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GENERAL INTRODUCTION

The present final report chronicles various aspects of the

research conducted by the principal investigator related to the

wavefront deconvolution problem. The material is summarized in

the form of three self-contained sections, each devoted to a

single item. The three sections are:

Section 1: A numerically stable iterative method for

the inversion of wavefront aberrations from measured

point spread function data.

Section 2: Optimum balanced wavefront aberrations

for radially symmetric amplitude distributions;

generalizations of Zernike polynomials.

Section 3: Application of filtered singular value

decomposition to wavefront deconvolution.
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SECTION 1

A NUMERICALLY STABLE ITERATIVE METHOD FOR THE

INVERSION OF WAVEFRONT ABERRATIONS FROM

MEASURED POINT SPREAD FUNCTION DATA

ABSTRACT

This paper outlines a method for the determination of the

unknown wavefront aberration function of an optical system from

noisy measurements of the corresponding point spread function.

The problem is cast as a nonlinear least squares estimation

problem for the values of the wavefront aberration function at

N points over the slit aperture, from measurements of the point

spread function at M points with M > N. Newton's method is used

to replace the nonlinear minimization problem with a sequence

of linear problems. Each such problem requires the inversion

of the Hessian matrix of the error metric which is shown to be

both singular (with rank < N-l) and ill-conditioned. To

overcome singularity, the pseudoinverse is used; to overcome

ill-conditioning the pseudoinverse is calculated using singular

value decomposition and the singular values then filtered.

Attention is drawn to difficulties such as nonuniqueness,

sensitivity of algorithms to initial guess, etc., the

ancillary mathematical details being set out in appendices.

Some illustrative numerical results are presented and analyzed.
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1. INTRODUCTION

There are a number of situations of current interest where

one is required to determine the wavefront aberration function of

the optical system from measurements of the corresponding point

spread function (e.g., image forming adaptive optical systems,

laser beam forming, etc.). Published papers specifically devoted

to this problem are: Gonsalves [] and Southwell [2]. The

general problem of phase retrieval from modulus data, of which

this is a typical situation, has been attacked by a variety of

methods almost too diverse to catalog and we refer the reader to

the vast literature for details. Some typical references are

[3-101.

Our approach to the problem rests upon two provisos:

1. The aberrated wavefront itself is the primary artifact of

the inversion, not an assumed functional form of it. Curve fitting

the reconstructed wavefront can be done after the inversion, if

desired.

2. The inversion of the wavefront from the measured point

spread function involves the solution of a nonlinear integral

equation of the first kind, Eq. 2.2, with the attendant numerical

instability as befits an ill-posed problem [11,12]. The nonlinear

inversion method is therefore tailored to be robust with respect

Ii1-i



to noise in the measured point spread function.

Given these two provisos, we have chosen to cast the

problem of determining the wavefront as a nonlinear least squares

estimation problem and brought to bear the powerful tools of

modern numerical analysis towards a solution.

The plan of the paper is as follows. Section 2 is devoted

to the necessary preliminary material. In section 3 is discussed

the strategy of the nonlinear least squares, while section ~4

contains the tactics (filtered singular value decomposition, the

scaling conditions, stopping rule, etc.) required for performing

the inversion. The ancillary mathematical details are relegated to

a series of Appendices. Finally some numerical results are

discussed in section 5.

Although our analysis is couched in the specifics of wavefront

aberration and point spread function, the formalism is independent

of the specific situation and is applicable to the phase retrieval

problem in general, for phases having compact support.
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2. PRELIMINARIES

The measured point spread function will be termed Tm where

m = 1,2,..., M are the indexed values. It will be convenient to

write

T T (2.1)
T2

m

We take as the diffraction model

t(v) +1 e'W(p) eivp dp (2.2)

where w(p) = (27/A)W(p) is the wavefront aberration function measured

in wavenumber units (27/X). Amplitude variations over the exit

pupil are not allowed in this version. Although this can be in-

cluded in the analysis we prefer to umit it in order to focus on

what we believe to be the more important issues.

The diffraction model is determined by N free parameters, namely

the values of the wavefront aberration function W(p) at N points

over the slit aperture. The points pis P 2 ... I PN need not be

equally spaced. We choose to make them equally spaced and to let

N be an odd integer so as to include the point p=O. The aberration

1-3



function must, by definition, satisfy the requirement

W(O) = 0 (2.3)

In order to carry out this program, we discretize the integral

N

t(v) m tm an eVmPn e I 2  (2.4)

n=l

Here p n are the quadrature points and a n the corresponding weight

factors. Our calculations were performed using a traperzoidal

rule. We have also set wn W(pn)
n n

It is again convenient to write the N w parameters as an

column vector of length N

Wll
A w

W w (2.5)w2 1

wN

In this condensed notation, Eq. 2.4 becomes

tl(W), t2 (W), ... , tM(W) (2.6)

indicating that each value of tm is related to all the w n. In
A

the direct problem, we are given W and are required to calculate

tm(W).
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The inverse (or inversion) problem relates the unknown wave-

front values w to the known (measured)point spread function datan

T 1 2 "... I TM via the nonlinear functional relation

Tm = t (w), m = 1, ... , M (2.7)

This can be set into the more succinct form

A tAw) (2.8)
= t(W)

upon defining the additional vector

t(W) = tl(W) (2.9)

t 2 (W)

tM(W)

Equation 2.8 is to be interpreted as a nonlinear system of M

equations in N unknowns. Enough data T must be given to allow

smoothing of the experimental err6rs in the diffraction model.

Consequently, M > N (or at the least M > N) so the system in

Eq. 2.8 is formally overdetermined.

