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Recent Advances in The Edge-Function Method

Sumaryu

Major advances in the Edge-Function Method in 1979-80 were
made in four main areas:

1. Anisotropic Thin Plates (J.J. Grannell and P.M. Quinlan).

2. Free Vibrations of Thin Plates-(Richard Sheehy).

3. Analysis of Elastic Plates and Bridge Slabs (A.A. Ahmud).

4. Elliptical Cracks in a Prismoidal Body (P.M. Quinlan,
J.J. Grannell, A.N. Atluri, J.E. Fitzgerald).

The principal investigator was actively involved in an advisoryrole with both R. Sheehy and A.A. Ahmed on their Ph.D. theses. The

present report gives an abstract and conclusions in each of the above
works. It also gives some examples from (2) and (4) to illustrate the
range of E F.M. in Free Vibrations and in buried Elliptical Cracks in
Fracture Mechanics.

These examples are the touchstone by which the present state of
development and utility of E.F.M. can be judged. In all cases root mean
square boundary residuals are calculated as a routine, thus providing a
practical measure for judging the acceptability of the solution proferred.
rf the residuals are within the limits within which an engineer can specify
the boundary conditions of the problem, then the corresponding Mathematical
Model which E.F.M. offers is as "exact" a solution to the physical model,

or problem, as can be obtained.
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1. Grannell J.J. and Quinlan P.M.
"The Edge-Function Method for Thin Anisotropic Plate Bonding"
Vol. 80A No. 1 Proc. Roy. Irish Academy 1980

Abstract

The edge-function method is developed for the bending of thin
anisotropic polygonal plates. The solution is represented as a
superposition of asymptotic solutions of the plate bending equation in
the neighbourhood of characteristic segments of the boundary. In the
case of a polygonal plate these segments are edges and vertices.
Interior polynomial soli'tions are included and transverse loadings are
modelled using a Green'! function approach. The boundary conditions
are imposed using accelerated discrete least-squares Fourier interpol-
ation over each of the edges. The accuracy of the model is assessed by
computing the boundary resid: Is. A symmetry principle is developed for
solving syam!etric boundary value problems. The solution of three plateproblems is presented together with details of accuracy and convergence.

Three Plate Problems studied

1. Orthotropic Cantilever Plate under uniform normal load

2. Orthotropic Skew Plate under uniform normal load. Plate fully fixed
on all edges.

3. Anisotropic simply supported square plate under uniform normal load.
#3

C'onclus~.ons

The boundary residuals, in each of the problems studied, exhibit

a steadily decreasing pattern with increasing levels of truncation of the
boundary identities. The values of the residuals as percentages of themaximum values of the corresponding quantity occurring over the plate

are well within the limits to which the boundary conditions can practically
be specified. The very rapid convergence of the fields in the case of the
cantilever plate may be attributed to the use of a syretrised representation,
this being a consistent feature of the use of the syn.-etrisation principle.
In the case of the fully fixed and simply supported plates, where the
symmetrised representation was not used, the symmetry in the computed fields
becomes more exact with increasing truncation lvel. The consistent
preference shown by the solver routine for verteA functions as opposed to
polar functions reinforces the expectations of accuracy and efficiency for
the vertex functions.

The relatively small number of degrees of freedom required to obtainrapidly convergent solutions demonstrates the efficiency of the asymptotic

field representation approach, especially in the case of the severe singularfield behaviour exhibited in the case of the cantilever plate problem.
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2. "The Edge-Function Method for Free Vibrations of Isotropic Plates"
Sheehy Richard. Ph.D. thesis University College Cork July 1979

Abstract

Previous research on the isotropic plate vibration problem is
reviewed briefly. The Edge-Function M~ethod for steady-state vibrations of
polygonal plates is developed, and asyri.-totic expansions of the solutionQ
in the neighbourhood of a corner are obtained under general boundary
conditions and named Vertex Functions.

