

AcDermott Richard SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 0 READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 1. REPORT NUMBER RECIPIENT'S CATALOG NUMBER 2. GOVT ACCESSION NO. NJ00122 4. TITLE (and Subtitie) TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report FINAL red Dam Safety Prog :1on#1 6 ORMING ORGE REPORT NUMBER has: Fai + 72 DACW61-79-C-0011 rteida 10. ୧ଥା PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Storch Engineering cec 220 Ridgedale Ave. Florham Park, N.J. 07932 1. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources REPORT UNTE Mar 380 NUMBER OF FAGES P.O. Box CN029 76 Trenton, NJ 08625 13. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) U.S. Army Engineer District, Philadelphia 15. SECURITY CLASS. (of this report) Custom House, 2d & Chestnut Streets Unclassified Philadelphia, PA 19106 154. DECLASSIFICATION/DOWNGRADING 2 16. DISTRIBUTION STATEMENT (of this Report Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151. 19. KEY WORDS (Continue on reverse olds if necessary and identify by block number) Dams National Dam Safety Program Embankments Clinton Mills Dam, New Jersey Visual Inspection Spillways Structural Analysis Seepage 20. ABSTRACT (Castless as reverse slab If researchy and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report. DD 1 / M 7 1473 EDITION OF I NOV 68 IS OBSOLETE SECURITY CLASSIFICATION OF

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

DEPARTMENT OF THE ARMY PHILADELPHIA DISTRICT. CORPS OF ENGINEERS CUSTOM HOUSE-2 D & CHESTNUT STREETS PHILADELPHIA, PENNSYLVANIA 19106

•

NAPEN-N

11 AUG 1980

Honorable Brendan T. Byrne Governor of New Jersey Trenton, New Jersey 08621

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Clinton Mills Dam in Hunterdon County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Clinton Mills Dam, initially listed as a "high" hazard potential structure, but reduced to a "significant" hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to five percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood.) To ensure adequacy of the structure, the following actions, as a minimum are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated.

b. The owners should, within six months from the date of approval of this report, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam.

c. The following remedial measures should be initiated within six months from the date of approval of this report:

NAPEN-N Honorable Brendan T. Byrne

(1) The low level outlet should be investigated and if found to be insufficient to achieve a draw down of the impoundment, should be replaced by a suitable outlet facility designed by a professional consultant engaged by the owner.

(2) The spillway should be thoroughly inspected with the impoundment drawn down. During the inspection, special care should be taken to observe any indication of seepage under the spillway. The spillway should then be renovated in accordance with the findings of the inspection.

(3) The channel bottom immediately downstream from the spillway apron should be filled and suitably stabilized.

(4) The training wall at the left end of the spillway should be repaired and the adjacent area suitably filled and stabilized.

(5) The pin-hole leak in the wall of the right mill building should be repaired.

d. Within one year from the date of approval of this report, the owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Courter of the Thirteenth District. Under the provision of the Freedom of, Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

D

, NAPEN-N Honorable Brendan T. Byrne

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

X

 ϵ

Sincerely,

Im times

l Incl As stated

Į

JAMES G. TON Colonel, Corps of Engineers District Engineer

.

Copies furnished: Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

.

Mr. John O'Dowd, Acting Chief Bureau of Flood Plain Regulation Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

CLINTON MILLS DAM (NJ00122)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 19 and 28 November 1979 by Storch Engineers under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Clinton Mills Dam, initially listed as a "high" hazard potential structure, but reduced to a "significant" hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to five percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood.) To ensure adequacy of the structure, the following actions, as a minimum are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated.

b. The owners should, within six months from the date of approval of this report, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam.

c. The following remedial measures should be initiated within six months from the date of approval of this report:

(1) The low level outlet should be investigated and if found to be insufficient to achieve a draw down of the impoundment, should be replaced by a suitable outlet facility designed by a professional consultant engaged by the owner.

(2) The spillway should be thoroughly inspected with the impoundment drawn down. During the inspection, special care should be taken to observe any indication of seepage under the spillway. The spillway should then be renovated in accordance with the findings of the inspection.

(3) The channel bottom immediately downstream from the spillway apron should be filled and suitably stabilized.

(4) The training wall at the left end of the spillway should be repaired and the adjacent area suitably filled and stabilized.

(5) The pin-hole leak in the wall of the right mill building should be repaired.

d. Within one year from the date of approval of this report, the owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

.

4

....

2

ĺ

• APPROVED: JAMES G. TON

Colonel, Corps of Engineers District Engineer

DATE: 24 Jul 'So

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam:Clinton Mills Dam, NJ00122State Located:New JerseyCounty Located:HunterdonDrainage Basin:Raritan RiverStream:South Branch of Raritan RiverDates of Inspections:November 19, 1979November 28, 1979

Assessment of General Condition of Dam

Based on visual inspection, past operation performance and Phase I engineering analyses, the dam is assessed as being in fair overall condition.

Based on investigations of the downstream flood plain made in connection wtih this report, it is recommended that the hazard potential classification be downgraded from "High" to "Significant" hazard.

Hydraulic and hydrologic analyses indicate that the spillway is inadequate. Discharge capacity of the spillway is not sufficient to pass the designated spillway design flood (SDF) without an overtopping of the dam. (The SDF for Clinton Mills Dam is equal to one-half the probable maximum flood.) The spillway is capable of passing approximately 2 percent of the probable maximum flood or 4 percent of the SDF. Therefore, the owners should engage a professional engineer experienced in the design and construction of dams in the near future to perform more accurate hydraulic and hydrologic analyses. Based on the findings of the analyses, the need for and type of remedial measures should be determined and then implemented.

í

The owners should, in the near future, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam.

\$

In addition, it is recommended that the following remedial measures be undertaken by the owners in the near future:

- The low level outlet should be investigated and if found to be insufficient to achieve a drawdown of the impoundment, should be replaced by a suitable outlet facility designed by a professional engineer experienced in the design and construction of dams.
- 2) The spillway should be thoroughly inspected with the impoundment drawn down. During the inspection, special care should be taken to observe any indications of seepage under the spillway. The spillway should then be renovated in accordance with the findings of the inspection.
- 3) The channel bottom immediately downstream from the spillway apron should be filled and suitably stabilized.
- 4) The training wall at the left end of the spillway should be repaired and the adjacent area suitably filled and stabilized.
- 5) The pin-hole leak in the wall of the right mill building should be repaired.

In the near future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to insure the safety of the dam.

In addition to Clinton Mills Dam, an upstream dike, located along the east bank, impounds the river. The dike is referred to as Clinton Mills Dike. Remedial measures to correct the inadequate condition of

the spillway of Clinton Mills Dam should be performed in conjunction with remedial measures for the dike as specified in "Clinton Mills Dike, NJ00564, Phase I Inspection Report, National Dam Safety Program," dated March 1980.

Kichard M1 & ermoth Richard J. McDermott, P.E. Sermati

John E. Gribbin, P.E.

