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Recent Advances in The Edge- Funct1on Method

Sunmary

Major advances in the Edge-Function Method in 1979-80 vere
made in four main areas:

1. Anisotropic Thin Plates (J.J. Grannell and P.M. Quinlan).

2. Free Vibrations of Thin Plates ~(Richard Sheehy).

3. Analysis of Elastic Plates and Bridge Slabs (A.A. Ahmud).

4. Elliptical Cracks in a Prismoidal Body (P.M. Quinlan,
3 J.J. Grannell, A.N. Atluri, J.E. Fitzgerald).
T
i The principal investigator was actively involved in an advisory
E o role with both R. Sheehy and A.A. Ahmed on their Ph.D. theses. The
b present report gives an abstract and conclusions in each of the above
H works. It also gives some examples from (2) and (4) to illustrate the
4 range of E F.M. in Free Vibrations and in buried Elliptical Cracks in
A Fracture Mechanics.
é . These examples are the touchstone by which the present state of

development and utility of E.F.M. can be judged. In all cases root mean
square boundary residuals ars calculated as a routine, thus providing a
practical measure for judging the acceptability of the solution proferred.
If the residuals are within the 1imits within which an engineer can specify
the boundary conditions of the problem, then the corresponding Mathematical

Model which E.F.M, offers is as "exact" a solution to the physical model,
or probiem, as can be obtained.
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Grannell J.J. and Quinlan P.M.
"The Edge-Function Method for Thin Anisotropic Plate Bonding"

Vol. 80A No. 1 Proc. Roy. Irish Academy 1980

Abstract

The edge-function method is developed for the bending of thin
anisotropic polygonal plates. The solution is represented as a
superposition of asymptotic solutions of the plate bending equation in
the neighbourhood of characteristic segments of the boundary. In the
case of a polygonal plate these segments are edges and vertices.
Interior polynomial solrtions are included and transverse loadings are
modelled using a Green's function approach. The boundary conditions
are imposed using accelerated discrete least-squares Fourier interpol-
ation over each of the edges. The accuracy of the model is assessed by
computing the boundary resid. 1s. A symmetry principle is developed for
solving sysmeiric boundary value problems. The solution of three plate
problems is presented together with details of accuracy and convergence.
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Three Plate Problems studied
1. Orthotropic Cantilever Plate under uniform normal load

2. Orthotropic Skew Plate under uniform normal load. Plate fully fixed
on all edges.

3. Anisotropic simply supported square plate under uniform normal load.

Conclusions

The boundary residuals, in each of the problems studied, exhibit
a steadily decreasing pattern with increasing levels of truncation of the
boundary identities. The values of the residuals as percentages of the
maximum values of the corresponding quantity occurring over the plate
are well within the limits to which the boundary conditions can practically
be specified. The very rapid convergence of the fields in the case of the
cantilever plate may be attributed to the use of a symmetrised representation,
this being a consistent feature of the use of the symmetrisation principle.
In the case of the fully fixed and simply supported plates, where the
symmetrised representation was not used, the symmetry in the computed fields
becomes more exact with increasing truncation l2vel, The consistent
preference shown by the solver routine for vertex functions as opposed to
polar functions reinforces the expectations of accuracy and efficiency for
the vertex functions.

The relatively small number of degrees of freedom required to obtain
rapidly convergent solutions demonstrates the efficiency of the asymptotic
field representation approach, especially in the case of the severe singular
field behaviour exhibited in the case of the cantilever plate problem.
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“The Edge-Function lMethod for Free Vibrations of Isotropic Plates"
Sheehy Richard. Ph.D. thesis University College Cork July 1979

Abstract

Previous research on the isotropic plate vibration probiem is
reviewed briefly. The Edge-Function Method for steady-state vibrations of
polygonal plates is developad, and asymtotic expansions of the solution
in the neighbourhood of a corner are obtained under general boundary
conditions and named Yertex Functions.