1-5



3. NONLINEAR LEAST SQUARES: STRATEGY

We will attempt to "solve" the inverse problem by requiring

that t(W) matches T in the that

E(W) = E m - t 2 (3)
~~~~be -'rie when considered :.s a func-tion o ,.in other words,

we arrroach the inversion as an unconstrained, nonlinear least squares

pr-ble:. (''he fact that w(_i)/2 = 0,s nt, a real constraint since

it amounts to rtranslating,: the entire vector by a constant and it is

shown in Appendix :- that t(W) is invariant under such a translation).

Upon definini- the vector

(w) t(w) - T (3.2)

it is a simple matter to rewrite E as

E(W) = ¢+(WW(W) (3.3)

Iterative methods will be employed in that we will replace

the nonlinear problem of M equations in N unknowns by a sequence

of linear least squares problems.

The Taylor series of the objective function E(W) can be used

to approximate the minimum value of E from points W near to the

minimum Wmi n by setting Wmin W + '.. Consequently

A ~:-' E(W)_E(Wmi n )  (/ E(W) ri.

- n

-. (W .xj.Aw (3.4)

j-l L=



A A

upon neglecting cubic and higher powers of AW. The vector AW is

as yet unknown and our object is to determine this vector (of

parameter corrections) which will approximate the minimum of E from

the point W.

As before, it will be convenient to work in matrix notation.

Let us define g, the Jacobian gradient vector, of E as

A E
^ awl (3.5)

3E
awN

and H, the Hessian matrix of E, as

a2E a2E a2E

aw 2 awlw 2  " awwN

a 2E a2E a2E

Hawaw aw 2 aw2 aWN

231 2 2N.............. ,...,..,...

a2E a 2E a 2 E
awaw waW 2 aw2

N 1 N 2 wN

Note that H is a symmetric NxN matrix. A further matrix which

we will utilize is the Jacobian matrix
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D o i 9 0 i D o ,

aw-- aw 2  "'" N

S=- ...

aw 3w212

This matrix is generally not square because M > N. Given these

matrices, we can rewrite Eq. 3.4 in matrix form as

E(Wm ) % E(W) + g' AW + AW+HAW (3.8)

The elements of g and H can be expressed directly in terms

of m" Now

aE M D
E 2 O- m am (3.9)
n E~ n .

m=l

which can be cast into matrix form as

g = 2G 4 (3.10)

The corresponding elements of the NxN Hessian matrix of E are
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a2E _ 3 m a¢m _ 2___m-w =w 2 wj w + 2 Cm jw(3.11)
~aw aw E ar awz m awi aw1  3.1

with j, I = 1, 2, ... N. In some versions of least squares, the
A A+A

second term is neglected so that H can be approximated by 2G+G.

However, we will not make this approximation. See Appendix A for

the explicit expressions in terms of our diffraction model, Eq.

2.4.

To determine that value of AW which makes E stationary, we

equate to zero the gradient of E keeping g and H fixed. The result

is

HAW + g = 0 (3.12)

or

HAW = -2G+€ (3.13)

where H, G, and ¢ are evaluated at W. The solution AW of this

system of linear equations gives the fundamental second order

increment towards the minimum of E.

Equation 3.13 was established from a linearization of the

basic system, Eq. 2.8. The nonlinear least square solution will

(hopefully!) be reached after a sequence of iterations. After each

iteration, Eq. 3.11, is used to obtain a new Hes;ian of partial

derivatives and the process is repeated until the error metric E

stabilizes (i.e., until no further diffraction model parameter

improvements can be usefully made). Although this

1-9



procedure looks straightforward, it abounds with basic computa-

tional pitfalls which we discuss in the next section.

1-1i
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4. NONLINEAR LEAST SQUARES: TACTICS

The previous section was devoted to strategy, the present

section with the tactics of solving Eqs. 3.13 and 2.8. The basic

difficulty in the calculations is the fact that the Hessian matrix

H, although N x N, is at most of rank (N-l). See Appendix B for

details. Consequently, the formal inverse H does not exist and

more sophisticated procedures must be employed in order to "invert"

Eq. 3.13. Furthermore H is ill conditioned (see Eq. 4.4).

We have chosen to employ the method of singular value decom-

position (with an important modification) to evaluate the psuedo-

inverse of H. Singular value decomposition has among its several

virtues the ability to determine the rank of H during the computa-

tion. For those readers not familiar with singular value decom-

position, we have outlined a version appropriate to the N x N

Hessian in Appendix C.

The solution to Eq. 3.13 is given by Eq. B.8

A k u G 0 A= I 2, k < N (4.1)

where u. and v. are the Z column vectors of U and V, respectively.

Equation 4.1 shows that the solution AW is a linear

combination of k matrices, v,, each of rank one since u£G * is a

scalar.
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The ill-posed nature of the inversion is directly evident in

Eq. 4.1. The smaller singular values entering into the denominator

of the terms of the expansion tend to magnify greatly any error

in the data vector 4 resulting in a spurious solution. To correct

this state of affairs, the expansion is terminated in a rational

fashion b-efore the contamination due to the numerically small singu-

lar values sets in.

Our choice to accomplish this is to use a filtering procedure.

We rewrite Eq. 4.1 in the form

k= - f(ak) (uGG )vZ (4.2)

where f(a) is a "filter function" depending on the singular

values a.. f(ak) is required to act like /a k for large a.,

approach 0 for very small a£; and, finally, to decrease from

/a L to zero smoothly in the intermediate range. A useful candi-

date, evidently first used by Crone [13],is

La

Z L+l L+l (43)
a2  + q

where L is some non-negative integer and q is a non-negative real

parameter.
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Another way to view the desirability of using a filter

function is to note that the components of AW that lie in the

direction corresponding to large singular values are the important

ones insofar as reducing E. It is the remaining components of

AW that cause numerical instability because they lie in directions

that allow very large changes with little effect on the actual

approximation. The filter function given in Eq. 4.3 attenuates

these parasitic components of AW. Thus, q plays the role of a

variable metric and is to be chosen reasonably large, q=O(.l),

when far from the least squares solution and decreased as the

iterations are sequenced.

Given an initial estimate (really a guess!) of W, say W ( 1 ) -

we first perform a singular value decomposition of the Hessian

matrix H evaluated at W We solve for the search direction

AW using Eq. 3.13 employing a predetermined filter function and q

and search along this direction a distance s k for the minimum

W ( ? )  Unlike the usual steepest descent method which forces one

to search for a minimum in the direction of the negative gradient

of E, the present method modifies this direction by the

peuedoinverse of the Hessian, which contains gradient and slope

