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GENERIC PROPERTIES OF AN INTEGRO-DIFFERENTIAL EQUATION

Jack K. Hale

Abstract: Consider the functional differential equation

0
x(t) = - | RICHCICNE

where a,g are continuous, a > 0, a(l) = 0, g(0) = 0, g'(0) =1,
xg(x) >0 for x # 0. The linear function ao(s) = 4"2(1-5)

is such that the characteristic equation
0
A+ J a(-6)e*%d0 = 0
-1

has two eigenvalues on the imagainary axis and the remaining ones
with negative real parts. In spite of this, it is shown there is
no generic Hopf bifurcation for any g. The nature of the

bifurcation is characterized under hypotheses which appear to be

generic in g.
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1. Introduction. Consider the functional differential equation

0
(1.1) X(t) = -I a(-9)g(x(t+6))de
where a € C([0,1],R), g € CO@®,R), a > 0, a(1) = 0, g(0) = 0,

g'(0) = 1. The characteristic equation
0 .

(1.2) A = I a(-0)erae
-1

for the linear variational equation around zero for a = ag,
ao(s) = 4"2(1-5), has all solutions with real parts < 0 except
two on the imaginary axis given by +2mi. "Furthermore, there is a
neighborhood U of a, and a submanifold I of codimension one
in C([0,1],R) such that U~I = U1 U U2 with U1 n U2 the empty
set, for a € Ul’ all solutions of (1.2) have negative real parts
and, for a € Uz, all have negative real parts except two which
have positive real parts.

Under such a circumstance, one expects to obtain a generic
Hopf bifurcation at a, for a residual set of g € CSGRJR). That
is, for a residual set of g, a unique hyperbolic periodic orbit
should bifurcate from zero as a crosses I from U1 (respectively
Uz) to U, (respectively Ul). We show this is not the case.
Under an assumption which appears to be generic in g € CSCR.R),
we characterize the nature of the bifurcation point a5-

This result shows that the generic properties of Equation (1.1)
with the integrand restricted to a product of two functions

a(s)g(x) 1is completely different from the generic properties that

e L b ¢ Ak - A
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would be obtained by considering general functions h(s,x) of
two variables.

For notational.purposes, we let C = C([-1,0],R). For any
¢ € C, we suppose the solution x(¢)(t) through ¢ is defined
for t > 0. Let T (t): C+C, t >0, be the semigroup operator

a,g
by (1.1); that is, T, g(t)¢(9) = x(¢)(t+0), -1 < 8 < 0.

2. Nongeneric Hopf bifurcation. To prove there can be no generic

Hopf bifurcation for Equation (1.1), we need the following proposition

from Hale [3, p. 122) or Levin and Nohel [5].

Proposition 2.1. If a <0, a >0, xg(x) > 0 for all x,

x
G(x) = I g+ as |x| » =, then every solution of (1.1) is
0

bounded and

(i) if there is an s such that a(s) > 0, then every

solution approaches zero as t + «;

(ii) if a(s) = 0 for all s (that is, a 4is linear) then, for

any ¢ € C, there is either an equilibrium point or a one-periodic

solution p = p(¢) of the ordinary differential equation
(2.1) y + a(0)g(y) = 0

such that the w-limit set of the orbit through ¢ is {p., t € R},
where p, € C, p,(8) = p(t+d), -1 < 0 < 0.

Since g'(0) = 1 in (1.1), we may choose a neighborhood of
x = 0 and extend g outside this neighborhood so that it satisfies

e by
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the condition of Proposition 2.1 and so that Equation (2.1) has ;
no one-periodic solutions outside U for any a in a sufficiently

small neigiborhood V of ao(s) = 4“2(1-5). From the results in
Cooperman_[l] (see also Hale [14]), the semigroup Ta,g(t) has a

maximal compact invariant set A which belongs to the set

a,g
0=1{¢€cC: ¢() €U, -1 <6 <0} for each a € V. Also, this
set is uniformly asymptotically stable and attracts bounded sets

of C. The set Aa is upper semicontinuous in (a,g).
’

g

Proposition 2.2. For any real u such that Ma, € V, the set

Aa g cannot contain a uniformly asymptotically stable periodic
0’ .
orbit.
Proof. Suppose A contains a periodic orbit Y which is f

va,,g
0’
uniformly asymptotically stable. Then, for any neighborhood U

of Y there is a neighborhood V of Y and a neighborhood W

of wua in the Co-topology such that, for any a € W, ¢ € V, the

0
positive orbit Y+(¢) of (1.1) belongs to U. One can choose the

neighborhood U of Y and W of Ha, so that U does not

e et e i i

contain the equilibrium point zero of (1.1) for any a € W.