OVERVIEW - CLINTON MILLS DAM 28 DECEMBER 1979

TABLE OF CONTENTS

	Page
ASSESSMENT OF GENERAL CONDITION OF DAM	i
OVERVIEW PHOTO	iv
TABLE OF CONTENTS	v
PREFACE	vii
SECTION 1 - PROJECT INFORMATION	1
1.1 General	
1.2 Description of Project	
1.3 Pertinent Data	
SECTION 2 - ENGINEERING DATA	9
2.1 Design	
2.2 Construction	
2.3 Operation	
2.4 Evaluation	
SECTION 3 - VISUAL INSPECTION	12
3.1 Findings	
SECTION 4 - OPERATIONAL PROCEDURES	15
4.1 Procedures	12
4.2 Maintenance of Dam	
4.3 Maintenance of Operating Facilities	
4.4 Description of Warning System	
4.5 Evaluation	

V

TABLE OF CONTENTS (cont.)

		Page
SECTION	5 - HYDRAULIC/HYDROLOGIC	17
	Evaluation of Features	
SECTION	6 - STRUCTURAL STABILITY	20
6.1	Evaluation of Structural Stability	
SECTION	7 - ASSESSMENT AND RECOMMENDATIONS	22
7.1	Dam Assessment	
7.2	Recommendations	
PLATES		
1	KEY MAP	
2	VICINITY MAP	
3	SOIL MAP	
4	GENERAL PLAN	
5	DAM SECTION	
6	PHOTO LOCATION PLAN	
APPENDIC	CES	
1	Check List - Visual Inspection	
	Check List - Engineering Data	
2	Photographs	
3	Engineering Data	
4	Hydraulic/Hydrologic Computations	

5 Bibliography

í

vi

PREFACE

(

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314 The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that the unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and nydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

CLINTON MILLS DAM, I.D. NJ00122

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

Public Law 92-367, August 8, 1972 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The Division of Water Resources of the New Jersey Department of Environmental Protection (NJDEP) in cooperation with the Philadelphia District of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the State of New Jersey. Storch Engineers has been retained by the NJDEP to inspect and report on a selected group of these dams. The NJDEP is under agreement with the Philadelphia District of the Corps of Engineers.

b. Purpose of Inspection

The visual inspections of Clinton Mills Dam were made on November 19 and 28, 1979. The purpose of the inspections was to make a general assessment of the structural integrity and operational adequacy of the dam structure and its appurtenances.

1.2 Description of Project

a. Description

Clinton Mills Dam is a run of the river concrete dam across the South Branch Raritan River in Clinton, New Jersey. The 170 foot long overflow portion of the dam forms the spillway while a stone masonry training wall on the left side of the spillway forms the remainder of the dam. The top of the training wall is taken to be the top of dam with elevation 190.3 National Geodetic Vertical Datum (N.G.V.D.). The elevation of the spillway crest is 188.0 and that of the stream bed at the spillway apron is 176.5. The height of the dam is 13.8 feet. The spillway is composed of a concrete slab resting on earth fill and the remains of an old stone rubble dam. The slab forms upstream and downstream faces and a downstream apron. The spillway abuts stone masonry training walls at both ends.

Former mill buildings are located at each end of the dam, the right building now housing the Clinton Historic Museum and the left building now housing the Hunterdon Art Center.

The outlet works is located at the upstream end of the mill race adjacent to the right mill building and consists of two gated cast iron pipes. One pipe is a low level outlet having a diameter of 36 inches while the other pipe, having a diameter of 24 inches is used to operate a water wheel associated with the mill. A trash rack composed of steel pipes is located immediately upstram from the outlet works. A hydro-electric turbine is located in the mill race adjacent to the water wheel. Reportedly, the turbine was installed early in the 1900's and was never operated.

The mill race for the left mill building is currently abandoned and partially filled with concrete rubble.

b. Location

Clinton Mills Dam is located in the Town of Clinton, Hunterdon County, New Jersey. Constructed across the South Branch Raritan River, it forms one of the focal points of historic interest in the commercial center of Clinton.

c. Size and Hazard Classification

Size and Hazard Classification criteria presented in "Recommended Guidelines for Safety Inspection of Dams," published by the U.S. Army Corps of Engineers are as follows:

SIZE CLASSIFICATION

	Impoundment	
	Storage (Ac-ft)	Height (Ft.)
Small	<1000 and ≥50	<40 and ≥ 25
Intermediate	≥1000 and <50,000	\geq 40 and <100
Large	≥50,000	≥ 100

HAZARD POTENTIAL CLASSIFICATION

Category	Loss of Life	Economic Loss
	(Extent of Development)	(Extent of Development)
Low	None expected (no per-	Minimal (Undeveloped to
	manent structures for	to occasional structures
	human habitation	or agriculture)
Significant	Few (No urban develop-	Appreciable (Notable
	ments and no more than	agriculture, industry
	a small number of	or structures)
	inhabitable structures	
High	More than a small	Excessive (Extensive
	number	community, industry or
	•	agriculture)

The following data relating to size and downstream hazard for Clinton Mills Dam have been obtained for this Phase I assessment:

Storage: 50 Acre-feet

Height: 13.8 feet

Potential Loss of Life:

An urban area of Clinton containing commercial and residential development is located on both sides of the downstream channel. Failure of the dam could possibly cause loss of life.

Potential Economic Loss:

A steel road bridge (Main Street) is located 120 feet from the dam. The Route 173 (old Route 22) bridge is located 400 feet from the dam. Failure of the dam could cause damage to these bridges and to the urban development located in the downstream flood plain.

Therefore, Clinton Mills Dam is classified as "Small" size and "Significant" hazard potential.

d. Ownership

(

The dam is reportedly owned jointly by the Clinton Historical Museum Village on the right, or west bank, and the Hunterdon Arts Center on the left, or east bank.

e. Purpose of Dam

The original purpose of the dam was to generate power for the mills in the early 1900's. The dam currently serves aesthetic and historic purposes.

f. Design and Construction History

Clinton Mills Dam was reportedly constructed in the 1800's. No description of original construction is available. In 1907 it was reconstructed following a washout. No information concerning the reconstruction in 1907 is available. The spillway and left training wall were again reconstructed in 1950. Design for the reconstruction was prepared by John E. Studer, P.E., Clinton and construction was performed by William Schaaf, Baptistown.

g. Normal Operational Procedures

The dam and appurtenances are operated and maintained by the Town of Clinton. Repairs are made on an "as needed" basis. Reportedly, the outlet works is not opened during heavy rainstorms or to drain the lake.

1.3 Pertinent Data

t

a. Drainage Area 111 sq. miles

b. Discharge at Damsite

Maximum known flood at damsite8080 c.f.s. (Aug. 19, 1955)Outlet works at pool elevation75 c.f.s.Spillway capacity at top of dam1906 c.f.s.

c. Elevation (N.G.V.D.)

