
M-AO88 244 BROWN UNIV PROVIDENCE RI LEFSCHETZ CENTER FOR OYNAMI--ETC F/6 12/1
PARAMETER ESTIMATION TECHNIQUES FOR NONLINEAR DISTRIBUTED PARAM-ETCtU)

MAT SO H T BANA~S. , UIC AB97C06

NiJNCLASSIFIEO AFOSRTR-8OOS79

MA 80 H m mBNK ,m Km m u O A6 9- 9m .0 6



lllUI II I- -  IIii ii

IIII 8

111111-25___ I.

MICROCOPY RESOLUTION It I l HART
N .'llIIIN ' [ 1,1 i : , T ",. [I b. • , '



rREAD INS URUCTIONS1
Rt~w~%9-"61E EFORE COMPLETING FORM

I~j) FSR ~ 8%~~O59 C3. RECIPIENT'S CATALOG WUM9ER

W.-TTYE -(.d Subitle)S. TYPE OF REPORT A PERIOD COVETAW

(._RMEE STIMATION TECHNIQUES FOR A trmi
K' ONLINEAR 1bISTRIBUTED PARAMETER SYSTEMS, 6. Ptt~lWWNUMBER

H. T./BANKS KAR NSHAFJR7392

) 9-PERFORMING ORGANIZATION NAME AND ADDRESS -TO PROGRAM ELE#AM1 "i ' PR0OJECT, TASK

DIVISION OF APPLIED MATHEMATICS'AEAOK
BROWN UNIVERSITY I " A & I'
PROVIDENCE, RHODE ISLAND 02912 /61102F -23 /A1

ICONTROLLING OFFICE NAME AND ADDRESS - --- 12. REPORT DATE

00 AIR FORCE OFFICE OF SCIENTIFIC RESEARC May 27, 1980

00 BOLLING AIR FORCE BASE, WASHINGTON, D.# 119ME O A

14 MONITORING AGENCY NAME A ADORESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIlED

158. DECL ASSI FIC AT ON/ DOWNGRADING
SCHEDULE

C:1. 16. DISTRIBUTION STATEMENT (of this Report)I&

Approved for public release; distribution unlimited.

IS. SUPPLEMENTARY NOTESE

-9 19. KEY WORDS (Continue on revers@ side It neceeeary and Identify by block number)

~ 0. ASSS CT (Continue on reverses ide it necessary and identify by block number)

Methods for estimating system parameters are discussed

* for A dass of partial differential equations. We develop

' Lr schemes based on modal subspace approximations 
in some detail and

-- include numerical examples.

DD I IN7 1473 EDITION OF I NOV4S IS OBSOLETE UNCLASSIFIEDj~v.~jk

SrCIIRITY ~ ~ ~ 1.- rVA.reA iw s ,.



AFOSR-TR- 80-057 9

PARAMETER ESTIMATION TECHNIQUES

for

NONLINEAR DISTRIBUTED PARAMETER SYSTEMS

by

H.T, Banks
Lefschetz Center for Dynamical Systems

Division of Applied Mathematics AccessionFor
Brown University

Providence, R. I. 02912 NTIS GRA&I
DIC TAB

and Unannounced [
Justification

K. Kunisch +

Institut fUr Mathematik By_
Technische Universitfft Distribution

Kopernikusgasse 24
A-8010 Graz, Austria !(Vail .y_Codes

Avail anld/or
and Di st. special

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

Brown University
Providence, R. I. 02912

May 27, 1980

Invited lecture, International Conference on Nonlinear Phenomena in
Mathematical Sciences, Univ. Texas, Arlington, Texas, June 16-20, 1980.

This research was supported in part by the Air Force Office of Scientific
Research under contract *-AFOSR 76-30920, in part by the United States
Army Research Office under contract #ARO-DAAG29-79-C-0161 and in part by
the National Science Foundation under contract #NSF-MCS7905774.

+ This research was supported in part by the Air Force Office of Scientific

Research under contract 0-AFOSR 76-3092, and in part by the United
States Army Research Office under contract #ARO-DAAG29-79-C-0161.

