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Abstract:

The marginally stable regime has been distinguished from the un-
stable regime both qualitatively and quantitatively. New asymptotic tech-
niques for solving the Fresnel-Kirchoff equation for marginally stable re-
sonators were obtained. The method is analytical in nature and yields
excellent predictions for the modes and losses of such cavities. Numerical
results for both marginally stable and marginally unstable cavities are
presented. In addition, conditions for the suitability of using empty re-
sonator modes to describe gain filled cavities have been derived. This
deviation is based on manipulations of the differential equation describ-
ing gain filled cavities in iHankel transform space. The result is an
ordinary, linear Fresnel-Kirchoff integral equation with gain renormalized
Fresnel number and eigenvalue.

Approved for publio relearng
distribution unlimited.

80 20 110



UNCLASSIFIED

19 REPREAD INSTRUCTIONS
RT OCUENTArIOFAG BEFORE COMPLETING FORM

IM0~2. GOVT AQCESSION No. 3. RECIPIENT'S CATALOG NUMBER

ITLE (nd Sutitl5 TYPE OF REPO T & PERIOOD COVERED

SANALYTIC PPR OACHES TO NSALRENAFinal r eij
- 6. PERFORMING O1G. REPORT NUMBER

-7.AUTHOR(s) a-- CONTRACT OR GRANT NUMBER(s)

(~ 'JjNagel F46d7/--(
D.;RogovinF46i7C 7

9. PERFORMING ORGANIZATION NAME AND 40DRESS 10. PROGRAM ELEMENT PROJECT-TS.1 AREA & WORK~ UNIT NU SScience Applications, Inc.107F
1200 Prospect Street 6/'/i) 1'
La Jolla, CA 92038 / 23g01 Al

I I. CONTROLLING OFFICE NAME AND ADDRESS / uw

Rolling AFB %j.fiBRO AE
Wash DC 20332 M1R0 FPAE

14. MONITORING AGENY I from Controlling Of fice) 15. SECURITY CLASS. (of this report)

t~c A- 4-- unclassified
IS.. DECLASSIFICATION.'DOWNGRADING

r5-SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for publIc release;

17. DISTRIBUTION STATEMENT (of the absfracf enfered in Bfock 20, It different from Report)

I8. SUPPLEMENTARY NOTES

I9. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

The marginally stable regime has been distinguished from the unstable regime
both qualitatively and quantitatively. New asympototic techniques for solving
the Fresnel-Kirchoff equation for marginally stable resonators were obtained.
The method is analytical in nature and yields excellent predictions for the
modes and losses of such cavities. Numerical results for both marginally
stable and marginally unstable cavities are presented. In addition, conditions
for the suitability of using empty resonator modes to describe gain filled

DD JAN 7 1473 EDITION OF I NOV 6S IS OBSOLETE lINr.A SSIFTFT)3& & -%AC(



SECURITY CLASSIFICATION OF - ABaf~#Z~a

cavities havi6 been d~erived. This deviation is based on manipulations of
the dif4ferentittl equation describing gain filled cavities 'in Hankel
transform space. The result is an ordinary,' linear Fresnel-Kirchoff.'
integral equation with gain renormalizei Fresnel number and eigenvalue.

UNCLASSIFIED



Ir

TABLE OF CONTENTS

Page

Statement of Work....... ..... . . . ... .. .. .. .. . ...

Final Report............ . ... . . .. .. .. .. .. .....

Empty Resonators .. .. ...... ...... ...... 2

Figure Captions. ... ...... ...... ...... 6

Figures .. ..... ..... ...... ......... 7

Gain Filled Cavities. .. .... ...... ........ 9

Professional Personnel. .. .. ...... ...... ..... 12

Interactions. .. .. ...... ..... ...... ..... 13

AIR yOACK OFfICE OF SCIENTIFIC RESWA (AlEC)
MOTICE OF TRAIZSMIUAL TO DDC

This technical ceport has been reviewed and Is
approved for public release IAW AMt 190-12 (7b).

Distributionl is wauimlted.
A. D. BDWSR
Toohnioal Infolzatiol off leer



STATEMENT OF WORK

A. Develop and apply analytic techniques for determining
the eigenmodes and eigenvalues of cylindrical unstable
optical resonators.