The boundary conditions lead to a system of homogenous linear
equations, the non-trivial solution of which yields the frequency spectrum.
A brief outline ofl the computer programp, VIBRAT, as developed for plate
vibration problems is given and is included as an appendix. A represent-
ative selection of results obtained for a variety of plate geometries is
presented and a critical comparison with published results is given.
Hitherto uasoled nroblems fnr irregular quadrilhte -r-is an! n-1--ons
are -eet.±ias the touc-stone with. ic?- t o e va Ii.z t: e [c-, - Fun11ctr i
Method for Free Vibrations.

I2Ziuctrat-ivC Examrples

Examples of

(3) Fully Fixed Rhombic Plate una Codtin
(4) Quadrilateral Plate with Mixed Boudr Codtin

(5) Pentagonal Plate with Mixed Boundary Condit'ions,
togeiher with Conclusions are attached fron the above thesis to

demonstrate the powrer of E.F.M. in Free 'Jihration problems.

~1AA~m: - PuV Fix,7:7 Iorl ate:
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The region in Fig.7.4 where all sides are clamped is

next investigated. Results are compared to those of KaulII
and Craribe using the Rayleigh-Ritz method. Frequency

parameters are expressed in terms of t ao where<

is the angle of skew.

Source Mode and valuesSouce1 " 2 ' 3i I?

_i , . 03 81.0-5 126.8

[ E.F .M. "
39.478 80.76183 125.984

TABLE 7.19

Percentage R.M.S.Boundary Residuals for the I Frequency:

Function Side % R.M.S. Residuals

MT using Vertex Fns.

.-1 1 ~ .8264 x0 -

-3
1 2 .8731 x 10

1 -2
1 3 4 .1137 x 10

1 - 4 .4347x 107
2

2 .6272 x 10 -2
I-2

2 2 I .7360 x 10

2- 3 ... .. x 10-2

2 .6818 x 10

• -4 I T':

TABLE 7.!o

T* °°'

•I..
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S4 -Quadrilateral. with Mixed Boundary Conditions

(-(2,0.5)

(-l,-0.5)

FIG.7.5

The region in Fig.7.4 vith one side cl~iiped and the ~~

three si1 r.ply supported was next investigated. Values -for

*frequencies obtained by VIBRANT and presented in Table 7.22. are

not com~-ared with other investigators,since a search ofth

literature did not unearth such results.

I Mode and )~values

3.1 2 3

L= 5.1-197.35 153.62; -

T,? BLB 7.2!

S4.
Percentage R-M-S. Boundary I'_,iduals for the 1 Frequency:

Function Side % R.M. S. Residuals

YT____ j Iusing VetxFns.
T I1 1 0.97681_072  ~

1 2 0.9293 x 102

1 3 0.7200 x10 2

1 4 0.8577 x 10- 2

2 1 0.2323 X 10-2

3 2 0.1735 x10-1  I
3 3 0.5584 x l0i-
3 4 0.1980 7 10'c%

TABLE 7.2Act.
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Exipole 5 - Pentagon with Mixed Boundary Conditions

D (0,2.732)

A c

1 -1 B

4 FIG.7.6

I -

The region in Fi3g.7.6, vwhere the side AB is clanped ar. the
other four simply suppiorteda, is presented as a problem of a

4greater comiplexity than any that has been atteinp :-ed by previous

irzvestigat-'-ors. The results '?)btainca by VIBRAT ui inrg truncation

leels L=3,4 and 5 are given -nder in Table 7.?-. The corresponding

lu: .er of equations are 45, 55 Zn respectively.

Source Mctle and va-lues

2 3

JL=3 13.097 27.621 34.2891

I

L14.111 27.900 37.893

S14.294 27.917 38.3

TABLE 7.22

-4 :
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7. ti"l
2

.1c E':ag -- Function method with 1=4, NID:N=I involves the use

oF 55 -equations. The parcentage R.M.S. boundary residuals for

the fir:-t frequency using truncation levels L=4 and L=3 are given in

Table:. 7.23 and 7.24 respectively.

Function Side % R.M.S.

I-IT Residuals

1 .3745 z

1 2 .1528 .

1 3 .5202

1 4 .2863

1 5 .08379

2 1 .5175I I.

