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INTRODUCTION
In this report we present a shock spectrum approach to the design of lightly damped rela-

tively light equipment in structures subjected to ground shock. The analysis uses as a model an
N-degree-of-freedom structure to which is attached a single-degree-of-freedom component. It
is known that significant interaction effects occur when the equipment frequency is close or
equal to one of the natural frequencies of the structure, referred to as tuning. Otherwise, the
conventional floor spectrum method which neglects interaction is valid,

In previous research the undamped equipment-structure problem for tuned systems [11
and slightly nontuned systems [21 was studied and it was shown that a design ground response
spectrum together with fixed-base dynamic properties of the structure alone and of the equip-
ment alone can be used to estimate the peak response of the equipment. The analysis took
advantage of the mathematical structure of the equations and of asymptotic methods made pos-
sible by the smallness of the equipment mass in comparison with the mass of the structure to
obtain simple results for tuned and nearly tuned systems. In this paper we extend the results to
damped tuned, nearly tuned, and completely nontuned systems. For light equipment and small
damping, the results obtained can be easily' and efficiently implemented by a designer. The
most important aspect of the analysis is its extreme simplicity; namely, if the response spectrum
for the ground motion is available, the peak response of the equipment can be calculated
merely by multiplying the former by an amplification factor.

This approach is in contrast to several earlier analyses of equipment response, such as the
floor spectrum method in which the equipment is treated as a single-degree-of-freedom system
subjected to a base motion that is taken to be that which the structure would experience at the
attachment point in the absence of equipment. Not only does this method neglect interaction,
it has the further disadvantage of requiring that an expensive time-history analysis of the struc-
ture be conducted in order to determine a base motion [3]. Approximate techniques that
bypass associated computational problems have been proposed whereby floor response spectra
are developed from ground spectra, but these methods are ad hoc and their accuracy cannot be
evaluated.

It is also possible to account for interaction by considering the system to be an N+I-
degree-of-freedom which is then treated by a modal analysis using an ensemble of spectrum-
consistent ground motion records. Neither approach is, however, ideal. If equipment-structure
interaction is important, two closely spaced modes will appear, the contributions of which must
be summed when a modal approach is used, but there exists no consensus as to an appropriate
summation procedure. A disadvantage of the second approach--time-history analysis--is that it
is very expensive and for a given item of equipment must be carried out for a wide range of
ground motion. If the equipment is light, the use of an N+1-degree-of-freedom model with
standard structural dynamics computer codes may mask significant response. The method
developed here allows the design engineer to use the given ground motion design spectrum
directly to determine the response of the equipment. The expense of time-history analysis and
the difficulties of evaluating response when closely spaced modes are involved are thus avoided.

In this report we describe physical and numerical experiments on the response of tuned
and nearly tuned equipment-structure systems. The physical experiments were carried out on
the large shaking table at the University of California, Berkeley, and involved a 40,000 ib,
three-story steel frame model with oscillators simulating items of equipment. The model was
subjected to a wide variety of simulated ground motions and the peak accelerations in the
equipment items measured. The experiments confirmed the accuracy of the analysis in predict-
ing the response of light equipment.

In addition to the physical experiments we have performed numerical experiments using
as a model a standard ten-story building and a single equipment item. The numerical experi-
ments corroborated the results obtained in the physical experiments and indicated some surpris-
ing aspects of conservatism in generally accepted modal summation rules. It is shown in this
report that both the SRSS summation method and the NRL summation method can
significantly overestimate equipment response in damped tuned systems.
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The results of the analysis for the lightly damped light equipment in ground shock loaded
structures presented here can be used to design the damping in the structure and in the equip-
ment to minimize the response of the equipment. It is shown that the best choice of damping
is when the damping in the structure and the equipment are equal.

The results developed here have been mainly concerned with short duration loading typi-
cal of ground shock, but by application of random vibration theory to the tuned equipment-
structure system it can be shown that for very long duration ground motion, similar predictions
of equipment response can be developed. These results could be useful in predicting the
response of light equipment in large ground vehicles traversing randomly rough track such as
the MX system.

ANALYSIS
The equations of motion of the N-degree-of-freedom structural system to which is

attached a single-degree-of-freedom equipment item (Figure 1) take the form
N N

j + C1+ KJU) - (CijRjt, + XjR.u,) + Fe, , i,2..., N (1)
j-I j-I

where Mj, Cj, and K are the mass, damping, and stiffness matrices, respectively, and U, is
the absolute displacement of the il degree of freedom. The vector R, is a vector of influence
coefficients introduced to couple the ground motion ug(t) to the structure, and e a vector
whose components are zero at every degree of freedom except the one to which the equipment
is attached, denoted by the index r, where it takes unit value. The term F is the interaction
force between the equipment item and the structure. The equation of motion for the equip-
ment displacement u is

