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FOREWORD

The work described in this report was performed by Arthur D. Little, Inc.,
Cambridge, Massachusetts, under contract to the Naval Surface Weapons Center,
Dahlgren, Virginia (Contract No. N60921-78-C-A221). The work was part of the

carbon fiber hazard assessment program sponsored by NAVAIR-50 under AIRTASK
A510-5102/004-F/9W0463-O00, Work Unit A5203-01 and others. This report reviews
the fiber counting methods used by the different groups working with this
problem and recommends procedures to be used as standards for future counting
efforts. It also provides factors to be applied if the results on different

methods are compared.

This document has been reviewed and approved by J. H. Meyers, Navy
Project Leader; C. E. Gallaher, Navy Project Manager of the Special ProjectsBranch; and L. J. Lysher, Head, Electromagnetic Effects Division.
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ANALYSIS OF CARBON FIBER COUNTING PROCEDURES

1. INTRODUCTION

The high strength and low weight characteristics of carbon fiber

composites make them extremely attractive materials for the fabrica-

tion of structural components for high performance aircraft. The

electrical conductivity of the fibers, however, presents a potential

threat to nearby electrical equipment in the event that fibers are

released during an aviation accident. The U.S. Naval Surface Weapons

Center (NSWC) has attempted to establish the important physical param-

eters governing such releases by conducting a series of small-scale

tests at the Environmental Test Facility in Dahlgren, Virginia. These

tests involve subjecting small samples of composite materials to propane

fire, sometimes followed by explosive agitation, and collecting samples

of the released fibers on sticky papers (6" x 9") placed on the chamber

floor. Because of the extremely large number of fibers that are released,

direct counting of the fibers on even a singie sticky paper is infeasible,

and instead a statistical technique has been employed to estimate the

fibers released.

The statistical fiber counting procedures involve counting either

actual number of fibers in a very small area or counting fiber inter-

sections with parallel lines, again in a small area, and then extrapolating

the result to the whole sticky paper area. This type of counting

procedure necessarily involves scatter in the final result. It is there-

fore important to identify and quantify the errors inherent in the counting

process. This report examines in detail the fiber counting procedure

used in the Dahlgren tests (as implemented at the U.S. Army Dugway Proving

Ground) and provides a comparison with counting techniques used by

several other organizations.

The following, sections detail the specific procedures being examined,

present the theoretical basis of each procedure, and provide individual

estimates for each source of uncertainty. The final result is that all of the

available procedures provide sufficient accuracy for purposes of risk

analysis and that the Dugway procedure is therefore preferred for its

ease of implementation.



2. DESCRIPTION OF FIBER COUNTING PROCEDURES

Following a chamber test at the Dahlgren facility, sticky papers

representing one quadrant of the test chamber are forwarded to the

U.S. Army Dugway Proving Ground (DPG) in Dugway, Utah, for counting.

In order to prevent fiber loss during transit, each paper is covered

with a sheet of clear plastic and the sheets are enclosed in plastic

envelopes. Upon receipt, the following procedure is used by DPG to

estimate the number of fibers released.

2.1 Summary of the Dugway Counting Procedure

A. Estimation of mean fiber length

1. For each sheet to be counted a 1-square-inch area is

randomly selected by positioning the sheet beneath a

counting microscope.

2. A microscope is focused in the selected area and the lengths

of 10 single fibers are measured. Single fibers are dis-

tinguished by diameter measurements using a graticule in

the counting microscope.

3. This procedure is repeated for each of the approximately

30 sheets that are to be counted (1 quarter of the test

chamber ).

4. The resulting measurements are used to estimate the mean

fiber length and length distribution for the tests.

B. Estimation of number of fibers on sheet

1. A set of parallel lines with spacing at least 20 percent

larger than the mean fiber length calculated above is

selected and placed on the sticky paper over an area of

fairly uniform fiber distribution. The exact placement of

the grid is at the discretion of the person counting the

sample. A typical sticky paper record is shown in Figure 2.1.

2. The grid lines are scanned until 100 intersections have

been counted (300 if the sample is very dense) and the

following formula is used to estimate the number of

fibers on the paper:

^ (2.1)
IrAN= ---
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where N = estimated number of fibers on sticky paper

I = number of intersections counted

A = area of sticky naper

L = length of line scanned to count I intersections

= estimated average fiber length

The summary of results from this counting procedure* are recorded in

table form, a sample of which is shown in Table 2.1.

The basis for the DPG counting procedure is the Buffon needle

problem. This classical probability problem and some required exten-

sions are discussed further in Appendix A.

2.2 Implications of the Extended Buffon Needle Problem

The analysis in Appendix A was developed to verify the accuracy of

the DPG algorithm when applied to distributions containing fibers longer

than the line spacing. It further serves to resolve the recent concerns

by DPG that their procedure applies only to Gaussian distributions of

fiber lengths and that for other distributions the procedure should be

based on the median fiber length. This analysis shows that the current

procedure is correct, regardless of distribution shape, if the mean

fiber length is used. It will be shown later, however, that the shape

of the fiber length distribution will affect the expected error of the

estimate.

It is important to note that two revisions to the counting procedure
have been implemented during the past year. Originally, the set of
parallel lines were of significant width relative to the fiber diam-

eter. This situation would alter the probability of a fiber crossing
a grid line and thus decrease the accuracy of the fiber count. A
second change occurred in the identification of fibers longer than 1 mm.
The person counting the sample is asked to select only those fibers
longer than 1 mm but originally was not provided with reference marks
of comparable length. Recently, 1-mm reference marks have been added
to the grid lines (as shown in Figure2.1). The implications of these

modifications will be discussed later in this chapter.

