, we will set

c (p,e) = (Biii)m/2 (2.4)
1-¢?

for reasons to be apparent shortly. To determine the p-polynomial,

we employ the known fact [21,22] that if the weight factor

cm(p,e) is of the form given in Eq. 2.4, then Prom must be a

2-6
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scaled version of the Jacobi polynomials Pﬁa’B)(g) as defined

in [20,21]. In point of fact

Phom(Psesa) = ngiﬁﬁ/Z(g) , (2.5)
where
g = 2(912%;) -1 . (2.6)
1-€

It remains to determine the normalization constant Ng(e,a).

The Jacobi polynomials satlsfy the conditilon

k+a
ples8) (1) - ( ) 2.7)
k

independent of 8. Since cm(l,e,a) = 1, it follows that

n-mta_
2
[Ng(e,a)]“ = ) (2.8)
rn-m
n-m

Note that if a = 0, then Ng = 1 independent of e.

Putting all these components together, we have

2__2\m/2 2_.2
Cg(p,e,a) = N:(e,a) (p —€ ) ng:$§/2 [2(%:;Ef) -~ 1]

1-g?

/

(2.9)

as the sought-for expression.

A e xe




When € = o = 0, we reduce to the usual Zernlke radial poly-

nomial

R%(p) = me(O’m) [2p2-1] (2.10)

m
Cn(p,0,0) n (n-m)/2

it

as first noted by Bhatia and Wolf {4]. Bear in mind that they

used the o0ld G notation for the shifted Jacobi polynomials.

We wish to point out that Tatian [19] had previously con-

sidered the problem of optimum balanced aberrations for the
annular aperture, however, he does not derive any explicit
expressions. Arimoto [20] considered the case somewhat analogous

to our case B.

e

N L i .
e e i ati Al e
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3. PROPERTIES OF Cg POLYNOMIALS
Since C? is proporticnal to a shifted Jacobi polynomial,
we can use its properties as listed in [27,22] to derive properties

m

of Cn For typographic convenience, we omit the explicit

dependence on Cg of ¢ and o and write Cg(p) = Cg(p,e,a).

. . m
A very useful finite series representation of Cn can be

obtained from Eq. 4.3.2 of [27], it 1is

2\m/2 (n-m)/2 G'm"zc" )!(n+m)1 :
Cm(p) = Nm <Ei:§_) Z 2 2 . g
n n 1-¢?2 v=0 v,(v+a),(n-m—2v)!(n+m*2v)! :
: : 2 2 :
. p2~1 v p2—€2 (n—m-Zv)/2 (3 1)
1-g2 l-g2 ' .

Explicit expressions for the lower order Cg(p) are given in

Table 1.

A Rodrigues formula for Cg‘follows from Eq. 4.3.1 of Szegd

by appropriate change of variable. The final result is

m (n-m)/2
Nn(_l)

Cplp) =
[%(n—m{,!(l—e? (n'm)/2(p2_€2)m/2(l_p2)a

. (_g_)(n-m)/2 [(pz_ez)(n+m)/2 (1_pz)n-m+2a)/2]
dp?
(3.2)

2-9
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A recurrence relation feor fixed m oand variable n can alsc
be derived from the basic expression, Eg. 4.5.1, in Szeyo.
Straightforward manirulations yield
1, - . m
S(n-m) (rtm+za) (nta-2) Cn(p)
, 2 m
= | ({n+a)(n+o-1)(n+a=2) ¢ + (n+a-1)(a?-m?) Cn L (p)
-
1 - . m A
-5 (n+a) (n-r+2a-2) (n+m=-2) Cn_u(o) (3.3)
for n-m>2 ari - 1s iven L Zo. 2.0, The initial pelvnomials are
S
) p2og 2\
C{p) =
1”62
m -1, ~(m+2V)/2 ™/ - ;-
ente = ()T (- ) (e /e oe Y (k) p2 = (1had €7 - (mH 1) )
(3.4)
Yihen ¢« = o ° 0, Eg. 3.3 reduces to the recurrence relaticn for

Zernike polynomials given in Myrick [ 7] and in Kintner [17].

