
7'AD-A088 295 CARNEGIE-MELLON UNIV PITTSBURGH PA MELLON INST OF SCIENCE F/S 9/2

aMO RECONFIGURABLE TOPOLOGY STUDY, DOP EMULATION STUDY. CU)

FEB 80 R L KRUTZ OASS60-79-C-0043

UNCLASSIFIED NL

IN



111.25 8 1111115

MICROCOPY RLSOLUIION ILSI OIARI



MELLON INSTITUTE

COMPUTER ENGINEERING CENTER

I LEYEL~
(Z .. FINAL REPORT, 3779 - 2/80

00 BMD Reconfigurable Topology Study,,

DDP Emulation Study

Contract No. DASG6,0-79-C-0O43

Submitted By

Dr. RonaLd L. Krutz

DTIC
SfELECTEh

AUG 2 2 19800

B
SPONSORED BY

THE BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER

THE VIEWS, OPINIONS AND/OR FINDINGS
-a CONTAINED IN THIS REPORT ARE THOSE

OF THE AUTHOR(S) AND SHOULD NOT BE
CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, POLICY, OR
DECISION, UNLESS SO DESIGNATED BY

OTHER OFFICIAL DOCUMENTATION.

DISTRIBUTION STATEMENT A

Approved fox public release;
Distribution Unlimited 8

..80 -16



"CONTENTS

1. - Preface 1

2. In ction

3. - BUCS-1 System Development -- 2

3.1. - Interrupt Bus Contention Analysis 2

3.2. - System Hardware Integration, 3

3.3. - Monitor Software Development; 4

3.4. - HLL Support Development 5

3.5. - Demonstration Application Software -5

4. -'Logic Analysis of DDP Systems -7

4.1. -"DDP System Logic Analysis) 8

4.2. - Performance Analysis Techniques) 8 8

4.3. - Logic Analyzer User Interface 9

5. -Resource Emulation Concept Development -- 9

5.1. L Resource Emulation - Definition. k. 10

5.2. - '1 Example of Memory Emulation' 10

6. -)Signal Processing System Requirements-- 11



.- 7.

61 ControL Processor Requirements 11

6.2. - Data Operator Irimitives3 N12

7. > Proposed DDP Tas ks for BUCS-1 14

8. -Conctusions 14

ACCMSION for'

MtIS Wit elo
DOC Buft Sectfo 0

UNANNOUNCVg 13
JUSTIFICATIDN-

MUTION4'AYMARAIM CME
Dist. A5 A'l and/o IECW.



1. Preface

This document serves as the final report for work performe-d

for the Ballistic Missile Defense Advanced Technology Center,

Huntsville, Alabama, under Contract Number DASG60-79-C-0043,

during the period March 1, 1979 to February 29, 1980. This

document should be considered to include information concerning

the work performed during the last month of the contract period,

as well as the summary report for the 4th quarter of the contract

period.

2. Introduction

During the contract period, work has been focused in five

major areas:

1) Development of the BUCS-1 system hardware and

software.

2) Development of logic analysis procedures for

DDP systems.

3) Definition of the concept of "resource

emulation".

4) Definition of processing system requirements

for potentially BMD related signal/image

porcessing tasks.

5) Definition of possible research tasks within

the framework of the requirements defined in 4),

using BUCS-1 or a similar system as a research

tool.



A summary of the major points of investigation and the work

performed for these areas follows.

3. BUCS-1 System Development

During this contract period significant work was performed

on the BUCS-1 system both in the area of hardware implementation

and in the area of software development. This included such

tasks as an analysis of the potential contention problems

associated with the operation of the interprocessor interrupt bus

followed by the design and implementation of a contention free

bus, and the design and initial development of HLL (high level

language) run time library routines. The major devlopments are

summarized below.

3.1. Interrupt Bus Contention Analysis

The original interprocessor interrupt bus design relied

entirely upon software (which presumably was to have been

included in the "operating system" associated with each

microcomputer) to control the operation of the bus and to resolve

access conflicts. This would have proved difficult to implement

as the Z80 microprocessor instruction set does not contain a

"Test and Set" instruction, and the hardware design of the bus

would not have supported any of the other schemes which can be

used for process synchronization.

Therefore, a decision was made to redesign the hardware to

support discrete time-slice access by the individual

microcomputers to the interprocessor interrupt bus. In this

system, bus access grant is "passed" from processor to processor

in round-robin sequence. If a program requires access to the

2
WMA . JUNUM



interrupt bus, a write operation is performed to an output port

with the destination processsor address and interrupt-type code.