The boundary conditions lead to & system of homogenous linear
equations, the non-trivial selution of which yields the frequency spectrum.
A brief outline of the computer program, VIBRAT, as developed for plate
vibration problems is given and is included as an appendix. A represent-
ative selection of results obtained for a variety of plate geometries is
presentecd and a critical comparison with publishad results is given.
Hitherto unselved problems for irregular quadrilaterals 2nd palygons
g2 Function

are presented as the touchistone with which o evaluzte tne Lé
Method for Free Vibrations.
Illustrative Examples
Examples of
(3) Fully Fixed Rhombic Plate
(4) Quadrilateral Plate with Mixed Boundary Conditicns

AU
(5) Pentagonal Plate with Mixed Boundary Conditions,

together with Conclusions are attached from the above thesis to
demonstrate the power of E.F.M, in Free VYibration problems.
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The region in Fig.7.4 where all sides are clamped is

next inwvestigated. Results are compared to those of Kaul

o pa

and Cadam‘oa”, using the Rayleigh-Ritz m=thcd. Freguency

. - 2 e 2
. parameters are expressed in terms o W a D cos"® vwhere KA
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is the angle of skew.
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The region in Fig.7.4 with one side clawmped and the
three simply supported was next investigated.

frequencies obtained by VIBRAT and presented in Tables 7.23

F1G.7.5

(11'0-5)

Values

o ~or

- ..

2~
pt ora

are

not compared with other investigators,since a searxrch o the

literature did not unearth such results.

Percantage

Mode and >t values
1l 2 3
E.I.M.
=3 56.197% 97.35 153.62;

R.M.S.

Boundary

$.

. - s
Residuals for the 17 Frequency:

MT

Functicn { Sigd

)

()}

% R.M.S_.Residuals
using Vertex Fns.
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10”2
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-1
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0.9768
0.92¢3
0.7200
0.8577
0.2323
0.1735
0.5584
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Example 5 -~ Pentagon with Mixed Boundary Conditions
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The region in Fig.7.6, where the side AB is clampad ans the

othar four simply supported, is presented as a problem of Iz

eand ok
wa ihend

Levr R

.Tv

~———

or

greater complexity than any that has becn attemp:ed by previcus

investigators. The resulis obiainea by VIBRAT u ing truncation
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levels L=3,4 and 5 are givesn under in Table 7.2:.  The correspoading

.

nuwber of equations are 45, 55 an2

o

3 respectively.
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frequency using truncation levels L=4 and L=3 are given in

ethod with L=

7.

, NIDEN=1

4 involves the use
The percentage R.M.S. boundary residuals for

Function

Side

J

% R.M.S.

Residuals

TR S

W W W W N

o W D WN

.3745
-1528
-5202
.2863
.0837¢°
-5175
-1206
.07968
.025255
.064£173

TADLE 7.2

e

Function

[ "N _hl.-

Z R.NM.S.

Residuals

=3

W oW W W N e e e e

N~

- N W

w N

.C5656
.95692
0.85499
1.2613
1.1892
0.6811
0.1047
0.7351
b.3224
0.1132
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CONCLUSION

The suite of programs included in Appendix B are written
in genreral terms and allow for a “solution mix" of either
scheme A - Edge-functicns and Fractional-EBEdge functions -

or scheme B ~ Edge-functions and Vertex functicns.

Each solution obtazinad is an exact solution of 2 oo-ras5-—~
ponding problem with corresponding boundary wvalues =2s <-Iz:2

Froz

-l
-wlalt el

he solution vechor. a measure of whose devizz
those prescribed is provided by the corresponding rooi--==
square boundary residuels. Accordingly,each soluticn =-r=vides
a Mathomatical Model for the given physical problem:. Tns

R.M.S. values provide a practical critcrion for ti
to judge the acceptability of the mathematical m

mathesmatical model 1lles within the scatter within

enginear can spscify the physical problem,then the mathemuzicel
model provides as “"exact"” a solution to the physical protlzn es

can b2 cbitainad. A scatter of #1% is usad in this thesi:z.

