
CHALLEN xE TO BETTER AGREEMENT BETWEEN THEORETICAL COMPUTATIONS -ETC(U)
AUG 80 H MARUO

UNCLASSIFIED DTNSRDC-O/0S6 NL

jlllllllllllllIllllllllllI
ImlllllEEllEllE
IIEI--I-.II



1.0 '

_______202

1.I S







UNCLASSIFIED
SECU Ty CLASSIFICATION OF THIS PAGE (Wen Date Entered)

/ IREAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

12. GqT ACCESSION NO. 3. RECIPIEV'S CATALOG NUMBER

DTNSRDC-a6/ 046

7 CItTWN u lIe ) -"q~b" 1.V=

~' CHALLENGE TO ,JETTER _4GREEMENT BETWEEN THEO-L Fia
RETICAL COMPUTATIONS AND MEAUREMENTRNR T

,jHIPHYDRODYNMICS -WV-ROMN ' p_
THE SIXTH DAVID W. TAYLOR LECTURE ( /

7. AUHO S NTAACT OR GRANT NUMBER(*)

Hajlinekiaruo/

9. PERFORMING ORGANIZATION NAME AND ADDRESS i0. PROGRAM ELEMENT PROJECT. TASK~AREA & WORK UNIT NUMBERS

Work Unit 1500-001-41/43

I1. CONTROLLING OFFICE NAME AND ADDRESS

David W. Taylor Naval Ship Research Augmt p8V
and Development Center <'
Bethesda, Maryland 20084 134

14. MONITORING AGENCY tiAME I ADDRESS(it ifferent fro Controlling Office) IS. SECURITY CLASS. (of thie report)

" ":UNCLASSIFIED

If1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, If difterent from Report)

I11. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side If neceeery and Identify by block number)

Wave Resistance
Added Resistance
Wave Pressure
Ship Hydrodynamics

20. ABSTRACT (Continue an revere elde If neceeeary and identify by block number)

DD I J Am731473 EDITION OF I NOv 49lS OBSOLETE
DD 0102.LF-01 I UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE (Slkm Veto Ent



UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PA419 (When Date Enlted)

UNCLASSIFIED
*i CAl!!PICAI@W Oil I PAGU21("on 0e. £aew-



TABLE OF CONTENTS.

Page

LIST OF FIGURES .......... .......................... . iv

PREFACE ................ .............................. v

FOREWORD ............... ............................. vi

CHALLENGE TO BETTER AGREEMENT BETWEEN THEORETICAL
COMPUTATIONS AND MEASUREMENTS IN SHIPHYDRODYNAMICS.. . .. .. .. .. .. .. .. .. .. .. .. . .. 1

INTRODUCTION .............. .......................... 1

jbWAVE RESISTANCE OF SHIPS IN UNIFORM
FORWARD MOTION,.... .. ..... ... ...................... 2

ShortComments on Thin Ship Theory ....... ............. 2
An Expression for the Solution of

Exact Nonlinear Boundary Value
Problem .............. ........................... 5

Wave Resistance at Low Speed .... ................ 15
Method of Coordinate Transformation ... ............. . 24

-HYDRODYNAMIC FORCES ON OSCILLATING
SLENDER SHIPS . 35

Application of the Slender Body The6ry ........... ...... 35
Various Cases of the Order of Magnitude /

of Frequency Parameter and Froude
Number .......... ................ . .......... 49
Hydrodynamic Forces in Heaving and
Pitching ............................ . .............. 54
Numerical Results of Radiation Problem /

at Zero Forward Speed .......... ........... 58

WAVE PRESSURE ON SLENDER SHIPS ...... ................ .... 69
Boundary Value Problem for the
Diffraction Potential ...... .................... ... 69
Wave Pressure and Hydrodynamic Forces ... ............ ... 73
Wave Pressure in Short Waves .... ................ ... 77

' ADDED RESISTANCE IN WAVES* .... ............... 84

Formulation of the Steady Drift
Forces in Waves ........ ....................... . 84
Simplification of the Formula ............... 93
Bumerical Examples for Added Resistance. . .. ....... 100

' iCONCLUDING REMARKS .5 ' .- . . . ...... Accessi0-n or 102

,..>APPENDIX A - OSCILLATION OF A SHIP WITH NTIc. G#A&1
SIX DEGREES OF FREEDOM ......... 107

Un.ann oiced

Ju.tificot ion

I By__
iii Di: r :k ::L

A, i-or
' T!; t c 1 1



Page

4 PENDIX B - THEOREM OF TUCK AND RELATIONS
DERIVED THEREFROM .............. ...................... iII

REFERENCES ............. ........................... 119

LIST OF FIGURES

1 - Comparison of Michell Resistance with Measured
Wave-Pattern Resistance (Tsutsumi) ...... .............. 3

2 - Curve of Sectional Area of Minimum
Wave-Resistance ............ ........................ 4

3 - Coordinate System and Control Surfaces ..... ............ 8

4 - Computed and Measured Wave-Resistance
Coefficient of Wigley Model ..... .................. .... 22

5 - Hydrodynamic Coefficients a and b ............... 66

6 - Hydrodynamic Coefficients A and B ............... 67

7 - Hydrodynamic Coefficients d and e .... ............... ... 67

8 - Source Distribution ........ ...................... ... 68

9 - Distribution of Wave Pressure ..... ................. ... 83

10 - Wave Pressure at Square Station
Number 8 .......... ........................... ... 84

11 - Added Resistance Coefficient of Series 60
Model for C = 0.7 and fn 0.1 ...... ................ ... 103

12 - Added Resistance Coefficient of Series 60
Model for Cb 

= 0.7 and f 0.15 ..... ............... ... 104

13 - Added Resistance Coefficient of Series 60
Model for C = 0.7 and f 0.2 ...... ................ ... 105

iv

4.



PREFACE

The David W. Taylor Lectures were conceived to honor our founder in

recognition of his many contributions to naval architecture and naval hydro-

dynamics. Admiral Taylor was a pioneer in the use of hydrodynamic theory

and mathematics for the solution of naval problems. He established a tra-

dition of applied scientific research at the "Model Basin" which has been

carefully nurtured through the decades and which we treasure and maintain

today. It is in this spirit that we have invited Professor Hajime Maruo

to be a David W. Taylor Lecturer.

Prof. Maruo was born in Yokohama in 1922. He received his profession-

al education at the University of Tokyo, obtaining his Ph.D in Naval

Arhitecture in 1946. For matv years Prof. Maruo has been at the Yokohama

National [ tivvU.tt whtere he is Professor in the Faculty of Engineering.

He is a leader of ship research in Japan, is an officer of the Japanese

Society of Naval Architects, and has been a member of the Resistance

Committee of the International Towing Tank Conference as well as other

important professional groups. He is an international authority on ship

hydrodynamics and is well known for his very significant theoretical and

mathematical research on ship wave resistance and ship motions problems.

Prof. Maruo is no stranger to the West. He spent a year at Cambridge

University in England doing research under G.I. Taylor, and in 1964 was a

Visiting Scientist and Professor at Stevens Institute of Technology. Over

the years he has established and maintained close ties with many ship

researchers in both the United States and Europe.

v



FOREWORD

It is a great honor for me to deliver the Sixth David W. Taylor

Lecture series and I would like to express my sincere thanks to the David

Taylor Naval Ship R&D Center for the kind arrangement which has enabled me

to have such an opportunity.

The subject which I am going to talk about is the problem of

engineering. It is not the problem of mathematics, although recent

progress in technology depends greatly upon mathematical theories, and

mathematics has become an indispensable aid to solve engineering problems

nowadays.

vi



vi i



CHALLENGE TO BETTER AGREEMENT BETWEEN THEORETICAL COMPUTATIONS

AND MEASUREMENTS IN SHIP HYDRODYNAMICS

INTRODUCTION

There is a great difference between the idea of engineering and

that of mathematics. The substantial importance in engineering is the

practical utility. Any theories cannot become useful unless they lead to

results which are faithful representations of actual phenomena.

In natural sciences like physics or chemistry, one may be contented

with qualitative agreement between theoretical predictions and observa-

tions, but in engineering, merely qualitative agreement is not a sufficient

condition of the practical usefulness. The agreement should be quantita-

tive within required accuracy. Mathematics, on the other hand, emphasizes

logical rationality. If one considers an approximation, the rigorous

mathematical idea requires that the simplification should be consistent

within itself throughout the approximation. However, we often encounter

cases that mathematical rationalism contradicts the practical usefulness.

We know quite a few cases that a mathematical theory, with all its rational

construction, yields rather unrealistic results when compared with the

actual phenomena. On the other hand, there are a number of cases that

deviation from the rational formulation can result in much better agree-

ment with measurements. Generally speaking, such inconsistent approaches

are not necessarily safe, because their justification is hardly obtained

from the purely theoretical point of view. However, the utility of this

kind of approximate method can be appreciated in the practical appli-

cation, since any theory which has failed to give correct predictions is

almost useless even though it has a complete logical construction from the

mathematical point of view.

The present lecture intends to illustrate how the deviation from the

mathematical rationality can improve the agreement with measured results

and how the mathematical theory may be revised for practical usefulness.

Whether any inconsistent approach can become really useful or not depends

greatly upon the engineer's intuition.

The title of the lecture can cover very wide aspects, but I will

confine topics only in problems of free surface flow, because it is the



problem which seems to be most peculiar to the hydrodynamics of ships.

The lecture will deal with four topics, namely:

1. Wave resistance of ships in uniform forward motion,

2. Hydrodynamic forces on oscillating slender ships,

3. Wave pressure on slender ships, and

4. Added resistance of ships in ambient ocean waves.

WAVE RESISTANCE OF SHIPS IN UNIFORM
FORWARD MOTION

Short Comments on Thin Ship Theory

The theory of wave resistance is a rather classical problem. It was
1*

as early as the end of the last century that Michell established the

theory for thin ships. His theory was already so complete that nothing

needed to be added for a first approximation of thin ships. More than

eighty years have passed since then; nevertheless the progress in the

theory of wave resistance has been comparatively slow.

Michell's thin ship theory is based on the assumption that the beam-

to-length ratio is so small that its square can be neglected. There are

several examples of comparison of computed wave resistance with measured

resistance. Among them are instructive results with a series of models

whose breadth is varied systematically.2 It is indicated that the wave

resistance calculated by Michell's formula agrees well with measured

results, provided that the beam-to-length ratio is not greather than one

fifteenth, as shown in Figure 1. This criterion of beam-to-length ratio is

too small for practical hull forms. The beam-to-length ratio of practical

hulls is at least one seventh. Consequently, considerable discrepancy

appears between theory and experiment in conventional hull forms. This

fact does not mean, however, that the thin ship theory is useless for

practical purposes. It is known that the Michell thin ship theory has be-

come a very powerful tool for the purpose of designing low resistance hull

forms. A direct application of the theory for this purpose is known as
3

the theory of minimum wave resistance. The method is an application of

calculus of variations. One can determine the optimum curve of a sectional

*A complete listing of references is given on page 119.
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Figure 1 - Comparison of Michell Resistance with Measured Wave-

Pattern Resistance (Tsutsumi)

area by which the wave resistance is made minimum under appropriate side

conditions. One very interesting fact is that the curve of the sectional

area, which is determined by the thin ship theory in such a way that the

wave resistance becomes minimum at Froude number 0.25 with the condition

of prismatic coefficient being 0.60, is nearly identical with the curve of

sectional area of the corresponding Taylor Standard Series4 (Figure 2). It

is recognized that the latter form shows excellent characteristics at

medium Froude numbers, and this fact is enough to testify the great genius

and intuition of the late Admiral Taylor.

For the purpose of quantitative prediction of wave resistance, on the

other hand, Michell's theory is far from useful. Two reasons are con-

sidered for the discrepancy of the theory from measured results; one is the

effect of viscosity and the other is the effect of finite breadth of the

ship. The effect of viscosity upon wave resistance has been studied by
5

several authors, but no reliable theory has been developed yet. As to the

effect of finite breadth, on the other hand, several attempts are known

3
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Figure 2 - Curve of Sectional Area of Minimum

Wave-Resistance

which intend to find out second order terms with respect to the beam-to-

length ratio by means of the successive method starting with Michell's

first order solution.6  However, none of these approaches have been proven

successful so the second order theory is not likely to be promising. We

can imagine the following fact as the reason for this difficulty. It is

known that the first order solution is not a uniformly valid approximation

and higher order solutions show more singular behavior. It is suspected

that the resulting power series with respect to the beam-to-length ratio

which is assumed at the beginning of the perturbation procedure may not

converge when infinite terms are taken. That means the perturbation ex-

pansion gives an asymptotic series without finite radius of convergence.

If it is so, the addition of second order terms does not guarantee any

improvement in accuracy of the approximation.

Furthermore, the existence of the continuous solution of exact

boundary value problem for the fluid motion around the hull is even



doubtful. Observations of the white plume of the wave crest around the

ship, may be an indication of the nonexistence of the exact solution.

It is of some interest to observe the numerical result by Guilloton's
7 8

method, which shows a plausible improvement in agreement with measured

wave profile and wave resistance. Unlike the consistent successive

approximation, the various conditions involved are not satisfied at the

same order of magnitude. This is because the field equation is satisfied

only in the first order while boundary conditions are partly satisfied up

to the second order.9 In spite of such inconsistencies, Guilloton's

method may be regarded more useful than the consistent second order theory

from an engineering point of view.

An Expression for the Solution of
Exact Nonlinear Boundary Value

V Problem

A special feature of the free surface flow is the nonlinearity of

boundary conditions. The direct nonlinear analysis is applicable only to

the simplest case such as monodirectional waves in a channel. Because of

its complexity, the only possibility of an analytical method describing

fluid motion around the ship hull is the perturbation analysis. As

mentioned in the preceding section, only the first order approximation is

useful for practical cases because a higher order approximation cannot

improve the result in most cases. The first order solution is usually

obtained by the linearization of the free surface condition at the be-

ginning. However, there is a possibility of giving a formal expression

for the solution which satisfies the exact nonlinear boundary condition at

the free surface. This expression is of no use by itself for the pre-

diction of wave resistance, but it facilitates general discussions of

perturbation analysis.

First, we assume an inviscid incompressible fluid with irrotational

flow. A Cartesian coordinate system with z-axis vertically upward and the

axes of x and y is applied to the fluid on the still water surface. It is

convenient to employ dimensionless quantities. The length scales, e.g.,

x, y, and z, are normalized by a characteristic length, k, which may be

5



taken as the half length of the ship, L/2. If the fluid velocity is

normalized by the ship speed U, then the acceleration of gravity is ex-

2
pressed by the dynamic coefficient of gravity y0 = gi/U2, or as a function

of the Froude number yo = l/(2Fn2 ). Instead of a ship moving in still

water, we assume a uniform flow of velocity U in the direction of x which

is opposite to the motion of the ship. When a ship hull is introduced at

a fixed position in the flow, the flow field is specified by a velocity

potential x + 4. The disturbance potential 4 is harmonic in the space

occupied by the fluid. Then the Laplace equation

2 (1)V 0)=

is valid outside the hull surface and below the free surface, which is

expressed by the equation

z = (2)

The fluid velocities are

u = 1 + 30/ax, v = a4/ y, w = 34/az (3)

The fluid boundary is composed of the wetted hull surface, the sea bottom,

and the free surface. Since the fluid is assumed nonviscous, the boundary

condition on the hull surface is that the fluid velocity is tangential to

the hull surface. It is expressed by

ax -(4)

where n is the unit outward normal vector into the hull surface. Since

the free surface is expressed by the equation z =, where , is a function

of x and y, the kinematical condition on it is

u 2_ + v - w = 0 (5)

6



There is a condition of constant pressure which is expressed by the

Bernoulli equation.