Noll [14] has pointed out the usefulness of the derivative
of the Zernike polynomials for certain applications. Both he
and Kintner {171 have developed such recurrence relations. We

. . . L
can obtain one such relation for LA

\

in the following fashicn.
Differentiate toth sides of Eq. 2.8 with rooveel to o, the

result is




- a AP S s

ol e e,

2 2 m/2
o == bo 4 pla,m)
" (l-e2 ) (1-¢2) 98 P(nim)/2 (g). (3.5)

The derivative (with respect to g) on the right-hand side can
be expressed in terms of the function itself by using Egq. 4.5.7

of [21]. Upon combining all terms
-1y .2__2 2y 4 om
(n+a)p " (p*-e*)(1-0%) g5 C,(p)

1 n-2+o\fh+a\"’ m
+t 5 (n+m)(n—m+2a)( )C C 2(p) . (3.6)

n-2 el n-=

This formula expresses the derivative directly in terms of two
polynomials of adjacent degree n and fixed order m. When €=a=0,

this reduces to an expression given in [15].

We now proceed to the evaluation of the coefficient hg (e,a)
associated with the orthogonality requirement, Egq. 2.2. Upron

substituting Eq. 2.9 into Eq. 2.2 and transforming to the variable

g defined in Eq. 2.6, we obtain

[ -




<yriind S

i b g, T

M 3 At A,

(o }(.-:‘)" * 2
lesa) = i J Cote) (=)™ | 225 ey am (3.7)

Eﬁfu+a “(n-m)/2

-1

The integral has been evaluated in Szegd, Eg. 4.3.3. The final

result 1is

‘ |n+m+?| n- w+°+2a|
nm(e o) = —=— L A (3.8)
nto? 2(n u+15 r (n+m+2+a‘ r ‘n+m+2+2a*
2 3
When € = a = 0, this reduces to the usual result ‘
.My, A _ -1
ﬂn(u,o) = (2n+1) (3.9)
When a = 0, ¢ # 0, the resultant expression is simply
hm(a O) = L (E) = .(_l"iz_)_
n -’ ~ n 2n+2 (3.10)
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4. STREHL CRITERION
Since the aberration polynomials Cg are already optimum
balanced, the maximum intensity (Strehl criterion) of the point

spread function is at v = 0 irresvective of ¢. Thus, we have

2

a+l 2 1eem a
t(0,9) = [ ) f [ (1-p2) exp{ikW(p,08)}depdp
2n(1l-g?) e

(4.1)
Provided that W(p,8) is small, we can expand the exponential andé

retain only the first three terms

exp{ikW} = 1 + ik W - % K2W2 4+ eee . (L.2)

The term linear in W will vanish upon integration leaving

2 1.27 2
£(0,¢) v {1 - A latl) f [ oo, 0000000
4 (l-g?) e 4,
2 1e2m
21 - K flatl) f J (1-02)%%(p,0)dbpdp .  (.3)
2m(1-e?) e’

The expansion of W at a fixed object point X,5¥, 1is

[ [+ o]

W(p,8[x,,y,) = nzo mzo (e (x,,¥,)cosmé

+ s (xo,yo)sinmejcz(o) (4.4)

mn




a u“‘Mrm w

PR

where ¢ X n
mn( o’yo) and Smn

(xo,yo) depend on the object point. The
restrictions on n and m are that n > m and (n-m) is an even inte-

mer. In the special case of rotational symmetry, S mn = 0.

