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IDENTIFICATION OF NONLINEAR DELAY SYSTEMS USING SPLINE METHODS

H.T. Banks

Abstract

Spline based approximation schemes for nonlinear nonautonomus functional

differential equation control systems are discussed and it is shown how these

may be employed in parameter estimation techniques. A sample of our numerical

findings is also presented.
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1. Introduction

In this note we present results for a general class of spline approxima-

tions for nonlinear functional differential equations (FDE). The results of

§2 below extend to a broad class of nonlinear FDE the basic state approximation

theorems based on spline methods developed earlier for linear FDE in [3]. Our

methods here do not employ a Trotter-Kato type theorem (the results for linear

systems in [31 as well as those for autnomomous nonlinear FDE in (6] are based

on Trotter-Kato approximation theorems). Rather, we use only simple ideas

(Gronwall's inequality in a manner similar to that in [1) where another class

of approximations for nonlinear control systems is developed) involving a

dissipative condition on the nonlinear operator generated by the right-hand side

of our nonlinear FDE. (For other spline approximation results for nonlinear

FDE, see [81, [9].)

The ideas developed here are sketched for a specific class ("first-order"

or "piecewise linear' splines)of approximations, but a careful reading of [3)

in conjunction with analysis of our presentation below should convince the

reader that our results extend immediately to classes of higher-order spline
I N NNmethods based on the approximation scheme A - P AP used in [3) and below.

The state approximation results of 12 are given under a global Lipschitz

hypothesis on the system that is sufficiently weak so an to include many

systems arising in applications as special cases. Our results can be developed

(at the expense of considerable added technical argument) under somewhat weaker

conditions based on local Lipschitz criteria in certain of the arguments

appearing in the right-hand side of our FDE system. we do include in our

treatment nonautenomous system such as those cosmnly found in control and iden-

tification problems. In fact, in 13 below we indicate how our results apply
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2.

directly to parameter identification problems and present some of our numerical

findings. The applications of the approximation theorems of §2 to the nonlinear

system identification problems of §3 are analogues to the linear system spline

approximation identification techniques discussed in [2].

In obtaining our state approximation results (along with error estimates)

in §2 we require a differentiability.assumption on the right-hand side of the

FDE in addition to the global Lipschitz hypothesis. This appears essential

for our approach, which relies on convergence of the approximating operators

N
A along solutions of the FDE (this in turn requires certain minimal smoothness

criteria on trajectories). In contrast, the autonomous Trotter-Kato nonlinear

approximation result developed in [6] requires only the global Lipschitz

hypothesis. Of course, to provide error estimates, that approach must also

include the additional differentiability condition.

Throughout we shall use the notation Hi or HJ(a,b) to denote the usual

Sobolev spaces W(j)(a,b;Rn) of Rnvalued functions, with H = L2(a,b).
22

2. State Approximation for Nonlinear Systems

We consider the system

(2.1) i(t) = f(x(t),xt, .x(t-r1  x(t-TV)) + g(t), 0 < t <_T,

x = €

n n n
where f - f(n,,ly1 , .. yV): Z X RnV 4 R n. Here Z - Rn X (-rOR

o < T 1 .. . r, xt denotes the usual function xt(a) - x(t+B),

-r < 8 < 0, and * E H (-r,0). We shall make use of the following hypotheses

throughout our presentation.
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3.

(Hi): The function f satisfies a global Lipschitz condition:

V
f(n,*,yI .. 1 4... _ + I lyi-wil)1=l

..... n v

for some fixed constant K and all (n,*,y1 , .... yV), (,,w I . w V in Z x R.

(H2): The function f: Z x R nv  Rn is differentiable.

n n nRemark 2.1. If we define the function F: R x C(-r,O;R n) C Z 4 R given by

(2.2) F(z) = F(n,*) =f(,,,(-T ),...,*(-T

we observe that even though f satisfies (HI), F will not satisfy a continuity

hypothesis on its domain in the Z norm.

We define the nonlinear operator A: D(A)C Z Z 2 by

D(A) - W E {(*(O),*)I 4E H (-r,O))

A(*(O),*) = (F(*(O),), D0)

where here D# - 4'.

Theorem 2.1. Assume that (Hl) holds and lot y(ti*,g) - (x(t#, 1g),xt (,g))

where x is the solution of (2.1) corresponding to # E H1 g E L2 . Then for

- (#(0),#), y(#,g) is the unique solution on 10,T) of

t

(2.3) z(t) - c + f{Az(o)+(g(0),O))dO.

0

~ - ~ i--



4.

Furthermore, g + z(t;O,g) is weakly sequentially continuous from L2 (weak) to

Z (strong).