1 2 22_(u+v2+w-1) + Y 0  =0 (6)

Then the free surface elevation is given by

(lu 2 _v 2-w2 ) (7)=2Y0

0

Keeping in mind the fact that the boundary conditions are satisfied at the

curved surface z = and that C is a function of x and y, the explicit

in Equations (5) and (6) is eliminated by the substitution of partial

derivatives of Equation (7) with respect to x and y in Equation (5). The

result is

1u -x + v -+ W +2 + Y w =0 (8)

If we substitute the velocities by the expression of Equation (3), the

above equation becomes

This relation holds on the unknown surface z = , so that the boundary

condition is quite nonlinear. The usual way of solution is the perturba-

tion expansion of the boundary condition assuming a small parameter which

relates to the shape of the hull surface. The first term of the expansion

is the linearized solution. In order to make such a linearized solution

valid, a condition of small disturbance is necessary which imposes a

restriction on the hull shape. Instead of the application of the perturba-

tion expansion to the boundary condition, let us seek a general expression

7



for the solution of the Laplace equation with the boundary conditions in-

cluding nonlinear terms. In order to find such an expression, we apply

Green's theorem to the velocity potential 4 and an appropriate Green's

function in the space bounded by a closed surface. Figure 3 shows this

Z

0 P(x,yz)

Figure 3 - Coordinate System and Control Surfaces

enclosed surface to encompass the portion of the hull surface in the lower

half space S, a large vertical cylinder E surrounding the ship, the portion

of the horizontal plane z = 0 between S and Z, ZO and the portion of the

sea bottom inside the cylinder EB' Then we have

rB

LP )G(PnQ a ) (Q) 1 1 .=±Q d S "n(10)
r S+E+EJ+J I 3n an Q

0 B

8



where G(P,Q) is Green's function having a simple pole at the point

P(x,yz) = Q(x',y',z'), P is a point inside the enclosed space defined

above, Q is a point on the boundary surface and nQ is the normal to the

boundary surface drawn inward at point Q. This expression is valid pro-

vided that the analytic continuation of the velocity potential in the

region 0 > z > C is possible. This is the only assumption for the above

formulation. Now we define the Green function in such a way that it

satisfies the Laplace equation in the lower half space except a point

P = Q, and boundary conditions

+ Y-0 G(PQ) = 0 at z' = 0 (11)

an G(P,Q) = 0 on EB (12)

It is assumed that the radiation condition

im v- G(P,Q) = 0 or Zim A7 G(P,Q) = 0 (13)
X- - 0 X I -+ox

is satisfied too. Since a4/3n = 0 and aG/an = 0, the contribution by the

integral on ZB vanishes. If the velocity potential 4 is assumed to fulfill

the radiation condition at infinite distance, the integral on E decays out

as the radius of the cylinder tends to infinity. Since ZO is a horizontal

plane, the normal n is directed vertically downwards. Then the integral

on Y 0 can be transformed as

- (P,Q) a(Q) - (Q) aG(PQ) Id SQfE n Q n Q Q

0

= G(PQ) 'Y' ) - P(x',y',z') aG(PQ) dx'dy'

90  z'=O

i9



P,~~~~~ F G(,'z' .acPQ)1
[=PQ z +I -,I,~ 2 ______ ~'y'z dx'dy'JJ 0  YO ax IXz)=O

because of the relation of Equation (11). Integrating by parts twice, the

second term with respect to x', yields

(pQ) a(x',y',z') 1 a2 2 (x' y',z') dy'

0 az' + ax x2 z'=O

+ 1 Gx',y'z"') - (x',y',z') aG(PQ) dy

YOPQ ax' ax'
L 0 z'=O

where L0 is the intersection of S and E 0* If

(2 k +Y0 ~ -L - (D(K, Y) (14)ax 2 +0 -az )z=O

then the velocity potential can be written as

1 (PQ) 3 )(Q) aG(PQ)
L(P) f -[ Gn Q anQ ] SQ

S

i o(Q) - ( dy
+ f [G(P,Q) x dy

' Ty L0 z'=0

f 41 (x',y') G(P,Q) dx'dy' (15)

4 Y0"Zz '=0
0

10



Since the boundary condition on the free surface, Equation (9) can be

written as

( x2 +Yo0~ - - v v IV 12
ZI- [1 (24-L +y dz

ax 2 0 ax~ +0az2

we can solve for the function 4(x,y) as

4)(x,y) =[1~ (2 - V -+v ) JV~j2] + $ ( 3a +YO 32) dz (16)z=C 0

The first term on the right-hand side of Equation (15) defines the sources

and dipoles with their axes in the direction normal to the surface and

distributed over the hull surface S. The second term corresponds to a line

distribution along the water line of sources and x-directed dipoles, and

the third term means the source distribution over the horizontal plane or

the still water plane.

Next let us show that the same potential can be expressed by a

distribution of sources only. The velocity potential given by Equation

(15) is valid outside the hull surface S. Here let us assume a fictitious

velocity potential which is valid inside the surface S and satisfies the

linearized boundary condition at z = 0 as

2 + y = 0 
(17)

ax
2

Consider a closed surface composed of S and the portion of the plane z = 0* *

inside S denoted by Z Apply Green's theorem, as before, to 4 and

11



G(P,Q) in the interior domain of this closed surface. If the point P is

outside S, we have

1 fG(P,Q) an *(Q) G(P d SQ 0

+ nQ Q

where n is the normal drawn inwards to the domain under consideration.

Integrating by parts over EO, as before, we find

0 G(P,Q) ( -Q) (Q) a(,Q d S

7 r Qf San Q an

+ G(,Q) 4 (Q)-* (Q) dy' (18)

+4"y ---O x' ax, IL an *

Subtraction of Equation (18) from Equation (15) yields

1 wo + * ) G(PQ) + ¢*(Q) aG(P,Q) d S

¢(P)~~~ = -G(,Q P nQ)n

JJ[G(PPQ) 10 (Q-0*(Q)} dy'

4yoa n, anQax

+ 4' L0  (P.Q) 1- x' =- x] z'0

1 $(x',y') G(PQ) dx'dy' (19)

Now we assume that the fictitious velocity potential is chosen in such a

way that it has a value identical with 4 on S. Then, the relations on S

are

12

=tit



aG * aG aG ac
anan an --

*aG
(O-O ) 5- = 0

Therefore, Equation (19) becomes

O(P) = - 4 G(P,Q) +nQ + Q d S

S Q anQ

+ f FG(P'Q) O (axQ aox(Q) dy'
Or 0 z'x0 ax

S(x',y') G(PQ), dx'dy' (20)

0

Since -G(P,Q) means a source at the point Q, the velocity potential is ex-

pressed by the distribution of sources over the hull and the still water

surface. The density of the hull surface sources is

O7I \a an*

Here we take a plane parallel to x involving the normal and take a length

sI along the curve of intersection of this plane and the surface S. If cx

is the angle between the normal and the x axis, we have the relation

cos a + sin asax an as1

We have assumed that = on S, so that

13



*

as as

Then the line integral is expressed by

C G(1,Q co dy' *),Q LG(P,Q) l +- ~ ndy ds
fan an (an an ' ds

L00

47r G(Q) G(P,Q) n ds

fL0 xd
L 0 L

where s is the length along L0 and nx = ax/an. Then we obtain

a(P) = - o(Q) G(P,Q) d S+ aQ) G(P,Q) n ds

f . Q Yf0 L0

1 O(x',y') G(P,Q) dxz,=0 21

0

If ,we assume the disturbance velocity is so small that the function 4(x,y)

is a negligible second order contribution, the velocity potential can be

expressed by the source distribution on the hull surface accompanied by

the line distribution. This yields

(P) - G(P,Q) o(Q) d S + G(P,Q) o(Q) n d1d ds (22)

f (,Q ( Q) dO f xT dsS L0

One can determine the source density o(Q) so as to satisfy the boundary

condition on the hull surface. Brard1 0 named this kind of boundary value

14



problem the Neumann-Kelvin problem. Several numerical works have been

carried out so far. Since the smallness of the disturbance velocity can-

not be assumed apriori, other conditions are needed in order to realize it.

The simplest case is the thin ship. If the beam of the ship is very small,

the inner region, in which the potential is defined, shrinks to a narrow
slit and, consequently, 4 / n becomes higher order with respect to the

beam-to-length ratio of the ship. Therefore, G(Q) is determined by

(1/4r) 3 /Dn. The line integral becomes third order and can be omitted.

If we write the equation of the hull surface as

y = f(x,z) sgn y (23)

the velocity potential is reduced to

= (P) ff G(P,Q) fx(x',z') dx'dz' (24)

S
c

where S is the center plane of the ship and f = af/ x. This is identicalC x

with Michell's potential.

Wave Resistance at Low Speed

Most existing theories of ship waves and wave resistance are based on

the linearization of the flow field by a small parameter which specifies

the slenderness of the ship hull. Since ship hulls, in practice, are

neither so slender nor thin enough to secure the validity of the linearized

theory, the agreement between the theoretical prediction and the experi-

mental results is, in general, not satisfactory. The disturbance ve-

locities are not small enough to make their square negligible everywhere

on the free surface. Since the inclusion of the nonlinear terms in the

free surface condition makes the boundary value problem intractable, some

simplification other than the linearization by the beam-to-length ratio

as a small parameter is needed to formulate the wave resistance of

practical hull forms, expecially full-form ships.

15



Because the operating speed of ordinary ships of displacement type

is in the range of Froude numbers from 0.15 to 0.30, one may regard that

usual ships are operating in comparatively low velocity. If the speed of

advance is extremely low and the elevation of the free surface is very

small, the flow around the hull is comparable to flow with an undisturbed

free surface, and is similar to the flow around a double body fixed in a

uniform stream. Then the deviation of actual flow from the double body

flow is due to the elevation of the free surface. Since the elevation of

the free surface depends on the Froude number, we may employ the pertur-

bation expansion of the free surface condition by the Froude number as a

small parameter, but it will be found later that this approach is not so

simple.

If our purpose is to formulate the wave resistance at low Froude

numbers, we can derive an approximate formula directly from a general

expression of the wave resistance. The wave resistance is determined by

the momentum or energy analysis of the asymptotic expression of the fluid

motion at a great distance from the ship.

The Green's function G(P,Q) has an asymptotic expression when the

point P is brought to infinite downstream x + . If we assume the case of

infinite depth of water, it takes the form

1/2 Y0(z+z')sec2

0G(P,Q) - 4 y e sin(yoX-x' sec 0)
0 f 0

2/2

cos(y0 y-y' sec 0 tan 0) sec
2 dO (25)

The fluid motion there is characterized by the Kochin function. 12  In the
13

case of the distributed Havelock sources of density o(x,y,z) on the

surface S, such as the first term of the right-hand side of Equation (22),

the Kochin function becomes

H(k,6) - ff a(x,y,z) exp[kz+ik(x cos 0 + y sin 0)] dS (26)

f S

16
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In the case of Equation (15), on the other hand, the singularities are the

surface distribution of sources and dipoles on S, the line distribution of

sources and dipoles along L, and the distribution of sources on the hori-

zontal plane ZO . Then, the corresponding Kochin function is

H(k,6) = - -- f nn - c -n exp[kz+ik(x cos 0 + y sin 0)] dS

S

+ 4- f (- ik cos 0 exp[ik(x cos 6 + y sin 6)] dy

0 z0

4y0 {f (x,y) exp[ik(x cos 0 + y sin 0)] dxdy (27)

In order to distinguish the above function from the ordinary Kochin

function such as Equation (26), it may be called the generalized Kochin

function. Keeping in mind the fact that 4(x,y) decays out much faster than

the fluid velocity on going away from the ship, one can express the wave

resistance by Havelock's formula

ii/2

R = 8TrPU 2 2 2H(y sec 20, 0)1 sec3 0 dO (28)w 0 J0
-T/2

Now, let us consider the first approximation for low Froude numbers. It is

easily understood by the condition of Equation (5) that the vertical
2velocity w at the free surface is of the order of Fn , since the free

surface elevation is O(Fn 2 ) by Equation (7). Therefore, the zeroth

approximation for the velocity potential at low Froude numbers, designated

by 0, is obtained from the condition

@00/@z = 0 at z = 0 (29)

17



This is the disturbance velocity potential for a double body in the

uniform flow. Now we write

0 :0 + 0l (30)

and assume 01 = 0(Fn2 ). This assumption is not self-evident but seems to

be legitimate when one considers the case of a vertical cylinder for which

a 0o/az is zero everywhere. Then, the first approximation for the free

surface elevation is

_O +_ _ _ 1 (3 1)"' ( ~
Y zLax0 2 ax 2 ) ]3

The first approximation for the generalized Kochin function is given by

the substitution of for in Equation (27)

H(k,O) = - j T -0 jY- exp[kz+ik(x cos 6 + y sin 0)] dS

+ f-(3--ik cos ( 0 exp[ik(x cos 0 + y sin 0)] dy

0 a

1 ff %0(x,y) exp[ik(x cos 0 + y sin 0)] dxdy (32)

0

where

o(xy) = - 1 V V) V o2 + C
0 2

18



2 ( 2 2 10
- [(0 . Vov) vO0~ +- ( N4o + VO 21 )J (33

ax 2 01 YO ~ax 2 q2 a =
-l

The second and third terms on the right-hand side have the factor y or
20Fn 2 , while the first term does not, so that one may consider the former

two terms are of higher order. This is not the case because the first and

second terms can be transformed into an integral over the plane z - 0. To

show this, let us express the double body potential in the form

1L(P) 1 -DOo(Q) 1 d SQ (34)
0 41T f f nQ )(Q) -5n TQ

where S is the mirror image surface of S in reference to the plane z = 0
and PQ is the distance between P and Q. If the point P is inside S + S ,

then 0(P) = 0. Next we consider the Fourier transform of 320 /ax2 on the

plane z = 0. Since 00 = 0 inside S + S, we have, after integrating by

parts twice with respect to x

2 22 = ff '20 ik(x cos e + y sin O) dxdy

ax 2 x2  z=0

=-k 2 cos 2 e ff d0) eik(x cos 0 + y sin O) dxdy

0

40 .0 eik(x cos 0 + y sin Of (- -ik cos 60) e e+n ) dy (35)

z=0

The value of 0 on the plane z = 0, on the other hand, becomes

19
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-I

= ~'OQ -S r-o(Q) d L) dS (36)

because of the symmetry. Now we employ the integral representation

IT 00

f dO f exp[-k{z-z'+i(x-x')cos 0 + i(y-y')sin 0)] dk (37)

. -T 0

in Equation (34). Then the Fourier transform of 00)  becomes

o f 0 ) z=O exp[ik(x cos 0 + y sin 0)] dxdy

I =-%Q (Q) a exp[kz'+Ik(x' cos 0 + y'sin 0)] d SQ
s (38)

Combining Equations (35) and (38), we find

0 J~ ~ u explkz+ik(x cos 0 + y sin 0)] ds

- -ik cos 6-0 expjik(x cos 0 + y sin 0)) dy
4 Ly0  a0) z= 0

1 a 21 0 + k cos 2)
47Iy0 ax2  +4 T 0 0 0(

20
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Insert the above relation in Equation (32) and put k yo sec 0. If we

write the relative flow velocity around the double body as uo, Vo, wo, and

put u 0 +v qO, after some reductions, we have the expression as

H(Y0 sec
20,0) = 8T ff [O {u0 (qo_1)} + -L {vo( 2_)}] z

0

- exp(iy0 sec 0(x + y tan 0)] dxdy

ff {{ D(x,y) exp[iy0 sec 0(x + y tan e)1 dxdy (40)

0

where the function D(x,y) was defined first by Baba 14 and is written as

D(x,y) = u ( 0Uo) + ( ov0) (41)

We may derive another expression from the source distribution over the

hull surface S given by Equation (21). Then the generalized Kochin

function becomes

H(k,0) ff 
- J a(x,y,z) exp(kz + ik(x cos 0 + y sin e)] dS

O(x,y,0) exp[ik(x cos 6 + y sin 6)] n dy

I 4- O(x,y) exp[ik(x cos 8 + y sin 8)] dxdy (42)
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The first approximation at low speed is given by the substitution of

o(x,y,z) by Oo(x,y,z) and D(x,y) by 40 (x,y), where a0(x,y,z) is the source

distribution of the double body in a uniform flow. The result of this
15

approximation is not identical with that of Equation (32) because the

boundary condition on the hull surface is not satisfied by the source

distribution a0(x,y,z).

As a numerical example, wave resistance of Wigley's parabolic model is

calculated. 1 6 Figure 4 shows the result calculated by Equation (28) with

the Kochin function defined by Equations (32) or (40) and by (42). The

results are compared with the residuary resistance of towing tests and

results of wave pattern analysis of the longitudinal cut method as well as

the calculation by Michell's formula. A considerable improvement is

observed in agreement with the measured results, especially in lower speed

X 10
- 3

0.7 LOW SPEED THEORY

MICHELL THIN SHIP THEORY

TOWING TEST
A HULL SURFACE SOURCES (NEUMANNKELVIN PROBLEM)

0.6 - DO. WITH LINE INTEGRAL

O DO. WITH LINE INTEGRAL AND FREE SURFACE SOURCES

* WAVE PATTERN ANALYSIS
0.5- 0 KITAZAWA ET AL

X 0.4-

C4

0.3-

0.2 -

0.1 - /N
I %* \\ - 0

0
0.15 0.20 0.25 0.30 0.35

Figure 4 - Computed and Measured Wave-Resistance Coefficient

of Wigley Model
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by the computation with Equation (32). However, there still exist some

discrepancies when the Froude number is greater than 0.20.