B. For systems which display azimuthal symmetry, develop
and apply two different techniques: (1) an asymptotic
differential equation approach and (2) an approach
that is valid for situations in which the resonator
magnification is large.

C. Develop a technique that is designed to treat cylindr-
ical resonators in which the system's azimuthal sym-
metry has been destroyed by optical perturbations.

D. Develop techniques that are specifically designed for
resonators with large Fresnel numbers.

E. Develop a technique to incorporate gain in unstable

resonator calculations.

F. Develop analytic techniques for determining the eigen-
modes and eigenvalues of finite cylindrical unstable
optical resonators with magnification greater than
unity.

G. Investigate analytic techniques for incorporating uni-
formly distributed and saturated gain in the resonators
studied under F above.
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FINAL REPORT

Unstable resonators have attracted much attention in the last

twenty years due to the usefulness of such devices as components in high

energy laser systems. The brief advantages of unstable cavities are their

large mode volumes, excellent mode selectivities, and efficient output

couplings. In order to quantify these factors, it is necessary to accurately

describe the distribution of radiation within the cavity.

To do this, it proves sufficient to solve an integral equation

which is non-linear in the presence of a saturable gain medium. The log-

ical starting point in the analysis to solve the linear equation which

gives the modes of the empty resonator with no gain. This has been ac-

complished using numerical methods, leading to predictions for the losses,

frequency shifts and radiation distributions for a wide range of resonators.

Unfortunately, the numerical solutions are too costly or impossible

for cavities with large Fresnel number N, due to the large size of the matrices

needed to model the rapidly fluctuating phases. To remedy this situation,

asymptotic methods have been developed which lead to solutions for highly

unstable resonators with large N. These solutions are not valid for mar-

ginally stable cavities with magnification M close to one.

We developed an analytic variational procedure which yields

solutions to the empty resonator integral equation for marginally stable

cavities with large Fresnel numbers.

To be of practical value, the empty resonator solutions should

describe qualitatively the gain filled cavity. We have considered a re-
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sonator with a slowly varying gain medium, and shown that the problem can

be reduced to solving a linear integral equation of the same form as the

empty resonator equation, but with gain renormalized Fresnel number and

eigenvalue. This gain renormalized integral equation may be solved using

the same techniques developed for empty resonators to yield predictions

for losses and intensity distributions for gain filled media.

Alternatively, one may use the expressions for renormalized

Fresnel number and eigenvalue to quickly estimate conditions for whichII
the gain medium significantly changes the cavity modes from their empty

resonator values.

Below, we summarize our results for empty resonators gain filled

systems.

EMPTY RESONATORS

(A) We have found that unstable resonators may be divided into two

classes whose characteristics are quantitatively and qualitatively dif-

ferent. These two classes are the marginally stable, with

Neq = )(M2 ) I ,
eq2M - , 1

and the unstable regime with Neq > 1. The Butts-Avizonis-Horwitz asymp-

totic methods are valid for Neq > 1, or

M > 1 N-  (2)

(B) The two classesmay be distinguished physically by consideration

of the mirror shadow boundary. For marginally stable resonators, the
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shadow region of the edge one mirror substantially overlaps the edge of

the second mirror. When this occurs, the core term solution described

below provides a good approximation to the actual pattern. For unstable

resonators with Neq > 1, the shadow region of one mirror edge falls out-

side the opposite mirror. When this occurs, interference due to edge ef-

fects is minimized and crossing of eigenmodes begins. In addition, be-

cause the shadow region escapes the cavity after each transit of the cavity,

repeated propagations may be described rising geometric optics, which

0 makes valid the approach of Butts, Avizonis and Horwitz.

(C) For N eq < 1 with N >> 1, extending the limits of the integral

equation to infinity leads to little error, since most of the radiation

leaving one mirror falls on the opposite mirror. The infinite limit in-

tegral equation may be solved exactly and analytically to yield the core

term solution. The core term solution and its eigenvalue are continuous

rather than discrete, because the limits of integration are not finite.

(D) We have shown that the core term solution obtained for unstable

cavities may be analytically continued to the stable regime. When bound-

ary conditions at infinity are invoked, it is found that only a finite

number of the core term solutions survive, and these are just the usual

gaussian--beam solutions.