Top of dam	190.3
Maximum pool-design surcharge	200.4
Spillway crest	188.0
Stream bed at toe of dam	176.5
Maximum tailwater	185.0 (Estimated)

d. Reservoir

Length of maximum pool

5000 Feet ± (Impoundment is a reach of the South Branch Raritan River)

e. Storage (Acre-feet)

Normal pool	21 Acre-feet
Design surcharge	820 Acre-feet
Top of dam	50 Acre-feet

f. Reservoir Surface (Acres)

Top of dam	32 Acres ±
Maximum pool-design surcharge	154 Acres ±
Normal pool	10 Acres ±

g. Dam

Туре	Earthfill & Masonry
Length	218 feet
Height	13.8 feet
Sideslopes – Upstream	1 vert. to 6 horiz.
– Downstream	1 vert. to 1 horiz.
Zoning	Unknown
Impervious core	Unknown
Cutoff	None
Grout curtain	Unknown

h. Diversion and Regulating Tunnel N.A.

i. Spillway

(

Type Length of weir Free overflow weir 170 feet Crest elevation Gates Approach channel Discharge channel 188.0 None N.A. Spillway discharges directly into downstream channel

j. Regulating Outlet

Low level outlet: 36-inch diameter cast iron pipe with gate at upstream end. (Invert elevation 181.9) High level outlet: 24-inch diameter cast iron pipe with gate at upstream end. (Used to operate water wheel. Approximate invert elevation 185.)

SECTION 2: ENGINEERING DATA

2.1 Design

No plans or calculations pertaining to the original design of the dam could be obtained. Construction drawings for the 1950 reconstruction of the spillway and left training wall are available in the NJDEP file. The drawings, prepared by John E. Studer, include the following two sheets:

- 1. Topographic and Pertinent Data Pertaining to Repair of Dam.
- 2. Plans for Repairs of Dam Across the South Branch of Raritan.

Hydraulic and hydrologic computations for the 1950 reconstruction are available in the NJDEP file. The computations indicate that the spillway was designed to pass a 50-year frequency flood. Discharge was computed for the main spillway section and for the left millrace, assumed to function as an auxiliary spillway.

2.2 Construction

No data or reports pertaining to the original construction of the dam are available.

Monthly construction progress reports for the reconstruction during 1950 are available in the NJDEP file. An inspection report dated February 6, 1951 indicated that the project had been completed satisfactorily.

2.3 Operation

An inspecton report by the State of New Jersey dated November 27, 1967 indicated that the left millrace had been filled without permission and had been eliminated as an auxiliary spillway.

An inspection report by the State of New Jersey dated September 18, 1975 indicated that "the upstream side of the dam is silted and has minimal storage capacity and retention."

The 1975 inspection report also indicated that leakage was observed in the left training wall. According to the report, mortar and stones were loose and needed to be repaired.

2.4 Evaluation

1

(

a. Availability

Available engineering data is limited to that which is on file at the NJDEP. The data consists of plans, inspection reports, computations, specifications, correspondence and newspaper articles concerning the reconstruction in 1950 and flooding incidents in the vicinity of the dam.

b. Adequacy

Available engineering data pertaining to the reconstruction of Clinton Mills Dam is of limited assistance in the performance of a Phase I evaluation. A list of absent information is included in paragraph 7.1.b.

c. Validity

Most engineering data that could be verified was found to be accurate within a reasonable allowance for error. However, one discrepancy was noted: whereas the New Jersey State Water Policy Commission, Report on Dam Application, 1950, indicates outlet works consisting of 3 gates at the left end and 4 gates at the right end of the dam, field inspection revealed no gates at the left end and two gates at the right end. The 50-year frequency design storm used at the time of the 1950 reconstruction is inadequate in relation to criteria currently used for Phase I evaluations.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

The inspections of Clinton Mills Dam were performed on November 19 and 28, 1979 by staff members of Storch Engineers. A copy of the visual inspection check-list is contained in Appendix 1. The following procedures were employed for the inspection:

- 1) The spillway of the dam, appurtenant structures and adjacent areas were examined.
- The dam and accessible appurtenant structures were measured and key elevations determined by surveyor's level.
- The spillway, appurtenant structures and adjacent areas were photographed.
- 4) Depths of water were measured at various locations in the river.

b. Dam

The crest of the spillway appeared to be straight and horizontal. Although most of the spillway could not be closely observed due to overflow, a crack was observed near the left end about one foot beneath the crest on the downstream side running a length of approximately 30 feet. At the midpoint of the spillway, some deterioration was observed at the crest. A piece of concrete, approximately 2 inches thick and 2 feet in diameter was observed to have broken away at that point. The training wall at the left end of the dam is stone masonry with a concrete cap. Cracks and minor leakage were observed in the wall. The concrete cap was in generally satisfactory

condition. The area adjacent to the downstream side of the wall was partially filled with large pieces of concrete rubble. The training wall on the west side of the dam was in satisfactory condition.

c. Appurtenant Structures

The outlet works operating mechanisms consist of steel stems mounted on steel frames. The stems and frames were rusted and were not tested at the time of inspection. The low level outlet pipe appeared to be in satisfactory condition while the high level outlet pipe contained several pin-hole leaks. The concrete wall through which the outlet pipes penetrate appeared to be in good condition. The trash rack was in generally satisfactory condition.

A pin-hole leak was observed in the mill building wall discharging into the outlet raceway. The source of the leak could not be determined.

d. Reservoir Area

Clinton Mills Dam impounds a reach of the South Branch Raritan River downstream from its confluence with the discharge channel of Spruce Run Dam. The right bank was swampy and wooded with generally flat slopes. The left bank consisted of a dike running for a distance of 320 feet from the mill building to a point approximately 150 feet south of the Halstead Street Bridge.

e. Downstream Channel

The downstream channel is the South Branch Raritan River which is a wide and well defined natural stream. Some trees and rocks were observed immediately downstream of the spillway on the right side of the channel, although the majority

of the channel width contained no significant obstructions. The channel bottom immediately downstream from the spillway apron was scoured to a depth of approximately 3 feet.

Į

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

1

The level of water in the impoundment of Clinton Mills Dam is regulated naturally by discharge over the spillway of the dam. The outlet gates are normally not opened at times of heavy storms. At present, no formal or informal procedure for operating the dam and appurtenances is employed by the owners or the Town of Clinton.

According to the Town of Clinton, the impoundment has not been drawn down recently.

4.2 Maintenance of Dam

Reportedly, the most recent maintenance of the dam was the reconstruction of the spillway and left training wall in 1950. No regular maintenance of the dam is performed. According to the Town of Clinton, several years ago, chunks of concrete were placed in the abandoned raceway of the left mill building to stabilize the area behind the left training wall.

4.3 Maintenance of Operating Facilities

The outlet works for the dam is maintained on an "as needed" basis. It is not known when the outlet works was last serviced.

4.4 Description of Warning System

No warning system is currently in use for the subject dam.

4.5 Evaluation of Operational Adequacy

The operation of the dam has not been successful to the extent that the dam has been overtopped often and the left training wall has been washed out at least three times.