Our proof of Theorem 2.1 follows ideas of D. Reber (see (101 and S2, §3

of [111) and employs a very general fixed-point theorem (a "uniform contraction"

result - see [5, p. 71 - that is by now well known to those working in dynamical

systems) to establish existence and continuous dependence of solutions of

(2.3). For existence, uniqueness and continuous dependence of solutions of

(2.1), we note that our condition (H) is a global version of the hypothesis

of Kappel and Schappacher in [71, so that their results yield immediately the

desired result for (2.1).

The uniqueness of solutions to (2.3) follows in the usual manner once we

establish that A satisfies a dissipative inequality. Indeed, defining a

weighting function g exactly as in [3, p. 500] and the corresponding weighted

inner product <,> on Z, one can show without difficulty that (Hl) implies

the dissipative inequality (see [4, p. 711) for the nonlinear operator A

(2.4) <Az-Aw,z-w> <z-w#z-v>4

for all z,wED(A).

Turning next to the approximation of (2.1) through approximation of

(2.3), we let ZN be the spline subspaces of Z discussed in detail in [3]. For

the sake of brevity we here outline the results for the piecewise linear

subspaces (see 14 of [31) given by Z- {(#(O),,)I, is a continuous
N

first-order spline function with knots at t N -jr/N, J-O,l,...,N). A careful
j

study of the arguments behind our presentation reveals that the approximation
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results given here hold for general spline approximations. For example, if

one were to treat cubic spline approximations (ZN of [3]), one would use the
3

appropriate analogues of Theorem 2.5 of [12] and Theorem 21 of [131 (e.g.,

see Theorem 4.5 of [121). Hereafter, when we write Z , the reader should

understand that we mean Zof [3.

Let PN pN be the orthogonal projection (in <,> ) of Z onto ZN so that
g

from [3] we have immediately that PNz - z for all z E Z. As in (3], we define

N N N
the approximating operator A = P AP and consider the approximating equations

in ZN given by I

t
N N (N N PN(2.5) z(t) = P + J{Az(c) + PN(g(o), 0 )}d O

0

N
which, because Z is finite-dimensional, are equivalent to

N N N N
(2.6) iN(t) A z (t) + P (g(t),O)

zN (0) p N.

From (2.4) and the definition of AN in terms of the self-adjoint projections

N N
P , we have at once that under (Hl) the sequence {A } satisfies on Z a uniform

dissipative inequality

(2.7) <A NZ- N w,z-W>4j < w<z-w,z-w> 4.

Uniqueness of solutions of (2.5) then follows immediately from this inequality.

Upon recognition that (2.6) in equivalent to a nonlinear ordinary differential

equation in euclidean space with the right-hand side satisfying a global

LI
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Lipschitz condition, one can easily argue existence of solutions for (2.6)

and hence for (2.5) on any finite interval [0,TJ. Our main result of this

section, which insures that solutions of (2.6) converge to those of (2.1),

can now be stated.

Theorem 2.2. Assume (HI), (H2). Let r (f(O),f), fe H1 and g H 0(O,T)

be given, with zN and x the corresponding solutions on [0,T] of (2.6) and

(2.1), respectively. Then z N(t) - y(t) = (x(t;fg),xt(fg)), as N

uniformly in t on (0,T].

Remark 2.2. One can actually obtain slightly stronger results than those

given in Theorem 2.2. One can consider solutions of (2.1) and (2.6) corres-

n 0
ponding to initial data (x(O),x 0) = ( C,) = ? with r e Rn

, E H (i.e. r e Z)

and argue that the results of Theorem 2.2 hold also in this case.

To indicate briefly our arguments for Theorem 2.2, we consider for given

initial data C and perturbation g the corresponding solutions z and zN of

(2.3) and (2.5). Defining AN (t) E z N(t)-z(t) and G(t) = (g(t),0), we obtain

immediately that

t

(2.8) A Nt) - (PN-I)C + {AN z N()-Az()+(PN-I)G())do.

0

We next use a rather standard technique for analysis of differential equations

(see [4]), the foundations of which we state as a lemma since we shall refer

to it again.

L .
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Lemma 2.1. If X is a Hilbert space and x: [a,bJ 4 X is given by x(t) =t tx(a) + f y(o)do, then Ix(t) 12 = Ix(a) 12 + 2f <x(o),y(a)>do.

a 0

This lemma is essentially a restatement of the well-known result [4, p. 100]

that .11 x(t) 12 t )
thtdt 2

Applying Lemma 2.1 to (2.8), we-obtain

t

A N ( t )  
1 (pN-I) ;2 + 2 (<A zN(ol-Azlol+IP-IIG~aI,AN)>da

0
t

,N f<N N oN N
= ;(P-I)ij + 2 <A A (o)-A z(0),AN(o)>do

0

+ 2 t<(AN-A)zlo)+(PN-I)G(o) ,AN(o)>do.

