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SOME GRAPHICAL CONSIDERATIONS IN TIME SERIES ANALYSIS

by Benjamin Kedem

ABSTRACT

The pictorial information in a stationary time series as

depicted by crossings of levels and crossings of random levels

and related quantities is studied. It is shown that such graphi-

cal features are directly connected with the covariance function

and hence with the spectral density. Many of these features can

be actually applied in estimation and in the study of extremes.

In the Gaussian case, the finite dimensional distributions are

completely determined by the axis crossings and by the crossings

of a random curve (to be defined) if the process is essentially

bounded.
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SOME GRAPHICAL CONSIDERATIONS IN TIME SERIES ANALYSIS

by Benjamin Kedem

1. INTRODUCTION

From the review articles by Beniger and Robyn (1978) and

Fienberg (1979) we learn that graphical methods for depiction of

empirical data is an old and useful idea which may be traced

hundreds of years back. However, no theory of statistical graphics

exists although graphical depiction of data is a well accepted

practice. Concerning this last remark, this is even so when the

data at hand are graphical by their very nature, and the case we

have in mind is time series analysis. True, theory as such does

not exist but still we may advance graphical methods of analysis.

The point to be made here is that graphical methods of analysis

are almost always available given a long time series.

In this paper we shall demonstrate the usefulness of some

graphical aspects in time series analysis by answering questions

such as:

1. What does it mean that a time series appears to be bounded?

2. How can we interpret the number of crossings of fixed and

random levels?

3. What can we learn from the succession of times spent by a

series above and below a random level?

4. Are there useful graphical features to be reckoned with in

time series data?

5. For very high levels, what should we observe in a time series

ide± to determine the distribution of extremes?

L Ate the axis crossings by the successive differences of a time

series useful and what happens if we difference indefinitely?



2

In fact we will show that the spectral density of a stationary

process is a function of some graphical features which can be de-

tected by a quick eye examination. This means that at least in

principle spectral analysis amounts to a careful eye examination

of time series Zrapiks. This is independent of the Gaussian assump-

tion. For a zero-mean stationary Gaussian process we can even say

much more: all of the finite dimensional distributions can, at

least in principle, be determined from graphical features, under

some conditions often met in practice.

Our main concern in this paper is to express well-known

quantities in terms of graphical features thus emphasizing the

pictorial information contained in the plot of a stationary time

series. For this purpose we shall sometimes create features by

introducing useful random curves and by clipping the series at

various levels. In what follows, axis crossings and crossings of

"random curves" and other similar visual features play a dominant

role.

iFJ)
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2. RANDOM CLIPPING

For a 0-mean Gaussian process it is well-known that its cor-

relation structure is a function of the "zeros" of its sample

paths. Much the same can be achieved, at least in theory, for

any bounded series.

Let {Zt,t=0,±l,...1 be a zero mean strictly stationary

process. This is a strong assumption which is made here for

simplicity. Assume that there exists an A such that

IZtj < A. (2.1)

Then the process is also weakly stationary of order k for any

k. In the range (-A,A) we define a uniform process

{Ut,t=0,±l,.. . independent of Z and made of independent and

identically distributed random variables, such that

-A<u<A

fUt(u) = (2.2)
t I

, otherwise.

Thus, corresponding to a time series ZI,...,ZN there is a "random

curve" Ul,...,UN which helps us to define a clipped binary series

{Yt} by

1, ZtU t

Y 4 , t~l,...,N. (2.3)

0, Zt <Ut

The time series U1,...,UN will be referred to as the U-curve
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and throughout the paper it is assumed that N is large. Observe

that EYt  -2 and for t9tjti,jE(I ,...,N)t 2 1

EYt Y = P CZ U 1 ..., _ ) (2.4)

_ l. E(Zt +A)... (Z +A)

(2A) t tr

so that all the cross moments of {Zt} can be obtained from the

moments of {Y 1. In particular from (2.4) we obtain an important

relation between the covariance functions

yz(k) = 4AWyy(k) , k$O, k=l, 2, ... (2.5)

and so the covariances in the {Y } process are reduced, which for
t

binary data amounts to a lesser dependence.