-mii = F = c(i-Ur) + k(u- U,,) (2)

where m, c, and k are the mass, damping, and stiffness of the equipment, respectively. Using
classical modal description of the structure and Laplace transform techniques, the solution for ii
for the multidegree-of-freedom system takes the form

N mdb 
2 (23owp+w2)

k-1 Mk(p 2+2BkflkP+R )
N N

apk y M R(2Bk fl kP+ 2) (2pwp+W 2)
I-Zi-- I-I

I.- Mk(p 2+2BkflkP+ fl 2) u9 (3)

where 6 is the fraction of critical damping for the equipment, flk is the k' natural frequency of
the structure alone, Of is the i6 component of the k mode shape of the building alone, Mk is
the generalized mass for the k' mode, and Bk is the fraction of critical damping in the k'
mode assumed small enough not to couple the modal equations.

The solution of eq. (1) will be obtained by residue theory. The poles of the transfer by
which U- is related to are simple poles and determined by the zeroes of the denominator of
the expression in eq. (1). Two different situations arise, one when the equipment is tunea or
nearly tuned and the other when the natural frequency of the equipment is well away from any
of the structural frequencies i.e., is grossly nontuned. In both cases the poles, for light equip-
ment, appear near the natural frequencies of the structure alone and of the equipment alone.
For tuned or nearly tuned equipment, two closely spaced poles (tuning poles) appear, located
near the equipment frequency and the frequency of the structure to which the equipment is
nearly tuned, one below those frequencies and one above them. For an undamped perfectly
tuned system, these two poles coalesce into a double pole as the equipment mass approaches
zero. This gives rise to a response in the time domain that grows without bound proportional
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to time regardless of the time history of the input. Thus, the contribution to the sum of the
residues at all poles is dominated by the residues at the tuning poles. The contribution of the
summation term to the residues at these two poles is dominated by the term k = n since the
denominator of that term is nearly zero. Hence, in the region of the tuning poles, which is
around p - iw, eq. (3) can be approximated by

2 2fBcop+fl U(p2 + 2,6op + &)2) + p Y27 p+2Bnifnp+ 2

(2Pcup+w 2) (2B, fl p+fl 2(

p2+2B, 1f n p+f2 Ug, (4)

where

m (5)

and
N N

= , ,MjRj/M, (6)

are the effective mass ratio and participation factors, respectively.

The contribution to the response of the nontuned poles is quite standard. Their locations
are close to what they would be for the structure alone, namely

p = -Bflm ± iflm (7)

Evaluating the residues at these poles and dropping negligible terms, we obtain to dominant
order the contributions from the nontuned structure poles:

I ii, (l-m/°)2 I lme- nt-7)sinfl,,t-OdT 
(8)

The contribution to the response from the tuning poles is different and must be obtained by a
special approach. This has two parts; a dominant portion that will be developed subsequently
and that has a later-occurring peak, and a nondominant portion that is of the same order as the
.erms above. The second portion is easily obtained and takes the form

oC (e-' -sin&o(t-r)dr (9)
0 m -I I

m* n

The dominant portion of the contribution from the tuning poles given by eq. (4) may be writ-

ten in the form

U = [N(p)/D(p)] (10)

where

N(p) - (2pwop+W 2)I2Bn(l+f)wp+(+f) 2 2 ]C,, (11)

and

D(p) - p4 + Wp3128(1+7) +2B,(l+--))

+ 2 + ,+ 2+f2+ 4B,(l+4)]

+ w3p[2f(l+ )2 +2B,(l+f)] +C4(1+f)2  (12)
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In the above, € = (f.-)/w is the nontuning parameter.
The roots of D(p) will be close to p - =±t io since y, /. B,, and are taken to be small.

To locate the poles of D(p), we replace p in Eq. (12) by

p = iO(1 +8) (13)

where 8 is a small quantity in terms of which eq. (12) becomes
84 + {4- i[2(1+y) +2B,(1+f)]V8 3

+ (4- y- 2 -
2-43B,(1+f) - i[6 3(l+y) +6B (l+)1 82

+ 1-2-/ - 4f - 2C2 _ 83Bo (1 +f) - i [2# (2+3--2f-f 2 ) + 4B, (I +) 8

+ 1-y - 40B,(+ ) - i [2,6(y-2 -f 2 )]) - 0 (14)

The solution of Eq. (14), to dominant terms, is

2 2 2 -2

where here and throughout the remainder of the analysis the upper signs are taken together to
give one root and the lower the other. The quantities X and A are given by

= --)-{+f2-(#-B,)2]2+4f2(6-B,) 2}.,+ [,y+ -(#-B,)2] V2 (16)

-l [{ [y + e2 - (,O-B,,)212 + 4f2(pl-B,,)2}'V/2- [,Y + f2 (p-B,) 11If, (17)