8Q0ro8 14 124
roed ror publio ,

-tributjoAnjjj,,tod



PARAMETER ESTIMATICN TECHNIQUES

for

NCNLINEAR DISTRIBUTED PARAMETER SYSTEMS

H.T. Banks and K. Kunisch

ABSTRACT

Methods for estimating system parameters are discussed for

a class of partial differential equations. We develop schemes

based on modal subspace approximations in some detail and include

numerical examples.

-Dhtr lf Officer

______ _ 3I
Di-- :- #.red______________________



1. Introduction

In this paper we study approximation methods for linear and

nonlinear partial differential equations and associated parameter

identification problems. As will be seen, many of the ideas are

classical in nature, but the proposedoperator-theoretic approach

is appealing for its conciseness and generality. The parameter

identification problem is explained in Section 2. In Section 3

we develop general nonlinear approximation results which are sub-

sequently used for modal approximations of certain classes of

hyperbolic and parabolic partial differential equations. In the

fourth section the theory developed so far is employed to approxi-

mate the (infinite-dimensional state) parameter identification

problem by a sequence of problems for ordinary differential

equations. We have tested the modal approximation scheme in

numerical experiments for parameter identification in hyperbolic

equations; some of our findings are reported in Section 5. De-

tailed proofs, further numerical results, and a discussion of

relevant literature on these problems will appear in a forthcoming

paper.

__f' hA



2. V

2. The Identification Problem

We consider the abstract Cauchy problem

u(t) - A(q)u(t) + F(q,t,u(t)), t > 0(2.1)
u(O) - u0 (q)

where, for each q E Q C Rk, A(q) is the infinitesimal generator

of a linear Co-semigroup {T(t;q)}t>0  on a Hilbert space X(q).

The inner product and norm in X(q) will be denoted by

and q respectively, although on occasion we shall omit the

subscript q. Recall that t u(t) is called a mild solution

of (2.1) if

It
u(t) = T(t;q)u0 (q) + ftT(t-a;q)F(q,o,u(a))do.

Conditions on F that guarantee existence of mild solutions to

(2.1) will be given below. For the relationship between mild and

strong solutions of (2.1) one may consult [4 ]; here we only note

that in many specific instances (i.e., hypotheses on A(q) and/or

F and/or uo) mild solutions are in fact strong solutions.

We assume in our discussions that X(q) is a function space

of Rn-valued "functions" (or the usual Lebesgue equivalence

classes) defined on a fixed interval [0,1] and thus we shall

also use the notation u(t,x;q) or u(t,.;q) to denote solutions

of (2.1). We shall present approximation techniques for para-

meter identification problems; these will be discussed in the

context of a typical least squares problem. For example, at

points {xj}, 0 < x1 < x2 
< ... < x, 1 , and times {ti),

0 < t1 
< t2 ... < tr < T, we might be given s-vector

2a



3.

measurements, s < n, of the n-dimensional "state", which are

denoted by yi E R s, i * l,...,r. These are assumed to represent

measurements of C(q)E(ti;q) where t(ti;q) - col(u(ti,xl;q),...,

u(ti,x ;q)) and C(q) is an (st) x (nt) matrix depending con-

tinuously on q. A typical'identification problem (ID) is then given by:

(ID): Minimize
r^

J(q) = Cq)(ti;q)Y2

over q E Q.

We note that often one cannot observe all components of the state

u and hence it is necessary (in order to conform with reality)

to use the matrix C(q) in the problem formulation and analysis.

We also remark that the point evaluations (at xj) used to define

t(ti;q) above may be meaningful only in specific instances, depend-

ing on the equation (2.1), the space X and the initial data u0.

For the special cases presented below, one can verify that the mild

solutions we consider do yield functions for which point evaluation

is a valid operation. The least squares criterion that is used in

defining (ID) is just one of several possible choices of criteria

that might be used in identification or parameter estimation problems

and it will be obvious that our discussions and analysis here can

be extended to cover other types of functionals J which satisfy hypothesis
(HIO) of Section 4.

