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During this third year of research the particular, previously presented,

mesh adjustment algorithms for the finite difference solution of ordinary

differential equation systems have been shown to be instances of the use of

monitor functions intrinsic to the system and its solution. These monitors

have been found to be nearly as accurate as the monitor that minimizes thle

truncation error. The weighted normalizing monitor, which uses tile sum of

the squares of derivatives of the solution function, has been applied in a

two-dimensional mesh adjustment algorithm. x
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I RESEARCH TASKS

The general objective of this research is to establish a transfor-

mation of coordinates that facilitates the finite difference solution of

partial differential equations in two dimensions. The objective can be

attained by completion of the following tasks.

A. Coupled Systems of Ordinary Differential Equations

Two-dimensional mesh adjustment is obtained from an appropriately

coupled system of one-dimensional boundary-value problems. The one-

dimensional algorithm has been tested on single differential equations of

low order. We must verify that the method is successful with coupled

systems. A coupled system of this kind is provided by the equations for

conservation of mass and energy in a steadily fed chemical reaction.

B. Known Boundary Layer

An example in which the mesh adjustment can be well approximated in

advance is provided by a partial differential equation with a solution

having a boundary layer in known position. Difficulties in such examples

concern the adequacy of the difference scheme to couple the one-dimensional

problems on the coordinate lines transverse to the boundary layer. Problems

of viscous flow past obstacles are of this type.

C. Unknown Boundary Layer

The exceptional size of a parameter in a problem generally causes the

sharp variations in the boundary layer. Continuation of the solution

from the readily calculated smooth variations for a parameter of ordinary

size is successful in one dimension. Continuation will apply in two

dimensions provided that a way is found to ensure that the coordinate

lines transverse to the developing boundary layer are identified early

in the continuation process. Internal boundary layers whose location is

.etermined by the solution itself arise, for example, in flow-through

chemical reactors and field-effect transistors.
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II STATUS OF THE RESEARCH EFFORT

During the past year the algorithm for automatic mesh adjustment

by transformation to a campylotropic coordinate 1*that depends on the

length and curvature of the solution curve has been shown to be in the

general class of algorithms based on monitor functions--that is, on

functions that take equally spaced values at mesh points. Intrinsic

monitor functions that depend on the solution itself are particularly

useful for mesh adjustment. We have compared 2several functions of this

kind by application to a typical second-order ordinary differential

equation. The normalizing monitor, based on a weighted sum of the squares

of the derivatives of the dependent variables, and the campylotropic

coordinate were found to give difference approximations with much greater

accuracy for the same number of mesh points than a uniform mesh does.

The accuracy was similar to that of the optimal monitor that minimizes

the truncation error.

A. Coupled Systems of Ordinary Differential Equations

The normalizing monitor function has immediate application to

systems, while the other intrinsic monitors require extension and

generalization. The normalizing monitor has been shown 2to be effective

on the example of three, coupled nonlinear, second-order, ordinary

differential equations that model the steady decomposition of ozone in

a flow-through reactor. A curvature-dependent monitor requires a more

intricate computation than does the normalizing monitor, and the results

are not necessarily more accurate. The optimal monitor involves the

fifth derivatives of the functions appearing in the equations and is

therefore probably too complex for general use.

Numbers denote papers in the Publication List, Section III.



B. Known Boundary Layer

See discussion for Task C.

C. Unknown Boundary Layer

Tasks B and C for partial differential systems in two dimensions

have been considered together because, as with the one-dimensional

algorithms, no a priori knowledge of the location of the boundary layers

is used in the mesh adjustment process. The mesh adjustment is made by a

transformation of coordinates to a solution-dependent monitor function

for one independent variable and an orthogonal coordinate for the second

variable. The method has been applied 3 to a boundary value problem for

Poisson's equation with an analytic solution having a sharp variation

along a chord of a circular disc. An initially arbitrary coordinate

is iteratively improved under the normalizing monitor requirement to

an orientation with one coordinate along the chord and the desired small

spacing in the other coordinate across the chord. Application to flows

over airfoils with viscous boundary layers or detached shocks is now

under way.

III PUBLICATIONS LIST
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tational Physics (June 1978).
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Layer Fitting Grids," in preparation. An abstract is attached.
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V INTERACTIONS

The contents of the second paper in the publications list were

presented at the fall meeting of S.I.A.M. in Denver, November 12-14,

1979.

VI SPECIFIC APPLICATIONS

The ozone decomposition example presented in the second publication

is an application of the method to a chemical process in a flow-through

reactor. Direct application to jet or rocket engines in one-dimensional

steady-state approximation should be possible.
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Generation of Boundary and Boundary-Layer Fitting Grids

by

C. M. Ablow and S. Schechter
SRI International

ABSTRACT

A grid that improves the accuracy and speed of computation with a

given finite difference approximation to a boundary value problem for

a differential equation is more satisfactory than other grids. A

best method of grid generation will therefore depend on the problem

domain, the solution, and the difference scheme.

An automatic generator for the grid that minimizes the truncation

error of a given difference scheme for two-point boundary value problems

over a finite one-dimensional interval has been previously presented.

This truncation error minimizing (TEM) generator changes the independent

variable to one in which uniformly spaced nodes fit the boundaries and

cluster in any boundary layers where the solution has a sharp variation.

The number of nodes and the complexity of the calculation are known

in advance so that the time and cost of the calculation can be estimated.

Other generators producing grids that equally distribute measures of the

solution curve arc length or length and curvature were found to be about

as accurate as the TEM generator but more easily implemented. The arc

length coordinate can also be defined as the transformation that minimizes

the sum of the squares of the derivatives of the dependent and independent

variables, a definition that readily generalizes to higher dimensions.

Experience with two-dimensional grid generation, as applied to a

Dirichlet problem for the Poisson equation on the unit disc, is presented.

The example has an analytic solution with sharp variation across a

C. M. Ablow, S. Schechter, and W. H. Zwisler, "Node Selection for Two-
Boundary Value Problems," sumbitted to Computational Physics.



diameter of the disc. The grid is uniformly rectangular on the unit square

in the transformed coordinates. Transformations were chosen to minimize

the sum of the squares of the derivatives of the dependent variable and

of the dependent and originally independent variables. The TEM transfor-

mation was judged too complex to be practical. The results show that

the grid fits the boundaries, clusters about the boundary layer, and

rotates into alignment with it as desired.
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FIGURE 1 PROBLEM DOMAIN
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