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ABSTRACT

"'The introduction of inertia terms in the theoretical model of

thin ring expansion shows that classical plastic instability concepts,

defined in terms of the local strain in the-necking region, no longer

apply. However, in this report it isshown that, when the plastically

incompressible constitutive model is replaced with a model applicable

to porous plastic materials, a criterion based on critical void volume

fraction provides an alternative means to predict failure. The theory

also provides a method in which both geometric and metallurgical

imperfections in a given sample might be considered. The application

of this theory to thin ring specimens was used to confirm that the

critical void growth concept predicts the uniform strain at fail-ure

as observed in aluminum and copper rings, under both quasi-static and

high strain-rate loading conditions.

DjIjt. Becanj Ij
ii"



CONTENTS

ABSTRACT .. .. .. ...... ..... . .... .....

LIST OF ILLUSTRATIONS .. .. ...... ..... . ..... iv

1. INTRODUCTION .. .. .. ....... ..... . .... ... 1

2. PLASTIC INSTABILITY OF INCOMPRESSIBLE MATERIALS .. .. .... 6

2.1 Inertia Effects .. .. .... ..... . .... .... 6

2.2 Constitutive Models .. .. .. ....... . ...... 11

2.3 Strain-Rate Sensitivity and Strain Hardening. .. .... 14

3. VOID GROWTH FAILURE ANALYSIS .. .. .. ....... . .... 19

3.1 Constitutive Relations for a Compressible Material 19

3.2 Dynamic and Static Models. .. .. .. .. ....... 22

3.3 Critical Void Growth. .. .... . .... ....... 26

4. EXPERIMENTAL VERIFICATION. .. .... . .... ....... 32

4.1 Dynamic Tests .. .. .... ..... . .... .... 32

4.2 Static Tests. .. .... ..... ...... ..... 37

4.3 Experimental Results. .. .... ..... ....... 38

5. CONCLUSIONS .. .. .... ....... . ... ...... 42

REFERENCES. .. .. . .... ..... .... ........ 44



LIST OF ILLUSTRATIONS

Figure Page

1 The Influence of Strain-Rate on the Imperfection Growth
for a Rate-Independent Material (a = Ken ) ............ .10

2 The Influence of Strain-Rate on the Imperfection Growth
for a Rate-Dependent Material .... .............. .. 13

3 Effect of Strain-Rate Sensitivity on Imperfection Growth
Under Static and Dynamic Loading .... ............. 15

4 Effect of Strain Hardening on Imperfection Growth Under
Static and Dynamic Loading ...... ................ 16

5 Imperfection Growth for Non-zero Deceleration of the
Uniform Segment ...... ..................... .. 18

6 Imperfection Growth as a Function of Uniform Strain for
Different Geometric Imperfection Levels (a) Local Strain,
(b) Void Growth (af = 0.01, n = 0.05) .............. 27

7 Imperfection Growth as a Function of Uniform Strain for
Different Metallurgical Imperfection Levels (a) Local
Strain, (b) Void Growth (n = 0.01, n = 0.05) ... ....... 28

8 Critical Void Volume Criterion Applied to Thin Rings
of Aluminum and Copper ...... .................. 31

9 Specimen Configuration: dynamic (a), static (b) ....... 33

10 Schematic of Photomultiplier Strain-Rate Detector . ... 35

11 Expanded Ring Specimens (a), Typical SEM of Fracture
Surface (b) . ..................... 41

iv



1. INTRODUCTION

Ductile failure as a phenomenon associated with plastic instability

dates back to the time of Considire (1885) who identified the point of

instability as the onset of localized necking brought about when the in-

crement of strain hardening became equal to the geometric softening, at

the point of maximum load in a simple tension test. Marcinlak and

Kuczynski (1967) considered this phenomenon in metal sheets under biaxial

tension, and developed a mathematical model (N-K model) to construct form-

ing limit diagrams. This model is based on an initial geometric imper-

fection, which is alocalized thickness reduction in the sheet lying per-

pendicular to the major principal strain direction. By this method they

predicted that the local strain in the defective region would grow asymp-

totically with respect to the strain in the uniform region. Later,

Marciniak, Kuczynski and Pokova (1973) extended this methods to include

the influence of the material strain-rate sensitivity on necking behavior

under biaxial tension, and concluded that the value of the limit-strain

in a forming limit diagram would increase even for very low values of

strain-rate sensitivity. In recent studies by Hutchinson and Neale (1977)

and Ghosh (1977) the analysis was extended to include the effect of

strain-rate and different viscoplastic constitutive laws on localized

necking. The results of this analysis, in its application to the case

of unlaxial tension under quasi-static loading, also predicted that the

strain at necking increases with an increase in the strain-rate sensitiv-

ity and the strain hardening parameter. These results were verified

experimentally for different materials by Ghosh (1977). The above analysis



also predicted, depending upon the constitutive equation, either no

effect on or minor reduction of uniform strain at necking due to an in-

crease in strain-rate. These theoretical results were in agreement with

the experiments of Sagat and Taplin (1976) for superplastic materials

under quasi-static loading conditions.