‘

- Slewes

(1) Th= frequencies with @ither "solution mix" are in excellent
agreersant with publishsd raszulis. 1In cases wvhers

not available there is excellent agreemsnt betwesn value

(7]

obtainz=d for various lewvsis of harmonic truncatiocn.

(2) Bourndary Residuals Rictangular Regions:

residuals for rectanguler rogilons were qguite acceptable usin
either "solution mix"™ with even as low a harmonic truncation
level as L=2.

Thn combination ci Edge Functions and Fractional Edge
Functions did not produrts boundary residuals in the case of non-

rectangular regions within acceptadble limits and,furthermore,

r

he reguired symmetry in the associated maie shapas was not

satisfaclorily reproduced.
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(4) Boundary Residuals_-= non Rectangular Regions: Scheme B

The introduction of Vertex functions of the form (4-13)
reduced the boundary residuals by a factor between 10 and 100
from those obtained using Scheme A, and accordingly the number
of harmonic sets, or thes size of the matrix, required to
obtain residuals within a scatter of } 1%,can be correspondingly

reduced.

{5) It can be concluded,from the array of examples vreszinted,
that Scheme B, the Edge-Function method involving tha Vazte
Function developed in this thesis, is both satisfaczory =2nd
practical, involving relatively moderate computer reguirements.
It determines acceptable numerical values for the £requencies

of free vibration and the associated mode shapes for general

polygonal shaped plates with mixed boundary conditions.

The functions in Chapters III and IV may appear complicated
but,in keeping with Edge-Function philosophy,the computer
formulae (3-30) and (4-15) provide an easy means of controlling
the resulting algebra. Accordingly, edge functions can almost
be as readily applied in a cc.aputer program as,say., the
trigonometric functions. The touchstone of any numerical method
must be the ease with which the relevant theory can be pro-
grammed and the provision of a practical test to enable an
engineer to decide whether or not to accept the results. The
Edge~Function method for Vibkration problems is presented for
evaluation on the above criteria and especially omn its success
in solving quadrilateral and polygonal plate problems, as in
examples (7-21) and (7-22) which, to the author's knowledge,

have not been solved hitherto.
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"Analysis of Elastic Plates using the Edge<Function Méthod"
Ahmed A.A., Ph,D. thesis Univ. of Dundée October 1979

Abstraet

. o D A, ot 33
Latnt 4 - Ay e S b A

This thesis describes an investigation into the applicabil1ty of
the edge-function method for the engineering analysis of plates and stab
bridge decks. The specific objective is the assessmént of accuracy
attainable economically in evaluating deflections, bending moments and’
shears for the complex situations encountered by the bridge designers.

A . ¢
o2 o Enp s Ul Lol i b

First, the development of the edge-function theory is presented
for the analysis of thin plates and slabs with different planforms,
types of loading and support conditions. The bending problem is formu-
lated for both isotropic and orthotropic plates, and general solution
forms are obtained. The technique is associated with solutions from all
critical regions of the boundary and the presencé of cornér functions is
found. necessary to cater for singularities and to accelerate the conver-
gence,

sty Hirtiar

Two computer programs were developed to facilitate analysis of
isotropic and orthotropic plates and slab bridge decks; they provide for
the computation of column reactions as well as bending and twisting
moments at any required station. A brief outline of the computer programs
is given,

Numerical examples are given along with extensive comparisons
with the results of other authors using other numerical methods and tests
on models, The investigation shows excellent agreement and indicates
that a generally accurate and inexpensive method of solution is now
available. The advantages of this technique over the conventional domain
type methods (finite element method and finite difference method), which
require division of the whole plate into elements, 1ie in the much
smaller size of the matrix to be solved, and it is thus more economical
and suited for programming on medium size computers.
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Recommendations for further development and application of the
method to ther types of bridge deck are stated.
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“The Edge<Function Method for El1liptical Cracks in a Prismoidal Body
Guinlan P,M., Grannell J.J., Atluri S.MN., Fitzgerald J.E.
Proceadings Second International Symposium on Infiovative Numerical .

tethods in Engineering Science Montreal (1980). fﬂ

Abstract

Stress fields are developed to model the behaviour of Elliptical g

cracks in a prismoidal body using confocal potential functions,
Stresses and displacements are obtained in a form suitable for comput-
ation without having to 1ntroduce Jacobian Elliptic Function.