4



TABLE 2.1

Dugway Proving Ground Test Data Sample

Test No. BT-232/X-178 Date: 7 Dec 1978

Total Singles in Room: 5051937

Mean Length of Singles: 4.1 mm Median: 3.4 mm

Standard Deviation: 2.6 mm

Length

Category % Frequency % Cumulative
(mm) Distribution Frequency

1-2 21.0 21.0

2-3 24.0 45.0

3-4
13.7 58.7
12.3 71.0

5-6 9.0 80.0

6-7 6.0 86.0
784.3 90.3

8-9 4.0 94.3

9-10 2.7 97.0

10-11 1.0 98.0

13-142. 9.11-12 0.7 98.7

12-13 0.3 99.0
13-14 .0 99.0

14-15 0.3 99.3

> 15 0.7 100.0

T-300/5208

HiTemp

30 x 30 x 0.64 cm

BT-232/X-173
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2,3 Description of Alternative Counting Methods

A few other organizations have been involved in developing and

using procedures for counting carbon fibers released from experiments

conducted by these organizations. Amongst these are NASA (Langley),

Scientific Services, Inc., (SSI) of California and TRW, Inc. Each organi-

zation has used variations of the same technique of counting, namely,

counting a small region of a sample and scaling the result by the ratio

of the total area of the room (or the sticky paper) to the counted

sample area. Since these methods of statistical estimation of total

fibers have a bearing on the method utilized by the DPG, they are dis-

cussed below.

2,. The NASA-Langley Fiber Counting Procedure

1. A 3.5-cm square is cut from the lower right corner of each

sample.

2. The opaque backing is removed, the transparent sticky por-

tions are mounted on an aperture card and enlarged photographi-

cally (20x).

3. Fibers are counted by mounting the enlargement on a magnetic

digitizer board and using a magnetic pen to identify the

fiber endpoints to a computer. A computer program then

computes and summarizes fiber lengths and count. For light

depositions (less than 4 x 104 fibers/m2 ), the entire

enlargement is counted. For medium and heavy deposits,

a 12.7-cm square is randomly selected near the center of the

photograph and this area is counted.

4. The ratio of sample area to area counted is used to scale the

count to the entire sticky paper.

2.3.2 The Scientific Systems, Inc., (SSI) Procedure

1. Four 8-mm x 8-mm regions are selected by visually identifying

one area of light density, one of heavy density and two of

intermediate density.

2. Each area is counted under a four-power stereo microscope and

the fibers classified into 1-mm length intervals.

6



3. Total estimated fiber count is obtained by multiplying the

counts by the ratio of total sampler collecting area to the

area represented by the fiber counting regions.

2.3.3 The TRW Procedure

1. Ten random positions are selected on the sticky paper.

2. At each position, a 9-cm x 10-cm photograph is made at magni-

fications of 1, 3, 10, 30 and 100 power. The upper left

corner of each enlargement is located at the randomly selected

point.

3. The fibers on each enlargement are counted and scaled by the

ratio of total sample area to area counted to produce an

estimate of the total number of fibers on the sticky paper.

3, DISCUSSION OF THE TYPES OF STATISTICAL ERRORS IN THE FIBER COUNTING

PROCEDURES

Since all of the counting procedures involve statistical estimation

techniques, a number of errors are possible. The following list repre-

sents possible error sources associated with this procedure.

* Systematic error in estimation of length distribution

* Random error in estimation of length distribution

0 Systematic error in estimation of fiber count

* Random error in estimation of fiber count

0 Errors due to inaccurate or inconsistent applications of the

technique

* Errors associated with extrapolation of counts

* Errors due to mistakes by personnel

Before discussing each error in detail, it is appropriate to

briefly describe each type of error and the mathematical concepts used

to quantify them.

A systematic error is a tendency to either overestimate or under-

estimate a particular parameter over many observations. In the present

procedure, independent estimates will be developed for the length

7



distribution of the carbon fibers and for the total number of fibers

released. It is important to know whether given many estimates

the results will tend to be higher or lower than the real values.

Analytically, this is represented by the concept of statistical bias

which is in turn defined in terms of the mathematical expectation.

Mathematical expectation is a fairly simple concept closely related

to our everyday notion of average. In general if we seek to estimate

something subject to sources of uncertainty, such as the number of fibers

on a sticky paper, a different answer will be obtained each time it is

estimated. If the probability of obtaining any particular answer can be

calculated either theoretically or based on previous experience, it is

possible to determine, a priori, what the average of many observations will

be by multiplying the probabilities by the values and summing. This is the

mathematical expectation, denoted Efi}, where x is the variable being

observed. The expectation is defined by

n

n (3.1)
E{i) = Z xip(xi)

i=l

where i are the possible values of R and p(Ri) is the probability
i I

of observing R i" If x can take on continuous values, its probabilities

are expressed by the density function and the expectation is given by

the following equation

E{x} = fxp(x)dx (3.2)

The concept of bias can now be best understood by noting that in

general, if we seek to estimate some parameter, such as the total

number of fibers on a sticky paper, there are many observations that

may be used to approximate it. For example, we might observe values of

the DPG estimator given in Equation 2.1, or we might count all the fibers

in a 2-cm, or in a 4-cm circle. Any of these observations would be

termed a statistic and an estimator for the total fiber count.

Figure 3.1 might indicate results of several (4) measurements

using each of three different estimators. It can be seen that the first

8
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two estimators are "better" in that their averaoe value would be equal

to the true value whereas the third tends to overestimate the parameter.