In the high strain-rate loading regime, where the quasi-static

loading assumption no longer applies, considerable evidence exists,

Wilson (1964), that an increase in strain-rate can in fact result in an

increase in the ductility of most metals. In a series of experiments

at high strain-rate the present authors (Fyfe and Rajendran, 1980) con-

firmed the increased ductility which occurs in this regime. They also

supported this evidence by applying the M-K model to thin ring failure

when inertia effects were included. Interestingly the numerical solution

of this model predicted the expected slow-down in the imperfection growth

rate, but, in this case, even though the local strain grows faster than

the uniform strain, no plastic instability condition occurs before the

material has actually failed. Physically it is rational to expect the

uniform strain to grow continuously with the local strain due to inertia;

so, the developed stability model for ring specimen does not provide an

inherent failure or flow localization criterion under dynamic loading

condition. In this case, additional information or some other method

has to be considered to predict failure. One way is to postulate that

failure will occur when some macro/micro parameter reaches a finite

critical value. For this purpose, it is essential to consider the fail-

ure mechanism at the local site where the failure would eventually occur.
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A failure mechanism with growing acceptability, is one which considers

the process as being initiated by the nucleation of voids around inclusions

and their subsequent growth and coalescence as suggested by McClintock

(1968). During the last decade, different approaches were initiated by

several investigators to apply this mechanism as a means of predicting

ductile failure. Among them, Rice and Tracey (1969) considered the

growth kinetics of a single void in the matrix and developed a model

which showed the dependence of void growth rate on the triaxiality of the

stress state. Hancock and MacKenzie (1975) provided the experimental

evidence to support this dependency on stress state and used this model

to predict failure initiation in an approximate manner.

Seaman, Barbee and Curran (1971) earlier developed empirical criteria

to predict the nucleation and growth rates of voids under dynamic loading

condition and developed extensive computer codes to predict failure.

Metallurgical evidence in support of the void growth mechanism has

also been developed (Gurland and Plateau (1963), Beachem (1963), Darling-

ton (1971), Argon, Im and Safoglu (1975)) where fractured specimens were

examined to provide the metallographic data required.

Encouraged by the physical evidences, several other investigators

(Berg, 1969, Nagpal, et al., 1972) working on the continuum aspect of

failure, considered plastic dilatation effects on the yield criterion.

This gave a new dimension to the problem of ductile fracture. Following

this line of attack, recently Gurson (1975) presented a continuum theory

of ductile rupture by void nucleation and growth and he came up with a

constitutive equation for void-containing materials, which explicitly

considered the void volume fraction and matrix stresses. The main
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advantage of such a theory is its simplicity and its ability to provide

direct calculations of these micro-parameters which are essential to

predict failure. 0

This continuum model was employed by Yamamota (1977) in a study of

shearband localization in porous materials. In this study, the initial

metallurgical imperfection is described by stipulating a slightly larger

value for the void volume fraction in the local site compared to that in

the uniform region; whereas Needleman and Triantafyllidis (1979) consid-

ered both geometric and metallurgical imperfections in their study, using

Gurson's constitutive equation to predict forming limit diagrams, and

concluded that their theoretical results were in agreement with the avail-

able experiments.

The work described in this report is presented in two parts. The

first follows the pattern established by earlier investigators by exam-

ining the role played by strain-rate sensitivity and the strain-hardening

parameters on the kinetics of imperfection growth under dynamic loading

conditions, particularly as they are influenced by the various viscoplastic

constitutive models. In this portion of the study the material is assumed

to be plastically incompressible, and no attempt is made to incorporate

a failure criterion to replace the plastic instability condition found

in quasi-static failure. The second part is directly applied to examining

the failure levels as they occur under both static and dynamic conditions,

using the constitutive model proposed by Gurson in conjunction with M-K

methods. Imperfections of both metallurgical and geometric origins in

ring specimens are considered. Based on metallographical observations

on the fractured ring specimens, it was postulated that under dynamic

4



loading condition the failure would occur when the void volume fraction

reached a critical value which could be obtained from the solution of

the quasi-static stability model for a plastic compressible material.

The validity of such a criterion was verified by comparing the theoretical

and experimental values of the uniform strain under both static and

dynamic loading conditions.

5



2. PLASTIC INSTABILITY OF INCOMPRESSIBLE MATERIALS &

For rate-independent materials a simple stability criterion can be

readily derived from Consideres model of 
plastic instability. This model

predicts the onset of necking at a strain value of e = n in a tensile test

n
specimen, when the power law, a = Ke , is used, where n is the strain

hardening parameter, K is the strength coefficient, a is the uniaxial

stress and e is the strain. However, in the case of rate dependent mater-

ials, several authors (Hart, 1967; Campbell, 1967; Jonas et al., 1977;

Demeri and Conrad, 1978) developed stability models which allowed for

strain-rate sensitivity. Unfortunately a number of conflicting results

arose from these studies, which were only recently resolved in a compre-

hensive study reported by Ghosh (1977), who examined plastic instability

and necking in materials with strain and strain-rate hardening. The above

studies were all quasi-static in nature, and hense no inference can be

drawn as to what effects inertia might have on the process. This effect

can best be examined from both an experimental and theoretical point-of-

view, by considering the expansion of thin rings under impact loading,

rather than the tensile bar configuration most commonly considered in

the previously cited studies.