In order to achieve further improvement, some kind of revision of the

formula is desirable. We have employed the double body source distribution

in the expression of Equation (42), but it does not satisfy the hull sur-

face boundary condition at finite Froude numbers. Therefore, we try to

employ the source distribution by which the hull surface boundary

condition is satisfied at the Froude number under consideration. If we

assume that the line distribution along the water line and the distribution

over the horizontal plane do not make serious effects on the hull surface

boundary condition, the density of the source distribution over S is

determined by the integral equation

nx = - 27T(P) + f a(Q) G(P,Q) d S (43)

A numerical method is available to determine the source density G(P).

Then the result is substituted in the formula, Equation (42), to calculate

the generalized Kochin function, which determines the wave resistance by

the formula, Equation (28). A numerical example is given for the case of

Y0 = 6.0 or Fn = 0.2887. Three kinds of calculations are compared in

Figure 4. The first is the calculation by the ordinary Kochin function of

the distribution of sources on S only, i.e., only the first term on the

right-hand side of Equation (42) is taken. The second is the addition of

the line integral, which corresponds with the result of the Neumann-

Kelvin solution suggested by Brard. The third example is the inclusion of

all terms of Equation (42). Much closer agreement with measured results

are obtained by the addition of the third term of Equation (42). Recently

Kitazawa17 et al., presented another approximation. They put the density

of hull surface sources as

G(P) = ao(P) + o(P) (44)

and determined ol(P) by the integral equation

23



- (P) + c (Q) --- G(P,Q) d S f (Q) G(P,Q) nxdY'
S L 0 1 Q ~ (PQ ~y

ff D(x,y) G(P,Q) dx'dy' (45)

0

This is equivalent to the velocity potential

Y(P) - - o(Q) G(P,Q) d SQ +.L f-(Q) G(PQ) n dy
S L0

i ff %0(x',y') G(P,Q) dx'dy' (46)

0

where the hull surface source density is so determined that the hull sur-

face boundary condition is satisfied. Therefore, the only approximation

is the replacement of 4(x,y) by 0(x,y). Numerical results show a

plausible agreement with measured results as shown in Figure 4. However,

none of these results are regarded as consistent approximations from the

rigorous aspect of the perturbation analysis.

Method of Coordinate Transformation

In the preceding section, we assumed the deviation of the flow

velocities around the hull from those of double body flow as a small

perturbation and formulated the first approximation for the wave re-

sistance. If we want expressions for the flow velocity or wave pattern,

however, the perturbation expansion of the velocity potential is needed.

Now let us write the fluid velocity around the hull in the form

u - 0 + UV, v v 0 + vI, w = 0 + w1 (47)

24



The first approximation for the free surface elevation is given by

Equation (31) or

= 1 (l-u-v O) 2 (48)2y 0 z=0

Then the kinematical condition of the free surface, Equation (8), gives

a 0 1 0 W O

W = u - + v 0 at z=0 (49)
1 0 x 0ay 0 3z

This relation provides the boundary condition at the free surface for the

first approximation of the perturbation velocity potential. However, the

right-hand side is determined by the double body flow which does not

present a wavelike motion, so that the boundary value problem gives the

solution which is not wavelike. This result contradicts the actual

phenomena. In order to avoid this contradiction, one has to revise the

basic assumption. Here we employ the hypothesis which was proposed by
18

Ogilvie. The basic assumption is that the perturbation velocity is

wavelike and the wavelength is proportional to the Froude number squared.

This means that the differentiation results in the change of order of

magnitude by the order of wave number. Secondly, it is assumed that the

wavelike nature appears in the first approximation of the perturbation

velocities, i.e., ul, v , w1 which are O(Fn
2 ), but not in the first

approximation of the free surface elevation r The second approximation

for the surface elevation is given by

1

(uou+VoV) v (50)
0 0 0 1z=0

and is 0(Fn 4). Since ul, Vl, wI are O(Fn
2) and their differentiation

reduces the order by Fn-2 , the derivatives of the perturbation
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velocities are 0(l). Inserting the expression, Equation (47) in the free

surface condition

(u -L +v +w (u 2 +v 2 +w2 ) + Y0 w = 0 (51)

and collecting terms of 0(l), we obtain on the surrace z =0

u +u v- ay/ + 0  + 0 w
2 a1 1 20 x 0 0 (\3x y 0ay '0 W 1

2 L (u 0  )  2 0 2 0

ax ) (u0+v0) -0 0 0

= y0 D(x,y) (52)

The function D(x,y) is expressed by Equation (41). If the double body flow

velocity is known, the function D(x,y) is a known function. Then Equation

(52) gives the boundary condition at the free surface for the perturbation

velocity potential pi defined by

u - 11 - 1(53)
U =ax' Vl ay ' "l z(

as follows.

2 21 a2 1  2 a201 1u0  2 +2u V0  v + Y = Y D(x,y) (54)x 2  axy2 0z

The perturbation velocity potential is harmonic outside the hull surface

S and below the curved surface z = C0 on which the boundary condition,

Equation (54), is satisfied. Since the boundary condition on the curved
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surface is not convenient to finding the solution, let us perform the

following transformation to the vertical coordinate.

z = + z' (55)

After the transformation of the Laplace equation to new coordinates and

taking only the first order terms, we find that the Laplace equation does

not change, namely

a 2 1  a2 1  +32 1
_+ -=0 (56)

ax2  ay2  az' 2

while the boundary condition at the free surface is

2 2 2

ax a
2 2u v 21 23¢1 3

a0x2  2 0 v0 3-- + 20 - +3y 0 = 0 D(x,y) (57) r

at z' = 0. The homogeneous equation, which is obtained by setting the

right-hand side equal to zero, is the boundary condition of free waves on

a nonuniform flow field.

2 2 1  2 a2 1 a¢1

u - + 2 u v - + v - + Y -- =0 (58)
0 ax2 0 0axay 0 y2 az

Now let us assume the wave potential

¢i = A exp y0 [k(x,y)z'+i S(x,y)] (59)

On substituting in the Laplace equation and taking terms of the lowest

order with respect to yi we have the relation
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2k)2 2 S 2 2{k(x,y)12 + L + __ ,2 - = 0 (60)

Because of the exponential decay in the z direction, the wave motion is
-1) ,2 i

significant only in a surface layer of thickness O(y0 ). Therefore, z is

O(Fn 4 ) and the second term of the above equation is to be omitted. Then

we have

k(x,y) = x(-) +( ) 2 (61)

that means the local wave number. Substituting Equation (59) in Equation

(58) and taking terms of the lowest order, we obtain 4
2 i

(u0 -x 
+ vo -y = k(x,y) (62)

or

(u-~v 0 S)2 2 + 2 (63)

This is identical with the dispersion relation which has been indicated by

Keller.1 9 The solution of the above differential equation determines the V
phase function S(x,y). Keller has proposed a kinematical theory of waves

superimposed on the nonuniform flow around the ship by the analogy with

the geometrical optics.

Now let us show the possibility of giving an analytical expression for

the wave function by a coordinate transformation. To find the solution,

we employ the curvilinear coordinates along streamlines and equipotential

lines of the double body flow in the plane z - 0. Designate the velocity

potential of the double body flow by 4 and the stream function on the

plane z =0 by , the latter of which is slightly different from the stream
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function in the two-dimensional motion. They are defined by the relation

with the velocity of the double body flow as follows.

(64)
U 0  ax ha

Vo= 3y h ax (65)

If the double body is the body of revolution, then h is the radial length.

In general cases, it is determined by the partial differential equation

ah Dh au a
u-+ v-5y + h-- +- =0 (66)
-0ax 0 y ax0  ay

If we change the independent variables of Equation (58) from x,y to 4,T,

there is a relation

¢1 ¢1 2 31
Uo Vo = qo TF (67)

Because of the fact that differentiation of the perturbation potential

reduces the order of magnitude, the order of 31/3(P and af1/3T are higher
11 aehge

2 2 -1than that of Iti/3lD by -y . Differentiating the above equation again1bo0

and omitting higher order terms, one obtains from Equation (57)

4 12 1

qo 2 + Y 0 3z' 
= YO D(x,y) (68)

Next, the independent variables are transformed again to new variables F,

, by the following relations.

0^3 dC (69)
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YO q h dNj (70)

Y q0 (71)
0

where 0̂ ( ,n) = q0 (x,y) and the lower limit of integrals depends on the

origin of 4) and T. If we assume qo to be slowly varying, so that 3 q0/H)

and D q0 /39 are 0(l), we can prove

1i qO a i -
l _+ (2) (72)

Differentiating again by and taking only the term of the lowest order,

we have

2 2
12_ 1 ^6 (73)
S 2 q 0  732
2 0

A similar assumption is applied to 30i/3 such as

1 1 ^2 1

- O(74)
S YO

^2 2
Multiplying q0 /Y0 on both sides of Equation (69) and writing

2
q- D(x,y) E( ,r) 

(75)
YO

we obtain
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+ = ( , )(76)a 2 3C

A similar discussion is applied to the transformation of the Laplace

equation, and the lowest order term becomes

2 2 + 2 0
32€ a21  _2_1

+ +- 0 (77)3 
2  9T

2  C

Thus, the Laplace equation keeps its original form after the transforma-

tion. To find the solution which satisfies the inhomogeneous boundary

condition of Equation (76), we consider the basic solution which satisfies

the boundary condition

4 2 + ( ,) (78)

DC2 3

where 6(E- ',n-.') is the delta function of two variables. The solution

which satisfies the above at = 0 and the radiation condition at infi-

nite distance as well, is given by the function

G(ilZ;E',n') = Fv_4 d6 f exp[k +ik cos e( -E')+ik sin O(-n')]

4T 2fT 0

dk

1-k cos 2 a
T

2/2

exp[C sec2 O+i sec O{&-'+ tan O(n-n')}sec2 OdO (79)
27T -7/2
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where I means the imaginary part is taken. Then the solution of them

boundary condition of Equation (76) is given by

i--f E( ',n') G( ,nl; ',n') d 'dn' (80)

The asymptotic form far downstream, i.e., c o , is written in the form

00l
Tn 2

E( ',n')d 'dn'l j exp[C sec 0+i sec 0{ - '+ tan O(n-n')}]

-00 T r/.

2 4
sec 2 dO (81)

Thus, the phase function of the elementary wave defined by Equation (59) is

S = sec 0 (F+n tan e)

Now let us show that the phase function satisfies the dispersion relation

given by Equation (63). There are relations

-=u +v -ax Ha 0-

:IDT a(m,) - T0

^3D a) qae afe3eein ihr

Since it can be shown that aq0/an = 0(y0 ),we hae feieeighge

order terms, i
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__ _ You 0

ax 3q0

A similar argument is applied to aE/Dy, an/ax, and 3n/3y, as

a_ Y 0 v 0  an - %V0  an = 0u0

ay 3 ' ax 3 ' ay 3
q0  q0 q0

Then we obtain

as = sec0 e- + tan 6= sec3  (u 0 +v0 tan 0)

ax Y \x ax3 000 q0

as _ sec 0 3C+ a tan e secO (v-u tan0
ay Y0  y Ta + = 3 0-u00 q0

It is readily shown that the dispersion relation of Equation (63) is

satisfied by the substitution of the above relations.

The amplitude function of the free wave at infinite downstream is

expressed by the complex form

00

A(0) = l ff E( ,n) exp[i sec O( +n tan 0)] d~dn

T0 ff 0-w

= - - D(x,y) exp[i sec 0(&+n tan 0)] dxdy (82)

The integral with respect to x, y is carried out over the plane z = 0

excluding the interior of the hull.
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The second approximation of the free surface elevation is given by

1 Uo "I + vo
0 -OY Z'=0

2

YO ao

1 0(83)

Therefore, the free wave pattern at far downstream becomes

iT/2 A() i sec 0(U+n tan 0) se3 d

z -Re f A(O) e sec OdO (84)

because q0- 1 at a great distance.

The wave resistance experienced by the ship is derived from momentum

or energy analysis of free waves at a great distance. It is determined by

the amplitude function

- 22

In order to calculate A(O), we need the inverse transform of Equations (69)

and (70). For this purpose, we take curvilinear coordinates along

streamlines and equipotential lines along which the length s and t are

taken, respectively. It is proved that we have the relations
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= 0  3~ 0)j

(86)

dri = y 0  dT + O(.O),f

d = q ds dY = q0 h d t (87)

Omitting higher order terms in Equation (86) and integrating, we obtain

y d fs T=Yof dt (8
~' qO J 'qO 2(8

Since yo0 qO corresponds to the local wave number, the new coordinates mean

the streamline coordinates with scales vary proportionally to the local

wave length. The above result takes account of the distortion of the wave

pattern due to the nonuniform base flow velocities near the hull. The

boundary condition on the hull surface is satisfied in the case of

symmetric flow, because the velocities u and v are tangential to the hull

surface at z' = 0 and are significant only in a thin layer of thickness

0(yO) near the free surface. Though the theory developed here looks like

a reasonable representation of the actual phenomena, no numerical results

have been presented so far. It should be noted that a purely numerical

method has been employed in a similar boundary value problem by Dawson
20

and the result shows a plausible agreement with experiments.

HYDRODYNAMIC FORCES ON OSCILLATING
SLENDER SHIPS

Application of the Slender Body
Theory

As mentioned in the preceding chapter, the possibility of mathematical

analysis of the fluid motion around a ship hull depends substantially on
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the linearization of boundary conditions at the free surface. In the case

of ships or other floating bodies making oscillations on the free surface

with its average position at a fixed point, indicating no average veloc-

ity, the boundary condition at the free surface can be linearized in a

simple fashion by assuming that the amplitude of the oscillation is

sufficiently small. Therefore, no restriction is imposed on the shape of

the body. By the employment of the numerical method, one can calculate

hydrodynamic forces on any kind of shapes of floating bodies in principle,

and it is known that some numerical results show fairly good agreement with

measured values. However, a rational development of the linearized

theory becomes too intricate when the steady forward speed is introduced

to the oscillating ships. The difficulty in finding a rational solution

which is not trivial was first demonstrated by Peters and Stoker. 21 They

showed that the hydrodynamic reactions such as the added mass and damping

did not appear in the order of approximation of the linearized theory for

a thin ship oscillating in the plane of symmetry. There had been extensive
22 23

works by Haskind and Hanaoka about thin ships in longitudinal os-

cillations in still water before that time. A full condemnation of these

achievements by the reason of inconsistency may be unfair, because the

consistent structure of theory breaks down on account of just a single

reason of the inclusion of the steady forward speed. If the steady

forward motion is introduced to the oscillating ship, the possibility of

linearization depends on the hull shape parameter as well. The main

difficulty in the oscillating thin ship with forward speed lies in the

fact that the disturbance generated by the periodical motion of the ship

is weaker than the disturbance due to the forward motion. Consequently,

the first order theory would lead to an unrealistic conclusion that no

damping to the oscillation could exist. In order to overcome this

difficulty, Newman24 employed two independent parameters, one of which is

the oscillation amplitude and tile other is the hull shape parameter, namely

the beam-to-length ratio of the ship. Although the justification of the

damping and added mass of the thin ship is attained by the use of two

parameters, more serious difficulty appears when the ship is moving in
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ambient waves. Cross products between the fluid velocity of incident waves

and that due to the steady forward motion appear in the same order of

magnitude as that of the fluid motion due to the oscillation, making the

free surface condition much more complicated. In this respect, the

application of the slender body theory25 looks more profitable than the

thin ship assumption. The assumption of the slender body increases the

order of magnitude of the forward motion so that it is higher than that of

lateral or vertical motions. Therefore, the effect of the steady forward

motion does not appear at the lowest order in the far field expansion with

respect to the hull shape parameter. Though the effect of the steady

motion may appear in the lowest order in the expansion of the boundary

condition in the near field, the first order solution may take a neat form

if the wave amplitude and the slenderness ratio of the ship are taken as

two independent parameters of the perturbation. However, some numerical

computations have revealed another difficulty. This is that the first
26

order theory gives only an unrealistic result. On the other hand, it is

widely accepted that the strip theory has been able to present a reasonable
27

agreement with measurement. The strip theory is regarded in one sense

as another slender body theory, although it is originally derived by a

somewhat intuitive method. In a rigorous sense, it is a rational L.pproxi-

mation for a slender ship in oscillations with high frequency without

forward speed. Thus, it is eventually known that results may become

different if the different choice of magnitude of frequency and forward
28velocity is taken. Discussions in this connection will be given in the

next section.