As indicated above we approximate (ID) by a sequence of problems

(IDN), each of which can be solved with standard numerical procedures.

.AAA



4.

To formulate the approximating problems, we take for each q a

sequence of closed linear subspaces XN(q) of X(q) endowed with

the topology induced by X(q). The orthogonal projections of

X(q) onto XN(q) are denoted by N(q). We then define the

operators AN(q):X(q) xN(q) approximating A(q) by
AN(q) = N(q)A(q) N(q) where Dor(AN(q))= X(q). This form of

approximating operators, which is a classical one (e.g., see

[ 5, p.369]), has recently proved to be useful in deriving approximation

methods for delay-differential equations [1 1. We stress that this

formulation entails the implicit assumption XN(q) c Dom(A(q)).

The projections of F onto the subspaces are given by

FN(q,t,v) - nN(q)F(q,t,v) for each (q,t,v) E Qx[O,T]xX (we shall

assume throughout that the spaces X(q) are set-wise all the same

set X). The family of approximating equations is therefore

given by

v(t) = AN(q)v(t) + FN(q,t,v(t)), t > 0(2.2) v(0) - N(q)u
0 (q).

The hypotheses on F given below will insure existence of

mild solutions uN(the notation uN(t),uN(t;q) and uN (t,x;q)

will all be used in the sequel) of (2.2). Since xN(q) is in-

variant under AN(q), (2.2) is easily seen to be an initial value

problem in the subspace XN(q). In the event that xN(q) is

finite-dimensional, (2.2) is equivalant to a system of ordinary

i.
4. .



5.

differential equations for the generalized Fourier coefficients

of the representation for v relative to a chosen basis for

xN(q). In our discussions we make the assumption:

(Hl) All elements of xN(q) are piecewise continuous functions

on [0,1].

Dein N Nu N .

n (ti;q) col(u (ti,xl;q),...,u (ti,xt;q)), we

Nformulate the approximate identification problems (ID ) corresponding

to (ID) by:

(IDN) : Minimize

JN(q) r (q )  2;q).il
i=l

over q E Q.

Before discussing the existence of solutions to problems such as (ID) and (flN)

and their relationship, we present convergence results for the

approximation of (2.1) by (2.2) in a form readily applicable to

the identification problems.

We shall call {q,xN(q),,Nf)(q),N(q),FN(q)} an approximation

scheme for (2.1) if q E Q a Rk, xN(q) is a sequence of subspaces

of X(q) and wN(q),AN(q),FN(q) are maps wN(q):X(q) XN(q),

AN(q):X(q) - XN(q),FN(q):[0,T] x X(q) -p xN (q). Such a scheme will

be said to be convergent if for any qNZ E Q, lim qN - implies

that corresponding mild solutions uN (t;qN) of (2.2) converge to

a mild solution u(t;Z) of (2.1).

.. .



6.

3. Modal Approximations: Convergence Results

In this section we present a convergence theorem for non-

linear systems (2.1), (2.2) and then discuss modal approximation

schemes for classes of hyperbolic and parabolic equations. We

shall refer to a number of hypotheses which we present now.

(H2) For each q E Q, A(q) generates a linear Co-semigroup

T(t;q).

(H3) The spaces X(q), q E Q, are set-theoretically equal and

AN(q) generates a C0 -semigroup TN (t;q) on X(q).

Moreover, qN implies ITN(;qN)z - T(t;q-)zI N 0
q

as N + for all z E X(Z), uniformly in t on compact

subsets of [0,a). There exist constants M and w independent

of N and q such that jT(t;q) I < Me4 t and ITN(t;q)I <Me~t.

(H4) The set Q c Rk is compact.

(H5) The spaces X(q) are uniformly topologically isomorphic.

That is, there exists a real constant K such that

IvI, < Kviq for all q,4 in Q.

(H6) The projections IN(q):X(q) 4 xN(q) satisfy: For any

sequence {qN} in Q with qN o k, one has

,vN(qN)z - zi N 0 as N + for each z E X(q-).qN
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(H7) The nonlinear function F:Q x [0,T] x X(q) * X(q) satisfies:

(i) For each continuous function u:[O,T] ) X(q),

the map t * F(q,t,u(t)) is measurable for

each q E Q.