Estimators 1 and 2 are said to be "unbiased" while 3 is said to have a

positive bias. Expressed mathematically, if x is used to estimate x

x is unbiased if E{x} - x

x is positively biased if E{x} > x

x is negatively biased if E{x} < x

A random error represents a random fluctuation of an estimate

around its average or expected value. It represents the degree of

nearness we can expect from the true parameter value. This situation

is illustrated in Figure 3.2.

Estimators 1 and 2 can both be seen to be unbiased or to have no

systematic error since their average is the true value. However,

estimator 1 is likely to yield a more reliable estimate of the param-

eter than is estimator 2 since the observations are more tightly

grouped about the true value and, hence, one is less likely to observe

a value far removed from the true value.

Estimator 3 is included to illustrate an interesting relation

between types of errors. Although, in general, an unbiased estimate

is preferred to a biased one, in this case, the bias is small compared

to the random variation, and estimator 3 might still give more accurate

results than estimator 2.

n 2V{x} = E (xi-x) p(xi) (3.3)
i=l

or for continuous variables,

V{x} = f (x- ) p(x)dx (3.4)

Since the variance measures the mean-square spread about the average

value, it can be used to estimate the expected size of deviations. The

Chebyshev Inequality provides a technique for this estimation. This

inequality is stated as follows:
2

Pr{IX-x>e} < -2 (3.5)

10



where e = arbitrary positive constant

and 2= V{} = variance of the estimate

x = true parameter value

x = estimated parameter value

This expression may be used to estimate confidenLe levels for the

estimate x as follows. If a is a constant between 0 and 1, then the

following relation is true wiih probability 1 - a.

- x -  (3.6)

or, with probability 1 - a, the fractional error in the estimate is

less than:

ef = (3.7)

For example, if a = 0.05, then 95% of the parameter estimates will

lie within ± ef'100 percent of the average value, e.g., if the variance

(a 2) of an estimate is 4 and the mean value is 200, then the 95% confidence

interval is about ± 4% of the average value.

Finally, the notion of a consistent estimate should be introduced.

This is also an indication of the expected level of random error. It

represents the degree to which the observations will group around the

mean as the sample size is increased. For example, if an estimate of

the fiber release is based on counting a fixed area of the sticky paper,

as the area becomes larger it is less and less likely that our estimate

will be inaccurate. Mathematically, this is expressed by the following

statement.

An estimate x is a consistent estimate of a parameter x if and

only if

ZimPr{lx(x . . . x )-xlhc} = 0 (3.8)

where x1 . . . xm are observations,

x is a function of x1 . . xm used to estimate x

c is an arbitrary positive number.

11
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For purposes of the accidential release program, only a rough

estimate of the number of released fibers is required. An accuracy

to within a factor of 2 or 3 is sufficient for the evaluation of

hazard associated with the release of carbon fiber. Consequently,

estimation techniques need not be elaborately examined to deter-

mine the most precise technique. It is sufficient instead to

examine the estimators for major statistical problems and base further

recommendations on criteria such as ease of implementation and cost.

4. ESTIMATION OF ERRORS FOR THE DUGWAY PROCEDURE

One of the interesting properties of the released fiber is the

distribution of fiber lengths since fiber length is related to

associated hazard. In Step 4 of the DPG procedure, the fiber length

distribution is estimated by counting the number of fibers in bins of

1 mm width and dividing by the total number of fibers counted. Since

it is possible that a fiber could have any length, one is really inter-

ested in estimating a continuous length density function as illustrated

in Figure 4.1. The best density function estimate based on the bins

is determined by dividing the fraction of fibers in each bin by the

width of the bin.

This procedure introduces a systematic error into the density

function estimate that is a function of the bin size and the "true"

continuous density function. This point is demonstrated by the following

mathematics:

Let p(x) denote the fraction of fibers counted within a length

bin of width Ax centered on length x. Thus, if p(t) is the

true length density function, the expectation of (x) is given

by the following formula:

1 f x + Ax/2

E {p(x)} = J x + Ax/2 p(Z) dt (4.1)Axf x - Ax12

Assuming that p (k) is three times continuously differentiable,

12
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p (Z) may be expressed as a Taylor series with remainder:

Zx dp(x) +(I-x) d p lx 1 a 2

p() = p(x) + ( d-x) dx + 2 2 + (x-t)2  3 dt (4.2)
dx x dt3

Thus,

Ax2 d2= + x+ A/2
E p(x) +2 2 (x-t) dt d (4.3)

4 dx 10 x ,x/ fdt 3

x

Hence to within second order terms,

E p(m) +Ax 2 d 2p(x) (4.4)
24 dx2

Thus, p(x) is a biased estimate of the true density function p(%).

This bias, however, decreases with the square of the bin size and thus,

for sufficiently small bins will be insignificant. Since p(x) is an

unknown function, it is not possible to accurately calculate this bias.

Based on the experimental results, however, it has been seen that for

fibers longer than 1 mm an exponential distribution will, generally, fit

the data to within about 10%. Although other distributions, such as

the incomplete Gamma provide a better fit, the exponential is simple

enough to allow analytic calculations and is sufficiently accurate

for the present analysis. It thus seems appropriate to roughly esti-

mate this error term based on an exponential distribution having a

mean value of about 3 to 4 mm. The resulting calculations indicate

an error of less than 5 percent, which cannot be considered a sig-

nificant error source.

The exponential distribution is discussed in Appendix B for readers
who are unfamiliar with it.