Once the slender body theory is employed, the boundary conditions are

expanded by the slenderness ratio. Terms of the lowest order are taken

first. One of the features of the slender body theory is the singular

perturbation. It makes a difference in the expansion at near field and

at far field, and a matching procedure is applied between them. The

problem which we are going to discuss is a slender body floating on regular

waves and moving with a uniform average speed U in the mean direction of

its longitudinal axis. In the most general case, the direction of the

37
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forward velocity is different from that of wave propagation. Then the ship

undertakes oscillations of six degrees of freedom around its mean position,

among which surge, heave, and pitch are longitudinal oscillations and

sway, yaw, and roll are lateral oscillations. Since the viscosity effect

in the longitudinal oscillations is very little, the potential flow

theory seems to offer a fairly accurate prediction, while in the lateral

oscillations, effect of viscosity plays an important role, so that we

cannot expect any reliable results by theories without taking account of

the viscosity. Therefore, we will confine our discussions in the longi-

tudinal oscillations hereafter. The general formulation for the os-

cillation with six degrees of freedom is described in Appendix A.

On developing the perturbation analysis, we take the ratio 5 of wave

amplitude to wavelength and the ratio c of beam-to-length of the ship as

basic parameters. Since they are mutually independent, we can expand the

velocity potential with respect to 6 first. The first term is independent

of 6 and represents the fluid motion when the ship moves with uniform

velocity in still water. The linearized theory takes terms up to the first

order with respect to 6. If we are concerned with the ship motion in

regular waves, the term which is linear to 6 is a simple harmonic and

represents the oscillatory part of the velocity potential. The next stage

is the expansion of the above portions of the velocity potential, which

have been linearized already by 6, by the slenderness ratio ,r. There is a

term which is independent of C in the oscillatory potential. It represents

the incident waves which may be assumed as simple harmonic too. The other

part represents the disturbance by the ship. Consider a relative motion

with respect to the coordinates moving with the average forward velocity U,

and take the axis of x in the direction opposite to the forward velocity of

the ship and the axis of z vertically upwards. Then the velocity potential

can be written in the form Ux + p, and c satisfies the Laplace equation

v2 = 0 (89)

in the space occupied by the fluid. The boundary conditions satisfied by

the velocity potential are those on the hull surface and on the free
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surface. If the depth of water is assumed infinite, the condition of fluid

motion at infinity, both horizontal and vertical, is that the fluid

velocity due to the disturbance by the ship vanishes, and that the fluid

: motion is just the sum of the uniform flow and the incident wave. The -

radiation condition at great distance should be considered as well. If the

hull surface at each instant is expressed by the equation

y = f(x,z,t) (90)

the boundary condition on the hull surface becomes

- (u+ _) + z 0 (91)

Now we consider only the heaving and pitching oscillations because

surging motion causes fluid motion of higher order. Designate the vertical

displacement of the center of gravity by z and the angle of pitch by i and

take coordinates x0, Y0 z0 fixed to the ship. Then the relation between

the coordinate systems (x,y,z) and (x 0 ,YoZo) is

x xCos -(z-z) sin

0 y (92)

z0  x sin 1P + (z-z ) cos 
I

The equation of the hull surface in reference to the moving coordinates

(xoY 0,ZO ) is independent of time, such as

Y0 = f0 (x0,z0) (93)

It is assumed that z and i are of the order of 6, and after omittingg
higher order terms, one can transform the hull boundary condition into the

following equation.
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fo 0+fo fo + fo
ax0 z 0 ax ax 0 az )

0 0 (94)

If we pick up terms which are independent of time, we obtain the boundary

condition for the steady part of the velocity potential, denoted by U

as follows.

( 0 o fo 0 fo 0 _

+ 0 +  Z 0  0 95)

0 0 = 5

Take length n along the outward normal to the hull surface, and designate

the direction cosines of the normal as n, ny, nz. Then the above equation

can be written in the form

0n + n =0 (96)

Now let us examine the order of magnitude when the ship is regarded very

slender. If n is the slope of the hull surface to the longitudinal

axis, then its order of magnitude is the slenderness ratio C. We must keep

in mind the fact that the disturbance velocity potential of a slender body

is singular along its longitudinal axis, and the differentiation of it in

the direction of the normal changes the order of magnitude by This

fact can be shown also by adopting so-called strained coordinates which

measure lengthwise direction and lateral direction by different scales.

This procedure is well known and will not be repeated here. As a conse-

quence of this argument, the relation between the order of magnitude of 0

and that of D40 /3n is

0 /Dn 0(p0)
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Since n = 0(c), the above relation results 0 = 0(C2) The oscillatory

part of the fluid motion is composed of the incident wave potential w and

the oscillatory disturbance potential i" The former is independent of c

and can be regarded as a given function. In the case of regular waves

propagating in the direction making an angle a with the x axis, the

velocity potential of the incident wave is expressed by

w = hvg7K exp[Kz-iK(x cos a+y sin a)+iwt] (97)

where h = wave amplitude

K = wave number 27/X

w = circular frequency of encounter

The absolute frequency of the wave is

w0 =w - U K cos a (98)

There is a relation between the wave number and the frequency as follows:

K = w0/g - (w-UK cos a)2/g (99)

The order of magnitude of U and w or K may not be unity, so that we need to

include these quantities in the argument of the order. It can be assumed

that the amplitude of the ship's oscillation is of the same order as that

of the wave amplitude. The frequency of the oscillation is, however, not

the frequency of the wave w0 but the frequency of encounter w. The wave

amplitude is of the order of 6/K so that the velocity of the oscillatory

motion of the ship has the order w 6 K- . The fluid velocity of the

incident wave has, on the other hand, the order 6 K - 2 , sL that they are

not necessarily the same order. We have to keep these facts in mind in

examining the order of magnitude of the oscillatory part of the velocity

potential. Taking the first order terms with respect to 6, we obtain
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fo 3f fo 4 af 0z - (zg-x) + U-0 + Ux
3f0 0 9 3z 0  ax__0

ax ax (l+w) + z z0 az (a+w)-u --o 0 2 q~

af3 af a2 a2

a( + U(z -X1) 0  0 - 0 (100)
Dy 1 w 9-~~ az3z2 3a

If we assume U and w are both of the order of unity, will be of the order

of 6 C. The term of the lowest order in the above equation has the order

of 6 and the equation of the same order is

0 -X$) + U 0 + z z +

a0 9 az0 ; 03

0 0

af0 a2 ~ a2
- ) ( + U(zgx 4 ) 0  2 0- 0 (101)

If we write the outward normal to the sectional form of the hull in the

plane perpendicular to the x axis by n', the above equation takes the form

*az a 4( 4
n'= (z - )---- U(g - 0 w (102)
SnT=zg~x_ ZgnXP) -Uz_ _n n

The right-hand side is regarded as a known function provided that the

steady potential 0 is known. One can divide the periodical potential 4b
into a part determined by the ship's oscillation and a part originated by

the diffraction of the ambient wave. The former is the radiation po-

tential R for which the boundary condition becomes

42



R * aT- U(z -X1) (103)
an' 9 gan an' z

while the latter is the diffraction potential D which has to satisfy the

boundary condition

' =  -(104)

Let us consider next the boundary condition at the free surface. If

the form of the free surface is given by the equation

z = C(x,y,t) (105)

the kinematical condition is

+ (U+ + - - 0 (106)

at ax ax + ay ay az

while the condition of constant pressure is

2 U + + 1 ( = 0 (107)at ax + \ax/ ay az

Eliminating ¢ between the above equations, we obtain

-f+ (U+ x +  y -+
[at ( ax ax ay ay az az]

.[~+u.~±+ {(+) ()2 () +gz] 0 (108)

This is the exact nonlinear form of the free surface condition. Let us

consider first the near field and examine the order of magnitude of each

term. We have written the velocity potential in the form
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U 0 + 01 + (w (109)

-1

We should remember that the order changes by C when differentiating 40 or

1 by y or z. Picking up the time-independent part, we obtain

a2 o 32 0 00 200 )2 0 2 0 20
- + 2 +40ap -3 ~t 0  -a" + _

axx2 ay ay 2 y 2  3 \ ax a 2  2 3z

+ 0(C3) = 0 (110)

2
Then the term of the lowest order is (g/U 2 ) Do0/3z which has the order of

e. Therefore, the free surface condition for the steady potential of the

lowest order is

a40
5z = 0 at z 0 (iii)

that is the condition of double body flow. We cannot proceed to the next

step without handling the nonlinear terms in the free surface condition.

The periodical part of the free surface condition can be written as

2 3a1 aa 1
at axzyUt U. a

22 0 o 2 (,o0 2 + 22 (0) 2

+ 2U _ _+ U- 2axay ay ay ay D DBy ay 2

a2 tU 2% (a +U, a _ aJOw +_2 1 (40 2 __2

-Uaz 2 ~ atl~w axU ax 2 a~y / az 2

+ 0(6c 2 ) - 0 (112)
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If U and W are of the order of unity, the lowest order term is 0(6) and the

next term is 0(6c). Although these are linear with respect to i if 0

and 4w are assumed to be known functions, the cross products between
derivatives of i and 0 make the boundary value problem intractable. If

only the lowest order is taken, the free surface condition for the radiation

potential becomes

- 0 at z =0 (113)

Thus, the double body condition holds again. The boundary condition for the

diffraction potential becomes, on the other hand,

Do D U w 0 (114)

3z 2

where Cw is the wave profile of the incident wave, since we have the

relation

w w=
Do-w + U -- + g w 0 (115)

Now let us construct the boundary value problem. The field equation

is the Laplace equation, but the governing equation in the near field is

reduced to the two-dimensional form in the y-z plane because of the singular

perturbation. Therefore, the boundary value problem is to find a plane

harmonic function with the boundary condition at the hull surface, where the

normal velocity is prescribed, and with the condition DR/3z = 0 at z = 0

for the radiation potential. The condition of infinity i- left unspecified,

yielding an indefiniteness to the solution. Now we assume the solution of

the two-dimensional problem of the Laplace equation

2
Y,+ a!, = 0 (116)y2 z2

ay 2 az2
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with the boundary condition on the hull surface. We have omitted the term

0( 2 in reducing the Laplace equation to the two-dimensional form. Then

we can include the term 0(E) which may be the second order in the pertur-

bation expansion. Next the inner solution for the slender body can be

expressed by

N (2D) + gl(x) + z g2 (x) + y g3 (x) (117)

where 4 (2D), Reference 20, is the two-dimensional solution of the boundary

value problem, and gl(x), g2 (x), and g3 (x) represent the indefiniteness of

the solution which may be determined by the matching procedure with the far

field behavior of the fluid motion. In the above solution, we include

terms up to the second order, but we have omitted terms of O(c2) in the

expansion of the free surface condition, so that the third and fourth terms

on the right-hand side of the above expression must be deleted. Then we

are obliged to take the expression

4,-4 (2D)
N + gl(x) (118)

The free surface condition in the far field, on the other ha:id, takes a

different form because the differentiation with respect to y or z does not

affect the order of magnitude. Therefore, the leading term of the equation

gives simply the linearized boundary condition as follows.

(a +U- ) 4+ g- 0 at z = 0 (119)

For the periodical motion with circular frequency w, we can write the

complex form as

)= eiw t  (120)
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and the boundary condition on the free surface becomes

-W + 2 i U W !- + - + g 41= 0 (121)

The Green's function for this boundary condition is

-G(x,y,z;x',ty' , ) = _ + i__

rI  r 2r1  2

_0o 0

2.2{cos(nz+) cos(nz'+c) - cos nz cos nz'}/ m +n

CO

+2f dm exp[(z+z') (mU+w)2 /g-y-y'j m2 (mU + ) 4 /g 2

-im(x-x')] (mU+W)2 / m2 -(mU+W)4/g 2  (122)

where

r I = (x-x )2+(y-y)2+(z-z,)
2

= (x-x')2+(yy,)2+(z+z,) 2 (123)

2
tan c = - (mU-w) /gn

If the radical in the last integral becomes imaginary, it has an appropriate

sign in accordance with the radiation condition. The outer solution is
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expressed by means of this Green's function. This can be achieved by the

application of Green's theorem in similar fashion to the problem of steady

forward motion discussed in the former section. Because of the slender

body assumption, the first order solution takes the form in which the

singularities on the hull surface shrink to a line distribution of wave

sources along the x-axis. Then the far field potential is expressed by

F= - eiwt fm(x') G(x,y,z;x',O,O) dx' (124)

where m(x) is the source density which is determined by the matching

procedure between the near field and far field solutions. Thanks to the

simple condition Do/az = Oat z = 0, the source density can be determined

in a simple way such as

M -(x iw+U [B(x) (zg-xi-w) (125)

where B(x) is the width at the water plane at each transverse section of

the ship. The unknown function gl(x) is determined by the inner expansion

of the far field potential and the final result becomes

=(2D) _ 2fd m(x') sgn(x-x') kn(21x-x'l) dx'
N - I

-fm(x') G'(x,O,O;x',O,O) dx' (12b)

where

G'(x,y,z;x',y',z') = G(x,y,z;x',y',z') 1 1 (127)
r1  r2

We have assumed that m(x) vanishes at both ends of the ship. One can

formulate the forces and moments acting on the ship by the integration of
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pressure on the hull surface, such as the added mass and damping. Numerical

computations are not so simple and may require much computer time, if the

forward velocity is taken into account, but they are possible at any rate.

There has been some attempt of calculating the added mass and damping of

a ship making forced heaving and pitching oscillations during forward

motion in still water. However, it has failed to obtain any useful result

because the numerical results show very unrealistic features, in spite of

a rational appearance of the formulation. This fact will be discussed in

another section.

Various Cases of the Order of Magnitude

of Frequency Parameter and Froude
Number

In the preceding section, we have assumed that the frequency parameter

of oscillations and Froude number are both of the order of unity, and it

was expected that the theory was valid without any restriction in magni-

tudes of frequency and forward speed. However, the results were quite

disappointing. It was noted, on the other hand, that the different choice

in the assumption of the order of magnitude of frequency parameter or

Froude number might result in different formulation. The discussion of the

order of magnitude in the boundary condition may derive different solutions

for different assumptions. Here we will consider cases that the Froude

number is not so large, or the frequency of oscillations is not so small.

Now let us begin with the case of low Froude number. The Froude

number of conventional merchantile vessels is not much greater than 0.3,
2 -1 -1

so that the speed parameter U /gk = Yl is of the order of 10 , which may

be regarded as a small parameter. Therefore, let us assume that U/4'z =

O(c 12). The order of magnitude of the radiation potential is 6c but the
1/2

effect of the forward speed appears in the term of the order 6 c . The

lowest order term in the free surface condition has the order of 6 and the

next order is 6c. If we take up to the order of 6c, the free surface

condition in the near field becomes

a + g "--I + U r w2 = 
0 at z = 0 (128)at2 3z2
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Therefore, we can take account of the effect of forward speed in the

boundary condition on the hull surface without bothering about the quadratic

terms in the free surface condition making the boundary value problem in-

tractable. The near field potential for the radiation potential is

determined from the two-dimensional boundary value problem with the

linearized free surface condition for an oscillating body such as

R 2
R gw R = 0  (129)

The well known method of solution for the two-dimensional problem can be

applied to the determination of the two-dimensional potential .(2D). The

solution, however, is not identical to that for an oscillating cylinder of

infinite length because of the term involving the forward speed. The

results from the boundary condition on the hull surface,

R

{iw(z -xi)-U} - - U(z 9- aW0
,g a -n' g 3n' (130)

The last term on the right-hand side may add some complication. The

velocity potential in the near field is then expressed by

N (2D) + g1 (x) + z g2 (x) (131)

The term yg3 (x) which appeared in Equation (117) is omitted because of tile

symmetry of longitudinal oscillations. It is readily shown that there is

a relation

2

g2 (x) = W (132)

because of the free surface condition. The function gl(x) is determined by

matching with the inner expansion of the far field potential. Since we
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112
have assumed that the Froude number is of the order of c, we expand

the far field potential which has been given in the preceding section by U

and discard terms of higher order. The result is

g1 (x) - 2 fdm(x ' ) sgn(x-x') tn(2x-x'I) dx'gl~x = J dxi

+ 7r vfm(x') IHo(Vlx-x'l)-Yo(vlx-x'J)] dx'

dm(x') F[

+ 2 IT i dx' H0(VIx-x'l)-Y0 (VIx-x' )

+Vlx-x' I -H(I x-x I )+YjVIX-x' I) dx'

+ 2 R i v(1+40 2)fm(x') e2 ivQ(x- x ') H(2) (vx-x'l) dx'

(f33

-4 7T V Qfm(x') e2iv (xx') H2) ( v l x - x ' l ) dx' (133)

where v = 2/g

= Be U/g

HO = Struve function

Y0,YIH0( 2 ) = Bessel functions of the second and third kinds

Because of the term zg2 (x), the boundary value problem becomes a little

different from the pure two-dimensional solution for (2D). The most

remarkable feature of this case is that the two-dimensional solution is

related to the free surface condition

3 - v (2D) = 0 (134)

instead of that for the double body flow given in the preceding section.