3 2 .1206

3 3 .07968i
3 4 .025255

I 3 5 .064173

I

T|\nT2 7.23

Functio:, Side !Z R.M.S. L 3
• j Residuals

-1I 1 1.06665 I
1 2 0.95692

3 0. S59199
2 1 4 1.2613 .

iI 5 1.1892 j
2 ! 0.6811 t,

3 2.1047?
3 3 0.7341

• 3 4 0. 3224

1.3 5 0.1132

j ii TARELE 724I
. . .. '.
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CONCLUSION

IL

The suite of programs included in Appendix B are written
in getieral terms and allow for a "solution mix" of either

scheme A - Edge-functions and Fractional-Edge functions -.

or scheite B - Edge-functions and Vertex functions.

Each solution obtained is an exact solution of a c--res-

ponding problem with corresponding boundary valIues as =---:I ate

frcc--he sojution "ector. a measure of -. hose -

those prescribed is provided by the corresponding rcot-_=n

square boundary residuals. Accordingly,each solution zr_.-4_des

a Mathematical Model for the given physical problem-

R.M.S. values provide a practical criterion for the enai--er

to judge the acceptability of the mathematical modelI - f a-

nmathem-atical model Ifes within the scatter within which an

" I -f engineer can specify the physical problem,then the mathe..-ical

"m odel provides as "exact" a solution to the physical prot-sm as

A can be obtained- A scatter of +0% is used in this thesis. -

The results in this thsis show:

(1) The frequencies with either "solution mix" are in e-:ellent

agreem~ent with published results. in cases where results were

- not available there is excellent agree.7enL between values

t obtained for various levels :f harmonic truncation.

(2) Hour.ry Residuals R-_nlar Reqions:

residuals for rectangular regions quiere ute acceptable using
either "solution nix" with even as low a harmonic truncation

- level ar L=2-

(3) R.M.S.R.sidua.s non Rec.tanqular P.eqions: Scheme A
ThM co:mbination cf idcge Functions arnd Fractional Edge

Functions did not produce boundary resikui.s in the case of non-

rectangular regions within acceptable limits and,furth roe,

the required syunetry in the associated m.de shapas .as not

SatisfacLorily reproduced.

!-



(4) BoundaryResiduals - non Rectangular Regions- Scheme 77
The introduction of Vertex functions of the form (4-13)

reduced the boundary residuals by a factor between 10 And 100
from those obtained using Scheme A, and accordingly the number

of harmonic sets, or the size of the matrix, required to

obtain residuals within a scatter of + l%,can be correspondingly

reduced.

(5) It can be concluded,from the array of examples presented,

that Scheme B, thu Edge-Function method involving =::e Vertex
Function developed in this thesis, is both satisf acto_ , and '

practical, involving relatively moderate computer require-zents.
It determines acceptable numerical values for the frequencies"
of free vibration and the associated mode shapes for general

polygonal shaped plates with mixed boundary conditions. "

The functions in Chapters III and IV may appear complicated

but,in keeping wvith Edge-Function philosophy,the computer,
formulae (3-30) and (4-15) provide an easy means of controlling

the resulting algebra. Accordingly, edge functions can almost

be as readily applied in a cc.iputer program as,say, the

trigonometric functions. The touchstone of any numerical method

must be the ease with which the relevant theory can be pro- -

grammed and the provision of a practical test to enable an

engineer to decide whether or not to accept the results. The

Edge-Function method for Vibration problems is presented for [
evaluation on the above criteria and especially on its success
in solving quadrilateral and polygonal plate problems, as in

examples (7-'I) nd, (7-2) which, to the author's knowledge,

have not been solved hitherto.

W
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3. "Analysis of Elastic Plates using the Edge-Function Method"
Ahmed A.A., Ph.D. thesis Univ. of Dundee October 1979

Abstract

This thesis describes an investigation into the applicability of
the edge-function method for the engineering analysis of plates and slab
bridge decks. The specific objective is the assessment of accuracy
attainable economically in evaluating deflections, bending moments and'
shears for the complex situations encountered by the bridge designers.