14



4.1 Random Error in Estimation of Length Distribution

If the true length distribution p(x) of the released fibers is

known, it is possible to estimate the random error or variance of

the estimator p(x) as described in the previous section. Given p(x),

the probability that a randomly chosen fiber will have a length falling
Ax Ax

between x- A- and x + A- (i.e., a bin of width Ax centered on x) is

Ax

P- p(x) dx (4.5)

Ax
2

Thus, if N fibers are selected and measured, the expected number

n of fibers in this interval is given by:

E{n} = NP (4.6)

and the variance of n is given by:

V{n} = NP(l-P) (4.7)

But, since the estimate p(x) is defined by p(x) = N-- the variance

of (x) is given 
by

V{p(x) } 1 Vn
N2 (Ax) 2 V(n)

2 1i NP(I-P)N (Ax)

_ P(l-P) (4.8)

N(Ax) 2

and thus decreases inversely with the number of fibers selected. In

order to estimate the effect, p(x) will again be assumed exponential

with a mean value of 3 mm. It then follows that

Ax e. 0.33 x -0.33 x(

p -- X p(x)dx 
= e0.3 e 2 e 2(4.9)

Ax
x-2

and for I mm length bins,

P 0.33e - 0.3 3x (4.10)

15
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so the variance at x = 1 mm, for counting 300 fibers is given by

V{p(x)} = 0.24(1-0.24)
N

0.18 = 0.18 = 6.08 x 10
- 4  (4.11)

N 300

and the expectation is

E{p(1)} = N.0.24F NAx = 0.24 (4.12)

So that the 95% confidence interval for p(1) is approximately 45%

of its expectation.

4,2 Systematic Error in the Estimation of Fiber Count

It should be noted that there are two obvious approaches to

the application of the estimator of Equation 2.1.

1. Intersections may be counted for fixed length of line

2. The length of line measured after counting a specified

number of intersections.

The second approach is currently followed by DPG, but both will be

examined to determine if an improvement may be obtained. In general,

the errors associated with fiber count estimation will be dealt

with in the section comparing results of alternative methods. The following

analytic expressions are included, however, for the qualitative insights

they yield.

4,2.1 Error for Fixed Length Method

Under this interpretation, the results of Appendix A and the

assumption of uniform spatial distribution may be used to rewrite

Equation 2.1 as

1rA 21N L I
E{N} A._N E(.3

2L rD LT  2(4.13)

= N 1

16



where LT is the total line length to cover the sample so that N is
unbiased if and only if

(4.14)

This condition, however, is dependent upon the fiber length dis-

tribution and will generally result in a positive bias or a tendency

to overestimate because Jensen's inequality implies that

- - (4.15)

k. E{2} k

This bias is not in itself a serious shortcoming because the

above estimate is consistent and based on a relatively large number

of fibers, i.e., since many fibers are used to compute k, thei1
probability of being very different from - is small.

The numerical estimation of this bias clearly depends on knowing

the distribution of the average length. Even then, the distribution1
must be simple enough to permit the calculation of E{ I in order to

estimate the bias. Unfortunately this does not appear to be true.

However, for a particular experiment, this bias is fixed since 2 is

not estimated separately for each sheet. It is thus possible to derive

some rough approximation for the range of the bias from experiment to

experiment as follows.

Since 2 is the sample mean of 300 observations, it will have a

standard deviation smaller than the overall population by a factor of
-2i/V3-30 = 5.8 x 10- . Since a typical test might have a mean fiber

length of 3 mm and a standard deviation of 2 mm, Z should have a mean

of 3 mm and a standard deviation of 2/300 = 0.12.

It thus follows from Equation 3.7 that at least 95% of the time, the

estimate of Z will be accurate to within 18%. Consequently, although the

bias is unknown for any test, this effect can be expected to introduce an

error of less than +22% or -15% for any test. In comparison to other

error sources such as sampling errors and random errors associated with

17
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the counting process, this is an unimportant contribution to the over-

all inaccuracy.

4.2.2 Error for Fixed Intersection Method

If, however, the line length is measured for a specified number of

intersections, the expected value of N becomes

E{N} - AI E{ } E{} (4.16)

2 L 1
The above comments on the bias introduced by the term z are still

applicable. However, additional bias will now be introduces unless

1 -2NZ

L 7rAI (4.17)

Thus, since

E{L} = fAf
2N (4.18)

it follows that

1 2N£

E{-} > - (4.19)
L - E{L} 7AI

This application of the estimator will in general increase

the positive bias of the estimate except for special distributions.

The result is that if the counting process is repeated and the esti-

mates averaged, the result will tend to differ from the true number of

fibers. However, due to the consistency property, if relatively large

numbers of intersections are counted and large numbers of fibers used

to estimate the average fiber length, the result will tend to be near

the true value of N.

Unfortunately, the distribution of the observed line length, L,

is a quite complex analytic expression and no empiric data are avail-

able to estimate it. Thus, the magnitude of this source of error

cannot be numerically estimated by analytic means. The results of the

18
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above sections are significant in that they demonstrate qualitatively

that the method of counting intersections (ver a fixed line length

provides a reduction in error over the use of the fixed intersection

procedure.

From an operational standpoint, however, this application of the

estimator of Equation 2.1 is not very different from the procedure

described above if L is chosen as the expected length to count 100

intersections. It therefore appears reasonable on an intuitive basis

to expect the difference in the errors to be small and use the above

estimates to roughly approximate the error associated with this proce-

dure.