information. The new estimate W(2) is then iterated to obtain
^(3)

decreasing q as (IAWi decreases.

Due to changes in H, the filter must be modified at each

1-13



stage in actual calculations. The Hessian H is almost always

ill conditioned in the sense that

Cmax / amin >> 1 (4.4)

where amax and amin are the largest and smallest positive

singular values. 1

The first consideration is scaling, amax varies with M, N and

k. Since ill conditioning is defined relative to amax' the

filter function f(ok) defined in Eq. 4.3 must also be defined

relative to amax by appropriate scaling. We set L = 2 in Eq. 4.3

in all the calculations reported in this paper. Furthermore,

f(a.) is scaled thusly

f( ) p12 (4.5)f2. = P +
°max 9P qk

where p. = (a / max). The scaled filter is made to depend upon

the kth iteration by choosing q in Eq. 4.3 to depend on k(i.e.,

q - qk ) .

A reasonable definition of qk must depend upon the following

two requirements:

1. As W converges to the minimum, we want the filtered

inverse Hessian to converge to the true inverse Hessian (i.e.,

f(a2 ) 02 ). We monitor such convergence by noting the size

1-14



of the relative change yk in W defined by

_ II sk A(k)II
_ k (4.6)

k 11 K(k)I

From theory [14,15], the convergence near the minimum should be

quadratic, so the filter convergence is made superlinear to take

some advantage of this fact.

2. As shown in Appendix D, a minimizer W exits in the

region {W: -r < w < 7}. Consequently it is desirable to keep

AW(k) of this order of magnitude to ensure iterates stay in this

region. So if yk is large, we choose the qk to pass only the

larger singular values.

With these considerations in mind, qk is chosen to be

q min ., 30(Yk)l.5 (4.7)

These parameters were found by trial and error.

A deeper understanding of the effects and advantages of

filtering comes from the observation that filtering is equivalent

to Tikhonov regularization [11,121. If no filter is used then by

statements A and B of Appendix C AW(k) will minimize

1 1 jH(k) A(k) + g(k)j1  If a filter is used, then there exists a
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scalar Xk and matrix A such that AW(k) will minimize

1̂H(k)w(k) + g(k)JI + X A(k)Aw(k) I (4.8)

H

i.e., AW (k ) is a regularized least squares solution. According

to the Tikhonov approach the regularized solution that minimizes

Eq. 4.8 will be "smoother" than the least squares solution.

In the method used here although each linear problem is

regularized by filtering, as k increases X - 0 so the
k

nonlinear problem is not regularized, i.e., we are minimizing

iteratively the nonlinear function E(W), not the regularized
A A

function E(W) + Q 1W1I. Viewing the filter as a regularizer

shows us clearly that filtering places emphasis on those

directions in which E(W) is fastest in decreasing, and neglects

directions in which E(W) is slowly decreasing, thereby trading
A oT (k)

these off for a AW of small-norm. Thus W stays as close as

possible to Wkl, a good policy if W ( 1 ) is a good initial guess.

Newton's method performs well as long as care is taken in
A( 0)

inverting the Hessian and a "good" initial guess for W is

available. There are bounds on an initial guess, expressed in

terms of the higher derivatives of E(W), which guarantee the

convergence of Newton's method from that guess; this is the

essence of the Newton-Kantorovich theorem [1,,16]. Such bounds are

1-16



generally very conservative and also hard to evaluate. However

due to the simple analytical form of E(W) the calculations can be

done although we have as yet not performed this task. There is

an algorithm due to Kung [17] which makes use of these bounds

to generate a succession of Newton iterates that will converge

from any initial guess.

There are available other methods which produce a sequence

that decreases E(W) until a sufficiently good starting point for

Newton's method is reached (e.g., the simplex method of Nelder

and Mead [181 as described in Daniels [19]). However the

difficulty is to determine when such a point is reached without

calculating the bounds mentioned above.

To circumvent this aspect of the problem and avoid using

another minimizing algorithm, we applied the following

procedure:

1. Run Newton's method for N very small from an arbitrary

initial guess to achieve a minimum W 0)
N

^(i)

2. Increase N to N', produce WN, by interpolation over

^(O)
N"

^( i) i
3. Run Newton's method with WN, as an initial guess until

(0) R t r o 2iJ
it converges on WN, . Return to 2.

1-17



The algorithm is repeated until a sufficiently large N is

reached. In practice it was found that N = 5 was a reasonable

starting N value. However N' could not be increased markedly

over N. Limits on available computation time did not allow us

to experiment to determine optimal procedures.

1

The final "tactic" nroblem to be discussed is the stopping

rule (i.e., the criterion used to decide when W (k ) is sufficiently

close to so that the iterative algorithm can be halted). The

stopping rule was made independent of E(W) for two reasons. The

first is that the shape and magnitude of the surface defined by

E(W) depends on N,M and the measurement noise in T, so that

criteria using E(W) would be too problem dependent to allow

comparison of results.

The second reason is that E(W) can be insensitive to large

changes in W (this is indicated by the ill conditioning of H).

Thus a stopping rule based on changes in E(W) only, can halt the

iterative algorithm far from a minimum.

For these reasons, a relative error based on W(k) was

first considered manely: halt iteration algorithm when

Yk <  C (4.9)
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where yk is given by Eq. 4.6 and c is a specified constant. Trial

calculations showed that the iterative algorithm often took a

small step followed by a large step (typical behavior of a

minimization algorithm descending a long, curving valley with

steep walls, e.g., Rosenbrook function [201). Thus to avoid

stopping after a small step while still far from the minimum,

the stopping rule finally adopted was: halt iteration algorithm

when

Yk+l + Yk < s (4.10)

After some numerical experimentation, 6 .005 was chosen.
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5. SOME NUMERICAL RESULTS

To test the numerical workings of the entire algorithm, we

considered a known wavefront aberration function W(p) and from it

calculated the diffraction model point spread function t(v m ) using

Eq. 2.4. Noise was introduced into the measured point spread

function T in a multiplicative fashion

noisy = (1+ 6p)E (5.1)

where 6 is a positive constant less than unity and p is a random

variable uniformly distributed over (-1, +1)

f(l) < 1

= 0 lil > 1 . (5.2)

Values of 6 used in the present calculations are 6 = 0.025 and

6 = .05 described loosely as 5% and 10% noise.

The sampled values vm were taken to be v = m7/2 in accord-