The formal inversion of (10) is

1 lf N(p) u (p)eP'dp (18)
27ri -f D(p)

where r is a suitable Bromwich path. If -g(p) is taken to be 1, then the inversion directly
yields that portion of Green's function 4G (t) for the solution which comes from the dominant
contribution of the tuning poles. The solution for the equipment acceleration for given ground
motion ii,(t) from the dominant contributions of the tuning poles takes the form

|ii(t) -f ii ,t-O~ii,(T)d, (19)

0

The function UG will be obtained by residue theory, since there are no branch cuts in the p
plane. The inversion of -G for the general case (eq. (15)) is obtained by writing the denomina-
tor D(p) in the form

D(p) - (P-P1)(P-P) (P-P 2)(P-P 2)

where
P," iW (I+ At+ -))o +

2 2 2 2

p2, .ia(l+2-2 -) -  2 2

and , and ,2 are the complex conjugates of Pt and P2. Evaluating the residues at each pole
and collecting complex conjugate terms in pairs, we obtain the result, correct to dominant
order,

6



iiG(t) ---- e- (
P
+ B '

wt
'2 [X sinh- c -- + )\t 2 2 2

- X cosh~cut sin-Lut cos(1 + -)ut
2 2 2

- 1i sinh ot cos.wt cos(l + -)ct
2 2 2

- jA cosh 2 t sin-ot sin(1 + -)wtJ (20)
2 2 2

The dominant contribution of the tuning poles to the acceleration response iI(t) to a specified
imposed ground motion ii(t) is obtained by substituting the above equation in Eq. (19). The
complete solution for the response of the equipment is then obtained by summing eqs. (8),
(9), and (19) and takes the form

t N C' B0 17
U(l) f i-("/ ) 2 flme- sinflr,(t-r)

m~n

N C ue-1-T) sinco(t-T) +r (21)-+-rnI l(CU/ m) 2

m n

where UG is given by eq. (20).

The character of the two parts of the solution in Eq. (21) differs. The contributions from
tht nontuning poles and the nondominant contributions from the tuning poles are conventional
and would attain their peaks during the ground excitation or shortly thereafter. The dominant
response from the tuning poles, on the other hand, is controlled by the energy transfer from
the structure to the equipment through beating, which takes a relatively long time [1, 21, and
the peak response of this contribution will occur substantially after the end of the ground
motion.

The peak response of grossly nontuned systems, i.e., where the equipment frequency is
far from all structural frequencies, can be estimated in the same way. For light equipment, the
structure poles are only slightly shifted from their location for the structure alone and additional
poles due to the equipment occur close to those for the equipment alone:

p = -)3W ± iu (22)

The residues at the structure poles are as before. The residues at the equipment poles contri-
bute a term similar to the nondominant term in the tuned case. The derivation is standard and
the complete response for the equipment in the grossly nontuned case is given by

ui(t)-- fu (T),- l_ - 2 fu, e8" ' t 1sinfm(t-T')
()N C11" floe_B.7) sintr)d (23)0-

N CM

+r-I (0/fl,) 2

APPROXIMATE RESPONSE SPECTRA RESULTS
1 he results given in the previous section can be applied to the design of equipment and

equipment mounting. Typically, the information available to the designer is a ground shock
spectrum. It was shown in references 1 and 2 that for the case of the undamped system, both
tuned and nearly tuned, the peak acceleration in the equipment could be related to the response
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spectrum of the ground motion. The present paper is concerned with the generalization of
these results to the damped tuned or nontuned cases.

For the grossly nontuned system where the equipment frequency is far away from all
structural frequencies and these are well separated, conventional summation methods, e.g., the
square root of the sum of the squares procedure applied to eq. (23), lead to an estimate for
ii max in the form

r 21/)2 SA mB") 1 f) 2IS( ) (24)

where S,4 (fl,B) is the acceleration ground shock spectrum for the ground motion ii evaluated
at frequency il and damping factor B. Other responses can be estimated by substituting the
appropriate ground shock spectra in the above result.

The approach for tuned-undamped systems is described, in detail in reference 1. This id
to the following estimates of maximum acceleration and displacement

SA (o, 0)

and

SD (W, 0) (26)

where SA(,o,/3), SD(co, 3) are the acceleration and displacement ground shock spectra for fre-
quency co and damping factor /3.

The simplicity of the result can be explained on physical grounds. In weakly coupled sys-
tems with the same frequency, the response of the system involves a perfect energy exchange
between each component at a beat frequency much lower than the natural frequency of each
component. The same phenomenon--a classical beat phenomenon--occurs here. The coupling
is weak because the ratio of equipment mass to structure mass is small.

