
GENERIC PROPERTIES OF AN INTEGRO-OIFFERENTIAL EQUATION. (U)
,AM 80 J K. MALE OAA029-79-C-016 1

UNCLASSIFIED AFOSR-TR-80-0575 M

7 0 -0 8E h2h hW N I R V I E C R E SH i mmCN T R F Oh hN ml-E C I q 1 /
'§



g11. ~2 11ii1i ,_

iI
IIIIL II25 1.4 1111__6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS 963- A



16C ' E1 WN P" E FORE COMPLETING FORMq. IOlE~eIIP.m~ECIPIENT'S CAT --'L'G NUBE V'" ,..., EmIIJ---I '

TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

ENR-ROPERTIES OF AN INTEGRO- Itrm t P"IFFEREIIAL EQUATION, Interm M E.

7. AUTHOR(.) 8l CONTRACT OR GRANT NUMBER(&)

j1) JACKK./ AL AFOSR 76-3092

9. PERFORMING ORGANIZATION NAME AND ADDRESS t0. PROGRAM ELEMEIIT, PROJECT, TASKDIVISION OF APPLIED ATEMAT ICS A REA& W ORK UNT'UMBERS
BROWN UNIVERSITY 2 .

PROVIDENCE, RHODE ISLAND 02912 612:.

AIR FORCE OFFICE OF SCIENTIFIC RESEA , June, 1980 t

A oBOLLING AIR FORCE BASE 13.INUMBERoPPA. s
WASHINGTON, D.C.

4 . MONIT."RI A.LN (JLAME & AOORESS(I different from Controllnin Office) IS. SECURITY CLASS. (of thh.... .p.:

¢,1 ( ) h ": / - -Z4 - /UNCLASSIFIED
' IS. DECLASSIFICAT:ON/OOWNGRADING

SCHEDULE

16. tISTRIt UTIO. , ti;v-, r ot ,R "B....o'

Approved for public release; distribution unliifted. D T IC
C 1 11. DISTRIBUTION STATEMENT (of the abetrsel entered in block 20. If different from RepEo t)

AUG 2 61980*

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side If neceecay and Identify by block number)

20. AIST T (Continue on reverse elde It neceeeey end Identify by bleek number)

' Consider the functional differential equation where a,g are
o continuous. The linear function is such that the characteristic
C. equation has two eigenvalues on the imaginary axis and the re-

LLS maining ones with negative real parts. In spite of this, it is
shown there is no generic Hopf bifurcation for any g. The natur
of the bifurcation is characterized under hypotheses which appear
to be generic in g.

DD 1473 90ITIolsof, Nov6 SOs SO6LZTR UNCLASSIFIED YOL ~ Al
SgCURITY CLASIFICAS01g OF TOM PAGE (*~sm Dae tmtpe4



ma

. .0 8-0 515

GENERIC PROPERTIES OF AN INTEGRO-DIFFERENTIAL EQUATION

Acosion IPor

WC TAB

jiatif oatiofl

by z' utri _ _ _.on-

Avail and/or
blot. special

Jack K. Hale+ "

V/\Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

Brown University
Providence, Rhode Island 02912.

June, 1980

This research was supported in part by the National Science
Foundation, under MCS 79-0S774, in part by the U.S. Army under
AROD-DAAG 29-79-C-0161, and in part by the Air Force Office of
Scientific Research under -AFOSR 7 6 -0. 14

Ap oved for Vablie release
41 st rlb~tlou ltUltod.