In the neighborhood W of na, there exists a strictly
convex function a. Thus, Aa,g contains no periodic orbits and
every solution of (1.1) approaches zero by Proposition 2.1. This
contradicts the fact that some positive orbits remain in U and
proves that no periodic orbhit can be uniformly asymptotically
stable.

Let w(b) be the period of the solution of (2.1) through .




(b,0), b > 0, for (ao,g). There is an open dense set of g such
that w'(b) # 0. Suppose g is chosen so that this is true. Then
there is a neighborhood U of x =0 such that Equation (2.1) for
(ao,g)' hqs no one-periodic solution in U. Thus, we may assume g
extended so that Aao,g = {0}. Suppose there is a generic Hopf
bifurcation at (ao,g). Since Aa,g is upper semicontinuous

at (ao,g), A is uniformly asymptotically stable and the

a,g
bifurcated periodic orbit is hyperbolic, it follows that the
periodic orbit must be uniformly asymptotically stable. This
contradicts Proposition 2.2. This proves there cannot be a residual

set of g for which there is a generic Hopf bifurcation.

3. The bifurcations at a,. To understand better the nature of

the bifurcationsat a,, we give a more detailed analysis of the
equations characterizing the bifurcation of periodic orbits from
zero.

We need the following lemma.

Lemma 3.1. There is a neighborhood U of a in the Co-topolggz,

0
a 6 >0 and an analytic function A*: U+ € such that

A*(ao) = 27i and, for every a € U, the equation (1.2)

has exactly one solution in each of the circles |[A ¢ 2mi| < §

given respectively by x*(a),X*La) and all other solutions with real

parts < -é. Furthermore, if




of A*(a,+Vb,) with respect to VvV at VvV =0 is easily seen % )
0 "o E
0
a* 2 [ 2r10
= -4n 0(1+9)e do
5;‘ v=0 -1
Thus,
% 0
2%%_&_ - .4n? I 0(1-9)cos 27640 > 0.
vs0 -1 }
3 " At ta
v " " i

R el

I = {a € U: Re r(a) < 0}
r% = {aeu: Re rA*(a) = 0)
r+ = {a € U: Re \*(a) > 0}

then each of these sets is nonempty and Po is a submanifold of

codimension one.

Proofl. 1If

F(},a)

A+ IO a(-e)e)‘ede ;
-1 ?

then F(2zm,a) = 0  and df/h =1 - 87% at (2mi,ay). The

Implicit Functbn Theorem implies the existence of a function

x*(a) € ¢ analytic in a neighborhood of a, with x*(ao) = 2ni.

The other properties of 2" follow essentially from Rouché's Theorem.

To show ro . has codimension one, consider the family of

functions (a0+Vbo), bo(s) » 4"25(1-5), V€ R. Then the derivative




This shows that % has codimension one and also that ro,r* arec

not empty. This proves thc lemma.

Remark 3.2. We knew from the previous section that Re X*(a) <0

if a € U is strictly convex. The above proof shows that
Re X*(,a) >0 if a €U 1is of the form a = a0+b where b

is strictly concave, b(0) = b(l) = 0.

For a=a,, the characteristic equation for the linear
variational equation around zero has two purel~ imaginary roots.

For a near a and a neighborhood W of zero let B(r,a,g)

0?
be the scalar bifurcation function obtained by applying the usual
method of Liapunov-Schmidt for the periodic solutions of (1l.1) in

W which for a=a, are equal to r cos 27t (see, for
example, deOliveira and Hale [ 2]). This function has the property
that the periodic solutions of the type specified are in one to one
correspondence with the nonnegative zeros of B(r,a,g). Further-
more, the stability properties of the periodic solution correspond-
ing to a zero L of B(r,a,g) when restricted to a center

manifold at x = 0 are the same as the stability properties of the

equilibrium point Ty of the scalar equation

(3.1) r = B(r,a,g)

(see deOliveira and Hale [2]). The function B(r,a,g) is an odd
function of r and has five continuous derivatives if g € CS(R.R).