Now consider the quantity

N N
C1 = 21Yt - 21YtYt -i - (YI+YN" (2.6)

1. 2

This is readily seen to be the number of symbol changes in the bi-

nary series. But then it is also the number of "curve crossings"

where the curve is the U-curve defined as the random series

Ul,...,UN. (2.5) and (2.6) lead to

(1) = A2(l - 2E(C) (2.7)

We ses that 'Y Z(1) is a linear function of the expected number of

U-curve crossings by ZI,...Z N  An unbiased estimate of yZ(1) is

_____________ _____________________________ I
C ,-.. ._ . .. -



Z(1) A 1 (2.8)

We can get hold of an approximation to the variance of yZ(1)

as follows. Let B > A and assume Ut  is uniform in (-B,B)

while (2.1) still holds. Then in (2.4) B replaces A and as

B increases

Pr(Y l=,...,Y ) ()rtj '"'t r2

in which case (Kedem (1980a)) we easily see that CI+b(N-I, )

and

B
2

Var(N- (2.9)

The lesson to be learned here is two fold. First, we have made

use of a conspicuous graphical feature and second, by employing

an artificially large upper bound B on jZtj in the definition

of Ut, the clipped data are nearly independent. This is a de-

sirable property of random clipping.

Next define

N N
C2 = 2Yt - 21YtYt-2 - 2. (2.10)

1 3 t-

Then

Z( 2 ) Al j 1 2 (C2II I (2.11)
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But C2, apart from a negligible end effect, is twice the number

of successive sojourns above and below the U-curve of at least two

time periods. That is, twice the number of runs in the clipped

binary series between the first and last l's with at least two
N N

ymbols plus 1. We can continue in this fashion. iY t-44 YtYt-3

also defines the number of certain sojourns but it is simpler to

switch now the eye to the binary series between the first and last

l1s. Then

N N
Y t-lYtYt_3 = # of runs with at least 3 symbols + # of 0011

1 4
+ # of 0101 + 2.

For example in the binary series

00010100010101000011110101001111001

Y t - EYtYt 3 : 16 - 5 = 11.

But the number of runs with 3 or more symbols (concentrating on the

series between the first and last l's) is 4, the number of 0011

is 2 and the number of 0101 is 3. The sum of these numbers plus

2 is 11 as it should. We can now define C3 in terms of these

features and then express yZ(3) in terms of E(C3 ). In general,

we define

N N
Ck = 21Yt - 2 1 Y tYtk - k , k=2,3,... (2.12)

1 k+l

where Ck  is obtained by counting the number of times (ZUJ t )

.nd the number of times (Z tUt,Zt-k Ut-k). Then
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Yz(k) = A2 1 - N-k (2.13)

And by replacing E(Ck) by Ck in (2.13) we obtain an unbiased

estimate. If C0  is defined so that

E(C 0 ) = 1 - Lyz(0)

(2.13) holds for k=0,±l,..., and assuming that a spectral

density f(X) exists we have for sufficiently large M and N

f ml) = k : _  eikXA2 7k_ N-k

A2sin(M+ !)X iA~
= AA e (2.14)

A~f 1 - IN kM E(Ck)J(2l)2 Tr sin i X fN k=-M I.

Whence for bounded stationary processes the spectral density is

essentially the Fourier transform of the expected numbers of

viual features such as U-curve crossings and lengths of sojourns

above and below the U-curve.
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3. THE GAUSSIAN CASE AND LOSS OF INFORMATION

How much information is lost due to clipping? This is a

disturbing problem associated with hard limiting operations. In

the Gaussian case however, at least in principle, the answer is

that no information is lost if clipping and random clipping are

combined. That is, our graphical features contain a great deal

of information.