4.3 Random Error in the Estimates of Fiber Count

As discussed above, this type of error is measured in terms of

the variance of the estimate. For the alternative of counting inter-

sections on a fixed length of line, the following analytic expression

may be developed (Appendix B)

2z.. A 29..A A N 4 2( sI s s I __ 2 - 2

V{N} = D A(l 1 +- -11 - I - Cos-' (4.20)
TrD ArDA A co D 2ZL

i = N +1

where

N = estimated number of fibers on sticky paper

9. = length of ith fiber1

N1  number of fibers of length less than D

N = total number of fibers

D = line spacing

t = mean length of all fibers on the sticky paper

A = area counted (covered by line length L)s

A = area of sticky paper

L = length of line counted

19
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This expression is strongly dependent on the fiber length distribution.

In order to provide an estimate of the approximate magnitude of this

error, the data from test BT-230 were used as an example. This

shows that the error due to this random variation should be less than a

factor of 2 at the 95% confidence level. It should be cautioned, however,

that since the fiber length distribution varies from test to test, the

accuracy of this counting algorithm will differ with each test.

The probability distribution associated with counting a fixed

number of intersections is quite complex, and it does not appear feasible

to develop explicit analytic expressions for the variance. From an

operational standpoint, however, the problem is very similar to counting

a fixed line length whose length was chosen to be approximately that

required to count 100 intersections. Although it cannot be rigorously

demonstrated, it seems reasonable to expect the random errors for the

two methods to be similar.

4.4 Errors due to Incorrect or Inconsistent Application of Techniques

Two significant sources of error not inherent to the DPG couating

methodology have been noted. Initially, DPG counted using quiLe wide

grid lines and no reference marks to aid in the identification of fibers

of length 1 mm or greater. These two problems appear to introduce larger

errors than those arising from the statistical estimation process. More

significantly, the effects of these problems vary from experiment to

experiment and can be expected to vary from counter to counter.

Table 4.1 shows the results of counting the same samples both with

and without reference lines. As can be seen, the addition of reference

marks has caused as much as a factor of 3 variation in the estimated

fiber release and the factor is quite dependent on the density of the

fiber deposit and probably on the person counting the sample. This

implies a source of error which, although within the desired accuracy

of counting, varies from experiment to experiment in a nonrandom fashion

making comparison of results difficult.

No similar data are available to illustrate the effect of the wide

grid lines.

In order to partially resolve this difficulty, the correction

factors of Table 4.2 have been developed and checked with Dugway

Proving Ground. It should be pointed out, however, that these factors

20
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TABLE 4.1

Comparison of Fiber Counts With and Without
1 mm. Reference Marks in Dugway Counting Procedure

Test Number Sampler No. With Reference Without Reference

BT-171 13863 1206 906
(Light 13875 1077 510
Deposit) 13882 876 477

13884 857 317

BT-237 20803 25516 74202
(Medium 20805 14227 48464
Deposit) 20810 12718 44667

20812 18782 38610

BT-230 19968 52071 120885
(Heavy 19970 47745 130995
Deposit) 19980 39151 83320

20013 36883 96254
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TABLE 4.2

Correction Factors for Absence of Reference Marks

on Dugway Fiber Counting Procedure

Correction
Density of Factor Applied to

Fiber Deposition Results Obtained
on the Range of Total From Nonreference

Sticky Paper Fiber Count Mark Counts

Light Less than 5 x 107 1.82

Medium 5 x 107 to 1.5 x 108 0.35

Heavy Greater than 1.5 x 108 0.41

22
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are very approximate and at best can only serve to partially eliminate

the inconsistency in the counting technique.

4.5 Errors Associated with Extrapolation of Estimated Counts

The above analysis reflects the statistics of the intersection

technique used to estimate the fiber deposit on a given sticky paper.

A further error source is introduced by the extrapolation of each

count to the 1-sq-meter section of the chamber that it represents.

This extrapolation is clearly unbiased under the assumption of uniform

fiber distribution. Its effect on the expected error is to multiply

the variance of N by where A is the area represented and A

is the area of the sticky paper. Consequently, the variance of the

estimator is increased by approximately a factor of 900 due to this
2

extrapolation. This means that the estimated fiber release for the 1 m

area is 30 times less accurate in terms of absolute reaction (see

Equation 3.6) than the estimate for the individual sticky paper. When

expressed as a percentage of total fiber count, however, the overall

accuracy is uneffected by this extrapolation error.

5. STATISTICAL ERROR ESTIMATES FOR ALTERNATIVE COUNTING METHODS

Because of the similarity of the alternative fiber counting techni-

ques, a single statistical analysis can be applied to the examination

of each method. Each method involves counting a small area of the

sample and scaling the result to represent the deposit on the entire

sheet. Mathematically, this may be expressed by the following estimator:

AN =-f--n (5.1)
s

where N = estimated fiber count for the sticky paper

A = area of the entire sheet

A = area that was counteds

n = number of fibers counted in the selected area

5.1 Systematic Errors in Alternative Counting Methods

Under the assumption that a fiber is equally likely to fall any-

where on the sticky paper, fibers are deposited on the area selected

23
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for counting according to a binomial distribution with probability
As It then follows that

_ A
A A s

E{Nj - E{n} =- N = N (5.2)
A A A(52

S S

where N is the true number of fibers on the sheet. Thus, the count in

any randomly selected area is an unbiased estimate of the total fiber

deposit. However, the established counting procedures do not always

select the areas randomly, but sometimes base the area selection on the

counter's perception of the fiber density. This practice will introduce

biases that are impossible to quantify as the accuracy of the person's

perception of fiber density is not known. The best that can be done is

qualitative observations based on the assumption that it is possible to

accurately locate the lowest, highest, and average density regions by

visual perception.