The series in Eqg. 4.4 is now substituted into the integral.
The orthogonality relations for the trignometric functions and

for the Cg polynomials allow us to obtain

’, - kz(a'i'l) ¢ a2 2 m 4.5
t{0,¢) = 1 - m;—:z el Snm)hn(e’a) (4.5)

o

s the final expression for the Strehl criterion. The prime on
the summation sign indicates that the terms for which m = 0 are

provided with a factor of one-half. When ¢ = a = 0, this reduces

to

%TZE (c2 4 s ) (2n+2)7! . (4.6)

nin

t(os¢) = 1 -

s s,
—~— o .
Y e 7

T -

skt e mram s s adin o 1o

e s s
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TABLE 1. Cl(p) for m, n < 6.

cl =1
C! = (1-e2) ?(p%-e?)?
C? = (1+a)~!1(1-e?)~'[(2+a)p?-(1+a)e?-1]
C2 = (1-e2)~'(p2-g?)
C} = (1+a)=1(1-62)" 72 (p?=e?)*[ (3+a)p?-(1+a)e?-2]
€} = (1-e2)"2(p2-e2) 72
CY = (1+a)~'(2+a) "1 (1-e?) 2 {(3+a) (4+a)p*-2(3+a)[2+(2+a)e? ]p?
+ [(1+a) (2+a)e*+4(2+a)e?+2]}
CZ = (1+a)~1(1-e2)"2(p?-e?)[(4+a)p2~(1+a)e?~3]
C! = (1-e?)"%(p?-e?)?
C, = (1+a)=} (24a) =1 (1-62)7 72 (p2-e2) 3{ (h+a) (5+a) o
- 2(4+a)[3+(2+a)e?Ip?
+ [6+6(2+a)e?+(1+a)(2+a)e?]}
€I = (1+a)=1(1-e2)"72(p2=e?) 2[ (5+a)p?~U-(1+a)e? ]

5
cs = (1—82)—5/2(02-82) 72
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"W “ - =
TABLE 1. (Cont.)
Cy = (L+a)7'(24a) ™! (3+a) 71 (1-e?) 72 {(4+a) (5+a) (6+a)0°
- 3(4+a) (5+a)[3+(3+a)e? )p*
+ 3(4+a)[6+6(3+a)e?+(2+a) (3+a)e" Jo?
- [6+18(3+0)e?+9(2+a) (3+a)e*+(1+a) (2+a) (3+a)e® ]}
C2 = (1+a)~!'(24a)" 1 (1-e2)7%(p?-€?){(5+a) (6+a)p*
- 2(5+a)[4+(2+a)e?p?
+ [12+8(2+a)e?+(1+a) (2+a)e* ]}
Cy = (1+a)~1(1-e2)"%(p%-e2)?{(6+a)p®-[5+(1+a)e? ]}
Ce = (1-e?)7%(p?-e?)?
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SECTION 3

APPLICATION OF FILTERED SINGULAR VALUE DECOMPOSITION i
TO WAVEFRONT DECONVOLUTION |
The purpose of this note is to outline a solution of the w

wavefront deconvolution problem using the method of filtered
singular value decomposition taking direct account of the fact ]
1

that noisy measurements are involved.

The basic equation is

N
¢;(r) = E Bin(r)zn(r) (1)
n=1
where
¢i(r) = 1th measured wavefront
zn(r) = phase aberration function for nth optical
element
Bi (r) = influence function connecting ith wavefront
n to nth optical element
We are gilven oi and all the other data (via noisy measurements)
and are required to determine 2h
It is convenient to rewrite Eq. 1 1n matrix form, so that in
an cbvious notation we have
. - 3
» = Dz (2) ﬁ
where
3-1
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o

is size M x N (M rows, N columns)

N>

is size N ¥ 1 (N rows, 1 column)

rioen AW O Al i . sl B A Do

b

is size M X

>

(M rows, 1 column)

T Rt A AR AT W

For our situation M > N, with the most likely case beines ™M = N

ik
TR .

(i.e., number of observations = number of unknowns).

The fundamental difficulty with ill-vosed prcblems is the
lack of sufficient information from response measurements to
infer the correct solution. This is reflected (mathematically) in
the facﬁ that the system matrix A tends to be underdetermined (rank
deficient) even if it is formally overdetermined (more rows than
columns). Our approach then, is to aurment the data provided by
the instrument with any additional knowledpe of the nature of the
quantity being measured in order to make the computed solution at
least physically meaningful and possibly even correct. Mathe-

matically this amounts to building up the rank of the matrix ﬁ, j

or reducing the solution space so as to yield a unique solution |

which satisifes all constraints known to hold a priori. It 1s t
tempting to utilize naive least squares to "solve" this problem, ]-
i.e., }

8*az = 8% (3) ?