m m

ance with the sampling expansion [21] appropriate to slit aper-

ture. Furthermore, the number M of sampled values was taken to

be odd in order to take the maximum value of T as m = 0. All

calculations reported are for N = 21 and M = 21 or 31.
J

The wavefront aberration function was taken to consist of

coma and spherical aberration
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w(p) 7- W(p)

21r[W 3 S 3(p) + W4 S4 (p)]

2wUW (p3 - 3 p) + W (p 4  6 p 2)] (53)
3 5 4 7p

where W 3 and W are measured in wavelength units (i.e., W 3/X,

W /X are dimensionless). S 3(p) for coma and S4 (p) for spherical

aberration are the slit aperture versions [22] of the Zernike

polynomials. The numerical calculations were carried out for

W3 =W 4 =-X (5.4)

The true wavefront aberration function is shown as a solid line

in the succeeding figures.

Our problem is to determine the wavefront aberration function

from the noisy sampled point spread function, Eq. 5.1, and compare

it with the true wavefront, Eq. 5.3.

In the first set of calculations, the noise level was set at

5% and the number of sampling points M was taken to be 31. Follow-

ing the procedure described in the previous section, an initial

guess was iterated until a satisfactory E was achieved as per

the stopping algorithm discussed in the previous section with

e = .005. Approximately twenty iteratives were performed to

achieve these levels of E. The results of three typical sample
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realization reconstructions of w(p) are shown in Firs. 1-3 along

with the correspondinr values of E. The reconstructed values are

in excellent ag)reement with the true values and do not require

any detailed comment.

In order to test the stabillty of the alrcrithm with respect

to the number of sampling points, we next set '=21 (so that the number

of sampling points equals the number of reconstructed wavefront

points) and kept the same noise level of 5%. Two sample realiza-

tion reconstructions are displayed in Figs. 4,5 . Overall these

results are of about the same accuracy as those with more sampling

points.

Finally, we ran calculations for 10% noise with 31 sampling

points. Two reconstructions are shown in Figs. 6 and 7. The

results in Fig. 6 are extremely good, even those in Fig. 7 are

respectable.

It is of some interest to list the final iterate singular

values corresponding to Figs. 1-3, see Table 1. As discussed in

Appendix B, the Hessian is singular which is reflected in the

fact that a 2 0. The first few ordered singular values are21 :

rouFrhly equal for the three cases in question; however, the higher

order a are very small and highly irregular in their behavior as

can be seen by comparison of the first and third columns. The i
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other cases behave in much the same manner, always with 21

Calculations were also performed on two special forms of

W(p):

a. even parity, W(p) = W(-p), (e.g., spherical aberration)

b. odd parity, W(p) = W(-p), (e.g., coma).

Observed behavior led to the establishment of the following

results (the proofs are omitted for brevity).

1. If (k) is odd, then all subsequent W( are odd for

Z > k.

2. If W(k) is even and t is even, then all subsequent

are odd for Z > k.

3. If (O) minimize E(W) and W(o) is even, then 4(0)

also minimizes E(W).

An odd or even W does not imply that the Hessian H[W ]

is degenerate, rather that the spaces of odd vectors and even

vectors are eigenspaces of H. If, for example, at any stage (k)

is odd then condition 2 implies that Newton's method is hence-

forth restricted to a (N-1)/2 dimensional subspace of possible

solutions which may not contain the true minimum of E(W), even

though the range of H(W) may be larger than this subspace. Con-

dition 3 raises the point that althouph singular value decomposition
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and filtering ensure that AW(k) is uniquely defined for each sub-

problem, the problem as a whole can have several solutions, each

of which is a potential point of convergence for Newton's method.

Rapid convergence from any initial state was observed for
2

t's calculated from even or odd W(p); especially so if the initial

guess has the same parity. In some of these cases the rank of

H reduced to (N-1)/2.

i
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APPENDIX A

The matrices g, G and H defined in Section 3 are given in

terms of derivatives of E via Eqs. 3.9 and 3.11. The derivatives

of E,in turn, require a knowledge of ¢(W)and its first two deriva-

tives.

The explicit expression for O(W), as defined in Eq. 3.2, for

our model is

A N iv p_ iw 2

m(W) = y Z a e ne n Tn= n

a a cos (vp Wn)] 2

n=1

N 2
+ [ a sin(vmp + Wn)]} - (A.1)

n=l

The first derivative becomes

m 1 N

wk 2 a kcos(v Pk + wk ) a nasin(v mpn+ Wn )
k n=1

N
- [ aksin(v Pk + Wk) a cos(vmPn + Wn) (A.2)

n=

where k=l, ... , N. The second partial derviatives of m are

1-25

------



_____k taco s[v(pk-p) + (wkW)]

____ -k mk kZ(A.3)-

2 n I n M -p n) + (W k-w n] k=Z

where the prime on the summation sign implies that the term n=k

is to be omitted.
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APPENDIX B

A major factor in the difficulty of numerically finding a

minimizer W (say) of E(W) is that many such minimizers exist.

Consequently each is a potential point of attraction for the

algorithm. In this appendix the existence of a one-dimensional

subspace of minimizers is demonstrated; furthermore this ensures

that the rank of the Hessian H(W) is always less than or equal to

(N-l).

It is convenient to define the quantities

Cm,n =cancos(vmpn + wn)a sin(

Sm,n =nsin(vmpn + Wn

N (B.1)

Cm m,n
n=l

N

Sm E Sm,n

n=1

From these definitions and the relevant expressions in Appendix

A, it follows that

m(W) 1 (C2 + S2) - m (B.2)2m m
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______( - (S c - C s 
(B)32w m m,n m m, n(B3

n

The Hessian Hcan be written as

H 2> A (m)+ B(m)J

m= 1

where

A(m) - m m
np aw n W

1 (s~c - SmCsmn Cm

+ 7(c2Sm - S C C ) s (B.5)
4m mn Mm m,n m~p

and

B _( 

2 0 _ (W)

np - W aW
n p

1,= C mp Cm,n +Smlp sm,n p(B6

= (2 + S2 -S s -Cc C
2m,n m,n m mn,n m m,n p

Let e be a vector whose entries are all unity. We now show
tht f ( 0) ^(I)

ta ifW minimizes E(W), then so will the vector W + ce

for any real c. The proof will follow from the result that

- (B. 7)+ ce)j
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Furthermore this result causes the Hessian to have rank

at most (N-I) by proving that e is in the null space of H(W),

i.e.,

H(W)e = 0 V ( (B.8)

This is equivalent to showing that the determinant of H(W)

vanishes. The formal proof follows by virtue of two lemmas.

Lemma Z

4(W) = (W + ce) (B.9)

This follows from

N ivp iw ic

(w + ce)= e n n e
M 2 1

n=1

ic 2 ^

= em(W)

(W) (B.10)
m

Lemma 2

H(W = 0 (B.11)