(ii) There exists a function k in L2 (0,T;R) such

that
IF(q,t,ul) - F(q,t u2)q <S kl(t) ui-u 2 lq

for all q E Q, ulu 2 E X(q).

(iii) There exists a function k2 in L2 (O,T;R) such

that

IF(q,t,0) l q< i2(t)

for all q E Q.

(iv) For each (t,u) E [0,T] x X(q), the map

q F(q,t,u) is continuous.

We remark that to be more precise, we should have written

IITN(qN) z -_Nzl N 0, where XN is the canonical isomorphism
qN

of X(q) onto X(q ), in (H6) (a similar adjustment should be

made in (H3)).However, we suppress this notation throughout in

as much as there will be no confusion in light of the assumed set-

wise equality of the X(q), q E Q. We further remark that (H5)

implies uniform (in q and N) boundedness of iN(q)[q.

Theorem 3.1: Suppose that (H2) - (H7) obtain and that {qN} is

any sequence in Q with qN -. Further assume that

Mail __
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Nu()-u(J N- 0 as N - .Then for each q E Q, unique

mild solutions u(t;q) and u N(t;q) of (2.1) and (2.2) exist

and we have IuN(t;qN) u(t;ZjDl 0 as N -' for each
N-
q

t E [0,T].

Corollary 3.1: If (H7) is strengthened so that one assumes

(a,v) -~ F( ,o,v) is continuous on [0,T] x X(Z1), then the con-

vergence uN (t~q N)- u(t;q) of Theorem 3.1 is uniform in t on

[0,T].

Example 3.1. (Hyperbolic equations).

We consider here the equation

1(3.1) utt qluxx q2ut q3u +~ ,.,6t*u

with initial and boundary conditions

m
u(0,x) q ~ x)

(IC)

ut(O,x) = ql4i Cx), 0 <x< 1

(BC) u(t,0) = u(t,1) = 0, t > 0,

where u(t,x) and qiq are scalars.
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Remark 3.1: Although in (3.1), (IC), (BC) we do not explicitly

allow nontrivial boundary conditions (possibly containing parameters),

it can easily be seen that such situations are included in our for-

mulation. For consider

(3.2) utt = qlUxx

with the initial conditions and boundary conditions

u(O,x) = q4 (x)

ut(O,x) = qS4(x)

(BC) u(t,0) = q 7bl(t), u(t,1) = qsb2(t),

where bl,b 2 are twice continuously differentiable functions.

Then the usual transformation given by w(t,x) - u(t,x) -

(1-x)q 7bl(t) - xq8b2 (t) transforms (3.2), (IC), (BC) into the

problem

wtt = qlwxx (1-x)q7blt t - xq8 b2 tt

w(O,x) = q40(x) - (1-x)q7bl(O) - x q8b2 (O)

wt(O,x) = qSi(x) - (l-x)q 7blt(O) - X8 b2t(O)

w(t,O) = w(tl) = 0,

which is a problem that is a special case of the formulation (3.1),

(IC), (BC) above.

To treat (3.1), (IC), (BC) we first rewrite (3.1) as an ab-

stract equation in the usual manner employing the operator A = a2

ax
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in H0 = L2 (0,1;R). The Sobolev spaces H i considered here and

below will consist of Rl-valued functions on [0,1] and we suppress

this notation hereafter. With A defined on-Dom(A) = H1 n H2, we

include the boundary conditions (BC) and are also able to establish

that A is self-adjoint and (-Auu) > 1u1 2  for all u E Dom(A).

Standard results guarantee existence of A 1 2  on Dom(A I/2 ) = HO0.