2.1 Inertia Effects

The nonlinear long-wavelength analysis of Hutchinson and Neale (1977)

can be adapted to include inertia, by examining the radial symmetric

expansion of a thin ring or cylinder. The hoop strain (c) and the radial

strain (Er) can be described in terms of radial displacement (u) by
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= ln(.)= In (1 + u/R), er = In h-(h(O) (2.1)

where R is the initial radius of the mid-surface, r(t) Is the instan-

taneous radius, with h(O) the initial thickness and h(t) the instantaneous

thickness. If we assume the material is plastically incompressible

(e + e r + = 0), and that the only significant stress is the hoop stress,

then we obtain the relationship between cr and E, which has the form

Er = Ez = - E/2. (2.2)

From (2.1) and (2.2) we can now obtain the relation

h(t) = h(O)e - (t)/2 . (2.3)

Consider two segments of the expanding thin strip or ring, one with

a small defect in the thickness, and the other with uniform thickness.

The variables associated with these two segments can be distinguished by

using the subscript "0" for the uniform segment, and so we can let n1

define a non-uniformity parameter

n h0(0) - h(O)  (2.4)

By combining (2.3) and (2.4) we can obtain an expression relating the

change in thickness of the uniform and local segments to the hoop strain

of the form

ho(t) 1 (C-€0)/2
0 - e . (2.5)h (T 1- n

The equation of motion for an expanding ring for a given internal

pressure P(t) is, for the uniform section,

P(t) = + ph (2.6)
r0  Phoo
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for the local section oh
P(t) =r + phu (2.7)

where a is the hoop stress, p is the mass density, r is the instantaneous

radius, and u is the radial acceleration of the ring. Since the pressure

experienced by both segments is the same we can equate (2.6) and (2.7)

to obtain

oh+hu + h0  (2.8)-r r0 00.o"

From (2.1) we can obtain u and r in terms of the hoop strain so that

(2.8) has the form

-(c + n3pR 3€)/2 R22c e e-2c

S g2 = e + ) (0O + R2e 06 + 0
2 ) r a . (2.9)

(1 - n)pR' pR

Before examining the dynamics failure process the quasi-static case

can also be considered by neglecting the inertia terms as represented by

the strain-rate terms in Equation (2.9). If the material is assumed to

obey the rate independent power law, a = Ken, Equation (2.9) reduces to

the form

n e n
S( - n) C0.

Using the failure criterion, de/d£0 + -, as proposed by Hutchinson and

Neale (1977), it can readily be determined that the onset of local neck-

2ing occurs when e = -jn, which is compatible with the tension bar results

of £ = n. The corresponding value of the uniform strain £Oc at that point

8
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will obviously be less than 2 and the value can be obtained by the

numerical solution of the following transcendental equation for a given

value of n.

e (1 - n)/ (2.11)

When there is no geometric imperfection, n = 0, the classical result of

Considere, co = 2n is obtained directly from Equation (2.11).

The material response of the ring when it expands under dynamic

loading conditions can be obtained from the numerical solution of Equa-

tion (2.9), where again the power law applies, and the uniform strain-

rate is obtained from the derivative of Equation (2.1), which can be

written as
U_ 

0ooMt) e (2.12)

For reasons of simplicity it has been assumed that the ring is

expanding at a constant velocity, and so Equation (2.9) is simplified

in that (c0 + j 2) is zero. The constant velocity of the expanding

ring is defined through the initial uniform strain rate i0. In Figure 1,

curves of the local strain e are plotted against the uniform strain CO

for different initial strain-rate values. These plots clearly show the

growth of the local strain Is inhibited by increasing strain rate, which

is in accord with experimental observations. These results also show

that the quasi-static failure criterion de/de0 -- is no longer appli-

cable, and some other failure criterion must be introduced. The re Its

presented in Figure 1 are based on the assumption that the material is

strain-rate independent. However, as was pointed out earlier, the material

9
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strain-rate sensitivity is an important parameter in the failure process.

In the high strain-rate regime considered in this investigation the power

law constitutive model may no longer be applicable and more complex

models must be considered.

2.2 Constitutive Models

The sensitivity of materials to strain-rate has been extensively

studied as it relates both to creep behavior and high rates of loading.

In considering ductile fracture, strain-rate sensitivity has usually been

associated with the creep regime. However, when high strain-rate

regimes are included a much wider range of constitutive models are avail-

able for consideration. It is thus necessary to determine how important

the choice of a constitutive model is in the calculation of the local

strain growth. For this purpose three different additive types of

viscoplastic uniaxial constitutive equations are introduced into the

basic failure Equation (2.9). These constitutive models, discussed quite

extensively in the literature, have the form

a = K(e n + m In(/iref)) (2.13)

o = Ken(1 + m ln(1 + i/iref)) (2.14

and
o = K( n + mWln( + --1L (2.15)

2 ref

where iref is the reference strain-rate below which the material is con-

sidered to be strain-rate insensitive, and m is a strain-rate sensitivity

parameter.