The NASA-Langley estimates will clearly be unbiased since the

region selected for counting is independent of the observed fiber

density distribution. The TRW procedure is unbiased when the posi-

tions are randomly selected and probably introduces negligible bias when

the counter attempts to locate a region of average density because his

pattern recognition ability likely permits an accurate selection. The

SST procedure is positively biased, however, due to the application of

equal weighting to regions of high- and low-fiber density. Since the

expected number of fibers in the most dense region is further from the

mean than the expected number of fibers in the least dense regions, a

positive bias will bL introduced assuming the counter accurately

identifies these regions. Thus, the SSI procedure will tend to over-

estimate the number of fibers on the sheet. This will be seen in the

following section where the results of a comparison counting are presented.

The SSI results are consistently higher than those presented by other

organizations.

The binomial distribution is described in Appendix C for the benefit of

readers unfamiliar with its properties.
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5.2 Random Errors in Alternative Counting Procedures

All of the procedures will yield consistent estimates since they

will tend to precise results as the size of the area counted approaches

the size of the samplers.

The expected errors are represented by the variance of the esti-

mate in Equation 5.1 and will decrease with the area counted since:

A 2 A2 A A
2 V{al 2 A

AA
A s (5.3)
s

A
s

In order to interpret this result, some typical values must be

assumed. For moderate to heavy releases, a sticky paper contains about

3 x 104 fibers and is approximately 15 x 23 cm. It is used to represent

2
a 1-m area of the test chamber. The NASA procedure counts a 3.5-cm-sq
section of the sample, and the largest area counted by TRW is 8.75 x 10 cm.*

For moderate and heavy fiber densities, however, the NASA method

does not count the entire 3.5 cm region, but rather a 12.7 cm square

randomly located on a 20x enlargement. This implies that for the higher

fiber densities, the region actually counted is only 0.64 cm. Using

these values, Equation 5.3 may be used together with Equation 3.7 to

develop some error estimates. The results of these calculations are

presented in Table 5.1.

It is apparent that the errors associated with these algorithms

are Rtrongly dependent on the size of the area counted. The counting

of a 4-cm 2 area, for example, would reduce the confidence interval

for the NASA procedure to about ±29%. Although the variance associa-

ted with the current NASA procedure is large, it is still well within

the factor of 3 accuracy required for the accidental release studies.

In developing the error estimates for the TRW procedure, it has been assumed
that this area was counted for one of the chosen points. The actual procedure
used by TRW to combine results of the several photographs is, however, not well
documented. In fact, the errors involved may be considerably larger than the
estimate derived here as TRW may have, in fact, counted a smaller area.
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TABLE 5.1

Estimated Extrapolation Variance and Error

NASA TRW

Variance for extrapolation 855N 3N
to sample

7 4
Numerical estimate for 3 x 10 9 x 10

sampler (N = 3 x 104)

95% confidence for sampler 0.75 0.04

26



6. EMPIRIC COMPARISON OF COUNTING TECHNIQUES

In order to directly compare the results of the several counting

techniques, four sticky papers were selected from each of three chamber

tests and sent to each organization for counting. These three tests

were selected to represent li ht, medium, and heavy densities of fiber

deposits so as to provide a comparison over a range of conditions. The

results of this counting are shown in Table 6...

It should be noted that there is much more variability in the

counting procedure than these numbers suggest. For example, NASA

counted sample 20812 four times and developed estimates ranging from

13800 to 19900 or a variation of ±23% from the mean in four observa-

tions. The sample variance of these observations furthermore is
7 7

1.9 x 10 , suggesting a population variance of 2.5 x 10 , close to the
theoretical value in Table 5.1.

Apparently, all of the counting procedures have yielded the same

results to within the theoretically estimated levels of error. It is

further true that all methods provide accuracy to within the standards

required for risk analysis of carbon fiber release.

7. CONCLUSIONS AND RECOMMENDATIONS

The preceding analysis has described in some detail the current

methodologies for the counting of released carbon fibers and the

associated sources of statistical errors. These errors have been

quantified whenever possible as a means of evaluation and comparison

of the techniques. The basic conclusion is that all procedures are

sufficient for the estimation of released fibers and that the current

Dugway Proving Ground procedure is to be preferred as it is .,.uch quicker

and hence less expensive to implement. This procedure consists of

placing a set of etched parallel lines on the samples, and counting

fiber intersections with the lines to estimate the number of fibers.

It has been modified recently by the replacement of wide lines with

finely etched lines and by the introduction of 1-mm reference marks

to aid in visual selection of fibers greater than 1 mm in length (shorter

27
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TABLE 6.1

Comparison of Fiber Counts by Different Organizations

Test Number Sampler Number DPG TRW SSI NASA

BT-171 13863 1206 662 1088 730.
(light deposit) 13875 1077 674 0 860

13882 876 499 816 700
13884 857 400 1474 910

BT-237 20903 25516 18341 40000 27600
(medium deposit) 20805 14227 15108 29100 19900

20810 12718 13358 23850 19900
20812 18782 17102 29800 16800

BT-230 19968 52071 48869 - 45800
(heavy deposit) 19970 47745 52016 - 40600

19980 39151 33794 - 32000
20013 36883 31475 - 29800
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fibers are not counted). Table 7.1 summarizes the error estimates

derived in this chapter. It should be pointed out that the generally

accepted standard of accuracy in estimations of fiber release is to

within a factor of 2 or 3. Consequently, any method providing this

kind of accuracy, with no serious systematic tendencies to over or under

estimate is sufficient for the analysis of the Dahlgren chamber tests.