We make the following additional assumption:

a bk(HQ) There exist positive numbers ql,qb such that q E Q C Rk
a< < b

implies ql q1  q b

Then the set Dom (A1/2)endowed with the inner product (u,w) q=

(qlUxWx)L2 is a Hilbert space which we donote by V(ql). Finally,

H(ql) E V(ql) x H with the product topology is a Hilbert space

X(q) in which we can now rewrite (3.1), (IC), (BC) as

u(t)u =(q) U(t) + F(q,t,u(t)) , t > 0
(v(t) (v(t))

(3.3)

1 2 1
where E E H(ql), Dom(sgl(q)) = (H0 n H2 ) x H1 ,

1 0 1 0

-()= I 2 , and F(q,t,u(t)) - .ql A + q3 q2) f(q 6Pt I*Pu (t I-) ))
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Here ,...,q) for j = 4,5,6 and q = (ql,q 2 ,q 3 gq4 ,q 5 ,q 6 )

is restricted to the fixed set Q c R 3m+ 3

We see immediately that in view of assumption (HQ), the spaces

(q1) are all topologically isomorphic; indeed for any pair q1 ,ql1

in [qa,qb] we find IZIH(l) < KIZ[H(I) with K = (qb/ql)

so that (HS) is satisfied. We discuss (H3), (H6) for a specific

choice (so-called modal approximations) of finite dimensional sub-

spaces and operator approximations. We refer the reader to [ 5,

pp. 247-250] for the relevant background material needed in our

development.

The operator A is selfadjoint with compact resolvent and

the eigenvectors {O 1J00and {o. l where 0.(x) = sin jwx
3 j=l J j=1 3 Jt

and 0.(x) = /Z sin jwx constitute complete orthonormal

sets (CONS) for V(1) = H1- and H0 respectively. We define
0

the modal subspaces XN(q) = HN(ql) of H(ql) by

HN(q )) = spanNN

We note that )(0\ forms a CONS for

0 =1 CN

H(1) and a complete orthogonal (but not normal) set for H(ql),

q# 1.

The modal approximations ,.N(q) for _V(q) are defined by

_ N(q) = N(qltq)WN(ql), where N(ql) is the canonical projection

of H(q1 ) onto HN(ql). The requirement that H N(ql) c Dom(_W(q))

is trivially seen to be true here.
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Theorem 3.2. Let (HQ) obtain and let q N,iT E Q a R 3m+3  be

such that q -+ if as N - .Then jWif and jI( (qN) generate

N NN NC 0-semigroups T(t;q) and T (t;q) on H(if1) and H(q 1  res-

pectively. Furthermore, there is a constant w E R1 independent

of N such that IT(t;q)I < e't TNtq N)< ewt frt>0

a nd fo .r each z E H(Zf1), IT N(t;qN)z _ T(t;q-)zj qN -). 0 as N

uniformly in t on compact subsets of [0,c*).

The proof of this theorem can be given employing a generalized

version of the Trotter-Kato theorem (see [3 ]) and the spectral

theorem. One can readily establish dissipativeness of jQf(q) - cuI

in H(q) for anappropriately chosen w. A consequence of (HS) is

that one actually obtains TN (t;qN)z -+ T(t;q-)z in H(l).

Turning next to the nonlinear equation (3.3), we let

Q = {q 6 E RmIq E Q) and make the following hypotheses on f.

(H7*) The nonlinear function f: x [0,T] x [0,1] x R * R satisfies:

(i) For each (q 6,u) E x R1  the map

(t~x) - f(q6,tlxlu) is measurable.

(ii) There exists k1in L2(0 T;R) such that

If(q 6,t,x,ul)-f(q6,tlxIu2)1 < kl(t)1ul-u21

for all q6 E Q, t E [0,T] , x E [0,1] ,and uj,u2 ER1.

(iii) There exists k 2  in L2([O,T] x [0,1];R) such that

lf(q 6,tlxO)l < k2(tlx)

for all C6 &.

(iv) For each (tx,u) in [0,T] x [0,1] x R, the map

q 0 f(q 6,t,xlu) is continuous.
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It is not difficult to see that if one defines F by F(q,t,z)

col(0,f(q,t,.,u(.))) for z = col(u,v) in H(ql), the conditions

(H7*) for. f imply (H7) for F. Furthermore, it is rather easy

to establish that the projections N(q,) are in fact independent

of q1  so that completeness of the Oj,Oj along with (HS) yield

(H6). Since (H2) and (H) follow from Theorem 3.2, we may apply

Theorem 3.1 to obtain convergence of the modal approximation scheme

N N N N{q,HN(ql),r (ql),_W (q),FN(q)} for hyperbolic systems (3.1), (IC),

(BC).