The constitutive law (2.13) is a particular form of the equation pro-

posed by Deutler (1932) and is used by Ghosh (1976) and Hutchinson and

11



Neale (1977) in their analyses of necking under uniaxial tension. This

model was essentially derived for materials having low tref in the quasi-

static loading regime. The constitutive Equation (2.14) is the one pro-

posed by Campbell, et al. (1976), for copper and it was experimentally

evaluated for strain-rate levels covering both quasi-static and dynamic

loading regimes (t = 10-6 to lO3 sec-1 ). This model is a modified version

of the Malvern overstress equation (1951). The last equation is basically

a one-dimensional version of a Perzyna (1966) type viscoplastic model which

has been extensively used in the analysis of plastic stress wave propaga-

tion. All three of the above equations were considered as being applic-

able to materials with low strain-rate sensitivity (m < 0.06). For in-

stance the materials tested by Ghosh (1977b) in his study of post-uniform

elongation in a uniaxial tensile test of a thin strip, fall in this range

of m.

The numerical solution of Equation (2.9) with any of the above con-

stitutive models gives results which are very similar to those shown in

Figure 1. In particular, for the high strain-rate condition the growth

of the local strain relative to the uniform strain is essentially identi-

cal for all three models. This feature can be readily seen from the

results of this analysis as presented in Figure 2. It thus can be con-

cluded that the inclusion of inertia terms in the analysis leads to a

deformation process in which the choice of a constitutive model is, within

reason, not a particularly critical one. At low strain-rate values, where

the inertia terms might reasonably be ignored, the models do predict

different levels of uniform strain that can be reached before significant

12
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necking occurs. The curves of Figure 2 indicate that necking occurs

earlier for an increased in strain-rate for the model of Equation (2.14).

This is also the case for the model of Equation (2.13) as was reported

by Hutchinson and Neale (1977). On the other hand the Perzyna model

shows only a delay in necking with increased strain rate.

However, all models show a delay in necking if the intertia is

included regardless of the strain-rate level. Unfortunately the change

in the value of the uniform strain at these low strain-rate levels is

not very large, and the limited experimental evidence available to check

this particular feature precludes its use as a means of determining the

most suitable constitutive model to use in ductile fracture studies.

Although inertia terms dominate the failure process it does not

eliminate the importance of strain-rate sensitivity or strain-hardening,

and these two properties are examined in the following section.

2.3 Strain-Rate Sensitivity and Strain Hardening

The strain-hardening parameter n and the strain-rate sensitivity

parameter m are contained in all three constitutive models introduced

in the previous section. As these constitutive models predict essentially

the same variation of imperfection growth to changes in n or m, it is

sufficient to demonstrate their influence to dynamic loading conditions

by reporting the results obtained using Equation (2.14).

The variation of the local strain as a function of increasing uniform

strain is shown in Figures 3 and 4 for various values of n and m. From

these curves it can be seen that when the inertia tems are low, or

omitted from the calculations, the imperfection growth is quite sensitive

14
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to the value chosen for these parameters. Also, as is to be expected

from the results of other investigations, increasing the strain hardening

or strain-rate sensitivity increases the value of the uniform strain at

which significant necking might be expected to occur.

It is interesting to note that at the higher strain-rate levels the

variation in the curves, due either to different values of n or m or the

strain rate, becomes less significant as the process approaches the

limiting curve C = EO. This feature allows a greater degree of flexi-

bility in carrying out high strain-rate tests, in that the strain-rate

levels need not be defined so precisely. However, it also limits using

this type of test as a means of determining material parameters.

If the assumption that the ring is expanding at a constant velocity

is replaced by the more general case in which the ring is expanding with

a constant deceleration of the uniform segment, then the solution of

Equation (2.9) gives the results shown in Figure 5. As one would expect

when the inertia level rapidly decreases the imprefection grows faster

relative to the uniform strain than for the constant velocity case. This,

of course, indicates that to obtain the maximum deformation before failure

the strain-rate must remain high throughout the complete deformation.

The trend of these results were qualitatively the same for both the

power law and visco-plastic constitutive models.

17
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3. VOID GROWTH FAILURE ANALYSIS

Although the stability model for a plastically incompressible material

provides the theoretical confirmation that plastic instability is inhibited

due to inertia effects, it does not contain an inherent criterion for

localized necking or failure. The failure criterion de/de0 *w used in

Section 2.1 must therefore be replaced if failure under high strain-rate

conditions is to be predicted.

In recent years both experimental and theoretical studies of ductile

failure have provided sufficiently strong evidence to suggest that the

growth of voids is an important mechanism in the process. This type of

behavior is usually associated with high "tri-axiality" stress conditions,

but it has been used at relatively low mean stress levels by Hancock and

Mackenzie (1976) in their analysis of notched tensile specimens.

In this section the failure process will be considered assuming that

the presence of voids will require that the material be plastically com-

pressible. Following an approach used by Needleman and Triantafyllidis

(1978), the material will be described using the constitutive model

proposed by Gurson (1975). By this means it is possible to combine both

geometric and metallurgical imperfections in the analysis.

3.1 Constitutive Relations for a Compressible Material

The constitutive relations used in this study very closely follows

e the form used by Needleman and Triantafyllidis (1978) and for this reason

details of the derivation of these equations are omitted. However, for

completeness, and also to show how the equations are adapted to the

19



geometry and strain-rate conditions appropriate to dynamically loaded

thin ring specimens, the necessary equations are presented in this section.