A request bit is then set in another port, and when the "bus

access grant bit" arrives, an interrupt bus cycle is performed

before passing the grant to the next processor. A status bit is

set when the bus cycle is completed, indicating to the software

when the interrupt bus interface may next be accessed.

This bus system, although theoretically correct, has proven

to be difficult to debug, and occasionally malfunctions due to

transient error conditions. Future implementations of

interprocessor interrupt capability would attempt to design

simpler, more reliable hardware, that would provide more

capabilties than the present system provides.

3.2. System Hardware Integration

The individual microcomputers that comprise the BUCS-1

system underwent final assembly and debugging during the contract

period. This work took place over a period of approximately

three months.

Integration of the individual microcomputers into the whole

system proved to be somewhat more difficult than debugging the

microcomputers. Difficulties were encountered with intermittent

connections on the intercomputer buses, interface chip failures,

and a design error in the bus repeater circuitry which caused all

bus lines to latch in the asserted state. In addition, the

operating system routines controlling intercomputer communication

were being developed at the same time as system integration was

proceeding, making it difficult to distinguish between software



errors and hardware failures.

The bus repeater circuitry was permanently disabled after

analysis of the circuit showed that the information necessary to

control the repeater was not available in any combination of the

control signals on the buses. However, the visual bus monitor

feature of the repeater box was retained and proved to be a

valuable debugging tool.

System integration was successfully completed in May 1979,

in time for a demonstration to the DPAD working conference held

at MI-CEC.

3.3. Monitor Software Development

During this contract period, the "operating system" or stand

alone monitor for the individual microcomputers of the BUCS-1

system was designed, coded, and debugged. The monitor software

provides the standard features of an emulated "lights and

switches" front panel (examine memory location, deposit to memory

location, initiate program execution from a specific address), as

well as several user convenience feaures (block move of memory,

block fill of memory, optional verify on memory deposit), and

serial line download capabilities. In addition, the monitor

provides support for interprocessor data transfer with data bus

read and write, and interprocessor interrupt routines. These

routines are available for use by the user's application program,

but are provided principally for downloading code to the various

microcomputers of the BUCS-1 system from MI-CEC's host computer.

4



3.4. HLL Support Development

As part of the overall BUCS-1 system implementation, high

level language programming support was deemed to be a desirable

feature. Since the MI-CEC host computer supporting BUCS-1 runs

the UNIX operating system, which supports the 'C' programming

language, a 'C' compiler producing Z80 native code was obtained

for internal use in supporting BUCS-1. The 'C' programming

language proves to be a good compromise for programming

microcomputers as it is close enough to the hardware to permit

the programmer to manipulate hardware features, yet the language

supports high level structured programming concepts.

To provide an interface between the microcomputers and the

"zC' (Z80 "C') compiler, certain run time routines had to be

developed. These included the terminal support routines "cttywt"

and "cttyrd," the interprocessor data transfer routines "cbuswt"

and "cbusrd," and the interprocessor interrupt routines "cprcin"

and "cinterrupt." These routines were successfully coded and a

test program using these routines was run on multiple processors.

Future development of 'C' support would include interfacing

to the interval timer hardware, and the coding of calls to the

floating point software package.

3.5. Demonstration Application Software

As part of the overall BUCS-1 system integration procedure,

and to demonstrate multiprocessor capability, a simple bubble

sort test algorithm was implemented and run on three different

system configurations. Timing measurements were made of the

algorithm runtimes using both hand held stopwatches and the



onboard interval timers. (Timing results were consistant between

the two methods of timing.)

The data base that was sorted for all configurations

consisted of a 252 byte array of random integers that had been

generated by the host computer. The three configurations tested

were uniprocessor, 3 processor ring, and a 3 processor tree. For

the 3 processor ring, the sort was implemented by having each

processor make a single sorting pass through the data array and

then passing it on to the next processor in the ring. This

continued untiL the array had been completely sorted, at which

time it was passed back- to the "master" processor (the one

communicating with the host). For the 3 processor tree

configuration, the "master" processor split the data base into

three unequal sized parts and transmitted to of the parts to the

"slave" processors. All processors sorted their data, and then

the "sLaves" sent their sorted subarrays back to the "master" for

a merge.