Maintenance documentation is poor and the maintenace program for the dam is not adequate in the following areas:

- 1) Cracks and deterioration on the spillway not repaired.
- 2) Deterioration of left training wall not repaired.
- 3) Area behind left training wall not properly stabilized.
- 4) Pin-hole leaks in high level outlet pipe and in the wall of the right mill building not repaired.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design Data

The intensity of storm water runoff that the spillway should be able to handle is based on the size and hazard classification of the dam. This runoff intensity, called the spillway design flood (SDF) is described in terms of return frequency or probable maximum flood (PMF) depending on the extent of the dam's size and potential hazard. According to the "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers, the SDF for Clinton Mills Dam falls in a range of 100-year frequency to 1/2 PMF. In this case, the high end of the range, 1/2 PMF, is chosen because of the urban nature of the area downstream from the dam.

The SDF peak computed for Clinton Mills Dam is 59,500 c.f.s. This value is derived from the PMF hydrograph supplied by the Corps of Engineers in "Raritan River Report, 1971, by N.Y. District." Hydrologic computations and computer output are contained in Appendix 4.

The spillway discharge rates were computed by the use of a weir formula appropriate to the configuration of its overflow section (See Appendix 4). Spillway discharge with lake level equal to the top of dam was computed to be 1906 c.f.s.

A 320-foot long dike is located along the left bank of the impoundment. The elevation of the top of the dike is 191.8. Calculation of the stage discharge curve for the dam includes overtopping of the dike, as well as a portion of the right bank of the impoundment. The crest of dam was assumed to be the top of the left training wall (elevation 190.3).

The SDF was routed through the dam by the use of HEC-1-DB computer program using the modified Puls method. The routing resulted in an overtopping of the dam by 10 feet. Accordingly, the subject spillway is assessed as being inadequate in accordance with criteria developed by the U.S. Army Corps of Engineers.

b. Experience Data

According to the NJDEP files, the dam had been overtopped many times in the past. Reportedly, the left training wall was washed out in 1907, 1940 and 1949. Further overtopping was reported in 1967 but damage was reportedly limited to the abandoned raceway.

Also, according to Town of Clinton maintenance personnel, the Main Street and Center Street area of the commercial center of Clinton is frequently flooded during heavy storms.

c. Visual Observations

Evidence of past overtopping was observed adjacent to the left end of the dam and along the upstream dike.

d. Overtopping Potential

As indicated in paragraph 5.1.a, a storm of magnitude equivalent to the SDF would cause overtopping of the dam by a height of 10 feet above the top of dam. The spillway is capable of passing approximately 4 percent of the SDF with impoundment level equal to the top of dam.

e. Drawdown Time

Drawdown of the impoundment is accomplished by opening the gate in the 36-inch low level outlet. However, hydraulic computations indicate that the outlet is of insufficient capacity to achieve a full drawdown under low flow conditions of the river.

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

The dam appeared, at the time of inspection, to be structurally sound. A crack was observed at the left end approximately one foot beneath the crest for a length of approximately 30 feet and was about 1/2 to 3/4 inches wide and 2 inches deep. Also, cracks and minor leakage were observed in the left training wall.

b. Generalized Soils Description

The generalized soils description of the dam site consists of recent alluvium composed of stratified materials deposited by streams overlying silty clays and silts. These soils overlie limestone bedrock identified as Kittatiny limestone.

c. Design and Construction Data

No data relating to the original construction is available. Plans for reconstruction of the spillway and left training wall are available in the NJDEP file.

d. Operating Records

An inspection report by the State of New Jersey in 1975 indicated that the left training wall should be repaired. Inspection of the wall for the current Phase I evaluation confirmed the need for repair of the wall.

e. Post Construction Changes

Since the reconstruction of the dam in 1950, the following changes to the dam and surrounding area have taken place:

- 1) Concrete rubble fill placed behind the left training wall.
- Three of the four obstructing islands formed by rock and earth shown on the plans prepared by John E. Struder have been eliminated.
- f. Seismic Stability

Clinton Mills Dam is located in Seismic Zone 1 as defined in "Recommended Guidelines for Safety Inspection of Dams" which is a zone of very low seismic activity. Experience indicates that dams in Seismic Zone 1 will have adequate stability under seismic loading conditions if stable under static loading conditions. Clinton Mills Dam appeared to be stable under static loading conditions at the time of inspection.

SECTION 7: ASSESSMENT AND RECOMMENDATIONS

7.1 Dam Assessment

a. Safety

Based on hydraulic and hydrologic analyses outlined in Section 5 and Appendix 4, the spillway of Clinton Mills Dam is assessed as being inadequate. The spillway is not able to pass the SDF designated for the dam without an overtopping of the left training wall and the dike upstream from the dam.

The dam appeared to be outwardly stable at the time of inspection. The observed cracks and deterioration in the spillway and left training wall are not considered an indication of immediate instability.

b. Adequacy of Information

Information sources for this study include: 1) field inspection, 2) plans, calculations, correspondence and inspection reports in the NJDEP file, 3) USGS quadrangle, 4) aerial photograph from Hunterdon County, 5) consultation with maintenance personnel of the Town of Clinton. The information obtained is sufficient to allow a Phase I assessment as outlined in "Recommended Guidelines for Safety Inspection of Dams."

Some of the absent data are as follows:

- 1) As-built drawings.
- 2) Structural design computations and report.
- 3) Maintenance documentation.
- 4) Soils report for the site.

22

c. Necessity for Additional Data/Evaluation

Although some data pertaining to Clinton Mills Dam are not available, additional data are not considered imperative for this Phase I evaluation.

7.2 Recommendations

a. Remedial Measures

Based on hydraulic and hydrologic analyses outlined in paragraph 5.1.a., the spillway is assessed as being inadequate. It is therefore recommended that a professional engineer experienced in the design and construction of dams be engaged in the near future to perform more accurate hydraulic and hydrologic analyses. Based on the findings of these analyses, the need for and type of remedial measures should be determined and then implemented.

The owners should, in the near future, develop an emergency action plan together with an effective warning system outlining actions to be taken by the operator to minimize downstream effects of an emergency at the dam.

In addition, it is recommended that the following remedial measures be undertaken by the owners in the near future:

- The low level outlet should be investigated and if found to be insufficient to achieve a drawdown of the impoundment, should be replaced by a suitable outlet facility designed by a professional engineer experienced in the design and construction of dams.
- The spillway should be thoroughly inspected with the impoundment drawn down. During the inspection, special care should be taken to observe any indications

of seepage under the spillway. The spillway should then be renovated in accordance with the findings of the inspection.

- The channel bottom immediately downstream from the spillway apron should be filled and suitably stabilized.
- 4) The training wall at the left end of the spillway should be repaired and the adjacent area suitably filled and stabilized.
- 5) The pin-hole leak in the wall of the right mill building should be repaired.

In addition to Clinton Mills Dam, an upstream dike located along the east bank, impounds the river. The dike is referred to as Clinton Mills Dike. Remedial measures to correct the inadequate condition of the spillway of Clinton Mills Dam should be performed in conjunction with remedial measures for the dike as specified in "Clinton Mills Dike, NJ00564, Phase I Inspection Report, National Dam Safety Program," dated March 1980.

b. Maintenance

In the near future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to insure the safety of the dam.

c. Additional Studies

A detailed topographic survey of the dam and area around the dam based on N.G.V.D. should be undertaken by a qualified licensed land surveyor or professional engineer in the near future. The survey map should be related to existing construction drawings and should become part of the permanent record mentioned in paragraph 7.2.b.