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For the proof, it suffices to show that

A e 0 (B.12)

and

B e(B.13)

Now

N(m^ = .(M)
(A(m)) n np

p=l

N
S (- S )c
p=i m1m'n m m m,n m,p

N

12

+ 1 (CmSm~- C S c S
mmn m mm,n rn

=0 (B.14)
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Also

N

(BM) = (m)

p=1

N

= 2 *M*(Cp mn + m,p m~
p=l

' (S s + C cm m,n m m,n

f C mCc m rn+Sms ,n)

2f( m sm,n + n C mc,n)

=0 (B.15)

In the program a particular W(O of this subspace is chosen

due to the constraint w(0) = 0 or in discrete form w(Nl1)/2 = 0.
^( 0) ^ 1

Since given any minimum W aW whcsaifeteabv

constraint can be constructed by choosing a particular constant

c and letting

= (1 + ce (B.16)
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then the constraint w(O) = 0 can never be a binding constraint.

However, choice of a particular W ( ° ) does not remove the

difficulties caused by the existence of an infinite set of such

w

AE0;

Q!



APPENDIX C

The Hessian matrix H, Eq. 3.6, can be expressed as the pro-

duct of three matrices (singular value decomposition of H)

H = USV +  (C.1)

where U and V are NxN orthogonal matrices (ie, UU U U I,

the same for V) and S is an NxN diagonal matrix.

S 0I(C.2)

02

The a's are termed the singular values and are the elgenvalues of

H H s,,= os Z 1=1,2,..., N (C.3)

This is the mathematical definition of the singular values, but

they are calculated by an entirely different procedure which

guarantees their numerical stability. The a' s can be numerically

ordered

If H is of rank k, where k<N, then the last N-k of the a's are zero.
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The solution to the minimal least squares problem posed in

Eq. 3.7 can be cast directly into a form involving the singular

values and their corresponding singularvectors. Substitution of

Eq. C.1 into Eq. 3.13 yields after some matrix manipulations

^ ^^ ^+ A^+^A AG+A

AW = 2(VS U )G = -2G (C.5)

The matrix H E VS U is termed the Moore-Penrose psuedoinverse

of H. Here

S a+ (0.6)
1

+
o2

N

with

Cr+ = i' if an>0n n (C.7)

= 0 if a =0
n

It is not our intent to give a full discussion of the

Moore-Penrose psuedoinverse for details are available in the

literature [23-24]. Suffice it to say that it produces a AW which

satisfies the two minimum conditicns with respect to our linear

problem:
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A) It achieves the unique minimum of

IHAW ^+; 11-

B) If there are any other AW which satisfy Eq. 3.13, then

Eq. C.5 is characterized among them by having the

smallest norm; in other words, Eq. C.5 minimizes 1AW

among the solutions.

The solution given by Eq. C.5 becomes somewhat more trans-

parent if the right hand side of Eq. B.5 is written out more

explicitly
k^ ,uzG ¢

AW = - 1 v ' , k<N (C.8)

Z=1

where u Z and v Z are the i-th column vectors of U and V respectively.
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APPENDIX D

In this appendix we establish bounds on the minimum W

We first prove that E(W) is periodic in each coordinate with

period 2ff, i.e.,

E(W) = E(W + 2ffe ) (D.1)

where e is the ith unit vector. For a proof it suffices to

show the result for the components of O(W), thusN iv ^ i(w n+2re )n2

m(W + 2ffe ) = e vmp n en=l

m n niv mPn iw n= e e

n=l

m
Om(W) (D.2)

This property is dependent on the particular discretization

chosen. It establishes the desirable result that there exists
A(Q A

a minimum W of E(W) in the region

S = W -r < w < 7 } (D.3)

Since E(W) has period 27, we have

min min
n E(W) = ^ E(W) (D.4)

WER WES
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E(W) is continuous and S is a closed set, consequently E(W) attains

its minimum on S at some point 
( ) in S. By periodicity, ( )

is also a global minimum.

Periodicity provides bounds for the minimum W ( ) which are
helpful in searches for W() but at the same time indicates

E(W) is a complicated surface with many maxima, minima, and

saddle points, obviously a surface on which most minimization

algorithms will have difficulty!
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TABLE 1.: FINAL ITERATE SINGULAR VALUES ak CORRESPONDING

TO FIGS. 1-3 RESPECTIVELY

1 .1299778 .1293188 .1308360

2 .0654607 0663010 .0651481

3 .0147847 .0148309 .0151498

4 .0069802 .0059728 .0061527

5 .0044707 .oo4o8oo .0040639

6 .0029514 .0025031 .0030560

7 .0022897 .0014872 .0021063

8 .0019339 0014096 .0016379

9 .0014224 .0010693 .0014751

10 .0010348 0008257 .0013507

11 .0009966 .0007715 .0012386

12 .0005798 .0005468 .0011485

13 .0003987 .0005114 .0010666

14 .0003521 .0004359 .0010383

15 .0002837 .0003983 .0009781

16 .0002275 .0003603 .0009411

17 .0001589 .0003352 .0008945

18 .0000700 .0003189 .0008881

19 .0000346 .0002814 .0005131

20 .0000170 .0002568 .0004882

21 0 0 0
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FIGURE LEGENDS

Fig. 1 True wavefront (solid line), reconstructed wavefront

realization (solid circles): E = .078441, M = 31,

5% noise in t.

Fig. 2 True wavefront (solid line), reconstructed wavefront

realization (solid circles): E = .078154, M = 31,

5% noise in T.

Fig. 3 *True wavefront (solid line), reconstructed wavefront

realization (solid circles): E = .089435, M = 31,

5% noise in T.

Fig. 4 True wavefront (solid line), reconstructed wavefront

realization (solid circles): E = .075563, M = 21,

5% noise in T.

Fig. 5 True wavefront (solid line), reconstructed wavefront

realization (solid circles): E = .327351, M = 21,

5% noise in T.

Fig. 6 True wavefront (solid line), reconstructed wavefront

realization (solid circles): E = .097244, M = 31,

10% noise in T.

Fig. 7 True wavefront (solid line), reconstructed wavefront

realization (solid circles): E = .106523, M = 31,

10% noise in T.
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True Wavefrobt (Solid Line), Reconstructed Wavefront Realization

(-Solid Circles); E =.075563, M = 21, 5% Noise in T
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SECTION 2

OPTIMUM BALANCED WAVEFRONT ABERRATIONS

FOR RADIALLY SYMMETRIC AMPLITUDE

DISTRIBUTIONS: GENERALIZATIONS OF ZERNIKE

POLYNOMIALS

ABSTRACT

The Zernike aberration theory for constant amplitude

circular apertures is extended to annular apertures having a

Gaussian-like radial taper. Explicit expressions are obtained

for the optimum balanced wavefront aberrations in terms of

shifted Jacobi polynomials. Properties of the polynomials

(e.g., Rodrigues formula, recurrence relations, derivatives,

etc.) are investigated



1. INTRODUCTION

The complex diffracted amplitude in the receiving plane,

!iven that the exit pupil is circular, is

a(v,) = JJ A0 (p,S)exp{ikW(p,Ojx0 ,y0 )+ipvcos(e-¢)}depdp (1.1)

where W(p,eIx 0,y0 ) is Hamilton's mixed characteristic (wavefront

aberration) function with respect to the object plane coordinates

x 0, y0 and A (p,0) is the amplitude distribution over the exit

pupil. The point spread function t(v,O) is given by