The results of this exercise followed expectations: the ring

configuration was limited by data transmission time as the 252

byte arrary was passed around the ring; the "divide and conquer"

method of the tree configuration was the fastest because of the

smaLter arrays to be sorted and transmitted; and the uniprocessor

was "average." The measured times for this experiment are:

6



Uniprocessor: 3.3 sec.

Ring Config: 58.9 sec.

Tree Config: 1.1 sec.

From measurements made with a logic analyzer attached to one of

the data transfer buses, the average data transfer rate, using a

fully handshaked transfer protocol, was determined to be 1.04

kilobytes/sec.

This experiment proved the multiprocessor capabilities of

the BUCS-1 system, and more importantly, showed the Limitations

of software controlled bus protocol. Any future system designs,

or any modifications made to this system, will attempt to place

in hardware more of the data transfer control mechanisms.

4. Logic Analysis of DDP Systems

One of the problems encounterd while debugging and testing

the operation of the BUCS-1 system was that of effectively using

commercially available logic analyzers to monitor the performance

of individual microcomputers and of multiple processor systems.

As a result of these difficulties, an investigation into logic

analysis techniques for DDP systems and the required logic state

analyzer capabilities was begun. This investigation culminated

in the development of a procedure to debug and "bring up"

multiple (micro)processor systems, and a definition of the logic

state analyzer capabilities required to support performance

analysis of DDP systems and to implement the concept of "directed

data storage," which was outlined as a user interface



improvement.

4.1. DDP System Logic Analysis

A 7 step logic analysis procedure was developed for dealing

with multiple and/or distributed processor systems. This

procedure, predicated on the use of a logic state analyzer with

additional diagnostic information provided by oscilloscope and

diagnostic software, calls for bringing up the system in the

following order: nodal hardware, internodal hardware, local

monitor software, local application software, and internodal

application software. The last two steps of the procedure

provide for verification of application software correctness.

4.2. Performance Analysis Techniques

Performance analysis of distributed or multiple computer

systems by logic analyzers must be based on information available

external to the system nodes. Thus, internodal signals are

considered observable while intranodal signals are not. These

observable signals, coupled with information concerning the

application software running on the system, can be manipulated by

a properly designed logic analyzer to provide meaningful displays

of data to the user, who must then decide whether the given

application software running on the given hardware configuration

is performing as desired. The types of displays that would

provide enough information for the user to make an informed

decision include such things as: displays of "source-

destination" pairs in a "map" format, "map" displays of qualified

intranodaL operations (reads, writes, transfers of specified

data, accesses to specified nodes, etc.), tabular displays of

8



data transfers or node acesses, and displays of relative nodal

activity based upon a user defined activity parameter.

4.3. Logic Analyzer User Interface

A major result of this investigation was the determination

of the need for better user interfaces to the logic analyzers.

One specific user interface improvement would be the

implementation of "directed data storage." In this technique,

the "category" of a sampled state is determined from other

previously, or simultaneously, monitored information. The

* sampled state is then stoed under the correct "category" in the

logic analyzer, and the display of traced states is formatted to

show relative time relationships between states in the various

categories. This technique would enhance the observability of

various system conditions. It also allows the user to attach

meaningful labels to groups of states, which labels are displayed

with the associated states.

This, and similar improvements in the user interface would

enhance the task of performance analysis discussed above.

5. Resource Emulation Concept Development

After construction and testing of the BUCS-1 system, a

search was begun for a task (or tasks) related to BMD ATC's

area(s) of interest that could be successfully investigateld with

BUCS-1. Two avenues were investigated: that of using the BUCS-1

system as a programmable "resource" emulator, and using BUCS-1 as

an emulator of part of a signal/image processing system. This

tatter task included an analysis of processing system

requirements for signal/image processing tasks, followed by the

9 - -



definition of a possible task for a BUCS-1-like system. These

are described in later sections.

5.1. Resource Emulation - Definition

Under the concept of "resource emulation," the individual

microcomputers of the BUCS-1 system would be programmed to

simulate the operation of PMS level primitives. These primitives

(processor(s), memories, I/O devices, etc.) would communicate via

the BUCS-1 data transfer buses using emulated bus protocols, such

as Intel Multibus, S-100, DEC Unibus, etc. Thus, BUCS-1 would be

emulating a proposed system.