PLATES

• •	• • •	 and consider the angles		~ -

Ń

Spruce Run Dom Discharge Channel MILL 1 Gote Controls Steel Pipe & Ti Trosh Ruck 36'0CIP 24"0C.IP. Concrete Wal. Clinton Historic Concrete. Museum(Formerly Concre, Wood Frame Mill Crest Building.) Woter Wheel 120. Concrets Apron Obstructing Island formed by Rock, Earth and Sediment Mosonry Woll NOTE: Information taken from plan by John E. Studer, PE., September, 1949 and Main Street Bridge Field Inspection November 19,1979

Spruce Run Dam: Discharge Channel ۰, NILL F 1 Gote Controls Steel Pipefint 36'0 CIP Trash Risen 24°0C.1P. Concrete Weil Clinton Historic Concrete A Museum(Formerly Concrete Wood Frame Mill Crest Building.) Water Wheel Concrete Apron (\mathbf{I}) Obstructing Island formed the Rock, Earth and Sediment MOSOAry Woll 9 NOTE: Information taken from plan by John E. Studer, PE., Seplember, 1949 and Main Street Bridge Field inspection November 19,1979

1

ruce SOUTH BRANG H M Desinn: RARITAN R'IVE .' charge. nerrinel 4 EurthDike -1 NALL POND Frame Dweiling 1 Pipe + Amber to file a .\ Teste West! oncrete Approuch Concrete Spillway Musonry Building Crest (Former Mill) Abandoned Toll Race Concrete Portiolly filled with Apron broken concrete 8 Masunry Wall with Concurp. Oversit Top of Wall Elev 190.7 PLATE 6 MUSONTY DIVISION OF WATER RESOURCES STORCH ENGINEERS Woll N.J. DEPT. OF ENVIR. PROTECTION FLORHAM PARK, NEW JERSEY TRENTON, NEW JERSEY INSPECTION AND EVALUATION OF DAMS PHOTO LOCATION PLAN ' Bridge CLINTON MILLS DAM 1 D. N J 00122 SCALE NOT TO SCALE DECEMBER, 1979 DATE

APPENDIX 1

(

مر

Check List - Visual Inspection Check List - Engineering Data

.

M.S.L. · Coordinators NJDEP Tailwater at Time of Inspection 180.5 State New Jersey Temperature 60[°]F Recorder Check List Visual Inspection Phase I Present: Tom Tharp, Water Superintendent, Town of Clinton Phillip Schuyler, Clinton Historical Museum Village County Hunterdon M.S.L. Weather Sunny Thomas Miller Alan Volle J. Gribbin Pool Elevation at Time of Inspection 188.4 Name of Dam Clinton Mills Dam Date(s) Inspection 11/19/79 Inspection Personnel: Richard McDermott John Gribbin Ronald Lai

(

(

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECONMENDATIONS
GENERAL	Right stone masonry training wall was in satisfactory condition. Left stone masonry training wall was in deteriorated condition with cracks and loss of mortar observed.	Area along downstream side of left training wall formerly was mill race. It was partially filled with concrete rubble at time of inspection.
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Junction between concrete overflow section and stone masonry training walls at each end appeared to be generally sound.	
DRAINS	None observed.	
WATER PASSAGES	N.A.	
APRON	Apron obscured by overflow for its entire length - although it appeared to be generally sound.	
VERTICAL AND HORIZONTAL ALIGNMENT	Vertical: level Horizontal: straight	
ı	• . •	

CONCRETE/MASONRY DAMS

l

(

CONCRETE/MASONRY DAMS

(

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	Some deterioration of the crest was observed at the approx. center of the overflow section of the dam. A piece of concrete about 2 inches thick was broken away. The affected area was about 2 feet wide.	Recommend renovation of spillway.
STRUCTURAL CRACKING	A longitudinal crack was observed near the left end of the dam on the downstream face about 1 foot below the crest. The crack was approx. 30 feet long, 3/4" wide and as much as 2 inches deep.	Recommend renovation of spillway.
CONSTRUCTION JOINTS	None observed	
MONOLITH JOINTS	None observed	
LEAKAGE	Some minor leakage observed on downstream side of stone masonry wall at left end of dam. Pin-hole leak observed in wall of mill building adjacent to outlet raceway.	Source of pin-hole leak could not be determined.
SEEPAGE	None observed	

I.

OUTLET WORKS

;

(

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SURFACES IN OUTLET CONDUIT	N.A.	Outlet works consists of two gated pipes at upstream end of mill race at right side of dam.
INTAKE STRUCTURE	Trash rack constructed of timber and steel pipes upstream from outlet gates appeared to be in generally satisfactory condition.	
OUTLET STRUCTURE	Gates are mounted on vertical concrete wall con- structed between mill building and right training wall of dam. The wall appeared to be in good con- dition. Low level outlet pipe was in satisfactory condition. High level outlet pipe contained several pin-hole leaks.	High level outlet appeared to be used to operate water wheel associated with mill. It may also have been intended to operate hydro-electric turbine.
OUTLET CHANNEL	Outlet channel consists of mill race formed by mill building and stone masonry training wall. Path of outlet discharge appeared to pass beneath a stone masonry wall immediately upstream from the water wheel.	
GATE AND GATE HOUSING	Gates were submerged and not observed. Operating mechanisms were rusted and not tested at the time of inspection.	Mechanisms should be tested and made operational.
	•	

ł

SPILLWAY

1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
WEIR	See "Concrete/Masonry Dams" above.	Spillway consists of overflow section of dam. Dam is a run-of-the-river type.
APPRDACH CHANNEL	N.A.	
DISCHARGE CHANNEL	Spillway discharges directly into downstream channel.	
	•	
_		-

	TATION
VISUAL EXAMINATION	OBSERVATIONS REMARKS OR RECOMMENDATIONS REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None
OBSERVATION WELLS	None
WEIRS	None
PIEZOMETERS	None
OTHER	Υ.

•

. . •

(

.

. RESERVOIR

l

VISUAL EXAMINATION OF	OBSERVATIONS	DEMADIKE OD DECOMMENDATIONE
SLOPES	The right bank was swampy and wooded with generally flat slopes. The left bank consisted of a dike running from the mill building to a point approx. 120 feet south of the Halstead St. bridge. The dike slope was 2 horiz. to 1 vert.	Impoundment consists of the South Branch Raritan River.
SEDIMENTATION	Soundings in the impoundment in the vicinity of the dam indicated the accumulation of approx. 1 to 2 feet of sediment.	
STRUCTURES ALONG BANKS	Mill buildings are located on the banks of the river at each end of the dam. A dwelling and a small office building are located along the dike. Two other dwellings are located along the left bank between the dike and a road bridge located 630 feet u_{μ} stream from the dam.	