First, the development of the edge-function theory is presented
for the analysis of thin plates and slabs with different planforms,
types of loading and support conditions. The bending problem is formu-
lated for both isotropic and orthotropic plates, and general solution
forms are obtained. The technique is associated with solutions from all
critical regions of the boundary and the presence of corner functions is
found. necessary to cater for singularities and to accelerate the conver-
gence.

Two computer programs were developed to facilitate analysis of
isotropic and orthotropic plates and slab bridge decks; they-provide for
the computation of column reactions as well as bending and twisting
moments at any required station. A brief outline of the computer programs
is given.

Numerical examples are given along with extensive comparisons
with the results of other authors using other numerical methods and tests
on models. The investigation shows excellent agreement and indicates
that a generally accurate and inexpensive method of solution is now
available. The advantages of this technique over the conventional domain
type methods (finite element method and finite difference method), which
require division of the whole plate into elements, lie in the much
smaller size of the matrix to be solved, and it is thus more economical
and suited for programming on medium size computers.

Recommendations for further development and application of the
method to ther types of bridge deck are stated.

U
I
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4. "The Edge-Function Method for Elliptical Cracks in a Prismoidal Botd? '
Quinlan P.M., Grannell J.J., Atluri S.M., Fitzgerald .JiE.
Proceedings Second International Symposium on Inhovative NWimeHcai"
Methods in Engineering Science Montreal (1980).

Abstract

Stress fields are developed to model the behaviour of Elliptical'
cracks in a prismoidal body using confoCal potential functions.
Stresses and displacements are obtained in a form suitable for comput-
ation without having to introduce Jacobian Elliptic Function.

A special quadrature subroutine has been developed for Crack
Functions and they are now incorporated into computer program PQDISK -5]
for "3-Dimensional Stress Analysis using The Edge-Function Method".

Applications are made to a wide range of buried elliptic cracks,
both large and small, under concentrated and distributed normal loadings.
The effects of increasing the number of Crack Functions, and the correslp-
onding boundary residuals, are studies and several illustrative examples
are given.

J
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fNTRODUC±YO)V

Since the publication by Shah and Kohayashi [1] in 1971 which

developed the confocal potential ftnctions 2introduced by Segedin [2]

for potential problems, to determine the Stress Intensity Factor fo04

an Elliptical Crack in an .infinite body under arbitrary normal l6adIigi

the extension of that work to.finite bodies has presented a major

challenge. A boundary integral solution was given by Cruse [3] in

1975 which was followed in 1977 by the hybrid element solution of

Katthiresan [4] With a combination of finite and special crack tip

e I t s .

However little progress appears to have been made in analytical

methods using [1]. This is due mainly to the almost prohibitive

algebraic difficulties in expressing in terms of JaCobian ellipti-c

functions all the second and third derivatives of the stress potentials

ij reouired for the resulting boundary stresses,-and difficulties in

evaluation. Paper [1) obtains but one derivative, ij, and that

for only i + j 3.

The present paper presents a straightforward calculation scheme

for all the required derivatives of 6.. without introducing any

Jacobian elliptic functions and no particular difficulties are

encountered with values of i and - in the range (0, 10). The resulting

Elliptic Crack Functions have been included in the author's computer

program PQDISK [51 for Three Dimensional Stress Analysis in Prismoidai

Bodies and numerical results are given for both small and large cracks.

In sharp contrast to [3] and [4] large cracks can be handled as teadily

as small cracks. The computer times required are at least an order of

mangitude less than those in [31 and [4]; stresses and displacements

are readily calculated at any point, and each additional load case

reouires but a few percent of t.e tire for the first case when all,

cases are processed tocether.



SA Crack function [1.3]capabllity hias been inserted in comfputC,

program PODISK 1]which imple'ments "t The Ed~d Function Method for 7

Prismoidal Bodies" and any required number from I to 15. of such

functions, can be included in the solution sche'e for modelling 4n.

elliptical crack.

The Edge Function Vethcd is described in 16, 7, 8s 9s 1i, 121, and

space prevents any further elaboration here except to point out that

each boundary condition is imposed on each face in either a continuous

or a discrete least squares sense. Consequentl the boundary condition

of zero normal stress in the cracked ellipse is imposed in a least

squares sense; the squares of the residuals in the cracked ellipse

-being mninimised w r t the coefficients of the crack functions. The

zero shear condition is provided by the 6uilt in symmetries of the

functions.