t(v ,¢) a (0 ,0) 2(1.2)

so that 0 t(v,o) 1.

For many optical systems, A0 (p,e) is constant over the

aperture. Without loss of generality we set A (p,e) = 1; such

systems are termed Airy systems. The Zernike nolynomials play, a

fundamental role in the diffraction theory of aberrations of Airy

systems [ -17]. It is also possible to obtain the same results

by direct application of Mare'chal aberration balancing theory

[6,18] although not without considerable effort.

An extension of the Zernike type theory to nonconstant aper-

ture distributions is not without interest especially those that

are radially dependent, i.e., A 0 (p,O) = A0 (p). We consider the
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case where A (p) is given by0

A (C) = (I- 2 )a , £ < P < 1
0

-0 , 0 <p<e, >0 (1.3)

In other words we are considering an annular aperture of inner

radius E with a Gaussian-like amplitude taper. Note that for

large cx, we have (l-o 2 )a z exp(-ap2 ) for small p. The situation

stated in Eq. 1.3 is precisely the one encountered in active

optics using a segmented annular mirror that is illuminated by a

laser beam. Two special but important cases are:

A. annular aperture Ao(P) = , < 1 1

=0, 0 p < E (1.4)

B. Gaussian aperture A0(P) = (l-P2)a (1.5)

Generally speaking, small to moderate amounts of wavefront

aberration take ener y out of the central core of the diffraction

pattern and add it to the diffraction rings. Furthermore, there

is very little change in the gross characteristic width of the

central core of the diffraction pattern. Apodization, however,
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competes with aberration effects in case B in that it takes

energy out of the diffraction rings and adds them to the central

core, while simultaneously broadening the characteristic width

of the central core. Case A apodization behaves in a cooperative

way with the aberration effects by adding even more enercy tc the

diffraction rings while decreasing the characteristic width of

the central core. The general case is intermediate. These

apodization effects must manifest themselves in the determination

of the optimum balanced wavefront aberrations. Obviously the

nonconstant A (p) cases lead to functions that differ from the

Zernike polynomials of the usual Airy system.

The purpose of the present paper is to obtain general

explicit expressions for the optimum balanced wavefront aberra-

tions. The aberration functions corresponding to Eq. 1.3 are

denoted by Cm(p,e,a). The functions corresponding to case A are
n

denoted by Am(p,) , those of case B by Bm(Pa). When E = 0 and
n n

a = 0, these functions reduce to the usual radial Zernike pcly-

nomials Rm(p). The method employed in this paper is a general-
n

ization of the elegant (and efficient) procedure developed by

Bhatia and Wolf [4] in their classic paper on Zernike poly-

nomials. Our basic concern is with the development of explicit

expressions, orthogonality conditions, recurrence relations, etc.,

2-3
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and not with the diffraction imagery associated with the poly-

nomials. However, Sec. 5 is devoted to formulae for the Strehl

criterion. Evaluation of the Hankel transforms of Cn, Am, and

Bm so necessary for the analytical aspects of diffractionn

imagery is under investigation.

~2- 4



2. DERIVATION OF Cm POLYNOMIALS
n

Four conditions [5] are imposed on the radial Zernike poly-

nomials Rm(p):n

1. R's are orthogonal over (0,1) with weight factor

unity, i.e.,

n(p) R,(p) pdp = (2n+2) - ' 5nn ,  (2.1)

0

2. Rm (p) is a polynomial of degree n in p and itsn

lowest term is of degree m in p.

3. Rm(p) is to be even or odd, the parity being then

same as that of n, this means that n-m is always

an even integer.

4. Rm (p) is normalized, Rm (1) H 1 for all n and m.n n

Condition 4 is a corollary to Condition 1.

We require that Cm(p) satisfy a modified version of these

conditions. Condition 1 now becomes

!CM(p)(l-p2)'a Cm1 (p) pdp = hm(E,a) 5 (2.2)

where the constant hm(e,a) will be evaluated shortly. Condi-

tions 2 and 3 are unchanged, while Condition 4 is modified

slightly to read C (1) 1 I for all n and m and for Oc<l, a>O.

n-
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Condition 2 is the crucial one in that the Zernlke poly-

nomials Rin although orthogonal, do not form a complete set

E 21]. The procedure employed by Bhatia and Wolf [4] (and

the standard procedure in such cases as the associated Legendre

polynomials), is to factor out pm so that the remaining polynomial

is of degree (n-rn). This polynomrial is orthogonal with respect

nm

to the nonnegative weight factor pm Consequently, by standard

theorems in the theory of classical orthogonal polynomials [22,

-'3], this polynomial set is complete. Our procedure is a general-

ization of this.

We factor Cm(p) into two polynomials
n

Cpea)= Nm(ca) cm(P,e-) P ,PCa (2.3)

where the subscript denotes the degree of the polynomial. N m
n

is a normalization constant. The p-polynomials will now form

a complete orthogonal set with respect to the weight factor

[c m(p,e)]2 over the interval (el), provided that c m(PE) > 0

over the same interval. In fact, we will set

Cm(PE) = ( 2 ) (2.4)

for reasons to be apparent shortly. To determine the p-polynomial,

we employ the known fact [21,2"] that if the weight factor

c (p,c) is of the form given in Eq. 2.4, then pnm must be a

M
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scaled version of the Jac obi polynomials P(a' )(g) as definedk

in [20,21]. In point of fact

~n-m (n-rn)/ 2(g 25

where

g E 2 (PE (2.6)

It remains to determine the normalization constant Nmea.n

The Jacobi polynomials satisfy the condition

P (l) = ( (1) (2.7)

independent of ~.Since c (l,c,a) =1, it follows thatm

[Nm (Fa) (2.8)

2

Note that if a =0,1 then N 1 independent of e.

Putting all these components together, we have

m m/P2-2\m/ P(a,m) r /2_2\
C n (p~c~a) =N n(E,a) 1_E) 2  (n-m)/2 [2( ) 1- 2 ]

(2.9)

as the sought-for expression.

2-7



When c = a 0, we reduce to the usual Zernike radial poly-

nomial

Cm(p,0,0) Rm(p) = pmp (0,m) [2p2_1] (2.10)
n n (n-m)/2

as first noted by Bhatia and Wolf [4]. Bear in mind that they

used the old G notation for the shifted Jacobi polynomials.

We wish to point out that Tatian [19] had previously con-

sidered the problem of optimum balanced aberrations for the

annular aperture, however, he does not derive any explicit

expressions. Arimoto [20] considered the case somewhat analogous

to our case B.
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3. PROPERTIES OF Cm POLYNOMIALS
mn

Since Cm is proportional to a shifted Jacobi polynomial,
n

we can use its properties as listed in [21,22 ] to derive properties

of Cm . For typographic convenience, we omit the explicit
n

dependence on Cm of E and a and write Cm(p) = Cm(p,Ca).n n n

A very useful finite series representation of Cm can ben

