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IDENTIFICATION OF NONLINEAR DELAY SYSTEMS USING SPLINE METHODS

H.T. Banks

Abstract
Spline based approximation schemes for nonlinear nonautonomous functional
differential equation control systems are discussed and it is shown how these

may be employed in parameter estimation techniques. A sample of our numerical

findings is also presented.
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1. Introduction

In this note we present results for a general class of spline approxima-
tions for nonlinear functional differential equations (FDE). The results of
82 below extend to a broad class of nonlinear FDE the basic state approximation
theorems based on spline methods developed earlier for linear FDE in [3]. Our
methods here do not employ a Trotter;Kato type theorem (the results for linear
systems in [3] as well as those for autnomomous nonlinear FDE in [6] are based
on Trotter-Kato approximation theorems). Rather, we use only simple ideas
(Gronwall's inequality in a manner similar to that in [1] where another class
of approximations for nonlinear control systems is developed) involving a
dissipative condition on the nonlinear operator generated by the right-hand side
of our nonlinear FDE. (For other spline approximation results for nonlinear
FDE, see [8], [9].)

The ideas developed here are sketched for a specific class ("first-order"
or "piecewige linear” splines) of approximations, but a careful reading of [3)
in conjunction with analysis of our presentation below should convince the
reader that our results extend immediately to classes of higher-order spline
methods based on the approximation scheme AN = PNAPN used in [3] and below.

The state approximation results of §2 are given under a global Lipschitz
hypothesis on the system that is sufficiently weak so as to include many
systems arising in applications as special cases. Our results can be developed
(at the expense of considerable added technical argument) under somewhat weaker
conditions based on local Lipschitz criteria in certain of the arguments
appearing in the right-hand side of our FDE gystem. We do include in our
treatment nonautenamous systems such as those commonly found in control and iden-

tification problems, 1In fact, in §3 below we indicate how our results apply




2.

directly to parameter identification problems and present some of our numerical
findings. The applications of the approximation theorems of §2 to the nonlinear
system identification problems of 83 are analogues to the linear system spline
approximation identification techniques discussed in (2].

In obtaining our state approximation results (along with error estimates)
in §2 we require a differentiability.assumption on the right;hand side of the
FDE in addition to the global Lipschitz hypothesis. This appears essential
for our approach, which relies on convergence of the approximating operators
AN along solutions of the FDE (this in turn requires certain minimal smoothness
criteria on trajectories). 1In contrast, the autonomous Trotter-~Kato nonlinear
approximation result developed in [6] requires only the global Lipschitz
hypothesis. Of course, to provide error estimates, that approach must also
include the additional differentiability condition.

Throughout we shall use the notation Hj or Hj(a,b) to denote the usual

(J)(a,b;Rn) of Rn-valued functions, with Ho = Lz(a,b).

Sobolev spaces w2

2. State Approximation for Nonlinear Systems

We consider the system

(2.1)  x(t) = £(x(t) ,xt,x(t-'rl), ceer X(E=T ) 4 g(b), 0O<t<T,

X, = ¢

where £ = £(n,¥,y ...,y )1 Z X R™ + R", Here z = " x Lz(-r.O;Rn) ,

T < ... <1
0<T v ©TX

-r <0 <0, and ¢ € Hl(-r,O) . We shall make use of the following hypotheses

denotes the usual function xt(e) = x(t+0),

throughout our presentation.

— e

> e




(H1l) : The function f satisfies a global Lipschitz condition:

v
a,
£ by ooy M-EE W e W) | < K{|n-g|+|v-¥| + ileyi—wil}

for some fixed constant K and all (n:'b;yl,...,yv), (C:%.wl,...,wv) in z x ™V,

(H2): The function f: 2z x R™ + R" is differentiable.
Remark 2.1. If we define the function F: R" x C(-r,0;R") C z » R" given by

(2.2) F(z) = F(W,W) = f(n:W:W(‘Tl)p-..,w(‘Tv))

we observe that even though f satisfies (H1), F will not satisfy a continuity

hypothesis on its domain in the Z norm.
We define the nonlinear operator A: D(A)C 2 + 2 by

D) =W = {(y(0),¥) |¥ € H (-r,0) }

A(W(o)0W) = (F(W(O).W). DW’
where here Dy = $°,
Theorem 2.1. Assume that (H1l) holds and let y(t;¢,9) = (x(t;d,9),x (4,9))
where x is the solution of (2.1) corresponding to ¢ € Hl, g € 1‘2' Then for

¢ = ($(0),4), y(4,9) is the unique solution on (0,T] of

t
(2.3) z(t) = ¢ + I{Az(o)ﬂg(a),O) }do.
0

s e st

" wall . ey




Furthermore, g + z(t;¢,g) is weakly sequentially continuous from L2 (weak) to

Z (strong).