For a randomly voided material the yield surface has the form 4

2
ae  a 2+ 3= (3.1)2 2 + 2fcosh( 2Ym

m m

where Ym is the flow stress of the matrix material, f is the current

volume fraction of voids, a.i are the principle values of the Cauchy

stress acting on an element of the void matrix aggregate and ae is the

effective stress.

The increment in Ym has the form

t i ki(3.2)
Ym = (E- Et )Y m  (1 f) .2

where E and Et are the Young's modulus and tangent modulus respectively

of the incompressible matrix. It is through Et that the constitutive

relations of the type described by Equations (2.13), (2.14) and (2.15)

are introduced into the analysis. The rate of change of the void volume

fraction f, and the plastic dilation are related by

= (1 - f)(l p + 2 P + 3 P) (3.3)

while the plastic strain rate ii of the aggregate is given by

i = a (3.4)g 9 3 ( k  k D i

with
E9 t E ____.

fm E-Et -f)Y 3a

+ mf-f) -- sinh (1 2y 0 3)J (3.5)
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Following the approach taken by Needleman and Triantafyllidis (1978)

the constitutive equation of the principal stress components of the

aggregate can be written in the following fashion

6i = C i (3.6)

where it has been assumed that the total strain rate is the sum of its

elastic and plastic increments. Thus Equation (3.4) can be combined with

the elastic stress-strain relations so that the coefficients Ci are given

by,

C1E E it- E (3.7)

where ij ii q ik ak

q =2 g + Do E Do (3.8)
Dai ii aj

and the elastic constants of the matrix are given in terms of Young's

modulus E, and Poisson's ration v, by

E(l- i jE ij (1 + V)(l1 - 2V)

Eii (I + 0ij (3.9)

The above equations thus describe the compressible material in the

necking region. For a plane stress problem these equations can be greatly

reduced in complexity, so that the plane stress increments are given by

6 = L Ca (3.10)

where the plane stress moduli L., are related to the Cij coefficients by

the expressions

= Ca Cz (3.11)
zz

21



in which the Greek indices range from 1 to 2 in contrast to the Latin

indices which range from 1 to 3. Equation (3.11) can be further reduced

for the uniaxial stress case where Equation (3.10) will then have the

form

& = L 11 - L22  i(3.12)

The constitutive equations of the compressible material as described

by either Equations (3.6), (3.10) or (3.12) do not explicitly contain the

strain-hardening or strain-rate sensitivity parameters n and m. These

parameters, as was mentioned earlier, enter the problem through the

description of the material matrix as represented by Y m or more specific-

ally E t.

With the above background on the constitutive relationships for

compressible material the application of these equations to failure under

either quasi-static or dynamic loading can now be considered for the

thin ring configuration.

3.2 Dynamic and Static Models

As in the earlier analysis the hoop strain (e )and the radial strain

(C ) can be described by Equations (2.1). However, with the assumption

of plastic incompressibility no longer applied, these two strains are no

longer directly related, so that the instantaneous thickness and radius

are now given by

h(t) =h(0)e cr, r(t) = Re 0(.3

To distinguish between the variables as they apply to either the uniform

or local segments of the ring the superscripts "u" and "i.' are introduced

22



compressible material case. The initial geometric imperfection n of

Equation (2.4) now has the form

n = - h (0) (3.14)

h u(0)

The equation of motion for the two segments are for the uniform

section

P(t) =C e h  + ph uV (3.15)rk

and the local section

P(t) = + ph uu  (3.16)ru

As for the compressible case we can eliminate the pressure P(t) by equating

Equations (3.15) and (3.16) to obtain

it u u k 1-2ee2)2 ~( e"(B+C~ u  (Cr-r °~ - c

C + ( 2 'R2le e (3.17)
8 8 pR (I- n) pR

where Equations (3.13) and (3.14) have been used to express u, h, and r

in terms of the strains eel er, and the imperfection n. Again for

reasons of simplicity it has been assumed that the ring is expanding at

a constant velocity ( u ).

If the material is assumed to be incompressible then the plastic

incompressibility condition can be used to reduce the above equation

to the earlier form as described by Equation (2.9).
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Before examining the dynamic failure process the quasi-static case

can also be considered by neglecting the inertia terms as represented

by the strain-rate terms in Equation (3.17) and so this equation is

reduced to the form

C k + e u 0 1 n e e(eru+Ce 1(3.18)

Now, take the time derivative of the above in order to introduce the

stress-strain relation (3.10) and the Equation (3.18) becomes,

ae + ae ( rt+&eu) = F(aeU + aeU(6rU+cez)) (3.19)

where

F rl--e(CrUCrz) e(Ce -'eu  (3.20)

Both in the quasi-static and dynamic cases the local and uniform segments

were considered to be under plane stress (&r = 0) and uniaxial stress

conditions respectively. For these stress conditions the following

equations are used in the numerical solution for both the static and

dynamic cases.