A cube, 2 x 2 x 2, with a centrally located ellivtical plane track,

loaded normially on the faces parallel to the crack plane as shown inI;-' IFigure 2, is considered. Four different load types - (1) concentrAted
load (2) line load (3) patch load m~odelcd by equivalent concentrated

S13. L



14.

-3 ~ V

LODE rC

Ai

yI

b) CRACK ELLIPSE

0a x

OCTANT OF 3-SYVIVTRY BODY

Figure?2



loads using the Bousinescjue solutii~ and (4) a linear stress field'

producing a unifoiii loadcah bt, taken toethdr in each job; the

forlain ae processed together taking only about 15% ftore

compter imethan would be reouired to obtain a single solutioni on,

Four different problem sets are presented under to illustrate

the use of the crack functions-

(a) Penny Shaped Crack

As given in Green and Sneddon [101 the fi-acture
coefficient K*for a venny shaped crack of radius
a in an infinite solid in a uniform stress field p0normal to the plane of the crack is

K1 2 p0 7 (7.1)

The fracture coefficient- K was obtained for several
values of the radius a and the ratio KI/K*, which
measures the boundary effects on the fracture coefficient
is- given under, together with the root mean square
of the residual stress, Ap, remaining on the crack
ellipse

a K_/K__

.2 1.02 0. 1 4vl 0

.4 1.11 0. 68 l0-

.6 1.39 0.13*10-2

.8 23O40*10-2

4 Table 2

(b) Small Elliptical Crack

The problems solved ty Crus [ and Katiresan 1141
obtained K for relatively small ellipses tihere

ab = .4 Figure 2 with' as ,34 and
under a uniform strees fielO. Progran PflDISK was
run for these cases. -Pesults are given in Table 3V
under for K/*at 10 Points on a quadrant of thewA

I
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crack front correspondinq to equal intervals in
the elliptical angle o for o(0,, /2) , and for the

residual stress Ap on the crack ellipse. As given
in Kathiresan [4], analogous to (7.1), K* for all
ellipse of semi-axes a and b is given by -

K1 = {sin 2 O + b2 c , a>b

"/.(7.2)
" ~~~'/2- ,_ ,

______2 b2
E(K)= [  .l k'sin2di; k2=1 /a2

0

'lb Ratio K/ at 10 points on Crack Front hp

1.02 Constant at all points 0.14 * 10-5

2 .932 .952 1.00 1.07 1.14 1.20 1.25 1.29 1.31 1.32 0.13 *10

3 .828 .874 .976 1.09 1.19 1.28 1.35 1.39 1.42 -1.43 0.2 * 10-

4 .746 .819 .961 1.11 1.22 1.32 1.39 1.45 1.48 1.49 0.14-* I0"4

Table 3

The results all agree to within 20 with those given
by Kathiresan [4). They were obtained using 6 crack
functions, tonether with 60 plane functions to m.odel
the boundary effects and a linear stress field. The
computer time recuiree for each ellipse is approx-
imately six ti-,e3 that reouired to solve 70
simultanteous ecu ations by ordinary Gaussian
elimination and consequently is an order of magnitude
less than was reouired in 131 or [4]. The eouations
took about fi e tties as long to generate as to solve.

(c) Elongated Ellintical Crack

As a demnstratien of th2 pow.'er of program PODISK
examples (c) and (d) ar-e presented. The first
takes a very eloncated crack with a = 0.8 and
b = 0.05. It uses 120 plane functions to r.odel
the boundaries and 10 crack functions derived
from 0. 3 ]uith the even values for i and j as
under to provide the necessary syr.metries -

i 0 0 2 0 2 4 0 2 4 6
. .l . 20......2 (7.3)

j 0 2 0 4 -2 0 6 4 2 0



Solutions are readily obtained, in the Same job, using,
N = 1, 2, 3 ... 10 crack functions and for the four
l8ad types mentioned above. Table 4 shows the variations
of the residual stress Ap on the crack plane for A crack
functions and each load type, while Table 5 gives iome
illustrative K1 factors at points 1, 3, 5,. 7, 9 and 10
as in Figure 3, on a quadrant of the ellipse for
concentrated and patch loads.