To show this choose an A so large relative to Var(Z )

that (2.1) holds for all practical purposes. Next define

1, Z t O

X t  I t=0,±l, ... ,1 (3.15)

0, Z t<0

where {Z t } is a zero-mean stationary Gaussian process. Then it

is well-known that

Yz(k) = yz(O)sin(2fYx(k)) (3.16)

and by invoking (2.5)

Y Z(0) 4A sn2 Y(k) )  k=1,2,... (3.17

If D1 counts the number of axis-crossings by Z,... ,ZN, then

for k=l we obtain from (2.7) and (2.17) after representing D1

as in (2.6), but with Y's replaced by X's,



2  2E(CI)

y (0) - (3.18)
Cos N-i

N-1

This means that the variance of a Gaussian process can be obtained

by observing the U-curve-and axis-crossings by a time series from

the process. Therefore from (2.13) and (3.18), for a bounded,

practically speaking, zero-mean stationary Gaussian process, the

finite dimensional distributions are completely determined graphically.

To make this statement more precise we should attach a probabilistic

statement to the bounds, require that long records be available

and that the covariance function decays fast enough, in which case

(3.18) and (2.13) provide consistent estimates when the expectations

are replaced by observed values. This finding helps to explain the

remarkable fact that a great deal of inference about a stationary

Gaussian process can be made from clipped data (Kedem (1980a)).

i

i
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4. HIGHER ORDER CROSSINGS

Can we get a formula equivalent to (3.18) in the general

case for any bounded stationary process? The answer to this

question is in the affirmative if we are willing to consider the

U (1)-curve, say, crossings by VZt 
= Zt-Z tl* Assume the same

properties for {Z t  as in the previous section so that

5VZtj E 2A. (4.1)

Let {Ut  } be the uniform independent process corresponding to

{VZtj so that U( ) is uniform in (-2A,2A). Then from (2.7)t

yZ(1) = 4A 2 1- 2E(C()) (4.2)[ N- 142

where C (I ) is the number of crossings by VZI,...,VZN of the

U-curve U 1 ) ,...,U I ) . But

yvz (1) :2yz(1) -yz(O) - yz(2) (4.3)

so that

{Z(0) = A 2 2 1 N - - C2 ) - 4 N (4.4)

Thus the variance of a bounded stationary process is a linear

function of the number of crossings by ZI,...,Z of U1 ,...,UN'

the number of sojourns of at least two time periods above and below

I ... ,UN, and the number of crossings by VZl,...,VZN of

i '.' 'U N
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We have seen that the U -curve crossings by VZt are useful

and a natural question arises as to how useful the U(k)-curve, say,

crossings by V kzt are. To answer this question note that

1Vkztj _ 2 kA , k=0,1,2,... (4.5)

and let {U k )  be the corresponding independent process uniform

in (-2kA, 2kA) which consists of independent and identically

distributed random variables. We call the time series U(k),...,U(k)

the U (k)-curve which we introduce as above in order to create

graphical features. Let C (k) be the number of crossings of the

U (k)-curve by Vk Z,... ,V kzN. Then from (2.7)

Yvkz(1) = 2 2kA2 - N-E(CkJ I kOl,2,..., (4.6)

where C is taken as CI.

Observe that

Yk() = _ (k Z0) + 2()+ y2k)}z(l) - +...+ (l)kyz(k+l) (4.7)

so that yz(k+l) can from (4.6), (4.7) be expressed as a function

(k) (VI
of E(C(k)), k=0,l,...,k, and E(C2). We see that the C"", the

number of u(k)-curve crossings by kzt , t=l,...,N, together with

C2 completely determine the covariance function of a stationary

bounded process. We call the C (k) the higher order U (k)-curve

in analogy with the higher order u(k)-curve crossings we can

fine the higher order axis crossings by VkZ . More precisely

t gI -
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let {Z } be a stationary process, not necessarily bounded, and

define a binary process {X (k) by

1, vk-iz?:0

0, V k-1<0

Given a time series Z1,...,ZN we define

Dk N (k) L(k)x) (k) k)
D= 2 -t 1 - (Xi 1 XN )"(4.9)2t 2vxtk t-i

This is the rumber of axis crossings by V k zI...,Vkz But then

D 1  is the number of axis crossings by the original series, and

apart from end effects, D2  is the number of local maxima and

minima, D3  is the number of inflection points, etc. Thus the

first fiw Dk's correspond to conspicuous features in a time

series. A natural question to ask is whether features which are

not that conspicuous or not at all for that matter are still use-

ful. Before considering this question we note that results

similar to (4.6) can be obtained for the Dk'S in the Gaussian

case without reference to boundedness.