From &r = 0 we get

ir = Yete + Yz1z (3.21)

where

Cre Crz

O e l and yz =- - (3.22)Crr Crr

Also employing the strain compatibility across the imperfection band,

we get

CZ = zu (3.23)
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Since 6ru = 0, the following relation is obtained
LU

"O e (3.24)
Z LU 0

zz

Using the Equations (3.21) to (3.23) in Equation (3.19), we get

(Lke + a0 IeY it - FaeU)ieZ = (FLue + Fa UyeU - CyIeU

+ (FLU + aeUFyzu - LI - a IyZ) zu (3.25)
ez 0ez 0 'z

Expressing 6zu in terms of ieu  through Equation (3.24), the above

equations can be modified to the following form

d - A (3.26)dc 
u

where

LuFL U + Fa uu 2.A Q VLze FQ e + Fe Ye - ae
A=Q'V-T ' = k 2. u

Lzz Lee + a. Ye "Fae

and (FLu + F. Uy U L " .Yz 2

V = ez e e ez (3.27)

(L'0 + . IyI - FOeu)

The quasi-static instability condition for the compressible material is

then defined the same way as it was for the incompressible material, i.e.,

de 2/de U u or A

The quasi-static and dynamic stability Equations (3.26) and (3.17)

can be solved by straight-forward numerical techniques. The variables

f' Ym' Y and the strains can be obtained simultaneously for both the

segments through the numerical solution of Equations (3.2), (3.3) and
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(3.10). The initial metallurgical imperfection (Af) is defined as the

difference between the initial void volume fractions of local and uniform

segments. This can be incorporated into the solution by initially setting

fu = 0,so that ft = Af.

3.3 Critical Void Growth

The numerical solution of the quasi-static Equation (3.26) was

carried out until the necking condition, A - ,was reached. The

corresponding values for the uniform strain and the local void volume

fraction at this point were described as es and fc respectively. Thecr c
starting point for the computation was the strain at the initial yield of

the ring, and the strain increment size was selected so that the yield

condition (3.1) and the equilibrium Equation (3.18) were satisfied with-

in a tolerance of 10-5 to 10-7. Any further attempt to improve the

tolerance level did not produce any change in the results, and so, the

optimum step size was used.

The results of these calculations are given in Figs. 6 and 7 for

various values of the parameters n, and Af. The sensitivity of the uni-

form strain at necking to these imperfections can be gauged from these

results. For the case where n = 0 in Fig. 6 and Af = 0 in Fig. l it can be

seen that when either the geometrical or metallurgical imperfection is

absent from the specimen local necking can still occur. This means that

when the geometric imperfection is either absent or insignificant, as

might be the case for a carefully machined notched specimen or a thick

plate under impact loading, the metallurgical imperfection alone can

trigger the local instability. As a geometric imperfection is always

present in a thin specimen, n =0 is not considered a valid value for
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this parameter in these cases.

The dynamic imperfection growth model of Equation (3.17) was solved

numerically for various values of the Af and n parameters. As is to be

expected no well defined instability point could be detected. However,

these parameters, as in the static case, significantly influence the

void growth and local strain, in that strain-rate (or inertia) inhibits

the growth of the local strain. From the results shown in Fig. 8 it can

be seen that the void growth is also inhibited by the increase in the

strain-rate.

With the absence of any well defined point of instability under high

strain-rate loading conditions, some alternative failure criterion is

required for this case. Two approaches are possible, either to consider

a new failure criterion, or find means of extending the quasi-static

criterion, deu/de + -, to cover the dynamic case. The latter approach

was taken in this study.

Earlier studies by other investigators (Hancock and Mackenzie, 1976)

have led to the proposal that failure will occur when the void volume

fraction reaches a critical level. A point of view which appears feasible

for the dynamic case when metallurgical observations are made on specimens

which have failed under high strain-rate conditions.

As described earlier, when the quasi-static analysis is carried out

to the point where instability occurs, the corresponding value of f at

this point is designated as the critical void volume fraction, fcr* The

dynamic analysis is then carried out for the strain-rate level of interest,

until f reaches the value of fcr" The corresponding uniform strain at

this point, E d is considered to be the uniform strain at failure, on
cr
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the assumption that f is independent of the strain-rate of the process.cr ,
This procedure is illustrated in Fig. 8, where the void volume fraction

is plotted against the uniform strain. The point A in the zero strain-

rate case is the point of plastic instability, dcU/de I -) -. From the

numerical solution it was also observed that £d approaches a limitingcr

condition, and did not increase significantly for strain-rates greater

than i0 - 5000 1/sec.
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4. EXPERIMENTAL VERIFICATION

The increase in ductility which occurs in the high strain-rate

loading regime has been observed experimentally by the authors in a

series of experiments conducted with impulsively loaded thin cylinders.

These experiments were adapted to the thin ring configuration, with the

objective of determining the uniform strain at failure for both high

strain-rate loading and quasi-static loading.

4.1 Dynamic Tests

In the dynamic experiments an exploding wire system was used to gen-

erate a symmetric and axially-uniform pressure pulse which propagates

radially through the medium surrounding the wire to impinge uniformly

on the inner surface of the specimen. This system has the advantage over

explosive techniques in that the axial variation caused by the finite

detonation velocity is eliminated, and the rings expand without variation

in the pressure across their width. The basic test configuration is

shown in Fig. 9, in which the wire to be exploded is imbedded in a poly-

ethylene cylinder. The outer diameter of this cylinder was such that the

ring specimen could be lightly held in the position shown. The length of

the cylinder was not particularly critical, and a length was chosen which

produced high strain-rate levels with a uniform displacement of the ring

across its width. The general specimen configuration Was a ring whose

internal diameter was 25.4 mm, width 3 mm and different thicknesses varying

in value from 0.5 mm to 1.0 Pi. The polyethylene cylinder was approximately

5 cm in length with the 10 cm long wire loosely imbedded in the center.