When a structure is subjected to a ground motion, the velocity imparted to the structure
is mass independent and determined only by the ground motion. Thus, if the same ground
motion were applied directly to tuned equipment, the same velocity would be transmitted to it.
Kinetic energy, on the other hand, is proportional to the mass of the system excited; in equip-
ment, that energy would be much smaller than in a structure. However, if the equipment were
attached to a structure and the structure subjected to a ground motion, the kinetic energy
imparted to the latter would be wholly transmitted to the equipment, if tuned, and the velocity
imparted would be amplified by the reciprocal of the square root of the mass ratio. Damping is
clearly important in this process because the energy transfer requires many cycles and much of
the kinetic energy in a damped system could be dissipated before being transmitted. Depending
on the parameters of the system, the response may exhibit underdamped beats as shown in Fig-
ure 2, critically damped beats, or overdamped beats. In order to demonstrate the physical and
analytical basis of the method we consider the special case c,f a damped tuned system with
y > (p- B,,) 2. Other cases can be handled in exactly the same manner.

When 6 =0 and y > (3-B,) 2 the contribution from the tuning poles in eq, (21)
becomes

iirt CU 7-- [f(3 B . 2 v  o ( ) Ve - 3+ 8)' - )/2 co s o(t- ) sin ql(t- )]d T (27 )

where

- [/- (/3- B,)2 1'"w/2

8



We note that the term in brackets in the integral represents a damped beat motion as shown in
Figure 2 with a damping factor (/3 + B,)/2 and a beat period T given by 2w/7). When the term
sinn(t-r) is expanded

C11 2
1

+ f u((e)e "" cos0(- sinos d (28)

where

f i i ()sO7.QT e(A+Bn)W0-T)/2 cos0)(t-r)dr

0=tan - 0 (29)
f U,(7.)sinqT" e-(#+B, o.(t-r)/2 .s~t , .

0

We consider 7)tI = 2rt I/T << 1, where tI is the duration of ground motion and T is the
beat period of the system. Then the first integral in Eq. (28) can be approximated by

jU (") e - ( ) + B ,)wA r- T)/ 2 COS (t-) dr
0

and the second neglected since sinilt will be bounded by t << 1 and ii, = 0 for t > ti.
Thus, we take

C" sin'ot i (T) e- ' cos(0(t-r)d-r (30)iit - [y_(,BB,)21], 0

When the parameters y'/, /3, and B, are small, this result may be interpreted in the fol-
lowing way: for t > tj, the above expression can be written in the form

C "( 2siniot e-((+' )wt/2R cos (ot- t)
2,q

where

R = (A +

with

A k i(t) e+ (P+B,)w112 cos(0t dt

A 2 = J iig(t) e+('0+81 ) 1 /2 sinwt dt
0

and

0 - tan-' (A2/AI)

The response indicated by the above is illustrated in Fig. 5. In the above, the terms R and to
are constants independent of t for t > tj, and R cos(ot-tft) is a rapidly varying function of
time. The term

W02 -( 3+B )wi/2 sin t

279



is a slowly varying envelope curve whose maximum value must be determined. The maximum
value of this envelope curve is attained at time t*, expressed by

tant 2- (31)tnt*fi(P3+B,)w

The value of t* is thus

t* = arctan[27/o(f3+B,) ]/ (32)

For lightly damped systems and light equipment, in general t* >> ti. The values of sinrlt and
exp[-(3+B,)ot/21 when the maximum of the envelope is achieved are

sin71t* =
[,)2+(3+B") 2o02/4 '/'

e- =(#+B )(ot*/2 = e- K  (33)

where

K = (arctanC)/ (34)

= [vy- (p-B,)2I'//(,6+B,) (35)

It follows that

amax = IU(t')l= le (nn)]K,

{e (P+B )w°n/2' I ii,(T)e- (P+Bn)w0t-r)/2 coso"(t*-,r)dTl} (36)

In order that this estimate of peak acceleration be useful for design purposes, it is neces-
sary that the second factor in braces be interpreted in terms of a ground response spectrum. To
this end, we recognize that the integral is, to the order of )3+B., the relative velocity response
history evaluated at time t* of a lightly damped single-degree-of-freedom oscillator of frequency
o and damping factor (,3+B,)/2 subjected to the ground acceleration ii1(t). At some time i
during the ground motion or shortly after it ceases (so that t << t*), the absolute value of the
relative velocity will attain its global maximum, denoted as Jv(i)I. The relative velocity
response at t*, denoted as v(t*), can be thought of as that which would occur in a single-
degree-of-freedom system (subjected to the ground acceleration ii(t)) as a consequence of free
vibration beginning at time I(> tl) when the absolute value of the relative velocity of the oscil-
lator attains its first local maximum, I v(t) 1, after the end of the ground motion. This instant of
time i is equal to t if i occurs after the end of the ground motion; otherwise, t > t. In any
event, << t*. Thus, we can write