Now going back to our question, we note that {Z t  admits a

spectral representation with respect to a process of orthogonal

increments {E(A),-<X~i}

Se eitA d (X). (4.10)

. .. ( -T ,, 7T]
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It is convenient to give an answer to our question via (4.10).

Observe that

(1-e- i x)  e- iX/2(e iX/2-e- iX/2)2i
2i

e (2(l-cosX)) . (4.11)

Therefore by linearity

f itA -ik(' - 'T)

VkJzt ( e e 2 (2(1-cos)) kd/2 ) (4.12)

and we have

- -T - q -. cosftn)d () , k (4.13)

2

This implies

vkz t vkzt~

E-k 1  k ()-1 EId(W)12 = (-l)JdF(r), k
2 k '-2R-

where F is the spectral distribution function. We shall assume

dF() > 0. Then

Corr(VZ vkzt.) (-k) , k -* o. (4.14)

This means that on each finite time (discrete) interval (k)
xt

ior .i.ge k tends to consist of binary strings in which a 0

s followed by a 1 and vice versa. In fact it was recently shown

Al , ii. . i -
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in Kedem and Slud (1980) that we actually have weak convergence

of {X( k
)

t

{X k ) I {.. .010101...} , k (4.15)
t

where the 0'th coordinate is either 0 or 1 with probability

Whence in this sense the Dk's which count the number of

symbol changes in finite records provide less and less information

as k increases. In fact numerous simulations show that out of

N-I possible symbol changes about 80% are achieved already by

DI0. Hence only D for rather low k are useful. (4.15) is

called the Higher Order Crossings Theorem.

An important application of the higher order crossings Dk's

is in the discrimination of time series. For this purpose we

make use of another .consequence of the Higher Order Crossings

Theorem. It can be shown that for long and even moderate records

lengths the Dk actually increase! This motivates the statistic

K (Ak -EA k 2
SX E(4.16)

N k=l E~k

where

, k = 1

Ak  D Dk  - , k 2,...,K - 1

(N-l) - Dkl , k = K

L.;n -
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so that for sufficiently large N A 0 and ik iAk N-i.
2

Extensive simulations indicate that 2 has an extremely robust

distribution which varies only mildly from process to process.

This statistic has proven useful in many cases and we shall report

aore on its applications in the near future elsewhere. It should

be noted that for Gaussian processes the expected values EAk

can be computed exactly.

[)L
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5. A REMARK ON THE CASE WHEN MOMENTS DO NOT EXIST

One of the great advantages of graphical features such as

axis crossings of stationary sequences is that regardless of whether

moments are finite or not or whether they exist at all, the number

of axis crossings by a series of length N has moments of all

orders. In such cases the axis crossings have a strong case for

their use in inference. To bring a concrete example, consider

the strictly stationary first order autoregressive Cauchy process

Zt =Zt_1 + ut , t=O,±l,... (5.1)

where 1,1<1, and the ut are independent Cauchy random vari-

ables with characteristic function e - (l -  )jsj. Then {Z

is a strictly stationary process with Cauchy marginals having the

standard characteristic function e- Is i. In the usual situation

when 2nd order moments of Zt exist, 0 is the correlation be-

tween Zt  and Zt_ 1 so that realizations appear either "smooth"

or oscillatory depending on the sign of €. In the Cauchy case

0 is no longer a correlation but still the degree of oscillation

depends on its sign! This means that 4 is essentially a function

of the degree of oscillation in the process or equivalently the

number of axis crossings. This can also be seen from Table 1

which is the result of a simulation in which (5.1) was generated

for differeat values of € and the corresponding numbers of axis

crossings in series of length N=1000 were recorded. It is inter-

esting to observe that
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. AXIS CROSSINGS BY CAUCHY SERIES (5.1) OF LENGTH 1000