The above assembly was then attached between the high voltage and

32



CL

0

EE

0

4-)

'4--

V 0

0)

06 CL .

4) 43.. 0) 3 *33



ground terminals of the capacitor bank system. The capacitor bank system

consisted of two or more 15 microfarad capacitors each charged to 20 kilo-

volts to provide the energy storage of 3,000 joules per capacitor. These

capacitors were mechanically switched to discharge through the 10 cm long

copper wire. To reduce ringing in the system the diameter of the wire

was fixed at 0.84 mm., and the resultant pressure pulse was approximately

5 Psecs in duration.

In order to obtain the input conditions appropriate to the theoreti-

cal analysis in sections 2 and 3 it was necessary to obtain the strain

rate of the uniform section of the ring. The hoop strain rate (,9u) was

determined by optical techniques to eliminate the magnetic interference

associated with exploding wire systems. The system found to be most

successful is one which measures the light variation of a small collimated

beam passing between the ring and a fixci knife edge positioned perpendi-

cular to the specimen. The light intensity variation is detected by a

photomultiplier tube, located beyond the test section area Irs output is

amplified, and displayed on an oscilloscope.

In Figure 10 a schematic diagram of this system is shown. A small

gas laser (Spectra Physics 122) provides the required intense parallel

beam of light. This beam was expanded by a suitable lens system to

allow the beam to fill the gap between ring and knife-edge. By careful

adjustment of the lenses it was possible to obtain a photomultiplier out-

put which varied linearly with the ring displacement. The light beam is

contained by a rigid plastic conduit, located a few centimeters past the

specimen. The front of the tube is sealed except for a small slit slightly

larger than the gap at the specimen, and a lens to reduce the laser beam
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is placed at the photomultiplier end. In between this slit and the lens,

another slit was introduced and this further removed any irregularities

in the diverging laser beam passing through the first slit. A RCA 4459

photomultiplier tube is employed and its output signal amplified by a

voltage amplifier to provide the signal to the oscilloscope. A Hewlett

Packard 6513A D.C. regulated power supply supplies power to the P.M. tube.

The bandwidth of the amplifier is from 60 hertz to 20 megahertz with a

gain of 82.

The calibration technique simulates the motion of the specimen under

dynamic loading. The specimen placed in the holder is allowed to slide

horizontally toward the knife edge on a "V" guide. Control of this move-

ment is accomplished by using a micrometer with a minimum direct readout

of 0.0001 inch. The knife is aligned vertically parallel to the specimen

surface. As the specimen is moved toward the knife edge in prescribed

increments, the variation of the output of the P.M. tube is monitored by

a digital voltmeter. This provides a displacement-voltage calibration.

The specimen holder is then restrained at the maximum gap selected for

the test, and the shot fired, giving a recorded voltage-time history of

the ring expansion.

The above calibration technique is not particularly accurate when used

with thin ring specimens. Two sources of error are possible. One is

related to using the rigid body displacement of the ring rather than its

expansion, while the other is related to a different light level passing

through the slit if the ring expands away from the polyethylene cylinder.

These errors could well be considerable if accurate strain-rate levels

were required during the total expansion of the ring. However, as can be
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seen in Fig. 3, the variation in the uniform strain is not greatly

effected by the strain-rate level above I x lO I/sec. The initial

strain-rate of the ring is not affected by the above errors and this

value was used in the calculations described in the previous section.

Also the second error would indicate a slower strain-rate level than

was actually the case, but the system indicated high strain-rates

throughout the whole deformation process. The strain-rates measured

by this technique varied with the applied load as controlled by the

voltage level of the capacitors.

The pieces from the fractured specimen were trapped in a foam

lined box, which also prevented any additional deformation due to their

impacting the test fixture.

4.2 Static Tests

The static test apparatus was designed to expand the same configur-

ation of ring specimen as used in the dynamic tests. Again the load was

applied indirectly through a polyethylene cylinder, but in this case the

cylinder was internally loaded by oil pressure. The test configuration

is shown in Fig. 9b. The radial expansion of the ring was measured

using a linear voltage differential transformer system, whose actuator

rod was displaced by the direct expansion of the ring.

Calibration for this system was obtained by moving the LVDT rod

against a micrometer which was adjusted to give a voltage-rod displace-

ment curve. The results of these tests were usually recorded on an x-y

plotter in which internal pressure as a function of ring displacement was

recorded. However, in this case the pressure had no significance, and no
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attempt was made to find the stress level in the ring. The hoop strain

was obtained directly from Equation (2.1).

4.3 Experimental Results

In the static tests, the uniform hoop strain at failure could be

obtained quite readily, but in the dynamic tests it was not possible to

determine this value directly from the change in diameter of the ring.

However, assuming that the uniform section of the ring always remained

plastically incompressible, £e could be obtained from ez as in Equation

(2.2) where ez was the measure of the change in width of the ring.