Selection among methods meeting this criterion should be based on con-

siderations of cost and convenience of implementation.

It must be stressed, however, that the error estimates developed

in this section are very conservative estimates. They are generally

based on the concept of a 95% confidence interval, i.e., if the

counting is repeated only 5% of the result will differ from the true

number of fibers by more than the error limits specified. In practice,

most measurements will be considerably more accurate. For example,

at least 70% of the results will be in a band one half the width of

the 95% interval. The estimates are also conservative in that they

are based on a distribution independent method (Chebyshev Inequality)

which specifies the largest possible confidence interval for any distri-

bution having the calculated variance. In fact, the errors are likely

to be well represented by a Gaussian distribution and a corresponding

reduction of the confidence intervals would occur.

In summary, all procedures provide sufficient accuracy

for the reduction of data from the Dahlgren chamber tests. The

Dugway method as presently implemented represents the easiest proce-

dure and is therefore preferred. The primary difficulty in the counting

seems to arise from historically inconsistent application of the proce-

dure which resulted in the introduction of fairly large (factor 3) non-

random errors into the data. These errors are a function of the person

counting the sample and of the density of fiber deposit on the sticky

paper. This makes comparison of test results difficult. A partial

correction for these errors is offered in Section 4.4.
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TABLE 7.1

Summary of Estimated Errors

DPG TRW NASA

Systematic less than 15% 0 0

Random 75% 5% 75%

Total less than 90% 5% 75%
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THEORETICAL BASIS OF THE DUGWAY ALGORITHM

*A.1 The Buffon Needle Problem

The Dugway Proving Ground (DPG) counting procedure is based on the calcu-

lated probability that a needle dropped on a set of parallel lines will cross

one of them. (Figure A.1)

This problem was solved by Buffon in 1733 who proved that if the needle

length is less than the line spacing, the probability that a needle dropped

on the parallel lines will cross one of them is given by:

22.
P= .2 (A.1)

where Z = fiber length

D = line spacing

This result may be demonstrated by the following argument. The location

of the fiber relative to the grid lines may be specified by a normal distance

x and an angle 0 as shown in Figure A.l. Under the assumption that the fiber

is equally likely to fall anywhere on the grid, the probability distributions

for x and 0 are as follows:

p(x) = D 0 < x < D (A.2)

10otherwise

p() = , 0 < 0 < (A.3)

Totherwise

D
For each x < j, the fiber intersects the lower line if and only if a <

- 12x
2 cos which implies (note that by symmetry the probability of intersect-

ing the upper line is the same) that the intersection probability is given by:

-l2x

-2 
cos 

" 
d dX,

P=2f 2  -1-dedx

- (A.4)
-1)

A-1
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FIGURE A.1

The Needle Intersection Problem

DI

D = line spacing

2= needle length
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The Dugway algorithm was developed from this probability estimate

(Solomon, et al.) by arguing that if a large number of needles or fibers are

dropped on a set of parallel lines, the portion that will cross the lines is

given approximately by this intersection probability. Thus, if N fibers are

deposited, the number of fibers crossing the parallel lines should be approxi-

mately:

2XNNP = 2 , (A.5)
irD

This suggests that the number of fibers deposited on a sticky paper may

be estimated by covering the paper with parallel lines of known spacing,

counting the number of fibers crossing the lines and estimating the total

fiber count by rearranging Equation A.5 to read:

vDI

N = 2-- (A.6)2Z

where I is the number of intersections that were counted.

In the present application, the number of fibers deposited and, hence,

the number of line crossings is still very large, so the Dugway algorithm

introduces a further modification. Under the assumption that the fibers are

uniformly distributed over the sheet, it should be possible to count line

crossings over a smaller area, apply Equation A.6, and multiply the result by

the ratio of the sticky paper area to the area counted. If A is the area of

the sticky paper, A is the area counted and L is the length of line coverings

the area counted, then an estimate for the total number of fibers on the sheet

is given by:

N= irDI A = irDI . A =rIA (A.7)
2 A 2T LD 22Ls

which is the result used in the DPG fiber counting procedure.
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A.2 Extensions of the Buffon Needle Theory

The analysis just described is insufficient to justify the DPG

procedure since it assumes the fibers to be equal length and Thorter

than the line spacing. Arthur D.. Little, Inc., has therefore extended this

theory to collections of fibers of different lengths, including the

case where fibers may be longer than the line spacing.

The Buffon needle theory as expressed above can be immediately

extended to the case of fibers of various lengths but shorter than the

line spacing if the average fiber length is used in Equation A.3.

This is apparant if one notes that the average number of line crossings

(I) will then be given by:

N N

EfI 2 i 2 L - (A.8)

il i=l

where Z = length of i- h fiber

N = toLal number of fibers

D = line spacing

I number of line crossings

= average fiber length

However, in the current problem, a significant number of fibers are

longer than the line spacing because the spacing was selected to be close

to the average fiber length. This requires further extension of the

Buffon needle problem. Examination of the experimental data reveals

that few fibers are longer than twice the average length, so it is suf-

ficient to confine the analysis to fibers shorter than twice the line

spacing. Under these assumptions and assuming that fiber is equally

likely to fall anywhere on the sticky paper, it can be demonstrated

(Appendix B) that the fiber intersection probabilities become:

A-4
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Number of

Notation Intersections Probabi t
1 2- ifO <

if D <90 < 2D

22 ) OifO<D

if D < Z < 2D

where Z = fiber length

D = line spacing

It then follows that the average number of line crossings will be

given by:
N N

E{I} = 1 (zi) + Z 2P2 (ki) (A.9)

i=l i=1

Thus, if there are N fibers shorter than the line spacing, the

following expression results:

i 2-. N / 2

E. JI} I E - + 2 2 cos - D- 2 - 1 + -
i=l iTr 7T 9 C

+ 2 2 J z i[2i 32 D

2 P, 2 Li 2 Z, 2 NT
-Ta D- +  1 D 7 D (A. 10)

Ni=N

IConfirming the accuracy of the above procedure for distributions

containing fibers longer thaii the line spacing.