I (t ) I = I v () le-(P+Bn)wt-)/2 lcosOw(t*-i)I (37)

where v(t6) < Iv(6)1. It then follows that

10



I () i e- cosO(t )drI
0

I v e- (+B )wW-b/2 cos&) (t*-)I

4< 1 v 6 ) ( ft < + B " °'i*( - i;/*)2

= Iv (6)1e- (P+B)wt*12  (38)

since t/t* << 1. From this we obtain the approximate result

Iv () I e (1 +B)wt/ 2 f iig (T) e- (+Bn)w(f- )/2 cos&)(t*-r)dT (39)
0

We recognize, however, that to the order of /3 and B, I v(7) 1 is very nearly the pseudo-velocity
response spectrum Sv((o, (0+B,)12) for a lightly damped single-degree-of-freedom oscillator of
frequency w and damping factor (,8+B,)/2 subjected to the ground acceleration iig(t). Thus, an
estimate of the maximum equipment acceleration is

Jc,.ncolsinIt*Je -K SvO+B

I UImax= S&()3B)21" /, 2

With the value of sinqt from Eq. (33), we obtain the final estimate as

ICfIe-KoSv(o,,- )

IUImax = 2 (40)

Recalling that

WSV - SA = o2SD

this estimate can be written in the alternative form

II(t)IWI = ICe SA (&), )+B (41)
(y+413B,,)'' 2

Estimates for other cases of damped tuned systems, e.g., where y < ( - B,,) 2, - (3 - B) 2

and -- B 2, p - 0, were developed in [11]; precisely the same result was obtained.

For a slightly nontuned system, the dominant contribution to the response is given by

11



! d(:) =- C fr** (-T)e - + B
)w(t-0)/ 2(,\2-A 2) 0

cosk2, T sin(1+t)(t-..)

X sinhA-w(t--)cosAO(t-T)

+ X cosh--(t-r) sin-2-w(t-r) cos(1 + L)(t-r)
2 2 2

+ /. sinh-I-w(I-r) cos-Aw(I-r) cos(I+-L)Cv(-r)
2 2 2

+ l cosh -a&(t-1) sin-&-(t-7) sin(l+-1-)wu(i-,r )d (42)
2 2 2 j

where X and 1L are defined in terms oft, y, /3, and B, in Eqs. (16) and (17).

The reduction of this general form to the required amplified response spectrum form is
given in detail in reference II and takes the form

ICm"le-" SA( C+f1,, 19+B,) (43)iim -- ( ,+:2 +49 8,)/ S" ( 2 2

where
K = (arctanO)/A 

(44)

S+ C2-(6_B") 21'/ (,q+ B) (45)

The contribution to the equipment acceleration from the other modes for which no
interaction need be considered is quite standard. Using eqs. (8) and (9) in conjunction with the
square root of the sum of squares procedure the estimate of the maximum acceleration in the
early peak, which will occur during the ground motion, is given by

'.2 + 1 C rm  2

lIIm.x-- l-(flY/o SA(fB,,) +/) 1-(/fl,) 2 S2 ) (46)

The peak value given by eq. (46) occurs early after only a few cycles of equipment motion
and that given by eq. (43) occurs late and thus in principle they should not be taken together.
However, we have recently completed extensive numerical and physical experimentation the
results of which appear to suggest ways in which the results can be conveniently applied to
equipment mounting design. The physical experiments were carried out at the Earthquake
Simulator Laboratory of the Earthquake Engineering Research Center, University of California,
Berkeley, and involved the use of a three-story steel frame model structure (Figure 3) around
one-third full scale. The response of the steel frame model is roughly that of a shear building
with a natural frequencies at around 2 Hz, 8 Hz, and 15 Hz. The total weight of the model was
39,500 lbs and its height was about 20 feet. Three single-degree-of-freedom oscillators (Figure
4) were attached to the concrete blocks at the second and third floors to simulate equipment in

a primary structure. The test structure was instrumented to measure displacements and
accelerations at each floor and. acceleration of the oscillators. The mechanical oscillators, each
weighing about 20 Ibs, were constructed to correspond to the first three natural frequencies of
the model structure.

The first three natural frequencies of the frame were determined accurately and the oscil-
lators were tuned to the structural frequencies. They were then bolted to the floors of the
model structure. A variety of ground shock table motions was applied to the model, some of

12



which were short duration approximate square waves and some of which were longer duration
and more erratic. Figure 5 shows the time history of acceleration in a typical run for a short
duration single displacement pulse. This produced peak table acceleration pulses around
+0.16g, separated by about I sec. The peak responses in the tuned oscillators were 2.0g, 3.5g,
and 0.6g in the first, second, and third mode oscillators, respectively. On Figure 5, the top
trace shows the input table acceleration, the second the response of the third floor of the struc-
ture, and the next three the accelerations of the three tuned oscillators. The very large
magnification of acceleration experienced by the oscillators is immediately obvious. The beat
phenomenon is clear. The peak acceleration in the first two oscillators is achieved considerably
after the peak acceleration in the input. These two oscillators are obviously responding at the
coupled frequencies governed by equipment-structure interaction.