Our proof of Theorem 2.1 follows ideas of D. Reber (see [10] and §2, §3
of [11]) and employs a very general fixed-point theorem (a "uniform contraction"
result - see [5, p. 7] - that is by now well known to those working in dynamical
systems) to establish existence and continuous dependence of solutions of
(2.3). For existence, uniqueness and continuous dependence of solutions of
(2.1), we note that our condition (Hl) is a global version of the hypothesis
of Kappel and Schappacher in [7], so that their results yield immediately the
desired result for (2.1).

The uniqueness of solutions to (2.3) follows in the usual manner once we
establish that A satisfies a dissipative inequality. Indeed, defining a
weighting function S'exactly as in [3, p. 500) and the corresponding weighted
inner product <,>a on Z, one can show without difficulty that (Hl) implies

the dissipative inequality (see [4, p. 71]) for the nonlinear operator A
(2.4) <Az-Aw,z-w>3 :_w<z-w,z—w>a

for all z,w € D(n).
Turning next to the approximation of (2.1) through approximation of
(2.3), we let Z" be the spline subspaces of Z discussed in detail in [3]. For

the sake of brevity we here outline the results for the piecewise linear
subspaces zf (see §4 of [3])) given by zf = {(4(0),¢)|¢ is a continucus
first-order spline function with knots at t:

study of the arguments behind our presentation reveals that the approximation

= -yr/N, j=0,1,...,N}. A careful

e




5.

results given here hold for general spline approximations. For example, if
one were to treat cubic spline approximations (Zg of [3)), one would use the
appropriate analogues of Theorem 2.5 of [12] and Theorem 21 of [13] (e.q.,
see Theorem 4.5 of [12]). Hereafter, when we write ZN, the reader should
understand that we mean ZT of [3].

Let PN = Pg be the orthogonal projection (in <'>§) of Z onto zN so that
from [3] we have immediately that PNz + z for all z€ 2. As in (3], we define

N

the approximating operator A" = PNAPN and consider the approximating equations

in ZN given by
t

(2.5)  2V(t) = PNz + f{ANzN(o) + PN(g(0),0) }do
0

which, because ZN is finite-dimensional, are equivalent to

(2.6)  2Nt) = aV2N ) + PN(g(t),0)

2oy = ez,

From (2.4) and the definition of AN in terms of the self-adjoint projections
PN, we have at once that under (H1l) the sequence {AN} satisfies on Z a uniform

dissipative inequality

(2.7 <ANz-ANw.z-w> < w<z-w,z-w>, .
¥ ¥

Uniqueness of solutions of (2.5) then follows immediately from this inequality.

Upon recognition that (2.6) is equivalent to a nonlinear ordinary differential

equation in euclidean space with the right-hand side satisfying a global

.




Lipschitz condition, one can easily argue existence of solutions for (2.6) r
and hence for (2.5) on any finite interval [0,T]. Our main result of this
section, which insures that solutions of (2.6) converge to those of (2.1),

can now be stated.

Theorem 2.2. Assume (H1l), (H2). Let § = (4(0),4), ¢€E ' and g EEHO(O,T)
be given, with zN and x the corresponding solutions on [0,T] of (2.6) and
(2.1), respectively. Then () + y(t) = (x(t:¢,q),xt(¢,g)), as N + =,

uniformly in t on (0,T].

Remark 2.2. One can actually obtain slightly stronger results than those
given in Theorem 2.2. One can consider solutions of (2.1) and (2.6) corres-

0

ponding to initial data (x(0),xy) = (n,4) = { with n € R", ¢ €EH (i.e. L E 2)

and argue that the results of Theorem 2.2 hold also in this case.

To indicate briefly our arguments for Theorem 2.2, we consider for given
initial data { and perturbation g the corresponding solutions z and zN of

(2.3) and (2.5). Defining AN(t) = zN(t)-z(t) and G(t) = (g(t),0), we obtain

irmediately that
t
2.8 aNe) = (B-myg 4 I{Anzn(o)-Az(d)+(PN—I)G(o)}do.
0
We next use a rather standard technique for analysis of differential equations