.99 13

.95 33 .95 , a = 2

.90 78

.80 128 .82 , a = 0.5

.75 137

.60 198 .60 , a 0.5

.50 293

.40 291 .41 , = 0.25

.25 349 .20 , = 0.25

.10 446

.00 508 -. 03 , a = 0.0

-.10 580

-. 25 656 -.28 , = -0.1

-.40 705 -.41 , a -0.1

-. 50 747

-. 60 805 -.65 , = -0.1

-.75 842

-.80 891 -. 81 , a : -0.1

-.90 921

-.95 944

-.99 985
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by comparison with previous results in the Gaussian case, the

Cauchy series yields fewer axis crossings for positive * but

more crossings for negative . In addition, it was shown in

Kedem (1980a) that in the Gaussian case the estimate cos(RD 1/(N-l)),

where D1 stands for the number of axis crossings, is a remarkably

good estimate. Taking these observations into account we suggest

for the Cauchy case the estimate

= cos( N-1 (5.2)

where a is a correction factor which has the same sign as *.

a= 0 corresponds to the Gaussian case. Table 1 gives some

0a for various a. Obviously a increases and decreases with

€. We intend to investigate this estimate in a future study.
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6. FEATURES AND PROBABILITIES

We have seen above that the number of symbol changes in a

clipped or randomly clipped binary series is a useful quantity

which can and should be used in inference. Similarly, runs of

various lengths and types are also important as they summarily

portray useful graphical information about the original series.

From these various types of runs or subsequences, we can actually

compute various probabilities of interest. Specifically, we will

briefly outline how to obtain the asymptotic distribution of the

maximum in a stationary series provided certain conditions are

assumed. But first we define a useful feature called a "unit."

An m'th order unit is a binary sequence which starts with a

1, ends with m separating 0's (if needed to separate it

from other units) and in which each 0-run, if not an end run,

consists of at most m-l 0's. Note that the length of 1-runs

is not restricted. For example in the binary series

0 G 11ii1 11 1 i 0 10 ~O 1 1 1 00 00

There are 4 unit of order 3 and 7 units of order 2 and 10 units of
first order. If 3 is the ighet order under consideration, then

there are 9 0's which do not lelong to any unit and we call them

the fre(. 0's. Thus, if binary sequences are perceived in terms

of uni. ,. then the information in such sequences is neatly summarized.



20

Now, let Zt be any stationary series of length N and

clip the series at a certain level. This yields a binary series

X Let n ij...k be the frequency of ij...k in the binary

series, and let S be the number of l's. Assume now that the

hi{hest order unit is m. Then the number of m'th order units

is

s -n 11 - n1 0 1 - n10 0 1  n10 0 -01 , (6.1)

m-1

and the number of free 0's is

(N-s) - m(# of m'th order units -1) - (m-l)nl00 .. 01

m-1

- (m-2)n1 0 0 ...01 -1*- nl0l" (6.2)

m-2

Assume that as the level at which the Zt  series is clipped, the

binary series displays an m-th order Markov dependence where m

ma be even very large. Observe that as the level increases the

l's become rare. It can be shown then under some conditions

(Kedem (1980b) that for a high level and large N

Pr(S=S) # of permutations of the m'th 1  n-s- (6.3)
order units with the free O's) 100..0 00... 0

m m+l

where

PXt xt-l... xt- m =Pr(x t=tX tl='t-l,...,x t-m=X t-m .
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Now let P1 0 0  .0 0 such that NP10 0 -.0 8 is fixed. Then

it is not difficult to see that

Pr(S=s) + e- 8 IS/s!

Therefore for large N

Pr(max Zt < a high level u) - e-E(# of exceedances above level u)
15t _N

If the l's tend to cluster, a similar argument replaces the number

of exceedances of level u by the number of uperossings of

level u.

--,, , n -- n i 'I i i L l
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7. SUMMARY

We have illustrated briefly the connection between visual

quantities such as crossings of fixed and random levels and the

covariance function of a stationary process, some parameters of

interest and the distribution of the maximum in stationary series.

In particular we have focused on some graphical features of time

series which contain a great deal of information useful in in-

ference. For this purpose we have created features by clipping

at random levels and by changing the position of fixed levels in

a controlled manner. Features such as peaks, troughs, inflection

points, axis crossings by the k'th difference of a stationary

process, etc., are useful up to a point. This is the subject of

the Higher Order Crossings Theorem.

-I
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