obtained from Eq. 4.3.2 of [21], it is

_= N2m m/2 (n-m)/2

n 1 E v=O v(v+c)n-m-2v n+m-2v,

"
2 2 (n-m-2"/2

(3.1)

Explicit expressions for the lower order Cm(p) are given inn

Table 1.

A Bodrigues formula for Cm -follows from Eq. 4.3.1 of Szeg6
n

by appropriate change of variable. The final result is

Nm (-)(n-m)/2

C m(p) =- n

d )(n-m)/2 f(- 2 e 2 )(n+m)/2 (l 2 )nm+2a)/2

(3.2)
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A r rre.ce r lation for fixed rr. and variabi{ r can alsc

be derived fror. tli basic exIression, Eq. 1. .1, in Szeo'.

Straiphtforward nani:,ulations yield

l-(n-n) (rn+ ') ( n+a-2) Cm(p)
n

- (n+cx) (n+a-l) (n+c -2) p + (n+a-I) (a 2 -n- 2 ) j CmiP)

S (n+u)(n-m+2a-2)(n+m-2) C4(O) (3.3)

for r-m>2 an,- 1 vo Iv . ' Tihe initial polynomials are

+ ( 1:) 2 -(-1 2 /+, - 2(m+2+(+

(3. l4)

When -, Eq. 3.3 reduces to the recurrence relation for

Zernike polynomials given in Myrick [ 3, and in Kintner []].

Noll [i] has pointed out the usefulness of the derivative

of the Zernike polynomials for certain applications. Both he

and Kintner [ .] have developed such recurrence relations. We

can obtain one such relation for C m in the followinF fashion.n

Different late both sides of Eq. 2.8 with V":; to p, the

result is

----



d ( = - mP(p 2-E 2 ' Cm(P)
dpn n

m/ 2

+ Nm (p2_62 m 4p (g). (35)
n I_ (lF2) dg (n-m)/2

The derivative (with respect to g) on the right-hand side can

be expressed in terms of the function itself by using Eq. 4.5.7

of [P9]. Upon combining all terms

(n+)p-(pI-62)(l-pl ) _ I CM(p)

m(n+a)(l-P2) - (n-m)[(n+a) g + m -a] (p)

+ C ( M_2(p ) . (3.6)
2 n-2

This formula expresses the derivative directly in terms of two

polynomials of adjacent degree n and fixed order m. When e=a=0,

this reduces to an expression given in [15].

We now proceed to the evaluation of the coefficient hm (c,.)

n

associated with the orthogonality requirement, Eq. 2.2. Upon

substituting Eq. 2.9 into Eq. 2.2 and transforming to the variable

g defined in Eq. 2.6, we obtain
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+1 2+
m +g)m( a,m) (3 7n(Sc) = -. r$ ,,., r:;')l~y n-.)/2 J (3-)

-- 2 f i- Y I

-- l

The integral has been evaluated in Szeg, Ea. 4.3.3. The final

result is

SM 0(,l I n-m+2+2al
h n - .P- 21 2 (3.8)

( 2(n+a+l) -n+m+2+a I. r n+m+2+2a2+ 2+2

When E = a = 0, this reduces to the usual result

Sm(0 ,0 ) = (2n+l) - I  (3.9)

n

When a = 0, c X 0, the resultant expression is simply

hm(cO) -L (e) -(-E 2 )
n n 2n+2 (3.10)
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4. STREHL CRITERION

Since the aberration polynomials Cm are already optimum

balanced, the maximum intensity (Strehi criterion) of the point

spread function is at v 0 irrestrective of 4.Thus, we have

t(,p f2rc~E)lJ2 jf1 2 Tr (1_p2)aexp{iW(e)}depd

Provided that WI(p,e) is small, *we can expand the exponential and

retain only the first three terms

exp{ikW} z 1 + ik W 2 W 2+ (L2).

The term linear in W will vanish upon integration leaving

t(0C z1 k 2 ( +l 1 rl2 r ,1_2)OW2 te~epl

1 2 k( a+l) 1 27r
z 1 l~2 o+l i~ 0  (l~p2)aW2( p,e)depdp (4-3)

The expansion of W at a fixed object point x0,y0 is

OD 00

W(01xVy 0 ) I X [am (x0,y0)cosme
n0O m=0 n

+ s~(X0 3Y0 )sinme]CM (p)(4)
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where cmn(x0 ,y0 ) and Smn(XO,y ) depend on the object point. The

restrictions on n and m are that n > m and (n-m) is an even inte-

.er. In the special case of rotational symmetry, s - 0.
mn

The series in Eq. 4.4 -3 now substituted into the integral.

The orthogonality relations for the trignometric functions and

for the Cn polynomials allow us to obtain

t(0,) 1 C 2 + s 2)h M ( 5)

s. the final expression for the Strehl criterion. The prime on

the summation sirn indicates that the terms for which m = 0 are

provided with a factor of one-half. When 6 = a = 0, this reduces

to

2

t(0,,) -O (c 2  + 2 ) (2n+2) -1 (4 6)
7 nm nm

ii

I
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TABLE 1. Cm (p) for m, n <_ 6.
n

C, =
0

C= (1a 2( -22

2 (1+cx)I ( 1_E:2 1 [(2+ct p 2 _(l+a)6 2 _1]

C2=(lE) I(p2C2)2

C2 = (1+Ct)-(1_2 ) 2 (p 2 s 2 [ a p2 (+) 2 -2

4

+ [6[2as+1a (2+a (2+t) 4+4(2
2 ]}2 -

C2 (1+OLa>' 6)2(2F p2

5

C5= (lE2)- /2 (2 2)/2 *
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TABLE 1. (Cont.)

Co = 1 a - (+ ) l(3 0 1( _ 4 o 5 c 6 a P

6

+ (4+c) [6+6 (3+(x)s 2 +(2+a.) (3+a)~ _~

- [6+18(3+a ) E 2 +9 (2+a) (3+a) E:+(1+a)(2+Q)(3+ax)s 6 ]

C2 'i+a)-'(2+ca)-l 1 (is 2
)3(p

2 _E2 )(5)( 6 c)p 4

- 2(5+cY['4+(2+t) 6
2 ]P 2

+ [12+8(2+a) E 2 +(1+t) (2+u) E4 ]1

6 (i -1'(1_E:2> 3 (p 2 _E2 ) 2 f (6 +a)P 6 -[5+(l+a )C2 ])

C6  = 1 2)3p
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SECTION 3

APPLICATION OF FILTERED SINGULAR VALUE DECOMPOSITION

TO WAVEFRONT DECONVOLUTION

The purpose of this note is to outline a solution of the

wavefront deconvolution problem using the method of filtered

singular value decomposition taking direct account of the fact

that noisy measurements are involved.

The basic equation is

N
(r) B in(r)z n(r) (1)

n=1

where

ci(r) : ith measured wavefront

z n(r) = phase aberration function for nth optical
element

B (r) = influence function connecting ith wavefrontin to nth optical element

We are fgiven and all the other data (via noisy measurements)

and are required to determine zn

It is convenient to rewrite Eq. 1 in matrix form, so that in

an obvious notation we have

= z (2)

where
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is size m, x N (M rows, 11 columns)

is size N x 1 (N rows, 1 column)

$ is size 4 x 1 (M rows, 1 column)

For our situation M > N, with the most likely case beinr N = N

(i.e., number of observations = number of unknowns).

The fundamental difficulty with ill-nosed problems is the

lack of sufficient information from response measurements to

infer the correct solution. This is reflected (mathematically) in

the fact that the system matrix B tends to be underdetermined (rank

deficient) even if it is formally overdetermined (more rows than

columns). Our approach then, is to aurment the data provided by

the instrument with any additional knowledge of the nature of the

quantity being measured in order to make the computed solution at

least physically meaningful and possibly even correct. Mathe-

matically this amounts to building up the rank of the matrix B,

or reducing the solution space so as to yield a unique solution

which satisifes all constraints known to hold a priori. It is

tempting to utilize naive least squares to "solve" this problem,

i.e.,

B+Bz = B+$ (3)

where B+ is the transpose of P. Now (B+B) is symmetric and we

can formally invert to obtain z in the form
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z = (fBB)B g+ ('4)

If:

1. System matrix B and data matrix $ are exact (i.e.,

no uncertainty in B and $),

2. B+B is of full rank,

3. Precision of the arithmetic of the computer is such

that B+B can be formed and stored exactly