(E) The accuracy of the core term as a solution is excellent for large

N stable cavities, and decreases with increasing unstability. For

N eq > 1 these solutions are expected to be of little value.

(F) Using the fact that the core term is a reasonably accurate
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solution for marginally stable cavities, we have developed a variational ap-

proach which chooses the core term solution 00 which best satisfies the Fres-

nel-Kirchoff integral equation. This is accomplished by first defining a

quantity which measures the error in the integral equation and then mini-

mizing this quantity by varying the continuous parameter which determines

the core term. The entire procedure is analytical, and involves finally a

solution of one equation in one variable.

P (G) The method may be compared with the waveguide analysis used by

numerous authors. In this approach, the field near the edge of the mirror

is written in terms of incoming and outgoing transverse waves using the

first few terms in the asymptotic expansion of the core term solution. The

coefficients of these waves, and hence the parameter which determines o0

are then fixed by comparing with the solution near the edge of a semi-

infinite waveguide obtained by Weinstein. The problem with this method is

that o is not a valid solution where the asymptotic expansion may be used.

(H) Our method essentially chooses the solution which minimizes the

spread of the far field pattern. By contrast, the waveguide method chooses

the solution which most closely approximates a waveguide solution near the

edge. Since the waveguide solution contains minimal coupling to higher order

transverse modes which tend to go around the mirror, this method also leads to

a compact far field pattern.

(I) The difficulty in achieving numerical results is proportional to

N, rather than log N for asymptotic methods.
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(J) Numerical results have been presented for a range of marginally

stable and unstable cavities. The method could be used to obtain extremely

accurate results for stable cavities. In Figures I and 2 we display re-

sults for the losses and phase shifts for the six lowest loss modes with

N = 10. The results are compared with geometric optics predictions.



FIGURE 1: Losses versus mirror curvature for the six lowest loss
* modes of an N = 10 cavity. The modes are labeled by

nk. The curvature is given in terms of g - 1 = -L/R,
where R is the mirror curvature which is negative for
unstable, convex mirrors. Also shown in solid lines
are the geometric optics prediction for the losses.
Again, six curves are shown, but the upper four are

f degenerate.

FIGURE 2: Phase shifts versus mirror curvature for the six low-
est loss modes of Fig. 1. Geometric optics-gaussian
beam predictions are indicated by solid lines.
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GAIN FILLED CAVITIES

(A) The full non-linear integral equation may only be solved numer-

ically. To treat the problem analytically, numerous approximations must

be made. A novel aspect of our work has been the fact that we work with

the differential equation describing a loaded, cylinderical resonator in

the Hankel transform space of the radial coordinate.

(B) All the approximations are made in the evaluation of the Hankel

transformed susceptibility. We assume the susceptibilities are slowly vary-

ing, then make the Fresnel approximation in Hankel transform space. Finally,

the susceptibilities depend on the fields, and these fields are replaced

by the empty resonator results.

(C) The result is a Fresnel-Kirchoff integral equation, but with gain

renormalized Fresnel number and eigenvalue NG and XG" Although both these

quantities are now complex, there is no difficulty in solving the linear

integral equation using the usual methods. We have not made the thin gain

sheet approximation.

(D) The values of NG and 'G are:

b 2  {27N i - 1 IN = Nl + igL -2 (- 6i N (3)
NG r~ 2 48 67nN

XG )expf[-gL(l + - ) ) ] ' (4)
9 r-

,0



where: L = resonator length

g = g(o) = on axis small signal linear gain

b = resonator radius

ro = scale of gain variations, g"(O) - ro2 g(O)

These relations are not valid for extremely large N, N > 100 because

of the approximations made.

(E) For homogenous gain, r0 -+ infinity and

NG =N (5)

?,G= Ae gL (6)

in this case the intensity pattern is identical with the empty re-

sonator result, and the eigenvalue is modified only by the linear gain.

(F) Typically, r0 - b and gL - 0.1. To significantly change the radiation

pattern, one requires -50% changes in N. Consequently it is easy to

see that the cavity modes are not significantly changed by slowly

varying gain for N << 100. To obtain significant differences for

:= 10, one requires gL - 1, corresponding to 100% linear gain.
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