This is the consequence of taking the second term of the perturbation
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expansion. Though the free surface condition does not involve the forward L
velocity, the hull boundary condition does.

Another choice is the high frequency case. The order of magnitude of

the frequency parameter is assumed to be C/. In the first place, we

assume the Froude number still remains in the order of unity. Because of

the relation

K 2 (1+2 Q cos x- V+_4 co S (135)2 2  2

1/2
the ratio of wavelength to the ship's length is of the order of t , so

that the wave is not extremely short. Since the wave slope is of the
112

order of 6, the wave amplitude is of the order of (S . The velocity of

the orbital motion of wave is 0(6), so that the order of ql is 6 t. In the

boundary condition on the hull surface for the radiation potential, namely

U--n-- UR  z -xz) - 3( °
= i W(Zg Xt) - - g 'U(Z gX \) (136)

the first term is of the order of 6, while other terms which are related to
112

the forward speed are of the order of 6 c On the other hand, the

lowest order of the free surface condition is 6 and the next is 0 1/2 If

we take the lowest order terms only in both boundary conditions, the so-

lution is in the case of zero forward speed. We can discuss the effect of

the forward speed by taking terms of order 6 c2. In this case, the free

surface condition for the radiation potential becomes

2 2 22a 4) R  aq R  D2 bR D 0 )2¢R  20 qR

-2 + g _ + 2 U + 2 U y U 0 (137)
2 z ta y Dtacy 2 ,t

Because of the terms except the first and second ones, we cannot solve tile

boundary value problem in two dimensions by ordinary methods. Ogilvie and

29
Tuck employed a successive method by which the solution for the above
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boundary condition was derived from the solution for zero forward speed.

The solution obtained involves integrals over the plane z = 0. It seems

of some interest that the outer solution for the radiation potential takes

a degenerated form like

a ri m(x)
R i 4i m(x)+2iQ(z-i yl) dx exp[iwt+v(z-ilyl)

]  (138)

The first term in parentheses means a simple harmonic plane wave propagat-

ing outwards in the y direction, while the second term is related to the

variation of the source density along the x-axis which means the inter-

ference between different sections. An extensive discussion of this case

is given by Ogilvie and Tuck and will not be reproduced here.

Next we consider the case of high frequency with low forward speed,

that is w = 0 (C-I/2), U = 0(e
1 /2). This is the case of short waves such

that the wavelength is of the same order as that of the breadth of the ship.
3/2In this case, the order of magnitude of is 6 C The free surface

condition becomes

2

-t- + g--= 0 (139)

1/2 3/2
up to the order of 6 c The next term is of the order of 6 C3, which

includes the effect of the forward speed, but has quadratic forms. There-

fore, the ordinary linearized treatment can be applied to the first order

only, by which the effect of the forward speed cannot be taken into

account. The asymptotic form for the outer solution for the radiation

potential takes the form

4i eit + v(z-ilyl) m(x) (140)R g

that means outward-going plane waves. There are no three-dimensional terms

involved and the solution is purely two-dimensional. The strip theory is
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then valid but without any effect of the forward speed. It should be noted

that the diffraction problem cannot be treated in the same way, because the

assumption of the slow variation along the x-axis is no longer valid. The

diffraction in short waves will be discussed in another section.

Hydrodynamic Forces in Heaving and
Pitching

It is widely known that the hydrodynamic forces and moments acting on

oscillating ships are predicted by strip theory with fairly good accuracy.

However, the reliability of the strip theory is still open to doubt as

discrepancies between computed and measured results are observed occa-

sionally. These discrepancies may be attributed to the effect of the

forward speed and fluid motion in three dimensions. In the preceding

section, we have observed that both the forward speed and the three-

dimensionality can be taken into account within a plausible approximation

of the perturbation scheme, if the forward speed is of the order of 1/2

where C is the beam-to-length ratio.

The hydrodynamic forces are obtained by the integration of pressure

over the hull surface. The fluid pressure in the near field is given by

1i D j2D) D (2D) 3 (2D) (2D)

(p-p0) = i W h + U I + U _ y -- + Uz 1 (141)

up to the order of 6c. The hydrostatic pressure is omitted because it is

simply determined by the geometrical relations. Although the third and

fourth terms are omitted in the usual linearized theory for oscillating

ships, they appear in the same order of magnitude as the second term, so

that they have to be retained if one wishes to take account of the effect

of the forward speed. The vertical force is given by the integral

F =- (p-po) dS (142)

2 f 0 Dn
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Although the quadratic terms in Equation (141) seem to be troublesome in

evaluating the above integral, a theorem which has been proven by Tuck
30

becomes a powerful aid. The theorem is proved in Appendix B. Consider a

velocity vector V of an irrotational motion of an inviscid fluid outside

the hull, which satisfies the boundary condition on the hull surface such

as

V • n = 0 (143)

where n is a unit vector along the outward normal to the hull surface.

Next we define the vector m by the relation

!n -n- (144) 4

Further we define vectors n and m by*
(145)

m = - (rxn)

where r is the position vector (x,y,z). Then, the following relations are

valid.

fins [04+ n(VcV)] dS f L w d } (146)

[m *+n*(V-Vo)] dS - n w d s

0

where w is the z-component of V and L0 is the still waterline of the hull.

The line integral on the right-hand side is omitted when the body is
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slender and wall-sided at the water plane. For the vertical force, we take

the z-component of the first equation, while for the pitching moment, the

y-component of the second equation is taken. In the present case, we put

(U, U - U a-/ (147)

y 3z

Next we define vector functions X, p, X , and _) , which are two-dimensional

harmonic functions in the lower half space outside the ship and satisfy the

boundary conditions on the hull surface, such as

, U 
(148)

D- 4~T-n n U U5n m

Furthermore, these functions are assumed to satisfy the free surface

condition

0 at z = 0 (149)az

We have expressed the near-field expression of the radiation potential for

a slender ship by

N= (2D) + (l+vz) gl(x) (150)

Then, the vertical force is written in the form

F = pfdx i w -- dc
z Jan'

C (x)

f I (2D) 3 (2D) 3(2D) 13 2D) 3(2D)! z_0,,1

+pdx u + yD + - - dc (151)

C(x) (cont.)
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+fdx {iwg(x)+Ugi(x)} ( a+vz) a dc
C Cx)

where C(x) is the contour of each section along which the integral with

respect to c is taken. On applying the above mentioned theorem to the

second term, we obtain

(2D) 3z

PJXJ iwc ~ an'dC(x) +

" P dx U '0 \-- ( 2 D ) dc i

c(x) \ /

+ Pf {iWgl(X)+U gi(x)} {-B(x)+VS(x)} dx (152)

The last term is derived by the application of Gauss' theorem in which

B(x) and S(x) are breadth at the waterline and sectional area of each

transvert.* section, respectively. If we write the z-components of X and

by Xz and zp respectively, the two-dimensional part of the radiation

potential is expressed as

0(2D) = {iw(z g-xY)-U1} Xz + U(Zg-X) 'Pz (153)

Then, the vertical force is written as

S z= -pfdx {W2(z-xtp)+iWU} xz dc

+ i P C Ufdx (ZgAXzn) dc+ c(x)

+ i P Wo U dx (zg-XP) Lz  dc

11

C(x)

- p u2Jt x (Zg-XP) J zP -- dc (154)

C x) ( _
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- Pf{iW l(x)+Ugi(x)) {-B(x)+vS(x)} dx (154)

Because of Green's reciprocal relation, which can apply to xz and i z' such

as

Xz dc-i-de = q z  dc

(x) C(x)

the second and third terms are cancelled. Therefore, we obtain

Fz - g f
C(x)

- P U2 dx (zg-X) dc

C(x)

+ P iw{B(x)-VS(x)} +U - {B(x)-VS(x)} gl(x) dx (155)

The last term is derived by integration by parts. If we assume U =0( 1/2

and omit the term of O(6 2 ), the second term drops out. A similar ex-

pression is obtained for the hydrodynamic moment about the y axis. The

first term indicates the result obtained by the strip theory, and the other

terms give the effect of the forward speed and the three-dimensional motion.

Numerical Results of Radiation Problem
at Zero Forward Speed

Although numerical analysis works when the forward speed and tho

effect of three-dimensionality are present, no published result of this

kind is known so far. There is a rather comprehensive result, on the other

hand, for the case of zero forward speed by means of a similar formu-
lation. 31 It is obtained simply by letting U = 0 in the original formula

for finite speed with no substantial difference in the method of numerical
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calculation. The result can well illustrate the effect of three-

dimensionality of the fluid motion which is remarkable at lower frequencies.
iwt

In the first place, let us put 4 = e i and express the two-

dimensional solution for a heaving cylinder in the form as

(D (2D) a [ a0 o e kz cos hy dkTrieKZcos Ky(D)= 0 e k-K

a m _2m-i _2m-2

- 2m L l z +K .zmm _----- (156)

m= l ziy az+

It is readily shown that this expression satisfies the free surface

condition

30 - K ( = 0 at z = 0 (157)

where K = V = 2/g in the present case. Since the inner expansion of the

above function is

4(2D) = a0 [knKr+y+Kr cos 0 (l-ZnKr-y)+KrO sin 6+7i]

+ a2m Kr]

+ - [cos 2mO+ 2  cos (2m-l)0 (158)

m
= l r1 m2-

where we have employed the cylindrical coordinates

z = - r cos 0, y = r sin 0 (159)

and y is Euler's constant, 0.5772157.

In order to make the inner expansion of the far field potential match the

above, we employ the expression in the near field as
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= A2D) a0 (1+Kz)(y+ri)

- (I+Kz) a;(x') sgn(x-x') kn(2KIx-x'l) dx'

2f k

+ I K(I+Kz) a 0 (x') [H 0 (Klx-x'I)+Y0 (Klx-x'l)

+2iJ 0 (Klx-x'I)] dx' (160)

where x = +k is the x coordinate at each end of the ship. The second term 4
on the right-hand side is added to conform to the expansion of the two-

dimensional solution. We can rewrite the above expression as

(P= D(2D) + 1 (l+Kz) a;(x) N(Klx-x'j) sgn(x-x') dx' (161)

where

N(u) = - y - Z n 2 u + J (u') du' + J Y0 (u') du' - i i

0 0

+ 7T u { J0 (u') du' (162)

0

It can be shown that

Zim N(Kjx-x'j) =0

K-6
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so that the three-dimensional part vanishes when the frequency becomes

infinite, and the fluid motion becomes purely two-dimensional for which

the strip theory holds exactly.

Now let us consider the boundary value problem. When a ship is in

heaving and pitching oscillations, each transverse section has a vertical
iwtvelocity V(x) e , where V(x) is related to the mode of the oscillation.

When the slender body approximation is employed, the boundary condition
iwt

satisfied by the velocity potential 0 e at the surface of the body is

n V(x) L (163)

If we introduce the expression for 4, given by Equation (161), the boundary

condition can be written in the form

34)(2D) i axNKxxlsnx,) x  3z
n' = (x)--! K a N]n (164)

Here we introduce the solution of the two-dimensional problem of a heaving

cylinder for which the boundary condition at the body surface is

3n' = @n---z (165)

With this solution, we put the coefficient of the source term as

a 0 = A0  (166)

Then the coefficient a0 for the boundary condition of Equation (164)

satisfies the equation

a0(x) = (x)- - K a(x')N(Klx-x'l)sgn(x-x')dx A0 (x) (167)
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The coefficient A0 can be determined by the method well known in the two-
dimensional theory of a heaving cylinder. Then we can determine a0 by

solving the above equation. However, we need not solve the equation

exactly. The reason is as follows. If the frequency is very low or to the

contrary very high, the integral on the right-hand side can be neglected.

So we can put

a0 (x) = V(x) A0 (x) (168)

It may be assumed that the deviation from the above relation at inter-

mediate frequencies is not large. Therefore, we approximate

a0 (x) = (x)- 1 K {V'(x')A 0 (x')+V(x')A;(x')} N(Klx-x'l)sgn(x-x')dx

x A0 (x) (169)

In order to determine other coefficients, we substitute V(x)A(x) for a 0 in

the boundary condition and put

W(x) = 2 K f {V'(x')A 0 (x')+V(x')A;(x')} N(KIx-x'l)sgn(x-x')dx' (170)

Then the boundary condition becomes

N (2D) 3l
3n' = [V(x)-W(x)] n3Z' (171)

The solution of the two-dimensional problem with this boundary condition

determines other coefficients a2m. We can rewrite the function a0 (x) and

W(x) in the following form for numerical purposes.
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a0(x) V(x) A0 (x) [i-1 KA0(x){N(KIZ+xl)+N(KI-x)

12 -K A0(x) [V(x')A 0 (x')-V(x)A0 (x)] N'(Kjx-x'l)dx' (172)

-9

W(x) = K V(x) A0(x) {N(KIQAxI)+N(KI9-xI)}

+ g2 j [V(x')A 0 (x')-V(x)A0(x)] N'(KIx-x'I)dx' (173)
-9-

where

N'(Kjx-x'j) = - O+(KIx-x'J) + E Y0 (KIx-x'J)

+ Iii J0 (Klx-x' I) (174)

The vertical component of the force acting on the ship by the fluid

pressure is given by

F = f - -zp

Snp dS (175)

S

and the moment about the y-axis is

M= ff ( x- - z) p dS (176)

S

The second term in the parentheses can be omitted because of the slender

body assumption. Then the vertical force and the pitching moment on the

slender ship are given by
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F dxf -in' d s f(x)dx (

-£ (x -£ (177)

f t x n' ds f(x) x dx

-z C(x) -k

where C(x) is the contour of each transverse section. The function f(x)

gives the force per unit length at the section. If we divide the velocity

potential in two-dimensional and three-dimensional portions as

= eit (4)(2D)+4)(3D)) (178)

we can write

f(x) = i P W f (D(2D) Dz ds + i p w f ,(3D) az dsn'T n'

C(x) (x)

= fl(x) + f2 (x) (179)

Now take the added mass m and the damping coefficient N for a heavingZ Z

cylinder of infinite length. Then the two-dimensional portion of the

sectional force is expressed by

fI(x) = - (iunz+N Z) [V(x)-W(x)] (180)

while the three-dimensional portion has the expression

f 2 (x) = i P W S(x) - i P gL B(x) W(x) (181)

where S(x) is the area and B(x) is the waterline width of each section.
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F1

In pure heaving, we put V(x) = iwz and we can write

iWt 2
f(x)e - m 4mz) (-w2Zg) - (N z+N;) i w Zg (182)

where m' and N' indicate the three-dimensional effect to the added mass
z z

and damping coefficient, respectively. In the case of pure pitching, we 4

put V(x) = - iw4 and we can write

f(x)eit = (m Xfm") W2 + (N x+N") i w 4 (183)

Z Z z z

Here we put

* * (184)i
a =m +m' b =N +N'

z z z z
(184) ,i

d m x + m" e N x + N"z z z z h

and define the following integrals.

a f a dx b f b dx

d f d dx e = e dx

-9 -£

(185)

A f d x dx B = e x dx
-9. -£

D= a x dx E = b x dx

-i -9
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These constants give hydrodynamic coefficients in the coupled equation of

heaving and pitching as follows.

(a+pV) Z + b Z + c z - d- e$ - g = F
g g g

(186)
(A+k2 pV) " + B + CIP - D z° -E z - G z = M

yy g g g

where V is the displacement volume and k is the radius of gyration. On
YY

account of Haskind's relation, we have the relation

D = d E = e (187)

For numerical example, the hull form of Series 60, CB = 0.7 is employed

because reliable data of model experiments have been available for

comparison.