* 9

GENERIC PROPERTIES OF AN INTEGRO-DIFFERENTIAL EQUATION

Jack K. Hale

Abstract: Consider the functional differential equation

k(t) - a(-O)g(x(t+O))de

where a,g are continuous, a > 0, a(l) = 0, g(0) = 0, g'(0) = 1,

xg(x) > 0 for x 0 0. The linear function a0 (s) = 47 2(1-s)

is such that the characteristic equation

+ J a- 0 ()eXOdO = 0

has two eigenvalues on the imagainary axis and the remaining ones

with negative real parts. In spite of this, it is shown there is

no generic Hopf bifurcation for any g. The nature of the

bifurcation is characterized under hypotheses which appear to be

generic in g.
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1. Introduction. Consider the functional differential equation

(-t) a(-O)g(x(t+O))de

where a 6 C([0,1]R), g E C3 RIR), a > 0, a(1) 0, g(O) = 0,

g'(O) = 1. The characteristic equation

(1.2) X = -JaC)eA~dO

for the linear variational equation around zero for a = a0 ,
a(s) = 4n2(1-s), has all solutions with real parts < 0 except

two on the imaginary axis given by ±2ni. Furthermore, there is a

neighborhood U of a0 and a submanifold r of codimension one

in C([0,l]JR) such that u*r = u1  U u2 with U1 n U2 the empty

set, for a C U1, all solutions of (1.2) have negative real parts

and, for a 6 U2 , all have negative real parts except two whicb

have positive real parts.

Under such a circumstance, one expects to obtain a generic

Hopf bifurcation at a0  for a residual set of g C C3 0RR). That

is, for a residual set of g, a unique hyperbolic periodic orbit

should bifurcate from zero as a crosses r from U1  (respectively

U2 ) to U2  (respectively U1 ). We show this is not the case.

Under an assumption which appears to be generic in g C CSORJR),

we characterize the nature of the bifurcation point aO.

This result shows that the generic properties of Equation (1.1)

with the integrand restricted to a product of two functions

a(s)g(x) is completely different from the generic properties that
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would be obtained by considering general functions h(s,x) of

two variables.

For notational purposes, we let C w C([-1,0]1R). For any

E C, we suppose the solution x(4)(t) through * is defined

for t > 0. Let T (t): C * C, t > 0, be the semigroup operatora,g

by (1.1); that is, T a,g(t)o(e) x(o)(t+0), -1 < o < 0.

2. Nongeneric Hopf bifurcation. To prove there can be no generic

Hopf bifurcation for Equation (1.1), we need the following proposition

from Hale [3, p. 122] or Levin and Nohel [5].

Proposition 2.1. If A < 0, i > 0, xg(x) > 0 for all x,

G(x) = Jg as lxI * , then every solution of (1.1) is

bounded and

(i) if there is an s such that i(s) > 0, then every

solution approaches zero as t ;

(ii) if i(s) - 0 for all s (that is, a is linear) then, for

any 0 E C, there is either an equilibrium point or a one-periodic

solution p - p() of the ordinary differential equation

(2.1) + a(0)g(y) " 0

such that the w-limit set of the orbit through is (pt' t E i),

where pt £ C, pt() p(t+)o -l < 0 < 0.

Since g'(0) - I in (1.1), we may choose a neighborhood of

x - 0 and extend g outside this neighborhood so that it satisfies

" . . • , m
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the condition of Proposition 2.1 and so that Equation (2.1) has

no one-periodic solutions outside U for any a in a sufficiently

small neigtborhood V of a0 (s) - 492(1-s). From the results in

Cooperman [11 (see also Hale (14]), the semigroup T t) has aag

maximal compact invariant set A which belongs to the seta,g
O = { C: *(0) E U, -1 < 0 < 01 for each a C V. Also, this

set is uniformly asymptotically stable and attracts bounded sets

of C. The set Aa,g is upper semicontinuous in (a,g).

Proposition 2.2. For any real v such that Pa0 C V, the set

A a0,g cannot contain a uniformly asymptotically stable periodic

orbit.

Proof. Suppose A contains a periodic orbit Y which is

va0,g
uniformly asymptotically stable. Then, for any neighborhood U

of Y there is a neighborhood V of y and a neighborhood W

of Pa0 in the C0-topology such that, for any a E W, # e V, the

positive orbit Y+(#) of (1.1) belongs to U. One can choose the

neighborhood U of Y and W of pa0  so that U does not

contain the equilibrium point zero of (1.1) for any a 6 W.