(see [4]), the foundations of which we state as a lemma since we shall refer

to it again. 'f




Lemma 2.1. If X is a Hilbert space and x: [a,b] + X is given by x(t) =

t t
x{a) + f y(o)do, then |x(t)|2 = Ix(a)l2 + 2] <x(0) ,y(c)>do.
a . 0

This lemma is essentially a restatement of the well-known result (4, p. 100]

that g€~%lx(t)|2 = <x(t),x(t)>,

Applying Lemma 2.1 to (2.8), we-obtain

ot

V2N (0)-az(0) + (PV-1) G (0) , 4N (0) >do

INCIE |(pN—1)c|2 + 2

<aV2 () -A"z(0) , AN (0) >d0

[eM-ng|? + 2

Ot OV—my

t
+ 2 J<(AN-A)z(a)+(PN-I)G(o) Y (0)>do.
0

If we use (2.7) on the first integral term in this last expression, we then have

t
| eN-1yg|? + 2 ImlAN(o)|2do
(4]

|a¥(e) |2

{A

t
+2 ]<(AN-A)2(0)+(PN—I)G(0) ,AN(a)>a0
0

A

t
l(pN-I)cl2 + 2 ImlA"(o)lzdo
0

t
‘2 I Gla-mze |2 + a0 |2 + 2 -nc@|? + HaY o) P10
0

t ¢
leN-m¢)? + JI(A"-A)z(o)lzdo + II(P“—I)G(G)Izdo
0 0

¢
+ (20tl) [IA"(o) |%o.
0




[

An application of Gronwall's inequality to this then yields the estimate

2.9 [aVw))? < ey + e ) 4 es(N)}ez(w+l)t

where

e,m = [M-nel?,
T

e, N = Jl (a"-2) z(0) | 2d0,
0
T

e, (N) = f|(PN-I)G(0)|2dc.
0

Since PN » I strongly in Z and the convergence I(PN-I)G(0)| + 0 in e, is
dominated, to prove Theorem 2.2 it suffices to argue that eZ(N) + 0 as N + o,

To that end, we state the following sequence of lemmas. .

Lemma 2.2. Assume (Hl) and let 95 {z=(4(0),9¢) |¢ € Hz}. Then ANz -+ Az as

N-»wforeachzeg.

Lemma 2.3. Let ¥ = {(g,9) €E W x H°(o,'r)|¢E Hz, g€ Hl, with ¢(0) =
F(0,0)+g(0) where = (¢$(0),¢)}. Assume that (Hl), (H2) obtain. Then for
(z,g) € F the corresponding solution 0 + z(o) = (x(0) ,xo) of (2.3) (x is

the solution of (2.1)) satisfies z(o) € ? for each 0 € [0,T).

Lomma 2.4. Assume (H1l), (H2) and let (%,9)€ _F with zN and z the corresponding

solutions of (2.5) ‘and (2.3). Then zN(t) + z(t) uniformly in ¢t on [0O,T].

7 ——

-




Lemma 2.5. Assume (Hl1l). Then the solutions of (2.3) and (2.5) depend con-
tinuously (in the 2 x Ho topology) on (Z,g) in W x Ho, uniformly in t on

(o,T].

Lemma 2.6. The set _# defined in Lemma 2.3 is dense in Z x w0,

We obtain the convergence of Theorem 2.2 by combining Lemmas 2.4, 2.5
and 2.6. The proof of Lemma 2.5 employs Lemma 2.1 along with Gronwall's
inequality in much the same way as we did above in deriving (2.9) from (2.8).
We note that Lemma 2.3 requires hypothesis (H2) (this is the only place in
which it is used) in order to obtain enough smoothness of solutions z of
(2.3) so that z(g) € ? for each g.

In developing the estimates to establish Lemma 2.4 (which, by our above
remarks, requires only that we argue sz(N) -+ 0), we use heavily the standard
spline estimates found in [12] and [13]. Lemmas 2.2 and 2.3 yield that,ANz(o)
+ Az(g) for each g so that to prove Lemma 2.4 one only need show that this
convergence is dominated, thereby guaranteeing ez(N) + 0. In making the
arguments for Lemma 2.4, one obtains at the same time error estimates on the
convergence in Theorem 2.2. For example, one readily finds the following:

For ¢ G;Hz, f satisfying (H1l), (H2), &(0) = F(0,0) and g = 0, the convergence
zN(t) =+ z(t) is 0(1/N). For higher-order splines and higher-order convergence
estimates (e.g. cubic splines with convergence 0(1/N3)), one of course needs
additional smoothness (beyond (H2)) on f.