The coefficients a , b , d , e , and also a, b, A, B, d, and e are

calculated. They are compared with results computed by means of the strip

theory and the measured results, as shown in Figures 5 through 7. One can

X i0- 2  X 10 -2

-X -- PRESENT CALCULATION 0

2.0 .... ORIGINAL SLENDER 2.0
BODY THEORY
STRIP THEORY

o EXPERIMENT BY GERRITSMA
AND BEUKELMAN

I
-1.0 1.0

I I
0 5.0. 0 5.0

K L/2 K L/2

Figure 5 - Hydrodynamic Coefficients a and b
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1.0 1.0

Cp 1

I

0 5.0 5.0
K L/2 K L/2

Figure 6 - Hydrodynamic Coefficients A and B

0.0 Ll0.0-

-0.5 -0.5 L-"--_
5.0 5.0

X 10 - 3  KL/2 x 10 - 3  KL/2

Figure 7 - Hydrodynamic Coefficients d and e
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observe a remarkable improvement in agreement with measured results by the

calculation including the three-dimensional effect, especially at lower

frequencies. One of the reasons of deviation with the results by the

strip theory may be attributed to the logarithmic term, knKr, in the two-

dimensional solution which makes the added mass infinite at zero frequency

limit. The three-dimensional part of the velocity potential has a term

which cancels the above logarithmic singularity.

The application of the simple slender body theory, which has been

described in an earlier section, presents such an unrealistic result as

negative value of added mass and infinite increase in damping coefficient

at higher frequencies. Computed results for the source term a0 (x) are

shown in Figure 8. The result by the simple slender body theory which

datermines the near-field solution by the condition for a double body

shows much deviation from other theories. This fact may be the main reason

of the ill behavior of the slender body calculation. The fair agreement

between strip theory and the present calculation suggests that the source

term can be determined by the two-dimensional calculation without regard

for the three-dimensional effect, or a0 (x) V(x)A 0 (x).

x 10-
2

.0- /\ -100

2.0
-150

S-18 00

A.P - F.P.

Figure 8 -Source Distribution
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As explained in the preceding section, the present theory is a conse-

quence of the inclusion of the second term in the slender body expansion.

Nevertheless it is by no means a second order theory, but still a first

order theory. The formal perturbation procedure, taking successive

approximations, starting from the lowest order term and proceeding to the

second order approximation, never leads to the same result as the above.

This fact is a peculiar feature of the asymptotic expansion of the singular

solution such as the present problem.

WAVE PRESSURE ON SLENDER SHIPS

Boundary Value Problem for the
Diffraction Potential

Although the strip theory is employed in the usual practice of pre-

dicting wave exciting forces on ships, the diffraction problem does not

admit the use of the strip theory in longitudinal waves. Although the

strip theory is an acceptable approximation in high frequencies for the

radiation problem, the short wavelength associated with the high frequency

invalidates the condition of slow variation along the ship's axis. In the

case of long waves, on the other hand, the frequency becomes low and the

three-dimensional effect comes in as in the radiation problem.

Now we consider first the case of a ship with forward speed in long

waves, so that we assume U and w are both of order of unity. The boundary

value problem for the diffraction potential has been given previously, but

its solution needs some contrivance. The boundary value problem in the

near field is the two-dimensional Laplace equation

2 2
32 D +2'D2 + 2= 0 (188)

y az

with the hull surface boundary condition of Equation (104)

D - (189)
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and the free surface condition of Equation (114)

D 2 0
S U at z = 0 (190)

w 2

If the incident wave propagates along the direction of x, w is constant in

the Lransverse plane. Then the function

'= D + U Cw Dz (9)!

is a plane harmonic function in the lower half space. The boundary

condition for it is 4

+ w U (10) (192)
an' -n+u wn' \ z

on the hull surface, and

= 0 at z = 0 (193)3z :

If we take only the first order terms, we can write the hull surface

boundary condition as

-nw 9z + a 0 (- (194)

or

n w t  + U C n--- / (195)

70



This is the same form as the hull boundary condition of the radiation

potential for heaving, because the latter is

R - z z - U z T ( 0) (196)
g n gn 3z

Therefore, the diffraction is taken into account in the hull boundary

condition by replacing the vertical movement of the section by the relative

displacement to the surface of the incident wave. This relation holds in
1/2

the case of U = O(e ) too. Then we can take up to the next term, so that

the relation is to be modified as

-i W Cw(l+Kz) -n,+ Uw - 0 - -- (197)

Kz.

The added term Kz comes from the exponential factor e zn the incident

wave potential and indicates the Smith correction.

The boundary value problem for the diffraction potential is now re-

duced to a similar form to that for the radiation problem. The field

equation for the potential P' is the two-dimensional Laplace equation

2 z2

2- + 0 (198)

with the hull boundary condition given above. The free surface condition

at z = 0 is

0 when U= 0(l), W= 0(i)az

or (199)

_, 2 = 0 when U = O(1/2 0(l)

az 7
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Therefore, the inner solution for the diffraction potential in the case of

w = 0(l) is expressed by the form

0 = ,(2D) _U w -1- + i+ w x 20
- - -- zgx )U(200)0g

where ' (2D) is the solution of the two-dimensional problem with the above
2

mentioned boundary conditions. The factor w z/g in the third term on the
1/2

right-hand side can be added only when U = 0(C ) and should be omitted

in the case of U = 0(l). Another case to be considered is w = 0(C /).

This is the short wave case, but some complication appears if we apply the

slender body theory. The basic idea of the slender body is that the field

equation in the near field can be reduced to the two-dimensional Laplace

equation. However, the short wavelength hinders the above possibility. In

the case of w = 0(c ) with U = 0(l), the ratio of the wavelength to the

ship's length is A/Z = O(c /2 ) and the variation of the flow field along

the x-axis is related to the wavelength. If the order of the diffraction

potential is 6 c, the order of magnitude of each term in the Laplace

equation in the near field is

D2 D 2 D  2 D

-- ++ =09x2 + y2 z2

(5) (F-c) (C 1)

Therefore, omitting the term of higher order than c, we get a two-

dimensional Laplace equation. However, the omitted term in the long wave
2

case has been of higher order, C . Therefore, the validity of the two-

dimensional equation becomes much weaker in comparison with the long wave

case. This may damage the accuracy appreciably. The free surface

condition in this case is

2 D D 2 D 10 25D 2 D 2

2 +g -+ 2 U -tx + 2 U +y t~y -z 2  -t + glT - 2 =1 z 0

at z = 0 (201)
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if terms of order 6 eI/ 2 are retained. The terms involving the effect of

steady forward potential prevents the straightforward solution, so that

this case should not be used for the practical purpose of prediction.

If the forward speed is low, namely U = O( 1/2), the ratio of wave

length to ship's length is of the order of c. Since each term in the

three-dimensional Laplace equation has the same order of magnitude, its

two-dimensional version is no longer valid. Therefore, the strip theory is

not applicable to the diffraction problem in the longitudinal waves. An

alternative method for the diffraction problem in short waves will be

discussed later.

Wave Pressure and Hydrodynamic Forces

As was mentioned before, the diffraction problem requires not only the

integrated total force, but some local quantities such as wave pressure at

each point on the hull surface and the distribution of forces along the x-

axis. If we write

=D + w (202)

the periodical pressure on the hull surfi-P is given by

1 + - (203)1 ! (P-Po) =  i W $ + U 21 + O '-- 1- _'y (203)

~(Po = ax ay ay Dz az

up to the order of 6 C, if U and w are both of the order of unity. Al-

though the third and fourth terms are omitted in the usual theory, they

appear in the same order as the first and second terms, so they have to be

taken into account if the effect of forward speed is considered. The

vertical force is given in the same way as in the radiation problem, so

Tuck's theorem can be applied again. The vertical force iL; given by

Fz = P iw$+U g+U A- +U _ - -nd

= ( iw4 _-U a dS (204)

S
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At a great distance from the ship, the diffraction potential PD and the

incident wave potential w satisfy the linearized free surface condition

( ~ 2
U + g 0 at z = 0 (205)

ax az

However, the boundary condition for D at z = 0 changes near the ship as

was pointed out before. Instead of D' we can define a function ; which

satisfies the above free surface condition even in the near field. We

assume that cD coincides with PD in the far field, while it coincides with

4' in the near field. Then in the near field, we can put

= D+ 'w

U 0 +  (206)

Since the boundary condition on the hull surface is

an

the boundary condition for 0' becomes
D

-- = U C 0 1/ -bn- 
(207)

Next we assume the auxiliary functions X and iz satisfy the boundary

condition

iw-U -yx 4+ g - 0 at z - 0 (208)

and evaluate the integrals
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V
dS and j dS
an an

We have the relation which is derived by Green's identity.

[ (P+'w) an - x a 0;0) dS

aw n z n dw

where Z is a vertical cylinder of large radius surrounding the ship. We

have omitted a line integral term which can be assumed small because of

the slender body assumption. Because of the boundary condition on the hull

surface, there is a relation

f%0w dS U "0 J suzwy dS

while the radiation condition satisfied by D and Xz gives

ax a3n -X, / dS 0

Therefore, we have the relation

(€;+¢w) -- dS = XU -- z dS

S 7 S

75w n z -n/
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Therefore, also

f f N dS U az /X-U Cw 0 az n dS

+ -Xz n / dS (209)

The same relations hold when x is replaced by z" Then the vertical force
z

is expressed by

F =p --n -z (iWXz-U 4Z)

aqD a (iWXz-U 1Z) dS

Ow' (iWX -U )- - (iwXz-U lZ)j dS (210) L

JJ w z an
If

If there is no forward speed, we have

Fz =i w ( w- XZ D-n-/dS (211)

This relation is called the Haskind relation. The functions andiz are

related to the solution of the radiation problem. Therefore, the above

relation enables the wave excitation to be evaluated without solving the

diffraction problem. Similar relations are obtained for pitching moment

too.
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Wave Pressure in Short Waves

When the order of magnitude of the frequency parameter w//g is E
- 112

the variation of the diffraction potential along the x-axis is no longer

small. Therefore, the slender body assumption, in which the flow field

varies slowly along the axis of the body, does not hold, and the strip

theory is by no means applicable. We need not worry about this fact, as

far as the total force or moment is concerned, because the total force be-

comes very small and unimportant in short waves. However, we need another

theory if we intend to discuss more local phenomena such as pressure on the

surface of the body.

In the case of a long ship in a heading with the propagation of short

waves, one may think of an infinitely long cylinder placed in waves with

its axis parallel to the propagation of the wave. However, it has been

shown by Ursell32 that there is no steady state solution in this case.

The fluid motion is highly three-dimensional and cannot be replaced by the

two-dimensional solution. However, there is an acceptable assumption which

A can reduce the boundary value problem to a much more simplified form.

That is, the variation of the diffraction potential in the longitudinal

axis of the ship deviates from the sinusoidal variation very slightly.

Here, we consider the case of w = O(E-/2).

As mentioned before, it is not easy to formulate the linearized so-

lution of the boundary value problem in the case of w = 0(C I 2 ) and

U = 0(i). If U = O(C /2), the effect of the forward speed appears only in

the higher order term. Therefore, we will confine our discussion in the

case without forward speed. The velocity potential of the incident wave

which propagates in the positive x-direction can be expressed by

w = c h exp(Kz-iKx+iwt) (212)

where c = g/w is the phase velocity of the wave. Now let us express the

diffraction potential in the form

D= (x,y,z) exp(iwt-iKx) (213)
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According to the assumption stated above, the function (x,y,z) varies

very slowly in the x-direction. In order to facilitate the analysis, we

take the Fourier transform of D such as

f D eik x dxe f if x dx

iWt
f e (k-Ky,z) (214)

where T is the Fourier transform of i. The diffraction potential satisfies

the Laplace equation

32'D 2 2D
2 + 2 + 2 = 0 (215)ax 
2  ay 2 az

2

and its Fourier transform is

2- 2-
-2 T + O 2 (216)

Substituting the above mentioned expression for the diffraction potential,

Equation (214), shifting the first term of Equation (216) to the right-

hand side and putting k - K = k', we obtain

y2 +2
Dy 2 az

The basic assumption of the slow variation of P suggests that, if i - 0(l)

then P(k',y,z) = 0(1/k'). Therefore, k' must be 0(1) if TD - 0(l). Since
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K = O(e - ) and the singular perturbation in the near field suggests

a/ay = O(C -1), D/az= 0(e- ), we obtain for the lowest order, the

Helmholtz equation

2-12-
2!i+- (218)

2 2
ay az

or, by the Fourier inversion,

y2 K 2 (219)

ay 2 z2

The omitted terms are of the order higher by c. If we employ the cylindri-

cal coordinates r, 0,

z =-r cos 0, y = r sin 0 (220)

particular solutions of the differential equation are

I n(Kr) cos nO (221)

K n(Kr) sin nO

where I and K are Bessel functions of imaginary arguments.n n

Since the forward velocity is absent in the boundary value problem, the

boundary condition on the free surface for the diffraction potential

applies to the function i too.

-- 0 at z = 0 (222)az

One can construct a solution which satisfies the above equation and

vanishes at infinity by combining the basic solutions of Equation (221)

as follows.
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n= K2n-2 (Kr) cos(2n-2) 0 + 2 K2n-1 (Kr) cos(2n-l) 6

+ K2n(Kr) cos 2 n (223)

However, this type of function does not form a complete set and we cannot

express the diffraction potential which satisfies the body boundary

condition by means of the linear combination of these functions. In order

to find the missing term, we consider a distribution of wave sources with

density 1/2 a(x) e iwt-iKx along the x-axis. Taking the Fourier transform

of O(x) such as

00

(k) = f 0(x) e i kx dx (224)

ict
we have the velocity potential of the type e X, where

-KK eKZ { I exp[iK -,tYl] y(-a-K) d(
3-K 2_t2

ic -K f W1 2 co v 92.

+ K e K z  + exp[ iox-/O2-KL _(-)-K) d¢j

K /01 i2_x 2

+ ± ( e o(-Q-K)d,' - __ os z+K sn ue -uyI-T f 2 2 "

i1 u - et + K (225)

Now we change the variables of integration to

ct + K =p Vu = Kv (226)
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and assume the slow variation of C(x), such as

(k) = 0(1/k)

and Ky = 0(1), Kz = 0(1), because the wavelength is comparable with the

breadth of the body. Then the asymptotic expression of the above integrals

for large K leads to the following expression.

X
2 e Kz - i Kx - i ir/4 d '( ) di

f J r d-E

xe-iKx  2 v cos(Kzv) + sin(Kzv) -Kyj /2+l

0 (v2+I) v+

-(2ffKy+i 2) e~ (227)

where x = - k is the forward end of the body. The second term is the two-

dimensional part of the potential, while the first term gives the three-

dimensional effect. Because of the presence of the factor A in the first
1/2term, the order of the second term is higher by C/. If we take the

lowest order term only, we can omit the second term. Then the boundary

value problem becomes extremely simple. The boundary condition on hi

hull surface is

D w (228)

an'= an'

If we write

n' a y  n' Dz(29
y an' I an' (229)
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the boundary condition can be written as

= Kz

n; + n; K c h n' e (230)y 3 z z

It is known that the above condition caLn be satisfied by putting

iKX (231)

and the density of the wave source is determined by such a simple equation

as

x 4
- / (s) d, + c h= 0 (232)

This is Abel's integral equation, the solution of which is

i1T/4

o(x) =c h e (233)

213K 3(x+k)

33

This approximation was actually given by Faltinsen who calculated the

pressure and force acting on a body with semicircular cross section.

However, the solution shows the density of the source being infinite at

the forward end of the body which results in an infinite pressure there.

Such things never happen in actual phenomena. In order to eliminate this

difficulty, one has to retain other terms in the expression of IP other

than the lowest order. In this case, the function i is expressed by a

linear combination of X and T as
n

x

=AK- eKz-i1/4 ( ) d,-

I ~ ry

+ (J(x) ( - i j - e Kz + Pn -
n (234)

n= n
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where

0 =2 F v cos(Kzv) + sin(Kzv) e-K yJ /v+l vdv
0 f2 /2

0 (v2+l) v+

- 2 i Kl eKz (235)

The coefficients pn can be determined independently from o(x) in the

boundary condition, while C(x) should satisfy an integral equation of the

Volterra type of the second kind. The solution of this integral equation

never presents a singular behavior. Numerical results for the pressure

distribution on a body with semicircular cross section are compared with

measurements as well as the results of the lowest order approximation and

those by the strip theory. 34  Fairly good agreement with measured results

is obtained by the present calculation as shown in Figures 9 and 10, while

1.4

PRESENT METHOD X/L = 0.621, 0 = 40 DEGREES1.2
FALTINSEN METHOD
STRIP METHOD

1.0 * EXPERIMENT /

0.8

0.6 -

0.4 -

0.2

0
0 I 1 I I I
A.P. 1 2 3 4 6 7 8 9 F.P.