In the neighborhood W of pa0  there exists a strictly

convex function a. Thus, Aapg contains no periodic orbits and

every solution of (1.1) approaches zero by Proposition 2.1. This

contradicts the fact that some positive orbits remain in U and

proves that no periodic orbit can be uniformly asymptotically

stable.

Let w(b) be the period of the solution of (2.1) through
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(b,0), b > 0, for (a0 ,g). There is an open dense set of g such

that wl'(b) # 0. Suppose g is chosen so that this is true. Then

there is a neighborhood U of x = 0 such that Equation (2.1) for

(a0 ,g) has no one-periodic solution in U. Thus, we may assume g

extended so that A ( (0). Suppose there is a generic Hopf
a0 ,g

bifurcation at (a0 ,g). Since Aa,g is upper semicontinuous

at (a0 ,g), Aa,g is uniformly asymptotically stable and the

bifurcated periodic orbit is hyperbolic, it follows that the

periodic orbit must be uniformly asymptotically stable. This

contradicts Proposition 2.2. This proves there cannot be a residual

set of g for which there is a generic Hopf bifurcation.

3. The bifurcations at a0. To understand better the nature of

the bifurcationsat a0, we give a more detailed analysis of the

equations characterizing the bifurcation of periodic orbits from

zero.

We need the following lemma.

Lemma 3.1. There is a neighborhood U of a0  in the C0 -topology,

a 6 > 0 and an analytic function A*: U b 1 such that

X(* a0 ) = 21i and, for every a E U, the equation (1.2)

has exactly one solution in each of the circles JA i 27rij < 6

given respectively by X*(a), *(.a) and all other solutions with real

parts -6. Furthermore, if

L.j



r" = fa E U: Re X*(a) = 0)

r = (a E U: Re * (a.) > 0)
r0 = {a E U: Re A.*(a) = 01

r + = (a E U: Re A,*C) > 0)

then each of these sets is nonempty and r 0  is a submanifold of

codimension one.

Proof. If

0 ]~

F(X,a) = A + a(-6)e dO

then F(2ni,a0) = 0 ahd Df/3A = 1 812 at (2Wi,a 0). The

Implicit Functbn Theorem implies the existence of a function

X*(a) e ; analytic in a neighborhood of a0  with X *(a0 ) = 2wi.

The other properties of X* follow essentially from Rouche's Theorem.

0To show r0  has codimension one, consider the family of

functions (a0+Vbo), b0 (s) - 4 2 s(l-s), VE R. Then the derivative

of X*(a0 +vb0 ) with respect to v at V - 0 is easily seen 4

a= 4 2 (0 e(l+e)eztlede
v-U -I.

Thus,

aRe ,14 2 [0
Ra -4O, e(l-e)cos POede > 0.

-- T --- U.-4-
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This shows that r0  has codimension one and also that rr + are

not empty. This proves the lemma.

Remark 3.2. We knew from the previous section that Re X*(a) < 0

if a E U is strictly convex. The above proof shows that

Re X*(a) > 0 if a E U is of the form a = a0 + b where b

is strictly concave, b(0) = b(1) = 0.

For a = a0 , the characteristic equation for the linear

variational equation around zero has two purely" imaginary roots.

For a near a0, and a neighborhood W of zero let B(r,a,g)

be the scalar bifurcation function obtained by applying the usual

method of Liapunov-Schmidt for the periodic solutions of (1.1) in

W which for a o a0  are equal to r cos 2wt (see, for

example, deOliveira and Hale [ 21). This function has the property

that the periodic solutions of the type specified are in one to one

correspondence with the nonnegative zeros of B(r,a,g). Further-

more, the stability properties of the periodic solution correspond-

ing to a zero r0  of B(r,a,g) when restricted to a center

manifold at x - 0 are the same as the stability properties of the

equilibrium point r0 of the scalar equation

(3.1) i - B(r,a,g)

(see deOliveira and Hale (2]). The function B(r,a,g) is an odd

function of r and has five continuous derivatives if g f C ORR).