then the solution z can be obtained from (B B) ' . Unfortunately

these three conditions are not to be encountered in the deconvolu-

tion problem, in that conditions 1 and 2 are not satisfied.

The difficulty is that we do not know the rank of B and

until we determine it, we cannot invert the matrix equation. The

only way that we can determine the rank of B is to use the method

of sincular value decomposition and thus determine the rank of

during computation. This is not to say that there are not other

methods to accomplish this but they are generally not to be

trusted (e.g., ride-regression).

We must realize that the deconvolution problem is extremely

complicated because Z0oH; B and $ are measured. The vasit major-

ity of inversion problems encountered in the applied sciences

have the simplifying feature that the system matrix P is known

exactly.
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To solve omir problem by singular value decomposition we note

that the rectang ular matrix B can be written as the product of

three matrices

where

M x N orthoronal matrix (UJ+ = +

N x N ortho'onal matrix (VV+ V+= ) N
= I N

A = N × matrix with nonneative elements on the main

diagonal and zeros elsewhere.

A has the form

o 0 0 0

A 2 (6)
0 0 C3 6
0 0 Gi

The a's are termed the singular values of R and are the solutions

of the eienvalue problems

R B u. = oju j

P v. = .y. , = 1,?, ' - - ,N (7)

where u. and v are the jth column vectors of U and V. This is

the matePmatical definition of the u's but they are never
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evaluated fror., the definition unless B is mathematically exacl,

(certainly not the case with which we have to contend!).

The u' s can be ordered so that

01 I Y2 z a3 u ON > 0 . )

If the rank of B is k where k < N, then

Gk~ = Gk+2 G1 0N (9)

The solution to the minimal least squares problem posed b~y

Eq. 2 can be found in the following, manner. Multiply both sides

of Eq. 2 by 5+ and formaZly invert to pet

Substitute Eq. 5 into the right hand side

(B B)'' VA UV' VAU

The mat-rix B*E V _Q+ is termed the c-~vr~of B3. The

matrix 7,7' is the IN x M matrix
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+

CF 0

+

0

where

+ 1
0.2- if o.> 0
9 0. 92

-0 if 0 . = 0 .(13)

J

The solution becomes clearer if the right hand side of Eq. 9

is written out exolicitly

k - j , (

where u. and v. denote column vectors of the matrices U and V.

The smaller sinrular value a. entering into the denominator of1

the terms of the expansion tend to rreatly magnify any error in

the data vector $, resulting" in a spurious solution. To alleviate

this, the expansion must be cut off (in some rational fashion)

before the contamination due to the small singular values enters.

One way to achieve this is to set

+ Ia, - 0(. >
,1 >

0 . < F (15)
.1



where the criterion for picking E is

C >> noise (16)
a0

This approach has been employed by the author for several inver-

sion problems. However, it is not recommended for the deconvolu-

tion problem because it is virtually impossible to now how much

noise there is in the system.

Instead we go back to Eq. 12 and introduce a filtered solu-

tion

z Z [f(ai)u i]vi (17)

where f(ai) is a filter function depending on the singular values.

The filter function is required to act like 1/a i for large 0i,

approach zero for very small i, and finally to dec"-ase from

1/a to zero smoothly in the intermediate range. A useful candi-
i

date is

N
fai 0  i (18)

i N+l + k N+1

i

where N = 0,1,2,.- and k is a positive constant. Figures 7 and

8 show the behavior of f(o i ) for N = 1,3 as a function of various

values of k. Previous calculations made by the author on other

2' simpler!) inversion problems have indicated that N = I is a
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desirable compromise between too much smoothing and too great a

sensitivity on k. Knowing the singular values o i and requirin;

that k be Jess than the maximum singular value is one way of

determining "optimum k."

The question of uniqueness is a serious problem when the

data is noisy. One of the useful features of the present approach

is that it is possible to get a quantative measure of the uniaue-

ness of the solution in the presence of noisy data.

Let us put the subscript s on the solution given in Eq. 11

to denote that the solution is in terms of noisy data; hence

zs  (VA-1U+)s H .s (19)

To obtain "nice" zs3 we have had to discard singular values in

H s The cost we have had to pay is a degradation in "resolution"

of the sought for parameters. We quantify these arguments in

the following manner. Multiply Eq. 19 by H S

H sHBz (20)

The left hand side is z We can also manipulate the right hand

side

~3-8



S = H sz

=(vfC- )(UAV )z

= VA-'AV z

= A z (21)

Now let

R E + (22)

so that

zs  Rz (23)

Thus, the degree of which R approximates the unit matrix I is a

measure of the uniqueness of the solution.

There is also an interpretation of the U matrix, althougzh it

is not as important as the V matrix interpretation. Consider the

basic equation again

- Bz A 0A+z (24)

and set

V z (25)

then

S-- A z (26)

If we let
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$ A +$(27)

then

S= AZ (28)

'ow when noise is present, let us multiply both sides by U

A A A +(29)U¢= UU (2

Set

SEU +  (30)

Since our data is noisy S is not the unit matrix so that

U¢ = §S¢

The left hand side is really s the noisy model data, hence

(31)

This means that our model data s will deviate more and more from

$ the more the S matrix deviates from the unit matrix.

Thus, both U and V matrices from the singular value decompo-

sition of B are useful in determining the robestness of the

inversion calculations.

The elements of the system matrix B as we have already

point out are experimentally determined quantities. For the ill

conditioned B, we must accept the fact that the rank of the matrix
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is poorly determined numerically and may well chanre as the

matrix elements vary by very small amounts. An added advantage

of singular value decomposition is that the singular values are

stable to perturbations in the matrix elements in that perturba-

tions of the matrix elements produce perturbations in the singular

values of the same order of magnitude. This is certainly not the

case with the corresponding eignvalues, should they exist!

Thus far we have discussed the strategy of the method of

singular value decomposition. The tactics (i.e., the actual

programs, etc.) are fortunately available. Golub and Reinech

have developed an ingenious method of computing the singular

values of an M x N matrix which is numerically very stable. The

algorithm itself is too complicated to describe as it employes

methods generally known only to specialists in numerical linear

algebra.
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