A series of experiments were carried out in which the ring was

expanded to a diameter just short of failure. Comparing the E obtained

from the change in diameter and from the change in.the width, it was found

that these results were quite compatible with the incompressibility

assumption and the scatter was within three percent strain. From incom-

pressibility it would also have been possible to use cr from the changes

in thickness. However, the scatter in this case was such that a reliable

reading of c. could not be obtained. This result was inherent in the

thin ring configuration, where an error of 0.0006 in. in the thickness

measurement resulted in a six to seven percent strain variation in the

hoop strain value. Although compressibility in the uniform section could

not be accurately confirmed by these measurements the results were not

incompatible with this assumption.

With the dynamic tests conducted at various voltage levels of the

capaciter bank, and thus different strain rate levels, the number of

pieces into which the ring broke varied. As was to be expected the lower
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the strain-rate of loading the fewer failure points occurred in the

specimen. At the highest strain-rate levels as many as ten failure

points were observed. With the hoop strain values being obtained from

the width of a uniform section of the broken ring it was found that a

uniform section, free from necking, could be expected when the strain-

rate level produced about five failure points. This level of strain

rate was sufficiently high that the additional strain due to inertia

amounted to approximately 85% for 6061-T6 aluminum and about 45% for

copper. These results are presented in Fig. 8 and are fairly typical

of the results obtained from similar tests carried out on thin cylinders

of the same materials. In tests where nine or ten failure points did

occur, but in which at least one portion of the fractured ring was

large enough to allow the calculation of the hoop strain, it was observed

that the strain at failure had not increased significantly over those

values obtained with about five failure points. This result is compat-

ible with the theoretical prediction that the strain at failure approaches

the limiting curve eu = E of Fig. 1, and suggests that failure could

occur at a constant level of c or at a critical void volume fraction

which is essentially strain-rate independent. It was results such as

these that suggested the use of the critical void volume fraction

criterion proposed in Section 3.3.

The uniform strain at failure is very sensitive to the two parameters

which define the geometric and metallurgical imprefections, n and Af.

Although n can be found by a careful measurement of the ring specimen,

the problem of determining an accurate value of n is directly related to

the thickness of the ring, which for thin rings results in a value of n
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that is at best only a reasonable approximation. The value of Af on the

other hand is only an educated guess, and the value chosen for this study

was one used by Needleman and Triantafyllidis (1978) which, although

probably unrealistically high, is felt to be compatible with the simpli-

fied constitutive model used in the study. So, it may be possible to pick

different combinations of n and Af which would allow the theory to pre-

dict a value of e f in agreement with the quasi-static test results in

Fig. 8. However, that these same values also accurately predict the

dynamic test values for the two materials is encouraging. Since the

dimensions of the ring specimens for both the Al. 6061-T6 and the annealed

copper are identical, the value of n was naturally the same in both cases,

and the same value of Af was considered to be appropriate lacking any

evidence to the contrary.

Fig. 11 shows the symmetry of the ring expansion under dynamic load-

ing conditions, and the metallographic evidence of vid growth ductile

fracture at the failure cross-section.
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(a)

(b)

Fig. 11 Expanded Ring Specimens (a), Typical SEM of Fracture Surface (b).
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5. CONCLUSIONS

The use of a constitutive model, which allows for plastic com-

pressibility in the region of either a metallurgical or geometric flaw,

although somewhat complex, provides results which appear to be compati-

ble with the more traditional treatment of necking instability. The

concept of a critical void volume level as a means to predict failure

is a natural outgrowth of the use of this model, and encouraging

results were obtained in its application to thin rings undergoing both

static and dynamic expansion.

For a material which is perfectly plastic the incompressible

model predicts the strain at failure to occur at the onset of plastic

flow. The compressible model, however, in addition to providing a

failure criterion applicable for conditions where.inertia is important,

also gives a more realistic failure strain for meterials of this kind.

This particular feature of the compressible model may be due in part

to assumption of a perfectly plastic matrix material. It thus also

might be expected that less meaningful results would occur for high

strain hardening materials. In the present model the strain harden-

ing effect is introduced, rather artificially, through the tangent

modulus Et. However, in comparing the results of this analysis in

its application to the aluminum and copper rings it is interesting

to note that the theory predicts not only the large ductility

expected of the copper, but also the reduced effect of inertia in

this material in contrast to the aluminum; a result which is clearly

seen in Fig. 8.
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The problem of determining meaningful values for the non-uniformity

parameter n is essentially more a function of the specimen geometry,

and so reasonable values can usually be obtained. Unfortunately, this

is not the case for Af. In principle, this value should be obtainable

from metallurgical experiments, but even if values were available, it

is unlikely that they would be compatible with the requirements imposed

by the approximate void growth model used. From the point of view of

dynamic failure prediction, at present, it appears sufficient to use

the values necessary to obtain the failure strain in the static tests.

The analysis presented in this study was designed to predict the

strain at the onset of ductile fracture, and no consideration has been

given to void nucleation or the particular mode of failure which might

ensue beyond this strain level. It is to be expected that this latter

aspect of the failure process can only be determined from a more

detailed analysis of the stress field in the necking region.

The extension of the approach outlined in this study to different

geometric configurations, in which the role of the non-uniformity

parameter n can be neglected is a necessary step to further the

efforts to incorporate microstructural features in the analyses of

ductile fracture.
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