A special quadrature subroutine has been developed for Crack .
Functions and they are now 1ncorporated into computer program PQDISK [5)
for "3-Dimensional Stress Analysis using The Edge-Function Method".

Applications are made to a wide range of buried elliptic cracks,
both large and small, under concentrated and distributed normal loadings.
The effects of increasing the number of Crack Functions, and the corresp-
onding boundary residuals, are studies and several illustrative examples
are given,
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INTRODUCTION
Since the pub]1cat1on by Shah and Kobayashi [1] in 1971 whxch

developed the confocal potential functions,introducéd by Seged1n [2]

for potential problems, to determine the Stress Intensity Facfor for

SN i

an ENiptical Crack in an infinite body undér arbitrary normal lodding;
the extension of that work to finite bodies has presented a major

challenge. A boundary integral solution was given by Cruse [3] in

SRS 2 S G

RGeS Al

sk o b #9350

1975 which was followed in 1977 by the hybrid element solution of
Kathiresan [4] with a combination of finite and special crack tip

eloponts,

ey D

LAy

Howéver 1ittle progress appears to have been made in analytical

oS

hedipdety

methods using [1]. This is due mainly to the almost prohibitive.

algebraic difficulties in expressing in terms of Jacebian elliptic

functions all the second and third derivatives of the stress'potentﬁalé
$:: reouired for the resu]tlng boundary stresses,- and d1ff1cu1t13$ in

LN
evaluation. Paper [1) obta1ns but ocne derivative, 8 ¢13 , and that
—

6

N

for only 1 + j < 3.

The present paper presents a straightforward calculation scheme

N ar et Ba bt v L b R

.
R

]
xR

for all the required derivatives of 815 without introducing any
Jacobian elliptic functions and no particular difficulties are
encountered with values of 1 and ; in the renge (O, 10). The resulting
ENliptic Crack Functions have been inciuded in the author's computer
program PODISK [5) for Three Dimensional Stress Analysis in Prismoidal
Bodies and numerical results are given for both small gnd large cracks.
In sharp contrast to [2] and [4]) large cracks can be handied as readily
as small cracks. The computer times required are at least an order of
mangitude less than those in [3] and [4]; stresses and displacements
are readily calculated at any point, and each additicnal load case

reouires but a few percent of the time for the first case when all

cases are processed tocether, : "
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¢ A Crack function [1.3]Jcapability has béen inserted in computer

S, S "‘.

program PODISK IS] which impléments "Thé Edaé Function Method for

Prismoidal Bodies" and any required number from 1 {6 15-of such

55
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functions, can he included in the solution scheme for modelling an

e AR
SRt ST
¥ e

elliptical crack,

‘",};

The Edge Function {'ethed is described in {6, 7, 8, 9, 11, 121, and

.

space prevents any further elaboration here except to point out that \
each boundary condition is imposed on each face in either a continuous

or a discrete least squares sense. Consequently the boundary condition

AL R N

S

of zero normal stress in the cracked ellipse is imposed in a ledst

squares sense; the squares of the residuals in the cracked ellipse

PLORIERS

being minimised w r t the coefficients of the crack functions. The

<

zero shear condition is provided by the Built in symmetries of the

functions.

A cube, 2 x 2 x 2, with a centrally located ellintical plahe'éraék,

~

-8y

S PR s N L e s
-

loaded normally on the faces parallel to the crack plane as shown in
Figure 2, is considered. Four different load types - {1) concentrated

Toad (2) Tine load (3) patch load modelled by eauivalent concentrated

i Tl

o
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SRR
loads using the Bousinesaue solution and (4) a linear stress field =~ ) 33
producing a uniform load,can be taken together in each job; the -
four loading cases processed together taking only atout 15% fore

computer time than would be reouired to obtain a single solution on.

its own.