1

I

	An obstructing island formed by rock, earth and sedi- ment is located in the channel immediately downstream from the dam near the right end. The majority of the channel width contains no significant obstructions. Bank slopes are generally steep. A steel road bridge is located 120 feet from the dam. The Route 22 bridge is located 400 feet from the dam. A developed area of Clinton lies on both sides of the channel within 1300 feet from the dam.	CONDITION (OBSTRUCTIONS, DEBRIS, ETC.) SLOPES STRUCTURES ALONG BANKS
		•
	<pre>1 120 feet from the 1 400 feet from the ies on both sides of ne dam. The Route of rom the dam.</pre>	CTURES ALONG
		8
	Bank slopes are generally steep.	
-		0410) FIG. /
	An obstructing island formed by rock, earth and sedi- ment is located in the channel immediately downstream from the dam near the right end. The majority of the channel width contains no significant obstructions.	STRUCTIONS,
	- -	

DOWNSTREAM CHANNEL

(

(

-

.

	CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION
ITEM	REMARKS
DAM - PLAN SECTIONS	Available in plans titled "Plans For Repair of Dam Across The South Branch of Raritan" (2 sheets) by John E. Studer, P.E., Clinton, N. J., Dated Sept. 5, 1949. NJDEP file in Trenton, N. J.
SPILLWAY - PLAN	Available - Studer drawings
SECTIONS DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	Not available
OUTLETS - PLAN	Not available
DETAILS	
CONSTRAINTS	
DISCHARGE RATINGS	
HYDRAULIC/HYDROLOGIC DATA	PMF provided by Corps of Engineers from "Raritan River Report" 1971, N.Y. District. Also, gaging data available for South Branch Raritan River.
RAINFALL/RESERVOIR RECORDS	ailäble
CONSTRUCTION HISTORY	Limited, available in NJDEP file, Trenton Office, N. J.
LOCATION MAP	Available

(

)

(

.

TITA REWARGS DESIGN REPORTS Not available GEOLGET REPORTS Not available GEOLGET REPORTS Not available GEOLGET REPORTS Not available DESIGN COMPUTATIONS Not available MORGLOST REPORTS Not available DM STABILITY Not Available	:		
OF DAM	ITEM		
OF DAM	DESIGN REPORTS	ble	
OF DAM	JLOGY REPORTS		
OF DAM Not Availa Not Availa	SIGN COMPUTATIONS MDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	Available - NJDEP file Not Available Not Available	
ION SURVEYS OF DAM Not Availa Not Availa	ERIALS INVESTIGATIONS ORING RECORDS ABORATORY IELD	Not Available	
Not Availab	T-CONSTRUCTION SURVEYS OF DAM	Not Available	·.
	ROM SOURCES		

((
TEM	REMARKS
MONITORING SYSTEMS	Stream gages in South Branch Raritan River upstream and downstream from dam. Upstream: near High Bridge, about 4 miles upstream Downstream: at Stanton, about 6 miles downstream
MODIFICATIONS	Modifications to the east wall available in Plans by John E. Studer.
HIGH POOL RECORDS	Not Available
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Limited information in NJDEP file, Trenton Office, N.J.
PRIOR ACCIDENTS OR FAILURE OF DAM Description Reports	Description of damages to east wall from flood in 1949 and description of damages to banks from flood in 1940 available in NJDEP file.
MAINTENANCE OPERATION RECORDS	Not available

APPENDIX 2

l

.

Photographs

PHOTO 1 ^{28 DECEMBER 1979} SPILLWAY

PHOTO 2 MILL RACE AT WEST END OF DAM

CLINTON MILLS DAM

1

PHOTO 3

TRASH RACK AT UPSTREAM END OF MILL RACE

PHOTO 4

GATE OPERATING MECHANISMS

(

CLINTON MILLS DAM 19 NOVEMBER 1979

í

(

PHOTO 5 LOW LEVEL OUTLET PIPE

PHOTO 6

OUTLET PIPE USED TO SUPPLY FLOW TO WATER WHEEL

CLINTON MILLS DAM 19 NOVEMBER 1979

PHOTO 7

DUMPED FILL ADJACENT TO WALL AT EAST END OF DAM

РНОТО 8

CRACKS AND LEAKAGE IN WALL AT EAST END OF DAM

(

CLINTON MILLS DAM 19 NOVEMBER 1979

28 NOVEMBER 1979 PHOTO 9

TRAINING WALL ALONG WEST EDGE OF DOWNSTREAM CHANNEL

19 NOVEMBER 1979 PHOTO 10 DOWNSTREAM CHANNEL

CLINTON MILLS DAM

APPENDIX 3

1

Engineering Data

CHECK LIST HYDROLOGIC AND HYDRAULIC DATA

:

ENGINEERING DATA

DRAINAGE	AREA CHARACTERISTICS: Hilly and wooded with limited development
ELEVATION	TOP NORMAL POOL (STORAGE CAPACITY): 188.4 (21 acre-feet)
ELEVATION	TOP FLOOD CONTROL POOL (STORAGE CAPACITY): N.A.
ELEVATION	MAXIMUM DESIGN POOL: 200.4
ELEVATION	TOP DAM:190.3
SPILLWAY (CREST:
	Elevation 188.0
	Type Free overflow weir
с.	Width 11 feet
d.	Length170 feet
e.	Location Spillover Spillway is overflow portion of dam
f.	Number and Type of GatesN.A
OUTLET WO	RKS:
a.	Type Gated 36-inch pipe
b.	Location Upstream end of right millrace
c.	Entrance inverts 181.9
	Exit inverts 181.9
e.	Emergency draindown facilities: Pipe is of insufficient capacity
HYDROMETE	to lower impoundment. DROLOGICAL GAGES: None
	TypeN.A.
b.	Location N.A.
	Records N.A.
MAXIMUM N	DN-DAMAGING DISCHARGE:
(Lake	e stage equal to top of dam) <u>1906 c.f.s.</u>

APPENDIX 4

Hydraulic/Hydrologic Computations

Sheet_1_of_9

STORCH ENGINEERS Project CLINTON MILLS DAM Made By STO Date $\frac{1/2}{32}$ Chkd By_JG__Date 1/15/80

HYDROLOGY

THE PEAK PMF INFLOW, QPMF, WILL BE DETERMINED BY ADJUSTING THE VALUE FOR QPAR FOR THE SOUTH BRANCH PARITAN RIVER AT STANTON, NEW JERGEY (RE. RARITAN RIVER SURVEY REPORT, MARCH 1971, N.Y. DISTRICT, CORPS OF ENGINEERS)

SOUTH BRANCH RAPITAN RIVER AT CLINTON MILLS DRAINAGE AREA, D.A. = 111 SQ. MI.

SOUTH BRANCH PARITAN RIVER AT STANTON DRAINAGE AREA, D.A. . 147 SQ. MI.

USING THE RELATIONSHIP, $\frac{Q_1}{Q_2} = \left(\frac{DA}{DA}\right)^{0.75}$, Q_{DMF} AT CLINION MILLS IS COMPUTED AS FOLLOWS: $Q_{PMF} = \left(\frac{11}{147}\right)^{\alpha_{15}} (146,000)$ Q PMF = 119,000 CFS Q 13 PMF = 59,500 CFS SINCE THIS PEAK INFLOW IS GREATER THAN THE MAXIMUM DISCHARGE, A ROUTING WILL

BE PERFORMED BY THE MODIFIED PULS METHOD.