2. -l A-5cs

i'N~l



APPENDIX B

SINGLE FIBER MULTIPLE INTERSECTION THEORY



SINGLE FIBER MULTIPLE INTERSECTION THEORY

The analysis in Appendix A assumes knowledge of the intersection prob-

abilities for fibers longer than the line spacing along with the expected

value and variance of the number of fiber intersections.

The following analysis has been developed to provide these values.

The basis for these calculations are the following assumptions:

1. Each fiber's fall on the sheet is a statistically

independent event.

2. The fiber's center of mass is equally likely to fall

anywhere on the sheet.

3. The fiber is equally likely to lie at any angle

relative to the parallel lines.

It then follows that the probabilities of observing a particular

number of intersections is given by the fractional ranges (relative to

iT radians) of angles and (relative to line spacing) of fiber mid-point

locations that will result in the number of intersections being considered.

The following pages illustrate the geometric configuration leading to 1 or 2

intersections and the resulting probability calculations.
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Calculation of probability of observing two intersections (PT2 when

2D > Z > D

D

L 7 2/8

-1 D-x-1 2 (D-x)

-1 D-x -2 cos D-c) and since two intersections occur
Since c = 2cos -co 2

whenever the fiber touches the most distant grid line, it follows that

P 2 D/2 2 -1 2(D-x) dI2 -2--
1 P-2/2 Dn cos dx

The above integral can be evaluated easily and results in

B PI~2 IT I -co -

Calculation of probability nf one or more intersections (PI) when

2LD > X >D
I r

JD

-1 2x
Thus, a 2 cos - represents the angular region over which one or

more intersections will occur. From this it follows that:

D/2 2 -i 2x
P = 2 2 cos - dxL~r-i

0
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By evaluating the above integral we get

2 co- D
I = L -1 +

Calculation of probability of exactly I intersection (PI) when

2D > . > D

Since PII = I - PIV it follows from the above results that

r -1 D-
P -¥ [ _ 2 - - 1 +

Calculation of the expected number of intersections

Under the assumption that each fiber's fall is a statistically

independent event, the following provides an expression for the expected

number of intersections.

N 1  2 9, N i 2 ]_,oH
E {I = -- -. + -[- i~ ~ - cos -

i=N 1 1-11[2 -1
+ 2 2 cos -  D - 2-i+

i=N I+ T I  ki D2 D

where N = total number of fibers

and N 1 = number of fibers shorter than L

N

2 i 2NZ

where = N

i=l
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Calculation of V(I), the variance of the number of intersections

Consider a variable xi with following distributions:

x! P1 (xi)

2 i~ -i - CO -B' • -

2 - -i

[ - Cos

0r A

D7D

spelg , ih I DNf i -1 D, +h vainebms

Tr DA 2Z 2A A

E I xIti fl tha

Taisixpressindreprendneent the variance of the oa number ofscos

inspcions wih 9e y > h su. IfZ of<D the variances beomec ie r

V I i A 2 ;

AT A.D
andD

tistexpressindepesdneent the variance of theoa number oftescon

inspcti s Dwih give by D. e If m ofD the variances beom ec ier
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1=1 i=N +1D
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DESCRIPTION OF DISTRIBUTIONS USED IN THE ANALYSIS

C.1 Exponential Distribution

This distribution has been used in some of the above calculations to

permit rough estimation of the magnitudes of errors. Although other distri-

butions, such as the incomplete Gamma, provide much better fits, the exponen-

tial is of a simple enough form to allow analytic calculation.

The density functions for the exponential distributions is given

as follows:

-Ax

f(x) XAe for o <x_"

o otherwise

From this, it follows that the cumulative distribution function is

given by

x -x
F(x) = f f(x) dx = l-e

The mean and variance of this distribution are as follows:

1 2 1,a 2

Table C,l illustrates the fit which may be obtained for one of the

tests.

C,2 Binomial Distribution

This distribution is used to model the results of a binary experi-

ment with success probability a specified value p. It is described by

the following probabilities:

f(x) Pr I x successes during n trialsi

(xn)pXq (n-x)
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TABLE C.1~

Comparison of Exponential Distribution Function
to Observed Data

Cumulative Fraction

FIBER OBSERVED FRACTIONAL
LENGTH EXPONENTIAL DISTRIBUTION ERROR
-(ii;;;)

2 0.27 0.28 -0.04

3 0.37 0.33 .11

4 0.46 0.42 .09

5 0.54 0.47 .13

6 0.60 0.54 .10

7 0.67 0.58 .13

8 0.71 0.65 .08

9 0.75 0.70 .07

10 0.79 0.76 .04

11 0.82 0.82 0.0

12 0.84 0.83 .01
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whr (xn ) p~ n! x

whereX! (n-x )!

The expected value and variance of the distribution are given by

n np

02 npq
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