0

If we use (2.7) on the first integral term in this last expression, we then have

t

IAN(t)1 2 < I(pN-I)Ci2 + 2 J&IN(o)I2dC

0

+ 2 J<(A -A) z(o)+(P N-I)G(a),AN (o)>do

0
t

<(pN-I)C12 + 2 jAI IN(0)12do

0
t

f 2 J{(pN)f 2  lN 0 1 2 l N1,() 2

0
t t

- (PN_ I) C 2 + JI(AN-A)z(7) 12 do + fj(PN_)G (F) 12 do

0 0
t

+ (2w+l) fIN(I2da.
0
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An application of Gronwall's inequality to this then yields the estimate

(2.9) IAN(t) 12 < { 1(N) + £ 2(N) + c 3(N)}e2(w+l)t

where

E1(N) = J( IN_-I) 12 ,

T

e2(N) = I I(AN-A)z(o)I2do,

0
T

e3 (N) = i(PNI)G(O)12da.

0

Since PN - I strongly in Z and the convergence J(pN-I)G(G) l 0 in £3 is

dominated, to prove Theorem 2.2 it suffices to argue that 2(N) - 0 as N -.

To that end, we state the following sequence of lemmas.

Lemma 2.2. Assume (HIl) and let H {z=( (0) ,2) I* H 2 . Then Az Az as

N + = for each z E

Lemma 2.3. Let Y- {(4,g) E W x (0,T)IfE H , gE H, with *(0) =

F(0,0)+g(0) where ; - (f(O),})). Assume that (Hl), (H2) obtain. Then for

(4,g) E -P the corresponding solution a 4 z(c) - (x(c) ,xa) of (2.3) (x is

the solution of (2.1)) satisfies z(a) E 9 for each a E [0,T).

Lemma 2.4. Assume (Hl), (H2) and let (4,g)E JV with zN and z the corresponding

solutions of (2.5) and (2.3). Then zN(t) - z(t) uniformly in t on (0,T].
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Lemma 2.5. Assume (Hi). Then the solutions of (2.3) and (2.5) depend con-

0 0
tinuously (in the Z x H topology) on (C,g) in W x H0 , uniformly in t on

[0,T].

0Lemma 2.6. The set .7 defined in Lemma 2.3 is dense in Z x H

We obtain the convergence of Theorem 2.2 by combining Lemmas 2.4, 2.5

and 2.6. The proof of Lemma 2.5 employs Lemma 2.1 along with Gronwall's

inequality in much the same way as we did above in deriving (2.9) from (2.8).

We note that Lemma 2.3 requires hypothesis (H2) (this is the only place in

which it is used) in order to obtain enough smoothness of solutions z of

(2.3) so that z(a) e J for each 0.

In developing the estimates to establish Lemma 2.4 (which, by our above

remarks, requires only that we argue c2(N) + 0), we use heavily the standard

spline estimates found in [12] and (13]. Lemmas 2.2 and 2.3 yield that ANz(o)

-. Az(a) for each a so that to prove Lemma 2.4 one only need show that this

convergence is dominated, thereby guaranteeing c2 (N) - 0. In making the

arguments for Lemma 2.4, one obtains at the same time error estimates on the

convergence in Theorem 2.2. For example, one readily finds the following:

For * = H 2 , f satisfying (H), (H2), 0(0) = F(0,0) and g E 0, the convergence
z N(t) - z(t) is O(I/N). For higher-order splines and higher-order convergence

estimates (e.g. cubic splines with convergence 0(1/N 3)), one of course needs

additional smoothness (beyond (H2)) on f.

The convergence given in Theorem 2.2 yields state approximation tech-

niques for nonlinear FDE systems based on the spline methods developed in [3].

These results can be applied to control and identification problems, the latter

of which we discuss in the next section.