The response of the third oscillator is quite different; a highly irregular pattern appears
and local maxima occur during as well as after the excitation. Fourier transforms of the
acceleration time histories of the three oscillators have been taken to clarify this response (Fig-
ure 6). It is clear from these transforms that the first mode oscillator responded only at the
first mode frequency, around 2 Hz; the second mode oscillator responded predominantly at the
second mode frequency, around 8 Hz, with a small contribution from the first mode. The
dominant contribution to the response of the third mode oscillator was from frequencies around
the third mode frequency of 15 Hz, but significant contributions also appeared from the lower
modes. Thus, the pure damped beat response predicted by the theory was complicated by con-
tributions from the lower modes.

These observations are supported by the numerical experiments and have implications for
the application of the theoretical results to design. First, only the structural modes with fre-
quencies up to and around that of the equipment under consideration need be considered and,
second, the late peak acceleration given by eq. (43) should be summed with the early peak
acceleration given by eq. (46) by an appropriate summation rule. For instance, if the conven-
tional square root of the sum of the squares procedure is used, the estimate is

I ~ ' 12 jC'~ s
, Il-(fl' )2 SA(fl ', 'B m) j+ I SA-(/ ) (t, 3

n n f l~ n J

+ ICnje- SA I +n, )3+B,i
(,+2+4#B,)V 11z 2 ' 2 1

If the late peak occurs well after the peak of the excitation (as in the first mode oscillator) it
will be the dominant term and the result will be nearly the same as if it alone were considered.
On the other hand, if the late peak occurs during the excitation (as in the third mode oscillator)

then it should be superposed with the other modal contributions which may occur around the
same time ard this will be effected by the formula.

NUMERICAL EXPERIMENTS

In addition to the physical experiments, we have performed numerical experiments using
a standard structural analysis program, TABS [121, to compute by a variety of methods the
response of a light appendage in a building. The structure used in these numerical experiments
was a ten-story reinforced concrete frame building described and used in reference 13; the
appendage was a single-degree-of-freedom oscillator attached to the top floor and had a mass
which gave a mass ratio of 0.001 compared to the modal mass of the first mode of the building.
The response of the appendage was calculated using TABS to evaluate the eleven-degree-of-
freedom system which consisted of the structure and the appendage. The program has the
capability of computing natural frequencies and mode shapes and then can either compute a
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.ime history in each mode (by a method which is exact for piecewise-linear acceleration
records) and sums these for the resultant response, or can determine the maximum response in
each mode by a spectrum method and estimate the maximum response by the square root of
the sum of the squares procedure.

The response of the appendage as a function of appendage frequency (maintaining the
same mass ratio) was calculated by both methods for a variety of ground motions. Two cases of
damping were considered: undamped and 2% of critical damping in each mode. Typical results
for a very short duration ground motion for both methods of computation are shown in Figure
7 for the undamped case and in Figure 8 for the damped case. The TABS time-history results,
which should be exact, are shown by solid dots and the TABS spectrum (SRSS) results are
shown by triangles. The tuned system estimate based on eq. (47) is shown as a solid curve and
the nontuned system estimate based on eq. (24) is indicated by squares on the same figures.

It is clear from the diagrams that for both damped and undamped cases the tuned esti-
mate compares well with the nontuned estimate in the regions of gross nontuning. (This is
probably due to the even spacing of the natural frequencies of the structure in this case; thus,
the tuned estimate could be used for structures with relatively evenly spaced natural frequen-
cies except possibly for frequencies well below the first or much above the highest.) Further,
the tuned estimate compares well with the time-history calculation over the entire range of
appendage frequencies considered, which encompasses the first three modes of the structure.
This is surprising in view of the fact that the spectra used in these numerical experiments are
jagged spectra and not the smoothed design spectra for which the approach was developed. A
further result is that the TABS spectrum (SRSS) estimate is very poor near tuning for all
modes considered, but is very good for grossly nontuned cases. This is not surprising since it is
well known that SRSS is not accurate for closely spaced modes which naturally occur when a
light appendage or equipment has a frequency near one of the structure's frequencies. In this
case, the standard approach is to use the NRL method, which for a two-degree-of-freedom sys-
tem is equivalent to the absolute sum method. From Figure 7, the TABS time-history result
for the undamped case and when the appendage is tuned to the first mode is 78.2. The TABS
spectrum (SRSS) result is 55.1 and if the absolute sum method is used the result is 77.9. The
estimate given by the formula (47) for the tuned case is 78.1. However, the TABS spectrum
(SRSS) result greatly overestimates the response in the damped case as shown in Figure 8. The
TABS time-history computation is 20.2; the TABS spectrum (SRSS) result is 50.2. (If the
absolute sum method is used, the result is 71.0.) The tuned result from eq. (47) is 19.4.