Figure 9 - Distribution of Wave Pressure
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Figure 10 - Wave Pressure at Square Station Number 8

remarkable discrepancies are observed in the results by the lowest order

approximation and those by the strip theory. It should be noted that the

present solution can never be derived by the successive method starting

from the lowest order approximation. This then is another example which

illustrates the importance of the inclusion of terms next to the lowest

order in the asymptotic expansion.

ADDED RESISTANCE IN WAVES

Formulation of the Steady Drift Force
in Waves

When a ship floating on water encounters incident waves, the hydro-

dynamic pressure on the hull surface is periodical which yields periodical

forces and moments acting horizontally on the ship. They are called wave

excitations or wave loads.
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However, the ship experiences another kind of horizontal force which

is independent of time. Such a force is usually called the steady drift

force by the wave. When the ship is travelling among ambient waves, the

steady drift force results in an increase of resistance to the forward

motion of the ship. This is called the added resistance in waves. In some

cases, the added resistance attains an amount even larger than the re-

sistance when the ship travels in calm water. It is generally regarded

that the added resistance should occupy a major part of the sea margin

which should be considered when the power of ships in the service condition

is predicted from model test results. This problem looks to be more

complicated when compared with the problem of resistance in calm water or

periodical hydrodynamic forces in oscillations, because the steady drift

force originates from the periodical action of waves. The model test in

waves is difficult also in respect to achieving accurate measurements. It

needs much time and labor. A reliable method of prediction by theoretical

formula has been expected for a long time. From the theoretical side, this

problem looks difficult because the steady drift force belongs to the

second order forces. However, the problem of added resistance is now

regarded as one of the most successful applications of hydrodynamic theories

in the practical field of ship building.

Since the drift force is a kind of second order phenomena, one may

think of the necessity of the second order solution of the boundary value

problem, but it is not the case. The steady force can be calculated from

the pressure integral on the hull surface. In doing so, however, we have

to pick up terms of the second order without exception. This is quite a

difficult task, because we need solutions up to the second order complete-

ly. Fortunately we have another method which does not need the second

order solutions. That is the momentum analysis by assuming a large surface

surrounding the ship at a great distance as a momentum control surface.

The steady horizontal force is evaluated by the time average of the

momentum flux across the control surface. Its principle can be easily

understood by considering a two-dimensional case. Here, we consider a cy-

lindrical body of uniform cross section which is floating on the surface of
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water and a train of regular waves comes in the direction perpendicular to

the axis of the body. The incident wave is partly transmitted beyond the

body but partly reflected, generating reflected waves which propagate in

the direction opposite to the propagation of the incident wave. At a

great distance from the body, there exist regular sinusoidal waves. On the

weather side, there are incident waves and reflected waves, while on the

lee side, there are transmitted waves. If we assume vertical planes on

both sides at a great distance from the body, the momentum flux across

these planes can be evaluated simply by the expression for regular waves.

If we write the amplitude of the incident wave by h, that of reflected

wave by h, and that of transmitted wave by hT, there is a relation for the

energy conservation law

h2 h 2+ h2  (236)
h=R+ T

Now we apply the momentum principle to the fluid between the vertical

surfaces and take the time average for one period of the wave. The result

shows the steady horizontal force D in the direction of the propagation of

the incident wave experienced by the floating body, the amount of which is

given by a simple relation
3 5

1 2
D = p - g hR (237)

Since the first order forces are periodic, the steady force is the second

order force. Nevertheless, it is calculated by the first order solution

of the diffraction problem. A similar analysis can be applied to the

three-dimensional problem even when the forward speed is present.

Instead of the actual case in which the ship penetrates into waves

with a velocity U, we consider a ship floating on a uniform stream with a

train of regular waves. A constant horizontal force is assumed in such a

way that keeps the average position of the center of gravity of the ship
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at a fixed point. The velocity potential of the fluid motion in this case

is expressed by Ux + as before. Consider a vertical circular cylinder

of large radius with !ts axis through the origin of the coordinates. Tak-

ing the immersed part of the surface of the ship S, the cylindrical

surface E, and the portion of the free surface E09 inside the surface E, as

the momentum control surfaces, we apply the momentum principle to the

fluid contained in the space bounded by these surfaces and consider the

fact that there is no flux across S and E0 and the pressure is constant

on E Then the rate of change of momentum M of the fluid enclosed by
0'

these surfaces is

dM
=J p n dS + p n dS + p V (n-V ) dS (238)

S fJ'

+ (gravitational force)

where n is the unit normal to each surface directing inward to the fluid

under consideration, and we have put

Ux + 4 (239)

The force acting on the ship is the integral pressure on S. Taking the x-

component, the force in the x-direction is given by

F - f pn dS

dM C
d + p nx dS + P U+ (U nx+n.V ) dS (240)

where subscript x means the x-component of each vector.

If the time average is taken, dM x/dt vanishes because of the periodicity
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of the fluid motion. Because of the periodic motion of the body, average

flux across the control surface must be zero. Therefore,

JJ (U n-i-n.Vc) dS = 0 (241)

where the bar means the time-averaged during one period.

The average force in the x-direction yields the resistance to the forward

motion of the ship.

D = p~ Pn dS +P p (Un n-~VO) dS (242)

Taking cylindrical coordinates R and 0,

x = R cos 0, y= R sin 0 (243)

making use of the pressure equation

=p.~ _ - (VO) 2 - U 24

P at 2 - (244)

and designating the elevation of the free surface by C, we obtain

27T

D = f R dO - + _ (VO)2 +gz cos 0 dz (245)

0 co

Because of the periodic motion, we can put

27T 0

d O a) 
cos 6 dz 

0
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Then we have the relation

27R 2 co dz

23x aR 2J 0~U L R I~ CB uj

+ P R dO cos 6 dz - 2 R cos 0 dO (246)

00 fo

where the free surface elevation becomes

= [ + .- (VO)2 +U (247)

Thus, the lowest order terms are quadratic functions of the disturbance

velocity potential. A similar formulation is applied to the y-component

of the steady force, giving

27r

y=p Rd [ +_- I (Vc) 2 +gz sin ] dz (248)

On developing the formulation, a relation of the energy conservation is

utilized as well. The energy contained in the space bounded by the control

surface is

E = f{$ [1 (V4)2 +gz dV (249)

If the control surface is moving with normal velocity v d1 ected inward,

the rate of change of the energy is given by

dE R 2 (V() 2 dV - P J [_ (Vp) 2 +gz] v dS (250)
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Since we have

dV= f w (V 2) dV

at an

by Green's theorem and

i( NO + gz (p-p0)
2 2 at 1

from the pressure equation, one can write

dE I F dS

at j Pf I\a at P ) vj

Vn n

on S and E0 by the boundary condition, while vn = 0 on Z and p =0 on ZO .

Then the rate of change of energy becomes

dE ff dS - pff dS (251)
- vn nan at

S

If the time average is taken, the first term on the right-hand side gives

the work done by the ship. The ship is floating freely on the free sur-

face and no external force exists except the constant towing force and the

gravitational force which keep the average position of the ship fixed in

space. Therefore, no work is done nor is there any dissipation of energy,

because the viscosity is neglected. Therefore,

fsp v ndS= 0 (252)
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f

Owing to the periodicity of the motion

~dE -t 0 (253)

we have the relation

- - dS = 0

af n at

or

2Tr

dO -~-(~ +U Cos e) dz =0 (254)

The velocity potential is the sum of the incident wave, the steady forward

motion, and the periodical disturbances, so we can write

= w +  U 0+ 1 (255)

Now we consider that the direction of the wave propagation which makes an

angle a with the direction of the forward motion of the ship, namely the

negative direction of x. The incident wave potential is

" c h exp(Kz+iKx cos c+iKy sin c+iwt) (256)
w

The contribution of $0 to D is the wave resistance in calm water. The

periodical disturbance potential has, on the other hand, an asymptotic

expression

i~ Off2 E)Tr2]a ex~ ~a1Rcos(cx-6))
2 1 e H(al,a) r -azida

[f /2 T/2 V1-40 cos O 27

(cont.)
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* 2ie
1iWt 6" 2  a2 exp[a 2z+ia2R cos(a-)] 

f-12 A1-4 cos a

+ 0(R- ) (257)

where

1 1 - 2 S cos a ± vl-4 2 cosa (258)

a2 ) U2  2 cos 2 a

The interval - a0 < a < a0 must be omitted from the integral where

a0 = 0 for 1 < 1/4

a0 = cos 1 (1/4Q) for 0 > 1/4

The function H(aia) is the Kochin function which is determined by singu-

larities representing the hull. Inserting the above expressions for the

velocity potential in the integral giving the force in x-direction, and

taking the time average of the lowest order term, we obtain an expression

for the mean resistance to the forward motion. It is composed of the wave

resistance in the calm water and the added resistance due to incident

waves. Let us define the latter by AR. The derivation of the final

formula is rather lengthy and will not be reproduced here. Only the result

is shown as follows.
3 6

AR-f2 3,2 1 6 1 (a1 cos 8-K cos a)

f vri-C cos

-w '0 2 24 ao 0/

2w-a 0

+ 2 0 fJ .JH(a2,1 2 a 2 (a 2 cos 8-K cos a) dO (259)

C1 0/1-40 cosa0

92

WOMMUANWI



where a is replaced by e in a1 and a2. Note that this formula is valid

when the energy relation mentioned before holds. If there is another kind

of energy dissipation such as viscosity, the above relation needs some

alteration. In order to facilitate numerical work, the integration

variable is changed to

-=K 1 - 2 Q cos 6 ± l-4 2cos0 (260)m 0  2 cos 0 20

where K0 = g/U. Then we obtain

AR=47rP K+ 1 00. (m+K0 Q2 (m-Kcosa) * 2 dm (261)

D KJ (m+K0 ) 4_K 2 2

where

H (m) = H(ai,O) i 1 1, 2 (262)

1 K (l+2Q+A---), K 1 K0 (1+2QV'+4Q) (263)

If < 1/4, the interval

K0 (l_20--0) < 1m < K0 (l-20+/i_--)!
2 <m< 0

must be omitted from the integral.

Simplification of the Formula

At a great distance from the ship, the disturbance by the ship, in-

cluding both radiation and diffraction, is represented by a combination of

wave sources and y-directed wave dipoles distributed along the x-axis.
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The former represents the longitudinal disturbance such as heaving and

pitching, and the latter represents the lateral disturbance such as sway-

ing, yawing, and rolling. Now let us designate densities of these wave

sources and wave dipoles by m(x)ei t and II(x)e Then the Kochin

function is expressed as

H(aiO) -f {m(x)+iai sin 6ip(x)} e 8a cos dx (264)

Then we put

H i ai x cos 0 (265)
H2(ai,0) JSm(x) e dx

H 2 (ai.0) - fJ(x) e ia i x Cos e dx (25

On integrating with respect to 0 the integrals in Equation (264), odd

functions of 0 vanish. Therefore, we can replace IH(a.,9) 2 by

IH (ai,0)12 + a i si
2  1 H2(air ) 2

Changing the integration variable from 0 to m, we obtain

-K1  (m+Kj ) 4-Kcm2
A~R =4 pT F + ( ] (m+j) 2 m2co __ IH*(m)1 2 dm (266)

where

(m+Koa)4 K2 

IH*(m) " IH(m)I 2 + 0  0  1H2(m)12  (267)
K0

and
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I{1(m) zfrn(x) eim dx

* (268)

!m x

H2 (m) f p (x) e dx

One can evaluate the above integral provided that the densities of sources

and dipoles are known.

Considerable data of computation of added resistance in head sea waves

by means of the above formula have been reported. 37 As for the case of

oblique seas, numerical results so far obtained are rather infrequent be-

cause of the complication of ship motions. Unfortunately the above formula

has failed to strike the fancy of engineers of a practical mind, because

the integral in the infinite interval necessitates much calculation. It

will be found that the formula can be simplified if high frequencies such

as w = O(e/ 2) are assumed.3 8  If we assume first U = 0( /2) and

W= 0( -1/2 ), then K0 = 0( -I ) and 0 = 0(i). Omitting terms of 0(c), the

formula of Equation (266) is reduced to

AR = 4 7 p (m-K cos a) IHH*m( + 1 2(m) 2]dm (269)

Substitute Equation (268) in the above and apply the Fourier integral

theorem. Now we assume that m(x) and p(x) vanish at both ends of the ship.

Then, by integration Ly parts, we have

o(x) eim x f dm(x) e m x
fmdxs.-i e dx

The added resistance due to the longitudinal disturbance is then repre-

sented by

00

AR1 = 4 7r p (m-K cos a)1Hl(m)12 dm

S-8 2 p Re f [K cos alm(x)1 2 +ii(x) dm(x) ]dx (270)
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where ;(x) is the complex conjugate of ne(x). Here we write

arg m(x) = 61 (x) (271)

Then we obtain

AR1 = -8 7r2 Pf Im(x)1 2 K cos cx+ dx dx (272)

A similar reduction is applied to the portion by the lateral disturbance.

In consequence, the added resistance is given by

AR= - 8 2 0f [lm(x)12 IK cos a+ dl1 x)

+ I(x) K cos + d( dx (273)
2 tKdx

where

arg P(x) f 62 (x) (274)

It can be readily shown, that the expression for AR1 is valid in the case

of U = 0(l) and =O(1 ) too, but the expression for the added

resistance due to lateral disturbances takes another form which is more

complicated and spoils the practical utility to some extent. A similar

simplification can be applied to the lateral drift force, and the final

result is

Dy 8 PJ [2 L Im(x)IIp(x)lsin{6lx)-62(x)}

-K sin a {Im(x)12 + !Ix)12}] dx (275)

g
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The densities of sources and dipoles are determined from the inner so-

lution at the near field which has been discussed previously. They are

identical with the source term or dipole term in the solution for two-

dimensional cylinders in the corresponding motion of each transverse

section. However, the existence of the forward velocity results in a

slight change of the boundary condition at the hull surface. If we

consider the case of head seas, the oscillation of the ship is heaving and

pitching. The effect of surging is omitted because of the higher order.

Then the boundary condition on the hull surface is

( xn-UW) n' - U(z g-XP) - \ -/ -n' (276)
g z 9 n 3 n

where n' = 3z/3n', n' being the outward normal to the contour of the
z

transverse section. The first term comes from the relative velocity of

the section and the last term means the relative velocity of the orbital

motion of the incident wave. However, on account of the second term, the

boundary condition is not determined by the relative velocity of the

section only. If we assume U and w are both of the order of unity, the

inner solution is associated with the free surface condition such as

- U C at z= 0 (277)az2

The source density in this case can be determined in a manner similar to

the radiation problem.

m(x) = - 1 d){B(x)(zg(278)

47r dx+ _ Bx)z- C)

In the case of U = 0(EI /2 ) and w = 0(l), however, we have to solve the

two-dimensional problem with the free surface condition

2 2 01 i (279)
3z g 1 ~ w 3z2
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Putting

= 'i + U 0 (280)

we have the boundary condition at the free surface

2

- 0 (281)

az g

while the boundary condition on the hull surface can be written as

n +0n U - (Zg-X1P-Cw) - U(zgx -w) X ( z) (282)

If we omit the second term, we get the usual form of boundary conditions

for a heaving cylinder with vertical velocity

V (zxU-~ (283)
at ax/ g w

The amplitude of the vertical oscillation is then

ZA = IVI/W (284)

If we write the amplitude of waves generated by the cylinder as A and

define a two-dimensional pulsating source of strength, a e , which

generates the radiating wave of amplitude A' there is the relation for

the amplitude ratio A as

S gA =2(285)
ZA A

We have the relation between the density of the three-dimensional source

and that of the two-dimensional source as

98



a = 2m (286)

Therefore, we obtain

gAZA gAIvI (287)
Im(x)= 4a 47 2

The determination of the phase of m(x) needs some consideration. Choose

the vertical velocity of the cylinder expressed by

2gC 
AV - (AO cos wt+B 0 sin wt) (288)

in such a way that the source term has the phase like sin wt. If we write

the vertical movement of the cylinder as

Z = ZA eiwt+i  
(289)

the vertical velocity becomes

V = W ZA eiWt+i +i7r/2 (290)

Then the phase angle of the source is given by

61(x) = a + 8 (291)

where

tan a = B0/A0  (292

The amplitude ratio of the radiating wave is, on the other hand, given by
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A 7 T w B
-w- (293)

A--ZA 2 +B2

and the absolute density of the source is given by

im~x)I - gAIVI = B(x)IVI (294)
4 w 8 B

The coefficients A0 and B0 are determined by the standard calculation of the

two-dimensional problem of a heaving cylinder. The density and phase of

dipoles which represent lateral oscillations can be determined in a similar

way. Since the function U C w D 0/3z does not include the source term nor

horizontal dipole, the density of sources and dipoles of 0' is identical

with that of l" It is not easy to give a general formulation for the

effect of the second term of Equation (282), but it can be expressed by a

form of a correction term to the vertical velocity in the case of semi-

circular cross section, since the hull boundary condition in this case is

given by the form

n' (3 a) ( x  w )

If we assume the above relation in arbitrary cros section, we can put the

vertical velocity of each section in the form

Bl i mUx) {B(x)(zg-x -C w ) } (296)

A similar approximation can be applied to the lateral oscillation.