N Concen. Load at (.2, .3) Line Load from Patch Load. Uniform Stress
(0,.4) to (.5,.4) on lxi

1 .411D 00 .172D 00 .151D-01 .275i)-03

2 .407) 0 .168D O0 .150D-01 .272D-03
3 .269D 00 .171D-01 .505D-03 .184-04

4 .266D 00 .169D-01 .505D-03 .1826-04

5 .266D 00 .169D-01 .5061-03 .1810-04

6 .112P-01 .438D-02 .362D-03 .125-04

7 .112D-01 .436D-02 .362D-03 .125-04

* 8 .111D-01 .434D-02 .3580-03 .1200-04

9 .11OD-01 .434D-02 .352D-03 .1170-04

10 .921D-02 .433D-02 .271D-03 .7490-05

Table 4 Stress Residuals on a small Crack Plane
(Effect of increasing the. number of
Crack Functions)

Concentrated Load K1 Factors at Points 1, 3, 5, 7, 9, 10

Nc  1 .8L43 1.99 2.71 3.14 3.35 3.37

2 .842 1.98 2.68 3.08 3.26 3.29

3 .351 .994 1.92 2.98 3.71 3.81

6 .392 1.04 1.89 2.93 3.72 3.84

9 .392 1.04 1.89 2.93 3.72 3.83

Patch Load

(Bousinesque)

c  1 .399 .939 1.28 1.48 1.58 1.59

2 .398 .939 1.28 1.48 1.58 1.59

3 .380 .902 1.25 1.48 1.60 1.61

5 5 .380 .902 1.25 1.48 1.60 1.61

Table 5 KI Fracture Coefficients
(Crack Front 9istritutioh)'.
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Table '1 shows that-six crack functions aret required
to reduce the residual stretses to 1c:1 in the -

concentrated load case, while three functions reduce
the residuals to less than .015 in the case of a
patch loacO. The variations in the Y factors
correspond to the residual* stresses-Ind no
significant chancec occurs in the values after six
and thren' crack: functions respectively. Th-e
residual stresses on the surface of the cube were

4less than 3!' of the applied loading and could be
reduced further by increasing the numberof plane
functions used in the modelling.

&K,(d) Large Elliptical Crack

*Program POISK was run for a crack with a =0.8,
b =0.7 usin' the same number of functions as in

V (c) and results analogous to those in Table 4
* are given in Table 6.

N Conc. Load Line Load from Patch Load
at (.2, .3) (0, .4) to (.4, .4) on lx I

1 .6560 00 .2230 00 .892D-01

2 .317D 00 .160 00 .454D-01

3 488D-01 .170D-01 .272D-02

4 .248D-01 .160D-01 .224D-02

5 .1210-01 .135D-01 .203D-02L I 6 .613D-02 .257D-02 .120D-02
7 .550D-02 .189D-02 .113D02

8 .543D-02 .189D-02 .113D-02I ii __ _ __ _ _

9 .549P-02 .170D-02 .1 13D-02
TI10 .474D-02 .1 34D-02 .589D-613

Table 6 Stress Residuals on a Large Crack Plane
(Effect of increasing the numhber Of
Crack Functions)
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The K, factors corresponded to the residual stress
-pattern in a similar nanner to the factors in Table
5. It is evident that five and three crack functions
are required for concentrated and patch loads
respectively to give K1 factors to within 2%.

Work is progressing rapidly in adapting PQDISK to
deal with surface and corners flaws and also to
deal with fracture of 1'ode II and III since the
corresponding crack functions can.be generated
from confocal harmonics (1.3). Results are
expected in time for the Montreal meeting.

Displacements and stresses are readily calculated at
any point in the body, and they are consistent with
the boundary residuals reported in this section.
Space limitations prevents their presentation in this
paper.
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