The physical explanation for this overestimation by the SRSS and absolute sum methods
in the damped case is that the beat phenomenon involves an energy transfer between the two
elements of the system. In the case of an undamped, perfectly tuned system, the energy
transfer is complete, i.e., maximum response in one element is accompanied by zero response
in the other. This energy transfer takes time; the beat period that controls the energy transfer
is inversely proportional to the difference between the two closely spaced frequencies. The
phenomenon can be interpreted geometrically in terms of the eigenvectors of the modes. The
components of these modes can be thought of as vectors in a generalized state space. The
components that represent the appendage are initially 180 degrees out of phase and those of the
structure are in phase. As the motion continues, the equipment components rotate and eventu-
ally align, while the structural components become out of phase. As the vectors rotate, the
resultant for the equipment increases and if the system is undamped, attains a maximum when
they are aligned. In the damped case, the peak values of the vectors will first increase and then
diminish as they rotate and the resultant will achieve its maximum before they line up. Thus,
it is important in the damped case to determine at which point the maximum of the resultant
occurs. In terms of this analogy, the square root of the sum of the squares procedure assumes
that the peak values of both of the vectors are attained simultaneously and occur when they are
at 90 degrees. The absolute sum method assumes that this occurs when they are lined up. The
method described here evaluates the position at which the resultant actually attains its max-
imum.
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The overestimation at tuning of the SRSS or absolute sum methods for cases with damp-
ing can be quantified by considering only the two-degree-of-freedom system equivalent to the
tuned appendage-structure system. The three estimates of peak acceleration based on the SRSS
rule, the absolute method, and our formula, eq. (47), respectively, are given by

max~ SA (W,1Ixl max - SA 10,)

1 I nfew _ e SA(O 3
lmax fy+49

where for simplicity B, is taken to be the same as 6. We note immediately that if/3 -0, the
square root of the sum of the squares estimate will be low by a factor of vj2; the absolute sum
estimate and the new estimate are in this case identical. However, the estimates differ for
nonzero damping. We introduce an overestimation ratio

R - Ima= (1 + 4/32/Y) "'e K (48)
" maInewIXmax

Since K is given by

K - arctan .'/q2/

the overestimation ratio can be expressed in terms of the single parameter Y'//2f3, in terms of
which a plot of eq. (48) is given in Figure 9. The result can also be shown for several values of
y as a function of /3; the resulting curves are shown in Figure 10. Clearly, for all values of y,
the overestimation parameter and thus the conservatism of the conventional method steadily
increase with fl. If we fix y and decrease P such that

V/'/2/2/ -

we find that

K - -2

2 ~

and

R -- (I + 29f-)e 2a/'

which indicates that R > 1 for all nonzero P.

On the other hand, if we fix /3 and decrease y such that y"'/2/-0, we find that for light
appendage cases, which correspond to very closely spaced modes, the response can be greatly
overestimated.

It is interesting to compare these results to those from the numerical experiments on the
multidegree-of-freedom structure. The absolute sum method estimate for the 2% damped case
(as shown in Figure 8) is 71.0. The new estimate, from eq. (47), is 19.4, and the time-history
result is 20.2. The overestimate of the absolute sum method is thus 71.0/20.2 - 3.52; for , -
0.001 and /3 - 0.02, the value of R is 3.76. This indicates the excellent applicability of the
simple analysis based on the one-degree-of-freedom structure to the multidegree-of-freedom
structure. The reason for this is the dominance of the two closely spaced modes in the compo-
site system when tuned.
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OPTIMUM DAMPING
The solution for the nearly tuned two-degree-of-freedom system given in an earlier sec-

tion depends on a considerable number of parameters and it is difficult to interpret the
influence of individual terms. The damping can obviously dominate the solution if
4j3B >> y + f2, but it is also clear that the difference between damping factors in the structure
and the equipment can play a significant role in the term C and thus in the amplification factor.
Thus, it is appropriate to ask the question: for what values of /3 and B, given fixed values of y,
2, and )9 + B, is the amplification A minimized? To this end, we denote

y + f2 = a 2

and

/3+ B=c

and take a and c as fixed positive numbers.
We also note that in the case where /+ f 2 > (/3-B)2, the denominator (y+ f 2 +4/3B) '/

can be written in the form c (1 + )'/1. The amplification function A becomes

A 
-
C (I + 4 2)'12

Considered as a function of C, A has extremal values when

dA - 1 dK 31=0dc e (I1+ C2) '/1 d 4 1 ) -

Now

dK 1 1 1
d C arctn+ 1 2

and it follows that

dA e - arctn 1 _ e_ _arctan
d4 C(1+42) /2 1+ 2 1 I+C2  C ( +C2)'/2 C

Thus, dA/dC - 0 when C -* When 4 - 0, we have

dA e-1  1

dC 4 3
There are no other zeroes of dA/d4. We note that as C -. 0, A (C) has the form