Example 3.2. (Parabolic equations)

For our second class of examples we consider parabolic equations

ql +1 m

ut F -(PUx +q 2u + 4

(3.4) m

u(0,x) = qi W(x), 0 < x < 1,
i=1

subject to the boundary conditions

(3.5) R u(t,-} - 0 for j = 1,2.

Here we assume Oi E H0 , u(t,x) E R1 , and q = (qlpq 2,q 3,q 4) with

qj - (q}, p qm) for j = 3,4. The operators R defining the boundary

conditions have domain H2 and are given by

RjV- ajlv(0) + 0,2v'(0) + aj3v(l} + ajlV'(l}

for v E H2 . We make the following assumptions on k,p and aij:

* . .. ..- .. . ,
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(H8) The functions P'Px and k are in C(0,1;R) with k(x) > 0

and p(x) > 0 for 0 < x < 1.

(H9) The matrix 11 a12 a1 3 '1 4  has rank 2 and we have
a21 a2 2 a 2 3 a2 4)

p(0){alla 2 2 -a 1 2a 2 1 } i p(1){c 1 3 a2 4 -a 1 4a 2 31.

We again rewrite our problem as an abstract Cauchy problem

and to this end we define the generalized Sturm-Liouville operator

-ce(q) in H by Dom(sc;(q)) 2fi {1 R HR f 0, j = 1,2) and

) 1 k(qlPx)x + q2 . Then (3.4), (3.5) can be written as

ukt) =f -Q(q)u(t) + F(q,t,u(t)), t > 0,

(3.6) u(o)-- q'

where 0i E H0  and F(q,t,u(t)) - f(q4 ,t,-,u(t,-)). We consider

this equation and the operator 4Q(q) in H0 with inner product

(u,v) = Ju(x)v(x)k(x)dx and note that (unlike the formulation for

Example 3.1) our Hilbert space X(q) = H0 is independent of q

in this case.

The equality in (H9) implies that _w (q) is selfadjoint and

spectral results for s1(q) (e.g. see [ 2 ]) yield existence of a

CONS (in H0 ) of eigenfunctions {T} I of _(q) where

--- (1,0,...,0) E R2 m 2 . As in Example 3.1, we define the approximat-

ing modal subspaces of H0 by HN = span {T1,2,,...,TN} and let
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7N: H0  H N denote the canonical projections. This determines

in the same manner as before the operators jN(q) = WN /(q)71 N and

FN = nNF. Using the theory of general Sturm-Liouville operators

and the Trotter-Kato theorem one can establish convergence of the

corresponding semigroups.

Theorem 3.3.: Suppose (HQ),(H4),(H8) and (H9) hold and let

N E Q R2M+2 be such that qN as N . Then

and - (qN) generate C0 -semigroups T(t;ij) and TN(t;qN) on

H0  that satisfy IT(t;k)[ < ewt , ITN(t;qN)I < emt  for some w

which is independent of N. Furthermore TN(t;qN)z + T(t;Z[)z for

each z E H0  with the convergence uniform in t on compact sub-

sets of [0,-o).

If, in addition to the hypotheses of Theorem 3.3, one assumes

that f satisfies (H7*) (with q6  replaced by q4 ), then

Theorem 3.1 holds to yield convergence of the approximating solutions

of (3.6) and thus the modal approximation scheme {q,IN, N, (q),FN(q)}

is a convergent scheme for (3.4), (3.5).

4. Approximation of the Identification Problem

Returning to identification problem such as those discussed in Section

2, we are now in a position to establish nvergence of solutions of the

approximate problems ( 9?N ) of minimizing N(q) _/(uN(q),q) to those of

the problem (9) of minimizing J(q) :/(u(q),q) where we make the follow-

ing assumption on the fit-to-data functional A

(H1O) The mapping /: X(q) x Q -, R is a continuous functional; here X(q)

is endowed with any of the equivalent topologies hypothesized in the

standing assumption (S).