A4 A A4 A E
where B 1is the transpose of B. HNow (B+B) is syvmmetric and we ;

can formally invert to obtain z in the form

= 4

L emen ¥ gl "%‘;&“fn‘;"-‘;«w
5 iy ikl 1 S
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N>
1}
P
os]
loels
~—
|
—
jes)s

If:

-

System matrix B and data matrix $ are exact (i.e.,
no uncertainty in B and 6),

+/\
=)

2. B is of full rank,

3. Precision of the arithmetic of the computer is such

A~

+/\
that B B can be formed and stored exactly

N . A~ Ad A - At A
then the solution z can be obtained from (B B)T!B'¢. Unfortunately
these three conditions are not to be encountered in the deconvolu-

tion oroblem, in that conditions 1 and 2 are not satisfied.

The difficulty is that we do not know the rank of f ana
until we determine it, we cannot invert the matrix equation. The
only way that we can determine the rank of f is to use the method

of singular value decomposition and thus determine the rank of 8

during, computation. This is not to say that there are not other
methods to accomplish this but they are generally not to be

trusted (e.g., ride-regression).

We must realize that the deconvolution oroblem is extremely
complicated because hoth B and $ are measured. The vasit major-
ity of inversion problems encountered in the applied sciences
have the simplifying feature that the system matrix R is known

exactly. {




To solve our problem by sinrcular value decomposition we note
that the rectansular matrix B can be written as the product of

three matrices

. /\/\+ /\+A
M orthoronal matrix (UU = U U

. /\A+ A+/\r
N orthoronal matrix (VV = V'V
N matrix with nonnegative elements on the main

diaronal and zeros elsewhere.

A has the form

0

© 0 060 0000000000 Pt

0

The o's are termed the sinfgular values of B and are the solutions

of the elrenvalue problems

BB ui

(7)

where Gi and G? are the Jjith column vectors of U and V. This is

the mathematical definition of the ¢'s but they are never




o b AN A

evaluated from the definition unless B is mathematically exact

(certainly not the case with which we have to contend!).

The o's can be ordered so that

—~
[
—~—

0, 2 0, 2 0, 2 *** 2 ON 2 0

If the rank of R is k where k < N, then

o’ = 0 = * o0 = OI\ = O . (9)

The solution to the minimal least squares problem vosed by
Eq. 2 can be found in the following manner. Multiply both sides

~+
of Ea. 2 by B and formally invert to get
~ A+/\ _l/\ A~ .
z = (R'B)T'B ¢ (10)
Substitute Egq. 5 into the right hand side

(B¥B)-18%% = (DRATGTOATT)-10R0

~ ~ AN ~ AAA ~ AA+A
= (VA='0- 10N - 9A0T VAG Y 8
= A 10 = 8% (11)
The matrix §+ E QK"U is termed the rauedoinverses of R, The

matrix A=!' 1s the N x M matrix

3-5
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where

Q
1t
[
-]
Q
v
O

= Q0 if ., =0 . (13)

The solution becomes clearey if the ripght hand side of Eg. 9

is written out explicitly ;

Lk (ule) .

2= 7 (=i, , k < N (14)
L 0. i
J=1 J .

where Gj and Gj denote column vectors of the matrices U and V.
The smaller singsular value g, entering into the denominator of
the terms of the expansion tend to sreatly magnify any error in
the data vector @, resultings in a spurious solution. To alleviate

this, the expansion must be cut off (in some rational fashion)

before the contamination due to the small sinrular values enters.

One wav to achieve this is to set




where the criterion for picking e is

£ 55 noise . (16)
Ty

This approach has been employed by the author for several Inver-
sion problems. However, it is not recommended for the deconvolu-

tion problem because it is virtually impossible to now how much

noise there 1s in the system.