Four different problem sets are presenfed under to illustrate

the use of the crack functions -

(a) Penny Shaped Crack

As given in Green and Sneddon [10] the fracture
coefficient K¥ for a penny shaped crack of radius
a in an infinite solid in a uniform stress field Po
normal to the plane of the crack is -

Ky = 2p.fal7 o (7.)

The fracture coefficient: K, was obtained for severa]
values of the radius a and %he ratio K{/K}, vhich
measures the boundary effects on the fracture coefficient
is* given under, together with the root mean square

of the residual stress, Ap, remaining on the crack

et B0 AL SR A Y adenay vy Ga @ agens ety va e hera bdp Qe e ent
PR N y ot e o

b frrte & 052 d g Wb g1 00 T fu s

« NEsdehaueats

ellipse i
2 1 102 | oaame”® J
41 1 | o.est0t E
6 1 120 | 013072 4
8 | 2.3 | o0.40m072 :

.

Table 2

(b) Small Elliptical Crack

The problems solved by Cruse [3]avd Katiresan [4]
obtained YA for relatively srall ellipses where

R T b 0 O e

ab = .04 in Fiqure 2 with 2,, =1, 2, 3, 4 and -
under a uniferm strees field) Proaran P"DIS vas
run for these cases, -Pesults are aiven in Table 3
under for Y]/?* at 10 points on 3 quadrant of the "
. '%
3
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16.

crack front corresponding to equal intervals in
the elliptical angle ¢ for 0(0,3/2), and for the

residual stress ap on the crack ellipse. As givén\
in Kathiresan {4), analogous to (7.1), K{ for all
ellipse of semi-axes a and b is given by -

K: = py'mb {sin + (9)2 cos?e3t , a>b 9

E(K) ?

"
/2. ) 2
£ < - sinfuess 1221 - b2

(7.2)

R e T v g

perr

“Ib Ratio K]/K; at 10 points on Crack rrent Ap :
1 1.02 Constant at all points 0.14 * 10°° é
2 932 .952 1.00 1.07 1.4 1.20 1.25 1.29 1.31 1.32}] 0.13 * 1070 é
3 828 .874 .976 1.09 1.19 1.28 1.35 1.39 1.42 -1.43} 0.23 * 10"5 j
4 J46 819 961 1.11 1.22 1.32 1.32 1.45 1.48 1.49 ] 0.14 * 10'4
: Table 3

The results 211 agree to within 2% with those given
: by Kathiresan [4]. They were obiained using 6 crack
functions, together with 60 piane functions to model
. the boundiry effects and a lineer stress field. The
. computer time recuired Tor each eilipse is approx-
imately six times that recuirad to solve 70
simultaneous ecuziicns by ordinary Gaussian
elimination and consequently is an order of magnitude
less than was recuired in [3] or {4]. The eouations
tock about five times as long to generate as to seive. )
. {c) Elongated Ellictical Crack E
As a demonstrzticn of the power of program PCDISK :
examples (c) and (d) are prasented. The first -
takes a very eloncated crack with a = 0.8 and ~ b
b= 0.05. It uses 120 plane functions to model ‘
the boundaries and 10 crack functions derived :
from D.3]uitk the even values for i and j as :
~ under to provide the necessary svemetries - 1
’ ilo o 2 0 2 &4 6 2 a4 6
(7.3)
j 0 2 0 4 -2 0 6 4 2 0

e A W et e
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Solutions are readily obtained, in the same job, using
=1, 2, 3 ... 10 crack functions and for the four

N
16ad types mentionad above.
of the residual stress ap cn the crack plane for N

functions and each load type, while Table 5 gives

{1lustrative K

~as in Figure 3, on a quadrant of the ellipse

Table 4 shous- the variations

crack
Some

factors at points 1, 3, 5, 7, 9 and 10

concentrated and patch loads.

for

N, Concen. Load at (.2, .3) Line Load from Patch Load | Uniform St}éss
. {0,.4) to (.5,.4) on Ixi