Our results are stated precisely in the form of a theorem.
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Theorem 4.1. We assume the hypotheses (Hl)-(H7)and (H10) hold and that

q -+ u0 (q),q r wN(q)z and q -b T N(t;q)z are continuous for each

z E X(q) and t E [0,T]. Then

(a) for each N there exists a solution qN of (60N
N .

(b). there exists a subsequence {q } of {qN) con-

verging to some q E Q which is a solution of (-5).
I N N.

Moveover, uJ(t )-u(t;i) N 0 as N. 0

where uNu are solutions of (2.2), (2.1) respectively.

Proof: It is not difficult to argue (using (H3)-(H7)and (HI0)) that

q -). jN(q) is continuous on the compact set Q. Existence of a
N. N.

subsequence {q j} with q * i follows from (H4). We observe
N. (N. N.

that for any q E Q, one has J N(q j) < J N(q). From Theorem
N.

3. 1, (H5)and (HO) ,we see that J 3 (q) * J (q) for each q E Q and

J N(q Nj) , J(i) so that J(q) < J(q) for any q E Q. That is,

Z is a solution of (9).

If we further assume (HQ), it is quite simple to see that

Theorem 4.1 is applicable to identification problems for Examples

3.1 and 3.2. We have conducted numerical investigations for the

modal approximation scheme for identification problems with the

hyperbolic systems of Example 3.1 and report briefly on some of

them in the next section. For these calculations we chose

C(q) = (1,0) in the functionals J and jN of (ID) and (IDN) of

Section 2, thereby enabling one to verify (HlO).
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5. Numerical Results

In this section we present two examples, deferring a

thorough discussion of our numerical experience with modal

schemes to the forthcoming paper. A standard IMSL-package

employing the Levenberg-Marquardt algorithm was used to solve

the parameter identification problems for the approximating

ordinary differential equations. "Exact" solutions for the

distributed systems below were generated independently by a

simple Crank-Nicolson algorithm and some of these values were

used for the "data" Yi in (IDN). We would like to express

our deep appreciation to James Crowley for his efforts in develop-

ing the software packages employed in our computational experiments.

Example 1. We consider equation (3.1) with f = 0:

utt = qluxx + q2 ut + q3u,

1
where u(O,x) = q4 x(l-x), ut(0,x) = 2q5x for 0 < x < and

u(Ox)= q (2-2x) , for < x < 1, and u(t,O) = u(t,l) = 0

for all t. The true model parameters were taken to be

= (1.414,0,0,4,5).

We performed a five dimensional search starting at qN,O -

(1,0,0,1,0) for each value of N; the results obtained by apply-

ing the Levenberg-Marquardt procedure for several values of N

are given in Table 1.

.. . .. ..... ... ... - - -- . . . -
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Table 1.

N N N N N N

4 1.3863 0.0026 -0.2762 3.9876 5.0273

8 1.4112 -0.0035 -0.0308 4.0039 5.0195

16 1.4139 -0.0001 -0.0025 3.9999 5.0030

32 1.4139 0.0000 -0.0006 4.0001 5.0001

1.4140 0.0 0.0 4.0 5.

Example 5.2. In this example we present computations for the

nonlinear equation

utt = qlUxx + q~u + q u  u

with u(0,x) = q4x(l-x), ut(O,x) = q5 and homogeneous boundary

conditions. Table 2 depicts the results corresponding to the

"true" model parameters q = (1.414,0,1,2,0). Holding q2

and q5 fixed, a three dimensional search for q1 q3 and q4

was performed starting with qN,0 (1,0,0,1,0).
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Table 2.

N N NN ql q3 q4

4 1.3876 0.7441 2.0007

8 1.4091 0.9509 2.0003

16 1.4124 0.9774 2.0003

32 1.4137 0.9904 2.0003

aus 1.4140 1.0 2.0
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