Numerical Examples for Added Resistance

In the previous sections, formulae for calculating the added resistance

and steady side drift force are presented. The formula, which is originally
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a three-dimensional type, has been simplified to a great extent by assuming

the frequency high enough. As a numerical example, the model of Series 60

and CB = 0.7 is employed. Here we consider three kinds of calculation

methods in carrying out the numerical work.

Method 1: Assume U = 0(1) and w = 0(i).

The added resistance is calculated by a three-dimensional formula.

The boundary condition at the free surface in near field is

D1 200.z + U Cw 2 0 at z =0(2)
23atz=0 (297)

The density of the source distribution in head sea waves takes the form

m(x) = _ i__4 (iW0+U d ) {B(x) (Zg-XI- w) (298)

Making use of this source distribution in Equation (265) or (268) to calcu-

late the Kochin function, a consistent approximation in the present case is

obtained. However, the result of numerical computation yields enormous

values of added resistance which is hardly compatible with measured

results. The present formulation assumes that the disturbance by the ship

hull is represented by a distribution of singularities along the axis of

the ship which is taken on the undisturbed free surface. However, the

above mentioned results indicate that the singularities on the free surface

generate too strong disturbance. In order to avoid this difficulty, we

assume the singularity distribution a little below the free surface. As a

mean depth of the singularities, let us take the mean depth of disturbance

given by yT where y is the vertical prismatic coefficient and T is the

draft of the ship. Then the Kochin function is expressed as

H (m) e-myT m(x) e im x dx (299)
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Method 2: Assume U = 0(c / 2 ) and w = 0(l).

The boundary condition at the free surface in near field is

W 2 2 0
z g 0- + U Cw 2  0 at z = 0 (300)

9 3z

The source density is determined from the two-dimensional solution of a

heaving cylinder. A consistent approximation for the added resistance is

obtained by the three-dimensional formula, Equation (266).

Method 3: Assume U = 0(l) or 0(c1 12 ) and w = 0(c-1 /2 ).

The boundary condition at the free surface is the same as for Equation

(300) in Method 2. The source density is determined from the two-

dimensional solution of a heaving cylinder with the hull boundary condition

of Equation (296) which includes the effect of the forward speed. The

added resistance is calculated by the simplified formula of Equation (272),

but the solution is inconsistent in the order of approximation.

Results of computations of the added resistance of the Series 60

model by means of various methods at several Froude numbers are illustrated

in Figures 11 through 13. Results of experiments are also shown for

comparison. It is observed that the best agreement between computations

and measurements is obtained by the calculation by means of the simplest

formula, Method 3, while more consistent methods can provide only less

accurate predictions.

CONCLUDING REMARKS

Readers may already have recognized that the four topics discussed in

this report have been arranged in the order of simplicity of their physical

phenomena. However, what is beyond our expectation for us to find out is

the fact that the seemingly simplest problem such as the wave resistance in

the uniform motion presents the greatest difficulty in attaining satis-

factory agreement between theoretical computations and measured results,

while theoretical predictions for much more complex phenomena, such as the
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added resistance in waves can show much better agreement. Furthermore,

what is really surprising is that the most rational formulation brings

sometimes most unrealistic results, while much simpler approximations can

often result in much better predictions. This is the attribute of engi-

neering and the fun of engineering. Mathematics has nothing to do with

this respect.

Concluding this lecture, I wish to express my sincere Thanks to Mr.

Justin McCarthy for his kind arrangements which enabled me to have this

opportunity, and to Dr. Kwang June Bai and Dr. Ming Shun Chang for taking

care of me every day. My thanks also to Dr. Allen Powell, Dr. William

Morgan, Dr. Wen-Chin Lin, Dr. Bohyun Yim, Dr. Choung M. Lee, Dr. Thomas

Huang and all friends at DTNSRDC for their warm hospitality.
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I should be happy if this lecture series can contribute to everlasting

friendship between Japan and the United States.
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APPENDIX A - OSCILLATION OF A SHIP WITH
SIX DEGREES OF FREEDOM

Consider a ship floating on a uniform stream and making oscillatiuns

of small amplitude about a fixed point. Take the x-axis in the direction

of the uniform stream and the z-axis vertically upwards. The fluid motion

around the ship is expressed by the velocity potential of the form

0 = Ux + u~o0 + ¢ 1(301)

where U is the velocity of the uniform flow and 4i gives the periodical

disturbance. Since the amplitude of oscillation is small, the steady

potential, U 0 , is determined from the boundary condition when the hull is

fixed at an average position and identical with the velocity potential for

the uniform motion of the ship. Now we consider the coordinate system

x0 ' Y0, zo' which is fixed to the ship with the origin at the center of

gravity. The coordinates of the center of gravity at the average position

are written as xG, YG' ZG, and the displacement of the center of gravity

as El' 2' 3" Designating the angle of rotation about each axis by

0l, e2, O3, and omitting higher order terms, one can write

x0 x - xG - Ei + 63(Y-YG) - O2 (Z-zG)

= y - G - 2+ 8l(Z-zG) - O3 (x-xG) j (302)

z0 = z - zG - 3 + 0
2 (x-xG) - e1 (Y-YG)

If the hull surface is expressed by the equation

F(x 0 ,y 0 ,z 0 ) 0 (303)

the boundary condition on the hull surface is given by the equation
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(+ +~~ F(X0,y0,z0 )

1- { l-O3 (y-yG)+2(Z-ZG)} FX - {C2 -81(Z-zG)"6'3 (x-xG)l FYO

- { 3-e2(x-xG)+al(y-yG)} F + 0 (F- 3F 02F z)

0 0 0 0

+ y(FYO03Fxo01Fz0) + 0z (F z-02F x01F y) = 0 (304)

where the dot means the differentiation with respect to t. If we write the

direction cosines of the outward normal as

n= -Fxo/A, n2  F /A, n3 = F I 0/A (305)

where

A=  2 + F 2 + F 2
x0  YO  z0

the boundary condition on the hull surface becomes

- 3(y-yG)+ 2(Z-zG)} n1 + { 2 -61(Z-ZG)+0 3(X-XG)} n

+ { 3- 2 (x-xG)+6l(y-yG)} n3 O x(n1-6 3n2+ 2n3)

- 0y(n 2+03nl-e 1n 3 ) - Oz(n3-62n1+Oln2) = 0 (306)

Now we write the steady portion of the fluid velocity as

u - U + U4 0 /ax, v - Ua 0 /ay, w = ua 0 /az (307)

and define vectors V0 - (U,0,0) and V (u,vw). If we employ vector

notations
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= (, 0 - (0102,03) (
(308)

- " (X-XGY-YGZ-ZG) I
the fluid velocity at the moving hull surface is expressed by

ffi YO + [( +6xr)V] V (309)

Substituting Equation (301) for 0 x, 4y Iz in Equation (306) and making use

of Equation (309) together with the boundary condition for 00 given by

n 1 ox + n2 %0y + n3 oz + nI = 0 (310)

and the irrotationality condition

Uy Vx vz Wy Wx = Uz (311)

we obtain eventually

Eil + E2n2 + E3 n3 + 6l {(Y-YG)n3-(Z-ZG)n 2}

+ 02 {(z-zG)nl -(X-XG)n 3} + 03 {(x-xG)n2-(Y-YG)nl}

- El au/an - 2 v/an - 3 Wan

- 01 {(Y-YG)w-(z-zG)v} - e2 L {(z-G)U-(X-xG)}

1an an

-e aa4)1 (312)
3 an {(x-xG)V-(Y-YG)u} = an

This is the boundary condition for the periodical potential ¢1" Then the

periodical potential is constituted by 12 components such is

+ E2~ + 6I 0P + 62 P
1 1 2l~ +  2 + E3'P3 1 e4 +  2"5 + e3'6

+ 1 i 1 + E27P2 + 3 3 + 1l14 + 02*5 + 03*6 (313)
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Boundary conditions which are satisfied by each component on the hull

surface are

W~ /3n=n W~ , 1 /3n/an
1 1'= l ~2' L ' 3 3

aP4/an (y-y 3 - (Z-ZG) n2 n

4 G 3 G 23 4W 5 /n =f (Z-z G) nI1 - (X-XG) n 3 E n 5

a6/n -f (X-XG) n 2 - (y-yG) n, E n 6

a i/n - - au/n m

a 2/an - - v/n m2  
(314)

4 33/an = - aw/an 3

4 /an = --_a {(y-yG)w-(z-zG)v} m 4

ap/an = - - {(z-z)
5an G u-(x-xG)w} m i 5

an

Forces and moments acting on the hull are expressed by the integral

CSn = 1, 2, 3 for force

F= - n, p dS (315)
i n = 4, 5, 6 for moment

Omitting terms of the second order with respect to the oscillation ampli-

tude, the fluid pressure is given by

P - Ps u2 20 2  a+ + w al-U I ol + u a-- 1 a- (316)P ax v 2 I at ax ay az

where p8 is the hydrostatic pressure. We divide the above pressure into

a part due to U0 and that due to i such as
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_2 0 1PO p u 2  \ -x + IV OO 1

P (a~ +u _, +v __ _ 1(317)

On integrating the pressure over the moving hull surface, a periodical

term comes from the integration of p0 because of the periodical variation

of the hull surface. We regard this as a correction to the restoring

forces due to the forward motion. Forces and moments due to the period-
ical potential are given by

Fi = Pff ni(I+Y.VoI) dS (318)

0

where S is the hull surface at the average position and

S= a/at

APPENDIX B - THEOREM OF TUCK AND RELATIONS
DERIVED THEREFROM

Tuck has proved a theorem with respect to the integral in Equation

(318) as follows

Tuck's Theorem

If 0 is a harmonic function defined in the lower half space outside

the surface SO which has a vertical tangent at z = 0, and V = (u,v,w) is

the velocity of an irrotational motion, which satisfies the boundary

condition

unI + vn2 +wn = 0 (319)

on S, the following relation is valid.

ff [mi +ni(V'V )] dS = - f ni wds (320)
0 L
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where mi is defined in Equation (314) and L0 is the intersection of S0

with the plane z = 0. This theorem can be proved by means of Stokes'

theorem as Tuck did, but here let us derive the same result by integration

by parts.

In the first place, we put i = 1 and consider an integral

Ii = ffS (uOx+voy+wOz) nldS

0

=ffsgnxu xx +v y+woz) dydz

If we write the equation of SO as

x = f(y,z)

we have

a ax

-5-y x=f(y,z) =y + 0 x y

Integrating by parts

fdzjVy dy =fdzf v ()x=f , 2 dy
Yay Jx Jy

-fdz f (vy+vx a-) Ody -f dzf vox - dy

=ff (VyOnl-VxOn2-VOxn2) dS

By a similar way

zaz w x 3z
fd~wc~z =dY'% _a(Xf-O fdfw,+x f fJdz

Mfdy- wI 0 - 9zf (w+w ) Odz - dyf W x 2- dz

= f 0 n1 Owds -ff(wzOn-w xn 3-oxn 3) dS

0
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Adding the above equations and making use of relations of continuity and

irrotationality,

vy + Wz x Vx = By WX = Uz

together with Equation (319), we obtain

I1 =ff (uxn1 +uyn 2+uzn3) dS - f0 n 1 wds

-U dS - nl wds
L 0

-f mljdS - f 0 n 1 wds

A similar relation is obtained when i = 2,

1 2=- m2 ds-f n 2 wds

0

In the case of i = 3, we write

13 = -ff(u x+vy+wz)dxdy

We get similarly, as before

-ffu~dxdy = -fdyf( u1 -uz- dx

= ff(u+u -z) Odxdy + U dydz

=- (uxn 3-uzn1 ) 4dS +5f uzn1 dS

-fvydxdy fdx (v -v ) dy

.-ff(vy+vz -f) Odxdy +fvodxdz

= -ff (vyn 3-vzn 2 ) 4dS +fi V z n 2 dS
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Summing up the above equations, we obtain

13 fJ(wzn3+u zn+vzn2) FdS

aw dS

= -ffm3  dS

Then the relation of Equation (320) follows when i = 1, 2, 3. It can be

shown that a similar derivation is applied to the cases of i = 4, 5, 6,

if we introduce the definition of n4, n5, n6 in Equation (314).

Reverse Flow Theorem and Haskind's Relation

Applying the above theorem to Equation (318) and making use of the

relations

aDi 
3.

n =ni' n mi

one can express the forces and moments in the form like

'L-I.ii t iwS ip) (1 )
Fij = e P (M )  (iw ) dS (321)

s0

where the simple harmonic displacement is expressed by e i " The line
integral term vanishes because we have assumed that w = 0 on the plane

z = 0. Now we assume that ti and i satisfy the linearized free surface

condition such as

2 i 2 2i im2i+ 2 iwU -- + + x g --- =0

ax ~ax 2 a

(322)
2 a,, 2 a 2i 1 1'

- + 2iwU + U+ g Lax2  z

and the radiation condition. Next we define velocity potentials 0

and which satisfy the same boundary condition on the hull surface as
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those of (P and when the uniform flow has an opposite direction.

Then there are relations

I i 1 (323)

n an ' an an

while the free surface conditions are
2 * 35i  U2 (Di 35* 2* * I

- i - 2*wU -- + -- + g 2 = 0
i a x 2 aax 2 I

(324)
* 2*

- w 2t - 2iwU i + U -+ g 4,-= 0
ax2

If we put, for simplicity,

i4i + i = $P' iWi +  i = Di (325)

the expression for forces and moments takes the form

Fii =eim P 3 dS (326)

0

We apply Green's theorem in the space bounded by S, EO , E, and ZB such as
illustrated in Figure 3.

A (Di '3n* an dS= 0

If we consider the case of infinite depth, the integral on EB vanishes,

while the integral on E vanishes as the radius of the cylinder tends to

infinity. The integral on the horizontal plane is

- - \i az - ST . dxdy

0
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Making use of relations from Equations (322) and (324) such as

2

I a€ 8¢

1 ( 2 D2i UU 2 4

=--Iw' +21wU
z g ax ax2

and integrating by parts with respect to x, we obtain

- iaz -z --- j dd
0

1 f 2 301 al.- *1 Ul d
= g- ax j-i ax / 1 i'j dy'~0

Therefore, we haveI*

F = e o P iia n-  dS
0

iWt P, 1 g a1 dS f a. 4 +2Ul t
jgz g

(327)

Now we put

Fij = ei 0 PiT ij (328)

and write the force or moment when the uniform flow has an opposite

direction as

F e P i Tij (329)

Then the following relation is valid.

Tij =Tji + Lij (330)
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where Li is the line integral in Equation (325). If the waterline of the

ship is slender, Lii becomes small. By neglecting Lii we have the reverse

flow theorem

Tij = T i (331)

This reciprocal relation was first shown by Hanaoka in the case of a thin

ship. Timman and Newman gave a proof to the general validity for non-

slender ships, with a somewhat intuitive hypothesis.

When a train of regular waves is superimposed on the uniform flow,

the periodical potential is composed of the incident wave potential w

and the diffraction potential 0D if the ship is fixed in the stream. The

wave excitation forces and moments are given by Equation (318) if 0 is

substituted by fw + 0D or

F = P+ (+ ) - dS (332)

If we apply Green's theorem as before and make use of the boundary

condition

w D(3)+ 0

on So, we can write

-P h1- -- w 4) dS + L (334)
7j =w an an L7j

If the line integral is omitted, the result is similar to the relation

which was given by Haskind in the case of zero forward speed. The

integral on the large cylindrical surface E is related to the Kochin

function for the radiation problem. Therefore, the exciting forces and

moments are derived from the solution of the radiation problem in still

water. It should be noted that the above formula does not give a con-

sistent expression for the wave excitation if the finite forward speed

is present as mentioned in the section on wave pressure on slender ships.
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