1 .411D 00 .1720 00 .151D-01 .2750-03

2 L4070 09 .168D 00 .150D-01 .2720-03
.3 .269D 00 JA710-00 - | .505D-03 Ja84p-08 |

8 .266D 00 .169D-01 .505D-03 .1820-04

5 266D 00 .169D-01 .506D-03 .1810=04
| 6 .1120-01 .438D-02 .362D-03 .125D-04

7 A120-01 .436D-02 .362D-03 125004
K .1110-01 .434D-02 .358D-03 .120D-04
"9 1100-01° .434D-02 .352D-03 .1170-04
10 .921D-02 .433D-02 .271p-03 .749D-05
- Table 4 Stress Residuals on a small Crack Plane

(Effect of increasing the_ number of
Crack Functions}

Table § ¥

Concentrated Load K] Factors at Points 1, 3,5, 7, 9, 10
Nc 1 Léx 1.2 2.1 3.14 3.35 3.37
2 847 1,98 2.68 3.08 3.26 3.29

3 .351 994 1.92 2.98 3.71 3.81
6 392 1.04 1.89 2.93 3.72 3.84
9 .32 1.04 1.89 2,93 3.72 3.83

Patch Load
(Bousinesque)

L .399  .939 1.28 1.48 1.58 1.59
2 .398 .939 1.28 1.48 1.58 1.59
3 380 .902 1.25 1.48 1.60 1.61
5 380 .902 1.25 1.48 1.60 1.61
iracture Coefficients

Crack Front Distritution)

Bitvand ¢ s Bt e
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Table 4 shows that-six crack functions are reauired
to reduce the residual stresses to 1% in the
concentrated load case, while three functions reduce
the residuals to less than .01% in the case of a

TR R ¥

,%% patch load. The variaticns in the ¥, factors
E - correspond to the residual stresses and no
4 significent change occurs in the values after six
7 and three crack functions respectively. The

residual stresses on the surface of the cube were
less than 3% of the applied loading and could be
reduced further by increasing the -number of plane
functions used in the modeiling.

SRR
b

Eds

(d) Large Ellintical Crack

.
g Byt b o I U DT T =t TR < , SN |
shudintba bl B i SRR O T b A T e B B et 0

oy

2 Program PQDISK was run for a crack with a = 0.8, 3
2 b = 0.7 using the same number of functions as in E
(c) and results analogous to those in Table 4 4

are given in Table 6.

g
5] :
%% N, Conc. Load Line Load from Patch Load §
E . at (.2, .3) | (0, .4) to {.4, .4) on1x1 E
? . 1 .6560 00 .223D 00 .8920-01
&l 2 .317D 00 .1620 00 .454D-01 ;
' z?{;;; 3 .483D-01 .1700-01 1272D-02 i
§ 4 .248D-01 .160D-01 .224D-02 Z
§ 5 .121D-01 .135D-01 .203p-02 g
: g 6 6130-02 2570-02 .120D-02 3
S5 7 .550D-02 .183D-02 .113D-02 i
8 .543D-02 .189D-02 .113p-02 3
. _:\:é:
9 .5469D-02 .170D-02 .113D-02 2
10 474D-02 .136D-02 .589D-03
Table 6 Stress Residuals on a Large Crack Plane ‘g
(Effect of increasing the number of £
Crack Functions) E
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The K; factors correspendad to the residual stress

-pattern in a similar manner to the factors in Table :
5. It 1is evident that five and three c¢rack functions ) 3
are required for concentrated and patch loads - , :
respectively to give K] factors to within 2%, .

o eSS

Hork is progressing rapidly in adapting PQDISK to ;?
deal with surface and corners flaws and also to i
deal with fracture of l'ode Il and 111 since the fg
corresponding crack functions can.be generated i
from confocal harmonics (1.3). Results are i §
expected in time for the Montreal meeting. ) ;
Displacements and stresses are readily calculated at
any point in the body, and they are consistent with :
the boundary rasiduals reported in this section. . i
Space limitations prevents their presentation in this 1
paper. I
1
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