STORCH ENGINEERS

Í

Project CLINION MILLS DAM

Sheet_2_ of _9_

______Made By_<u>STO</u>_____Date_<u>1/3120</u>_____ _____Chkd By_<u>JG</u>___Date_<u>1/15/80</u>

INFLOW HYDROGRAFY

THE PMF HYDROGRAPH, DETERMINED BY ADJUSTING THE PMF HYDROGRAPH, SUPPLIED BY THE U.S. AFMY CORPS OF ENGINEERS,

IS AS FOLLOWS:

DAy	HOUR	INFLOW (IFS)	DAY	HOUR	INFLOW ((FS)
0	1	4800	0	23	51800
	2	3200	1	0	42200
	3	3200		I	35600
	4	4800		2	30800
	5	4800		3	24100
	6	64500		4	17800
	7	82.000		5	16200
	8	10400		6	13000
	9	14600		7	11400
	10	19400		8	10600
	Ą	32400		9	9800
:	12	48600		10	9000
	ß	71200		• •	8200
	14	89200		12	7200
	15	107000		13	6400
	16	119000		14	5600
	רו	107000		15	4800
	18	97200		16	4800
	19	89200		17	4800
	. 20	81000		18	4000
	21	71 200	•	19	3200
	22	60 000			

STORCH ENGINEERS		Sheet_3_ of <u>9</u>
Project_CLINTON M	ILLS DAM	
		Chkd ByGDate15/80

LA	¥Ε	STORAGE	VOLUME

ELEVATION	SURFACE AREA (ACRES)
182.0	0
188.4	IO*
200	ւկկ
220	329
240	562
260	820

HEC-1-DB	Program	WILC	DEVELOP	STOPA GE
CAPACITY	From	SURFACE	Areas \$	ELEUATIONS

INFORMATION FROM USGS, QUADRANGLE

* Taken from "Report on Dam Application " dated 1/27/50 in NJDEP file.

.

STORCH ENGINEERS			Sheet
Project CLINTON	MILLS	DAM	Made By STD Date 1/2/80

HYDRAULICS

STAGE DISCHARGE CALCULATION . DISCHARGE

WILL BE CALCULATED BY THE FORMULA

 $Q = CLH^{3/2}$; WHERE:

- Q= DISCHARGE IN CFS
- C= COEFFICIENT OF DISCHARGE
- L: EFFECTIVE LENGTH OF (REST
- H: TOTAL HEAD ON CREST

THE COEFFICIENTS OF DISCHARGE ARE TAKEN FROM "THE HANDBOOK OF HYDRAULICS" BY KING AND BRATER.

TAILWATER HAS BEEN DETERMINED TO HAVE NO EFFECT ON DISCHARGE UNTIL RIVER STAGE (TAILWATER) REACHES 190.0 FEET. THEREFORE, DISCHARGE COEFFICIENTS WILL NOT BE ADJUSTED FOR SUBMERGED CONDITIONS.

THE DISCHARGE CALCULATION FOR THE DAM INCLUDES: OVERTOPPING OF THE SPILLWAY CREST AT STAGE 188.0, OVERTOPPING OF THE CLINTON MILLS DIKE AT STAGE 191.8 ¢ OVERTOPPING OF THE AREA WEST OF THE WEST MILL BUILDING,

FOR THE DURPOSES OF COMPUTER INPUT THE TOP OF DAM ELEVATION IS ASSUMED TO BE 190.3, LENGTH - 4B', COEFFICIENT OF DISCHARGE FOR FLOW OVER DAM = 263

ject	CLINTON	MILLS DA		Made By <u>CLO</u> Date <u>4/E</u>
<u> </u>				Chkd By Date _4/9
	STAGE	DISCHARGE	CALCULATIC	ON (con't)
	SPILLW	AY	DIKE	_
	-			ELEVATION = 191,8
				E LENGTH = 452.
	AVERAGE	"C" = 3.3	AVERAGE	"C" * 2,63
	WATER	DISCHARGE	DISCHARGE	TOTAL
	SURFACE	OVER SPILLWAY	OVER DIKE	DISCHARGE
	ELEVATION	Q1 (cfs)	Q2 (cfs)	$Q_T = Q_1 + Q_2$
	188	0	0	0
	189	561	0	561
	190,3	1906	·· O··· · · ·	1906
	191.	2915	0	2915
	191.8	4156	0	4156
	192.	4488	106	4594
	193	6272	1563	7835
	194	8245	3880	12125
	195	10390	6806	17197
	196	12694	10234	22928
	198	17740	18352	36092
	200	23320	27914.	51234
	202	29387	38725.	68112

(

(

STORCH ENGI	NEERS		Sheet	3_of_9
Project CLIN	MON MILLS	DAM	Made By <u>510</u> Dat	· 1/10/30
			Chkd ByDat	

OUTLET WORKS CAPACITY

Ł

THE OUTLET WORKS FOR CLINTON MILLS DAM CONSIST OF A THREE FOOT DIAMETER CAST 180N PIPE, APPROXIMATELY FIVE FEET LONG

FROM "HYDRAULIC CHARTS FOR THE SELECTION OF HIGHWAY CULVERTS", INLET CONTROL

DISCHARGE WITH WL AT SPILLWAY CREST: 75 CFS AVERAGE DISCHARGE = 37 CFS (""6 = 2.1)

TIME REQUIRED FOR TOTAL DRAWDOWN

T= _____STORAGE AVE, DEAWDOWN DISCHARGE - NORMAL INFLOW

MINIMUM NORMAL INFLOW = 100 CFS REF.: STATISTICAL SUMMARIES OF NEW JERSEY STREAMFLOW RECORDS (- WATER RESOURCES CIRCULAR 23)

OUTLET NOT SUFFICIENT TO ALLOW DRAWDOWN

(OUTLET REGULATION OF SPRIKE RUN NOT LONSIDERED)

OUTFLOW (CFS)

OVERTOPPING OF THE DAM OCCURS AT ELEVATION 1903 WITH Q = 1906 CFS .. DAM CAN PASS APPROXIMATELY 3.2% SDF OR 1.6% DMF

HEC-1-DB COMPUTATIONS

(

1. A.

			19400 81000 13000 48000		196	22928]	
*			484 48200 82000 90000 90000		195	5	1	
۲. ۲		MA	10400 57200 17600 5600		194	12125		
GRAM NEW JERS NG		WILLS DA	107000 24100 6400	DAM 1	-188.4 193	7835		
FETY PRO LINTON MF ROUTI		CLINT	119000 30800 72800	GE THRU C	192	4594	823 260	
С DAM SA S DAM, SA R A 1 1 0 р Р	D • 1	RAPH, TO	107100 35600 8200	DISCHAR	191•R	4156	260 260 260	
TON MILL	0•2	ON HYDROG	884 822200 92200 9000 9000	ROUTE	191	2915	50 20 20 20 20 20 20 20 20 20 20 20 20 20	48
CLIN	0 • 3 3	Z-	51200 51200 52000 52000 52000 52000 52000		•0	0-		1 • 5
1	С С С С С С С С С С С С С С С С С С С		484 88004 980004 900004 800000	Ċ			- 4 •	2.63
4 1010	04100 9 0		1128600 1128600 1128000 128000 1000000	• •	188 198 198	36092	188 188	•0•
44488	รรีร	×Σ Ч	2222X	~~	441 77	רא ≺ אירי	4 4 4 4 1 1 1 1	

(

.