The convergence given in Theorem 2.2 yields state approximation tech-=
niques for nonlinear FDE systems based on the spline methods developed in [3].
These results can be applied to control and identification problems, the latter

of which we discuss in the next section.
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3. Parameter Identification Problems

Consider now the problem of finding a vector parameter q in some given

k N
compact set Q C R so as to minimize

T 2
izllc:c(ti;q)—ﬁil

(3.1) J(q)

]

subject to

(3.2) x(t)

f(q,x(t),xt,x(t-Tl),...,x(t—rv)) + g(t)

Here 51,...,5m are "observations" for c(t;q) = Cx(t;q) at times tl,...,tm in
[0,T], where C is a given sxn matrix. We assume that f: Q) x Z x R™ » R" is
continuous (in all variables) and satisfies (H1) and (H2) with the same
Lipschitz constant K valid in (Hl) for all q € Q. For each g€ Q, we define,
as in §2, a function F(q): R" x C(-r,O;Rn) + RrR" by Fl(q,n,¢) =
f(q.n,w,w(-Tl).....w(-rv)) and operators A(q) (v(0),¢) = (F(q,¢(0),y),DY) on
D(A(q)) = W. With the projections defined in §2 we define the sequence of
approximating operators AN(q) by AN(q) = P:A(q)P;. Then, taking ¢ = (¢(0),¢),
we consider the systems

t

(3.3) z(t;q) =1 + J{Mq)z(o) + (g(oc),0)}do
4]

and

t
(3.4)  2M(t;q) = PNg + I{An(q)zu(o) + pN(g(0) ,0) }da.
)
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We may then consider the approximating sequence of identification problems

of minimizing over Q the error

m
N 2
i£l|Cx (ti,q)-£i|

(3.5) (g

(xN(t;q) ,yN(t;q)) is the solution of (3.4). Using modifications

where zN(t; q)

of the ideas and results of §2, we can then prove the following theorem.

Theorem 3.1. Let qN be a solution of the problem of minimizing (3.5) over Q.
Then {qN} possesses a subsequence {q j} which converges to some 'c‘; in Q which
is a solution of the problem of minimizing (3.1) subject to (3.2). If this
latter problem has a unique solution <-Z- then the sequence {qN] itself converges

to q.

Since A(q) and AN(q) satisfy (2.4) and (2.7) uniformly in g € @, we have
from Theorem 2.2 that zN(t;q) + z{t;q) for each g € Q. Then if we choose a
N, N,
subsequence {q 7} of the sequence {qN} of the theorem above with q 7 - QE o]

(Q is compact), we have that for any q € Q
N, Nj N
(3.0 3 g <3 .

But JNj(q) + J(q) and if we establish that zNj(t;qu) -+ z(t;a) whenever
qu + q, we find, upon taking the limit in (3.6), that J(q) < J(q), so that q
is a minimizer for (3.1), (3.2).

Thus to establish Theorem 3.1, one only need argue that qN -+ a implies

zN(t;qN) -+ z(t;a) . 'This can be done by following almost without change the
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sequence of arguments behind Lemmas 2.2 - 2.5 above. Indeed, defining the

approximating operatorsJJfN = AN(qN) = PNA(qN)PN and considering the equations

t
(3.7) z(t;a) =7z + J{A(a)z(o)ﬂg(o),O)}do
0

and
t

(3.8)  2(tiqH = BNr + ﬁ£¢NzN(0)+PN(g(o),O)}dc,
0

one finds thatJZfN satisfies the uniform dissipativeness condition (2.7) and
that Lemmas 2.2, 2.3 and 2.4 hold for &, A(§) and (3.7), (3.8) in place of
A¥, A ana (2.3), (2.5).

We have tested numerically procedures based on the above ideas and present

next a sample of our numerical findings.

Example 3.1. Consider the example

azx(t-z)

x(t) = aox(t) + alx(t-l) + Tex(t-2)

which can be integrated (numerically) using the step method to obtain values
£, = x(ti) to be used as “observations” in (3.1) and (3.5). This was done

with the "true" values of a_ = 2,0, a, = 5.0, a, = 3.0 and we then used the

0 1 2
above methods to identify the parameters a, {(the author wishes to express his

appreciation to P. Daniel for her efforts in developing the software packages
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used for these and numerous other computations employing spline methods for
parameter estimation). At each value of N, a standard least-squares IMSL
package based on the Levenberg-Marquardt algorithm was used to find a minimum
for (3.5) with g = (al,az) or g = (ao,az). Our findings are reported in

A
tabular form below. We note that the convergence qF-* g is clearly second-order.

Table 3.1.1: Identify a; and a, with start-up values 31 0° 4.0,
a = 2.0 for each value of N. ;
2,0 :
N N :
N a, a, :
7.006 2.036
5.499 2.796
8 5.126 2.950
16 5.032 2.987
32 5.008 2.996
TRUE VALUES: al = 5.0, az = 3.0
Table 3.1.2: Identify a, and a, with start-up values a0 = -5,
’
a = 4.5 for each value of N.
2,0
N N
N ao az
2 2.158 3.645
4 2.042 3.193 i
8 2.011 3.050
16 2,003 3.012
32 2.0007 3.0026
TRUE VALUES: a, = 2.0, a, = 3.0 ,
i
|
- (A T
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