5.2. Example of Memory Emulation

Part of the research into the use of BUCS-1 as a "resource

emulator" investigated the question of the range of emulation

slowdown factors that could be expected. Specifically, the

effect of optimizing the simulation code was investigated. Two

different simulations of a 4 kilobyte static RAM with a 250

nanosecond access time were written. The first was a well

structured, well organized program, while the second was hand

optimized for speed of execution. Instruction execution times

were calculated for both coding styles (assuming a 2 megahertz

clock driving the simulating processor) which yielded a slowdown

factor of 388:1 for the "structured" code, and a slowdown factor

of 225:1 for the "optimized" code, for a ratio of 1.72. This

amply demonstrates the importance of optimizing the simulation

code in order to obtain faster emulations.

10



6. Signal Processing System Requirements

As mentioned in the previous section, one avenue of research

included an analysis of processing system requirements for

signal/image processing tasks, as it was felt that the emulation

of signal/image processing nodes might be a suitable task for

BUCS-1. This investigation was roughly divided into the

following two areas, which will be outlined below: an analysis of

control flow processor requirements, and an analysis of data

operation primitives.

6.1. Control Processor Requirements

One valid approach to the structured design of a distributed

system is to decompose the system design requirements into data

flows and control flows. One conclusion that can be drawn from

this is that distributed BMD signal/image processing systems

could be designed using two classes of devices, one for data

operations and one for control functions.

The "control processor" design requirements can be

summarized as requiring a high degree of flexibility, implying a

certain amount of programmability. Specific requirements

include:

- Ability to communicate with other devices

- AbiLity to control multiple tasks

- Ability to work with compatible controllers in a DDP

environment

- Ease of programming and reconfiguration



- Software compatibility with other systems

Certain of these requirements imply that a control

processor's architecture should be tailored to a "universal" high

level language that supports multi-tasking, such as Ada. Thus,

an "Ada processor" acting as a control element would manage data

flows and communicate with other controllers and data operators

in a typical BMD signal processing system.

6.2. Data Operator Primitives

An analysis of various signal/image processing algorithms

used in diverse applications showed that there were many common

data operation functions. This algorithm analysis, which

included both time/space and frequency domain applications,

yielded the following set of functions common to many of the

applications:

Auto correlation

Cross correlation

Power spectrum

Histogram

FFT and Inverse FFT

Convolution Fitter

Recursive Fitter

Statistical measurement of samples

Specific algorithms performing tasks in noise reduction,

12



signal enhancement and restoration, signal registration,

and image segmentation and recognition

Data and sample acquisition

Display control

These functions were further analyzed to determine the most

common computational level primitives that are required to

implement these functions. This analysis showed that one of the

most pervasive computational structures is that of an array

complex add. A need for the following primitives was identified:

Real and complex vectore arithemetic: add, subtract,

multiply, divide, absolute value, etc.

Real and complex matrix arithmetic: add, subtract,

multiply, inverse, eigenvalue, eigenvectors

Real and complex vector multiply-add

Coordinate system conversion

Data format conversion

Packing and unpacking of data structures

Vector integration and differentiation

Differentiation and integration of two-dimensional data

One conclusion that can be drawn from this brief

investigation is that these computational primitives could serve

as set of language primitives in a high level signal processing

13



language, which would among other attributes simplify software

development for signal/image processing systems, expand the

number of users for such software, and standardize notation and

documentation in this area of software development.

7. Proposed DDP Tasks for BUCS-1

Based on the analysis of control processor requirements and

data operator primitives, a possible research task, related to

potential BMD signal processing requirements, using BUCS-1 (or a

BUCS-1-like system) was defined.

In this task, the BUCS-1 system would be front ended and

controlled by a microcodable LSI-11 which would emulate (a subset

of) the actions of a high level language control processor. This

configuration would permit the user to test various high level

language control structure primitives, and the mapping of higher

level signal or image processing primitives onto hardware units,

in this case, the BUCS-1 processors, which could be considered as

hardware implementations of various processing tasks (processes).

Based on the results of this experimental task,

recommendations concerning the BUCS-1/LSI-11 system (hardware and

software) would be made. These would cover such problems as the

user interface, system reliability, and hardware changes to be

included in future generations of multiprocessor emulator

systems. Future directions of research would also be enumerated.

8. Conclusions

The R & D effort during the contract period has provided

some fundamental insight into the development, debugging,

14



analysis, and programming of a distributed microcomputer testbed.

The concepts which were verified, the real-time software that was

developed, and the experiments that were run provide a basis for

future work in high level language relationships to DDP

microcomputer system architecture and high level implementation

of system control. These factors are particularly important

since the next generation of DDP microcomputer systems may welt

be implemented on wafers with reconfigurabte capabilities which

must be controlled by high level mechanisms.

15