(

00000 ********* IAUTO 14600. 89200. 16200. LOCAL NSTAN IAAME ISTAGE ISAMĘ 10400. 97200. 17800. TOTAL VCLUME 13 70200. 38800. TOTAL VOLUME 685100 19400 IPRI RATIO ISNOW IPLT 107000 241000 6400 UPR1 LAKE FOR PLAN 1. RTID 1 CLINTON MILL DAM SAFETY PROGRAM CLINTON MILLE DAM CLINTON, WEW JERSEY MULTI RATIO PHF ROUTING MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN= 1 NRTIO= 5 LRTIO= 1 •40 •30 •20 •10 INFLOW HYDROGRAPH TO CLINTON MILLS DAM 72-HOUR 31865. 1902. 19.14 113240. 133679. 72-H0UR 15933. 951. 243.57 266206 59840. JPL T 0 METRC TRACE SUB-AREA RUNOFF COMPUTATION 119000 30800 7200 JOB SPE CIFICATION IHR IMIN ME NUT LROPT TF INPUT HYDROGRAPH NAP TRSDA TRSPC SNAP TRSDA TRSPC 0.00 111.00 0.00 24-HOUR 52521. 1487. 1041745 128496 ********* ISTAG ICOMP IECON ITAPE Lake 0 0 107100 35600 8200 HYDROGRAPH AT STA 50380UR 14273 14273 107822 249835 20817 6-H0UR 2853 2853 8.44 214-50 4967 61633 \$2200 \$2200 \$000 \$000 \$000 JOPER 5 59500. 1685. 119000. ********* IUMG TAREA 0 111.00 N I NN 71200. 51800. 5200. -50 CFS INCHES INCHES AC-FT THOUS CU H CFS CMS INCHES An Ac-FT Thous cu m NHN NHN RT105= 3200 3200 98600 90000 90000 IHYD6 0m 24 *********

۰,

				HVDRO	Hd¥	11			•	* * * * * *			
			F OUT	TE DISCHA	ARGE THR	RU DAM							ł
	550 10	CLCSS	L COMP A VG	IECON ROUT IRES	I TAPE 0 1NG DA 1SAME	JPLT TA IOPT	1895 1981 1981	I NAME 1	ISTAGE 0 1 ete	I AUTO			
		* • • •	0.00 NSTOL		Sec.	-	. ⊢¢	STORA) (K		:	•	
	189.80	10	06.00	ō	•	80		100.	-1 93.00	194.0(_	195.00	196•00
	00			2915.00	*	156.00	4594.00	-	835 - 00	12125.0	• ~	. 119	2292B. DD
	T		1	329.	562	•	820.				•		
1 .	9. 21		764.	5368.	14175	. 27	14.						
44110%= 182	2. 188	•	200.	220.	240	•	260.						
	. CRE 188.	0L 8P	410 0.0	XU 30°0	30	5 5 6 7 6	COOL CARE	≪0	EXPL 0.0		ı		
				T0PEL 190.3	C000 H 2.6	1 DATA EXPD	DAMUIC 48.						
				AT I	0	PLAN	<u>ہ</u>						
			L	END-OF-PE	R I 00	HYDROGRAPH	ORDINATE:	S					
11 15555 15555 255555 25555 25555 25555 25555 25555 25555 2555555	21422 23165 30942 2099 2099	1669 13558 15358 1678	212 212 256	2522 2522 118088 417	UTFLOU 3. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2923. 58585. 5790.	55586. 55586. 12518. 3263.	4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	09900 29900 4	• • • • •	9361. 6891. 2366.		•
1477 1778 1477 1477 1477 1477 1477 1477	т 4000 4000 4000 4000 4000 4000 4000 40	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	54. 588. 94.	2400N	.TORAGE 0 3 7	8566 2166 796	83+ 772- 181- 71-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	190	5 9 F 6 9 9 F 6	147. 543. 119.		
197 197 197 197 197 197	11996 9926 9886 9886 9886 9886	190°1 197°3 192°2 192°2	190.5 1998.6 191.9	199 199 194	ST AGE	2001 2001 1990 1995	2001 2001 1933 191 291 291 291 291 291 201 201 201 201 201 201 201 201 201 20	1992 1992 1993 1993 1993 1993 1993 1993	6666 6666		193•2 198•3 192•6		* :
\$ \$8585	۲.	6.00	HOURS										
	CFS CMS INCHES AMA ACMA ACMA ACMA	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	₩ 4 4 6 ₩ 4 4 6	101 000 101 044 1040 0444 0440 0444 0444	24 24 25 20 20 20 20 20 20 20 20 20 20 20 20 20	72 72 72 72 72 72 72 72 72 72 72 72 72 7	R 101AL	L 68542 19429 19429 19409 19409 19409 19409 1940 1940 1940					i .

•

	TIME OF FAILURE Hours	
0F DAM 190.30 1906.	TIME CF Max Outflow Hours	
ST TCP	DURATION OVER TCP HOURS	400000 00000 00000
SPILLWAY CRES' 188,00 18.	MAXIMUM Outflow CFS	1400 1400 1400 1400 1400 1400 1400 1400
VALUE 40 21.	MAXIMUM STORAGE AC-FT	804 20 20 20 20 20 20 20 20 20 20 20 20 20
INITIAL V 188.44 224	MAXIMUM DEPTH Over Dam	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ELEVATION Storage Outflow	MAXIMUM RESERVOIR V.S.ELEV	200.39 197.50 197.50 195.83 195.83
• • • • •	RATIO DF P#F	00000 04004

SUMMARY OF DAM SAFETY ANALYSIS

Ĺ

(

APPENDIX 5

Bibliography

- 1. "Recommended Guidelines for Safety Inspection of Dams," Department of the Army, Office of the Chief of Engineers, Washington, D.C. 20314.
- Design of Small Dams, Second Edition, United States Department of the Interior, Bureau of Reclamation, United States Government Printing Office, Washington, D.C., 1973.

1

- Holman, William W. and Jumikis, Alfreds R., <u>Engineering Soil</u> <u>Survey of New Jersey, Report No. 6, Hunterdon County</u>, Rutgers University, New Brunswick, N.J., 1953.
- "Geologic Map of New Jersey," prepared by J. Volney Lewis and Henry B. Kummel, dated 1910 - 1912.
- Herr, Lester A., <u>Hydraulic Charts for the Selection of Highway Culverts</u>, U.S. Department of Transportation, Federal Highway Administration, 1965.
- 6. <u>Safety of Small Dams</u>, Proceedings of the Engineering Foundation Conference, American Society of Civil Engineers, 1974.
- 7. King, Horace Williams and Brater, Ernest F., <u>Handbook of Hydraulics</u>, Fifth Edition, McGraw-Hill Book Company, 1963.