-I
A Q) . e C (I- )

Thus, the function A (4) is a monotonically decreasing function of C. To minimize A, then, it
is necessary to maximize 4 and this is achieved obviously when /3 - B. The conclusion is
therefore that when

y + 2 > (/3 - B) 2

the optimal damping for fixed,/3 + B is/3 - B. The value of A for this case is given by
e-K

A m i n - _
(Y + 2 + C2 )

with K - arctan C/, and 5 - (Y + f 2)'/ 1c. We note that this value is always less than e-K/c. If c
is sufficiently large, it is also possible to have
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+ f2 < (13 _ B) 2

and in this case the amplification factor takes the form

A =

with K = arczanh 4/C, where now
UP. (/- B )2- y-f2) '/,

In this case the denominator

(y + C2 + 41jB)'/ = c (I-C2) /
,

Thus,

cA()_(I e :)/

Using the well-known expression for arclanh in terms of In, we have

C (l V

and

In (cA) = -)(1 - )n(1 - ) - (1 + ) In ( +)

Thus
2d(lnc 4) =I2dIncA ( - In ( -0 + In(1 + 4) - 2 )

Thus, dA/d4 - 0 when In 24)/(1-4)J 2 if A e o. This has only one solution, namely
4=0.

The function cA () has two parts, e-K and 1/(1l-2)'/,. When 4 - 0,
e- -e-'(1 - 1/3C2), but 1/(1-2)/ - 1+1/6C2. Thus, cA -. 1 + 1/6C2 for small and
approaches a limiting value as C -. 1; the limit of A as C - 1 is given by

L1 ]'12

limcA _ lim (1-4) C I
(1+- 4

Since the limit of cA as 4 - 0 is e-1 and dA/dC = 0 only at C- 0, the function increases
monotonically from e-1 at C - 0, to 1/2 at C = 1. The minimum value of A is achieved here by
making C as small as possible. If 3 and B are such that (y + f 2) can be equal to (f3- B)2, then
the minimum is at C - 0 and has the value e-/c, and 3 and B are given by

_ (c ( +

B - - (c + (, + 2),/)
2

This requires that c > (y + f2)'/, in order to have realistic damping, but in any case the analysis
of the previous case, y + f2 > (13_ B)2 gives a minimum for A which is always less than e-/c.
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It follows then that in all cases the optimum choice of/3 and B is/3 = B.

CONCLUDING REMARKS
The advantages of the estimation technique developed in this paper are its simplicity and

adaptability for practical application. A great deal of computational effort is avoided since
time-history analyses need not be performed. The equipment and structure need not be
analyzed as an N+l-degree-of-freedom system either by modal or matrix-time-marching
methods, and errors in estimates of peak response due to the possible unreliability of numerical
time integration schemes, or to uncertainty as to the appropriate procedure for summing the
contributions of the two closely spaced modes, are thereby avoided. For tuned and nearly
tuned systems, the method accounts for the important effect of equipment-structure interac-
tion, which effect is completely neglected in the floor spectrum method. The method advanced
here does not require that new information be generated. Data available from the building
design alone, the equipment design alone, and the response spectra are used. The estimates of
peak response have been obtained by rational analysis and are easily evaluated and conveniently

used during the design process.
There are a number of obvious extensions of the analysis on which these simple estimates

are based which could be of significance to DNA problems. The method which in effect intro-
duces a transfer function between the induced ground motion and the response of the equip-
ment avoids the explicit assumption of the support motion. For example, equipment such as a
missle in a protective structure and suspended in this structure at several points could be
treated by this approach. In the standard approach to multiple support response spectrum
analysis of such a system the motion of each support would be calculated as if the suspended
system were not present and this support motion applied to the suspended item. To use a
response spectra method for such a system it would be necessary either to envelop the response
spectra of the different support points or else to assume that each support point moves indepen-
dently of the others and superpose the responses by a summation rule. This must provide a
highly conservative prediction since it ignores the fact that all support motions are produced by
a single input. It further cannot take into account closely spaced modes in the suspended item
and the protective structure and this will provide even more conservatism as outlined in the
paper. A straightforward extension of the present approach will provide response spectra esti-
mates of the motion of the suspended item in terms of the ground motion utilizing the transfer
functions for the support points, but not explicitly calculating their motion. Work on this is
continuing.

A further extension of the analysis which is possible and could apply to DNA problems is
to very long duration inputs which are known only in a statistical sense. Here, it is not possible
to exploit the beat phenomenon and the consequent late peak to obtain the response spectrum
result, but the transfer function result used as a point of departure still holds. Using this and
the other assumptions of the analysis it will be possible to obtain statistical estimates of peak
equipment response in terms of amplification factors and the statistics of the input ground
motion. This could be a particularly valuable approach to the problem of a transporter vehicle
carrying a sensitive item of equipment over a road or track with a statistically specified surface
roughness.
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