Let
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(3.2) B(r,a,g) = a1 (a,g)r + a3(a,g)r
3 + a5 (a,g)r5 + o(Irl )

as r - 0.

If X * (a) is the function given in Lemma 3.1, the manner in

which the bifurcation function is constructed implies that

al(a,g) = 0 if and only if Re X*(a) = 0
(3.3)

sign al(a,g) = sign Re X*(a).

Thus, cal (a0 ,g) = 0.

Let a3 =0 a (aO ,g). We now show that a0 = 0. Since the

solution x = 0 of Equation (1.1) for a = a0  is asymptotically

stable, it follows that the zero solution of (3.1) for a = a0

is asymptotically stable. Thus, a0 < 0. A generic Hopf bifurcation

corresponds to a0 < 0. We have shown in the previous section that

a = a3 (a0 ,g) = 0 for an open dense set of g's. Thus, a0 M 0

for all g since it is continuous in g. This shows there is no

generic Hopf bifurcation for any g.

Again, the stability of the zero solution of Equation (1.1) for

a = a. implies that a5 (ao,g) < 0. We make the hypothesis

that

(3.4) a0(g def 0a(,g ) < 0.

This implies that

(3.5) B(r,a 0 ,g) 0 (g)rs + o(r), '0 < 0.
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We have not made the computations (which would be extremely complicated)

0
to obtain the constant ac(g). However, it certainly seems plausible

0
that the set of g for which ac(g) < 0 is open in the space

CS(UJR) for a given bounded neighborhood U of x = 0.

2
If B(r,a,g) = rP(r ,a,g), then

(36) P(p,a,g) = al(a,g) + ac3(ag)P + oc (a,g)P 2  + o(P 2)

as p -. 0. This function has a unique maximum n(a,g) in a

neighborhood U of a P a0  which occurs at a value p *(a,g) and

n(a0 ,g) = 0. Let

SN0 = (a E U: n(a,g) = 0, p* (a,g) > 0)

(3.7)

SN+ ( '-) = {a E U: n(a,g) > (<)0, p*(a,g) > 01.

One can show that every tangent vector to SN0 is a tangent vector

to r0. We suppose that

(3.8) SN0  is a submanifold of codimension 1, S N+ .

It is possible to show that hypothesis (3.8) is satisfied for

an open set of g E CS(WAR) for a bounded neighborhood W of zero.

We can now prove the following result.

-'low_
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Theorem 3.3. With hypotheses (3.4) and (3.8), there is a neighbor-

hood U of a0  in the C0 -topology and a neighborhood W of

x = 0 such that U is subdivided into regions as shown in Figure 1,

the set A is a disk for each a E U with boundary being a

periodic orbit and the flow on a two dimensional manifold in A

is shown in Figure 1.

SN0

II SN0

r +

r0  
r +

Figure 1.

Proof. If a E r+, then al(a,g) > O, 3 (a,g) < 0 implies that

P(p,a,g) in (3.6) has a unique positive zero. Thus, there is a

unique periodic solution in a small neighborhood of zero and it is

asymptotically stable as shown in the flow for r . This shows that

SN c r-. By hypothesis (3.8) and the fact that the stability

properties of the priodic orbits are determined by (3.1), we have that

the flow on SN0 is the one shown in Figure 1. Also, the flow in the

other two regions must be one of those shown in Figure 1. We only

need to verify that the regions are ordered as shown. In the proof of
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Lemma 3.1 we showed that the curve (ao+Vbo), boCs) - 4w 2s1-s was

transversal to r0  at v = 0. For v < 0 this function is in r-

and stictly convex. Thus, the origin is uniformly asymptotically

stable. This proves that the flow in Region II in Figurel is the

one that is depicted. This proves the theorem.

1.f
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