. .. _ _..U__ _---- --. mmm mmm mm
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3. Parameter Identification Problems

Consider now the problem of finding a vector parameter q in some given

compact set Q C Rk so as to minimize

(3.1) J(q) = I Cx(ti2;q)-Ei 2

i=l

subject to

(3.2) x(t) = f(qx(t),xt,x(t-TI1) ... ,x(t-TV)) + g(t)

x0 =

Here EI ... Pm are "observations" for c(t;q) = Cx(t;q) at times ti , ... t m in

[0,T], where C is a given sxn matrix. We assume that f: x Z x Rnv _ Rn is

continuous (in all variables) and satisfies (HI) and (H2) with the same

Lipschitz constant K valid in (HI) for all q E Q. For each q Q, we define,
Rn Rn(r,;n *

as in §2, a function F(q): x C(-r,0; n) - by F(q,n,*) =

f(q,,,(-T ) ... (-)) and operators A(q)(*(O),*) - (F(q,*(0),),Df) on

D(A(q)) = W. With the projections defined in §2 we define the sequence of

approximating operators A N(q) by AN(q) = PN A(q)P . Then, taking e = ($(0),*),

we consider the systems

t

(3.3) z(t;q) = + J{A(q)(a) + (g(),O)}dc

0

and

t

(3.4) zN (t~q) - ; + { AN(q)ZN(o) + PNlgla),0))d"

0
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We may then consider the approximating sequence of identification problems

of minimizing over Q the error

(3.5) JN(q) = J[ cx(ti~) l

where z N(t;q) = (x N(t;q),y N(t;q)) is the solution of (3.4). Using modifications

of the ideas and results of §2, we can then prove the following theorem.

Theorem 3.1. Let qN be a solution of the problem of minimizing (3.5) over Q.
N.

Then {q } possesses a subsequence (q 3} which converges to some q in Q which

is a solution of the problem of minimizing (3.1) subject to (3.2). If this

N
latter problem has a unique solution q, then the sequence {q } itself converges

to q.

Since A(q) and A N(q) satisfy (2.4) and (2.7) uniformly in q E Q, we have

from Theorem 2.2 that z N(t;q) 4 z(t;q) for each q E Q. Then if we choose a
N. N N.

subsequence {q 31 of the sequence (q I of the theorem above with q ]  q E Q

(Q is compact), we have that for any q e Q

(3.6) JNj(qN J) < NJ(q).

. j j
But J N(q) - J(q) and if we establish that z (t;q J) - z(tq) whenever

q - q, we find, upon taking the limit in (3.6), that J(q) < J(q), so that

is a minimizer for (3.1), (3.2).

N A
Thus to establish Theorem 3.1, one only need argue that q - q implies

N NA
z (t;qN) - z(tiq). This can be done by following almost without change the

,, ii .
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sequence of arguments behind Lemmas 2.2 - 2.5 above. Indeed, defining the

rN N N N N N
approximating operatorsJ N = A (q N ) P A(q )P and considering the equations

t

(3.7) z(t;q) = + J{A(q)z(o)+(g(a),0) do

0

and

t

(3.8) zN(t;qN) = + z (0)+PN(g(a),o)d,

0

one finds thatJi satisfies the uniform dissipativeness condition (2.7) and

N A
that Lemmas 2.2, 2.3 and 2.4 hold for N

, A(q) and (3.7), (3.8) in place of

N
A , A and (2.3), (2.5).

We have tested numerically procedures based on the above ideas and present

next a sample of our numerical findings.

Example 3.1. Consider the example

a x(t-2)

a~t) = x(t) + a x(t-l) + l+x(t-2)

0 1 1xt2

x 0 - 1,

which can be integrated (numerically) using the step method to obtain values

Ei = x(ti) to be used as "observations" in (3.1) and (3.5). This was done

with the "true" values of a0 - 2.0, a1 - 5.0, a2 - 3.0 and we then used the

above methods to identify the parameters ai (the author wishes to express his

appreciation to P. Daniel for her efforts in developing the software packages

W-x



13.

used for these and numerous other computations employing spline methods for

parameter estimation). At each value of N, a standard least-squares IMSL

package based on the Levenberg-Marquardt algorithm was used to find a minimum

for (3.5) With q = (ala 2 ) or q = (a0 ,a2). Our findings are reported in

N A
tabular form below. We note that the convergence q - q is clearly second-order.

Table 3.1.1: Identify a1 and a2 with start-up values a1 ,0 = 4.0,

a = 2.0 for each value of N.
2,0

N NN aI  a2 !
N 1  2

2 7.006 2.036

4 5.499 2.796

8 5.126 2.950

16 5.032 2.987

32 5.008 2.996

TRUE VALUES: a1 = 5.0, a2 = 3.0

Table 3.1.2: Identify a0 and a2 with start-up values a0,0 =5,

a 2 , 0 = 4.5 for each value of N.

N N
N a0  2

2 2.158 3.645

4 2.042 3.193

8 2.011 3.050

16 2.003 3.012

32 2.0007 3.0026

TRUE VALUES: a0 - 2.0, a2 -3.0
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