Instead we go back to Eg. 12 and introduce a filtered solu-

tion

z =] [f(o)ujelv, (17)
J

where f(oi) is a filter function depending on the singular values.

The filter function is required to act like 1/0i for large oi,

approach zero for very small Oy and finally to decr:»ase from

1/0i to zero smoothly in the intermediate range. A useful candi-

date is

o)

/ -
flog) = 1 w1 (18)
o + k
i
where N = 0,1,2,+*+ and k is a positive constant. Figures 7 and
8 show the behavior of f(oi) for N = 1,3 as a function of varilous
values of k. Previous calculations made by the author on other

Pooas

v it simpler!) inversion problems have indicated that N = 1 is a

3-7
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desirable compromise between too much smoothing and too great a

sensitivity on k. Xnowing the singular values o, and requiring

i
that k be less than the maximum singular value 1s one way of

determining "optimum k."

The question of uniqueness is a serious problem when the
data is noisy. One of the useful features of the present approach
is that it is possible to get a quantative measure of the uniaue-

ness of the solution in the presence of noisy data.

Let us put the subscript s on the solution piven in Eg. 11

to denote that the solution is in terms of noisy data; hence

Hyo . (19)

zg = (VAT'U o ?

~

To obtain '"nice" Zg, We have had to discard singular values in

ﬁs' The cost we have had to pay is a degradation in "resolution"

of the sought for parameters. We gquantify these arguments in

the following manner. Multiply Eq. 19 by ﬁs

HS¢ = HSB

(20)

N>

The left hand side 1s ES. We can also manipulate the right hand

side




Al i

[42]
0

= (va—ohy (oAt )2

- GA-1A9Y2
s (21)
Now let
R = W' (22)
so that
s = B2 . (23)

~

Thus, the degree of which ﬁ approximates the unit matrix I is a

measure of the uniqueness of the solution.

There 1s also an interpretation of the U materix, although it
is not as important as the V matrix interpretation. Consider the

basic equation again

¢ = Bz = 0AY'z (24)
and set

AERAL (25)
then

¢ = UAZ (26)
If we let

3-9
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$ = %% (27)
then
$ = AZ (28)
Now when noise 1s present, let us multiply both sides by ﬁ
~A /\/\+A
Ud = UU ¢ (29)
Set
s = oot . (30)

~

Since our data is noisy S is not the unit matrix so that

AN

0% = S¢

u»

The left hand side is really $s’ the noisy model data, hence

6 . (31)

(24

6. =
This means that our model data $s will deviate more and more from

$ the more the S matrix deviates from the unit matrix.

Thus, both ﬁ and § matrices from the singular value decompo-
sition of B are useful in determining the robestness of the

inversion calculations.

The elements of the system matrix B as we have already

point out are experimentally determined quantities. For the 111

conditioned @, we must accept the fact that the rank of the matrix

3-10
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is poorly determined numerically and may well chance as fthe

matrix elements vary by very small amounts. An added advantage
of singular value decomposition is that the singular values are
stable to perturbations in the matrix elements in that perturba-

tions of the matrix elements produce perturbations in the singular

values of the same order of magnitude. This is certainly not the

case with the corresponding eignvalues, should they exist!

Thus far we have discussed the strategy of the method of
singular value decomposition. The tacties (i.e., the actual
programs, etc.) are fortunately available. Golub and Reinech
have developed an ingenious method of computing the singular
values of an M x N matrix which 1s numerically very stable. The
algorithm itself 1s too complicated to describe as 1t employes
methods generally known only to specialists in numerical linear

algebra.

3-11
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of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs Lin Auppou, 0§ Command, Control
Communications and Intelligence (C31) activities. Technical
and engdineering suppornt within areas of technical competence
45 provided to ESD Program 0ffices (POs) and other ESD
elements. The principal technical mission areasd are
communications, electromagnetic guidance and control, sur-
veillance o4 ground and aerospace obfects, intelligence data
collection and handling, information system technology,
Lonosphenic propagation, so&id state 4ciences, microurve
physics and electronic neliability, maintainability and

compatibility.
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