Let

> v




(3.2) B(r,a,g) = @;(a,g)r + 03(a,g)r3 + as(a,g)rS +o(lr|”)

as r = 0.

1f l*(a) is the function given in Lemma 3.1, the manner in

which the bifurcation function is constructed implies that

a.(a,g) = 0 if and only if Re l*(a) =0
(3.3) 1 : ,
sign al(a,g) = sign Re A" (a).

Thus, Gl(ao,g) = 0.

Let ol - o (%yg). We now show that Gg = 0. Since the

3
solution x = 0 of Equation (1.1) for a = a, is asymptotically

stable, it follows that the zero solution of (3.1) for a=a,

is asymptotically stable. Thus, Gg < 0. A generic Hopf bifurcation

corresponds to ag < 0. We have shown in the previous section that

g = oy (ag,8) =0 for an open dense set of g's. Thus, “g =0

[+ ]
for all g since it is continuous in g. This shows there is no

generic Hopf bifurcation for any g.

Again, the stability of the zero solution of Equation (1.1) for

a = a, implies that oc(ag.g) < 0. We make the hypothesis
that

0 def
(3.4) as(g) £ “5(30,8) < 0.

This implies that

(3'5) B(r,ao.g) = ag(g)rs + O(rs), ug < 0.

LI




We have not made the computations (which would be extremely complicated)
to obtain the constant ag(g). However, it certainly seems plausible
that the set of g for which ag(g) < 0 1is open in the space

CS(UJR) for a giveﬁ bounded neighborhood U of x = 0.

If B(r,a,g) = rP(rz,a,g), then
(3.6) P(p,a,g) = 9;(a,g) *+ @s(a,g)P * asca.g)oz + o(p?)

as p -+ 0. This function has a unique maximum n(a,g) in a

neighborhood U of a= a, which occurs at a value p*(a,g) and
n(ao,g) = 0. Let
0 ®
SN" = {a € U: n(a,g) = 0, p (a,g) > 0}

(3.7)

sN* () 2 (2 € ur n(a,g) > (<)0, o*(a,g) > 0}.

0

One can show that every tangent vector to SN  is a tangent vector

to r°. We suppose that

(3.8) sN’ is a submanifold of codimension 1, SN* £ o.
It is possible to show that hypothesis (3.8) is satisfied for

an open set of g € CS(WJR) for a bounded neighborhood W of zero.

We can now prove the following result.




Theorem 3.3. With hypotheses (3.4) and (3.8), there is a neighbor-

hood U of a,  in the c-topology and a neighborhood W of
x = 0 such that U is subdivided into regions as shown in Figure 1,
the set Aa g is aldisk for each a € U with boundary being a

H

periodic orbit and the flow on a two dimensional manifold in A

a,g

is shown in Figure 1.

.0 @ ®
7 n 10 1
Q9 ©

Figure 1.

Proof. If a € r*, then al(a,g) > o,as(a,g) < 0 implies that
P(p,a,g) 1in (3.6) has a unique positive zero. Thus, there is a
unique periodic solution in a small neighborhood of zero and it is
asymptotically stable as shown in the flow for ['. This shows that
SN € T". By hypothesis (3.8) and the fact that the stability
properties of the priodic orbits are determined by (3.1), we have that

the flow on SN0

is the one shown in Figure 1. Also, the flow in the
other two regions must be one of those shown in Figure 1. We only

need to verify that the regions are ordered as shown. In the proof of
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Lemma 3.1 we showed that the curve (ao*ybo);:bo(s} - 4"25(1_5) was

transversal to r° at v

0. For v < 0 this function is in T~
and stictly convex. Thus, the origin is uniformly asymptotically
stable. This proves that the flow in Region II in Figurel is the

one that is depicted. This proves the theorem.
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